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. صحتھا من والتحقق( الإشارات)للمعطیات  الخاطئة القیاسات تحدید ھو الأجھزة اثناء تشغیل الرئیسیة التحدیات أحد   

 ، ویتم ذلك السلامة كبیرة في أھمیة لھا التي تلك وخاصة ، الأجھزة لمختلف الصحیح التشغیل ضمان خلال من بذلك القیام یمكن

ن محتمل. خطأ أو تدھور أي وتحدید وعزل اكتشاف خلال من  

 الأعطاب اكتشاف وھما أساسیتین وظیفتین من على الأعطاب ، الإشراف من جزًءًا تعتبر التي ، الأعطاب مراقبة تتكون

ن والتحدید. والتعرف ، منھا العزل أساسیة وظائف عدة  من التشخیص یتكون ومن جھته ، . وتشخیصھا  

 عطل في عطب أي یتسبب أن قبل ، ممكن وقت أقرب وفي الخط على الأعطاب مراقبة باسم المعروفة ، العملیة ھذه إجراء یجب

 المبكرة الإشارة فإن ، وبالتالي. قاسیة كوارث إلى وحتى للمصنع تعطل شامل إلى یؤدي أن بدوره یمكن المعدات والذي في

 مبكًرًا إنذارًً ا توفر لأنھا للغایة فعالة فھي ولذلك . السلبیة العواقب بسبب ،  الأھمیة بالغة تصبح المعدات ھذه في للأعطاب

 المعدات جیدًًا، أخطاء مراقبة یتم لم إذا ، وبالتالي . وحاسمة تصحیحیة إجراءات لاتخاذ كافیین ووقتًاً معلومات وتوفرلھم للمشغلین

 على سلبًًا تؤثر نتائج ، وھي السلیمة الغیر التحكم وإجراءات التعطل وقت زیادة مثل التشغیل على خطیر تأثیر في یتسبب فإن ذلك

ن .والبیئة والتوافر الإنتاجیة  

المشغلین.  عمل الذي یصعب ما المتغیرات من متزاید عدد یؤدي لمراقبة ، مما وحجمھا الحالیة الصناعیة الأنظمة لتعقید نظًرًا

 نظام مفھوم یبدو ، لذلك .أھمیة المعلومات الأكثرمعالجة  التركیزعلى( القرار صانعي) المشغلین حث وكحل موقت ، یتم

 مارك اا( الذریة العامة وإنتائج النظائر )البحوث التدریبیةتریقا  مفاعللمھًمًا ل القرار في المساعدة أداة جانب إلى الإشراف

 من  ي على قلب المفاعل ،الحوض المائ الذي یحتو  في  المتولدة ، الحرارة لإزالة حراریة دلات مزود بمبا النوویة، للبحوث

 سلامة لضمان ضروریة الھیدروحراریة تطورالاعدادات مراقبة فإن ، لذلك .التبرید للماء في دوائر المستمر التدفق خلال

ن المفاعل.  

 في معیبة أداة تحدید عملیة إنھا .الخطأ لرصد فعالة كطریقة التحلیلي التكرار على التعرف تم ، المتقدمة التقنیات من العدید بین من

 على الحصول سلاسل توفرھا التي والقیاسات النموذج إلى التقدیر ھذا یستند .البیانات بتقدیر ناتجھا مقارنة خلال من النظام

 ومرشح الریاضیة النماذج على نقتصر ، ھذاملنا ع في .التشغیل تحلا جمیع أثناء  الموجودة الاستشعار بأجھزة الخاصة البیانات

ن . كلمان  

النوویة  الأبحاث لمفاعل الحراري والمبادل الأساسیة في القلب المعلمات بعض واستیعاب رصد ھو الأطروحة ھذه من الھدف

الأطروحة سنتطرق الى  في ھذه .عادة رصد الأكثر الأجھزة ھي ھذه لأن ،( مختبر التطبیقات النوویة) تریقا مارك اا بلینا

 لھذا الرئیسي الدافع فإن ، لذلك. ھذا العمل المستعمل في ، التحلیلي التكرار ، الرصد نھج إلیھا یستند الشرح باسھاب الطریقة التي

 سلوكیات لتصمیم الفیزیاء وعلاقات ، الاصطناعیة العصبیة الشبكات أي ، الاصطناعي الذكاء إمكانات استكشاف ھو البحث

 على للإشراف النظري نراجع الجانب الأطروحة ھذه في .مراقبتھا یتعین التي للأنظمة البقایا وتولید الأخطاء الحرة من النماذج

 نقدم ، ذلك إلى بالإضافة( المجال ھذا في المستخدمة المختلفة الطرق ذلك في بما) والاستیعاب والتشخیص الكشف أي الخطأ

 للقلب المعلمات بعض واستیعاب لرصد الاصطناعیة العصبیة الشبكات ونماذج مختلفة تحلیلیة طرق باستخدام المقارنة نتیجة

ن .اا تریقا مارك ، الأبحاث مفاعل في الحراري والمبادل  

 



 

 

One of the major challenges in instrumentation is to identify wrong data (signal) measurements and perform their validation. 

This can be done by regularly ensuring a correct operation of the different process components, particularly those having great 

importance for safety, in order to detect, isolate and identify any possible degradation or fault.  

The fault monitoring, considered as part of fault supervision, is composed mainly of two principal functions: fault detection 

and diagnosis (diagnostic). On the other hand, diagnosis is composed of several functions principally: isolation, identification 

and localization. 

The operation of on line monitoring should be done as early as possible, before any fault causes failure in equipment which 

can lead to the downtime of the plant and even to severe catastrophes and disasters. Thus, the early indication of faults in 

these systems becomes highly crucial due to the negative consequences since it provides early warning to operators and gives 

enough information and time to take corrective or decisive actions. Consequently, if process faults are not well monitored, 

they cause a serious impact on process operation as the increase of the down time and the incorrect control actions. Therefore, 

these consequences influence negatively on productivity, availability and environment. 

Due to the complexity and size of current industrial systems, the operators (decision-makers) are brought to treat (manipulate) 

volumes of more and more considerable information, what leads to monitor an increasing number of variable and make so 

difficult the work of the operators. Therefore, the conception of a system of supervision coupled with a tool of help (assistant) 

in the decision seems important. 

At Triga-Mark II (Training Research and Isotope Production General Atomic) nuclear research reactor, the heat exchangers 

are provided for removing generated heat from the reactor pool water throw cooling circuits. Therefore, the monitoring of the 

evolution of its thermal hydraulic parameters is necessary to ensure the safety of the reactor. 

Among several developed techniques, analytical redundancy has been recognized as an effective method for fault monitoring. 

It is the process of identifying a faulty instrument in a system through a comparison of its output to an estimate data. This 

estimation is based on the model and the measurements provided by the data acquisition channels of the existing sensors 

during all the operating modes of the installation.  

The aim of this thesis is to monitor and accommodate some parameters of the core and the heat exchanger of Triga-Mark II 

nuclear research reactor at LENA (Laboratory of Nuclear Applications), since these systems are the most commonly 

monitored. We underline the theory on which the monitoring approach, analytical redundancy proposed in this thesis are 

based. So, the main motivation for this research is to exploit the potential of artificial intelligence and physics relationships 

to design faulty free model behaviors and to generate residuals for systems to be monitored. 

In this thesis we review the theory of the supervision of fault (i.e., fault detection, diagnosis, and accommodation) including 

the different methods used in this domain. In addition, we present a comparative result by using different mathematical 

models, and Kalman filter and artificial neural networks approaches for the monitoring and accommodation of some 

parameter of the core and heat exchanger in Triga-Mark II research reactor. 

 

  



 

 

L'un des principaux défis de l'instrumentation consiste à identifier les mauvaises mesures de données (signaux) et à les valider. 

Cela peut se faire en assurant régulièrement un fonctionnement correct des différents composants du processus, en particulier 

ceux qui ont une grande importance pour la sécurité, afin de détecter, isoler et identifier toute dégradation ou tout défaut 

éventuel. 

La surveillance, considérée partie de la supervision des défauts, est composée de deux fonctions principales : détection de défaut 

et diagnostic. A son tour, le diagnostic est composé principalement de plusieurs fonctions : isolation, identification et 

localisation. 

L’opération de surveillance en ligne doit être effectuée le plus tôt possible, avant que tout défaut ne provoque une panne des 

équipements qui peut à son tour entraîner une panne de la centrale et même des catastrophes graves. Ainsi, l'indication 

précoce des pannes dans ces systèmes devient extrêmement cruciale en raison des conséquences négatives, car elle alerte 

rapidement les opérateurs et donne suffisamment d'informations et de temps pour prendre des mesures correctives ou décisives. 

Par conséquent, si les erreurs de processus ne sont pas bien surveillées, elles ont un impact grave sur le fonctionnement du 

processus en raison de l'augmentation du temps d'immobilisation et des actions de contrôle incorrectes. Alors, ces conséquences 

ont une influence négative sur la productivité, la disponibilité et l'environnement. 

Vu la complexité et la taille des systèmes industriels actuels, les opérateurs sont amenés à traiter des volumes d'informations 

de plus en plus considérables, ce qui mène à la surveillance d'un nombre croissant de variables et rendre le travail si difficile 

des opérateurs. Par conséquent, la conception d'un système de supervision couplé à un outil d'aide à la décision semble 

importante. 

Dans le réacteur de recherche nucléaire Triga-Mark II (Formation de Recherche et Production d’Isotopes Atomiques 

Généraux), les échangeurs de chaleur permettent de retirer la chaleur générée dans la piscine du réacteur à l’aide de la 

circulation d’eau dans les circuits de refroidissement. Par conséquent, la surveillance de l'évolution de ses paramètres thermo 

hydrauliques est nécessaire pour assurer la sécurité du réacteur. 

Parmi plusieurs techniques développées, la redondance analytique a été reconnue comme une méthode efficace de surveillance 

des défauts. C'est le processus d'identification d'un instrument défectueux dans un système via une comparaison de sa sortie 

avec des données d'estimation. Cette estimation est basée sur le modèle et les mesures fournies par les chaînes d'acquisition de 

données des capteurs existants au cours de tous les modes de fonctionnement de l'installation.  

Le but de cette thèse est de surveiller et d’adapter certains paramètres du cœur et de l’échangeur de chaleur du réacteur de 

recherche nucléaire Triga-Mark II au LENA (Laboratoire des Applications Nucléaires), car ces systèmes communément 

surveillés. Nous soulignons la théorie sur laquelle reposent l'approche de surveillance, la redondance analytique, proposée. La 

principale motivation de cette recherche est donc d’explorer le potentiel de l’intelligence artificielle, c’est-à-dire les réseaux de 

neurones artificiels, et les relations physiques pour concevoir des comportements de modèles libres défectueux et générer des 

résidus pour les systèmes à surveiller. 

Dans cette thèse, nous passons en revue la théorie de la surveillance des pannes (c’est-à-dire la détection des défauts, le 

diagnostic et l’Accommodation), y compris les différentes méthodes utilisées dans ce domaine. De plus, nous présentons les 

résultats comparatifs en utilisant différentes méthodes basées sur les modèles mathématiques, filtre de Kalman et les réseaux 

de neurones artificiels pour la surveillance et l'accommodation de certains paramètres du cœur et de l'échangeur de chaleur 

dans le réacteur de recherche Triga-Mark II. 
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Due to the strict requirements for the nuclear safety and the progress of technology, the dynamic of 

industrial process particularly nuclear plants (NPs) such as nuclear research reactor (NRRs) (Link 1) and nuclear power 

plants (NPPs) (Link 2) are became highly complex structural systems. This complexity is due to the introduction 

of new technologies which contain control systems substituting manual adjustments and combine at the same 

time large physical elements including sensors, actuators and their signal conditioning circuits; with software 

installed in computers. On the other hand, the NPs are expected to be operated with high-performance level of 

reliability, availability and safety for extended periods of time (Isermann, Ballé, 1997). Furthermore, the 

preservation of the performances of the existing installations is a big challenge.  

At present, the operator remains the main element in the monitoring loop. He has to analyze the 

situation and to take adequate decision. The reaction means to malfunctions, failures or drifts are often manual 

or semi-automatic. The conventional approach followed in a nuclear reactor (NR), is to monitor the value of 

some important parameters, such as neutron flux, temperature, flow rate (FR), pressure, level, loose part, etc., and to 

generate alarms if certain thresholds values of these parameters are exceeded. However, this task is more and 

more difficult for the operator because of the size and the complexity of modern installations. In these 

conditions, the operator can make bad decisions which lead to an irreparable error. According to 

(Venkatasubramanian et al., 2003a), 70 % of industrial accidents are due to a human error.  

Moreover, the preventive maintenance strategy followed in NR consists in systematic tests, controls, 

maintenance and off-line integrity evaluation and recalibration procedures of all sensitive and critical 

instruments, such as sensors (Balaban et al., 2009), radiation detectors and their associate measurement chains; and 

actuators and their control systems. This procedure is performed periodically (annually or monthly) during the 

scheduled shutdown state of the plant. However, this operation requires significant resources and takes so much 

time, in order to isolate the faulty instruments, then to return them back to the service. This operation sometimes 

is not necessary for instrumentation that is operating correctly. Otherwise, they can participate in performance 

degradation, aging and damaging and erroneous calibration due to repetitive manipulations. In addition, it is 

not an optimal method because the function conditions are only checked periodically. Therefore, faulty 

component can continue to operate for unknown periods up to the calibration intervals. This means, wait and 

the degradation continue till it causes a loss of function.  

Nowadays, plants are more and more instrumented and coupled to data acquisition then, to one or 

several calculators and computers. Hence, the number of collected and stored data from different parts of the 

plant (i.e., systems, processes), necessary to guarantee the normal operation of the plant, is excessive and grows 

constantly, and therefore even skilled human operators and experts cannot properly analyze and interpret it. 

NRs use a large number of sensors and detectors (S/Ds) of different types to provide continuously plant 

prescriptions by reading the process conditions/parameters status (DOE Fundamentals Handbook, Nuclear Physics, 

Reactor Theory, 1993). Sensors are used to measure thermal-hydraulic parameters like temperature, pressure, FR 

of process fluid, etc. Detectors are used to measure neutron density, gamma and beta radiations, etc. These 

measures from many different channels are used in safe operations, controls, radiation protection and monitoring 

systems. Furthermore, S/Ds are used to measure critical plant parameters which are a required acknowledge for 

the safe and economical operation of NP systems, such as in the shutdown system envisaged by safety and control 

rod acceleration movement (SCRAM) (Kasinathan et al., 2009). So, these components should be in healthy condition; 

https://www.iaea.org/topics/operation-and-maintenance


 

 

 

 
 

and their faults are one of the most common industry processes problems and their detection has been an area 

of an active research. 

During operation of NPs, faulty S/Ds cannot provide accurate information, so it is very interesting to 

regularly ensure correct operation of these components, and providing the correct signal in particular for those 

having great importance for operating safety, in order to enhance performance and reliability (Ray, Phoha, 2003). 

This task is known as S/D validation (Mandal, 2015). Furthermore, validation of measurement of the reactor 

parameters using S/Ds; and the correct operation of associated cables and instrumentation contribute to the 

improvement of systems safety and hence the plant safety. 

Many studies have shown that during operation, minor incident are more repeated, even daily. When 

faults and anomalies (Anzurez-Marin, 2014; Bueno, 2007) occur, they can seriously degrade the operating efficiency 

of the process which can lead to undesirable situations and have serious consequences on economy, security and 

environmental. It can force a plant into non-optimal operation and cause complete shutdown which leads to 

significant production losses and even in the worst case to physical damage in plant systems, human and 

environment (Olivier-Maget, 2007). Abnormal operating conditions (faults) cost process industry billions of dollars 

per year. In addition, automation tends to increase vulnerability of the process to faults (e.g., faults/malfunctions 

in process equipment, sensors and actuators, faults in the controllers or in the control loops). Therefore, failures 

those are associated with generation of the correct control action that due to invalid or faulty sensor often lead to 

total shutdown and catastrophic impacts. 

Thus, due to the increasing constraints, performance and quality requirements (e.g., availability, efficiency, 

reliability, safety, economy) of modern measurement and control systems and excessive variables, parameters and 

stream of dynamic information; avoidance of the occurrence of unexpected failures has become a major subject 

that gives more attention to the monitoring of systems and process at plants. 

Indeed, the human operators need new and sophisticated tools for helping to make decision during operation 

by continuously monitoring the performance and status of system. This insures a normal and sure operation 

and behavior of processes, systems and equipment; and act early in the case of occurrence of abnormal events 

and only the faulty component will be treated. In addition, the current generation of NRs has passed its mid-

life, and an enhancement of plants performance monitoring is necessary to their continued safe operation.  

Therefore, continuous monitoring is crucial of NR conditions by using effective methods and providing operators 

with exact information has been a matter of wide interest due to the increasing demands on safe and reliable 

operations and maintainability requirements. This allows normal running of the plant by minimizing downtime; 

reduction of operation and intervention costs associated with unnecessary manual calibrations and maintenance; early 

detection of degradation; and also providing detailed information on the performance and operation of the 

systems. In addition, early FM helps to avoid incidents; major damage to the components and machinery; 

process product deterioration; performance degradation; and damage to human health or even loss of lives 

Wolfram et al., 2001 . Finally, all these benefits participate together to guarantee the safety, extend the system life 

of installations, and human and environmental protection. More monitoring benefits are cited in International 

Atomic Energy Agency, Vienna, 2008 Ma, Jiang, 2011 . 

Hence, it is absolutely necessary to monitor nearly all process and any drift or anomaly must be detected. 

Detecting a fault appearance on-line is justifi ed by the need to effectively solve the problems within a short 

time. After the fault has been detected, it is important to obtain information about it, which is the task of fault 

diagnosis (FDi). FDi is composed of many tasks as isolation, identification, localization, etc. When the FDi is limited 

to isolation or to the identification of fault, in this case the monitoring is called fault detection and isolation or 

identification (FDI). The succession of fault detection (FDe), and FDi constitute the FM structure. Therefore, the 



 

 

 

 
 

task of a monitoring system is to use the different measurement data from S/Ds to establish information 

regarding the fault condition of the NP (Figure 1). 

Once a sensor failure is detected and diagnosed in the monitoring stage, the accommodation replaces the 

faulty component (i.e., S/D) reading with a reliable estimate. In this work, the faulty S/D reading substitution 

is made by using NNs and analytical models (Hussain et al., 2013;Samy et al., 2011). So, the association of FM and 

accommodation can be seen as a supervision of fault (Olivier-Maget, 2007). 

Indeed, in the last few decades, on-line condition monitoring and accommodation has become a significant issue to 

ensure stable operation and to achieve higher plant operability. Especially, it is more important for old reactors 

to detect the symptom of anomalies and to deal with them at the beginning of serious accidents. 

 

Figure 1 - Monitoring system. 

To set up a monitoring system, it is necessary to have detailed knowledge on the installation in both 

normal and abnormal situations. This knowledge includes basically the nature of fault causes; the associate 

symptoms to the faults induced by their causes and the different processing tools of these symptoms; and physics 

of the mechanisms between causes and effects. More details on this knowledge is available in (Olivier-Maget, 

2007). Nevertheless, in the reality, it is sometimes difficult to have this exhaustive knowledge and only a subset 

of these elements is usually available.  

The development of an on-line FM procedure must be able to answer to some constraints Orantes Molina, 2005  

such as the temporal characteristics of fault are unknown; system model (if it is available) is vague; noises of 

the model and measures are taken into account; and operation in real time by minimization of FDe and FDi 

time (Olivier-Maget, 2007). 

According to the literature, important applications on the monitoring of processes and equipment in NPs 

have been performed with success in many different fields, such as reactor internal parts vibration monitoring, loose 

part monitoring, instrumentation monitoring (e.g., sensors, actuators), reactor core parameters monitoring, transient 

identification, equipment condition monitoring (e.g., rotating machinery), waste water treatment process (Ma, Jiang, 2011), 

etc.  

Beside nuclear field, a wide range variety of approaches have been studied and developed for the fault 

monitoring (FM) in industry such as aeronautical systems (e.g., aircraft control system, navigation system and 

engines); chemical plants and petrochemical processes; gas turbines and power generation; embedded control systems in 

vehicles; industrial robots and electric motors. These FM methods have been reviewed in a number of books and 

papers Ding, 2012 Ma, Jiang, 2011 Onchis et al., 2014 Yan et al., 2014 Zaytoon Lafortune, 2013 . 

FM methods distinguish themselves according to various criteria: the dynamics of the process (discrete, 

continuous, hybrid, linear or non-linear (NL), the implementation of the monitoring system (on/off-line), the nature 

of the information (qualitative and/or quantitative), and the type of use (centralized or distributed). Each of these 

competing methodologies has their own distinct advantages and disadvantages, as reviewed by Olivier-Maget, 

2007 . Therefore, many classifications of fault detection and diagnosis(FDD) technics are suggested. The renowned 

and the most used among these classifications, the one which groups the methods in two categories: analytical 

model and free model- based methods (Khireddine, 2014). However, others reach till five groups of classification such 

as that given by ( ): signal-based methods (SiBMs), data driven methods (DDMs), model-based methods (MBMs), 



 

 

 

 
 

pattern recognition (PR) methods, and data fusion methods. In NRs many systems and equipment require a 

continuously monitoring because their parameters are critical so, the validation of these parameters is become 

more than a necessity.  

The aim of this thesis is to monitor and accommodate some parameters of the core and the heat exchanger 

(HE) of Triga-Mark II (Training Research and Isotope Production General Atomic) NRR at LENA (Laboratorio Energia 

Nucleare Applicata), since these systems are critical and the most commonly used. To get a satisfactory 

performance and a safe control operation, the application of redundancy based on mathematical modeling and 

NNs is used because it presents a powerful challenge. The developed system will assist the operator to treat and 

identify, as early as possible, such initiating events quickly and to take corrective actions so that the system can 

operate in an acceptable manner to prevent system shutdown. 

This thesis is organized into five chapters, starting by general introduction and ending by general conclusions.  

General introduction in describes the encountered problematic at industrial plants, particularly in NRs, with the 

technology advancement in point of view safety and efficiency. Then, we propose the online supervision as the best 

solution to help the operators to encounter the actual challenges. In Chapter I, we give a general description of Triga-

Mark II reactor at LENA particularly, the core and hydraulic circuits including HE, systems concerning by the 

monitoring in this work. For the core, a presentation of the configuration (fuel elements, control roads) is given. For 

the HE, the description includes details on architecture and characteristics. Furthermore, an overview on the scheme 

of the data acquisition set of these two previous systems is provided. Since some nuclear parameters of the core are 

concerned by the monitoring in this work, we considered necessary to introduce some physics-based approaches used 

for their computation. In addition, this chapter deals with the mathematical- based modelization techniques and Kalman 

Filter (KF), used to predict temperatures and FRs of the HE. Chapter II deals with a general concept of supervision, 

including the monitoring and fault control. In this context, we illustrate the different manner the faults are manifested 

and methods to be used to treat them. Chapter III presents the main approaches used in the FM domain. So, the 

sample group of monitoring methods is considerable (Isermann, Ballé, 1997; Persin et al., 2002). The purpose of 

Chapter IV is to present the NN applications in the FS of systems. So, this chapter deals with NNs, considered 

as part of artificial intelligence (AI) and DDM. NNs are more interesting when a model of equipment does not exist 

or is difficult to obtain. For efficiency applicability, we introduce an overview on the NNs concept dedicated to 

FDe particularly, architectures proprieties and applications. The SNNs can offer very interesting solutions in 

stationary applications but cannot be applied to data where time plays a determining role in the resolution of the 

problem. So, the representation of time in NNs represents an essential characteristic in the perspective of a dynamic 

system monitoring. Chapter V presents the application of the analytical techniques and NNs for the prediction of 

parameters of the core and the HE of the reactor. Then, this prediction is used in the location and accommodation of 

faults. Results of estimation by using the two main methods and schemes for FDD and accommodation are presented 

and discussed. We end up by a general conclusion and perspectives. 
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In this chapter, we give a general description of the Triga-Mark II reactor at LENA; its core and hydraulic circuits, 

systems concerning by the monitoring in this thesis. Since our objective is to supervise some parameters of the core 

and the heat exchanger, we began by an overview of these equipment and process structure then, we make a recall 

on some approaches of physics used for the computation of these parameters.  

  



 

 

              

 
 

TRIGA Böck, Villa, 2007; Coban, 2014 reactors stay as the most widely used research NRR in the world. It 

is a small nuclear research and education reactor constructed for use by universities, scientific institutions, 

industrial laboratories, and medical centers for peaceful purposes such as training, research, testing, and 

radioisotope production for medicine and industry, treatment of tumors, nondestructive testing, basic research on 

the properties of matter, and for education and training (Mesquita et al., 2009  It is not intended for energy 

generation. The most important feature of the TRIGA reactor is its fuel element which is a combination of 

slightly enriched uranium as fuel and zirconium hydride as moderator. It provides the reactor a prompt negative 

temperature coefficient and thus a high level of security. The Mark-II reactor Nacir, 2013 Smodiš, Snoj, 2010 is a 

variant of the TRIGA NRRs. 

The Triga-Mark II at LENA of University of Pavia is an open pool type using light water for the cooling and 

moderation functions, and annular graphite reflector. It is in operation since 1965 at a maximum steady-state 

power level of 250 kW General Atomic, Division of General Dynamics, 1964  Reactor core configuration is given 

on Figure I.3. The reactor operates with solid fuel elements which are cylindrical rods with stainless steel 

cladding. It contains a homogeneous mixture of zirconium hydride (ZrH) moderator combined with uniform 

mixture of uranium (8% wt enriched at 20% in 235-U) (Coban, 2014). This particular composition has a large, 

prompt negative thermal coefficient of reactivity (). This NRR has been used for several scientific and technical 

applications such as production of radioisotopes, nuclear activation analysis and development of boron neutron 

capture therapy in the medical field and reactor physics studies. 

Fission of the nuclear fuel inside the core produces the warming up of the primary circuit water. Fluid is 

circulated by the primary pumps. The heat produced is transmitted to the secondary circuit and then the tertiary 

circuit through two HEs respectively. The cooling of the reactor core is made by natural convection which 

transfers the heat of fuel gain to the water inside the tank. When the reactor works at the nominal power of 250 

kW, without heat extraction system, the temperature of water increases with a rate of 13.3°C/h. The fuel 

elements in the reactor core are cooled by natural water circulation. An active heat removal system draws water 

from the reactor pool and released into the atmosphere. This is done through two HEs from the primary to 

secondary and then tertiary cooling loops (Figure I.1). 

The primary cooling circuit is composed of a water pump and a thermal HE which extracts the heat from the 

water tank and then transfers it to the secondary cooling circuit. The primary pump starts automatically when 

the temperature of water becomes higher than 30 °C. The output of the primary circuit is situated at the top of 

the reactor core, so when the primary pump works, a flow of cold water decreases the level of temperature in 

the core and consequently the  increases. In this circumstance, an automatic controller of power of the reactor 

is applied to maintain a constant level of the reactor power. 

Both installed HEs are shell-and-tube type as show on Figures I.1 and I.2. Their characteristics are given in Table 

I.1. In the cooling loops of Triga-Mark II reactor, we find different types of sensors such as platinum resistance 

thermometers, flow meter and pressure transmitters. For radiation detectors, we find ion chamber used to control the Pn 

level by measuring neutron flux. The inlet and outlet temperatures are measured by platinum resistance thermometers 

(PT-100) positioned at the inlet and at outlet pipes of the primary, secondary and tertiary cooling loops.  



 

 

              

 
 

 

Figure I.1 - Schematic presentation of the cooling circuit of the reactor core, where Q, T and P indicate the FR, the temperature 
and the pressure, respectively. 

 

Figure I.2 - Both HEs are shell-and-tube. 

The FR in the primary cooling loop is measured by ultrasonic flow-meter and in the secondary and tertiary cooling 

loops is measured by electromagnetic flow meters. The pressures in the inlet and outlet of the three cooling loops 

are measured by pressure transmitters. The Mass Flow Rate (MFR) in the primary, secondary and tertiary cooling 

loops are in the range of 9.2, 8.9 and 6.7 kg/s, respectively, as recorded during the experimental campaign 

(March - May 2016).  

 



 

 

              

 
 

Designation HE 1 HE 2 

Number of tubes. 

Length [m]. 

Outer diameter [cm]. 

Weight [kg]. 

Exchange capacity [kW]. 

72 

4.20  

40.6  

997  

255.81 

45 

4.50  

50.6  

1100  

439.53.  

Tube Bundle.  

Shell. 

Stainless steel AISI 304, outside diameter of 18 [mm] and inside of 16, 6 [mm]. 

Stainless steel AISI 304. 

Table I.1 - Technical characteristics of HEs of Triga II reactor at LENA (General Atomic, Division of General Dynamics, 
1964). 

The reactor core is placed at the bottom of a cylindrical aluminum tank with a diameter of 1.98 m and a 

high of 6.25 m and filled with natural water. So, the total quantity of water which the pool can contain is about 

18 m3. An annular graphite reflector (with an inner diameter of 45.7 cm) enclosed in the tank surrounds the 

core. The water and the concrete establish a protection against radiations for the staff working near the reactor. 

Two grid plates allow the placement of the 91 core elements in six concentric rings as shown on Figure I.3. Each 

location corresponds to a hole in the aluminum upper and bottom grid plates of the reactor. 
Two fuel elements, equipped with thermocouples as given by Figure I.4, are used to measure temperature inside 

fuel material. They are located one at the center of the fuel horizontal line and the other two 2.54 cm above and 

2.54 cm below the center.  

 

Figure I.3 - Reactor core configuration. At the center, top view of the core configuration and the regulation, shim and safety 
control rod positions corresponding to the position filled in red. The positions filled in blue correspond to fuel elements with 

aluminum cladding. The positions filled in grey correspond to fuel elements with stainless steel cladding. 



 

 

              

 
 

The TRIGA control system of the  consists of three neutron-absorbing control rods: regulation, transient 

and shim or safety rods (Mesquita, Souza, 2010; Coban, 2014). The position of the three control rods within core 

configuration is given on Figure I.3. The role of control rod is to achieve  control and reactor scram. It is one 

of the important guarantees for reactor safety. The transient rod, formally used to pulse the reactor, is used for 

the safety and during normal operation of the reactor; it is kept outside of the core. The shim rod is designated 

for the coarse changes of  as the fuel temperature (Tf) feedback and the poisoning. The regulation rod serves to 

adjust the reactor power to the desired value handling small variations may occur. It is positioned in the outer 

region of the core; as a consequence, its  worth is less than shim and transient worth. 

 

Figure I.4 - Representation of the combustible element. 

The control rod drive mechanism is represented on Figure I.5. It consists of a two-phase electric motor that 

actuates a linear drive equipped with a magnetic coupler (i.e., the magnet draws tube). Its purpose is to adjust the 

control rod position in order to control reactor power. Unlike the transient rod, which is pneumatically 

operated, the regulation and shim control rods are moved through this system. Regulation and shim rod motion 

is controlled from the console by energizing the magnet and motor, which rotates the pinion gear shaft on rack 

causing the vertical displacement of magnet draw tube and so of the control rod. If the electromagnet is energized, 

the armature and the connecting rod will rise with the draw tube so that the control rod is withdrawn from the 

reactor core. In the event of a reactor scram, the magnet is de-energized and the armature will be released, the 

control rods will then drop for gravity into the reactor core. During a reactor scram, all the three control rods 

are completely insert in reactor core within 400 ms. The shim and regulation rods move with a constant speed of 

29 cm/min, however a direct measure of regulation rod with draw velocity has provided 21.92 cm/min. 

The knowledge of the reactor’s response to the controls rod motions is necessary to the safe and efficient 

operation of a NR. The effectiveness, or worth, of a control rod depends largely upon the value of the neutron 

flux at the location of the rod. Each rod position is read through a potentiometer and it is displayed on the 

console in digit unit. When the shim or regulation rod is completely extracted, its value is 825 digits and when 

the rod is completely inserted; its value is 125 digits. Therefore, the rod excursion, in digit, is d = 700. The 

total vertical displacement of control rods, h, is about 38 cm, 19 cm above the core mid line and 19 cm under 

the core mid-line. Therefore, 

                                                  
∆𝑑

∆ℎ
 ≈ 18 digits/cm (I.1)  



 

 

              

 
 

The position of the control rods is measured with respect to the fully insert position which correspond to cover 

the entire active fuel length, as represented on Figure I.6. 

 

 

Figure I.5 - Rack and pinion command for the control rod "Regulation" and "Shim". 

 

Figure I.6 - Position of the control rod in comparison with the active length of the core. 

The Data Acquisition System (DAS) of the LENA NR is given by Figure I.7. It consolidates information about 

the reactor status by collecting the measurement of various operational parameters from different systems, as 

time series data, periodically in each one second, from a network of instruments/sensors distributed on the plant. 

The DAS control several operational parameters, including temperature, FR, level, pressure, nuclear radiation, 



 

 

              

 
 

Pn, safety and control rod position then it provides an on-line data analysis and transfer these parameters to the 

supervisor PC for display and management Mesquita, Rezende, 2010  DAS allows also storing the temporal 

history of all the process variables, thus supplying the data that will be used in the monitoring of the system. 

The data acquisition module should include signal isolation and conditioning devices as well as fast sampling 

capabilities. 

The DAS is made of PLC-type (NI Compact Field Point TM) and dedicated analog input cards for data 

sampling. The standard for data transmission is 4-20 mA current loops and, depending on the device, the loop 

is powered either from an external power supply or by the device itself. 

 

Figure I.7 - Data acquisition of the NRR of LENA. 

The reading of the power of a NR is, usually, made continuously by the direct measurement of the average 

core flux using neutron detectors. The reactor power varies from mW to kW therefore, it is necessary using a 

decade instrumentation to monitor the entire operating range (from source strength to full power output). For 

this purpose, at LENA reactor, the power is monitored by four independent neutron-sensitive detectors mounted 

outside the reflector surrounding the reactor core as given by Figure I.8. These three detectors ion chambers, two 

compensated and one uncompensated, and a fission chamber. Each detector is enclosed in a seal aluminum 

container. The four detectors are located around to the core reflector using the ring. They are all calibrated by 

the thermal method, considered as standard procedure for power of the TRIGA II 

The signals coming from the neutron detectors are carried to reactor console form three independent 

measurement channels to cover the entire operating range (from source level ~ mW to full power output ~ kW) 

as shown on Figure I.9. First, the linear channel consists of a compensated ion chamber, whose output signal is 

connected to a sensitive amplifier which gives accurate power reading, from source level to full power on a linear 

recorder. Second, the logarithmic channel consists of the fission chamber whose output signal is connected to a 

logarithmic amplifier which gives a logarithmic power reading from less than 0.1W to full power 250 kW on 

recorder. Third, the percent channel consists of uncompensated ion chamber, whose signal is calibrated in percentage 

of full power which provides a perceptual analogic indication at the reactor console. 



 

 

              

 
 

 

Figure I.8 - Power is monitored by three independent neutron-sensitive detectors mounted outside the reflector surrounding the 
reactor core. 

 

Figure I.9 - Presentation of the measurement channels. 

The departure channel consists of a fission counter with a pulse amplifier that a logarithmic count rate circuit and 

gives useful power indication from the neutron source level up to a few watts. The logarithmic channel consists 

of a compensated ion chamber, whose signal is the input to a logarithmic (log n) amplifier, which gives a logarithmic 

power indication from less than 0.1 W to full power. The linear channel consists of a compensated ion chamber, 

whose signal is the input to a sensitive amplifier and recorder with a range switch, which gives accurate power 

information from source level to full power on a linear recorder. The percent channel consists of an uncompensated 

ion chamber, whose signal is the input to a power level monitor circuit and meter, which is calibrated in percentage 

of full power. The last three channels were adjusted with the results of the thermal calibration described here 

(Mesquita et al., 2007 Mesquita, Rezende, 2010  



 

 

              

 
 

In the reactor core, there are several parameters to control: hydraulic (e.g., temperatures, pressures, FRs), nuclear 

(e.g., Pn, ) and other parameters limitations are usually, on-line supervised to ensure that the core is operated 

within the thresholds and assumptions made in the safety analyses. For example, in-core temperature 

measurement is a critical issue for the safe operation of NRs. Classical thermocouples require shielded 

connections and are known to drift under high neutron fluency. 

Control of a NR power level is challenging since the dynamic of the reactor is very complex, NL, time-

varying, also includes saturation, dead time, and changes with operating conditions. A major current effort to 

improve the availability of NPP is to assure that the plant operator has accurate information about the power level. 

The reactor power measurement technics can be roughly divided into two main categories. The first is done 

directly, based on nuclear physics measurement method which measures the fission rate of the fuel elements in 

the reactor by means of the period Amblard, 1968  the , or by measure of the neutron flux through one or more 

appropriate neutron detector. So, the output signal of detector (voltage for proportional counter and current for 

fission chamber) is directly proportional to the thermal neutron flux, . The second is done indirectly usually, by 

thermal procedures (i.e., it measures the heat generated by the reactor), like calorimetric and balance of energy 

methods. The first category of methods can be used in OLM but the second category can only be used for calibration 

of power in NRs.  

For the control of a NR, the evolution of the power is deducted from the measure of the reactor period 

(time of doubling). This period which is defined as being the opposite of the logarithmic by-product of the 

neutronic stream, does not always establish (constitute) a precise reflection of this evolution DOE Fundamentals 

Handbook, 1993 : 

        P (t) = P0 exp (t/Tp)  
(I.2)  

where P0 is the initial reactor power, Tp is the reactor period (in seconds), t is the time during the reactor transient (in 

seconds). Tp, usually expressed in units of seconds or minutes, is defined as the time required for the neutron flux 

to change by a factor e = 2.718. However, this period which defined as being the opposite of the logarithmic 

by-product of the stream neutronic, does not always constitute an accurate reflection of this evolution Amblard, 

1968  

In the ideal case the output signal n(x) of the detector at a place x is directly proportional to the NR power 

Merljak, 2013 : 

           P(x) = KxT(t, x)  
(I.3)  

Where Kx being a predetermined coefficient; Kx  7.03 ± 0.16 kW/µA Trkov, Ravnik, 1995  

Multiplying the reaction rate by the volume of the reactor results in the total fission rate for the entire reactor. 

Dividing by the number of fissions per watt-sec results in the power released by fission in the reactor in units of 

watts. So, the power output of a NR is directly proportional to the neutron flux in the core given by: 



 

 

              

 
 

        Pn = 
𝑓𝑉

3.121010 (𝐹𝑖𝑠𝑠𝑖𝑜𝑛/𝑊𝑎𝑡𝑡𝑠−𝑆𝑒𝑐𝑜𝑛𝑑) 
 (I.4)  

where Pn is the power (Watts),  is the thermal neutron flux (neutrons/cm-sec), f is the macroscopic cross section for 

fission (cm-1) and V is the volume of the core (cm3). 

From Equation I.4, Pn and  are directly proportional, since: (a) V is constant for a given reactor; (b)  is also 

relatively constant over a relatively short period of time (some days or weeks; (c) f must also be constant as the 

atom density and microscopic cross section are constant. But indeed, over a period of months, , for a given power 

level will increase very slowly due to the burn-up of the fuel, and consequently atom density and f decrease. 

Neutron flux measurement is made with specific neutron detectors with two manners: usually, with BF3 

counter or an ionization chamber outside of the reactor core (Figure I.8) where the neutron flux is lower or by a 

miniaturized fission chamber, located in the reactor core which can be operated at any temperature up to 300°C 

Merljak, 2013  Since these neutron detectors measure only the local flux at their position, thus the measurements 

are not always proportional to the total neutron flux (i.e., integral neutron flux) in the core and consequently to 

the core power. Therefore, the total neutron flux in the reactor must be estimated indirectly from neutron 

detector measurements through the calibration procedures cited bellow. 

The neutron detector gives a signal output nx, assumed directly proportional to the thermal neutron flux, x, at 

the position x.  

                                                                                            nx = Kxx (I.5)  

where Kx being a predetermined coefficient. 

However, owing to stability conditions of parameters of Equation I.4 (i.e., core configuration is constant) 

discussed previously, the Nuclear Power Reactor (NPR) is assumed proportional to x, and therefore to the neutron 

detector signal, nx.  

For a small core NR, the absolute power is permanently obtained from the calibrated neutrons detector because 

no changes in core configuration or in control element arrangement is undertaken during long periods of 

operation. With the reactors in which the outputs exceeding 100 kW, it is required to calibrate the neutrons 

detector frequently for correction of sensitivity to conform to occasional changes of core arrangement. 

The thermal neutron flux achieves its maximum value in the center of reactor but is reduced at extreme ends of 

the reactor core, since very few thermal neutrons are produced in this area. Hence the flux distribution is strongest 

at the middle of the reactor’s core Ahmed et al., 2008  However, the average flux of a reactor is a variable parameter 

that depends on the reactor’s moderator and coolant temperature. 

Cherenkov radiation is also used to measure power in NRRs with a good sensitivity in parallel with the existing 

conventional detectors. However, this monitoring method is independent of core configuration and burn-up and is 

applicable over large range which makes it useful for calibration of control instruments. However, its linearity 

in the low power range is worse (Arkani, Gharib, 2009; Rippon, 1963). 

The knowledge of the reactor thermal power is very important for precise neutron flux and fuel element 

burnup calculations. The burnup is linearly dependent on the reactor thermal power and its accuracy is 

important to the determination of the mass of burned U235, fission products, fuel element activity, decay heat 

power generation and radio-toxicity Mesquita, Rezende, 2010  

Power monitoring of NRs is always done by means of neutronic instruments, but its calibration is done 

by thermal procedures. For the thermal power calibration of a NR, there are two procedures: the calorimetric 



 

 

              

 
 

methods and the heat balance Zagar et al., 1999 Mesquita, Rezende, 2010  Their common methodology consisted 

of the measurement of the power dissipated at the primary loop and the calculation of the heat losses. The 

calorimetric method is the standard procedure for calibrating the power of the TRIGA II reactor (Mesquita et al., 

2007). The thermal balance method is a standard methodology used for the TRIGA Reactor power calibration 

(Mesquita, Rezende, 2010). The intensity of the distributed gamma rays from the reactor core is proportional to 

the reactor power; therefore, gamma rays counting is used as on-line calibrated method for reactor power 

measurement. This technique is less sensitive to perturbations and independent of control rods and fuel 

configuration of the reactor Czaika, Kerr, 1969; Jalali et al., 2013  However, the calibration by using calorimetric 

method presents a large uncertainty. The main source of error was the determination of the heat content of the 

system, due to a large uncertainty in the volume of the water in the system and a lack of homogenization of the 

water temperature Mesquita et al., 2009   

Other methods, also considered as indirect, are used for calibration of power measurement such as gold 

foil activation method and miniaturized neutron detector. They require measurement of the absolute thermal flux at 

many points in the core which presents an inconvenient Yongqian, 1993  More power measurement of NRs and 

calibration techniques can be found in Suzuki, 1966 Jalali et al., 2013  

The  control is an important mean to ensure the safety operation of NRs.  has been defined in terms of 

the deviation of the neutron multiplication from critical state.  means the relative change between the number 

of the previous generation neutrons n1 and the next generation neutrons n2. That is:  

 =   
𝑛1−𝑛2

𝑛2
 (I.6)  

The  worth developed in a NR can be affected by two different manners: by the motion of control rods (the 

action of the reactor control system, results in a power level change) considered as extern factor, or by many 

other internal factors which are usually, changes in core composition (e.g., fuel depletion), poison, and changes in 

pressure and in temperature of fuel, moderator and coolant Bhatt et al., 2013  Hence, as represented on Figure I.10, 

the  (t) of the system can be expressed as a sum of two contributions; external  and feedback  Duderstadt, 

Hamilton, 1976 Stacey, 2001  

                                                                              (t) = ext (t) + f (t)  (I.7)  

where ext (t) represents the  due to the control rod motion and f (t) represents the  feedback that is function 

of the reactor power level.  

The  is measured with respect to the steady state (nominal) power level P 0 for which, as said before, P = 0, thus 

the system  can be written as: 

          = h  hcr +m (Tm - 𝑇𝑚
0

) +f (Tf - 𝑇𝑓
0)  (I.8)  

where Tm and Tf represent temperatures of the moderator and fuel respectively; 𝑇𝑚
0

 and 𝑇𝑓
0
 are their stationary 

values. The factor h  hcr represents the external , ext, and  hcr is the extraction length of a control rod measured 

from the critical position ℎ𝑐𝑟
0

 and h is the rod worth coefficient.  

        ext = ℎ ℎ𝑐𝑟,  ℎ𝑐𝑟 = ℎ𝑐𝑟 - ℎ𝑐𝑟
0

 (I.9)  



 

 

              

 
 

 

Figure I.10 -  as a function of reactor power. 

The feedback term f represents the coupling term between the neutronics and thermal-hydraulics by means of 

the  feedback coefficients, i.e., the fuel and moderator temperature coefficients, f and m, respectively. If the 

power of the reactor stays stable, the  summation of each factors should keep balance, that is =0. 

NRs must have sufficient excess  to compensate the negative  feedback effects such as those caused by the Tf 

and other factors such as power defects of , fuel burnup, fission poisoning production, and also to allow full 

power operation for predetermined period of time. To compensate for the excess , it is necessary to introduce 

an amount of negative  into the core which one can adjust or control it at will Mesquita, Souza, 2010  The 

reactor control system must therefore continually adjust the  control mechanisms during a demanded power 

level change to keep the actual power changing at a rate that corresponds to the set-point change. But a positive 

feedback will tend to cause instability. 

The  of the NR is a derived parameter usually cannot be directly measured. Determination of various s 

in NRs is usually performed by compensating the given  with the control rods to maintain the critical state. 

Calibration of control rod (determination of  worth per unit movement of control rod) is thus essential when 

the control rods are used as  standards to measure the  changes caused by any other perturbation in a reactor. 

Hence, the control rod worth measurement is a key point in reactor physics. It provides the reactor operator 

with a direct indication of net , which is a much more definitive indication of the nuclear status of the core. It 

offers greater safety in reactor operation and aids the task of  management; therefore, it is strongly 

recommended as meter indication in the Control Room. Also, periodic measurement of  worth of control rods is 

one of the licensing requirements for any NR. Many countries however, already developed their own  

measurement system.  

The  should be computed with certain estimation soft-measuring methods, among them are the inverse 

dynamic method, statistical method and neural network (NN) method. Different NNs have been adopted to estimate 

the keff Jiang et al., 2008  to calibrate control rod and predict axial power distribution Tyran et al., 1997  and to 

identify  Fengyu et al., 2007  In Ma et al., 2012  the  of the NR is estimated by using a combination of MLP 

network and mechanism model.  



 

 

              

 
 

Temperature is one of the operating conditions that affect the  of a reactor core. An increase in 

temperature will cause a decrease in the . When reactor power changes, the temperatures of the various reactor 

components will change (e.g., temperature of the fuel, coolant, and moderator will each rise). These temperature 

changes will alter one or more of the factors in the in the factor formula, resulting in  changes (Figure I.10).  

At TRIGA MARK II, Tf were measured by three thermocouples in the center of the instrumented fuel 

element as shown on Figure I.4, which is the hottest position in the core. Fuel elements equipped with 

thermocouples are used to measure temperature inside fuel material. These instrumented fuel elements are clad 

with stainless steel and have the same dimensions of the standard fuel elements. Each instrumented fuel element 

is equipped with three chromel-alumel thermocouples, embedded along the vertical centerline of element. The 

sensitive tips of the three thermocouples are located one at the center of the fuel horizontal line and the other 

two 2.54 cm above and 2.54 cm below the center. 

HEs Ramesh, Dusan, 2003 Zapata et al., 2009 Bergman et al., 2011 Theodore, 2011 Rathakrishnan, 2012

Thulukkanam, 2013 Khentout et al., 2018 are widely used and play an important role in numerous industrial 

systems and processes Kakaç et al., 2012  such as motor vehicles (e.g., cars, trains, ships), air-conditioning systems, 

chemical and process industries Persin et al., 2002  Power plants Rathakrishnan, 2012  NRs Laubscher, Dobson, 

2013   

The HEs are devices used to achieve continually efficient transfer heat (i.e., maximum rate, and minimum 

investment and running costs) from one fluid to another that are at different temperatures, through an 

intermediate solid surface, without making them mix each other. the HE system used in the cooling circuit of 

the NR is provided for removing heat from the reactor core. The water is pumped through it and the heat is 

transferred from the hot to the cold fluid loop. It has highly non-linearity features in behavior where small 

changes in its operating condition may cause big changes in the dynamic performance. It is also a complex 

process caused not only by its NL dynamics but also by many phenomena such as leakage, friction, temperature-

dependent flow properties, contact resistance and unknown fluid properties, the variable steady state gain and time 

constant with the process fluid Hanafi et al., 2011  So, HEs can be difficult to control effectively Tan et al., 2009   

Two special types of HEs commonly used in practice are condensers and boilers. HEs may be designed 

in many ways based on: the flow arrangement, construction type, transfer process, compactness and heat 

transfer mechanism Ramesh, Dusan, 2003 Kakaç et al., 2012 Rathakrishnan, 2012 Thulukkanam, 2013  For flow 

arrangement, we can distinguish three main classes: (a) co-current or parallel-flow (i.e., fluids flow in the same 

direction; (b) counter-current or counter-flow (i.e., fluids flow in opposite direction); (c) cross-flow (i.e., the direction 

of fluids is perpendicular to each other) Theodore, 2011; Kakaç et al., 2012; Rathakrishnan, 2012  Each of these 

three types of HEs has advantages and drawbacks.  

The shell-and-tube design is one of the popular HE types, which can be found in most process plants. It 

consists of series of tube bundle, which contain the fluid that must be either heated or cooled. The second fluid 

flows over the pipe in the shell side which can either supply or remove the heat. The tubes are usually kept with 

fixed and equal space between each other with baffles, which also force the shell-side fluid to flow across the 



 

 

              

 
 

shell to enhance the heat transfer (Figure I.2). This type of HE can be based on either co-current, countercurrent 

or cross-flow according to the flow directions and construction. The dynamic of the HEs can be described by 

laws of physics on mass, energy and momentum. By using those laws, a HE can be modeled with mathematical 

equations that depend on the FR, inlet and outlet temperatures of both streams that go through it. But, still, the 

HE is a process that cannot be modeled with a high accuracy. Usually, there are three well known classical 

mathematical methods, usually used for modeling a HE: the Heat (thermal) Balance (HB), the Effectiveness - 

Number of Transfer Units (ε-NTU) and the Log-Mean Temperature Difference (LMTD) methods Thulukkanam, 2013  

On the other hand, due to its accuracy, the KF is considered as the main estimation method applied to the linear 

state space model of the HE. Usually, for modeling of HEs the various parameters to be taken into account are 

inlet and outlet temperatures of shell and tube side fluids, and their FRs (Mandavgane, Pandharipande, 2006). 

When the HEs are in use, their performances deteriorate continually. Indeed, they are always vulnerable 

to degradations which are non-periodic and non-stationary processes, and depend upon the variation of their 

internal coefficients vs. time. Among these impoverishments, the occurring of fouling (Theodore, 2011; 

Rathakrishnan, 2012; Thulukkanam, 2013) on the heat transfer surface. So, the metal that separates the hot and 

cold fluids in the HE: (a) accumulates deposits from the fluids, (b) creates biofilm and (c) starts to corrode. 

Indeed, fouling is very complicated phenomenon which tends to increase over time. It can be categorized into 

particles, corrosion, biological, crystallization, chemical reaction and freeze. As consequence of fouling 

accumulates, the decrease of the overall heat transfer coefficient, significant increase in pressure and restricts the FR 

which influence negatively on heat exchange efficiency and finally will increase the thermal load, energy and 

maintenance costs Kakaç et al., 2012 Thulukkanam, 2013  Most of the fouling prediction models reported in 

literature are based on the operating conditions and they do not depend on the properties of the fluid being 

processed (Biyanto et al., 2007). So, it is necessary to assess periodically the HE performance by measuring their 

thermal hydraulic parameters, to know its health and follow its dynamic state evolution, in order to maintain 

it at high efficiency level. 

From physics approach in a system where steady state heat transfer occurs, such as in a HE, the HB methods 

will take place. The heat transfer rate (HTR) or the thermal power in this case is given by Bergman et al., 2011

Borkar et al., 2014 : 

�̇�n = �̇�n cpn Tn (I.10)  

where the subscript n indicates either the hot or cold stream; �̇�n is the MFR of the fluid n; and cpn is the specific heat 

of the fluid n. Tn represents the difference between the temperatures at the inlet and the outlet of both fluids. 

Th = Thi - Tho, (I.11a)  

Tc = Tco - Tci (I.11b)  

Equation I.10 is independent of the flow arrangement and the HE type. 

The product of cpn and Tni (or Tno) is the inlet (or outlet) enthalpy of the fluid n. The product of ṁn by cpn, is the heat 

capacity or heat specific capacity, Cn: 

Cn = �̇�n cpn (I.12)  

So, Equation I.10 will be written as: 

Q̇n = Cn Tn (I.13)  



 

 

              

 
 

 with Thi and Tho are the temperature of the hot fluid entering and exiting the inside pipe/tube, respectively; Tci and 

Tco are the temperature of the cold fluid entering and exiting the annulus respectively.  

Therefore, Equation I.13 can be developed into two separated equations for both hot and cold fluids, Q̇h and Q̇c 

which are, respectively, the HTRs transmit from the hot fluid and received by the cold fluid.  

      �̇�h = �̇�h cph Th (I.14a)  

        �̇�c = �̇�c cpc Tc (I.14b)  

The traditional HB model is used based on the assumption that the HE is isolated which means no losses, 

the amount of heat given up by the hot fluid is equal to the amount of heat received by the cold fluid (notion of 

heat conservation). 

If a HE is well insulated, �̇�h and �̇�c should be equal. Then the heat lost by the hot fluid is gained by the cold 

fluid (�̇�h = �̇�c). Therefore, from Equations I.14a and b, we get: 

           �̇�h = �̇�c = Ch Th = Cc Tc (I.15)  

In practice, �̇�ℎ and �̇�𝑐 differ due to heat losses or gains to/from the environment. Practically, the thermic 

statement allows the calculation of the thermal power of given up (�̇�ℎ), received or gained (�̇�𝑐) and lost (�̇�) in 

a HE.  

                                                                                                                �̇�h = �̇�c + �̇� (I.16)  

At steady state, usually Q̇ in Equation I.16 is proportional to �̇�c. So, the thermal power ratio defined as: 

           R = 
�̇�ℎ 

�̇�𝑐 
 = 

𝐶ℎ 

𝐶𝑐 
 
𝑇ℎ 

𝑇𝑐 
 (I.17)  

is almost constant as appears on Figure V.4, in experimental part (Chapter V). The ratio Tc /Th is the effectiveness 

of the HE and its inverse is the capacity ratio or the balanced flow Narayanan, Venkatarathnam, 1999 Borkar et al., 

2014  

In the case of our HE, the hot and cold fluids are the same, light water (i.e., cph = cpc = cp), so Equation I.17 will be 

reduced to: 

                                                                                R = �̇�h Th / (�̇�c Tc)  (I.18)  

We can find from this equation (Equation I.18) : 

                      Th = R (�̇�c / �̇�h) Tc (I.19a)  

and                                                                  Tc = (1/R) (�̇�h / �̇�c) Th (I.19b)  

If we consider the ratio R as known constant, the estimation of different temperatures of a HE can be 

found from Equations I.19a or I.19b as:  

�̂�hi = Tho + R 
𝐶𝑐 

𝐶ℎ 
 Tc (I.20a)  



 

 

              

 
 

�̂�ho = Thi - R 
𝐶𝑐 

𝐶ℎ 
 Tc (I.20b)  

�̂�ci = Tco - 
1 

𝑅 
 
𝐶ℎ 

𝐶𝑐 
 Th (I.20c)  

   �̂�co = Tci + 
1 

𝑅 
 
𝐶ℎ 

𝐶𝑐 
 Th (I.20d)  

For the estimation of the MFRs at both fluids of a HE, we can also use Equation I.19a or b, and we find: 

   �̂̇�h = R 
𝑐𝑝𝑐 

𝑐𝑝ℎ 

𝑇𝑐 

𝑇ℎ 
 �̇�c (I.21a)  

and                                                            �̂̇�c = 
1 

𝑅 
 
𝑐𝑝ℎ 

𝑐𝑝𝑐 
 
𝑇ℎ 

𝑇𝑐 
 �̇�h (I.21b)  

We note in this method that the prediction of one among the six parameters of the HE (i.e., Thi, Tho, Tci, Tco, �̇�h, 

ṁc) requires the availability of the measurements of all other parameters. 

The effectiveness - number of transfer units (-NTU) method is based on the notion of the effectiveness (efficiency), 

, of the HE Ramesh, Dusan, 2003 Yunus et al., 2004 Theodore, 2011   

 = 
�̇�𝑛 

�̇�𝑚𝑎𝑥 
 (I.22)  

where Q̇ and �̇�max are, respectively, the actual and maximum possible HTRs, and �̇�max is given by: 

       �̇�max = Cmin Tmax 
(I.23)  

 

were Cmin is the smallest of heat capacities; Ch and Cc. Tmax, is the maximum temperature difference in the HE. It is 

defined as the difference between inlet temperatures of hot and cold fluids Ramesh, Dusan, 2003 Yunus et al., 2004   

 depends on the HE geometry, flow arrangement and the number of transfer units, NTU, defined as Ramesh, Dusan, 

2003 Theodore, 2011 : 

NTU = 
𝑈𝐴

𝐶𝑚𝑖𝑛 
 (I.24)  

By using Equations I.10 and I.23, Equation I.22 will be: 



 

 

              

 
 

n = 
𝐶𝑛

𝐶𝑚𝑖𝑛
 

∆𝑇𝑛

 ∆𝑇𝑚𝑎𝑥
 (I.25)  

So, n, is determined using the inlet and outlet temperatures as well as the heat capacities, Cn and Cmin.  

Both fluids (i.e., hot and cold) of the HE are considered the same, light water (i.e., cph = cpc = cp) as given in Table 

I.1, and since ṁc is less than ṁh, as shown on Figure V.2, so we get Cmin = Cc.  

Usually, the n will be different at hot and cold fluids of the HE. We have Tmax = Thi - Tci as shown by Figure I.1. 

Hence, Equation I.25 will be developed in two equations Narayanan, Venkatarathnam, 1999 Theodore, 2011) :  

h = 
𝐶ℎ

𝐶𝑐
 
𝑇ℎ𝑖−𝑇ℎ𝑜

𝑇ℎ𝑖−𝑇𝑐𝑖
 (I.26a)  

and                                                                c = 
𝑇𝑐𝑜−𝑇𝑐𝑖

𝑇ℎ𝑖−𝑇𝑐𝑖
 (I.26b)  

If we consider h and c in the equations above as known, found by calibration as shown in experiment 

part (Chapter V), the inlet temperatures, �̂�hi and �̂�ci, can be estimated from both Equations 26a and 26b. Therefore, 

there are two formulas for estimation of both of these temperatures. 

From the same equations (i.e., Equations 17a and 17b), we can also obtain, respectively, the outlet temperatures 

estimation, �̂�ho and �̂�co.  

Finally, we get: 

�̂�hi = 
1

1 − h 
Cc
Ch

 Tho - 

h 
Cc
Ch

1 − h 
Cc
Ch

 Tci  (I.27a)  

or 

�̂�hi = c Tco - c (1 - c) Tci;  (I.27b)  

   �̂�ho = (1 - h 
Cc

Ch
) Thi + h 

Cc

Ch
 Tci, (I.27c)  

�̂�ci = - 
c

1−c
 Thi + 

1

1−c
 Tco;  (I.27d)  

or 

�̂�ci = - 

1 − h Cc
Ch

h Cc
Ch

 Thi + 
1

h Cc
Ch

 Tho, (I.27e)  

�̂�co = (1 - c) Tci + cThi. (I.27f)  



 

 

              

 
 

We not that the estimation of the inlet temperature of one fluid depends on the inlet temperature of the other fluid 

and an outlet temperature of one fluid. Moreover, the estimation of the outlet temperature of each fluid depends on 

both inlet temperatures.  

From Equation I.26a we can also calculate the estimation of the MFRs (�̇�h and �̇�c) as follow: 

�̂̇�h = h 
Thi−Tci
Thi−Tho

 �̇�c (I.28a)  

and 

�̂̇�c = [1/ (h 
Thi−Tci
Thi−Tho

) ] �̇�h
 

(I.28b)  

From these equations, we note that the estimation of the MFRs of both fluids is independent of Tco.  

The temperature changes between two fluids across a HE can be represented by the LMTD. This relation 

developed earlier is limited only to the co-current and counter-current HEs. Later, similar relations are also 

developed for the cross-flow and multi-pass shell-and-tube HEs Yunus et al., 2004 Theodore, 2011  

∆TLMTD = 
∆T1−∆T2 

ln (
∆T1
∆T2

) 
 = 

∆T2−∆T1 

ln (
∆T2
∆T1

) 
 (I.29)  

where ∆T1 and ∆T2 represent the temperature difference at each end of the HE. 

For a co-current: ∆T1 = Thi - Tci and ∆T2 = Tho -Tco. For a counter-current: ∆T1 = Thi - Tco and ∆T2 = Tho -Tci Bergman 

et al., 2011  

Note that, for the same inlet and outlet temperatures, the LMTD for counter-current exceeds that for co-current. 

Hence the surface area required to affect prescribed heat transfer rate Q̇ is smaller for the counter-current than for 

the co-current arrangement, assuming the same value of U. Also note that Tco can exceed Tho for counter-current 

but not for co-current. 

From energy conservation given by Equation I.15, the HTR for a co-current and counter-current HE in steady state 

may relate to ∆TLMTD by means of: 

Q̇ = U A ∆TLMTD (I.30)  

where U is the Overall heat transfer coefficient and A is the Heat Transfer surface area which separates the two fluids. 

In the beginning, suppose: Bh = 
1 

𝐶ℎ
 and Bc = 

1 

𝐶𝑐
. 

By tacking in consideration the loss of the HTR as given by Equation I.17, Equation I.29 for a co-current HE, can 

be rearranged as: 

ln (
𝑇2
𝑇1

) = - (Bh + 
Bc

R
) UA (I.31)  

From this equation, the outlet temperatures of both fluids will be expressed as: 



 

 

              

 
 

Tho = (Thi - Tci) exp [- (Bh + 
Bc

R
) ] UA +Tco (I.32a)  

Tco = - (Thi - Tci) exp [- (Bh - 
Bc

R
) ] UA +Tho (I.32b)  

For a counter-current HE, Equation I.31 corresponds to:  

ln (
T2
T1

) = - (Bh + 
Bc

R
) UA (I.33)  

and the outlet temperatures of both fluids will be expressed as: 

Tho = (Thi - Tco) exp [- (Bh - 
Bc

R
) ] UA +Tci (I.34a)  

Tco = - (Tho- Tci) exp [+(Bh - 
Bc

R
) ] UA +Thi (I.34b)  

For a co-current and counter-current based shell-and-tube HE, the outlet temperatures will be expressed, 

respectively, by the same formula as in Equations I.32a and b and Equations I.34a and b, except a multiplication 

of ∆TLMTD by the correction factor, Fc. This factor can be calculated from abacus Yunus et al., 2004  or experiment 

as shown on Figure V.6. We note in Equations I.29 and I.31 that the estimation of one outlet temperature, Tho or 

Tco, requires the measurement of all other parameters. We mention that these outlet temperatures can be expressed 

also function of only the inlet temperatures and FRs Theodore, 2011  

With the concept of utilizing the advantage of each method, the combined method (CMd) can enhance 

performance and meet more desirable characteristics. 

 As illustrated on Figure I.11, the idea of the estimation by CMd is to take for each discrete time, k, the best 

estimation among, Ê1 - Êm, provided by the used methods, i.e., the HB, the -NTU, and the LMTD. This is done 

by selecting the optimal estimation, �̂�opt that accompanying by minimum value of the Maximum Absolute Error 

(MAE) of the estimation, noted mAE.  

 

Figure I.11 - Bloc diagram of the estimation by using methods combination approach. 



 

 

              

 
 

In this part, we apply the KF to estimate the HE outlet temperatures using Linear State Equations (LSEs). To do 

this, first we start with the KF theory, then we present the LSE of the HE and finally, we estimate the outlet 

temperatures of the latest. 

State estimation technique by the KF is developed in around the year 1960 Kalman, Bucy, 1960 for the 

LSs and now it is proved to be more advantageous than other approaches. The KF is recursive estimator. This 

means that only the estimated state from the previous time step and the current measurement are needed to 

compute the estimation of the current state.  

For dynamic systems described by state space models, more development in FDe schemes has relied on the 

system being linear, and the noise and disturbances (Isermann, Ballé, 1997 Olivier-Maget, 2007 being Gaussian. 

In such cases, the KF is usually used for state estimation and output prediction. The predicted output is then 

compared with the actual output measurement and the result from the comparison, innovation, is used as 

residual for the FDe. Then the FDi is restricted to the analysis of the innovation signal. 

As shown on Figure I.12, the KF includes two models (equations), process (evolution) model and an observation 

(measurement) model. They are given, consecutively, by Equations I.35 and I.36 below 

Venkatasubramanian et al., 2003a Olivier-Maget, 2007  

First, we start with the process model: 

xk = Fk xk-1 + Gk uk + wk (I.35)  

where: (a) xk  (𝑛𝑥×1) represents the nx state estimation that we try to reach at the present time step, k, with 

 
(a×b) 

 represents real values matrix of a×b dimension. xk-1 represents the estimated state at the previous time step, 

k-1. The subscript k indicates that x depends on it. (b) Fk  
 (nx×nx) 

 is the state transition matrix of the system 

which links the previous state k-1 with the current state k. (c) wk   (nx×1)  is the model (system) noise which is 

zero-mean white Gaussian (E[wk] = 0, where E[.] denotes the expectation) of known positive covariance matrix Qk, 

 (nx×nx) 
, so E[wiwj

T] = Qkij, where ij denotes the Kronecker delta function). (d) uk   (nu×1) 
 represents the nu 

applied commands to the process which is known but accompanying by a control noise wk. (e) Gk  
 (nx×nu) 

 is 

a control matrix applied to the command vector uk which links the command input uk with the state xk. 

  

Figure I.12 - Synoptic of the LS as is seen by the KF.  

Second, due to the noise, the observation, given by the following equation, intervenes to resolve the process equation 

by using the measurement and know exactly x. 

   yk = Hk xk + vk (I.36)  

https://en.wikipedia.org/wiki/Infinite_impulse_response


 

 

              

 
 

where: (a) yk  (𝑛𝑥×1)
 represents the ny observations (measurements or observations) of process at time k. (b) Hk  

 
(ny×nx) 

 is an output (measurement or observation) sensitivity matrix. It maps the estimated state space xk into the 

observed space yk. (c) vk  (𝑛𝑥×1) is the measurement noise which is zero-mean white Gaussian (E [vi]= 0) of 

known positive covariance matrix Rk  
(ny×ny) 

 (E [vivj
T]= Rkij).  

It is important to mention that there is no correlation between the model noise 𝑤𝑘 and the measurement noise vk. 

They are assumed independent (wi  vj, i.e., E [wivj
T] = 0,i, j).  

The optimum Kalman Filtering for linear dynamic systems requires an exact knowledge of the process noise 

covariance matrix, Qk, and the measurement noise covariance matrix, Rk. These matrices are considered as adjusting 

tools of the KF because they influence the calculation of the gain, and so the convergence of the filter. 

The KF dynamic results from recursive equations cycles of a priori (prediction or time update) based on 

physical model and a posteriori (correction, filtering or measurement update), as shown on Figure I.13, in which 

comparison between prediction and measurement is done. It propagates the mean and covariance of the probability 

distribution function of the model state in an optimal way with minimization of the MSE. However, the KF requires 

the knowledge of all the system and noise parameters. 

As shown on Figure I.13, the first phase of an estimation with the KF is the prediction which uses the 

estimated state from the previous time, k-1, to produce an estimation of the state at the present time, k.  

x̂k
− = Fk x̂k−1

+  + Gk uk  (I.37)  

The covariance matrix, Pk   (nx×nx) 
, is defined as: 

Pk = cov [ek] = E [ek ek
T] (I.38)  

with cov [. ] represents the covariance and ek is the estimation error defined as the difference between the state value 

and its estimation: 

                                                                                  ek = xk - x̂k (I.39)  

Therefore, the predicted covariance matrix will be: 

Pk
−

= Fk Pk−1
+

 Fk
T
+ Qk (I.40)  

 

Figure I.13 - Steps of the KF. 

The second phase of the estimation with the KF is the correction where the observations, yk, at the present time k 

is combined with the predicted state x̂k
− with the aim of obtaining more precise estimation x̂k

+ : 

x̂k
+ = x̂k

− + Kk rk (I.41)  

where the term rk is called the KF innovation vector: 



 

 

              

 
 

rk = yk - Hk x̂k
−  (I.42)  

and Kk   (nx×ny) 
 is the optimal Kalman gain: 

Kk = Pk
−

 Hk
T
 Sk

−1
 (I.43)  

where Sk  
(nx×ny) 

, is the KF error or innovation covariance matrix: 

Sk = Hk Pk
−

 Hk
T
 + Rk (I.44)  

and Pk
−

 is the associated predicted covariance matrix. It is updated using: 

Pk
+

= (I - Kk Hk) Pk
−

 (I.45)  

Finally, the output estimation will be: 

ŷk = Hk x̂k
+  

(I.46)  

The initial state, x0, is normally distributed with zero mean and covariance P0. By introducing these initial conditions 

(x0 = x̂0
+

 and P0 = P0
+

), supposed known previously, the KF operation can be represented as given on Figure I.14. 

 

 

Figure I.14 - KF loop. 

When a HE is considered as a system time invariant, consequently its coefficients F, G and H are constant, 

independent of the time step k, and system equations given by Equations I.35 and I.36 can be rewritten as: 

     xk = F xk-1 + G uk + wk (I.47a)  

 yk = H xk + vk (I.47b)  

We note that in some references, instead of the notation Ak
− and Ak

+, they use Akk-1 and Akk, where A can be the 

state estimation, x̂, or the covariance matrix, P. 



 

 

              

 
 

As mentioned above for -NTU method, the LSE approach can be used even when measurements of some 

variables are not available. For instance, when the outlet temperatures of the cold and hot fluid streams in a 

specified HE are not available, this method can be used to predict them. 

Usually, for modeling the dynamic of a HE, we find two main approaches: distributed and lumped 

 Depending on the application, either approach may be the most suitable, but the lumped cell-based model 

remains more popular. In this case, the system dynamic is obtained through a HB rule applied to every element 

of the lumped model. 

In this paper, a counter-current HE is modeled in the form of one cell (Figure I.15), four temperature parameters, 

two states (hot and cold), single element per fluid and exchanging heat only with each other through a separating 

wall.  

 

Figure I.15 - A single-cell lumped model representation of counter-current HE. 

The hot fluid enters the cell at the temperature Thi and leaves at Tho with a velocity vh, whereas the cold fluid 

enters at Tci and leaves at Tco with a velocity vc. The fluid volume in the hot and cold streams are Vh and Vc, 

respectively. 

In this work, the Mathematical Model (MM) of the HE is based on certain assumptions 

: (a) The wall thermal resistance to the heat transfer is negligible; (b) The HE is 

perfectly insulated, which means the heat losses to the surroundings is negligible; (c) The heat conduction along 

the axial direction of the fluid flow is negligible; both within the fluid and within the wall; (d) All thermal 

properties are constant.  

According to the assumptions that the coefficients Ah, Ac, cph, cpc, h, c, Vh and Vc are known, constant and positive. 

A single cell of a co-current or counter-current HE, as represented by Figure I.15, gives rise to simplified second order 

dynamic differential equation Rahman, Devanathan, 1994 Narayanan, Venkatarathnam, 1999 Zapata et al., 2009

: 

𝑑𝑇ℎ𝑜

𝑑𝑡
 = 

𝑣ℎ

𝑉ℎ
 (Thi - Tho) - 

𝑈ℎ𝐴ℎ

𝑐𝑝ℎℎ𝑉ℎ
 (Tho - Tco)  (I.48a)  

𝑑𝑇𝑐𝑜

𝑑𝑡
 = 

𝑣𝑐

𝑉𝑐
 (Tci - Tco) + 

𝑈𝑐𝐴𝑐

𝑐𝑝𝑐𝑐𝑉𝑐
 (Tho - Tco)  (I.48b)  

For a shell-and-tube HE Rahman, Devanathan, 1994 and a cross-flow  

it is necessary to introduce a correction factor, Fc, Blanke et al., 2001 Theodore, 2011

Rathakrishnan, 2012 Borkar et al., 2014 in Equations I.48a and I.48b by multiply it with Un. The value of this factor 



 

 

              

 
 

is less than or equal to 1 and takes into account the specificity and the geometry of the shell-and-tube HE, the 

inlet and outlet temperatures of the hot and cold streams.  

After introducing Fc in Equations 39a and b, we put the following constants:  

kh = Uh Ah Fc/ [cph h Vh]; kc = Uc Ac Fc/ [cpccVc] (I.49a)  

                                                                         rh = vh / Vh ; rc = vc / Vc (I.49b)  

 
Then, the model given by Equations I.39a and b can be rewritten in the following form: 

      
𝑑𝑇ℎ𝑜

𝑑𝑡
 = rh (Thi - Tho) - kh (Tho - Tco)  (I.50a)  

    
𝑑𝑇𝑐𝑜

𝑑𝑡
 = rc(Tci - Tco) + kh (Tho - Tco)  (I.50b)  

It is worth mentioning that if the heat transfer coefficient, U, is assumed depends on temperatures of the fluids, 

model of Equations I.50a and b will be NL. 

Rearrange the two above equations, we find: 

{
𝑑𝑇ℎ𝑜

𝑑𝑡
𝑑𝑇𝑐𝑜

𝑑𝑡

} = {
−(𝑟ℎ + 𝑘ℎ) 𝑘ℎ

𝑘𝑐 −(𝑟𝑐 + 𝑘𝑐) 
}  {

𝑇ℎ𝑜
𝑇𝑐𝑜

}+ {
𝑟ℎ 0
0 𝑟𝑐

}  {
𝑇ℎ𝑖
𝑇𝑐𝑖

} 
(I.51a)  

{
𝑇ℎ𝑜
𝑇𝑐𝑜

} = {1 0
0 1

}  {
𝑇ℎ𝑜
𝑇𝑐𝑜

} (I.51b)  

 

Moreover, we consider the following hypothesis: the state vector, (x1, x2) = (Tho, Tco); the input vector, (u1, u2) = 

(Thi, Tci) and the output vector, (y1, y2) = (Tho, Tco). So, the state equation given by the above equations can be 

rewritten as:  

{
𝑑𝑥1
𝑑𝑡

𝑑𝑥2
𝑑𝑡

} = {
−(𝑟ℎ + 𝑘ℎ) 𝑘ℎ

kc −(rc + kc) 
} {x1

x2
} + {

rh 0
0 rc

}  {u1
u2

} (I.52a)  

{y1
y2

} = {1 0
0 1

}  {x1
x2

} (I.52b)  

In this part of work, the aim is to use the KF to estimate outlet temperatures at both streams of the HE. To 

do this, we used MATLAB Simulink for implementation, as illustrated on the three following Figures (Figures 

I.16-I.18). 



 

 

              

 
 

 
Figure I.16 - Simulink implementation of the KF estimator of the HE. (Inputs: U, Ym are respectively the input and 

measurement data. Outputs: Yest is the estimated output. Internal: Xap, Ppr, Xpr, Pap are respectively a priori state, a priori 
covariance matrix, a posteriori state and a posteriori covariance matrix). 

 

Figure I.17 - Simulink implementation of “a priori” bloc of Figure I.16. 

 

Figure I.18 - Simulink implementation of “a posteriori” bloc of Figure I.16. 



 

 

              

 
 

The performances of the models were assessed through statistical validity by using the Correlation 

Coefficient (CC) and the means square error. For SFA purposes, the following classic parameters for the 

estimation error are instead evaluated. 

MEE, represent the mean of the estimation error sequence after the sensor accommodation (triggering of AE). 

MEE = 1
𝑁
 ∑𝑁

𝑘=1  (y(k) -�̂�(k) )  (I.53)  

where y is the actual value, ŷ is the predicted value and N refers to the number of observations. 

VEE represent the variance of the estimation error sequence after the sensor accommodation (triggering of AE).  

VEE = 1
𝑁
 ∑𝑁

𝑘=1  [(y(k) -�̂�(k) ) - MEE]2 (I.54)  

MEE and VEE measure the effectiveness of approximation in reproducing the physical parameter at nominal 

conditions (Campa et al., 2002b). 

The RMSE is defined as (Biyanto et al., 2007) : 

RMSE = √∑
(𝑌𝑖−�̂�𝑖) 

2

𝑁
𝑁
𝑖=1  (I.55)  

The performance of estimation based on model is measured in terms of the RMSE. The thresholds are 

determined based on the prediction performance. In order to limit the false detection rate, the thresholds are set 

as (Uluyola et al., 2001) : 

                                                 i =α RMSEi where the coefficient α>1 (I.56)  

Mean Absolute percentage error (MAPE) calculated for the worse case and is used as metrics to assess accuracy of 

prediction. It is conservatively defined by the largest absolute percent error as (Mattern, Jaw, 1998) : 

 MAPE = 
MAE

y
× 100% (I.57)  

The error corresponds to the point y where the worst-case error was happened. 

Furthermore, the estimation performance includes: mean detection time, number of undetected faults (UD), number of 

False Alarms (FAl). 

In this chapter we started by a general description of TRIGA MARK II NRR including mainly the core, 

the cooling circuits and DAS. Two systems concerned by the monitoring in this thesis which are the core and 

the HE of the NRR. We described the different experiment methods used to measure some parameters in the 

core such as the Pn, the  and the Tf. Then, we detailed the more used analytical approaches used to compute 

the HE parameters particularly, temperatures and FRs. We not that these parameters will be estimated in the 

next chapter. Therefore, this chapter is considered as a theoretical support for Chapter V. 

For the analytical method used for the estimation of the HE parameters, we can conclude that -NTU 

and KF can be used even some parameters measurement of a HE are not entirely available. By using the LMTD, 

we obtained a result better than that obtained by the HB and -NTU methods, but the methods combination 

approach seems better. By using the KF, we have obtained good outlet temperature estimation with a MAE less 



 

 

              

 
 

than one milli °C. As mentioned previously, the LMTD method is used as the KF to estimate the exit temperatures 

of both fluids of the HE. Despite its accuracy is less than obtained with the KF, it can be used for accommodation 

which the KF cannot do. In spite of its quality, the KF predict only the outlet temperatures. Consequently, the 

other methods, i.e., the HB and the -NTU and the methods combination are still needed for the estimation of the 

inlet temperatures and MFRs of the HE. When all temperatures measurements and MFRs at both streams of a HE 

are available, as in our case, all cited estimation methods can be applied. As sometimes, not all of these 

measurements are available, and a more realistic situation is the case where only the inlet temperatures and MFRs 

are measured. In this case, only the KF can be applied for FDe. 

Finally, the obtained results of the FS of the temperatures and MFRs of the HE, by using the mathematical 

estimators, CM and KF are much satisfactory for this kind equipment. in addition to the temperatures and MFRs, 

we note that we can also supervise the pressure of both streams of the HE which is proportional to the FR. 

However, as this work used much more the data-based calibration, it is important to repeat this calibration 

periodically because some HE coefficients change with time, especially n which is sensitive to the fouling.  



 

 

 

CHAPTER II 

 
In the literature associated to the supervision domain, we can find several, sometimes, divergent definitions. By a 

concern of clarity, this chapter suggests first of all describing the fundamental terminology of the supervision which 

is useful for the understanding of detection, diagnosis and control of faults at plants. Therefore, this chapter is an 

introductory aiming at recalling, initially, the terminology used for the supervision of fault, encountered in the 

literature and retained in this thesis, far from ambiguities and overlaps.  

The task of responding to a fault involves timely detection, isolating the causal origin, locating the position, 

identifying the types of the fault and finally taking the necessary steps to bring the process back to within the normal 

operating limits. It sets up the concepts of monitoring (detection and diagnosis) and correction.  

  



 

 

                                                                

 
 

Variety and sometimes divergent definitions mentioned in various works makes that we consider 

important, for a better understanding, to establish a terminology on the most terms used in this thesis. These 

definitions were extracted from variety of references, among them; Lefebvre, 2000; Isermann, 2011 Miljković, 

2011, Olivier-Maget, 2007  Hence, one can find in literature definitions which are completely different from those 

that we propose. 

One of the major challenges in instrumentation is to detect, diagnose and correct erroneous measurement data, 

which is essential to a robust and efficient operations of the plant systems. Therefore, it is necessary to regularly 

ensure correct operation of these devices by continuously monitoring their faults particularly, those having great 

importance for safety. The role of supervision is to monitor degradations and changes in systems during their normal 

operation and to control the faults as early as possible before they lead to failures by taking proper decision and 

undertaking specific actions for accommodation and reconfiguration to insure optimal and sure management of 

operating modes of a process, and to keep the system working and avoid damage of the process. The modes 

and states are defined from the data analysis, system knowledge and the know-how of operators. Therefore, 

most all the available information on the system are needed to be able to detect eventual process dysfunctions, 

diagnose them and react in consequence in manner to insure a regular operation even in abnormal situations. 

The supervision consists mainly to feel, analyze and act. Otherwise, in supervision system, association of 

two major functions must be taken into account; FM and Fault Control (FC) (i.e., accommodation, reconfiguration, 

reconstruction, reconciliation, etc.) to recover from the fault ; Allahham, 2008

 The monitoring consists of detection which determines whether the process is in 

normal operation or not by indicating the presence of faults, and diagnosis executed after detection of abnormal 

process state which gives information about the declared faults by processing on-line available data. FC is 

performed in situations where parameters or constraint structures change due to a fault. 

 Supervision systems include a set of tools and techniques for the FM and control of industrial processes in 

normal working conditions as well as in the presence of failures (Maciejowski, 2002). So, Supervision covers 

normal and abnormal operation aspects of a system. In normal operation, its role is to monitor and control the 

execution of the operation and in the presence of a fault, the supervisor must take all the correct necessary 

decisions to ensure the return to normal operation. Therefore, supervision has a Decision-Making (DM) and 

operational role in order to resume the order. The general architecture of the supervision is presented on Figure 

II.1 and then illustrated on Figure II.5.  

 

Figure II.1 - General architecture of on-line FS system. 



 

 

                                                                

 
 

Nevertheless, in some cases, supervision is not any more a simple channel of monitoring functions (detection - 

diagnosis) and reconfiguration. Monitoring models much more complex can be set up according to the considered 

process, the type of faults and also the production. 

Modern automated industrial processes are vulnerable to faults. Indeed, faults in actuators, sensors, 

process equipment or within the controller are inevitable and unpredictable. These faults can be amplified by 

the closed-loop control systems, and faults can develop into malfunction of the loop. The closed-loop control 

action may hide a fault from being observed. A situation is reached in which a fault eventually develops into a 

state where loop-failure is inevitable. The fault consequences can lead to serious degradation in the system 

performance and may even lead to a complete breakdown of process operation at a plant level, if not handled 

properly in the control system design. 

Various faults can occur in different stages of an industrial system and particularly NPs such as the 

instrumentation (e.g., sensors and their acquisition channels, radiation detectors and their detection channels, actuators like 

valves and their command system), equipment (e.g., water pumps, HE), processes, and structures. These faults can be 

stuck valves, process fouling, broken pipes, sensor drift, damaged motor bearings, etc., Venkatasubramanian et al., 2003b

Kidam et al., 2010  Faults can have a significant impact on system safety and performance for NPP. For example, 

drift in steam generator feed water flow sensors can result in reactor power output reduction by as much as 3% 

Chan, Ahluwalia, 1992  A stuck open relief valve created a loss of coolant scenario in the Three Mile Island 

accident, which was a major reason for the disastrous outcome (Broughton et al., 1989  

Fault is considered as any sort of unexpected and unpermitted anomaly such as change, degradation or 

deviation of at least one characteristic property (feature) of the system from normal (i.e., acceptable, usual, standard) 

condition and operating behavior and performance in the process (the cooling system and core of the NR in our 

case), caused by malfunctions of components and if unchecked can induce an intolerable failure (Breakdown) in 

the system behavior and may further deteriorate the system’s performance as is shown on Figure II.2 Olivier-

Maget, 2007; Abdul Rahman, 2010 ;  We can find in the literature some technical 

words which have closer meaning or are in confusing with the fault word, such as anomaly, damage, default, error, 

malfunction, symptom, uncertainty and so on Zemouri, 2003; Worden, Dulieu-Barton, 2004; Olivier-Maget, 2007   

 

Figure II.2 - Various sorts of anomalies (Venkatasubramanian et al., 2003a). 

While a fault is considered non-normal behavior in contrast, failure or break-down can be defined as a 

permanent interruption of a systems ability to perform a required function under specified operating conditions 



 

 

                                                                

 
 

Isermann, Ballé, 1997 (Figure II.3). Usually, a fault is minor when compared to a failure, but most failures tend 

to stem from ignored or undetected faults Zhang, 2009  

For simplicity, the term fault is used to refer to both faults and failures herein.  

 

Figure II.3 - Relation fault – failure. 

Faults can appear in systems as a single fault or multiple faults. They provoke the degradation of their 

performance, accuracy and efficiency. Fault does not represent stop of operating altogether because this means 

failure (100% degradation) (Himmelblau, Bhalodia, 1995). But, unless corrected, fault can progress to be a failure 

(Isermann, Ballé, 1997; Venkatasubramanian et al., 2003a). The degradation of the equipment is characterized by 

all the period when the characteristic amplitude of the parameter remains under the threshold of alarm. The 

detection of crossing of this threshold provokes a generation of synonymic alarm of a failing event. The 

equipment is then in a situation of breakdown. The fault effects, also called fault indicators or fault signatures, allow 

decision on the occurrence of a fault and its analysis (Olivier-Maget, 2007). Therefore, to monitor variety types 

of faults with adequate tools, it is necessary to model all their signatures that can lead to alarms, what is called 

fault evaluation (Tarifa, Scenna, 2000; ). At any given time, it is difficult to distinguish between the 

effect of disturbance, noise and fault because they often manifest themselves in the same way in measurements. 

Nevertheless, the difference lies in their temporal behaviors. Compared to the noise, a fault acts on the system 

with a different manner, thing which helps in its detection. All systems components are subject to fault due 

usually to various intrinsic (e.g., manufacturing inefficiencies, obsolescence), extrinsic reasons (e.g., 

mishandling); incorrect calibration; interactions with the environment (e.g., severe shocks, vibration, heat, friction, 

dust); and other causes of performance degradations (International Atomic Energy Agency, Vienna, 2008; Balaban et 

al., 2009).  

Anomalies can be classified according to the degree of criticality: fault (assimilable) when it has no impact 

on the performances of the device features; characteristic when it can be by-passed by a corrective action; and 

failure (critical), when it requires an emergency action (repair or substitution) (Olivier-Maget, 2007). There are 

different ways to classify faults according to various standards (Zhang, 2009). First, faults can be characterized by 

their temporal features. As shown on Figure II.4, the speed and shape behavior of fault appearance can be very 

different, from abrupt (sudden or coarse) change in time to very slowly developing (incipient, progressive, drifting or 

subtle) passing by intermittent (discontinue) ( ; Balaban et al., 2009; ). (a) Abrupt faults are 

dramatic and persistent in which the magnitude is scaled by a factor  where the form of the waveform itself 

does not change. They are usually accompanying by significant deviations from steady state operations. Abrupt 

fault can be a failure and consequently have to be detected early enough to avoid bad consequences (



 

 

                                                                

 
 

; ; Zhang, 2009). (b) Incipient fault sometimes called also soft faults ( ) 

has a slow temporal behavior (minutes to hours). It develops gradually from nothing (no fault) to a larger fault. 

It includes bias, scaling, gain, offset and drift Zhang, 2009  This type of fault is characteristic of a fouling in the 

HEs and is very common in analog instrument due to incorrect calibration, internal temperature or physical 

(material) changes. In some sense, this fault is the opposite of abrupt changes however, incipient faults have a 

weak effect and almost unnoticeable when it occurs. Although it may be tolerable in its early stage however, it 

may develop to cause very serious consequences ( Zhang, 2009). Therefore, the monitoring of 

incipient fault can be considered as the hardest challenge task in a safety-critical environment ( ). 

(c) Intermittent fault is a consecutive of arbitrary amplitude pulses appears and disappears randomly for very 

short periods of time (order of seconds). It can be considered as a particular case of abrupt fault with the particular 

property that the signal returns in an unpredictable way in its normal value. Such failure can appear in any of 

the two failure modes described above. These faults can be provided by bad contact in slots and cables 

connection and in dry welds for electronic components. They appear also in sensors like thermocouples due to 

corrosion or breakage of junction and in proportional counter when the central electrode is bad welded. Thus, 

due to the random nature of the intermittent fault, they are most difficult to monitor. Sometimes intermittent 

faults can have disastrous consequences. 

 

Figure II.4 - Common classification of faults according to their time-variant behavior, where tf and tdef are respectively the 
occurrence time and the detection time of fault. 

A second classification most often used in the process industry based on the origin of the fault (Zhang, 2009). 

(a) Equipment malfunctions. In many cases, errors occur in actuators or sensors. A faulty actuator is not able to 

operate accurately and promptly to provide proper input to the process. With the devolvement of process 

dynamics, this local malfunction may lead to deterioration of the entire plant. If the failed sensor happens to be 

a part of a feedback control loop, the malfunction is rapidly propagated through the causal channel of the loop. 

(b) Structural process changes. Despite its infrequency, this type of fault tends to result in catastrophic 

consequences if no effective response action is promptly taken. The challenge of a structural fault is the lack of 

an accurate mathematical description. (c) Parameter changes. Such changes arise when a disturbance enters the 

process through one or more exogenous inputs. It should be noted that the more common faults in the process 

industry are parameter changes and equipment faults. 

The faults can be also classified according to the manner how they act on the system. Faults may be 

represented as unknown extra inputs acting on the system which dependent on measurement and process and are 

function of the inputs and states. In this case, faults are considered additive. Faults may be also represented as 

changes of some system parameters which dependent on the process and fault dynamics, considered as 

multiplicative called also non-additive Gertler, 1998 Balaban et al., 2009  All these two types of 

faults and noise act together or individually on different parts of the system as shown on Figure II.5 

Zhang, 2009  

Any fault can be classified as minor faults and major faults depending on whether or not there is a need 

of reconfiguring the controller in the closed-loop. The faults can be also considered as intermittent and permanent 

faults (Allahham, 2008). 



 

 

                                                                

 
 

 

Figure II.5 - Source and type of faults in a control system, where fi represents a fault with the subscript i can be u, y, a, p, s, ap 
or ps which mean, respectively: input, output, actuator, process, sensor, actuator-process and process-sensor (Mouzakitis, 2013). 

The presence of faults in a system induces effects and consequences on its operation behavior dependently of 

the nature and severity of these faults. Therefore, a system presents usually several operating modes Zemouri, 

2003 as is illustrated by Figure II.6. (a) Nominal operation mode of equipment or the industrial system corresponds 

to the state when it performs its mission in the operation conditions required by the constructor and with 

requirements expected from the user. (b) Degraded operation mode corresponds to the partial fulfillment of the 

system mission with low performance. In this case, there is degradation in the system behavior but no yet stop 

of operation.  

 

Figure II.6 - System operation modes. 

(c) Failing mode corresponds to bad operation of the system, developed after an abrupt fault or from an evolution 

of degradation such as intermittent and incipient faults. This mode is characterized by causes responsible of its 

appearance; in this case we speak about Cause-Effect (CE) problem. Since this link is not unique (i.e., an effect 

can have multivariate causes), therefore every equipment or system can possess a single nominal mode but 

several failing modes. 

Indeed, the detection of a malfunction helps to avoid any degradation that may affect the system to be 

monitored and the elements of the neighboring environment (users and equipment). This brings us to a more 

general notion called "monitoring", considered as essential discipline in the field of reliability. 

Monitoring has become an active research area for dynamic systems since 1970's. In the beginning, it is 

restricted to industrial applications at high level of risk such as the nuclear, chemical plants and aeronautic 

 as well to point activities such as the armament industry and aerospace 



 

 

                                                                

 
 

. In the last decades, it has received more and more importance principally due to an increasing need 

for higher performance, safety and reliability.  

The first major survey was written by  Earlier significant books 

were published on this subject Himmelblau, 1978; Pau,  They are followed by 

summary especially in synthesis papers ), as well in synthesis books such as 

 

The detection and diagnosis of malfunctions in technical systems include production equipment, transportation 

vehicles, and household appliances. While the need to detect and diagnose malfunctions is as old as the 

construction of such systems, advanced FDe has been made possible only by the proliferation of the computer. 

In NPs, the parameters to monitor are: nuclear parameters such power, neutron life cycle,  and  coefficients, 

and neutron poisons; thermal-hydraulic parameters such as Tf, pool temperature, inlet and outlet temperature, pressure 

and flow of the thermal loops; and control parameters such as control rods position Mesquita, Souza, 2010 Gang et al., 

2013  Gave a list of monitored parameters of various systems in Boiling Water Reactors 

(BWRs). Hofstotter et al., 1999; Makai, Végh, 2017 gave a list of monitored parameters of the core in BWRs, and 

Pressurized Water Reactors (PWRs). 

Monitoring consists notably to detect faults by observing the system evolution, then diagnosing them by 

localizing the faulty elements and identifying the primary causes Olivier-Maget, 2007  A monitoring system must 

be able to realize and analyze the state of a process at any time, given a stream of observations (Casimir, 2003), 

and to extract necessary information allowing to discover the failings of systems and to diagnose them 

Olivier-Maget, 2007 Allahham, 2008  

Monitoring has a passive role; its tasks are limited for providing information on the state and has no direct action 

on the system or its control. Therefore, monitoring is informative tool, which consists, essentially in recognizing 

the operating mode of system during the regular operation by analyzing its state and providing indicators through 

observations based on the real-time process of data and signals Allahham, 2008   

The objective of the plant monitoring system in any potentially unsafe scenario is to give the plant operators, 

in case of fault, appropriate inputs to formulate, initiate and perform the corrective actions. Therefore, the FDD 

system gives the necessary help to significantly reduce risks associated with the faults appearance and to prevent 

bad on global operations. 

Hence, the FM structure Basically, consists of two main successive functions: the FDe and the FDi 

Tidriri et al., 2016  as is presented by Figure II.7 (Racoceanu, 2003; Palluat, 2006). First, FM consists 

to learn on data acquired by the components and instrument (e.g., sensor) of the system to be monitored; to feel 

and so detect undesirable process changes and anomalies against the normal operation which means that the 

system is in abnormal operation. A detected fault is then expressed by the generation of symptoms giving more 

or less elaborated information about the faults Gertler, 1988  Second, after a fault has been detected, 

the FDi will take place  It analyze the fault information and give necessary 

explanations to establish a tools for its diagnosis (Palluat, 2006). The set of information and analysis of faults are 

provided to the operators in the control room. However, in some references the FDe is considered as part of 

FDi Frank, 1996 Isermann, 1997; Frank et al., 2000a; Bentoumi, 2004; Poongodai, Bhuvaneswari, 2013; Capacho et al., 

2014; Gao, 2015a Świercz, 2015; Vogl, 2016 Skliros et al., 2019

The FDI consists to locate, identify, isolate, and pinpoints exactly their causes (origin of fault) (

). Hence, the monitoring is often called FDD ). In most cases, 

the FM is limited to the FDe and the FDi is omitted particularly, when the system to be monitored is too 

complex. So, the FDe is indispensable task but the FDi is usually required. 



 

 

                                                                

 
 

The output of the monitoring system may be simply an alarm signal that takes two values, high when fault is 

detected and low for fault-free. In sophisticated case, this output provides a knowledge on faults such as their 

location, amplitude, causes. 

 

Figure II.7 - Bloc diagram of the FS applied to a process.  

Particularly, when the model is used, the FM is usually performed in two consecutive steps: the generation 

and evaluation of residuals Ben Rahmoune et al., 2017  In this case, the FM is limited to the composition of 

Detection and Isolation/Identification; and it is called FDI Zhang, 2009   

So, the FDI combines in the same time the detecting of abnormal change or deviation in the behavior or in 

the state of a system which gives place to the generation of faults in the form a symptom; and isolating these 

faults which means finding the root causes of the faults which leads to the location of the elements responsible 

of these faults ( ).  

Beside the FM, FDD and FDI, various technical terms have evolved and used in the literature to describe 

the process health and its data checking by using different techniques which may be referred to such surveillance 

Sensor Validation (SeV) Worden, Dulieu-Barton, 2004

prognosis; FTC; Failure Detection, Isolation/Identification and Accommodation (FDIA) 

or Reconfiguration (FDIR) condition-based calibration, preventive maintenance; Condition-Based 

Maintenance (CBM). Other terminologies are used in conjunction with the term monitoring to specify certain 

monitoring tasks and particularities such as conditions monitoring and health (performance) monitoring 

 More common terminology for the FM and for the FS are suggested in 

Worden, Dulieu-Barton, 2004  

Some references use the terminology FDD Venkatasubramanian et al., 2003a Mosallaei et al., 2007 Ma, 

Jiang, 2011 instead monitoring to avoid any ambiguity between monitoring and FDi. This ambiguity is resolved 

when the FDi is specified such as in Fault Detection and Isolation (FDIso) Samy et al., 2011 Adouni, 2013 Anzurez-

Marin, 2014  Fault Detection and Identification (FDId) Kullaa, 2013 and Location (FDLo) Fragkoulis, 2008 Reyes-

Archundia, 2015  Fault Detection, Identification and Isolation (FDIdIso) Dorr et al., 1997  an abbreviation used by 

many publications and books. We note that FDI in literature means FDId, FDIso or both, terminology adopted 

in this thesis.  

The FM can be performed with two main manners: on-line and off-line. Some terminologies are used in 

conjunction with the term on-line such as Real-Time Monitoring (RTM), On-Line Monitoring (OLM) and On-Line 

Calibration Monitoring (OLCM)  As off-line monitoring is temporarily and 

simple, a continuous on-line or real time process monitoring can be also easily applied if an early detection can be 



 

 

                                                                

 
 

achieved inexpensively and timely. The on-line or real-time FDe and FDi means that the equipment is constantly 

monitored during its regular operation by a permanently connected computer, and any discrepancy is signaled 

almost immediately. Monitor a system continuously during operation, is often referred to as OLM. A number 

of different OLM implementations have been developed over the past years and some plants already use it in 

addition to the time-based calibration program to obtain additional information for plant maintenance. A 

continuous real-time task of determining the conditions of a physical system, by in recording information, 

recognizing and indication anomalies in the behavior (Simani et al., 2003; ). 

The successful implementation of OLM can provide a means to detect quickly small deviations, enough to 

facilitate timely action. It is very important the early detection of any component malfunction before it can lead 

to more substantial equipment failure which prevents damage or downtime to the system. Therefore, OLM can 

provide, over time, an information and assessment of instrument and equipment performance and provide a 

basis for determining when adjustments are necessary. Elimination or reduction of unnecessary adjustments 

and calibrations can reduce associated labor costs, personnel radiation exposure and the potential for miss-

calibration. More Benefits of OLM is given in (Hofstotter et al., 1999). 

The preventive, predictive or dynamic monitoring (Figure II.8) consists to analyze the present and past state of 

the physical system to forecast the future system degradations, faults and failures, and determine their 

consequences on the future system operation  The preventive monitoring is 

composed of the preventive detection and of the preventive diagnosis also called prognostic Mahdaoui 

et al., 2009  Install a preventive monitoring system consist so in being able to detect the degradation before the 

failure event pairs.  

A survey of data-driven prognostics methods can be found in Schwabacher, 2005  

 

Figure II.8 - Classical and preventive monitoring.  

Preventive detection of fault consists to foretell a future degradations faults and failures. FDe is different 

from fault prediction. The first deals with the faults that had happened and its result are certain; but fault prediction 

deals with the faults that will happen, so its result is random. Therefore, it needs probability to describe the result 

of fault prediction ; ).  

A preventive diagnostic, prognostic or prognosis is an engineering discipline focused on predicting the time at 

which a system or a component will no longer perform its intended function. Prognostic is different from 

diagnosis; diagnosis is done only when a fault has occurred whereas, prognosis deals with assessing the health of 

the equipment and predicting the remaining useful life time (Manoharal., 2017). Prognostics include detecting 

the precursors of a failure, identifying the causes and to locate organs which entailed a particular degradation, 

and predicting how much time remains before a likely failure. Furthermore, the prognostic or function allows 

the determination of the consequences of a failure on the future operation of the system. Two kinds of prognosis 

can be distinguished; preliminary prognosis and preventive prognosis. The preliminary prognosis looks for the 



 

 

                                                                

 
 

inevitable consequences of a failure (identification of all the tasks that can no longer be performed by respecting 

the scheduling). In this case, only the failures and their causes are known. The preventive prognosis, focuses on 

the latent error and the propagation of failure (the repetition of the same failure). In this case, only failures 

whose effects are not immediately detected are considered in this case. The preventive prognosis determines 

whether there are other products that are affected by the same defect that would induce the same symptom in 

the future. This type of prognosis is used to prevent the execution of activities leading to the detection of the 

same symptom. Prognostic is the most difficult task compared to FDe and FDi 

  

The capability to monitor faults, in instrument, equipment and systems, depends on the availability of 

suitable measurements. FM treats at the same time digital data (e.g., from sensors) and symbolic data (e.g., knowledge 

on the considered system). has considered these two types of data as necessary for the 

monitoring operation. These data can be global and can be qualified as off-line or a priori on the system such as 

the knowledge based on the past of the system; instantaneous corresponding to a set of the elements we have at 

a given moment to make a decision and to exploit it. But these data, especially digital, are usually associated 

with errors and noise and if they are not properly handled, they may lead to erroneous estimation of equipment 

performance. Sometimes due to the difficulty to access to the data, simulated results can be used instead 

(Racoceanu, 2003; ). 

The detection is a crucial phase for monitoring because it presents the decision stage which allows 

launching FDi with the most complete manner possible. Indeed, it allows to administer and to analyze an 

important mass of available information. Certainly, it is easy from fault to find the effects, but the reverse "to 

find fault from effects" is not always feasible. 

The purpose of FDe Allahham, 2008 is to unregister the time of apparition (Figure II.9)  

of any small abnormal changes and anomalies in 

the behavior or state of a system or process and generate an alert such as luminous or sound alarm 

to the supervision operators to the presence of a fault for intervention Allahham, 2008 early than a 

conventional system Allahham, 2008), before they evolve (leads) into failures 

 Detection consists to compare the current behavior to the reference one. So, it detects any deviation from 

normal system behavior and generates a symptom (Figure II.9) then then makes a decision as a result of the 

comparison. Therefore, detection allows to take into account abnormal situations due to real failures on the 

process but, also, unexpected situations which correspond to a normal operation of the process and which have 

not been considered during the development of the model of behavior.  

 

Figure II.9 - Constituents of FD. 



 

 

                                                                

 
 

FDe usually involves making a binary decision - either that something has gone wrong or that everything is 

within normal operating limits. So, this function makes it possible to characterize normal or abnormal operation 

of system. 

Basseville and co-workers started work on monitoring plant parametric changes Basseville, Nikiforov, 1993

Benveniste et al., 1987 from which they developed a procedure for the detection and isolation of abrupt change in 

the parameters of a process multiplicative or non-additive faults. More details on FDe is given in many papers 

(Palma et al., 2002; ; Li, 2003; ; ; Allahham, 2008; 

; ; ; ; ; ), books (Korbicz, Koscielny, 

2010) and thesis ( ; ; Allahham, 2008; ; Letellier, 2012). 

Fault detectability is a property of the system under consideration describes how a fault affects the system 

behavior and how a cause changes in the system output. It should be expressed independent of the system input 

variables, disturbances as well as model uncertainties. Finally, the structural fault detectability should be 

independent of the type and size of the fault under consideration ( ; ). It is usually 

understood that the small amplitude, abrupt and slowly drifting bias faults (incipient faults) 

are difficult to detect  Therefore, the capabilities to detect these types 

of changes are strictly related to three levels of noise in the measured signal; accuracy of the used approach; 

and on-line learning rate   

The Mean Detection Time (MDT) number of Undetected Faults (UDs), and the percentage of time that the 

residual remains above the set threshold prior to a fault being introduced are indicators of the FDe during the test 

procedure which characterizes the FAl. FM can never be performed with absolute certainty, because of 

circumstances such as noise, disturbances, and model errors. Moreover, there is always a trade-off  between FAls 

and missed detections, the proper balance depending on the particular application  FDe is also 

characterized by other parameters such as minimum detectable fault, detection ratio; number of FAls and FDe delay 

). The FDe delay is the difference between the instant of appearance of a fault and the time 

of its detection (Brijeshkumar et al., 2013). 

 The execution of the FDe procedure passes throw two phases: building the FDe function and formulating 

the mathematical functions as model, are done in the off-line phase, while receiving data stream from the 

monitored system, and applying the FDe function on the incoming data stream are done in the on-line phase. 

One of the most important properties of detection is to be sufficiently sensitive to detect faults at any time, and 

robust to avoid FAls in presence of noise and disturbances. Thus, robust detection is a desirable feature in the 

design of an effective FDe algorithm. 

Indeed, diagnosis is etymologically coming from the Greek and means “dia”: by, “Gnosis”: knowledge. When 

a fault is occurred, it is not sufficient to detect it and to know its symptom, but it is also necessary to describe 

and analyze the nature if the symptom and to obtain information about it, which is the task of the FDi step 

  

FDi, also called Fault Analysis (FAn) ( ; ) consists to evaluate and 

interpret correctly the symptoms revealed during the detection phase resulting from a degradation of one or 

several components in the physical system  in order to locate the position of faulty 

components, identify their type (nature), size (amplitude) and origin by determination of the causes; and give the 

necessary explanations and details on these faults Allahham, 2008   



 

 

                                                                

 
 

Therefore, the purpose of the FDi is mainly to determine: (a) Type allows giving the type of the detected fault 

such as the magnitude, size, shape and nature. (b) Position: allows determining exhaustively the organs, element 

or components of a physical system that is faulty and led to a particular observation and exact the area or 

position where the fault is happened Ben Rahmoune et al., 2017). (c) Cause that 

led to an abnormal situation. From the observation of a fault state, the FDi function determines and finds in 

physical systems, chemical and nuclear process plants ( ) the root causes or origins ( ), 

such as software; and physical component, equipment and sub-system which engendered anomaly (e.g., degradation, 

faults, failures) and led to an abnormal situation ( Zhang, 2009  These causes 

can be internal or external to the equipment ( ). Indeed, for a given cause, it is easy to predict its 

resulting fault. Also, for a given fault, it is easy to predict its effect and resulting failure. But identifying the 

cause from the fault or the fault from the effect is a difficult task, because a fault and failure can usually be 

explained by several cause and faults respectively (Figure II.10).  

 

  

Causes 1, 2 and 3 lead to the same fault but, the reverse 
operation is complicated?  

Fault 1, 2 and 3 lead to the same failure but, the reverse 
operation is complicated?  

Figure II.10 - Fault - causes and fault – failure relationship (Olivier-Maget, 2007). 

It is then a question of comparing the observations to provide the correct explanation. Some methods can be 

used to find fault causes and origins such as the knowledge-based reasoning, cluster analysis, PR and signature 

analysis, qualitative reasoning, statistical analysis, or any number of parametric and nonparametric models 

 In this context abductive diagnosis concept is emerged from the definition 

proposed in  In this type of logical reasoning, an inference is involved that goes up from 

effects to causes by modeling and finding satisfactory explanations and analyses of the relations CE 

associating the initial causes (e.g., failures of components) with the observable manifestations as 

consequences (i.e., the symptoms) Hamidoud, 2007 Allahham, 2008  Therefore, the FDi can be considered as 

function which establish a link from causes to effects between the observed symptoms and the occurred faults 

Becraft, Lee, 1993  It consists to analyze the symptoms to deduct the internal causes being a part of the monitored 

system or external to this system paralleling the field of medical diagnosis. It based on that other faults cannot 

produce the observed behavior   

All the FDi tasks (i.e., the determination of the type, position and causes of fault) are generated as FDi data 

and sent to the operators at the control room for efficient and accurate decision on technical processes at various 

levels. The monitoring system must be able to decide when process is in a normal situation of operation, and 

when a corrective action must be applied. In DM, this corrective action corresponds to the reconfiguration step 

of the command in order to return process in a normal operation mode. Therefore, FDi is considered more 

complicated compared to FDe. 

In the most cases, the FDi function is composed mainly of four functions (Figure II.11) : the isolation 

Evsukoff, Gentil, 2005 Hwang et al., 2010  identification Desai et al., 1979; Mehranbod et al., 2005 analysis Frank, 
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1996 Frank et al., 2000a Palma et al., 2002; Yang et al., 2010a; Capacho et al., 2014 and localisation Worden, Dulieu-

Barton, 2004; Fragkoulis, 2008), localization Khaled et al., 2010 or location Burnett et al., 1996 . (Gao et al., 2007; Liu 

et al., 2015) introduced additional term: Fault Estimation (FEst) as part of FDi. The FEst in ; Zhang 

et al., 2009 means the magnitude or size of the fault. 

 

Figure II.11 - Main FDi constituents and their frequent meanings. 

Allahham, 2008; Zhang, 2009 used the explanation function as part of FDi, which means a conclusion (i.e., 

formulation and justification). More details on FDi and its steps are done in many references ; 

Bouchon-Meunier, Marsala, 2003  considers the FDi problem as a shape recognition

 

In some cases, the FDi is limited to one or two of these functions. ( ; ) define FDi 

as two basic functions; Fault Isolation (FIso) and Fault Identification (FId); and ( ; ) 

define it as Flo and FId. Allahham, 2008; Zhang, 2009 has added the explanation function to localization and 

identification as constituent of the FDi. Furthermore, in (Allahham, 2008; ), the detection time 

(apparition) of fault which is generally associate to the FDe function, is associated to FDi.  

 In literature, there is a conflict and ambiguity between definitions and nomenclature of the main constituents of 

FDi, i.e., FIso, FId, FLo, FAn, and some references confuse between them as is shown on Table II.1. For example, 

(Frank et al., 2000a Palma et al., 2002; Zhang, 2009) define FIso as FLo which locates the possible root causes for 

the detected fault. (Fragkoulis, 2008) define the localization as part of FIso. Palma et al., 2002 define FAn as Fid 

which is the determination of the magnitude of the fault. 

The successful detection of a fault is followed by the FIso procedure defined as the ability to distinguish 

(isolate) a particular fault from others Chen, Patton, 1999 Orantes Molina, 2005  

FId can be defined as the determination of size and evolution 

defined FId as size (amplitude) estimation and determination of the probable evolution (time-variant behavior) of 

the fault. (Allahham, 2008) defined the FId as the apparition time of the fault, its duration and its size. 

There are several issues about FLo such as the fault isolability efficiency, FIso time or fault 

resolution time and perhaps of primary importance is the resolution. The latest (i.e., diagnostic resolution) is defined 

as the degree of accuracy to which faults can be located. A test that achieved the maximal fault resolution is said a 

complete FLo test. A brief review of the FLo techniques can be found in Mirzaei, 2009 Gururajapathy et al., 2017

The detection function determines the normality or the abnormality of the system in operation. This 

function often represents a topic of debate concerning its place and we find themselves confronted with the 

terminology. Many references consider detection as essential information and inseparable from the FDi. 

Therefore, we find in the literature instead of the FM, the term FDi which includes consequently the FDe 

function Gertler, 1991 Reifman, 1997a Simani, Fantuzzi, 2000; Fragkoulis, 2008  However, other works consider 

FDe as original part, inextricable and element apart information from FDi and view it more as autonomous 

entity in monitoring such as in the most of references (Li, 2003; Mamar, 2008 Yu et al., 2014  This opinion is 



 

 

                                                                

 
 

adopted in this thesis. Some authors avoid this ambiguity in terminology by using the term FDD Leger et al., 

1998 or FDI Chen, Patton, 1999 instead FM. 
 

Function/Task Which Element 
Type (Nature) : Magnitude or 

Amplitude, Size 
Cause 

Localization, 

(Localisation, 

Location)  

 

Zemouri, 2003; Orantes Molina, 

2005; Olivier-Maget, 2007); Ben 

Rahmoune et al., 2017.

 Zhang, 2009; Allahham, 2008; 

Olivier-Maget, 2007. 

Which Element /the Cause 

Mamar, 2008. 

Identification 

 Type (Nature)  Cause 

Mamar, 2008; Gertler, 1998; Patton, 

1991; Chen, Patton, 1999; Palma et 

al., 2002. 

Zemouri, 2003; Yoo et al., 

2006;  Hamidoud, 2007; 

Allahham, 2008; Bickson et 

al., 2009;  

Zhang, 2009. 

 

Magnitude (Size), Temporal Behavior 

Fragkoulis, 2008; Ma, Jiang, 2011;  

Type (Nature), Cause 

Frank et al., 2000a; Capacho et al., 2014; Olivier-Maget, 2007) Orantes 

Molina, 2005.

Isolation 

Localisation, Type (Nature), Time of Occurrence Cause 

Fragkoulis, 2008. Zhang, 2009 

Anzurez-Marin, 2014. 

 

Where: Location, Position, Area  

Patton, 1991; Gertler, 1988; Gertler, 

1998; Simani, Fantuzzi, 2000; Palma 

et al., 2002; Palade et al., 2002; Ma, 

Jiang, 2011 

Letellier, 2012Chen, Patton, 

1999Poongodai, Bhuvaneswari, 2013.

Localisation (Classification)  

Frank, 1996; Frank et al., 2000a; 

Capacho et al., 2014. 

Which Element 

Palma et al., 2002; Zhang, 2009. 

Analysis 
 Type (Nature), Cause 

Frank, 1996; Capacho et al., 2014. 

Table II.1 - Confusion between definitions of FDi constituents. 

An important aspect of FM system is its performance. Therefore, it is common in the literature to 

emphasize some important aspects for an ideal FM system. Some of them are related to FDe, while others are 

related to FDi. These characteristics and proprieties, according to Tarifa, Scenna, 2000; Venkatasubramanian et 

al., 2003a; Yu et al., 2014 are: (a) Speed (real-time) FDD which is fundamental for a typical monitoring system. 

This implies that high computation and storage capacities must be provided. Furthermore, the modeling 

method should be low complex for quick and easy implementation. This requires a high and for fast real-time 

implementation of monitoring. (b) Monitorability considered as the most important feature of the system. (c) 

Ability to detect (i.e., faults must be observable) and to predict the degree of criticality of the failure (important 

for the recovery function). (d) Sensitivity and Robustness of the system against non-linearity, various noise and 



 

 

                                                                

 
 

modeling uncertainties. These involves the decrease of modeling discrepancies between the actual system and 

its model. This conducts to have low FAl rates and fewer missed faults. This feature gives an evaluation of a 

diagnostic system in terms of accuracy, efficiency and reliability (Kiliç, 2005). Practically, single FDD approach 

such as an analytical approach cannot eliminate the totality effect of errors and perturbation. (e) Diagnostic 

resolution, defined as being the ratio of the number of actual defects or failures by the number of defects or failures 

diagnosed by the diagnostic method being used; (f) Fine isolability, identification and localization of the fault. 

Isolability shows the capability of a diagnostic system to distinguish multiple failures. Isolating simultaneous 

faults is known as multiple fault identifiability which is the most difficult and significant requirements. (g) Novelty 

idenfiability is the capability to diagnose the system whether fault causes are from known or novel unknown 

malfunction. (f) Ability to identify multiple defects. (h) Adaptability or portability which is the ability to evolve 

against of new situations such as disturbances, variations in operating conditions, etc. Adaptability shows the 

capability of a diagnostic system to automatically response to system changes due to external inputs or 

structural changes. (i) Explanation gives clarification on where and how faults occur in a system which is 

required for on-line decision in control. Nevertheless, real monitoring systems typically have only a subset of 

these proprieties. More performances used for evaluating FDI and control performances are available in 

Prakash et al., 2002  In practice, each proposed approach never satisfies all performances and the selection of 

FDD methodology is dependent on the behavior and feature of applications. 

Early, quick and accurate FDD system is an important, fundamental, and highly desirable attribute. However, 

the challenge in realizing it lies in the fact that quick response to FDD and tolerable performance during normal 

operation are two conflicting goals. Indeed, the system designed for fast FDD is sensitive to noise leading to 

frequent FAls in even normal operations since some noise effect could be over the threshold. This one should 

be trade-off between the response speed and robustness (noise, FAl or threshold) 

 

There is a trade-off between the computational complexity and system performance. Fast on-line 

decisions would require algorithms and implementations, which are less computationally complex, but might 

necessitate high storage requirements. A reasonable compromise between these two competing requirements is 

desirable (Dash, Venkatasubramanian, 2000; Yu et al., 2014). 

An important problem in runtime verification is monitorability. If a property is not monitorable, then it is 

meaningless to check it at runtime, as no satisfaction or violation will be reported in finite steps. A system is 

said to be monitorable if whatever the behavior of the system, we will be able to determine without ambiguity a 

unique monitoring. On other words, a system is said to be monitorable if it can be determined, using only 

(trajectories of) known variables, whether the system constraints are satisfied or not (Blanke et al., 2003). More 

details on monitorablity are given in  

Observability is one of the important concepts that plays a central role in system theory. It is often necessary to 

obtain information on the state variables according to measurements of the inputs and outputs. In control 

theory, observability is a measure of how well internal states of a system can be inferred from knowledge of its 



 

 

                                                                

 
 

external outputs. A dynamic system is observable if a state x of this system can be determined from an input 

sequence u and an output sequence y, both of a finite length Olivier-Maget, 2007; Patan, 2008). On other word, 

A system is said to be state observable on a given time interval, if the states x can be determined from the system 

equations and the time histories of the input u and output y over the same interval Gertler, 1998; Kiliç, 2005  

Mathematically, a system represented by a system of state equations is fully observable if its observability matrix 

is equal to the dimension of its state vector (Gertler, 1998; Olivier-Maget, 2007). Furthermore, a system is said fully 

observable if each state variables affecting any of the outputs. If any state cannot be seen from the measurements 

of the outputs it is said that the system is not completely observable or simply unobservable Camacho et al., 

2014  In addition, fault observability means that the change of faults in a dynamic system can reflect itself in 

the change of measurements. More details on the observability can be found in (Li, 2003; Fragkoulis, 2008; Jain, 

2012  

Another important characteristic of the system to be monitored is the chronicle, i.e. record or history of the sequences, 

which represents a group of signals associated to events of the system, and it defines a basic situation of a 

normal or abnormal change to be monitored. In addition, chronicle is represented as a set of events and a set of 

temporal constraints between these events, associated to FDi messages depending on topological constraints 

  

An accurate model of a given system, for Mathematical Model-Based Approach (MMBA), cannot be obtained 

exactly. This can have different causes, such as an unknown disturbance structure, different noise effects and 

uncertain variables. Model uncertainty can cause either false or missed alarms. Hence, the quality of the used 

model and uncertainties about the measurements, influence negatively on the supervision mission (Olivier-

Maget, 2007). Therefore, this uncertainty must be taken into account and some robustness procedures (e.g., 

filtering) may be necessary to reduce their impact. If left untreated, it can have a serious impact and the FM 

system can become useless.  

The robustness problem in FM can be defined as the maximization of the detectability and isolability of faults and 

simultaneously the minimization of uncontrolled effects such as disturbances, noise, changes in inputs and/or 

the state, etc.   

There are several approaches to deal with these aspects of robustness, divided into active and passive 

as is shown on Figure II.12.  

 

Figure II.12 – Robustness. 

When the MBA is used, the active robustness approach deals with the uncertainty in the residual generation phase 

to avoid their effects. The passive robustness approach is applied during the evaluation of the residual and decision 

making. (Fragkoulis, 2008  Details of these approaches are given in Chen, Patton, 1999 If a FM system satisfies 

robust feature, its performance should be insensitive to the effect of various noise and modeling uncertainties. 

The robustness should be traded-off between noise and the selection of a suitable FDe threshold to prevent 



 

 

                                                                

 
 

frequent FAls for normal operations. The approach such as state estimation for a dynamic system called 

Unknown Input Observer (UIO) can satisfy this feature because of its characteristic, which is not sensitive to the 

unknown inputs (disturbance and noise). 

Isolability refers to the ability of the FM system to distinguish between multiple failures which sometimes overlap 

with noise and modeling uncertainties in terms of residuals. Therefore, there is a trade-off between isolability 

and the rejection of modeling uncertainties in an appropriate diagnostic system. 

A classifier with a high degree of isolability would usually do a poor job in rejecting modeling uncertainties and 

vice versa. 

We also desire completeness, i.e. actual fault(s) to be a subset of the proposed fault set. Resolution of a FM method 

would require the fault set to be as minimal as possible. Thus, there is a trade-off between completeness and 

resolution with respect to accuracy of predictions  More details 

on isolability are given in  

One of the minimal requirements of a FM system is to be able to decide, given current process conditions, 

whether the process is normal or abnormal and if abnormal, whether the causes are from known or novel 

unknown malfunction. This criterion is known as novelty identifiability. 

On the other side, the ability to identify multiple faults is an important and difficult requirement for isolating 

simultaneous faults due to the interacting nature of most faults. Naturally, the combination of several faults 

typically occurs in NL or larger systems, leading to the difficult separation of individual fault. An UIO observer, 

which is in the form of state space equation and independent to disturbance, can capture uniquely fault 

signature and decouple faults. Moreover, the decoupling-based feature is another approach that is developed 

specially to isolate multiple faults   

Processes in general change and evolve due to disturbances and variations in operating conditions. These 

latter can change due to changing environmental and operating conditions. Adaptability involves the capability 

of a FM system to adjust over time and to automatically response with system changes due to external inputs 

or structural changes. If the FM system satisfies adaptable capability, structural changes will gradually develop, 

as new environments, the scope of the system as new cases and problems emerge, as more information becomes 

available. Usually, FM systems designed by historical data or KBAs do not possess this feature since the limited 

scopes of data or approaches are specific or unchangeable 

  

The evaluation of a diagnostic system can be performed through the error estimate in terms of accuracy 

and reliability to enhance the confidence of users. The estimation error feature shows the efficiency of diagnostic 

decisions. Practically, single FDD approach such as an analytical approach cannot eliminate residual errors. 

Even UIO, insensitive to unknown inputs or disturbance, tries to track the system until the residuals from 



 

 

                                                                

 
 

disturbance are as small as possible. However, the errors from the estimation still occurring in the process due 

to noise, modeling uncertainties or linearization techniques.  

Not only an FM approach can identify malfunctions, but also it should explain where and how faults 

occur and propagated in a system. Therefore, the FM system modeled with priori experiences has the ability of 

explanation and justify its recommendations. This feature requires the ability to reason about cause and effect 

relationships and is significantly useful for on-line decision support systems, the operator can therefore assess 

and act using his experience  

Accurate monitoring of the health state of systems, structures and components can contribute significantly 

to the safe and efficient operating of NPPs and allows a timely detection of malfunctions and anomalies. It 

provides plants with the information to evaluate Instrumentation and Control (I&C) sensors by providing 

applications that identify drifting instruments, alert plant personnel of unusual process conditions, and predict 

impending failures of plant equipment  

The OLM system gives plants the capability to verify the calibration of pressure, level, and flow transmitters as well 

as Resistance Temperature Detectors (RTDs), and thermocouples. It allows detecting sensing-line blockages, testing the 

response time of pressure transmitters, monitoring the calibration of pressure transmitters on-line, cross-calibrating 

temperature sensors in situ, and extending the life of neutron detectors. In addition, the OLM system encompasses other 

plant monitoring applications such as assessing equipment condition, instrument calibration monitoring, 

instrumentation channel dynamic performance monitoring, performing predictive maintenance of reactor internals, 

monitoring coolant flow, identify sensing-line blockages; reactor core monitoring and alert the reactor operator of excessive 

vibration of reactor internals, Loose Part (LP) monitoring, Transient Identification (TI) ( ) and wastewater 

treatment process Yoo et al., 2006 Fuente et al., 2012 . In this section, some of these applications 

of FM methods in NPs are reviewed. showed several examples of OLM applications in NPs 

applications. It also indicates whether the particular applications require Alternative Current (AC) signal, Direct 

Current (DC) signal, or both. 

FDe and FDi applies to both the basic technical equipment and the actuators and sensors attached to it. 

Actuator and sensor FDe is very important because these devices are quite prone to faults. Sensors and actuators 

are vital components of any measurement and control system. Sensors inform the controller about its 

environment and the state of the system by providing the necessary measurements. With increasing of safety, 

performance, and automation requirements, control systems are increasingly sophisticated and are heavily 

reliant on their sensors. However, sensors are often considered as the weak link in these systems 

 FM works presented by Böhme et al., 1999a constitute an important application of detection and 

reconstruction of sensor faults in a hydraulic purification plant. In addition, digital I&C technologies enable 

more cost effective data acquisition and management, which have created opportunities for FDi. For example, 

sensors and actuators can be programmed to perform self-validating Yang, Clarke, 1996 Tombs, 2001  Industrial 

Wireless Sensor Networks (WSNs), are easier to set up, more flexible to relocate, and less expensive to deploy, as 

compared to a conventional wired system; thus, WSN provides an effective way to collect data for FDi Hashemian 

et al., 2011 Jiang et al., 2014 Oppermann et al., 2014  Equipment CM of NPPs requires to optimally group the 

usually very large number of signals and to develop for each identified group a separate CM model (Baraldi et al., 

https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Alternating_current


 

 

                                                                

 
 

2011a). (Kang, Seong, 1995) developed a core internal vibration monitoring system which is particularly concerned 

with the Core Support Barrel (CSB) in ULJIN NPP unit 1 in Korea.  

The instruments in a NPP provide measurements for plant monitoring, control and protection 

 Various faults can potentially happen in instruments during plant operation, which can have significant 

impacts on plant reliability and availability  Furthermore, the instrument in NRs are 

undergoing aging and their performance can degrade over time leading to problems such as drift and bias. 

Monitoring and calibration of instrument performance during plant operation is highly desirable to achieve 

CBM. 

Critical process sensors and associated instrumentation in NRs are usually calibrated at each refueling outage. 

The calibrations are performed manually and involve two steps; each of which requires essentially the same 

work. The two steps are: (a) Determine if calibration is needed. This step is performed by providing the instrument 

with a series of known inputs covering the operating range of the instrument. The output of the instrument is 

recorded for each input and compared with the acceptance criteria for the instrument. (b) Calibrate if needed. If 

the instrument does not meet its acceptance criteria, it is calibrated by providing the same series of input signals 

as in step ‘a’ while adjusting the output to meet the acceptance criteria  

 Prompt FDe and FDi which may arise on sensors and instruments is a topic of increasing interest for safe and 

efficient NP operation, and reliable and fault tolerant measurement and control systems 

 

The remote access and verification of the sensors have been shown to limit the exposure of maintenance 

personnel to harsh environments while at the same time effectively and efficiently diagnosing the health and 

performance of these sensors. In addition to sensors, technologies exist in determining not only the health of 

I&C cabling that carries the signals from these sensors, but also these same cable testing techniques can be used 

in the remote evaluation of many end devices used in safety related operations as well 

The procedure for on-line calibration tests involves calculating the deviation of each instrument channel 

from the best estimate of the process parameter that the instrument is measuring  This 

deviation is updated frequently while the plant is operating and plotted as a function of time for the entire fuel 

cycle. This provides time history plots that can reveal channel drift and other anomalies. Any instrument 

channel that exceeds the allowable drift or the channel accuracy band is then scheduled for calibration during 

a refueling outage, or sooner if necessary 

 To deal with the performance degradation problems, traditional periodic instrument calibration is currently 

performed manually at a fixed time to almost all the instrumentation. Periodic manual calibration of the instruments 

is mainly the practice in the current instrument maintenance. This technique, consists of surveillance and 

adjustment James, 1997  is used for Signal Validation (SiV), and it is vital to maintain efficient a plant operation. 

 However, Periodic manual calibration has many limitations. It is costly, time consuming (it takes an enormous 

amount of time), influence negatively on the availability, require a workforce specialized in the domain and in 

some cases involve radiation exposure to test personnel. Many periodic instrumentation calibrations are made 

out of service, require the instrument to be physically removed from the system, and can cause incorrect 

calibrations due to adjustments made in non-real conditions, and loss of product due to the system shutdown 

which is sometimes non-necessary. In addition, the hands-on calibrations can wear out the instruments and 

cause premature aging and damage  In most case, the sensor is still within 

the allowed tolerances and intervention efforts were non-necessary. Operational experience shown that less 



 

 

                                                                

 
 

than 5% of sensors in a degraded condition that required intervention (Hines, Seibert, 2006). On other side, a drift 

occurring in instrument, between two consecutive time-based calibrations, may not be treated, although it is 

desirable to monitor the performance of the operation condition of devices throughout operation of the plant. 

This is referred to as calibration monitoring which can overcome the disadvantages encountered with the 

conventional method (James, 1996).  

Therefore, the nuclear industry is interested in the calibration reduction (but not total elimination) by inter-

comparison of redundant process measurements. Calibration reduction, a particular application of SeV, does not 

eliminate the need to perform instrument calibration, but lessens the effort involved  In a 

NR, calibration reduction can lower the amount of time spent in radiation areas, thereby reducing personnel 

exposure  

In addition, the nuclear industry is interested in automating the calibration of the instruments and has sponsored a 

number of research projects to determine the validity of automated calibrations  The advantage 

of automated calibrations is that they provide the opportunity to test the calibration of instrument channels on a 

continuous basis. This improves the safety and efficiency of the plant while reducing the cost of the calibrations 

and eliminating much of the personnel radiation exposure associated with conventional calibrations 

 

OLCM is the monitoring of normal process instruments during plant operation and comparing the data with 

an estimate of the process parameter that the instrument is measuring. The process parameter estimate may be 

obtained using a variety of methods. The OLCM techniques are typically performed during steady state conditions 

(i.e., constant process operating conditions). 

However, in order to verify the calibration of instruments over their entire operating range, OLM data should be 

collected at various operating conditions  An obvious benefit of calibration monitoring is 

reduced manpower requirements due to the lessened workload. gave a comparison of conventional 

calibration program and OLCM methodologies. 

OLCM techniques are designed to continuously assess the performance of certain instruments by assessing their 

mutual consistency with references. They refer to monitoring the normal output of instruments during plant 

operation and comparing the data with an estimate of the System/Process (S/P) parameter that the instrument 

is measuring to identify drift. If drift is identified, then the sensor is calibrated. For determining the best estimate 

of the process, the parameter estimate may be obtained using a variety of methods and sometimes 

complementary. These methods are: (a) simple and weighted averaging of redundant signals, (b) empirical and 

physical modeling, (c) NNs, and (d) a reference channel that is calibrated before and after each fuel cycle 

  

In Hardware Redundancy (HR), redundant physical sensors are used to measure one variable output from 

redundant sensors and can serve as references for cross-checking each other. This is the basic idea of the cross-

calibration technique  where the average of a set of redundant sensors is considered to be the 

true value of a variable being measured. Signals that fall too far away from the other redundant signals are 

excluded from the average or are weighted less than the signals that agree well with each other. With this 

method, redundant sensor outputs are monitored during process operation. A fault in a sensor can be detected 

if the sensor shows any abnormal deviation or drift with respect to the process parameter estimate (e.g., average). 

If the sensor drift is outside of prescribed limits, the sensor is re-calibrated. Otherwise, the sensor is not 

calibrated or calibrated less often. The averaging technique has been able to pass regulatory licensing 

requirements for safety-related applications and be commercially applied in the nuclear industry. This method 

is applicable to all types of process sensors; however, the best application is for calibration verification of 

pressure, level, and flow transmitters Roverso et al., 2007;  



 

 

                                                                

 
 

However, drawbacks of HR lead to the use of other methods, mainly Analytical-Based Technique (ABT) and DDT 

are more practical options. Plant monitoring systems developed based on these calibration monitoring methods 

have been implemented in a number of plants   

A redundant analytical sensor can be created by using modeling techniques used as a reference for detecting drift. 

A fundamental knowledge of the process and material properties is often required to provide reliable estimates 

of a parameter using a physical model. As such, empirical models are often preferred for parameter estimation 

for on-line tracking and calibration drift verification   

Effective managing of the aging of neutron detectors depends to some degree on the detector 

manufacturer and the strategy of the NP for verifying the performance of nuclear instrumentation systems. 

Some manufacturers recommend that detectors be replaced as often as once every 5 years; other manufacturers 

state that their neutron detectors can be used for as long as 40 years if they are in good working condition. In 

the latter case, manufacturers sometimes recommend cable testing and static and/or dynamic performance 

monitoring as a way to check that the neutron detectors are in good working condition. The response time of 

the detectors increases during the first two decades and then stabilizes. This is expected of neutron detectors as 

well as other sensors  

 In addition to the ability to check the health of the detector itself, the noise output of neutron detector can be 

examined for signs of other problems in the nuclear instrumentation circuit, such as cable and connector anomalies. 

showed the Auto-Power Spectral Density (APSD) of a neutron detector before and after the 

onset of a cable degradation problem. In this case, analyzing the APSD reveals a difference in the neutron 

detector dynamic response resulting from an increase in cable capacitance. 

CtM of neutron detectors can reveal problems in the neutron detector circuit, enabling plant personnel to 

schedule maintenance accordingly (Hashemian, 2011). 

Sensors provide the means by which operators and control regulate systems. The performance of these 

sensors such as thermocouples, thin-film RTDs, strain gages, and other resistive devices that are used in NPs for 

measurement of surface conditions of pipes, vessels, and other components should be checked. In these 

applications, the sensors are bonded to a solid surface. Years of research, testing and experience in the field of sensor 

FDi have yielded many technologies which offer financial as well as operational benefits to the nuclear industry. 

Diagnostic functions and CM must be performed based on validated process sensors. SeV is a determination 

whether a process indicator is providing a reliable reading. The process readings are monitored on a continuous 

basis. During this time period either the signals will agree or they will disagree. The incentives for performing 

SeV lie in both concerns for safety and the economic returns possible. Properly validated signals increase plant 

availability and the reliability of operator actions   

Sensor malfunction, or just de-calibration, can also occur under much less dramatic circumstances, through fouling, 

incipient, drift, response-time degradation, and aging  Two primary types of failure are addressed by 

SeV: (a) incipient (catastrophic) failure detection and (b) detection of instrument calibration drift. Many methods 

originated from the aerospace and nuclear industries have been developed to perform signal validation. Most 

techniques employ a two-stage process: (a) generation of residuals and (b) decision making based upon hard 

thresholds. The decision making is based upon various tests, including the generalized likelihood ratio (GLR), 

sequential probability ratio test (SPRT), and innovation properties (tests for whiteness, mean, covariance, chi-square, etc.), 

applied to the residuals  



 

 

                                                                

 
 

Dynamic performance is an important aspect of instruments in NPs. For sensor, response time is very 

important particularly for safety systems. It is well known that the response time of sensor such as RTDs and 

thermocouples is subject to change over time. For these and other reasons, response time of RTDs and thermocouples 

is measured periodically in NPs (Figure II.13). Response time can be defined as the time taken by the sensor output 

to reach 63.2% of its final steady-state value following a step-change in the input. Other definitions of response 

time are also used, such as “the time to reach 90% of the final output” or “the time required for the sensor 

output to go, for example, from 10 percent to 70% of its final value”.  

 

Figure II.13 - Response Time Data for a Slow and Fast RTD (Hashemian, 2009). 

The time constant of an instrument should not exceed the maximum value assumed in the safety analyses. To 

describe the response time of a sensor, a variety of terms are used, such as time constant, break frequency, or the 

time required for the sensor’s output to go from one value to another. The term break frequency is used to describe 

the response speed of a sensor in terms of a frequency, and other terms such as corner frequency, or frequency 

response are often used. However, the degradation of response time of an instrument still encountered in systems 

of plants and many factors contribute to this degradation. The response time of NP temperature sensors is 

predominantly affected by environmental conditions such as fluid FR and temperature, installation into a thermowell 

(when it is used), and degradation due to aging. Temperature variations can result in changes in sensor response 

time. For example, a temperature sensor’s response time decreases as the heat-transfer coefficient is increased 

and inherent voids in sensor insulation materials can expand or contract and cause the response time to change. 

Furthermore, vibration can cause RTDs and thermocouples to move out of their thermowell and result in an 

increase in response time. Even a very small movement can cause a large change in response time. Testing the 

response time of an instrument often requires taking it physical out of service. Unfortunately, this operation 

(off-line tests) cannot replicate the exact real operating conditions. Furthermore, it is very difficult and expensive 

to carry out these tests frequently. The transfer function of a system or instrument can be used to determine the 

dynamic response and identify the system’s response time to any input such as a step, a ramp, or a sinusoidal input. 

Signal analysis methods in both time and frequency domains can be used to extract response time from the 

measurement noises. In the, the Power Spectral Density (PSD), of the measurement noises is first obtained from 

which the time constant can be estimated as the inverse of the break frequency. For pressure transmitters, depending 

on which pressure test signal is selected, three methods are available for testing the response time: ramp test, step 

test and frequency test. There are two other methods available for in-situ testing of pressure transmitters’ response 

times: The Noise Analysis (NA) technique and the Power Interrupt (PoI) test. The NA technique is used to remotely 

measure sensor response time from the control room area while the plant is on-line. These measurements do not 

require the sensors to be disconnected from the plant instrumentation or removed from service for the tests. 

That is, the tests are passive and do not cause any disturbance to plant operation. This reduces test time and 



 

 

                                                                

 
 

helps to reduce radiation exposure of the test personnel who would otherwise have to enter the reactor 

containment to make the response-time measurements  The PoI test can only be used to test 

the response times of force-balance pressure transmitters. In any case, degradation of dynamic response can be 

diagnosed by comparing the recently computed response time with what is considered to be normal. For more 

details, the NRC Regulatory Guide 1.118, NUREG-0800, and NUREG-0809 all relate directly or indirectly to 

sensor response-time testing (Hashemian, 2005, Hashemian, 2006, Hashemian, 2009). 

The NA technique can be used for evaluating the health and reliability of NP sensors, processes, and equipment 

from data acquired while the plant is operating. For the sensor, NA provides a mean for dynamic performance 

monitoring based on monitoring the natural fluctuations that normally exist on the output. While the process 

is operating normally, the sensor’s output would have a steady-state value corresponding to the process 

indicated by the sensor. This steady-state value is often referred to as the DC value. On top of the steady-state 

value, noise-like fluctuations often exist at the outputs of a sensor (Figure II.14). Because the static and dynamic 

components of the sensor output each contain different information about the process being measured, they can 

be used for a wide range of monitoring applications. 

 

Figure II.14 - Normal output of a process sensor with illustration of the DC and AC components of the output (Hashemian, 
2011). 

In NPPs, the output fluctuations of process sensors are due to random flux, random heat transfer, turbulence, 

vibration, and other mechanical and thermal hydraulic phenomenon. The NA technique has already become 

an important diagnostic tool for sensor health analysis in NPs by differentiating between sensor degradation and 

system malfunction  Fluctuations (noise) can be extracted from the sensor output and 

analyzed to yield the sensor’s response time. It can be used for the in-situ response time testing of pressure, level, 

and flow transmitters. For temperature sensors, a number of techniques, collectively referred to as in-situ and/or on-

line testing, have been developed to verify the calibration and response time while these sensors remain installed 

in an operating process. For example, the Loop Current Step Response (LCSR) test has been developed for verifying 

the dynamic response of RTDs and thermocouples as installed in an operating process. Therefore, the LCSR 

method is the most commonly used technique because it can yield a sensor’s response time so accurately 

(Hashemian, 2005). NA has also been studied for on-line determination of prompt fractions of Self-Powered Neutron 

Detectors (SPNDs) in Canada Deuterium Uranium (CANDU) reactors. It is based on the understanding that only 



 

 

                                                                

 
 

the prompt signal of a SPND is able to follow the neutron flux fluctuation around 0.25 Hz in the reactor caused 

by reactor regulating systems . 

Furthermore, the condition of a NP can be effectively monitored by analyzing these small fluctuations in the 

process variables, such as  coefficients, vibration amplitudes, and response times, around their stationary 

value. 

The advantage of the NA technique is that it does not require that the sensor be removed from service, and 

many sensors can be tested simultaneously using a single multichannel noise data acquisition system 

 

The types of OLM applications used in NPPs are in large part determined by the sampling rates available for 

data acquisition. Static OLM applications, such as RTD cross-calibration and OLCM of pressure transmitters, 

typically require sampling rates up to 1 Hz, while dynamic OLM applications such as sensor response-time testing 

use data sampled in the 1 kHz range. Other, high-frequency OLM applications, such as measuring the vibration of 

rotating equipment and monitoring LPs, may use data sampled at up to 100 kHz. I&C sensors that measure 

temperature, pressure, level, flow, and neutron flux up to data sampling frequencies of around 1 kHz represent 

the majority of measurement devices in NPPs   

An instrument channel consists of a sensor that is located in the field, signal conversion, signal conditioning, 

and logic and trip circuitry that are located in instrument cabinets in the control room or cable spreading room 

areas of most NPs. The sensor could be a pressure, level, or flow transmitter, a RTD that is used for measurement 

of reactor coolant hot leg or cold leg temperatures, a core exit thermocouple, a neutron detector, etc. OLM can 

identify drift in a sensor such as a pressure transmitter or an entire instrument channel (except for the actuation system) 

depending on where the OLM system is connected to the instrument channel. The components of instrument 

channels beside the sensors are calibrated manually during each refueling outage by making necessary adjustments 

to ensure that the component has the desired output (steady-state output) and to determine if the channel is 

drifting beyond an acceptable limit. These components are calibrated individually or together depending on the 

instrument channel design and the plant requirements. A calibration test signal is injected into each component 

or a group of components. It should be pointed out that the calibration of some process signals such as the high 

pressure coolant injection flow in BWRs, which are normally off-scale during plant operation, cannot be tested 

on-line. Therefore, the instrument channels for these signals must continue to be calibrated manually using the 

conventional procedures. However, the number of instrument channels that cannot be tested on-line is much 

smaller than the number of instrument channels that are testable during plant operation 

Some researchers have promoted FL in the context of instrumentation FDe. Application of FL to signal 

validation appears to have been first proposed by . As they stated, fuzzy logic (FL) is useful for 

instrument FDe, as it possesses the advantage of transforming linguistic information to numerical values for 

processing and then later back to the linguistic domain . 

suggested the use of fuzzy pattern recognition for gross error detection problems as may be encountered when utilizing 

parity equations to generate residuals. investigated the use of FL to diagnose sensor and actuator 

faults in a simulated mechanical system. In particular, they evaluated residuals in an adaptive manner, and they 

used an FL technique to diagnose fault signatures from a Dedicated Observer Schemes (DOS). 

In addition, ) used FL to model and estimate process states as part of an adaptive neural-fuzzy 

inference system intended to perform instrument channel calibration verification. Other hybrid implementations of 

FL for SeV include the coupling of FL with state estimation techniques . 



 

 

                                                                

 
 

Acoustic Emission (AE) monitoring has been studied for diagnostic applications such as leakages in pressure 

boundaries  bearing damages  valve wear  and faults in rotating 

machineries . AE sensors used for the Valve Flow Monitoring are mounted on or close to the key 

valves in the plant which are to be monitored. These sensors detect the frequency components of the sound and 

convert them into electrical signals . On-line AE monitoring of valves can detect leakage and 

anomalous valve noise from sources other than leakage, and monitor the valve opening (for some types of valves) 

 Indeed, On-line AE monitoring has been used on check valves, needle valves, control valves, 

and safety relief valves . Furthermore, higher frequency AE 

sensors are used on turbulent flow or leak in the valve   

The major advantage of AE technique over others is instantaneous notification of aberrant conditions. Further, 

leak detection is not limited to leaks across the valve seat or leaks through the pressure boundary. AE monitoring 

can detect any leak that generates significant turbulence as fluid passes through an area of restricted flow 

(Rhodes, Langenberg, 2012). Finally, when used in conjunction with other techniques, AE monitoring can provide 

more complete information about the operation of the valve (e.g., position and motion of valve internals and 

estimates of FRs and leak rates)  Other techniques that can enhance AE leak detection include 

ultrasonic inspection, magnetic flux signature analysis, and external magnetic excitation methods. 

In many commercial plants, not limited to NPs, safety-related cable splices are used to provide electrical 

connections. However, the cable splices are vulnerable to the environmental stresses such as thermal, mechanical, 

and chemical factors that is unavoidable. Usually in NP, instrumentation cable and splice are installed on the tray, 

which are located at the vicinity of coolant pipes and pump motors. These stressful environments induce the 

aging of cables splices. Therefore, environmental qualification and evaluation of aging for safety-related cable 

have been performed  

Varieties of CM techniques for instrumentation and cable splices have been developed and can be categorized 

by thermal and electrical techniques. Examples of thermal CM techniques are visual inspection and Infrared 

Thermography (IRT), which are inexpensive and easy to perform. However, the applications of thermal CM 

techniques are limited to cables physically accessible for inspection, which may not be available for real world 

 On the other hand, a dc high voltage testing, a dielectric loss/power factor measurement, and a 

Time-Domain Reflectometry (TDR) are electrical CM techniques used in power generation plants. The dc high voltage 

testing may induce damages on insulation materials of cables due to the dc high voltage for testing and since it 

cannot locate the bad splices in cables.  

 TDR technique is based on the reflection phenomenon of electromagnetic wave at the impedance discontinuity 

in cables  If an incident signal, such as a step 

signal, is sent through cable, the incident signal is reflected back to the measurement point at any impedance 

discontinuity. The reflected signal will show any changes in impedance along the cable, including at the end of 

the cable. If the TDR is trended, problems that may develop along the cable or at the end device can be identified 

and located. Therefore, theoretically, TDR can detect and locate defects from the time delay between the 

incident and reflected signals. TDR is used to locate problems along a cable, in a connector, or at an end device by 

sending a test signal through the conductors in the cable and measuring its reflection. The TDR technique has 

also served the Pn industry in testing instrumentation circuits, motors, heater coils, and a variety of other components 

  



 

 

                                                                

 
 

However, applications of TDR is susceptible to ambient noise, so high level of training or experiences are 

required to analyze the states of cable splices from TDR measurements in real world 

 Another drawback of TDR is that range resolution and average transmitted power 

related with the Signal to Noise Ratio (SNR) of receiver depend on the time duration of the incident signal 

 Thus, the tradeoff relation between range resolution and average transmitted power exists.  

A compressed pulse such as chirp signal and the matched filter receiver are used to resolve the limitations of TDR 

by improving both the range resolution and the average transmitted power in reflectometry . 

Furthermore, Time–Frequency Domain Reflectometry (TFDR) uses a Gaussian enveloped linear chirp signal, and 

a normalized time–frequency cross correlation to improve the range resolution and the average transmitted 

power simultaneously . 

proposed the linear chirp reflectometry with chirp stretching processing To locate and diagnose the 

splice and varieties of faults in the instrumentation cables. The chirp stretching processing converts the time delay to the 

instantaneous beat angular frequency, and it also converts the splice localization problem to the time-varying 

spectrum estimation problem. 

The combination of TDR, Inductance–capacitance–resistance (LCR), and Loop Current Step Response (LCSR) tests 

has proved very effective in separating cable problems from sensor problems in RTDs, thermocouples, and 

strain gauges. As for other NP sensors such as neutron detectors, the combination of TDR, LCR and the NA 

technique are used to verify the integrity of the cables and performance of the end device, in this case, the 

neutron detector  

Normal operation of NPs depends on satisfactory operation of many components, particularly electrical 

machines to drive fans, chillers, pumps, diesel generators, and compressors. Electrical machinery is the powerhouse 

of the modern industry and operational interruptions of these equipment may lead to economic losses. 

Rotational equipment, rotating electric motors, electric motors, or simply motors are a workhorse which play 

a pivotal role are widely used in most industries (e.g., oil refinery, pump oil, steel mill, mine, compressor and 

power plants, and they are critical components (Goutam, Sathish, 2018; Sangeetha, Hemamalini, 2019).  

An electrical machine converts input electrical power to output mechanical power and the difference between 

them is considered as losses  Most electric motors operate through the interaction between 

the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied 

on the motor's shaft. Electric motors can be powered by DC sources, such as from batteries, motor vehicles or 

rectifiers, or by AC. An electric generator is mechanically identical to an electric motor, but operates with a 

reversed flow of power, converting mechanical energy into electrical energy.  

Electric motors may be classified by considerations such as power source type, internal construction, 

application and type of motion output. In addition to AC versus DC types (Figure II.15), motors may 

be brushed or brushless, may be of various phase (see single-phase, two-phase, or three-phase), and may be either air-

cooled or liquid-cooled.  

A DC motor is any of a class of rotary electric motors that converts DC electrical energy into mechanical 

energy. DC motors are easy to control and a speed of a DC motor can be controlled. DC motors are used in 

propulsion of electric vehicles (for example trams), hoists and elevators. Small DC motors are used in various 

tools such as: printers, hard disks and CD/DVD ROM drives  

An AC motor is electric motor driven by an AC. The AC motor commonly consists of two basic parts, an 

outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an 

inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field 

may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings. The main types 

of AC motors are synchronous motors, asynchronous motors known also as Induction Motors (IMs) and linear (Figure 

https://en.wikipedia.org/wiki/Electrical_motor
https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/Stator
https://en.wikipedia.org/wiki/Rotating_magnetic_field
https://en.wikipedia.org/wiki/Rotor_(electric)


 

 

                                                                

 
 

II.15). The IM always relies on a small difference in speed between the stator rotating magnetic field and the 

rotor shaft speed called slip to induce rotor current in the rotor AC winding. The synchronous motor produces its 

rated torque at exactly synchronous speed. The motor which produces the linear force instead of the rotational 

force is known as a linear motor. This motor has unrolled rotor and stator. Such type of motor is used on sliding 

doors and in actuators. IMs (Figure II.16) are most commonly used prime mover among electrical motors. The 

single-phase IM is one of the types of IM  simple in construction, inexpensive and reliable. 

The three phase IMs are most widely used as the prime movers and the main electromechanical energy 

conversion device in all industrial applications  

 

Figure II.15 – Types of electric motors.  

 

 

Figure II.16. Structure of IM (Irfan et al., 2017).  

Under Normal Operating Conditions (NOCs), electrical machines might fail because of wearing down 

associated with their operation  Many parts of the motor (rotor shaft, bearings, insulation, 

stator and rotor circuits) wear out depending on operating stress and operation time  Various 

faults and malfunctions can occur in electrical machines such as unbalance, excessive radial load, rotor-to-

stator rubbing, fluid induced vibrations, and loose stationary and rotating parts, coupled torsional-lateral 

vibration excitation, and rotor cracking  Majority of faults are bearing and winding related. 

The winding failure is considered serious. It increases stress on the winding insulation, which has a potential to 

completely damage the motor, if left untreated. Inter turn fault is also most commonly observed faults in the 



 

 

                                                                

 
 

motors and is considered the most severe. It can lead to the failure of complete phase and can even cause 

accidents, if left undetected or untreated  Several surveys 

have found the most common failure mechanisms are classified according to the main 

components of a machine: faults related to stator, rotor, bearings and eccentricity or any combination of these 

faults. Almost 80% of common rotating equipment problems are related to misalignment and unbalance 

 In addition, the other most common rotor faults in an induction machine are broken 

bars, rotor eccentricity and winding faults   

The major faults of electrical machines can broadly be classified by the following 

: (a) Static and/or dynamic air-gap irregularities, (b) Broken rotor bar or cracked rotor end-rings, (c) Stator 

faults (opening or shorting of one coil or more of a stator phase winding), (d) Abnormal connection of the stator 

windings, (e) Bent shaft (akin to dynamic eccentricity) which can result in a rub between the rotor and stator, 

causing serious damage to stator core and windings; (d) Bearing and gearbox failures. 

The reasons why machines are subjected to degradation and fail during operation in industry are due to 

external, internal conditions, operating stress and operation time (Figure II.17). External conditions (Figure II.18a) are 

mechanical (e.g., load variation, overload, assembly wrong), electrical (e.g., transitory and voltage fluctuation, 

connection and installation wrong, voltage imbalance), environmental (moisture, thermal stresses, pollution) 

which lead to several faults in different parts of the machine. Internal faults (Figure II.18b) can be classified with 

reference to their origin. They can be mechanical (e.g., Sheet and coils displacement, bearing fault, dynamic, 

static eccentricity) or electrical (insulation fault, break of rotor bars, magnetic circuit fault) 

  

 

Figure II.17. Faults origin in motors. 

reported some commonly reasons why electric motors fail in industry as follows : (a) Wrong-

rated power, voltage and current; (b) Mistakes during repairs; (c) Unstable supply voltage or current source; (d) 

Post the standard lifetime; (e) Overload or unbalanced load; (f) Electrical stress from fast switching inverters or 

unstable ground; (g) Residual stress from manufacturing; (h) Harsh application environment. 

Internal faults can be also classified with reference to their location: stator or rotor (Figure II.19). Several studies 

as  are agree in classify, the rotor and stator failures as a combination of 

several forces acting on each of these components.  

In the Table II.2, a classification of these factors is presented  Stator core faults are caused by 

loosely core, sticking core laminations (failure of core insulating layer) and rotor shock. classified 

faults in permanent magnet synchronous motor (PMSM) into electric, magnetic and mechanical faults. The most 

common mechanical fault in rotor is eccentricity (static and dynamic), other mechanical faults include rotor rubbing 

and stator and rotor fatigue. Winding faults such as inter-turn, coil-to-coil, phase-to-phase and winding-to-earth 

are the origins of electric faults in PMSMs  

Common machine faults in rotor according to are machine faults in rotor: (a) Bearing; 

(b) failure; (c) Rotor broken bars; (d) Rotor body failure; (e) Bearing misalignment; (f) Rotor misalignment; (g) 

Bearing loss of lubrication; and (h) Rotor mechanical or thermal unbalanced. On the other side, common faults 

become apparent in stator are: (a) Frame vibration; (b) Stator earth faults; (c) Damage of insulation; (d) Stator 

turn-to-turn faults; (e) Stator phase- to- phase faults; (f) Displacement of conductors; and (g) Failure of electrical 

connections (Mortazavizadeh, Mousavi, 2014). 



 

 

                                                                

 
 

According to some survey reports, the percentages of failure occurrence statistics of various components in IMs 

are: bearing (41%) Sangeetha, Hemamalini, 2019  winding (37%), rotor faults (10%) Skowron et al., 2019b) and others 

(12%) (Figure II.20). However, it is known that failures depend on the type 

of electrical machine, working conditions, where are located, as well as the duty cycle to which they are subject 

(

 

(a) External (b) Internal 

Figure II.18. Classification of motor fault sources (Bhowmik et al., 2013). 

 

Figure II.19 - Types of failures in electrical machines according to their location; stator or rotor (Irfan et al., 2017). 

The various environmental, thermal and load constraints to which the machines are subjected, ultimately 

reduce the efficiency of the engine and later lead to failure. Any degraded part and fault in these machines, may 

yield a complete shutdown of the equipment during the operation or an unexpected interruption in the 

industrial plant with consequences in costs, product quality, and safety. Furthermore, failure of motor in critical 

applications can lead to high production loss and in some cases can results in fatal accidents. Failures in 



 

 

                                                                

 
 

machinery, in most cases, do not appear untimely manner but rather develop gradually along the time instead 

as a sudden failure. This makes possible to detect a failure during the earlier stages before its consequences 

become catastrophic. Repair or replacement of a damaged motor costs time and money. Often it is better to 

repair the motor than replace it, particularly, if it is an expensive. Faults in IMs lead to poor efficiency i.e., more 

energy consumption . 

 

Stator 
Stress thermal (Aging, overload, work cycles)  

Stress electric (Insulation, corona effect, transient)  

Rotor 

Stress thermal 

Stress electromagnetic 

Stress residual 

Stress dynamic 

Stress mechanical 

Stress Environmental 

Table II.2 - Classification of source faults with reference to their location: stator or rotor. 

 

Figure II.20 - Fault rates in the IM (Çalis et al., 2013). 

Machine monitoring play an important and essential role in industrial production. Therefore, it is 

necessary and highly desirable to monitor and detect equipment faults properly, as early as possible before they 

become inoperable, and to improve availability and reliability. The machine parameters (current, voltage, winding 

temperatures, etc.) should be monitored in accordance with manufacturer’s recommendations, industry standards 

and practices, and plant. Rotating machines CM and their FDi are essential and can be economically justified 

 CM plays a very important role in the production security and the product quality. The 

demand for FDe and FDi of rotating machines has increased the efforts to develop new analysis techniques 

 CM have been studied in the recent decade to prevent costly interruptions due to motor 

faults and recognize faulty conditions as soon as possible . 

CM of machines is the process of monitoring various operating parameters of a machine or set of machines to 

identify changes which may be indicative of a developing fault. CM provides a way to ensure equipment 

reliability in addition to continuous inspections (Ronny, 2017).  

The main advantage of this OLM is that a machine must not be taken out of service. As a result, the normal 

operation condition can be evaluated while the motor is running. Also predictive maintenance is easier because 

the machine is under constant surveillance so an incipient failure can be detected immediately and actions can 

be programmed to avoid larger process downtimes. Furthermore, OLM allows maintenance to be scheduled, 



 

 

                                                                

 
 

and can significantly reduce maintenance costs and the risk of unexpected failures to allow early detection to 

avoid unwanted breakdowns, downtime and other consequences of potentially catastrophic damage. Also, 

OLM can increase the lifetime of machines when the faults are diagnosed at the right time 

 Hence, CM of machines is very important factors in saving cost and energy conservation in industries 

 A disadvantage is that OLM techniques often require installation of additional equipment 

which must be installed on each machine. Compared to off-line tests, the on-line tests exhibit more difficulty or 

even impossible to detect some failures in processes  

 To determine the conditions of each part of motor, various testing and monitoring methods have been 

developed  In the literature, FDi methods have been developed 

for the FDe and FDi of a DC motor  IM 

and synchronous motor  Various monitoring techniques have been developed, such as dynamics, 

industrial noise and vibration, tribology and non-destructive techniques of structures and rotating machinery. 

Gave different methods to test and monitor of failures to IM to obtained a comparison of 

advantages and disadvantages for all FDi. aims to provide a comparative study of vibration, 

acoustic pressure and stator current analysis capabilities for a gear tooth wear FDi. Descriptions of FDi 

techniques of machines can be found in the recent literature 

.  

Techniques of monitoring of electrical machines are classified in several manners such as On-line/ off-line; 

Invasive and non-invasive; and Electrical, Mechanical, Chemical, Thermal, etc. Furthermore, these techniques can be 

classified into time domain, frequency domain, time-frequency domain  NN 

and MBTs .  

Related works and literature reviews about fault and CM of any machineries were classified into two categories: 

off-line and OLM through a proper data acquisition and efficient signal processing (SP) unit 

 off-line methods are typically more direct and accurate. The user does not 

need to be an expert in machinery but only have basic knowledge for testing. discussed the 

use of on-line current and voltage based advance FDi technique and off-line partial discharge test to diagnose 

winding fault. Partial discharge test is an off-line test that requires motor shutdown which can leads to production 

loss.  

The detection techniques of electrical machine failures can be classified in invasive or destructive and non-invasive 

or non-destructive techniques (Aroui et al., 2007; Merizalde et al., 2017; Irfan, 2019). 

Non-invasive methods allow to surpass the invasive methods. They are the most preferable one because they are 

simple, precise and economical to detect and diagnose a variety of failure without disintegrating electrical 

machines, stopping operations, or putting people at risk. As well, these are suitable for OLM of the machine. 

More useful formation is obtained from the stator current, vibration, magnetic field temperature and noise 

signal. The non-invasive techniques involved in mathematical analysis of these signals, to find out the failure of 

the electric motor.  

etc. There are several indicators or signatures for faulty conditions of rotating electrical machines help us to 

distinguish machine conditions. After fault signature is obtained, it can be used for FDi, either by experienced 

engineer/technician or using some of techniques from the field of AI.  

For the purpose of CM of electrical machines, many methods have been developed and may involve several 

different types of fields of science and technology. The most applied techniques of CM that are widely practiced 

with electrical machines are those involving Machine Vibration Analysis (MVA) ,  

Motor Current Signal Analysis 



 

 

                                                                

 
 

Motor-Current Signature Analysis (MCSA) , thermal and IRT 

, analysis of ultrasonic and acoustic signals , analysis 

of magnetic field or flux signals  and lubrication analysis 

.

These techniques have been commonly used as an effective tool for detecting various machinery faults in several 

researches and all of them are attempting to offer a reliable FDi to protect the machine life and to ensure the 

profit of both manufacturers and customers. 

In an ISO working party, it was identified that the main techniques for machine monitoring are: vibration 

measurements, electrical measurements, process and performance measurement and non-destructive testing 

.  

The selection of the FDi signal and the method of searching for symptoms of damage related to the SP algorithm 

used, have a direct impact on the speed of the detection process.CM methods for machinery can be analyzed in 

four main groups: electrical and magnetic, mechanical, chemical and thermal behavior of the motor under steady-state 

and fault conditions as it is illustrated by Figure II.21  In each group, there are several 

symptoms that faulty condition in machines can be detected by them. (a) First, electrical methods are based on 

electrical symptoms like current signature, voltage, flux, power and so on. In most cases, fault is detected by 

comparison between electrical signals in healthy and unknown conditions. (b) The most common mechanical 

methods are based on mechanical symptoms like torque, vibration and so on. (c) Chemical indicators are assigned to 

some chemical parameters of materials like oil characteristic or wear and debris in oil analysis. (d) In last group, 

thermal methods for rotating electrical machines has the aspect of measuring the temperature 

 

Figure II.21 - Classification of FM methods (Mortazavizadeh, Mousavi, 2014). 

Figure II.22 shows a block diagram of the general approach about on-line CM. Starting from the left, common 

Machine faults are shown.  

 

Figure II.22 - General approach of on-line CM (Hurtado et al., 2015). 



 

 

                                                                

 
 

The next block show different types of sensors can be used to measure signals to detect these faults. All FDe 

techniques require prior knowledge of the machine behavior by measuring the appropriate data in order to 

distinguish normal operation conditions from failure conditions. Various SP techniques can be applied to these 

sensor signals to extract particular features which are sensitive to the presence of faults. Finally, in the FDe 

stage, a decision needs to be made as to whether a fault exists or not (  

Most popular of the Electrical Signature Analysis (ESA) for CM of electrical machines are: MCSA 

 Voltage Signature Analysis (VSA), Extended Park’s Vector Approach (EPVA) and Instantaneous Power 

Signature Analysis (IPSA) . ESA also includes Motor Circuit Analysis (MCA) 

involving analysis of resistance, impedance, inductance, phase angle, current/frequency response and insulation to ground 

faults. Other methods can be found in literature such as leakage currents, high frequency impedance/turn to turn 

capacitance, motor power monitoring and partial discharge monitoring. Leakage currents are a non-invasive monitoring 

method based up on measurement of the differential leakage of currents through the ground conductor 

. This method is useful to find out the condition of the insulation system allowing the calculation of 

an equivalent capacitance between phase to ground and phase to phase as well as a dissipation factor. 

A non-invasive monitoring system using high-frequency response of the motor is presented by ; 

 This system is capable of perceiving the deterioration of turn-to-turn 

insulation by detecting small changes in capacitance between each turn of stator winding. This method shows 

that when the turn to turn capacitance of the stator winding changes, the impedance spectrum also changes. To 

determine the status of insulation, the impedance response is compared to a response recorded after that the 

motor has been manufactured or the dissipated power through insulation is calculated and compared against a 

target value, which can be determined by historical data of similar motors (Hurtado et al., 2015).  

 Motor Power Signature Analysis (PSA) is focused on the detection of double-slip frequencies present in the 

electric input power spectrum similar to MCSA. These harmonics are evaluated with 

respect to the average power (DC component), thus obtaining some fault severity factors. In addition, this 

method needs to acquire both currents and voltages. Also the dependence on the drive inertia is another 

limitation of this fault indicator. tried to detect rotor broken bar by using motor PSA 

technique. presented a technique, based on the TFA of the current supplying the motor, for 

estimating speed and slip of the IM from the fluctuation of amplitude of the main current harmonic.  

By using Partial Discharge Analyzer (PDA), sensors placed within the winding or at the winding terminals, stator 

winding partial discharge pulses will separate from electrical interference (usually harmless) based on pulse 

arrival time or pulse shape and easily can be detected  Partial discharge is a symptom of many 

stator winding insulation failure mechanisms. reviews all types of partial discharge 

measurement methods used in rotating machines. discussed the use of on-line current and 

voltage based advance FDi technique and off-line partial discharge test to diagnose winding fault. Partial discharge 

test is an off-line test that requires motor shutdown which can leads to production loss.  

Stator current is the signal most often used in the FDi of winding failures, mainly due to the measurement 

simplicity  Concept of MCSA originates from early 1970s and was first proposed for use 

in NPPs for inaccessible motors and motors placed in hazardous areas . MCSA 

 is an interesting non-invasive monitoring technique, rapidly gaining acceptance in industry today and have 

high recognition efficiency. MCSA is a method from wider field of ESA , useful for identify 

failures not only in electrical machines, but also in generators, power transformers as well as in other electric equipment. 

MCSA is the technique used to analyze and monitor the trend of dynamic energized systems. MCSA is 



 

 

                                                                

 
 

monitoring stator current (more precisely supply current) of the motor. In ideal case, motor current should be 

pure sinusoidal wave. In reality in motor current many harmonics are present. Developing motor faults have 

its counterparts in waveform and harmonic content of the motor supply current. In operation, motor fault 

modifies harmonic content of the supply. Single stator current monitoring system is commonly used 

(monitoring only one of the three phases of the motor supply current) (Figure II.23)   

 

Figure II.23 - Stator current monitoring system. 

Various mechanical and electrical faults can cause anomalies in the spectrum of stator current. If a short 

circuit occurs on some stator windings, either between windings or turns of the same phase or between different 

phase windings, the configuration of the rotating magneto-motive force is affected. As a consequence, harmonic 

components of the stator currents will also be affected on their amplitudes.  

On the other side, the amplitude variation of harmonic components is affected not only by the fault but also by 

the load on the motor. So it is convenient to perform comparisons under similar loads. 

By analyzing the spectrum of the motor current, MCSA has become an important FDi tool for detecting IM 

faults such as broken rotator bar, bearing damage, misalignment, and air gap eccentricity ; 

.  

In the literature, FDi techniques based on the analysis of defect signatures in electric currents were developed 

 In  have been compared different FDi methods like 

three phase current vector, the instantaneous torque, and the outer magnetic field. Finally, it’s declared that 

MCSA can be the best method for diagnosis the rotor faults. investigated and detected 

faults under variable loading and speed conditions by studying the MCSA using a novel developed parallel 

technique based on the Discrete Wavelet Transform (DWT).  

MCSA can be applied everywhere in industry where IMs are used enabling non-intrusive analysis of motor 

supply current. MCSA has high recognition efficiency and is one of the most popular approaches since are 

performed on-line without interrupting production with motor running under the load at NOCs . It 

has been proven that MCSA provides the information to diagnose accurately diverse fault in stator and bearings 

and it is a way for FDe in permanent magnet motor for an elevator application  MCSA can be 

used as predictive maintenance tool for detecting common motor faults at early stage. Furthermore, MCSA 

provides sensorless diagnosis of rotor and bearing problems and an electric signal is easy to process, because it 

is not so mixed together. Therefore, the use of MCSA prevent expensive catastrophic failures, production 

outages and extend motor lifetime. However, recognition of motor current fault signatures requires from user 

considerable degree of expertise and experience. MCSA constitutes a complement and powerful addition for 

FDi to MVA and thermal monitoring. MVA has an inherent limitations in 

detecting earlier electrical problems such as air-gap eccentricity, short circuits on stator winding´s turn to turn or rotor 

broken bars . 



 

 

                                                                

 
 

However, its advantages, MCSA present some drawbacks. it’s not so effective for applications where the load 

constantly changes  The prior MCSA techniques assume stationary and high SNR 

for signal. The nonstationary of stator current is accommodated by the commonly used windowing techniques 

. Furthermore, current signal can be used only for limited faulty states such as: shorted windings, 

broken bars, faulty ring of squirrel-cage . Access to the electric signal is 

not so easy (comparing with acoustic signals). Because of the proximity of main signal frequency to produce 

components and sidebands, broken bar detection may be difficult by MCSA method . 

 There are several mechanical symptoms for faulty condition of electrical machine, such as: vibration, acoustic 

noise, torque and so on. Vibration and acoustic noise occurs due to rotor eccentricity which may involve many 

different factors, including: fluctuation in loads; damaged bearings; broken rotor bar and improper mounting of the 

machine . When a failure begins to occur on a machine, vibration and levels of emission 

acoustic increase . 

A severe mechanical problem in any component influences necessarily the electric machine through load and 

shaft speed. Bearing faults can introduce particular eccentricities and load torque oscillations. These oscillations 

can be caused by load unbalance, shaft misalignment, a broken ball in a bearing and gearbox fault 

 have examined the detection of mechanical fault-related load torque oscillations in IMs 

using a stator current monitoring. The torque estimation is done using multiple regression method by extracting 

the energy possessed in the processed acoustic signal and the faults are diagnosed precisely 

 

Vibration signals carry a great amount of information about the equipment condition. Techniques based 

on the vibration analysis are considered as vital and very common used to detect anomalies 

 in electrical machines. Vibration monitoring has been used routinely in NPs. For example, 

bearing faults in a reactor coolant pump can lead to high vibration that can cause a reactor trip. Therefore, 

vibration monitoring provides a way to monitor the equipment in NP   

Vibrations on an equipment appear as a result of periodic forces acting between the moving parts (

 The vibration signal is the oscillatory response of a mechanical system that may be representative of its 

free and natural dynamic behavior which can be excited by external sources. This behavior will be changed in 

case of any kind of mechanical abnormality in the electromechanical system  Vibration signal 

is characterized by (a) amplitude which helps in detecting the severity of the fault condition or failure; (b) 

frequency which helps in indicating the cause of the failure; and (c) phase which helps in determining the cause 

of the fault. Vibration amplitude can be measured in terms of displacement, velocity, acceleration. Phase indicates 

how a machine is moving to a reference of its part 

Vibration signal analysis is used in a general way for FDi of mechanical part of an equipment. In many cases, 

the overall vibration level of the machine is sufficient to diagnose mechanical failures  but 

in some cases this is not an efficient method Mortazavizadeh, Mousavi, 2014). 

There are many mechanical problems associated with vibrations and common problems are: unbalance of rotating 

parts, eccentric components, misalignment, bent shafts, component looseness, damaged gears, worn drive belts 

and defective bearings . The vibrations of a gear are mainly produced by the shock between the teeth 

of the two wheels. Meanwhile, vibration causes periodic constraints in machine parts, which lead to fatigue, 

wear or damage . Any machine faults are accompanying by abnormal vibrations 

(amplitudes and/or frequencies). If a machine is well designed, and without failure, the vibration response 

should be reduced. When the failure begins to occur, the dynamic forces operating on the machine varies, and 

consequently its vibrational response also varies  Therefore, the vibration level is a 



 

 

                                                                

 
 

significant parameter carrying information characterizing the operating state of some mechanical parts of the 

machine. The increase of these vibration is an indicative of the degradation state of machines 

 Therefore, a motor considered as an electro mechanical device, its mechanical faults is easily detectable 

by vibration . 

MVA can be classified into two types: deterministic and random. The deterministic vibrations produce a cyclic 

vibration response and they can be defined by mathematical equations expressing the evolution over time. On 

the other hand, random vibrations can only be analyzed by statistical means. (   

Many articles described techniques based on vibration analysis are used to detect and diagnose faults 

. have used the vibration 

measurements for FId in rotating machinery. illustrated how eccentricity faults can be 

identified from vibration analysis using CM techniques. showed that the electromagnetic 

force is the most sensitive indicator of air gap eccentricity. Therefore, identifiable signatures should be found in 

the vibration pattern of rotating electrical machines. The only drawback of this indicator is its low accessibility.  

Many techniques have been reported for FDi based on vibration signals, and they aim at finding some 

efficient fault features from the vibration signals  With the rapid development of SP 

techniques, it has become possible to extract useful information from vibration data  The 

first possible observation of a vibration signal is the temporal representation  Temporal 

representation of the vibration signal defines several indicators, such as peak value, peak to peak value, root mean 

square value, kurtosis, and crest factor . Features in time domain, such as standard 

deviation of vibration signals are also frequently used for vibration monitoring . Spectral 

Analysis (SA) of vibration signals is a common tool for vibration monitoring. It allows to identify the different 

frequencies of the original signal. The spectrum of a vibration signal can be trended and compared with fault-

free baseline measurements to detect any developing faults  

The spectrum of the vibration signal is usually given in sampling time. When a nonstationary signal is 

transformed into the frequency domain, most of the information about the transient components of the signal 

will be lost , hence, a time-frequency methods has been proposed in .  

In the field of machinery FM, time-frequency methods are mostly used in MVA and MCSA 

 There are several TFA methods, such as the Short-Time Fourier Transform (STFT), Wavelet 

Analysis (WA), and the Wigner-Ville Distribution (WVD), which may be used for CM of rotating machinery in 

transient and unsteady operating conditions. Those time-frequency techniques have been applied to FDi and 

CM in practical plant machinery . Also Hilbert transform and Zhao–Atlas–

Marks distribution in  applied to FDi of motors in nonstationary conditions but this 

method is not as common as prior methods. WA has been used widely in the FDi of rolling bearings, gearbox 

and compressors. This technique also has been used for feature extraction and noise cancellation of the various 

signals .  

Similarly to the analysis of electric currents, methods based on the vibration analysis have high recognition 

efficiency. Advantages FDi techniques based on vibration are inexpensive vibration sensor, immediate 

measurement of the vibration signal, it is possible to analyze electrical and mechanical faults etc., and easy 

access to vibration signal. Indeed, vibration analysis is generally capable of detecting more kinds of faults 

compared to other techniques. It also has advantages as a non-destructive, clean, relatively simple and cost-

effective technique. In spite of wide use of vibration measurement for FDi of different types of machinery faults, 

the drawbacks of vibration analysis are the error in measurement due to improper mounting 

of sensors because they should be very close to the motor  Furthermore, sometimes, the 

vibration measurements, which represent in fact some parts of the machine, are difficult to read due to the 

nature of the vibration signal and background noise due to external excitation motion, inaccessibility in 



 

 

                                                                

 
 

mounting the vibration transducer and the sensitivity to the installation position 

The most of rotating electrical machines generate acoustic noise signals  Measuring and 

analyzing the acoustic noise spectrum is another method of CM in rotating electrical 

machines. AE is the elastic energy released by materials when they undergo deformation  This 

rapid energy release causes stress waves that radiate from the source and are detected and monitored by sensors 

placed on material surfaces. AE anlysisis a non-destructive testing technique used to monitor rotating machinery 

vibration. Acoustic emission-based CM was described in the article . The American Society 

for Testing and Materials (ASTM) defines AE as “the class of phenomena whereby transient stress/displacement 

waves are generated by the rapid release of energy from localized sources within a material, or the transient 

waves so generated” . For a fault that has occurred in an machine, the acquired acoustic signals 

have both oscillatory and non-oscillatory components and are distinct for different faults in rotating machines 

 

Acoustic analysis has gained interest in CM and FDi in the recent past. The acoustic emission is used for FDe 

as single phasing, bearing cage damage and broken rotor bars   

For example, defects in the roller element bearings cause particular frequencies that can be detected in acoustic 

noise spectrum. Acoustic noise emitted from air gap can be an indicator of probably eccentricity in IM 

  

The fault components in the processed acoustic signal changes with both amplitude and time in an 

unpredictable way. When the oscillations in signals are small, frequency domain method like Fourier analysis 

can be applied, compromising the accuracy in FDi. However, for accurate analysis and to identify the fault 

related frequency components the acoustic signals should be analyzed in time-frequency domain 

 

examined whether acoustic signal can be used effectively to detect the various local faults in 

gearboxes using the smoothed Pseudo Winger-Ville Distribution (PWVD). In , an automated 

approach to degradation analysis is proposed that uses the acoustic noise signal from a rotating machine to 

determine the remaining useful life of the machines. In  the author presented a technique of 

recognition of acoustic signals of the DC motor. described an early FDi technique of single-

phase IM based on acoustic signals. The authors measured and analyzed following states of the motor: healthy 

single-phase IM, single-phase IM with faulty bearing, single-phase IM with faulty bearing and shorted coils of 

auxiliary winding.  

presented a description of bearing, stator and rotor FDi methods of a single-phase IM by 

using acoustic signals. FDi of stator faults of the single-phase IM using acoustic signals was presented 

. In , FDe in a three-phase IM is done by estimating the torque from 

the acoustic signals released by the machine. FDi of acoustic signals of loaded synchronous motor was also 

described . Automatic bearing Fault Localization (FLo) using vibration and acoustic signals was 

analyzed in the literature . Analysis of acoustic emission signal for bearing fault was also 

presented . 

There are some advantages of AE such as easy access to acoustic signal, inexpensive microphone, 

possibility to analyze electrical and mechanical faults (shorted windings, broken bars, bearings, rotor shaft, etc.) 

. Furthermore, measurement of acoustic signals is immediate and non-invasive. 



 

 

                                                                

 
 

However, the CM based on acoustic pressure measurement has received less attention probably due to industrial 

environments embedded noise in the acoustic signal. The application of the acoustic measurement in a noisy 

environment like a plant is not so efficient Another disadvantage of acoustic 

based FDi techniques is the lack of changes in the acoustic signal for some types of electrical equipment 

(Glowacz, 2019). 

 The temperature rise in IM can be due to the failure of cooling system. Indeed, a blockage or failure of 

the cooling system stops forced convection and generates excessive heat which ultimately reduces motor 

efficiency and leads to increase in the motor surface temperature, increases stator temperature, and can lead to 

failure of winding insulation. As a rule that states, with every 10°C rise in temperature leads to reduction of 

insulation life to half . In addition, inter turn fault leads to increase in motor stator 

temperature due to over current. The failure of cooling system commonly arises due to accumulation of dirt, 

blockage of air passage, damage or loose rad fan and improper clearance while installation . 

Therefore, it is essential to monitor machine temperature and cooling system blockage or failure along the time 

by using appropriate methods at earlier stages before a major breakdown may occur . Indeed, 

cooling of IM improves the life of winding insulation. Thermal images are very useful in detecting incipient fault 

and also deterioration in IMs caused by overheating in stator windings  Furthermore, 

vibration and current monitoring based techniques are found to be not suitable for monitoring and FDi of cooling 

system failure of IM   

There are three main approaches for temperature measurement in electrical machines: (a) Measuring local 

point temperatures by Embedded Temperature Detectors (ETDs) or RTD; (b) Using analysis of thermal images to 

monitor the temperature of the perceived hottest spot in the machine; (c) Measuring distributed temperatures 

of the machine or bulk temperatures of the coolant fluid . Furthermore, temperature can be 

monitored internally of the motor by integration of temperature sensors within the stator, the stator core, the 

frame, or even might be part of the cooling system. Different types of temperature sensors such as RTD or 

thermocouple detectors can be used. These procedures can be used by maintenance personnel in many machines 

to draw conclusions about the coolant and current condition of insulation, and the machine shuts down if it exceeds 

a certain temperature . 

showed that failure of the cooling system not only leads to rise of the motor stator 

temperature but also increases the fan cowing surface temperature. presented a 

methodology based on thermographic image segmentation for detecting broken bar, bearing, misalignment, 

mechanical and voltage unbalance faults in IMs, and the repercussion of these faults along the kinematic 

channel.  described a simplified thermal model besides thermal images for FDi of open winding 

fault in DC motors, during manufacturing. In thermal images are used for FDi of stator core fault 

in IMs.  used thermal images for FDi of different faulty conditions such 

as misalignment, mass-unbalance and bearing-fault. 

 The rise in the motor surface temperature can be detected and diagnosed by thermographic inspection and 

some literatures addressed this issue  IRT is defined as an acquisition surface 

temperature pattern by scanning the Infrared (IR) emissions from the surface using thermal imaging devices in 

ISO standard. IRT is an on-line and non-contact type CM technique , which has been 

used widely for inspection of electrical equipment and transformers. Therefore, IRT is non-invasive inspection 

technology which makes it a valuable tool to assist FDi. Improvements in IR technology by new generation of 



 

 

                                                                

 
 

IRT cameras and better capability of image processing algorithms have led to great strides in practical 

applications. IRT cameras detect radiation in the IR range of the electromagnetic spectrum and produce images 

of these radiations. The amount of IR radiation emitted by an object increases with temperature; therefore, 

thermography allows one to see temperature profile. As a result, in health monitoring motors, the amount of 

radiation on the surface of motor body can reflect its operating condition and inside thermal condition 

  

proposed an on-line and non-invasive technique that uses IRT, in order to detect the presence 

of inter-turn fault in IM drive. proposed a thermal model and an IR monitoring test method 

for field winding FDe during manufacturing of DC machines. In  an algorithm based on the 

features extracted from IR images taken from the hottest region of the motor surface, is proposed to detect inter-

turn short circuit faults in the stator windings of an IM. have focused on monitoring of thermal 

changes of these two regions in IM by using IRT technique under load and no load operating condition, which 

helps in detecting the failure of the cooling system at early stages of blockage. implemented 

self-organizing map for machine FDi such as outer and inner race defects of rolling element bearing, unbalance, 

misalignment and looseness based on IR images. In  the authors proposed a novel expert 

algorithm based on IRT for on-line diagnosing of inter-turn short circuit fault in stator windings of IMs. 

proposed an algorithm for automatic inter turn FDe in IMs and to estimate its severity level based on 

its IRT images. 

Thermal monitoring of cooling system failure of IM is found to be very effective and 

the analysis of thermal images is also very efficient for FDe However temperature 

estimation based on thermal model is flexible and accurate, but it can’t respond to the changes in motor thermal 

characteristics . Furthermore, the effectiveness of thermographic techniques for FId in 

IMs is highly dependent on its accuracy in identifying the hot areas and predicting its severity level 

 In addition, there are some other drawback such as expensive thermal imaging camera, it takes time to 

heat up motor, it takes time to process thermal images  Although, there have been some new 

efforts in using IR images for FDi of machine faults, thermal images have not received wide application on 

rotating electrical machines 

Magnetic flux can be a fault indicator and monitored both inside the machine or outside 

. This method is non-invasive and simple measurement and low cost of sensors. 

The external stray flux signal results from changes in the electromagnetic field of the machine due to asymmetries 

related to motor defects . Methods based on the analysis of external magnetic 

fields have been developed for bearing  stator winding  rotor broken bars and 

eccentricity fault in induction machines. The detection of the short-circuit fault in the stator 

winding based on the evaluation of the harmonics of the magnetic field outside the motor represents a simple and 

efficient solution. A better efficiency of the FDe is obtained if the magnetic core of the motor is characterized 

by a lower magnetic saturation (Constantin et al., 2013). Furthermore, the use of an axial flux in the FDi of 

electrical machines is discussed in . 

However, the drawback of the analysis of external magnetic fields is the difficulty in modeling the magnetic field, 

which is strongly depends on the electromagnetic behavior of the stator  On the 

other hand, coil installation and noisy spectra are the main difficulties . 

showed a relation between air gap eccentricity, air gap flux and vibration signals. 

presented a FDi algorithm of rotor faults by using the measurement of the amplitude of the rotor flux 

oscillations. (Fireteanu, 2013) studied the signature of the short-circuit faults inside the stator winding in the 



 

 

                                                                

 
 

magnetic field outside IMs based on the time domain finite element analysis of the electromagnetic field. The 

detection of such a fault is based on the evaluation of the output voltage of coil sensors placed in the motors 

neighboring and the comparison of amplitudes of harmonics of this voltage for the healthy and faulty operation 

states. 

 

 

 Stator winding insulation degradation can be monitored chemically by the presence of special matter in 

the coolant gas or by detection some particular gases such as ozone, carbon monoxide or even more complex 

hydrocarbons, like acetylene and ethylene . Electrical discharge activity, heat and some other electrical 

and mechanical faults may lead to insulation degradation  In addition, oil particle 

can be used for FDi. Some types of oil analyses are: viscosity, solids content, water content, total acid number, 

total base number and flash point . 

The monitoring of machine conditions Can also be done with tagging-compounds. These monitors can be 

described as “smoke detectors”, ;  Tagging-compounds are paints that emit 

particles with unique chemical properties at high temperatures. These particles can be easily detected by 

monitoring, indicating if a certain temperature is reached by the motor. Basically these unique particles appear 

and are detected when the winding is at very high temperature and insulation system is close to failure (

 

Today various expert systems, automatic FDi and analysis systems have been developed to aid and 

simplify the FDi process. One such system is Electric Motor Performance Analysis & Trending Hardware (EMPATH) 

developed by Framatome ANP  AnomAlert Motor Anomaly Detector is a system of software and 

networked hardware that continuously identifies faults on electric motors and their driven equipment 

 System possess learning ability and alarming function based on statistical analysis. It does not for the 

most part provide precision FDi of particular fault but reports indication of particular categories of faults for 

closer inspection. ALL-TEST is a system for troubleshooting equipment using ESA. An ALL-TEST Pro kit 

includes ALLTEST IV PRO 2000 motor circuit analyzer, the ALL-TEST PRO OL motor current signature 

analyzer, EMCAT motor management software, Power System Manager software, and ATPOL MCSA software, 

. System for automatic monitoring and FDi in IMs that can be operated remotely (including web 

interface) and in real-time is described in  It can trigger alarms whenever a fault is detected 

including turning off a motor in case of a short-circuit detection. 

Power electronics technology has played an indispensable role in the power industry and its applications 

have been widely used on manipulating the electric energy for power conversion purposes. Nowadays, this 

technology is widely used in several fields: domestic, commercial and industrial applications such as aerospace, 

military and nuclear; and its use is still increasing in electric power systems (Kamel, et al., 2015; Malinowski et al., 

2019). In such applications, a high level of reliability and efficiency is required. The continuous operation could be 

critical and must be insured, despite of failures that may occur in different systems. Furthermore, a variety of 

motors are widely used for many purposes like pumping (cooling water, fluids, lubricant oil etc.) and ventilation. 



 

 

                                                                

 
 

Hence, Variable speed AC motor drives with power electronic converters have been under development for a 

long time and are now a mature technology. High reliability motor drives are of paramount importance to 

maintain NP functionality despite of failures that may occur in the inverter, motor/generator and control system 

(Manoharal., 2017; Malinowski et al., 2019). 

Most of the power electronic devices normally operate in an environment requiring rapid speed variation, 

frequent stop / starting and constant overloading. The circuits are subject to constant abuse of overcurrent and 

overvoltage. Although protection devices such as snubber circuits are commonly used, switching devices are 

physically small and thermally fragile (Khanniche, Mamat-Ibrahim, 2001). When a fault occurs in a power 

electronic circuit (e.g., essential components fail), it affects several if not all voltages and currents on nodes and 

in branches, respectively (Chen, Bazzi, 2013). 

For the previous raisons, the reliability of the components and devices is an area of great interest for the power 

electronics community (Malinowski et al., 2019). The knowledge and information about the fault behavior of 

power electronic circuits is important to improve system design, protection and fault tolerant control (Khanniche, Mamat-

Ibrahim, 2001). Therefore, the need of integration of FDId and Fault Tolerant (FTo) techniques for power 

electronic systems has inspired extensive research in this area in recent years (Chen, Bazzi, 2013). (Malinowski et 

al., 2019). Unfortunately, Condition Monitoring (CM) of the power electronic systems only received a little 

attention compared with FDi of motor . 

 The two components most prone to failure in switch-mode drives are electrolytic filtering capacitors and 

controllable power semiconductors or transistors such as Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) 

and Insulated Gate Bipolar Transistors (IGBTs)   . Two 

main fault types in switch-mode drives are open-circuit (OC) and short-circuit (SC) faults. Significant work has been 

done to diagnose switch OC in multiple systems, such as matrix converter drive systems 

 switch SC , and other components including 

inductors , capacitors  and diodes 

. Electrolytic bus capacitors are the weakest link in motor drives 

. Degradation occurs for various reasons, including thermal stresses, transients, reverse bias, and strong 

vibrations . Thermal stress caused by high ambient temperatures and self-heating from 

ripple currents is the leading cause of premature failure. As a capacitor ages, heat from the environment and 

internal resistance causes the electrolyte to vaporize and escape through the end seal. This loss of electrolyte 

causes a corresponding increase in Equivalent Series Resistance (ESR). Because of its central role in the failure 

process, ESR is a reliable indicator of capacitor health . Premature MOSFET 

failures are caused by a number of different phenomena. The two leading causes are thermal stress and gate 

oxide breakdown. Both of these mechanisms increase the on-state resistance . Giving insight 

into converters, plenty of research has been concentrated on IGBTs. Conventional techniques mainly focused on 

detecting any type of malfunctioning of an IGBT. IGBTs’ degradation phenomenon has been proved and 

modeled by in the application of power drive. The leading causes of IGBT failures are similar 

to those noted above for MOSFETs. In IGBTs, thermal stress leads to bond-wire failures and higher junction 

temperatures. As a result, the Collector-To-Emitter Saturation Voltage (CESV) rises  This 

increase in CESV indicates an impending failure in the IGBT. 

(Khanniche, Mamat-Ibrahim, 2001) describes a method of detection and identification of transistor base drive 

Open Circuit (OC) fault of 3-phase voltage source inverter (VSI), feeding a FL controlled induction motor. The 

detection mechanism is based on a novel technique of Wavelet Transforms (WT). In this method, the stator 

current is used as an input to the system. Several recent works have addressed the FDe of different faults in 

power electronics components. (Chen, Bazzi, 2013) builds a generalized approach for intelligent FDe and recovery 

of power electronic system faults at the component level and fault recovery is then applied. The, short- and OC 



 

 

                                                                

 
 

faults in each power electronic component are injected in a simulation platform, and their effect on different 

voltage and current measurements are observed. Three basic quantities are observed for each of the measured 

signals: average value, RMS value, and harmonic content. The FDe and degradation of other components, such 

as MOSFETs, is studied in . In this regard, the FD of IGBTs is studied in

.  provided a relatively comprehensive 

study for the FDe approaches for IGBT modules. proposes an online Principal Component 

Analysis (PCA) - based algorithm for early FDe in IGBT switches. In , the authors propose a new 

on-board CM of the aging of solder layers in IGBTs for electric vehicle applications.  provided a 

study on building a FDe model for IGBT using K-Nearest Neighbor (K-NN) classification algorithm. The targeted 

failure mode was thermos-mechanical fatigue and the signals collected included voltage, current, and 

temperature.  

 Power electronics modules such as inverters and rectifiers are crucial in industry and they are indispensable 

in various power conversion systems. Rectifiers and inverters, have gained acceptance as core components in 

battery charging systems  uninterruptable power supplies, wind generators  

etc. Switch failures in power converters are classified into two major groups: SC faults, OC faults, and degradation 

faults (Kamel, et al., 2015). Compared to OC fault, SC fault causes more harmful effects on converter circuit. 

Recently, the health conditions of the power electronics converters have obtained increasing attractions, since 

the degradation or the malfunction of these critical components might result in catastrophic failures. Extensive 

studies have been dedicated towards the FDi of power electronics converters in decades. Research on Research on 

FDe of the DC-DC converters has been done as well. 

Among all types of converters the inverter failures have attracted the most attention. used 

Digital Signal Processing (DSP) and knowledge based approach to detect and analyze all possible faults in inverter 

circuit by using FL techniques. have investigated the various fault modes of a PWM voltage 

source inverter system for induction motor. presented a Park’s vector approach on detecting 

and diagnosing the inverter fault. proposed an open-switch FDe method for the voltage-source 

inverter based on the switching function model. The voltage related fault signature was investigated by 

comparing the voltage-time sequence under healthy and faulty conditions. presented another 

open-switch FDe method for the inverter based on the phase current. 

Besides the inverter, researchers are also interested in other converters. For rectifier FDi, most studies have 

focused on both short-circuit and OC failures. Compared with the short-circuit fault which will bring immediate 

system shutdown, OC fault induced system might not lead to downtime but degrade its performance and 

generate disturbances in AC-DC conversion. presented an open-switch FDe method and a 

tolerant control approach for a multi-level rectifier. 

The safe and economical operation of a reactor is strongly dependent on the adoption of an efficient core 

monitoring system. Especially important is to implement an accurate tool able to predict, in real time, the core 

characteristics and the core evolution   

Basically, core monitoring systems are based on the constant monitoring of crucial parameters and on the 

definition of admissible operational band  

The reactor core is the central part of a NR where nuclear fission occurs. It consists of internal structures 

composed of systems and components: fuel (including fuel rods and the fuel assembly structure comprising fuel 

bundles, CSB assembly, moderator, coolant, control rods, reactor core control system, the shutdown system and 



 

 

                                                                

 
 

the monitoring system, including components and equipment used for  control and shutdown (IAEA, SSG-52, 

2019). 

AREVA’s simple, reliable monitoring system provides CtM and on-line assessment of actual core safety limits 

with a real-time display. This Increases the overall guidance available to operators and improves the ability to 

navigate transient conditions and to detect and diagnose core anomalies  The SCORPIO system 

was elaborated in the early 1980s, it has been operating in nine PWR units 

in Sweden, UK, USA, Czech Republic. Among features of the SCORPIO system are validates 

measured data and identifies sensor failures, prediction of critical parameters, optimum combination of 

measurements and calculations to obtain precise values of important parameters and integrated modules for 

monitoring fuel performance and coolant activity for identification of fuel failures. 

To achieve a high level of safety while maintaining an important level of plant availability, it is desirable 

to perform preventive measures instead of corrective ones. One of these measures is to monitor internal 

vibration characteristics of the reactor. It is difficult to measure vibrations of reactor internals directly, but it is 

still desirable to obtain such information indirectly because excessive vibrations pose risks to their structural 

integrity. 

Core motion monitoring is intended to encompass all moving parts of the reactor core and surroundings, with 

both solid and fluid motions being included. This therefore entails movements of fuel, in-core structure, control 

rods, core support structures, coolant moving through the core and within the vessel  During normal 

operations of a NPP, the CSB moves with infinitesimally small amplitudes by the random thermo-hydraulic 

load of reactor coolant flow  

 The core barrel in PWRs, which is a structure hanging vertically inside the reactor pressure vessel from its top, 

might vibrate during operation of the plant. Excessive vibrations might indicate some wear of some mechanical 

components in the vessel, especially at the radial support of the core barrel and core support plate. Furthermore, 

Flow-induced vibrations of reactor core components have been a major cause of failure of reactor internals in 

many NPPs  There are a large number of components, For example fuel rods and control 

rods, which can undergo flow induced vibrations during normal operation (Sankoorikal, 1986). Also, the 

excessive motion of fuel assemblies has led to fuel rod cladding failure in a number of PWRs (Sankoorikal, 1986). 

It is thus of prime interest to monitor and diagnose core barrel vibrations  Last decades, the 

monitoring of core-barrel vibrations caught attention . 

Control rod vibrations have also been observed in reactors. This may lead to poor performance or unavailability 

of the rods in an emergency, or to damage the core structure (Sankoorikal, 1986). In all reactors, substantial 

attention is given to the surveillance of control rods, considering their importance to safety and the general 

proneness of actively moving (rather than passively stationary) components to malfunctions  

focused on the study of a neutron noise based technique for the FDi of reactor core internal, 

in particular, excessively vibrating control rods. The application of a NN technique to determine the rod position 

from the detector spectra is much faster, more effective and simpler to use than the conventional method. 

One method to monitor the vibration of reactor core is by analyzing the neutron flux or neutron noise sensed 

by ex-core detectors around it as demonstrated by . NRs are equipped with ex-core neutron flux 

detectors for reactor control and protection. Many reactors also have in-core neutron flux detectors for monitoring 

the in-core neutron flux distribution . 

Signals from sensors and neutron flux, associated with process variables in a NR show fluctuations around a 

mean value, commonly called noise (Sankoorikal, 1986; Ansari et al., 2008). This noise component is caused by 

perturbations in the reactor core, which result in neutron flux fluctuations. The movement of an absorber in a reactor 

induces neutron density fluctuations and any mechanical or thermal-hydraulic 



 

 

                                                                

 
 

disturbances in the reactor core are transformed in the fluctuations in  and neutron flux due to the -power 

transfer function (Ansari et al., 2008). These perturbations appear in the noise in the signals of the neutron 

detectors. 

Hence, reactor NA or NNA is based upon the monitoring of the deviations of typically the neutron flux from its 

mean value  These fluctuations, deviation or perturbation, carry information regarding the 

behavior of components inside the reactor core. Therefore, proper analysis of this noise can be used to 

determine information about the source provides, an effective way to diagnose abnormal vibrations of reactor 

internals and give an insight into the phenomenon occurring in the core (Ansari et al., 2008). From the analysis 

of noise spectra, it is possible to estimate the motion of reactor components during reactor operations. 

Generally, it is known that resonant peaks exceeding 1 Hz in the neutron noise spectra are caused by the 

mechanical vibration effects . 

The analysis of reactor noise requires the knowledge of various noise sources in the reactor that affect the  of the 

system. The mechanical vibration of the fuel elements or control rods has been identified as one major source of 

neutron noise. The fluctuations in coolant temperature, flow and pressure also contribute to the  and neutron noise 

in NPPs (Ansari et al., 2008; Figedy, 2011). One of the challenges of noise FDi is nevertheless to be able to recover 

from very few neutron detector signals the nature and characteristics of the driving perturbation, localize it, and 

classify the severity of the anomaly. This requires competences in many areas, such as reactor physics and 

dynamics, reactor modeling, stochastic processes, signal analysis, and measurement techniques 

 

NNA has been extensively studied since the 1960s . The reactor noise has been 

employed on-line while the reactor is running at nominal full power conditions for the development of advance 

reactor core surveillance systems. NNA has also been studied for vibration monitoring of PWR pressure vessel, 

flux detector guide tubes Arzhanov, Pázsit, 2002  fuel bundles, and control rods . Identifications 

of PWR CSB vibration using ex-core neutron detector noises are presented in . The application of 

Neutron Noise Analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics 

of a reactor CSB was investigated in   

Much research has been done to monitor the CSB's vibrations. utilized the analytical finite 

element model to calculate the CSB's frequency response function and validated it experimentally with a modal 

analysis experiment on a scaled-down model of the APR1400's CSB. The modal analysis was done by a shaker 

test using vibration sensors attached to the CSB model. Further research conducted by 

correlated the ex-core detector data and vibration sensors mounted on reactor structure and control rod drive 

mechanisms. As a result, they were able to identify a particular control rod that had a different vibration 

signature. They also concluded that the use of ex-core NNA was more sensitive in determining the dynamic 

behavior of reactor internals compared to the vibration sensors. In a reactor Internals Vibration 

Monitoring System (IVMS) has been developed for NPP surveillance. The system detects the core barrel motion and 

flow-induced vibrations of reactor internals by analyzing the inherent fluctuations (reactor noise) present in the 

neutron flux signals from ex-core neutron detectors. The magnitude of the displacement of vibrating control 

rod has also been calculated from the measured PSD of neutron noise. Furthermore, the measurements have 

provided experimental validation of neutron noise technique for detection of flow-induced vibrations of in-core 

components. 

WT and Time-Frequency Analysis (TFA) have been considered for advanced NNA; for example, Arzhanov, Pázsit, 

2002 presented applications of wavelet-based analysis of neutron noises to detect and quantify impacting of 

instrumentation tubes with nearby nuclear fuel assemblies in BWR due to excessive tube vibrations. 

A research project published in NUREG/CR-5501 (1998), “Advanced Instrumentation and Maintenance 

Technologies for NPPs”, investigated such OLM applications as NA for measuring the vibration of reactor internals 

and other components such as Reactor Coolant Pumps (RCPs) . 



 

 

                                                                

 
 

The major advantage of reactor noise technique is that is a non-intrusive. It does not require any 

perturbation to the reactor core, since all signals are acquired at normal, steady-state power operation. Also, in 

many cases no additional sensors are required for noise measurements and the neutron flux. The standard 

existing plant instrumentation, neutron detectors and sensors for temperature, flow and pressure signals are 

used (Sankoorikal, 1986; Ansari et al., 2008). 

In addition, neutron detectors have proved to be more sensitive than accelerometers in measuring the vibration of 

the reactor vessel and its internals. This is because the frequency of vibration of reactor internals is normally below 

30 Hz, which is easier to resolve using neutron detectors than accelerometers. Accelerometers are more suited 

for monitoring higher-frequency vibrations  

In NR, sensor outputs from many different channels are used in control, protection and plant-wide 

monitoring systems. Therefore, it necessary to validate sensor signal signals to increase the reliability of these 

systems and operator decisions. Signal validation is used to check the consistency of the redundant 

measurements of selected process variables, estimate their expected values from measurements, and detect, 

isolate, and characterize type of the anomaly in the measurement channel outputs. So, for sensor signal 

validation and process monitoring problems, the prediction of one or more process variables in a system is 

necessary . 

For signal validation the promising candidate is the Neuro-Fuzzy (NF) system PEANO, which is the product of 

the OECD Halden Reactor Project. PEANO has originally been developed for various process 

parameters validation, like power, pressures, temperatures, flows, water levels, etc. 

As demonstrated in the literature  a NN surrogate model 

can predict reactor core parameters with sufficient accuracy at only a fraction of the computation time. In 

a very fast estimation system of four core parameters, to optimize reactor core adequately, has been 

developed by using cascade feed forward type of NNs (NNs). These parameters are keff when control rods are 

completely out of the core, keff when control rods are completely in the core, power peaking factor and maximum 

thermal neutron flux. Results are compared with the results of in using NNs in 

prediction of two safety parameters, Keff-out and PPF, in research. In NN surrogate models 

are constructed for the prediction of core parameters for the SAFARI-1 NRR. The parameters correspond to possible 

In-Core Fuel Management Optimization (ICFMO) objectives and constraints. outlined two approaches 

to in-core SeV. The first approach is based on the assumption that most of the perturbations in a NR core affect the 

layers of the core containing the in-core sensors and that these perturbations are characteristically correlated. It is 

assumed that the decreasing similarity of signals prompt components is the manifestation of a sensor failure. The 

results showed the applicability of linear CCs and mutual information based criteria to SPNDs and thermocouples 

signal failures detection. The second approach is based on the NF system PEANO trained to residuals, i.e., the 

differences between the core simulator physics code results and the experimental values. In t 

various up-to-date SP algorithms are introduced to compensate for a lack of information in order to monitor in-

core status from a limited number of signals. These algorithms, such as independent component analysis, factor 

analysis and model based parameter estimation, are demonstrated to be effective through real plant data 

analysis to evaluate core and regional stability index,  coefficients and core FR. Through these practices, the authors 

demonstrated that the core noise monitoring system is an effective general platform for providing a variety of 

monitoring. In an overview of the on-line core monitoring and analysis system used at the Beznau 

PWRs is illustrated, discussing the main criteria and engineering solutions to be followed to optimize the plant 



 

 

                                                                

 
 

operations and to improve the reactor safety. This core surveillance system, GARDEL, combines advanced 

prediction tools (CASMO-4/SIMULATE-3) for 3D core simulation with an efficient monitoring system.  

Power monitoring in NR play a major role in safe reliable operation of NRs and accurate power monitoring 

using advanced developed channels could make NRs a more reliable . Chap. I gives more 

explanation of the power monitoring and its importance. Power monitoring of NRs is normally done by means 

of neutronic instruments, i.e., by the measurement of neutron flux which is always done by means of nuclear 

detectors, calibrated by thermal methods. The greater the number of channels for power measuring the greater 

is the reliability and safety of reactor operations. Redundancy and diversity are two important criteria for power 

measurement in NRs. Other criteria such as accuracy, reliability and response speed are also of major concern 

 Furthermore, the power monitoring can be done by using the temperature difference between 

an instrumented fuel element and the pool water below the reactor core. The Tf measuring is the most reliable way of 

OLM of the reactor power . Another method consists of the steady-state energy balance of the 

primary and secondary reactor cooling loops. The thermal balance method is now the standard methodology 

used for IPR-R1 reactor power calibration . A further method is the calorimetric procedure 

whereby a constant reactor power is monitored as a function of the temperature-rise rate and the system heat 

capacity. Another methodology, which does not employ thermal methods, is based on measurement of 

Cherenkov radiation produced within and around the core   

In  authors have developed a comprehensive computational system based on the 

use of a BPNN to predict two safety core parameters in Light Water Research Reactors (LWRRs) which are the 

multiplication factor and fuel power peaks.  

We recall that the  monitoring is treated in Chap. I. Generally, a  measurement system in NR consists 

of external neutron detectors and  meter. The neutrons leaking from the reactor core come into the external 

detectors and generate electrical current. The  meter receives the amplified current and makes a real-time 

inverse kinetics calculation, during which the spatial correction and dynamic correction will be added. 

Normally, the whole measurement and calculation cycle is conducted once in each time step of 0.1 or 1s 

(Xingkai et al., 2019). 

 NRs must have sufficient excess  to compensate the negative  feedback effects such as those caused by the 

Tf and power defects of , fuel burnup, fission poisoning production, and also to allow full power operation for 

predetermined period of time. To compensate for this excess , it is necessary to introduce an amount of 

negative  into the core which one can adjust or control it at will. In the IPR-R1 Reactor the  control is done 

by three control rods that can be inserted into or withdrawn from the core  One indication 

of the core  is the Effective Multiplication Factor (keff), the most important measure. The keff is defined as the ratio 

of the neutrons produced by fission in one generation to the number of neutrons lost through absorption and 

leakage in the preceding generation (Jiang et al., 2008). 

In  a NN is used to predict the keff, an indication of the  of a NR, given a fuel Loading Pattern. 

In nuclear engineering, the keff is normally calculated by running computer models, e.g., Monte Carlo model and 

finite element model, which can be very computationally expensive. applied NNs to the task of  

monitoring in a NR to improve the safety and the reliability of the operating plant. The adaptability of the 

network to slow variations in the system parameters and its ability to learn in a noisy environment are studied. 



 

 

                                                                

 
 

One of the major concerns during the operation of any reactor is the possible presence of LPs. Recently, 

most of PWR of the world have been equipped by Loose Part Monitoring Systems (LPMS) 

).  

LPs are disconnected or forgotten objects in the primary loop of NRs A LP in a NPs may result from 

a deteriorated component somewhere within the flow circuit or from an item (e.g., a tool) inadvertently left in the 

primary system during construction, refueling, or maintenance  Nuts, bolts, pins, sections 

of tubing, and hand tools used in maintenance have been found in the primary coolant systems of PWRs 

 A LP can come from internal structures of the Reactor Coolant System (RCS) due to corrosion, 

fatigue, and friction. It can also be introduced externally during refueling and maintenance tests. 

If introduced inside the plant’s flow, the LP can contribute to component (e.g., tube or valve) mechanical damage 

and material wear by frequent impacting with other parts in the system (e.g., contact the walls of the tube) which 

may, eventually, result in a leakage  LPs drifted with the speed of the stream of water can 

be broken into small pieces therefore, they can damage reactor internals and reactor coolant pumps 

 They can also reach the reactor core, and disturb the motion of control rods and partial block 

the coolant channels  The latter can lead to overheating of the fuel elements. 

Therefore, LPs may pose serious threats, and trigger major problems in the nuclear system operation, 

necessitating repairs costing millions of dollars  

LPMS is a monitoring device that detects the shock wave generated from the collision of LPs and pressure 

limitation internal structure by mounting accelerometer (shock wave sensitive sensor), where LPs gather 

naturally. LPMS is used at NPs to detect the onset LPs within the RCS, locate the LPs, and estimate their mass 

and potential damage. The LPMS provides alarms, signal displays, and data to plant personnel. Depending on 

the nature of the LP, appropriate decisions can be made on what actions should be 

Early detection of such LPs during operation is a key issue in order for plant management to schedule preventive 

actions prior to significant damage and catastrophic failures. LPMS can prevent accidents such as damage of 

RCS and structure, and rod operation hindrance. Consequently, LPMS is an important system for NPs safety 

insurance and it has been a requirement on NPPs for many years   

Experiences in Pn stations show that existing LP monitoring systems provide valuable information mainly 

during the start-up period (and in the following 1-2 months). After that period the possible LPs (forgotten 

objects) either have drifted to some traps where they rest or get stuck in structural elements, or they break into 

small pieces. In either way there is no much LP activity after a couple of months of operation. For this reason, 

in most of the NPs the LP monitoring systems are switched off during normal operation  

 Detecting and diagnosing a LP mainly relies on acoustic signals generated by the impact of the LP with 

the RCS pressure boundary. Impacts on the inner walls of the RCS are manifested as bursts in the sensor output 

signals. The acoustic signals are detected by AE sensors (e.g., accelerometers) located at selected positions on 

the outer RCS boundary, reactor coolant pumps, and possibly on other components of the RCS. When a LP is 

found in one loop, it is more desirable to connect the sensors of the same loop where the event was found - this 

can give an optimal performance both for source location and LP mass estimation  

Because the bursts are embedded in the high-acoustic background noise of the RCS, identification and 

localization of LPs is a difficult task.  Filtering techniques are typically used for pre-

processing to remove background noises. LP detection relies on comparing the pre-processed signal with a pre-

set threshold. Time delays between sensor pairs that detect the same event provide information to locate the 

LP.  

Identifying the precise location of a LP is still a challenge for existing LPMSs. Mass estimation of the LP mostly 

relies on Hertz impact theory which supports the observation that low frequency signal components increase as 



 

 

                                                                

 
 

the mass of the LP increases. Therefore, the mass of a LP can be estimated by referring the frequency 

characteristics (e.g., frequency ratio and center frequency) of the acoustic signal to the baseline measurements 

. 

The design and implementation of an LPMS is a complex undertaking that requires judicious selection, 

integration, and installation of system components such as AE sensors and cabling, which must endure the 

hostile environment within the reactor containment for decades without significant performance diminution. 

Further, attainment and mastery of the proper hardware interfaces, software operating systems, and computer 

control codes are essential to prevention of FAls without sacrificing system detection limits. Finally, highly 

skilled software and hardware specialists are needed to install the LPMS and tune it to achieve optimum 

performance  

The biggest problem of recent LPMS systems was the high missed alarm and FAl rate. This is one of the most 

important aspects of LPMS design and implementation.  

Due to high FAl rate, operators tend to neglect the warnings coming from LPMS. The main cause of high FAl 

rate is the fact, that event recognition is based typically on the standard deviation (RMS) value or on the 

amplitudes of acoustic signals originated from LP sensors (which are, in most of the cases, accelerometers) 

 One solution of this problem is introducing different methods based on observations of the signatures of 

the signals measured in practice. For example, more than one sensor can be used to detect LPs event, and the 

combination of thresholds for statistical moments can lead to improvement in false and missed alarm rates 

 Highly developed software analyzes the LP transient and differentiates LP impact signals from noise. 

Modern digital systems have stringent multi-level alarm criteria, which minimize missed and FAls due to noise, 

thus minimizing unnecessary operator distractions and the need for data analysis by a human expert 

 Using sophisticated techniques such as these to distinguish between background events and 

LP impacts, modern LPMSs have demonstrated FAl rates and missed alarm rates well below 1% . 

LPMS performance is affected by the number of sensors used, their locations, and the methods used to attach 

them to the wall of the RCS. These factors influence the ability of the LPMS to locate noise sources and its 

ability to interpret the amplitude and frequency content of detected signals . 

Present day digital LPMS architecture and software flexibility have allowed the integration of additional 

functions into the same, PC-based system, incorporating the capability of parallel monitoring of various critical 

valves in the plant. This integration offers significant advantages as compared to using two separate systems, 

such as economy, installation efficiency, operator friendliness, etc. Simultaneous monitoring of the two 

phenomena (LPs impacts and flow) also enhances signal interpretation capabilities and results in better 

evaluation and more solid management decisions  

It is an ongoing research topic to apply advanced SP methods such as WT  TFA 

 and NN to achieve enhanced LPMS performance, e.g., reduced 

FAls, more accurate time of detection, and more accurate mass estimation. Autoregressive (AR) modeling and the 

sequential probability ratio test (SPRT) are two of the most sensitive methods to distinguish LP impacts from events 

responsible for background noise in the RCS  

discussed the application and operational aspects of an integrated LPMSs and Valve Flow 

Monitoring System (LPMS-VFMS) for NPPs, and demonstrates how modern digital AE systems and processing 

strategies can improve LPMS-VFMS operation and uniquely detect and evaluate, metallic LPs and critical valve 

flow, in the presence of severe environmental noise and vibration. describe a research project 

in which metal impact theory and experimental data were used to develop a quantitative description of LP 

impact signals. This approach was used to determine relationships between the amplitude and frequency 

content of the plate bending waves and the energy and mass of the impacting object, signal transmission 

characteristics, and sensor response. These relationships were used to develop recommended practices for 



 

 

                                                                

 
 

specifying sensors, mounting sensors, processing signals, interpreting signals, and calibrating the system 

 

For instance, describe the development of an LPMS for Unit 4 of the Ulchin Nuclear Power 

Station in South Korea. Configurations of the LPMS for a Vodo-Vodyannoy Energeticheskiy Reactor (VVER) plant 

and a PWR plant are presented in  respectively.  

NRs are highly complex systems which are ordinarily operated monitored by human operators. In case 

of any undesired plant condition generally known as Initiating Event (IE), or when a transient occurs, such as a 

plant accident scenario, equipment failure or an external disturbance to the system, the operator must monitor 

a great volume of information from instruments (i.e., S/Ds) reading, which involves a large number of state 

variables whose behaviors are extremely dynamic, which reveal a specific type of event. A transient must be 

correctly identified, as soon as possible, so that proper counteractions can be taken to minimize or mitigate the 

negative consequences. The objective of the plant monitoring system in any potentially unsafe scenario is to give the 

plant operators appropriate inputs to formulate, conform, initiate and perform the corrective actions. However, 

in NRs, recognizing the types of transients during early stages, for taking appropriate actions, is critical. An 

automatic TI system can be a valuable addition to operator knowledge to safeguard the plant and to minimize 

the negative impacts. Furthermore, classification of a novel transient as “don’t know”, if it is not included within 

NRs collected knowledge, is necessary

A transient is defined as an event when a plant proceeds from a normal state to an abnormal state. TI in NRs is 

classification of the types of transients by interpreting the main plant variables. Therefore, the correct 

identification of transient can be considered as a support to the operator  

  

The abnormal transient in NRs can be initiated by faults and failures in equipment and instruments or external 

disturbances, which are respectively related to system deviation from the desired condition and system disability 

in performing the desired function  Transients’ occurrence on aged NRs is more probable 

. 

Deviation of the plants from normal state due to failures or faults causes difficulty in the trend 

interpretation of interacting variables by operators either because the changes are too subtle, or because the 

changes are too fast  Early detection will help in minimizing or even 

mitigating the negative consequences of such transients. It is equally important to identify the type of transient 

correctly. Misidentification of transients might result in incorrect action by the operator and thus leading to 

accident situation  When an abnormal event needs to be identified, the TI system compares 

the evolution of the measured plant variables with the signatures of the evolution of these variables for each 

abnormal postulated event of the plant. Hence, the transient is classified as one of the postulated transients 

whose signature is closest (or more similar) to the ongoing transient, according to a given measure 

 Furthermore, the event detection can be considered as a PR problem. When an event occurs starting 

from the steady-state operation, instruments’ readings develop a time-dependent pattern and these patterns are 

different from those under normal conditions and unique with respect to the type of the event . 

The patterns can be different for different transients, severities, and initial conditions. However, TI can be 

processed as a PR problem, but the complexity of NR system makes it a very challenging task.  

TI techniques as a method to recognize and to classify abnormal conditions are extensively used. TI in NRs in general 

can be achieved either by MBTs, or model-free methods. During a transient period, instrument outputs from NR 

may go through patterns that are different from those under normal conditions. The patterns may be varying 

for different transients, severities, and initial conditions. Therefore, TI is essentially a PR problem, but the 



 

 

                                                                

 
 

complexity of NR system makes it a very challenging task. regardless the recent studies related to model- based 

methods for TI in NRs ;  these methods in practical applications are not suitable 

candidates and they are still very limited . Otherwise, data-driven methods, especially NNs and 

other soft computing techniques, seems to be more appropriate for TI in NRs. The NN as a branch of DDTs, 

and soft computing techniques is the mostly investigated method for NPP TIs . If transient 

is too fast to be treated as a quasi-equilibrium, then it may be obligated to use Recurrent Neural Networks (RNNs). 

To deal with time dependent data, an implicit time measure or adaptive template matching algorithm were 

proposed . Also, it is important to identify transients not considered in the training stage as 

unlabeled transients, i.e., ‘don't know’ transients. Furthermore, classification of “don’t know” transients can be 

performed by using for example Radial Basic Function (RBF) or Probabilistic Neural Networks (PNN) 

. Different schemes based on NN are summarized in 

. Performances of several NN algorithms are compared in . Other tools such as Genetic 

Algorithm (GA), FL, Expert System (ES) fuzzy clustering, Hidden Markov Models (HMMs) and Support 

Vector Machine (SVM) have also been studied and are among the most 

applied techniques for TIs in NPPs (Moshkbar-Bakhshayesh, Ghofrani, 2013). Preprocessing using wavelet signal 

decomposition has also been studied TI . Despite those developments, additional research is 

required before automated TI systems can be successfully used in NPs applications. Furthermore, NF identifiers 

can be used for qualitative representation of the transients .  

One of the early works for TI was based on GA and classical probability . In 

 recent studies related to the advanced techniques for TI in NPPs are 

presented and their differences are illustrated. HMM statistical method was utilized for the classification of 

transients in the dynamic process in NPPs . In addition, SVM as another approach based on 

the statistical method was used for TI in NPPs . presented a study on 

various NN algorithms for selecting a best suitable algorithm for diagnosing the transients of a typical NPP to 

assist the operator to identify such initiating events quickly and to take corrective actions. In 

the authors have described an experimental system for the identification of nuclear transients which aims 

to assist operators of NPPs to make quick judgments and decisions about the real situation of the plant in risk 

situations. Recently, NF approach for TI using “jumped” Multi-Layer Perceptron (MLP) and FL was developed 

. Finally, more detailed notes related to abilities and weaknesses of different transient identifiers are 

presented in  

Contrary to monitoring, control is an active action which consists to intervene in order to resolve the 

problem declared by the FDD procedures (Figures II.1 and II.7) by taking appropriate actions in order to 

maintain the operation and avoid damage of the process and serious consequences. Indeed, FC consists to make 

a decision by taking into account the condition if the evaluated fault is tolerable or not, and 

then make the necessary steps to correct, accommodate or reconcile the declared faults

(Figure II.24). In this context, we review the large meaning of the FM, FDe, FDi and FC. 



 

 

                                                                

 
 

 

Figure II.24 - Application of FDD to the operation and maintenance of engineered systems (Katipamula, Brambley, 2005). 

Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, 

and the consequences could be damage to the plant, to personnel or the environment. With increasing economic 

and productivity demand for high plant availability, and an increasing awareness about the risks associated 

with system malfunction leads to more challenging operating conditions of modern engineering systems and 

dependability is becoming an essential concern in industrial automation. Sensor, actuator or process failures 

may drastically change the system behavior, resulting in performance degradation or even instability. In 

complex systems, dependability is as important as performances. Faults may drastically change the system 

behavior, ranging from performance degradation to instability. 

Generally speaking, there are three methods to overcome errors and maintain the system in its normal 

condition. These methods are described as follows: (a) fault avoidance- it includes any technique applied to 

prevent fault or error. (b) fault masking – it consists of any procedure that after occurrence of fault, at least prevent 

the system from facing error. (c) fault tolerance – The ability of a system to continue its performance in spite of 

faults. It relates to reliability and successful performance. A fault tolerant system must be able to manage the 

faults in hardware or software components, electrical break down, or any other unexpected defects.  

When a system deviates to a degraded performance region in presence of a failure, FT system can recover itself moving 

into an optimum performance region, or near to it. These systems have become increasingly important for robot 

manipulators, especially those performing tasks in remote or hazardous environments, like outer space, 



 

 

                                                                

 
 

underwater or nuclear environments. In Figure II.25 we see a scheme showing the different performance regions a 

given system can adopt when a failure occurs. 

 

Figure II.25 - Performance regions under failure occurrence (Urrea, 2012). 

FT is needed in order to reach the system objectives, or if this turns to be impossible, to assign new (achievable) 

objectives to avoid catastrophic behaviors. FT can be obtained through Fault Accommodation (FAc) or through 

system and /or controller reconfiguration (Blanke et al., 2001). 

It is clear that there are weight, power, size, and economic penalties associated with a HR approach to 

the design for FTo capabilities. FTo system comprises two cascaded working modules, namely FM, and FAc as 

shown by Figure II.26 ( ). The first module is used to detect, isolate, and identify the occurred 

faults, while the job of the FAc is to accommodate the aftereffects of the occurred faults based on the information 

obtained from the FDD module so that the system can still deliver the specified performance. One of the biggest 

challenges in this cascaded working structure is to handle effectively the model uncertainties appearing during 

the FDD operation, which can lead to FAls. In addition, the strong dynamical interaction between the FD 

module and the FAc module is quite known in this classical scheme, which also imposes some difficulties from 

the real-time point of view  

 

Figure II.26 - Composition of FTo system. 



 

 

                                                                

 
 

For Fault-Tolerant Control (FTC), an early review paper was presented by in 1991, which 

introduced the basic concepts of FTC and analyzed the applicability of AI (e.g., NN and expert systems) to FTC 

systems. In 1997, an overview of FTC was given from the system development view  In the 

same year, a comprehensive review was contributed by  which presented the key issues of the 

FTC systems and outlined the state of the art in this field. Reconfigurable FTC systems are reviewed extensively 

respectively by  

FTC is the ability of a controlled system to maintain control objectives, despite the occurrence of a fault. 

A degradation of control performance may be accepted. FTo can be obtained through FAc or through system 

and /or controller reconfiguration (Blanke et al., 2001). FTC is the synonym for a set of recent techniques that were 

developed to increase plant availability and reduce the risk of safety hazards. Its aim is to prevent that simple 

faults develop into serious failure. FTo merges several disciplines to achieve this goal, including on-line FDi, 

automatic condition assessment and calculation of remedial actions when a fault is detected. The envelope of 

the possible remedial actions is wide ( ). The main objective of any FTC system is to ensure a 

dependable system ( ). An FTC is designed, in order to stabilize the closed-loop system by 

compensating for the effect of the fault   

FDD and FTC for dynamic systems have been the subject of considerable interest and an area of intensive 

study in the control research community (Isermann, 2006) and references therein. Many successful process data-

based algorithms and their applications have been reported in the literature. Hence, FDD and FTC have now 

become an integral part of industrial process control (Wang et al., 2009a). 

The purpose of FDD is to use available signals, data or knowledge to detect, identify, and isolate possible faults of 

sensor, actuator, and system. Conversely, FTC calculates the required actions (either controller modification or 

reconfiguration) so that the system can still continue to operate safely even under faulty conditions 

Therefore, a system can be FTo if it is reconfigurable (Khireddine, 2014). 

Due to the growing demands for system reliability, FDIso and FTC algorithms and their applications to a wide 

range of industrial and commercial processes have received considerable attention over the in recent decades. 

Fruitful results can be found in several excellent books  survey papers 

and the references therein. 

Generally speaking, FTC approaches (systems) can be further classified into two categories: passive (e.g., 

robust control) and active (e.g., adaptive control) as shown by Figure II.27 ( ). Passive 

FTC (PFTC), considers systems faults as a special kind of uncertainties. It utilizes a fixed gain controller to 

tolerate predefined faulty operations while maintaining desirable stability and performance properties 

 PFTC is based on the ability of feedback systems to compensate perturbations, 

changes in system dynamics and even system failures  It considers a robust design of the 

feedback control system in order to immunize it from some specific failures  Active FTC (AFTC) is 

centered in on-line failure, that is, the ability to identify the failing component, determine the kind of damage, 

its magnitude and moment of appearance and, from this information, to activate some mechanism for 

rearrangement or control reconfiguration, even stopping the whole system, depending on the severity of the 

problem. Therefore, an AFTC reacts to the system component failures actively by reconfiguring control actions 

so that the stability and acceptable performance of the entire system can be maintained. Typically, an AFTC 

needs a FDIso scheme to identify the fault-induced changes, and a mechanism to on-line accommodate the 

control law in response to the FDI decisions  In contrast to PFTC, AFTC 

system have in general better FTo capability, and hence have received more attention.  



 

 

                                                                

 
 

 

Figure II.27 - Sorts of FTC (Blanke et al., 2001, Samantaray, Ghoshal, 2008). 

AFTC approaches, which rely on early detection of faults, are able to improve the efficiency and the reliability 

of such processes. It is obtained by FAc, which controls the faulty system, or by reconfiguring the structure with 

System Reconfiguration (SR), which controls the healthy (reconfigured) part of the system 

; ) in the presence of faults. 

Some results on FTC for NL systems were reviewed by  Along with FDi, brief reviews on 

data-driven FTC and model-based FTo reconfiguration were presented by 

respectively. From the viewpoint of industrial applications, fault tolerance techniques were reviewed for electric 

drive systems and power electronics systems  

In large power generating systems and process control systems, sensor outputs from many different 

channels are used in control systems, protection systems and plant-wide monitoring. Sensors enable the simple 

collection of data, but these devices must still provide the right information at the right time for FDe and 

avoidance. If necessary, to validate these signals to increase the reliability of operator decisions, SeV is one of 

the ways that can help to improve the reliability of control and protection systems  To 

do that, it is necessary to validate the measured sensor data, isolate any failed sensor and recover the failed sensor 

measurement before they are used (e.g., by the controller. In these safety-critical processes, data must be first 

validated and/or accommodated (when data are proven to be invalid) before any work is to be done using these 

data. So, a reliable FM method should be able to validate its input data prudently, so that a consistent, high-

quality monitoring can be maintained. 

Erroneous and conflicting sensor readings often confuse human operators, degrade the performance of control systems, 

and may lead to actions that compromise the safety of NPPs. The installation of redundant sensors for safety 

related parameters is a standard instrumentation practice; assessing measurement validity of enormous sensors by 

human operator is, however, tedious and its effectiveness is heavily dependent on operator's training and 



 

 

                                                                

 
 

attention level. Therefore, there is a need to use modem computer-aided techniques to automate the validation 

process. 

SeV refers to the capability of detecting, isolating and reconstructing a faulty sensor. For SeV and process 

monitoring problems, it is necessary to predict one or more process variables in a system. The estimation of 

system variables is performed by either using physical or empirical models for validating instrumentation 

outputs and process monitoring. SeV and process monitoring problems in many cases require the prediction of 

one or more process variables in a system. SeV requires that an expected value be generated for a sensor's reading. 

This expectation needs to be based on reliable sources of information other than the sensor itself. Then, the residual 

between the expected and actual values is computed, and processed through fault-detection logic. If no fault is 

detected, then the sensor reading is declared valid. If there is a fault, then it needs to be identified and isolated. 

SeV is used to check the consistency of the redundant measurements of the selected process variables, estimate 

their expected values from measurements, and detect, isolate, and characterize the type of the anomaly in the 

measurement channel outputs. 

SeV in the broadest sense is related to reliability, namely determination that a sensor (or a configuration of sensors) 

is or is not providing the correct signal. If the signal is not correct, we would like to be able to distinguish between 

a faulty sensor and a faulty condition of the process being measured.  

Validating a sensor signal means proving and documenting the proof that the sensor (or instrument) consistently 

does what it purports to do. What this means is that the sensor must be shown to consistently provide the 

correct temperature, pressure, etc., and analysis by the validation hardware or software should provide an alarm 

that the sensor signal deviates from the correct value. Then, a human can decide whether to remove the sensor 

from being on line, or adjust the signal, or take some other action. 

Usually, redundant sensor with voting schemes are used for those sensors likely to fail and for critical sensor 

used in the control loop. In some cases, it may not be feasible to have multiple sensors for the same 

measurement due to physical limitations or due to the specific operating condition. In such cases, the AR makes 

it possible to validate measured data, identify sensor failure, and recover failed measurements  A well-

known technique involving AR is a special designed KF which has been used to Sensor Failure Detection and 

Accommodation (SFDA) in the jet engine control   

SeV has other attributes such as FDi of the physical cause (s) of the fault, a list of actions to take in priority in 

order to remedy the fault, and ways to ameliorate the fault by substitution, recalibration, or control action. Even 

maintainability can be considered part of the task of SeV. 

In addition to SeV, we find in literature Sensor Recovery and Virtual Sensor Networks as part of the overall 

predictive health maintenance system. The recovery consists in finding the remedy for the failure. In the 

simplest case, it is the replacement of the faulty element  

Sensor recovery will predict the values of sensors that were detected as faulty by the SeV process. Furthermore, 

data recovery is the process of restoring (reconstruct) data that has been lost, accidentally deleted, corrupted or 

made inaccessible. The Virtual Sensor network will be used to predict values of those sensors that are present in 

development but absent in production (Uluyola et al., 2001).  

When a critical sensor reading is found to be erroneous, it is necessary to estimate its true value using correlated 

measurement. A simple approach is to have one estimation relation for each sensor reading that needs to be 

recovered. The recovery rate (RR) is given by: 

                                             RR = (1 - 
|YSFDIA −YTRUE| 

|YTRUE| 
) 100 % (II.1)  

where YSFDIA and YTRUE represent, respectively, the Sensor Failure Detection, Identification and Accommodation 

(SFDIA) accommodated and the original true performance. 

To reduce the effects of sensor faults on the process control, it is interesting to devise a SeV scheme to three 

steps: FDIA. (a) In a real physical system where faults can occur, how do we detect when the information 

http://searchsqlserver.techtarget.com/definition/data-corruption


 

 

                                                                

 
 

provided to the control system through the measurement system is incorrect. (b) Once it is known that something is 

wrong with the presented information, how do we identify the faulty sensors and isolate the source of the 

problem. (c) Once it is known where the problem is, (which sensor has failed), how do we accommodate the 

problem by replacing the biased measurements with an estimate of the correct value 

 (Ning, Chou, 1992) gives a list of critical signals and the associated sensors to be validated, according 

to the Piping and Instrument diagram of the Maanshan NPP.  

The SiV methodology uses redundant measurements that may be either direct sensor outputs or analytically 

obtained from a MM formulated on the basis of physical relationships among other process variables (e.g., mass 

and energy balances in thermal-fluid processes). It provides a unified systematic procedure for FDIR and sensor 

calibration and measurement estimation. Many MMBAs have been applied for sensor data validation for FDe 

(Mandal, 2015).  

Two common methods for SeV are PCA and Partial Least-Squares (PLS); however, since they are linear methods, 

they are optimal only for Linear Systems (LSs). Another option is KFs, which were also developed for LSs but can 

be extended to cope with NL systems. However, KFs are model-based (i.e., not data-driven) and cannot be 

constructed with, for example, operational data. The success of KF models for SeV is therefore dependent on the 

fidelity of the system or component model. 

(Guo, Musgrave, 1995) proposed new approach which utilizes the concept of the Auto-Associative Neural Networks 

(AANNs) for SeV. A SeV approach based on PCA was developed in Qin et al., 1997 and was applied within the 

problem of monitoring the emissions of a boiler. In ( ) the SeV problem is introduced and two 

approaches to the problem are presented: a model-based approach using a NL observer, and an AANN. 

One of the computer-aided SeV approaches is to construct a FDe network in which sensors and system dynamic 

models are linked in a tree structure and processed via analytic redundancy and parity relations. Based on this 

approach, developed an on-line plant SeV system for steam generator instruments of 

PWR. further incorporated the technique with heuristic rules and reliability analysis for 

FDi of vessel level instruments of a BWR. used similar techniques to 

validate signals that are related to critical safety functions for the safety parameter display system, (SPDS), of a PWR 

as well as a BWR.  

For SeV and plant-wide monitoring, NNs offer several advantages compared to traditional empirical methods 

(Eryürek, Türkan, 1991  NNs are currently being used in many real-time monitoring or control problems 

 Although NN-based FDi tools can tolerate a certain degree of corruption or incompletion in data input. 

The AANN approach has often been used in SeV (Lu, Hsu, 2002). This NN method belongs to the so-called NL 

PCA category. Noise contained in the input nodes is eliminated in the mapping part located between the input 

and the bottleneck layers. The reconstructed data, however, are generated in the subsequent de-mapping layers 

beyond the bottleneck layer.  

( discusses a method for training the NN with fault data to filter fault information, which can 

significantly increase the size of the training set. The idea is that if one sensor is bad, there is enough information 

in the remaining sensors that the NN can provide accurate estimates of all the measurements, where the focus 

is on the bad sensor. When the NN is used for SeV, it would appear in the feedback loop of a closed-loop system 

as shown in Figure II.28. The ability to combine FDIA in one step is the key advantage of NN-based SeV scheme. 

  

Figure II.28 - NN for SeV. 



 

 

                                                                

 
 

The actual implementation of a NN for SeV is not straight forward. Different approaches are suggested 

for the SeV steps that are: FDIA. Some approaches and ideas are presented by  

evaluated an alternative approach to SeV in NL systems.  

In a bank of KFs was used to provide probabilistically weighted parameter estimates of 

measurements. This approach required a dither to disturb the system from a quiescent state in order to identify 

the system on-line. As an alternative, an AANN was used for SeV of a rocket engine in  

This reference indicates that the NN estimates of the sensor values could be used to replace failed sensor values in 

a feedback control system. The presented work is a continuation of the work in reference 

and is based on the work in  

( ) have presented two approaches to the SeV problem: a model-based approach using an AANNs 

and a NL observer. The latest uses functional approximation NNs to model the variation of the system with the 

operating point. The functional approximation NNs were used as part of a NL, model-based approach to AR. 

The AANN was used as part of an FDIA scheme that acted like a fault filter and only required the addition of 

some thresholding logic ( ). In 1991, Kramer succeeded in applying NN to data compression 

by feature extraction without sacrificing the non-linearity in the data and in NN. He extended the potential area 

of application of the method to SeV and named it AANN which is an identity mapper, containing three hidden 

layers with the following functions: mapping, data compression and de-mapping. The use of AANNs for SeV has 

been proposed by and used subsequently by other researchers 

 AANNs develop an internal compressed representation of the data which allows the network when a set 

of new inputs is provided, to predict outputs based on what it learned. The residuals between the network input 

and output can be used to detect input (sensor) faults. has used AANNs for SeV. In (Uluyola 

et al., 2001) data from sensors that are classified by covariance and NA are used as inputs/outputs to AA and/or 

hetero-associative SeV networks. These networks together with the residual analysis are used for validation and 

recovery of an auxiliary power unit, APU, pressure and temperature sensors. In  an AANN was used for 

the SeV of the F100 turbofan engine. In the AANN, the redundant sensor information is compressed, mixed and 

reorganized into a smaller number of network nodes in the first part of the network. The compressed information 

is then used to regenerate the original redundant data at the output. Due to the information mixture, if a sensor 

fails, other sensor data still provide enough information to generate a good estimate to replace the faulty 

measurement. presented the results of applying two different types of NNs in two different 

approaches to the SeV problem. The first approach uses a functional approximation NN as part of a NL observer 

in a model-based approach to AR. The second approach uses an AANN to perform NL PCA on a set of redundant 

sensors to provide an estimate for a single failed sensor. have presented two model-based 

approaches to the SeV problem using an AANNs and a NL observer. The latest uses functional approximation NNs 

to model the variation of the system around the operating point. 

designed and evaluated two distinct NN-based approaches addressing AR solutions to 

failures on the airspeed sensor for a jet-powered research Unmanned Air Vehicles (UAV) for potential use in a 

Sensor Failure Accommodation (SFA) scheme. The first approach was based on a generic MLP with a sigmoidal 

activation function while the second approach was based on the application of the Extended Minimal Resource 

Allocating Network (EMRAN). The NN of Monitoring Aids (NNOMA), system is applied to the CM and SeV of multi-

purpose reactor (RSG-GAS) in Indonesia. The Feed Forward Neural Network (FFNN), in AA mode learns reactor's 

normal operational data, and models the reactor dynamics during the initial learning ( ). 

FAc has been addressed in the literature considering many different control objectives and using many 

different solution techniques. In the model matching techniques, the goal of the accommodation is defined in 



 

 

                                                                

 
 

terms of similarity between the closed-loop system matrices of the accommodated and the nominal (with optimal 

behavior) systems. 

Strict requirements on reliability and safety of certain engineering systems make it necessary to develop 

means that guarantee fault tolerance of these systems. The existing approaches assume operative detection and 

localization of faults and, possibly, estimation of their magnitude followed by subsequent system recon 

figuration or formation of special control that makes it possible to preserve important characteristics of the 

system in the presence of the faults (perhaps, at the expense of worsening secondary characteristics). The latter 

approach is called FAc (Zhirabok, Shumsky, 2008). FAc system objective is to support an operator’s decision 

making and keep the process running safely and optimally. 

FAc is performed in situations where parameters or constraint structures change due to a fault. Once a 

fault is detected and diagnosed in the monitoring stage, the FAc substitutes erroneous measurement from the failed 

component reading (i.e., sensor, detector) with an alternative reliable estimate of the true signal values (

; ) e.g., delivered by NN estimate Hussain et al., 2015). The need for FAc becomes even 

more critical when the measurements from a failed sensor are used in the control loop. However, the controller 

will switch to the estimated value to continue the system operation. Therefore, delayed parameter estimation delays 

the FAc and can seriously undermine the efficiency of the supervision process.  

In an SFDIA scheme, once a sensor fault is detected and identified, the faulty sensor output disconnected 

(isolate the false information) and it is replaced with a reliable estimate (Hussain et al., 2015). On other side, FAc is 

a common approach to achieve fault tolerance. In contrast to control reconfiguration, accommodation is 

limited to internal controller changes. The sets of signals manipulated and measured by the controller are fixed, 

which means that the loop cannot be restructured  The FAc task is responsible for providing 

an alternative estimate instead of the measurements from the failed sensor ( ). FAc is 

achieved by substituting (replacing) erroneous measurements (e.g., faulty sensor reading) by an accurate estimate of the 

true signal values ( ; ), e.g., delivered by NN estimate ( ; Hussain 

et al., 2015  FAc is done either through SR and/or FTC. In FTC, the objective is to control the system under 

actual constraints. In SR, part of the actual faulty system is replaced by another one, e.g., selection of alternative 

input and output for a controller. Once the fault magnitude is estimated, then the next step concerns 

accommodation of the identified fault by suitably changing the control laws, if possible  

Therefore, in FAc, the FDI module must detect and isolate the faults, as well as estimate them, in order to 

determine the appropriate control law for the FTC algorithm  FAc for FTC is a change in 

controller parameters or structure to avoid the consequences of a fault. The input-output between controller and 

plant is unchanged. The original control objective is achieved although performance may degrade (

). Most of the FA methods presented in the literature assume the existence of a perfect FDD module 

providing a precise estimation of the post-faulty behavior. However, for the real successful application of an 

overall AFTC design, the effects of imprecisions in the FDD module on the control loop have to be taken into 

account. The survey paper gives the state of the art in the field of FTC, and advances are 

reported in  

There are two conceptually recognized approaches to the FAc problems: HR and AR ( ). 

Traditionally, FDe and FAc are accomplished via HR where identical sensors are used to measure the same 

parameter, and on a voting-scheme, FD and FAc can be used  For SFA purposes, most 

of today's high-performance military aircraft as well as commercial jetliners implement a HR in their sensor 

capabilities ( ). In this case, if the signal from one sensor differs significantly from the 

remaining two sensors, the sensor is declared as faulty. SFA is achieved by replacing the faulty sensor with one 

https://en.wikipedia.org/wiki/Control_reconfiguration#CITEREFBlankeKinnaertLunzeStaroswiecki2006
https://en.wikipedia.org/wiki/Control_reconfiguration#CITEREFBlankeKinnaertLunzeStaroswiecki2006


 

 

                                                                

 
 

of the two remaining sensors (Hussain et al., 2015). For the reason of implication of HR, over the past two decades 

AR has become a more appealing approach for FA. However, when reduced complexity, lower cost, and weight 

optimization are of concern, an analytical sensor redundancy approach is more appealing ( ). 

At present, different approaches of FAc have been reported: there exist several variants of solving the 

accommodation problems, including optimal control methods  H optimization 

, reference model tracking , and adaptive control 

 Eigen structure assignment  pseudo-inverse Multiple Model 

(MuM)  compensation via additive input design and integrated diagnostics 

and control  For a survey of recent development see 

 and the references therein. 

Since the system control laws, such as for NPs and aircraft, require sensor feedback to set the current dynamic 

state, even slight sensor inaccuracies, if left undetected and unaccommodated for, can lead to closed-loop 

instability and/or performance deterioration. So, reliable SFDA schemes are particularly important and 

becomes even more critical when the measurements of a failed sensor are used in the feed-back of a control 

system ( ). A block diagram of the Fault Detection and Accommodation (FDA) scheme for a system is 

presented on Figure II.29.  

 

Figure II.29 - NN-SFDA outline for a fault in system. 

As an alternative to traditional model-based SFDA schemes which rely on an analytic MM of the real 

system, NN-based SFDA schemes have received an overwhelming amount of research interest over the past 

decades. They have been successfully designed and tested on a variety of engineering systems 

 

Over the past decades many SFDA publications have targeted fixed model-based approaches, with parameter 

estimation and observer-based methods being the most popular. A well-known technique for such sensor FDA 

problem involving AR is a special designed KF which has been used to detect and accommodate the sensor 

failures in the jet engine control. The EKF-SFDA seems to be robust to small and large amounts of parameter 

uncertainties. It is also robust to small modeling errors in the system and measurement noise matrices (Q, R) 

( ).In an attempt to widen the scope of SFDA schemes ( ) designed and applied 

EMRAN RBF to a NL UAV model. This NN had proved a good generalization ability and fast performance 

proposed two schemes based on a NN and the an Extended Kalman Filter (EKF) 

respectively for SFDA and they compared both approaches in terms of execution time, robustness to poorly modelled 

dynamics and sensitivity to different fault types. 



 

 

                                                                

 
 

The SFDIA is an important area of research in the safety critical systems domain (Hussain et al., 2015). 

SFDIA schemes are particularly important when failed sensor measurements are used in the feedback loop of 

an aircraft’s control laws. This could result in closed loop instability, possibly leading to unrecoverable flight 

conditions if the failure is not detected and accommodate for  The FDIA 

scheme must detect and identify any faulty sensor and replace it with a reliable estimate (Hussain et al., 2013).  

Usually, the SFDIA scheme can be divided into three distinct and sequential tasks: 

(a) sensor Fault Detection and identification/isolation (SFDI), which monitors the degree of deterioration in the 

accuracy of the sensors; (b) validate the sensor measurements (SeV) by reconstructing the correct values of the 

faulty signals (i.e., replaces the faulty sensor with an appropriate estimation) ( ).  

 There are two conceptually different approaches to the FDIA and SFDIA problems: physical and Analytical 

Redundancy (AR). Traditionally, FDIA is achieved through high levels of HR. This is still the state-of-the-art 

practice in the aircraft manufacturing industry  For example, 

Airbus A320/330/340/380 has triple or quadruple HR such as actuation, sensor and flight control computer 

systems in order to achieve the level of reliability necessary for the aircraft certification. Typical 

SFDIA techniques based on HR include voting and mid-value selection. In HR for SFDIA, identical sensors are 

used to measure the same parameter (Hussain et al., 2013). In HR for SFDIA, identical sensors are used to 

measure the same parameter; and fault tolerance is achieved based on a voting scheme (Willsky, 1976). For 

example, in a system with three redundant sensors, if one of the redundant signals differs significantly from the 

other two, the differing signal is eliminated. However, HR has serious cost, power and weight implications, 

especially for small aircraft’s like UAVs. Due to these implications (disadvantages) of HR, AR has become an 

alternative and a far more appealing approach for FDIA, particularly SFDIA  AR uses a 

model of the monitored system to generate signals that would otherwise be generated by redundant hardware. In 

its simplest form, the difference between the model estimate and the measured reading is used to generate an 

error residual. This residual is then monitored to detect and identify faults  At nominal 

conditions, these signals follow some known patterns with a certain degree of uncertainty due to system and 

measurement noises. However, when faults occur, the observable outputs deviate from the predicted values 

calculated on-line or off-line from estimation. A sensor failure can be declared when the associated residual 

exceeds, for a single or for multiple time instants, a certain numerical threshold. Over the past decades many 

SFDA publications have targeted fixed model-based approaches, with MM-based methods being the most popular 

 While proving to be successful they are usually limited to linear time-invariant systems (LTISs). 

On other side, SFDA can be developed with operational data without the need of a detailed model of the system. 

(Neppach, Casdorph, 1995) have presented a new NN-based scheme for the problem of SFDIA in a system without 

redundancy. 

The underlying idea in Data Reconciliation (DR) is to formulate the process model as a set of constraints 

(mass and energy balance, some constitutive equations). All measurements are corrected in such a way that 

reconciled values do not violate the constraints. Corrections are minimized in the least square sense, and the 

measurement accuracy is taken into account by using the measurement covariance matrix as a weight for the 

measurement corrections. Sensitivity analysis can be performed and is the basis for the analysis of error 



 

 

                                                                

 
 

propagation in the measurement system  With this technique, variations of some state 

variables can be linked to deviations in any measurement.  

A drawback of DR is the presence of a gross process fault (e.g., a leak): since the basic assumption of DR 

is the correctness of the model, it is efficient to detect and correct failing sensors, but it may be less adequate to 

detect process faults. In this case, the DR procedure will tend to modify correct measurements while in fact 

there is a mismatch between the model and the actual process. 

Detecting anomalies in sensors and reconstructing the correct values of the measured signals is of paramount 

importance for the safe and reliable operation of NPPs  Fault reconstruction consists to 

estimate the fault-free values  An effective scheme of signal reconstruction must be capable 

providing a good estimate of the true value of the signal by correlating the information coming from the non-faulty 

signals in the models of the ensemble plants. Within the proposed approach, a faulty sensor sends a faulty signal 

in input to the PCA models which include that signal.  

The main objective of work was to devise an OLM scheme to reduce the effects of 

sensor faults on the process control, by detecting the faults and then, reconstructing the correct signal values. 

investigated the potential of two different NN approaches, AANN and Kohonen’s Maps, for signal 

FDe and reconstruction using real data. AANN is a five-layer, with a global feedback loop and two different 

training methodologies. Kohonen’s Maps is used to learn the structure of the data. 

Authors demonstrate the accuracy of two different NN-based methods for signal FDe and reconstruction. It is 

established that both methods are able to reconstruct single soft failure as well as two consecutive faults. But their 

reconstruction quality becomes poorer if more faults occur consecutively.  

addresses the problem of reconstructing the correct signal values measured by faulty sensors in 

NPPs by using AANN to effectively handle the dimensionality of the problem due to the large number of sensors. 

Concerning the development of a SeV and reconstruction model, a common approach is that of using AA 

models Hoffmann, 2006  The practical problem, however, is that a single AA model cannot 

handle the multiplicity of the measured signals on a real plant  A possible 

way to overtake this limitation is to subdivide the signals into small overlapping groups, develop an ensemble 

of models, one for each group, and finally, combine their outcomes. Key to build the ensemble is the diversity 

of the individual models. The groups thereby created are used to develop a corresponding number of SeV and 

reconstruction PCA models  To improve the accuracy of the reconstruction, past 

signal measurements are used as further input to the models and the reconstruction of the faulty signals is iterated 

until satisfactory convergence. 

Auto-associative regression models can be used for the signal reconstruction task but in real applications the 

number of sensors signals may be too large to be handled effectively by one single model. In these cases, one 

may resort to an ensemble of reconstruction models, each one handles a small group of sensor signals; the 

outcomes of the individual models are then combined to produce the final reconstruction. In 

 three methods for aggregating the outcomes of a feature-randomized ensemble of PCA-based regression 

models are analyzed and applied to two case studies concerning the reconstruction of a set of signals monitored 

at a Finnish nuclear PWR and a set of simulated signals of the Swedish Forsmark-3 BWR. Based on the insights 

gained, two novel aggregation procedures are developed for optimal signal reconstruction. 

Usually, reconstructing signals in realistic applications meets the constraint of the very large number of measured 

signals which cannot be handled effectively by a single reconstruction model 



 

 

                                                                

 
 

 This problem is tackled by resorting to an ensemble-based signal reconstruction procedure. The 

ensemble approach is founded on the subdivision of the set of sensor signals into small overlapping groups; a 

reconstruction model is developed for each group of signals and the outcomes of the individual models are 

eventually aggregated to generate the reconstructed signal (Figure II.30). 

 

Figure II.30 - Multi-ensemble approach to signal reconstruction. 

The set of signals is first subdivided into small, overlapping groups, made diverse by randomly sampling the 

signals according to the RFSE procedure. Then, one PCA-based reconstruction model is developed using the 

signals of each group. Finally, the outcomes of the models are aggregated to provide the ensemble 

reconstruction (Baraldi et al., 2011a). 

The mathematical background and other details of the FDIR technique are given in  

The sensor calibration and measurement estimation technique is also a sequential procedure which is performed 

on-line in the framework of the aforesaid FDIR technique. 

FDIR is an important and challenging problem in many disciplines such as chemical engineering 

 nuclear 

engineering aerospace engineering  and automotive systems   

The FDIR technique used in the FTo system is a sequential DM procedure that systematically seeks out the 

largest consistent subset from a set of redundant measurements where the consistencies among individual 

measurements of a given process variable are determined on the basis of allowable errors. 

After the FDe, it is the task of the reconfiguration to switch to the standby function module and to remove the 

faulty one (Figure II.31). These modules can be hardware components or software parts, either identical or diverse 

(Isermann, 2006).  

 

Figure II.31 - Basic scheme of FTo system with parallel function modules as redundancy. 

The reconfiguration is a change in input-output between the controller and the plant through change of 

controller structure and parameters. The original control objective is achieved although performance may 

degrade (Blanke et al., 2001). The reconfiguration step involves changing the controller in response to the detected 

faults to ensure a safe and satisfactory operation of the system  



 

 

                                                                

 
 

The reconfiguration is the stage in which the entity (operator, engineer, controller, etc.) responsible of the proper 

operating of the system must remedy the fault that has arisen  This step can be seen as a return to 

the nominal operating conditions of the process which is digested according to the types of the encountered 

problems. It includes corrective actions on physical process components and / or adjustments to process control 

settings. 

The reconfiguration that acts on the preceded by adapting the hardware configuration to the situation, as well as 

on the control system by changing the control law  

There are various methods of reconfiguration control, such as those based on on-line learning or system 

identification. focused on reconfiguration control methods based on FDI techniques which are 

classified as the multiple-model approach and the adaptive control approach. 

The difference between accommodation and reconfiguration whether input-output between controller and 

plant is changed. Reconfiguration implies use of different Input/Output (I/O) relations between the controller 

and the system. Switch of the system to a different internal structure, to change its mode of operation, is an 

example of such I/O switching. Accommodation does not use such means. 

Both FAc and SR strategies may need new control laws in response to faults. They also have to manage transient 

behavior, which result from the change of control law or change of the constraints’ structure. Two different 

strategies can be in turn distinguished in AFTC. In the so-called FAc approaches, new tuning parameters for the 

controller are calculated according to the FDD estimations. This strategy requires that the FDD module provides 

a precise estimation of the fault. On the other hand, in the SR strategy, the connections between the controller 

and the system are modified to compensate the fault (for instance, use of an additional sensor to substitute a 

broken one). This strategy requires only FIso (identification of the faulty component), but not fault (size) 

estimation. The problem is that HR of components is required. 

The fault removal technique is mainly used to reduce the number of faults which are present in the system. 

During development and operational phases of the system; fault removal is performed. Fault removal during 

development phase is completed in three steps: verification, diagnosis and Correction. 

Verification is the process of checking whether the system satisfies the pre-specified conditions. If it so 

happens, the next step is the diagnosing the faults that prevented the verification conditions from being fulfilled 

and then performing the necessary corrections. During operational phase, fault removal is performed in 

following two steps: corrective and preventive maintenance. 

During operation phase, the corrective maintenance is performed to remove faults that have produced one 

or more errors and have been reported. In case of preventive maintenance, some adjustments are made or parts 

which may undergo to be faulty during normal operation are replaced before occurring the system failure. In 

addition to this, preventive maintenance is the achievement to avoid high cost of replacement or avoid damages 

of the surrounding of the system components. It is to be mentioned that the corrective and preventive forms of 

fault removal technique are applied to fault tolerant systems as well as non-fault tolerant systems that can be 

maintained without interrupting service delivery or during service outage. 

Seen the complexity and size of current plant systems, operators and decision makers are forced to 

manipulate considerable information of monitoring and control an increasing number of variables and 



 

 

                                                                

 
 

parameters. Furthermore, this information received as measurements are susceptible to error and uncertainties 

making the job of operators more and more difficult. Therefore, the operators made mostly call to an outside 

help to a DM. In this situation, the operators need indicators and tools for FM and DM to perform, validate, 

justify, evaluate or correct important decisions which should be taken. This is made according to criteria more 

complex and interdependent. Therefore, the design of a supervision system associated to an assistant decision tool 

seems necessary  This allows the operator to take advantage of the computer component 

and to cooperate together to carry out a better supervision of changes and anomalies. This offers also the 

possibility of increasing accuracy and speed of decisions and makes them more effective. For example, the 

general structure of a model-based FDi system comprising residual generation, residual evaluation and decision 

making (Figure II.32). The residuals are evaluated for the likelihood of faults, and a decision rule is then applied 

to determine if any faults have occurred.

 

Figure II.32 – Emplacement of decision making at supervision system. 

DM is a reasoning method and a complex cognitive processes phenomenon being able to learn on rational 

and\or irrational arguments. It is based on the knowledge and the experiment of the decision-makers, as well as 

on the historic analysis. It is a control phase activated when we feel a need to act without knowing 

how to steer a given situation. It implies the apprehension of the risk and the commitment of the responsibility. 

It is the activity of taking support on models clearly explicit and completely formalized, and helps to obtain 

answers to the asked questions by a speaker in a process of decision. 

DM exploits the progress of the data processing, to help a decision-maker to analyze a problem appeared during 

operation and to show him how to find final solutions for abnormal and emergency states by selecting, by mean 

of some procedures, e.g., automatic, a manner of action among several alternative and arrangement scenarios 

and to put it back to the operator to help him in processing correctly the situation after the apparition of the 

fault. 

The decision determines the state to be reached for the return to normal operation and the sequence of corrective 

actions to achieve to arrive at this state  

DM can be an action or an opinion of choice, but decision without action remains a simple hypothesis without 

suite. So, we have to differentiate between find solutions to a problem and resolve it (eliminate definitively the 

problem). The DM can be done by determinist or probabilistic approaches  

The progress of the computing and the AI have been integrated in the Aided Decision System (ADS), domain 

aiming to design computer tools and to exploit it in ADS's started (e.g., software - expert). Computing decision 

indicates means, tools and methods which allow collecting, strengthen, model and restore data, material or 

immaterial, of a system to offer a help to the decision and allow the decision makers of the company strategy 

to have a general view of the processed activity. 

http://fr.wikipedia.org/wiki/D%C3%A9cision


 

 

                                                                

 
 

There are three decision types: (a) non-structured decision - the administrator emits a judgment, an 

evaluation and a point of view in front of a problem without ready-made answer or pre-established procedure; 

b) structured decision - is a repetitive and routine activity accompanying by a defined procedure, (c) semi-structured 

decision - contains a part of the problem which can be only adjusted with a predefined procedure. 

There are four decision modes: (a) autocratic - the responsible collects and analyses data, arbitrates and 

decide alone; (b) consultative - decision maker, before cutting, asks for opinions and for the suggestions of the 

co-workers concerned by the question; (c) concerted - the decision maker puts its co-workers in the fact of the 

problem and invites them to elaborate possible solutions; (d) co-decision-making - the decision maker and 

concerned co-workers analyze problem in common and discuss to agree on a proposition to be taken. The 

choice of such or such mode depends of: the nature of the problem; constraints of time and the style of the 

practiced management. 

To perform DM, several steps are needed: (a) Perception of the key elements of the situation to detect the 

symptoms of the situation requiring an intervention, and to formulate correctly the objective to achieve; (b) 

Identification of the problem by looking for, study and analyze available means. (c) Elaboration of solutions by 

listing all the possible solutions and analyzing advantages and drawbacks of every solution towards reserved 

criteria; (d) Choice of a solution by choosing between various possible options and to elaborate an action plan 

allowing the implementation of the decision. (e) Implementation of the decision by communicating retained 

solutions, looking for the feed-back of the implied partners and realizing actions for implementing the decision; 

(f) control by checking actions, analyzing gaps and comparing obtained results with regard to the defined goal. 

When decision is difficult to take, there are several steps one can take to ensure the best possible solutions will 

be decided. These steps are put into seven effective ways to go about this DM process: (a) outline your goal and 

outcome. This will enable decision makers to see exactly what they are trying to accomplish and keep them on 

a specific path; (b) gather data. This will help decision makers to have actual evidence and help them to come up 

with a solution; (c) brainstorm to develop alternatives. Coming up with more than one solution allows you to see 

which one can actually work; (d) decision making. Once each solution is analyzed, you should pick the one that 

everyone can agree with. (e) immediately take action. Once the decision is picked, we should implement it right 

manner; f) learns from, and reflects on the DM. This step allows you to see what you did right and wrong when 

coming up, and putting the decision to use. Finally, these decision steps are summarized on the following Figure 

II.33. (Pijanowski, 2009) developed eight stages of DM based on the work of James Rest. 

Finally, these stages can be summarized in two main phases: (a) problem finding: the decision-maker determines 

which to be confronted; (b) problem-solving: it is the most studied phase which consists to answer the first 

formulated problem. It is possible that in this stage, the decision-maker will be obligated to reformulate his initial 

problem. In turn, the problem-solving phase is decomposed into several stages and notably: (i) the collection of 

information; (ii) the analysis of this information and the creation of potential solutions; and (iii) the DM which 

follows on this analysis, consists in choosing and so to give up the other possibilities.  

As soon as the software on a PC can help a manager to make a decision, this program will be certainly 

called ADS. After data are analyzed by FM system, the ADS consists to collect passively these data, to analyze 

the coherence of data measures and to organize them in an effective way to allow the selection of a type of 

action among different alternatives as a reliable suggestion for DM stage. To make a good decision, one usually 

based on the quality of data and the capacity to be reviewed and analyzed to find tendencies which lead to 

create solutions and strategies of the decision making. So, the ADS offer the possibility of increasing precision, 

accuracy and speed of the decisions that the administrators seek to make them more effective. 

http://en.wikipedia.org/wiki/James_Rest


 

 

                                                                

 
 

 

Figure II.33 - Main steps of decision. 

Several conditions are ideally necessary for ADS such as good understanding of problems and context; a 

complete vision on data and information; the taking into consideration of all the possible solutions; caution in 

the future predictions and results, including an evaluation of risks and access to adapted and modern tools of 

ADS. So, ADS took increasing places in certain processes of decision so much so that it is often replaced the 

man component by automatic processes. 

The ADS systems can be classified into three main axes: the systems of information and analysis (systems of 

documentation, data bases, data analysis, simulations, some ESs, etc.); the ADS systems (ESs, choice support software, 

etc.); and the communication and cooperation systems. 

Furthermore, the ADS works can be subdivided into three main families corresponding to three different methods 

 (a) The first way aims to search the better decision to reach an optimal solution. So, the analysts 

using this method formulate problem and use operational research to resolve it. (b) The second way consists to 

design a set of rules, constituting a set of requirements. It characterizes rational behavior in a decision. The 

analyst conceives a reasonable set of hypothesizes so that the decision-maker can get adequate conclusions 

concerning its decision. Among the works using this method, the utility theory hoped from and multi attribute 

of  (c) The third way has for object to supply, to the decision-maker, advices and 

recommendations. It does not try to give an optimal decision because of conflicts and alterations which 

intervene during the progress of the procedure of decision. But it supplies rather an appropriate decision resulting 

from a compromise action. Furthermore, it allows involving the decision-maker in the construction phase of the 

model so, that it can integrate it into his preferences. By opposition in the first two big families, this third does 

not consider the decision-maker as rational. More details concerning this method as well as the criticisms of first 

two approaches are available in . 

On other side, in consultant system, the user supplies information about the state of the system and in turns it 

receives an advice. In semi-active system, the call to the system is made automatically. It is a watch-dog system 

and automatic reminder system which oversees the user attitude. It allows avoiding redundant investigations 

and prescription errors. Alarm system allows taking attention on the situation of the system modification, and 

indicates abnormal parameter value change. An active system of ADS shows explicitly solutions based on data. 

They start automatically and can make decisions without intervention of the operator. Although there are 

numerous systems which are able of being active, numerous organizations would be difficult to put all their 

faith in a computer model without any human intervention. 

With the proliferation of plants in different field of industry, during the last years there is a fast increase 

of the information collection capacities. This allows weighing down the analysis and the check of the validity 

of this information. So, in this case we need of the so-called extraction tools of information which can play an 



 

 

                                                                

 
 

important role in various domains such as the analysis of complex systems. These tools influence the analysis 

quality and, as a consequence, influence enormously the decision process as shown on Figure II.34. 

  

Figure II.34 - Impact of decision making on the plant. 

The objective of this chapter was to provide a description of the FS and its constituents which are mainly 

the FM and FC. This description included a presentation of the most important terminology and keyword, 

commonly used in FS domain, to prevent ambiguity which can be meet in the literature. Among this 

terminology we find particularly the fault which is overviewed. In this chapter, we illustrated that FM of 

industrial process, systems and equipment is done through two basic functions; FDe and FDi. FDe has the role 

of reporting any situation other than a nominal situation. In other words, anything that is not normal must be 

classified as abnormal. Then the FDi function must locate the failing organ and identify the causes that caused 

these failure situations. This operation is often conducted by an expert and in some cases requires extensive 

knowledge of the equipment. Furthermore, a detail on FDe and FDi is given including definitions, composition, 

features and some applications. FC is also described in this chapter by giving the definition of common functions 

used in this field. 



 

 

CHAPTER III 

 

The monitoring is the process of identifying (detecting) deviations from normal or expected operation (faults) and 

give necessary information (diagnosing) on the problem. The monitoring process relies on an explicit model of the 

normal system behavior or phenomenologist (function), its structure, and/or its known faults.  

The basic aim of this chapter is to give a broad review to the state of the art of the most common (current) approaches 

of detection, diagnosis and accommodation of industrial plants, particularly NPPs. Then, to present a comparative 

analysis of these techniques. Most of these methods are based on historical data and data retrieved online during 

the operation of the monitored system. They are used to build a behavioral model of the process to identify, as early 

as possible, abnormal situations resulting from malfunctions and failures, to help finally the human operator in 

his decision making. 

These diagnostic techniques are presented in this Chapter, technical details of their implementation are provided, 

the advantages and drawbacks of every technique are outlined, examples from recent research work of expert 

diagnostic practice in industry are presented.  

  



         

 

                                                            

 
 

A great variety of methods have been intensively studied, proposed, developed and presented over the 

recent years to improve the capabilities of CM in different domains and applications such as petrochemical 

processes, air transport (aviation), chemical reactors and NPs and most of these approaches are applicable to steady-

state processes. So, the sample group of monitoring methods is considerable, and each of these competing 

methodologies has their own distinct advantages and disadvantages  Therefore, the choice of 

the appropriate approach is related to the knowledge that one wishes to acquire on the system, but also to the 

nature of this system. 

CM approaches have relied on analyses of specific measurements and aspects of the operation (e.g., vibration 

analysis, strain measurement, thermography and acoustic emissions). Generally, CM systems are based on 

measurements of process variables (acquired from industrial equipment) and variable observed by humans (operators). 

The most successful reasoning strategies employing models require not only the model of the observed process but 

also a model of the process running in normal conditions and the set of models of the faulty process - as many as the 

number of faults to be detected. Common ways of performing CM include acoustic measurement-based 

methods, electrical effects monitoring, power quality and temperature monitoring, oil debris monitoring, 

vibration analysis  physics based data analytics  etc. 

The FDD methods have been reviewed in a number and survey papers 

and books 

Furthermore, an extensive comparison of the various methods can be found in 

  

Since the beginning of 1970, worldwide attention to research in FM has been increasing, both in theory 

and application; a strong impulse comes from the area of modern control theory, which has brought powerful 

techniques that have become feasible thanks to the progress of computer technology. The contribution of these 

FM approaches is indisputable. It is more essential to set up such monitoring systems, to require detailed 

knowledge of the installation: knowledge of its normal behavior but also and especially its abnormal behavior. 

So, these systems require, for their good progress, information about non-measured parameters. 

A considerable number of approaches for FM have been developed for monitoring of engineering systems 

( ). The FDD methods proposed by shows the fundamental and 

most common FDD approaches, and the advantages verses the challenges of each one of them. At present, 

several classifications of these methods have been suggested and studied in the literature in different ways 

  

 One can distinguish two main categories of methods; based on applications and based on dependence on the 

system ( ). The first category is influenced by the context and the particular domain of application 

(area of consideration) in every community and therefore not homogeneous ( ; ). 

The second category is influenced by the way and form of the used process knowledge 

 Particularly, these methods are classified as ones which use process-model information, and ones which rely 

on process-history-based knowledge. The former rely on deep, causal or model-based knowledge while the latter rely on 

knowledge extracted from past experience with the process otherwise known as shallow, complied, evidential or 

process history-based   



         

 

                                                            

 
 

Among these classifications of methods, we also distinguish mainly: model-based/model-free known also by 

deepened/non-deepened knowledge  Model-based/Data-based  

classified these methods based on the form of process knowledge in terms of 

model-based (quantitative/qualitative) and process history based. 

We find also in literature other classification such as internal/external, static/dynamic 

 

However, for some monitoring techniques, the distinction between these different categories and classifications 

is unfounded because they use in a mixed way the parts of the classification by trying to benefit from advantages 

and free oneself from limitations of each of them. Therefore, it is often delicate to determine a method the most 

appropriated for the resolution of the FDe and FDi problem. 

At a first level, the FM methodology usually could be divided as it is shown on Figure III.1, into two major 

families with model and without model  So, the existence of 

formal or MM of the system defines the method to be used. First, the methods which require a detailed 

knowledge on the physical system or these which use the physical system itself under HR form; they are 

methods base on phenomenological models are MBTs. Second, methods not requiring greater knowledge of the 

physical system, but which use a knowledge inspired from the past experiments; one distinguishes then methods 

without model or based on behavioral models; they are model-free methods (MFMs).  

 

Figure III.1 - Classification of FM methods into model-based or model-free (Olivier-Maget, 2007).  

In the first category, HR schemes were firstly developed to detect faults in physical components using 

identical hardware components. Although this method is of high reliability and can directly isolate faults, using 

redundant hardware, leads to congestion and increase cost and time-consuming processes.  

After computer science community has developed continuously, computational techniques have become the 

main potential innovation in terms of software forms by exploring physical laws used in process components 

and knowledge-based schemes. As a result, most HR approaches have been substituted by AR schemes to tackle 

the aforementioned constraints. 

The second category of methods is very interesting when the model of equipment or component does not 

exist or difficult to obtain. In this case we use the available measurements (data) and knowledge to extract 



         

 

                                                            

 
 

information then to use statistical and AI tools to treat them to represent the different operation modes of the 

equipment.  

The difference between these two approaches (i.e., model-based or model-free) lies on the way the symptoms are 

generated. The main step in all MBTs is the generation of fault symptoms by comparing a reference or normal operation 

model with actual data. In model-free FDD, the available behavior is translated into suitable symptom and 

reasoning strategies are applied to reach detect fault and to FDi decisions. Contrary to MBTs, FMMs have the 

advantages to do not need the knowledge of mathematical or structural model of the process. Only, the 

availability of historical data of the process is needed.  

The main step in all MBTs is the generation of fault symptoms by comparing a reference or normal operation 

model with actual data. MBTs all use models developed in either online or off-line mode but the difference between 

them (i.e., model-based or free model) depends on the way that the symptom (i.e., model) is generated. The manner to 

form MBTs is typically grouped into quantitative and qualitative models (Figure III.4).  

Quantitative models (differential equations, state space methods, transfer functions, etc.) are used to generally utilize 

results from the field of the control theory. In qualitative models, the relation between the variables to obtain the 

expected system behavior is expressed in terms of qualitative functions centered on different units in the process 

such as causal models and abstraction hierarchy. They are used, in particular, for large and NL systems. The 

analysis methods used in the qualitative model are Fault Tree Analysis (FTA), Failure Modes and Effects Analysis 

(FMEA), ETA, structure analysis, etc. These methods can provide an efficient solution for most FDe problems. 

But in some cases, it cannot give correct detection results since the valid process MM required, in this technique, 

is difficult to be obtained in some industrial processes. 

In FMMs, one distinguishes different types of methods classified in different manners. 

classified FMMs based on behavioral knowledge, into knowledge-based and data processing-based. The first methods 

are implemented when the construction of the model is difficult or the available data and measurement on the 

system are not sufficient. So, the experience and acknowledge of the operator are exploited to guarantee the 

good operation of the process e.g., the analysis of the failing modes and their effects (MADE) fault trees (FTrs) or cause 

trees and ESs Villemeur, 1988  The latest methods require usually a wide range of historic data 

during a step of characteristics extraction and then, they analyze these data by various techniques. Therefore, these 

data are considered as source of knowledge for the monitoring system. One distinguishes usually two types of 

procedures according if it is statistical or not. Therefore, these techniques are the statistical techniques of data (e.g., 

the PCA; data classification  and shape recognition); and the non-statistical 

methods (e.g., frequency approach  NNs, the tendencies qualitative analysis 

 

In his general introduction divided model-free monitoring technics into two parts. The first one 

corresponds to statistical tools and SP which are usually qualified as low-level processing tools, because they are in 

direct contact with the sensor signal, and are usually used only for the generation of alarms, without any 

information regarding their meaning. The statistical tools establish tests on the acquisition signals, tests that are 

only able to ensure the FDe function. The second part is that of so-called high-level techniques which are more 

oriented towards communication with the expert. These represent the techniques of AI and serve as a basic tool 

for decision support. Their response is therefore more elaborate than that of low-level techniques and they are 

able to detect, interpret (association with a mode) and diagnose failures. The author, then, proposed a second 

classification with two parts: statistical tools and PR. The statistical tools are able to establish tests to ensure only 

FDe. On the contrary to statistical tools, the Knowledge-Based Technique (KBT) are more elaborate compared to 

simple statistical tests and are able to detect and diagnose fault.  

Further, classified model-free methods into DDTs (multivariate) and SiBTs (univariate) as 

shown by Figure III.2. Data-driven FDD methods rely on relationships between correlated measurements within 



         

 

                                                            

 
 

a system. However, the relationships can be formulated in an implicit way by training an empirical model 

through analysis of fault-free training data obtained during normal operations. This empirical model is then 

used to estimate true values of new measurements, and faults are detected and diagnosed by evaluating the 

estimation residuals. SiBTs make FDD decisions by comparing features (e.g., spectrum) extracted from a signal 

with desired normal baseline values. We not that in some references, SiBTs are included in DDTs. 

  

Figure III.2 - Classification of FM methods into Mathematical Model Technique (MMBTs) M, DDTs and SiBTs.  

While practical applications of MMBTs are very limited, various DDTs and SiBTs have been extensively applied 

for monitoring key subsystems in various industrials  

According to ; ), FM methods can be classified 

into two categories as illustrated on Figure III.3: model-based and data based methods also called DDTs, or process 

history Amann et al., 1999; ).  

  

Figure III.3 - Classification of FM methods into MBTs and DDTs.  

added to this classification, the combination of both categories. This classification is most 

dominant and is based on the required a priori process knowledge, (i.e., is the set of faults and relationships between 

the symptoms and the faults)   divided also the model-based and the data-

based methods into two groups: quantitative and qualitative methods as shown on Figure III.4.  

DDTs need healthy and faulty data from the system which in turn requires large amounts of 

data transmission and computation. By contrast, in the MMBTs  the MM of the system along 

with the sensor measurements are utilized to detect and diagnose faults. Researchers have worked on model-

based FDe schemes, using adaptive estimators, NN based estimators  fuzzy 

observers, etc. 

 The MBTs rely upon knowledge of the underlying physical processes and first principles governing the 

system(s) being analyzed. Quantitative model-based approaches which include rule-based FDD, have been 

extensively used in the industry. 

The process history-based (data-driven) approaches do not rely upon knowledge of first principles, but may leverage 

some degree of engineering knowledge; they rely upon data from the system in operation. These include 

statistical regression models, NNs, and other methods.  



         

 

                                                            

 
 

Based on the type of knowledge they use, FM methods differ and therefore we can so classify them in 

MBTs, KBTs and DDTs as shown on Figure III.4. MBTs are based on a structural model 

of the of the dynamic system behavior and on fundamental laws governing the system. They employ consistency 

checks between the sensed measurements and the outputs of a MM. The expectation is that inconsistencies are 

large in the presence of malfunctions and small in the presence of normal disturbances, noise and modeling 

errors. Model can then be quantitative (for example a system of algebraic differential equations), qualitative or semi 

qualitative (for example a set of logical relations), or also fuzzy (representation of the characteristics of a system by 

means of fuzzy rules which describe its behavior). Historic DDTs preferred when system models are not available, 

but instead big quantities of historic data of the process are then necessary. DDTs are preferred when the system 

monitoring data for nominal and degraded conditions is available. In KBTs knowledge, competence and reasoning 

of the human experts are valued in these methods. They are indeed translated into rules to resolve problem. KBTs 

use graphical models such as dependency graphs (digraphs), Petri nets, multi-signal (multi-functional) flow graphs, and 

Bayesian networks (BNs) for FDi knowledge representation and inference.  

On the other hand, have been classified FM methods into three categories: ABTs, KBTs and DDTs. 

In the FM method classification given by  the model-quantitative-based, data-quantitative-based, 

and the combination of model-qualitative-based and data-qualitative-based methods as shown in Figure III.4, can be 

seen respectively as ABTs, KBTs and DDTs in model. 

 

Figure III.4 – Rearrangement of Classification of FM methods given by (Zhang, Jiang, 2008) into ABTs, KBTs and DDTs. 

In quantitative and qualitative MBTs, AR is used to generate residuals that can be used to detect faults. The 

quantitative MBTs, such as parity relations, observer-based methods and KFs, use MMs for residual generation, 

while qualitative MBTs use PR techniques for FDe  

The analytical model, according to  is not adequate for large-scale NL and 

complex systems. All measures based on DDTs, ABTs, and KBTs have their advantages and disadvantages, so 

that no single approach is best for all applications. summarizes the general advantages and 

challenges of each type of FDD approaches when have applied to robotic systems. 

FM methods can be classified into three main categories as shown in Figure III.5; Model-based, Knowledge-

based and signal-based 

SiBTs depend on the analysis of measured signal without knowing the system model especially for large and/or 

complex. The fault can be detected by applying a simple analysis, such as the Limit Checking (LC) method, 

frequency analysis method, data characteristics analysis method, etc. or advanced technique such as, the 

principal-component analysis (PCA), wavelet and PLS analysis. 



         

 

                                                            

 
 

 

Figure III.5 - Classification of FM methods into MBTs, KBTs and SiBTs. 

added to the previous categorization of FDD methods the hybrid FDi and active FDi. 

Hybrid FDi is an integration or combination of more than one FDi methods. Active FDi is to enhance the 

detectability of potential faults by injecting a suitably designed input signal under test interval so that faulty 

modes can be distinguished from normal modes quickly and accurately.  

Other used depending on the knowledge and the nature of information processing, classified FDi methods 

as quantitative based methods and qualitative based methods. The precedent classification, MBT/DDT given by 

Figure III.2 can be rearranged in a new classification based on two major categories: quantitative and qualitative 

models as illustrated by Figure III.6a. Furthermore, 

have been added to this classification a third 

category which is the process history-based methods as presented by Figure III.b. Quantitative approaches are mainly 

analytical models based on the mathematical modeling methods (parity space, observers, parameter estimation, etc.). 

I  
 

 

Figure III.6 - Classification of FM methods into: (a: left) qualitative and quantitative methods. (b: right) qualitative, 
quantitative and process history-based methods. 

proposed a more extended classification of FDD as five categories (Figure III.7) : MMBTs, SiBTs, PR 

methods, data fusion methods, and DDTs. He listed some of well-known properties of these categories and also 

gave some details (such as general principle, example algorithms and typical applications). The author gave 

also details on each category. categorized the approaches for the FM into model-based, signal-

based, knowledge-based, hybrid-based Benmoussa, Djezir, 2017  and active approaches.  

Others classification of FM methods can be made as linear and NL characteristics of systems as given by 

 have classified FM methods in four areas: HR, plausibility tests, software/AR 

schemes and SP. These methods also may be grouped under the broad headings of ESs : 

Qualitative reasoning  Model-based diagnosis from an AI perspective  Model-

based diagnosis from control engineering  and NNs   



         

 

                                                            

 
 

 

Figure III.7 - Classification of FM methods according to (Ma, 2015). 

Model-based FDi was originated by in order to replace HR by AR. Research into model-

based monitoring was intensified during the 1980s and 1990s. Today, it is still an expanding research area with 

many unresolved issues. The main reference works in this field are:  Recently, developing 

and using models has become more prominent due to the complexity of modern industrial processes and the 

need to optimize operating conditions from both an economic and safety points of view 

 

A model is a simple or abstract representation (diagram, graphic representation, mathematic equations, 

etc.) of a physical system. It can be obtained by using either physical principles or systems identification 

techniques. Dynamic models of physical systems may be represented in different ways: logical statements 

 mathematic equations  Bond Graph (BG)  bloc diagram and 

BG  digraphs etc. The preference of the adequate representation of the physical system depends 

on the purpose of the search. The modeling is totally dependent on a good a priori knowledge of the input/output 

behavior of the process. A model representation of process must first be established in order to reproduce as 

faithfully the real behavior of the system. A model characterizes a physical system by a set of properties that 

facilitate its description and understanding. So, at the supervision level, any description of the process, which 

brings a priori knowledge on its characteristics and functionalities, constitutes a model of this process. 

Therefore, a precise and accurate model of the system constitutes the cornerstone of process control theory.  

Model-based diagnosis uses knowledge about structure, function and behavior and provides device independent FDi 

procedures. The use of models enables the estimation of variables and parameters which are influenced by the fault. 

In addition, MBTs have the potential of early detection of slowly developing faults in complex processes. 

The models can be of different natures depending on the information available on the process. We can 

distinguish two main types of model approaches as shown on Figure III.8: quantitative (structural, 

phenomenological) models and qualitative (behavioral) models. The quantitative level reflects the connections 

between the different components and devices of the physical system. Whereas, qualitative representation is 

made up of so-called "cause-and-effect" relationships (relations between system variables). 

In addition to both categories of this classification of methods, added Fuzzy methods as a 

third category. Furthermore, classified the MBTs into two categories: hardware and 

AR; and proposed a classification into hardware and AR, and parametrical estimation. According 

to the MBTs classification given on Figure III.8, it is possible to define two different formulations: FDiso 

approach, from the automatic community, based on quantitative models, and the DX approach (from the name of 

the international workshop on principles of diagnosis) of the AI community using qualitative models ( ). 

These methods and associated model type differ from each other not only by the knowledge available on the 

physical system and its faults, but also by the manner this knowledge is exploited. 



         

 

                                                            

 
 

 

Figure III.8 - Types of Model. 

Models become valuable tools for studying and making predictions only when they capture types of 

interactions and their magnitude. In MBTs for FDD, a model is used to represent the normal behavior of the 

system ( ) to estimate the states or parameters of the system. The model used in the redundancy for 

generating residual and then for FM, can be of different natures depending on the information available on the 

process. In quantitative and qualitative MBTs, the model is used to generate residuals that can be exploited to 

detect faults (Figure III.9). Residuals are used to compare measurements made on the system with information 

provided by the model and any difference is then traduced as synonymous of fault. Tools of decision theory are 

then used to determine if this difference is due to perturbation and noise or is the effect of system fault. 

 

Figure III.9 - Schematic illustration of MBT for FDe. 

Approaches based on qualitative models were widely studied in the literature  They 

lean on explicit models of the studied physical system. They have for principle to compare measures made on 

the system with information supplied by the model. Qualitative modeling is today most commonly referred to in 

the literature as qualitative reasoning. Quantitative models are more precise and specific about a system, but require 

a large effort in model construction. Because of this very often ecological systems remain only partially specified 

and one possible approach to their description and analysis comes from qualitative modeling.  

Model-quantitative-based method. Model-quantitative-based method (MQnBM) is based on quantitative 

description and deeper understanding of the associated phenomena governing the physical system. It is 

mathematical functions expressing the input-output behavior (relationship) of the system or the sub-system (i.e., 

device, component) built from physic-chemical principles and basic laws (e.g., physics, balance equations, reaction, 

thermodynamics, chemical, hydraulic). Therefore, these types of model are usually known as quantitative. Model-

Qualitative-based method (MQlBM) are models of analytical (mathematical) type (e.g., differential equations, difference 

equations, relations between variables). The MM can be based on either knowledge of fundamental physics, empirical 

observations, or a hybrid of both.  

Therefore, monitoring methods based on quantitative models are appropriated, particularly in dynamic context 

when the available process information makes it possible to use the physics principles of the process. 

interpreted analytical modeling as a function of several levels: system, physical and mathematical.  

We can distinguish two manners to perform the quantitative model as shown on Figure III.4. (a) Analytically, by 

using MMs of physics lows (e.g., differential equations, difference equations, relations between variables, etc.) and in this 

case the model is named MMBTs or Analytical Model-based Technique (AMBT); (b) By using data, and in this case, 



         

 

                                                            

 
 

the model is named DDTs  and by combination of both methods. In some references, DDTs 

are included in AMBT. 

When a model is available, some MBTs applied in FM possess the advantages of being able to detect 

unknown faults and be applied quickly and online. In addition, MBTs have the potential of early detection of 

slowly developing faults in complex processes. On other side, in the field of the process supervision, the 

accuracy of the MMs for use in the FDD is required in order to be effective ( ). 

However, the construction of such models is very difficult, due to the complex nature or non-linearity of the 

process, parameter variable in the time or lack of available measurements. Even the model-based is made, in 

many cases, may not provide accurate results ( ). 

When observations coming from system are of numerical type and that one has a MM of the system, the 

MMBT is privileged for the monitoring.  

The analytical approach uses first principles to construct MMs of the system 

 A mathematical representation of the process must first be established in order to reproduce as accurately 

as possible the actual behavior of the system. This mathematical representation is usually developed on the 

fundamental laws of chemistry and physics such as the conservation of mass, heat, momentum balance, 

reaction kinetics etc., the first and second principle of thermodynamics, equilibrium between phases, transfer 

laws. Furthermore, this model can be based on input-output data and can be dynamic, static, linear or NL. 

Different analytically-based approaches for monitoring have been developed by the community of the 

automatic . The common point between all these approaches is the need to have a good knowledge 

of the system and of the input / output behavior of 

the process.  

The study on model-based FM initiated in the early 1970s. Intensely motivated by the newly conventional 

observer theory at that time, the first model-based FDe method (FDe filter) was proposed by  Since 

then, the model-based FM theory and technique went from side to side a dynamic and rapid development and 

it is currently becoming an important field of automatic control theory and engineering. In the 70´s and 80´s, it 

was the control community that made the decisive contribution to the model-based FDi theory, while in 2000´s, 

the trends in the FDi theory are marked by enhanced contributions from this three areas: One, is the computer 

science community with knowledge and qualitative-based methods as well as the computational intelligent 

techniques.  

MBTs have been extensively studied for FDD in dynamic systems and AR is the core 

concept that most MBTs are based on. In this case, the normal behavior of a system is represented by a MM. 

Sensory measurements are estimated analytically from other correlated measurements using the model (Figure 

III.10). Faults result in violations of the normal relationships represented in the model, leading to statistically 

abnormal changes in the model residuals, i.e., differences between the analytical estimations and the actual 

measurements. Therefore, faults can be detected by testing these residuals statistically The 

form of the residual is given by: 

 R(t) = f (u(t), y(t), r (t), x (t), θ (t) )  (III.1)  

where u(t) and y(t) denotes measurable inputs and outputs respectively; x(t) and r(t) represent the state variables 

and disturbances, and θ are the process parameters. Process faults cause changes in state variables and model 

parameters. Based on a process model one can estimate x(t) or θ(t) by observed y(t) and u(t). Residual evaluation 



         

 

                                                            

 
 

is accomplished by threshold logic and decision function. Beside fixed thresholds, advanced robust adaptive 

residual evaluators exist  

Different approaches for quantitative models for FDe were developed since the seventies  

The most used techniques for the generation of residuals for FDe, based on analytical models, were presented 

and analyzed by . 

 

Figure III.10 - Process model-based fault detection (Miljković, 2011). 

Most of the ABTs for FDe are decomposed mainly into three major groups as shown by Figure III.11 

which are (a) parameter estimation (b) state 

estimation from KFs observers  (c) and parity relations called also parity equations, 

parity space or consistency relation (  

 

Figure III.11 - Analytical modeling methods. 

Parameter estimators are identifiers of constant quantities of the system or which evolve slowly during time; called 

parameters  Variables are quantities which evolve in a significant way during time. 

The algorithms used to estimate these variables in the determinist case are the observers 

and in the stochastic case are the filters  More details on AMBTs are available in 

 

The AMBTs are computationally efficient. Moreover, it is easy to understand and interpret the FDi results 

when we apply these approaches. As expected, the main disadvantage of AMBTs is the overhead cost of 



         

 

                                                            

 
 

constructing such analytical models. For complex systems, it is expensive and sometimes infeasible to generate 

an accurate model for the entire system. 

An important stochastic FDI method is parameter estimation on the basis of system identification techniques 

(e.g., least-square error and its derived methods), which was initialized by and then illustrated 

by . The first applications of parameter estimation approach were made by . 

in his survey paper illustrated that process FDi can be achieved using the estimation of 

unmeasurable process parameters and/or state variables. This paper gave a generalized structure of FDI based 

on process models and unmeasurable quantities. This structure has been referred to in many subsequent papers 

 reported some experiences in the use of parameter estimation for process FDI. 

studied on-line FDI systems using a combination of parameter estimation and 

heuristic process knowledge. This paper was followed by another survey paper  

and an application paper  gave an application-oriented review of 

parameter estimation FDI methods based on a number of real or laboratory applications. Other development and 

applications of parameter estimation FDI approaches can be found in   

Process parameters or characteristic quantities are understood as constants or time-dependent coefficients 

which appear in the mathematical description of the relationship between the input and output signals in the 

process model.  

In this approach, the faults are assumed to be reflected in system parameters (such as friction, mass, viscosity, 

temperature, pressure, flows, capacitance, inductance.), and only the model structure is needed to be known.  

Parameter estimation estimates the model parameters or an aggregation of several physical parameters and uses 

a parametric model describing the system behavior by supposing that the parameters to be estimated are known 

at nominal operation. Therefore, they consist to identify the parameters characterizing the real operation, from 

input and output system measurements.  

In some cases, a fault could occur due to changes in the system parameters. This can be expressed as a change 

in the ith row and jth column element of the matrix of the state space equations of the system. If the basic structure 

of the system is known, system parameters can be determined with parameter estimation methods by measuring 

input and output signals. 

Faults of a dynamical system are reflected in physical parameters (friction, mass, resistance, capacitance, 

inductance etc.). In most practical cases the process parameters are partially not known or not known at all. They can 

be determined with parameter-estimation methods by measuring the input and output signal if the basic model 

structure is known. The basic idea of the FDe using parameter method is to identify the parameters of the actual 

process on-line which are compared with the reference parameters obtained initially under healthy conditions. 

The parameter estimation based FDi methods are very straight forward if the model parameters have an explicit 

mapping with the physical coefficients.  

This method was well reviewed in the early survey papers ( ) and book (Simani et al., 2002).  

The idea of using the parameter identification approach, Figure III.12, to detect the faults is done via 

estimation of the parameters of the MM due to following procedure, : (a) Choice of parametric model 

of a system; (b) Determination of relationship between the model parameters θi and physical parameters pi  

 θi = f (pi)  (III.2)  

(c) Identification of model parameter vector θ using the input u and output y of the actual system (d) Determination 

of physical parameter vector p  



         

 

                                                            

 
 

                                                                               p = f -1 (θ)  (III.3)  

(e) Calculation of vector deviations, Δp, from its nominal value taken from the nominal model; (f) Decision on a 

fault by exploiting the relationships between faults and changes in the physical parameters, Δpi. 

 

Figure III.12 - FDe with parameter estimation (Frank, 1996).  

The basic idea behind the application of parameter estimation to FDI is that the parameters of the actual 

process are estimated on-line using well known parameter estimation methods. The results are compared with 

the parameters of the reference model obtained initially under fault-free conditions. The resulting deviations 

are the residuals on which any substantial discrepancy indicates a change in the process and may be interpreted 

as a fault. Therefore, deviations in the model parameters serve as the basis for detecting and isolating faults. 

Pioneering work in the development and application of this approach was done by  Other 

important contributions were made . In real time application, it mostly uses Recursive Least Squares 

(RLS) as parameter estimation method. 

The process faults can be indicated by internal, non-measurable process state variables, which can be 

estimated or reconstructed from the measurable signals by using a known process model. 

The concept of observer-based approaches is to estimate the system variables (state or outputs) such as 

Luenberger observer for the deterministic case or a KF for the stochastic case, and use the estimate errors as residuals. 

Observers can be applied for FDe in deterministic environment ( ) like NR ( ) when the process 

parameters are known . 

The state estimation can be carried out using different methods depending on how stochastic the model 

is  In the determinist case by means of observers: for example, in the frequency domain, the 

generalized observers or in the temporal domain, the Lemberger observers or in the stochastic case 
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by means of filters: for example, KF or FDe filters  These two types of methods, 

present analogies in their formulation and their operation, can be represented with the Figure III.13. 

The structure of the detection using KF technique is similar to observers. The major difference is, KF recursively 

estimates model matrices assuming that the measurement noise is white and Gaussian. 

 

Figure III.13 - Type of stat estimation. 

The first use of observers for FDD is dated back to the early 1970s. at Massachusetts Institute of 

Technology (MIT) was the first to apply observer-based FDe models. Since then different observers have been 

applied to sensor FDe of steam generators  power plants  turbofan 

engines  HEs and coal mills  

 Observers can be applied for FDe in deterministic environment ( ) like NR when the process 

parameters are known  In recent years, many solutions for the FDI problem that use an 

observer-based approach have been proposed. The advantage of using an observer is the flexibility to select its 

gains that leads to a rich variety of FDI schemes   

The essence of the advanced observers is to construct an augmented system by introducing the concerned fault as 

an additional state and the extended state vector is thereafter estimated, leading to the estimates of the 

concerned fault signal together with original system states. Therefore, the advanced observers are also called 

simultaneous state and fault observers. 

Advanced observer techniques such as Proportional And Integral (PI) observers (Gao, 2008  

Proportional Multiple Integral (PMI) observers  adaptive observer 

 sliding mode observers  and 

descriptor observers are usually utilized for Fest /reconstruction. Others methods 

for the design of FM observers include an Eigen structure assignment approach, an UIO approach, 

and a geometric approach proposed in   

The above advanced observer techniques are in an advantage position either for reconstructing slow-varying 

additive faults (PI, and PMI observers), slow-varying parameter faults (adaptive observers), actuator faults with 

sinusoidal waveforms (sliding mode observers), and high-frequency sensor faults (descriptor system 

approaches). 

first applied Luenberger observers for FDe and various sensor FIso schemes were later developed 

 The survey paper established the position of observer-based methods in model-based 

FDI. In this survey paper, many different schemes using both linear and NL observers are reviewed and some 

application examples were presented. used sliding mode observers to estimate the system state 

variables then a fault-reconstruction scheme is proposed to approximate the fault signal and it can be 

implemented online. 

Actually, the above observer techniques may be integrated or combined in order to solve engineering-oriented 

problems. For instance, in  integral observer, sliding observers and adaptive observers are combined 

to reconstruct sensor faults for satellite control systems. In  PI observer and descriptor observer 

techniques are integrated to estimate parameter faults for an aero engine system. 
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In parallel with the development of the FDi for deterministic systems, stochastic approaches were also 

developed for FDi in the early 1970s. A general FDD procedure was first proposed in by 

using residuals (or innovations) generated by KFs with similar structure to observers, where the faults were 

diagnosed by statistic testing on whiteness, mean and covariance of the residuals. The state-estimation based 

methods are typically useful when all of the state parameters are not observable. 

The purpose of state estimation methods is to reconstruct the unmeasurable states and outputs of the system 

from the available measurement of inputs and outputs ; ). Therefore, the state-

estimation based methods are typically useful when all of the state parameters are not observable. By opposition 

of open loop methods (space of parity), this strategy works in closed loop as shown by Figure III.14. For more 

details on state estimation techniques for FDI see ( ). 

 

Figure III.14 - Residual generation based on stat estimation model.  

The KF is one of the main state-estimation and quite popular 

algorithms which is widely applied to linear dynamical systems 

because of their systematic design, noise disposal and enhance sensitivity. The usual way to deal with 

measurement uncertainty is to apply techniques based on the KF, which should be able to estimate engine 

performance parameters and measurement biases in the presence of noise. Therefore, they are used in a noisy 

environment ( . When used in practice, KF-based estimation techniques are 

affected by several drawbacks  resulting in inaccuracy and lack of reliability. 

Faults can be modeled as state variable changes. Limiting consideration to LSs, the actual system may be given 

in continuous time by state equations. 

KF has a systematic design, noise disposal and enhances sensitivity to produce the effective results. Therefore, 

most of the early research work on the FDe problem was based on the application of KF techniques 

  

KF-based observer design has been used by  It was used for FDI in a dynamic 

system and also in other application examples of KF-based FM can be found in 

; respectively for electronic systems under mechanical shock, and permanent-magnet 

synchronous motors.  

Further researches have led to a couple of modified KF techniques for FDi, such as extended KFs (EKFs), 

unscented KFs, adaptive KFs, and augmented state KFs. Unlike the conventional KFs, the EKF can be used to 

monitor the faults in a NL industrial process. The Unscented Kalman Filter (UKF) depending on a more accurate 

stochastic approximation, i.e., unscented transform, can better capture the true mean and covariance leading to 

better FDi performance ;  Adaptive KFs can be employed to tune process noise 
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covariance matrix, or measurement noise covariance matrix in order to obtain satisfactory FM  

The augmented state KFs can be utilized to simultaneously estimate system states and fault signals 

). 

The parity relation approaches were originally proposed in the early 1980s by although 

he used a different terminology. Unfortunately, his papers have not received enough attention due to their 

limited availability. This approach was later, independently proposed by  and a number 

of different forms of parity space approach have been introduced. For example, gave a parity 

relation design method in the domain. developed a stochastic system FDI approach based 

upon a direct development of the parity vector concept used in HR. This technique is improved by 

 then have introduced for the FDI by  

Parity relations are subjected to a linear dynamic transformation and are rearranged direct input-output 

model equation in a particular space, named parity space ( ). The parity relation method checks the 

consistency (parity) of the measurements with regard to their estimated given by the model of mathematical 

equations of the system to generate residuals (parity vector). This allows eliminating the unknowns by means 

of redundancy. 

Two sorts of parity space according to the equation nature with which the model is built. They are state-space-

based and input-output-based ( ). The residual in the parity space approach is either defined based 

on the input-output operator representation of the system as: 

R(s) = [Y(s) - G (s) U(s)] V(s)  (3.4)  

where Y(s), U(s), G(s) and V(s) represents respectively the output, the input, the nominal process model and a 

filter yet free to select.  

The basis configuration of the parity space approach in input-output format, first described by 

 is shown in Figure III.15. The residual can be calculated with the aid of Laplace transform ( ). 

 

Figure III.15 - Redundancy based on parity relations (Touaf, 2005). 

The parity relation approach can be applied to either time-domain state-space model or frequency-domain input-output 

model, which is well revisited by the books  Recently, the parity relation method 

is extended for FM for more complex models such as TS fuzzy NL systems and fuzzy tree models 

and applied to various industrial systems such as aircraft control surface actuators 

and electromechanical brake systems   

Parity approach is known by its simplicity. However, accurate and complete MMs are not always easy to obtain, 

even impossible, for complex processes such as chemical and nuclear processes.  



         

 

                                                            

 
 

While proving to be successful MMBTs are usually limited to LTISs. But in most cases, the assumption 

that the system is entirety linear is not often valid  Therefore, these techniques 

(i.e., parameter estimation, observers, state estimation and parity equations) might perform inadequately, in the NL 

regions.  

Novel MMBTs for FDI of NL systems include adaptive estimation schemes 

where the model is continuously tuned to fit the time varying system. Other MMBTs can be found in 

and the references therein and some of them usually suffer from the lack 

of an appropriate mathematical description of the system being considered.  

If there is no, or not sufficiently accurate analytical models, then the one feasible way is to use the so-called AI 

techniques, such as NNs which is steadily growing in the FDe field 

 Furthermore, recent literature has seen efforts been made to address these issues, particularly with 

the linearity assumption of the KFs  Several versions of the KF have been developed and 

applied to various fault tolerance and state estimation problems in NL systems 

  

In conclusion, the application of any model-based FDI scheme is primarily a question of the quality of the 

available MM of the system ( ). The success of the MMBT is heavily dependent on the quality of the 

models, so accurate modeling for a complex NL system is very difficult to achieve in practice ( ). 

Furthermore, the main problems associated with the application of these FDe schemes are their suitability only 

for linear time invariant systems and their applicability only when the system model is identical to the filter or 

observer model and/or with a high signal-to-noise ratio ( ). The sensitivity to modeling errors has 

become the key problem in the application of MMBTs  Hence, actually a great effort is concentrated 

on the development and enhancement of NL and robust approaches,  

AMBTs for linear and NL time invariant systems are very appealing due to their advantages of speed in 

terms of on-board real-time implementation are the most accurate and reliable. The success of the MMBT is 

dependent on the quality of the models and the fidelity of the system. In the real world, most of such methods 

can suffer from serious drawbacks such as computational complexity and in terms of robustness to time varying 

system parameters, modeling discrepancies between real system and MM, disturbances, noise, and to non-linearities 

which can engender errors in the model. So, reliability of FM often decreases as this system factors increase. In 

some practical cases, when the level of these factors is important, it is almost impossible to obtain a model that 

exactly matches the process behavior  In this case, the task of modeling is often tedious 

and analytical models cannot be computed or give unsatisfactory results  

Indeed, the main common drawback of the MMBTs of FDD is the requirement of a precise, accurate (exact) and 

complete MM of the system to be monitored ( ; ).  

Unfortunately, the generation of such model (complete and perfectly accurate) of a large6scale physical systems is 

not always possible and not easy to achieve (never available) in practice or economical in an industrial 

environment, and requires an effort which is proportional to the size (high dimensionality), complexity and nonlinearity 

of the process such as in chemical and nuclear processes. 

Hence, the practical applications of MMBTs methods are not adequate and very limited 

 Sometimes the task of modeling is often tedious and models cannot be computed give 

unsatisfactory results  Parameter or state changes are determined using 

estimation techniques ( ). In practice, the heavy load caused by the estimation can also be a 
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problem ( ). Usually, and the references therein, all 

usually suffer from the lack of an appropriate mathematical description of the system being considered. 

Usually, the parameters of the system may vary with time in an uncertain manner, and the characteristics of the 

disturbances and noise are unknown so that the system cannot be modeled accurately. Hence, there is always a 

mismatch between the actual process and its MM even if there are no process faults. Apart from the modeling 

used for the purpose of control, such discrepancies cause fundamental methodology difficulties in FDI 

applications. They constitute a source of false and missed alarms which can corrupt the FDI system 

performance to such an extent that it may even become totally useless. The uncertainty of the model could 

reduce the reliability of FDe when it is not considered. Therefore, the effect of modeling uncertainties is therefore 

the most crucial point in the model-based FDI concept, and the solution of this problem is the key for its 

practical applicability   

On other side, models are mostly difficult to change afterward. The build-up of a model-based detection system 

requires a lot of effort because a variation of one or more system parameter(s) lead to changing the form and 

coefficients of many characteristically equations of system. The KF approach uses the system model to detect 

and isolate sensor failures. Thus, it is strongly dependent upon a high fidelity of the model which may become 

an obstacle in the implementation of a complex system. For more details on drawback of MMBTs see (

).  

However, in the event of multiple sensor faults, model estimates can be inaccurate and so real-world 

applications tend to maintain a slight degree of HR  So, the change, in controller parameters 

or structure, allows avoiding the consequences of a fault ( ).  

On other side, MMBTs (involving the solution of ordinary differential equations) usually do not account for the 

combination of analog and discrete processes. 

In conclusion, if these anomalies are not handled properly in a specific way when implementing FDD 

systems, there is no guaranty that the residuals be sensitive to faults. Furthermore, in some cases, the 

suppression of the effect of the model anomalies has a negative effect on the residual sensitivity. In both cases, 

false and missed alarms can be meet which finally has strong impact on FDD performance; therefore, the 

adaptability of these approaches in real world changes is not warranted. As a result, practical applications of 

MBTs in real systems are still very limited.  

Finally, these disadvantages increase the necessity of using alternative approaches: NN, case-based reasoning, and 

knowledge-based approach. 

The success of the MBTs depends on the fidelity of the system or the component model expressed in a 

mathematical form. In the context of complex and NL processes, we have already mentioned that the generation 

of an appropriate accurate and reliable analytical model, and flexible frameworks is often very difficult and 

constitute a real challenge.  

When the model is incomplete or not available at all, one solution is to use DDTs (

 as a promising supplement to model-based FDiso to carry out system analysis, FM and industrial control. 

Indeed, DDTs attracts significant attention in the fact they do not need an explicit model of a system; they are 

used as model-free based on transformations of set of measurements. The main advantage of data-driven 

modeling approach is the reduced time and effort in developing system model. Therefore, DDTs are flexible for 

applications in practical systems and have been favorable choices for FDD in various industries ( ). 

Methods based on data processing rely on so-called behavioral models, and when data is used in model-free 

is generally a large amount of process-historical data of the process is needed ( ) to present them as a 

priori knowledge for the monitoring. The idea is to analyze these data by different techniques in order to 



         

 

                                                            

 
 

propose a model of behavior. These data are thus transformed into a source of knowledge for the FDi system, 

during a so-called feature extraction step. At this level, there are usually two types of extraction techniques, 

whether statistical or not  In the statistical category one find mainly PCA, data classification and 

SR while in non- statistical category, one has the frequency approach and NNs.  

The PCA considered as a DDT has been successfully used to detect faults, by many researchers such as 

Also like PCA, we find the PLS  

In general, DDTs for FM are broadly classified into FL, NNs, clustering, Self-Organizing Maps (SOM), 

statistical methods, ESs and PR. 

DDTs can be further subdivided to univariate or multivariate statistical analysis. That is, whether the data stream of 

one measured attribute is dependent on another single attribute (univariate) or it is dependent on several other attributes 

(multivariate). Some faults can only be detected within the context of another data instance; therefore, 

multivariate approaches are preferable to univariate approaches  

divided DDTs into two categories, quantitative and 

qualitative as shown in Figure III.4. The quantitative methods include statistical approaches such as PCA, PLS, 

statistical classifiers and NNs. The qualitative methods include ES, FL, PR, frequency and TFA, and qualitative 

trend analysis  

DDTs can be divided into two groups: statistical and non-statistical methods ( ). NNs 

 SOM  nearest neighbors Dasarathy, 1991 are examples of non-statistical DDTs.  

Data-based monitoring methods can be further classified into input MBTs and input-output MBTs. Input MBTs 

only require the data matrix of the input process variables, while input-output MBTs require both the input and 

output data matrices in order to formulate a model and carry out FDe  Input MBTs are 

sometimes utilized when the input-output models cannot be formed due to the high dimensionality and 

complexity of a system being monitored  However, input-output MBTs do have the added 

advantage of being able to detect faults in both the process and the variables  

Several models used in redundancy to generate residual are based on data and AI methods ( ; 

). NNs represent the main quantitative approaches applied in this context  So, 

DDTs are popular choices for FDI in systems. 

In FM literature, one can find a huge overlap between analytical model-based and DDTs. As previously 

mentioned, analytical model-based FM methods usually deploy a model developed based on some fundamental 

understanding of the physics of the plant or process contrary to DDTs. DDTs for FM have the advantage to not 

require the knowledge of mathematical or structural model of the plant or process, but a model derived from 

known and measured input and output process data.  

The fundamental idea of quantitative DDTs is to generate an empirical model of the process which relies on 

mathematically relationships between correlated measurements, such as inputs and outputs, within a system. 

However, the relationships can be formulated in an implicit way by training an empirical model through analysis 

of fault-free training data obtained during normal operations. This model is then used to estimate true values of new 

measurements. These values against the real process data measurement are used to generate residual for FDe 

and FDi.  

Popular algorithms in this context include PCA, NN  Multivariate State 

Estimation Technique (MSET) , AAKR and cross calibration

 NN and MSET have been used for a large variety of FDD applications 

 

file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/Comparing%20a%20knowledge-based%20and%20a%20data-driven%20method%20in%20querying%20data%20streams%20for%20system%20fault%20detection.%20A%20hydraulic%20drive%20system%20application%20(n°1826,%202014).pdf


         

 

                                                            

 
 

The learning data can either be collected from the process itself or from a simulation model 

 The second possibility is of special interest for collecting data of the different faulty situations in order 

to test the residual generator, since usually those kinds of data are not available at the real process  

Machine learning (ML) is another DDT to produce an online FDD model by using learning algorithm, have 

been widely used in the process industry. Learning off-line reduces the online computational load, but produces 

a static model, which may not fit new behaviors. 

ML uses the theory of statistics is the process to build an inductive model that learns from a limited amount 

of data without specialist intervention to accurately predict events in the future particularly, the class of unlabeled 

data. Learning in models translates into fitting a model's parameters to a specific dataset, iteratively updating 

them with several passes through the data until a specific predefined function is minimized ( ). This 

learning implies best characterize underlying set of structures (or patterns) that are useful to understand 

relationships in data that might not be exactly similar to that on which learning occurred.  

Furthermore, ML is a scientific discipline that explores the construction and study of algorithms that can learn 

from data. Such algorithms operate by building a model based on inputs and using that to make predictions or 

decisions, rather than following only explicitly programmed instructions. The model learning can take place 

offline, e.g., on past observations that were recorded from previous operations, as well as online. 

Informative features are selected or extracted from a dataset. According to these features, an FDD model is 

learned from a dataset. The learned model provides the ability to classify new unseen data. In particular, the 

FDD model is used to classify online data that is produced in real time by the system, determining whether or not 

the data expresses a fault and even associates its FDi. 

Several different models have been suggested for learning from data. SVM and NNs are two common 

models that have been used in ML for FDi and prognostic. ML methods can be partitioned into four different 

categories: unsupervised learning, supervised learning, semi-supervised learning, and reinforcement learning (Figure 

III.16). Two of the most widely adopted ML methods are supervised learning and unsupervised learning, which may 

account 80-90 percent of all industry applications. While semi-supervised learning methods have recently been 

used for data classification and regression in the process industry, the reinforcement learning has rarely been used in 

this area. 

 

Figure III.16 - ML methods applied in the process industry (Ge, 2017). 

Supervised learning predicts an output variable using labeled input data, while unsupervised learning draws 

inferences from data without labeled inputs, i.e. Supervised approaches require a classified dataset for model 

creation, while unsupervised approaches do not. In the latest, this means that the data only consists of a set of 



         

 

                                                            

 
 

inputs without any corresponding targets. For supervised learning we distinguish between models that predict a 

numeric variables (regression) or a categorical variables (classifiers), e.g., process fault classification try to classify the 

faults into different categories an if the desired output consists of one or more continuous variables, then the 

task of supervised learning is called regression ( ). 

Semi-supervised learning has recently attracted much attention in the process industry, which is applied for 

similar purposes as supervised learning. In semi-supervised learning, a small amount of labeled data and a large 

amount of unlabeled data are typical assumed for modeling. Semi-supervised learning is particularly useful when 

the cost associated with labeling is too high to allow for a fully labeled training process. Instead, unlabeled data 

is much cheaper and takes less effort to acquire from the process. This type of ML methods can also be used for 

data classification, regression and prediction of key performance indices of the process. With appropriate 

information integrations, model structure modifications and training improvements, both unsupervised learning 

and supervised learning methods can be made semi-supervised. Therefore, semi-supervised learning can be considered 

as a bridge connecting unsupervised learning and supervised learning.  

The classification of patterns of measured quantities for FM purposes is an important area of research 

with practical applications in a variety of fields ranging from industrial to medical. In particular, the 

classification of faults in nuclear components represents a fundamental task for the operation, control and 

accident management of NPPs. 

Classification ( ) is supervised learning technique used to separate samples into different 

categories by finding common features between samples of known classes then to assign a new observation to 

a predefined class or category (Figure III.17). Therefore, classification model is created from training data, and 

then it is used to classify new instances. So, representative training data play a very important role in 

classification which are used to extract information. For monitoring, a classifier is an algorithm that takes data 

or transformed data (e.g., features) as an input and emits out a decision about the health status of the system.  

The classification method is typically an off-line method where the measurement data are first collected, then the 

characteristic features are extracted and selected and finally, the data is classified   

 

Figure III.17 - Block diagram of the classification. 

Many studies have already made it possible to show classification methods for FDi, particularly in the 

context of complex systems  The methods range from the more classical methods, such as 

statistical classifiers (the Bayesian classifier, the K nearest neighbors)  to the NNs 

 A great variety of pattern classification methods have been developed such as K-Nearest K-

NN; NNs; naive Bayes classifier, HMM; SVM, Logistic Regression (LR); FL; Decision Trees (DTs); random forest; and 

the hybrid and ensemble of different models. Details regarding those models and the training processes can be found 

in the rich literature on PR and ML  More details for classification method are 

available in ( ). 



         

 

                                                            

 
 

For FDD application, the class labels are related to specific fault hypotheses. The classifier is trained offline 

using training data with known fault classes. When new measurement data become available, their class labels 

are estimated by the classifier; thus, the current condition of the system is determined from the class label 

assignment  

Overall, detection consists in deciding between two hypotheses presence of faults or non-presence of faults 

(problem with two classes). When classification is used for detection problem, a number of classes (hypotheses) 

is used rather than two ( ).  

Relevant symptoms are identified to be representative of each type of failure. The relationships between 

symptoms and faults are obtained by supervised learning when faults are known a priori, and the system 

decision is tuned to correspond to the right answer from a training set of known examples.  

The approaches for detection and classification of faults can be approached simultaneously, which consists in 

breaking down the global problem into particular sub-problems of detection and classification to be solved. The 

second way performs detection and classification successively by treating the two issues separately (

). 

When, FDi is essentially seen as a classification problem, the main purpose is to construct a correspondence block 

such as from a set of information describing the current situation of the process; it is possible to obtain the 

probable causes of the abnormal situations. However, when the FDi is based on multiple observations, these 

observations are grouped together to form classes that define a situation or operation mode of the process, to 

which a new observation will be compared to be identified. In other words, the purpose of the FDi is to identify 

the mode of operation of a system based on observations on it. Therefore, the FDi system is a classifier that 

recognize, in real time, the actual situation represented by a new symptom vector and associate it to one of the 

known faults. The classifier may also have some on-line learning capacity to deal with unknown faults. 

Several CM tasks have been explored using classification. developed generator brush 

failure classification models based on Supervisory, Control, and Data Acquisition (SCADA) data sampled every 10 

min. For the relevant signal selection step, they used chi-square (filter technique), boosting tree (embedded 

method) and a wrapper method with genetic search and found 10 signals to be predictive of generator brush 

failure (nacelle revolution, drive train acceleration, etc.). Their results show that brush failures can be predicted 

with reasonable accuracy 12 h before they occur. considered three generator fault classification 

scenarios: FDe (two cases: fault and other), FDi (five classes including generator heating, power feeder cable, 

generator excitation, air cooling malfunction faults and other) and fault prognosis with the aim to predict faults 

at time intervals before they occurred. The data used came from a 3MW wind turbine situated in Ireland; 

selected 29 features from the SCADA system to be used in classification. Given the unbalanced class 

data, different under sampling and oversampling procedures were used when training SVM classifiers. 

built a classifier to identify gear, bearings, shaft and general transmission failures. They performed NL 

dimensionality reduction of vibration signals using Orthogonal Neighborhood Preserving Embedding (ONPE) 

with Shannon Wavelet SVM (SWSVM). proposed an SVM classification-based 

method to detect several types of faults related to rotor blade imbalance and misalignment (or a combination of 

both) on simulated data. They compare different SVM kernels to NNs and find that the best accuracy is obtained 

using a linear kernel SVM (suggesting that the data is linearly separable). As opposed to other kernels (such as 

Gaussian), a linear kernel has only one parameter, which reduces training and tuning time. 

Clustering, also called unsupervised classification, is unsupervised technique used to group similar instances 

on the basis of features such that the objects in the same cluster are more similar to each other than to those in 



         

 

                                                            

 
 

another cluster. Clustering does not assign predefined label to each and every group so, it traits a not labeled 

data structure and does not require training data  

In general, based on the cluster structure which they produce, clustering methods may be divided into two 

categories: hierarchical and non-hierarchical. Hierarchical method seeks to build a hierarchy of clusters. Strategies for 

hierarchical clustering generally fall into two types: Agglomerative: This is a "bottom up" approach: each 

observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. Divisive: 

This is a "top down" approach: all observations start in one cluster, and splits are performed recursively as one 

moves down the hierarchy. Non-hierarchical method product directly one partition in a fixed number of classes.  

Clustering is widely used in PR, FDi, data mining, image analysis and ML, and scientific and engineering 

analysis. One of the best known and most popular clustering algorithms is the k-means algorithm. The 

algorithm is efficient at clustering large data sets because its computational complexity only grows linearly with 

the number of data points. However, the algorithm may converge to solutions that are not optimal. Some of 

the most commonly used clustering algorithms include Fuzzy c-means clustering  Spectral 

clustering is a relatively new algorithm Normalized Cuts (NCuts) 

and Density-Based Spatial Clustering of Applications with Noise (DBSCAN)  In recent 

developments, some algorithms have been presented from different focuses, including the affinity propagation 

algorithm  spectral clustering  dominant sets  density peak 

based algorithm and others  The Dominant Sets 

(DSets) algorithm defines dominant set as a non-parametric concept of a cluster, and generates the clusters 

sequentially. Based on the nice properties, the DSets algorithm has been applied successfully in image 

segmentation  object detection and object classification 

;  etc. 

Regression is a set of statistical methods used to analyze the relation of a variable with regard to one or 

several others. Therefore, regression is the operation which consists to adjust a straight line (or another 

mathematical curve) closer possible to a certain number of observed points. On Figure III.18, points are a graphic 

representation of the historic data-base which we want to use them to predict their evolution. Data are 

regrouped in a narrow ribbon, so it is possible to pass "in best" a curve through this cloud of points, and to 

consider that this curve is an approximate but satisfactory model of the reality. 

 

Figure III.18 - Illustrative Example of the Regression Function.  

The most known model of regression is the model of linear regression. The model of quantity regression is 

used if we are interested by the conditional quantity of the distribution of unpredictable variable knowing the 

vector of random variable x. LR is commonly used when the explained variable is binomial random. 

Non-parametric regression is used when the functional shape of the regression is unknown. 



         

 

                                                            

 
 

The regression analysis is also used to determine among independent variables which have relation with a 

dependent variable, and to investigate the forms of these relations. In some cases, regression analysis can be used 

to deduct causal relations among dependent and independent variables. 

For FDe, the task is to identify how signals and features are related to outputs in different components. 

This relationship is captured by fitting regression models when the system is in a healthy state. When new data 

comes in, it is compared to what the model predicts for a healthy state and if a deviation is found for several 

consecutive time intervals, an alarm is raised. Behavior of a component (from low to high granularities) can be 

captured through regressions of different complexities (from a simple linear model to a complex NL one). 

compared a regression model based on FFNNs with two unsupervised methods (SOMs 

and Gaussian mixture models (GMMs) trained on an operational large-scale onshore wind turbine. They modeled 

the power curve and analyzed the system health by using a new approach (confidence health value) based on 

residuals being greater than a given threshold during a given time segment. They found the GMM model 

presents a more gradual health change being more suitable in performance identified at being the best 

prediction. investigated three models (regression, NNs and autoregressive NNs) that 

learn to approximate the normal bearing temperature using SCADA input signals such as power output, nacelle 

temperature, generator speed, generator stator temperature, etc. For identifying the lag and the signals which 

are related to the output signal (bearing temperature), cross correlation was used. They found that the NL NN 

approaches outperform the regression models. built a regression model for generator faults 

based on the NL state estimate technique (NSET), introduced by Singer in  

Main applications of the supervised ML method include process monitoring, fault classification and FId, online 

operating mode localization, soft sensor modeling and online applications, quality prediction and online estimation, key 

performance index prediction and diagnosis, etc. Several different models have been suggested for learning from 

data. Some well commonly used supervised learning methods in the monitoring and prognostics of various systems 

include principal component regression (PCR), PLS, Fisher Discriminant Analysis (FiDiAn), Multivariate Linear 

Regression (MLR), NNs, SVM, nearest neighbor, Gaussian process regression, DT, random forest, and so on. 

PCR is a regression analysis technique that is based on PCA method. In this method, instead of regressing 

the dependent variable on the explanatory variables directly, the principal components of the explanatory 

variables which are extracted by the PCA method are used as regressors  PCR is applied for the 

prediction and control in process industry such as with  

PLS regression is a statistical modeling method, which is quite similar to the PCR method. However, 

instead of finding hyperplanes of minimum variance between the response and independent variables, PLS 

finds a linear regression model by simultaneously projecting the predicted variables and the observable variables 

to the latent variable space  Therefore, the predicted variables and the observable variables 

are connected through the latent variables. In the process industry, PLS has been used for quality-related process 

monitoring, fault classification, soft sensor development and online applications, product quality predictions, 

and so on. proposed an extended PLS approach for enhanced CM of industrial processes. 

proposed a modified PLS method and combined with the independent component regression 

model for monitoring complex processes. developed an adaptive kernel PLS regression method for soft 

sensor estimation and reliable quality prediction of NL multiphase batch processes. made 

several new contributions to NL process monitoring through the use of the kernel PLS model. A comparison and 



         

 

                                                            

 
 

evaluation of key performance indicator-based multivariate statistics process monitoring has been carried out 

between the PLS method and other related approaches  proposed a total 

projection form of the PLS model for the purpose of process monitoring. developed a quality-

related prediction and monitoring for multi-mode processes based on multiple PLS method, and applied it to 

an industrial hot strip mill. 

 FiDiAn is a supervised linear dimensionality reduction technique designed for data classification. The 

basic idea of FiDiAn is to seek a transformation matrix which maximizes the between-class scatter and 

minimizes the within-class scatter simultaneously  Due to the ability of the FiDiAn method 

in dimensionality reduction and data classification, it has been widely used in the process industry. The method 

can be used directly for classification of different operating modes in the process, or to differentiate various 

faults that happen in the process. proposed a CMd with FiDiAn and SVMs for FDi in 

industrial processes. applied the localized FiDiAn method for monitoring complex chemical 

processes; developed a novel FDi system by using pattern classification on kernel FiDiAn 

subspace; proposed a new FDi method using fault directions in FiDiAn. 

developed a NL real-time process monitoring and FDi scheme based on PCA and kernel FiDiAn. 

proposed an improved FDi method by using dynamic kernel scatter-difference-based discriminant 

analysis. 

 MLR is a generalization of linear regression by considering more than one dependent variable 

 In the process industry, there are lots of MLR applications, such as soft sensor modeling between 

key indices/variables and ordinary process variables, quality prediction in the final product in batch processes, etc. In the 

past years, main applications of the MLR methods are focused on soft sensor developments and prediction of 

product quality. 

Owing to its powerful ability in NL approximation and adaptive learning, NN has been the most well-

established non-statistical based data-driven FDi tool. Recent developments of the NN can be found in a variety 

of real-time applications, e.g., for combustion engines  steam turbine generator 

 nuclear process  induction machines 

and power network quality  

SVM is an effective supervised tool for ML and PR method, based on statistical learning theory, which 

was originally developed in 1995 with associated learning algorithms that analyze data 

and recognize patterns, conventionally used for linear/NL classification and regression analysis. SVM is a 

discriminant model based on the finding decision boundary hyperplanes that best separate classes of instances, 

i.e. by leaving the widest possible margin to the instances closest to the margin (see Figure III.19).  

 

Figure III.19 - (Left) A multitude of linear decision boundaries separate the two classes. (Right) SVMs find support vectors 
which maximize the distance between decision hyperplanes and closest data points. 



         

 

                                                            

 
 

It implements by constructing an optimal separating hyper plane in the hidden feature space using quadratic 

programming to find a unique solution.  

SVM is a powerful classifier that uses the concepts of empirical risk minimization (ERM) and structural risk 

minimization (SRM)  Given a set of training samples belonging to different classes, SVM find an 

optimal decision boundary (also called hyperplane) that minimize learning errors while maximizing the margin 

separating data from classes  Therefore, SVM is also known as the maximum margin classifier. 

Margin maximization is a method of regularization that reduces the complexity of the classifier. It is used to 

penalize model parameters in the same way as the weight decay method which alters the large amplitude 

weights in an MLP. The penalization of SVM parameters in order to maximize the margin is a model selection 

method in implicit learning. This process produces a reduced set of prototypes that are part of the learning set 

and define the optimal separating hyperplane commonly referred to as support vectors. 

These support vectors lie closest to the decision surface and can be used to estimate the fault class of a test feature 

vector. In the case of NL classification, where a linear boundary is not appropriate, a kernel function is used for 

mapping the data onto a higher dimensional feature space and the optimal hyper-plane that can separate 

different types of fault classes is then constructed yielding high classification accuracy. Some of the kernel 

functions that are commonly used are polynomial, Gaussian, Radial Basis Functions (RBF), and hyperbolic tangent 

 

Its behavior is, moreover, conditioned by the type of kernel used and the values given to its parameters. The 

core of an SVM is a definitive-positive symmetric function that allows the data to be projected into a large-sized 

transformed space in which class separation is more easily performed, in the same way as the hidden neurons 

of an MLP allow to project the input data into a representation space in which the weights of the output layer 

define linear discriminant functions of the classes. The values of the kernel parameters directly affect the 

complexity of the decision boundary of the classifier. More detailed descriptions of SVM classification and 

regression algorithms can be found in  

Recently SVM which was developed by is one of the methods that are receiving increasing 

attention with remarkable results. 

Recently SVM is one of the methods that are receiving increasing attention with remarkable results. Many 

studies have demonstrated the superiority of SVM over conventional discriminant methods such as MLPs, Fisher 

discriminant, RBF networks, and so on. Modified versions of the SVM allow the best performance on several 

standard databases. Implementations of SVMs (e.g., SCIKIT-Learn have several ways to 

transform a problem into a linearly separable one with the use of kernels (polynomial, RBF, etc.). Furthermore, 

SVM take the advantage of using NL kernels to map the data to a very high dimensional space. For example, it 

was shown in that the one-class SVM outperformed the polygon-based and grid-based 

methods because it maps the data into a higher dimension.  

Since SVM was proposed by  , it has aroused the interest of several research communities from 

different areas of expertise and has become more and more popular in various application domains, due to its 

great modeling abilities in linear/NL data classification and regression. Compared to other widely used supervised 

learning methods such as NNs, SVM may have high accuracy and better generalizations capability under many 

cases. Due to these capabilities, SVM has also gained lots of successful applications in process industry, in terms 

of FM, fault classification, CM  soft sensor developments, predictions and for 

complex data sets in general   

proposed an FDD method for NL processes based on Kernel Independent Component Analysis (KICA) 

and SVM. applied SVM for FDi in steel plants. designed two methods for 

selecting Gaussian kernel parameters in one-class SVM and made an application to FDe. SVM was used for 

monitoring continuous decision function in incipient FDi by  

applied higher order spectral features in SVM modeling and used it for bearing faults classification. 

developed PCA and SVM based fault classification approaches for complicated industrial processes. 

carried out FDD in process data by using SVM. Furthermore, SVM classifier was applied to cables and 



         

 

                                                            

 
 

transmission lines for line FDi and localization using a model-based 

approach. 

 Nearest neighbors’ algorithm also known as K-NN, is a simple non-parametric method in ML, which can 

be used for both classification and regression  In both cases, the input consists of the k closest 

training samples in the feature space. The output depends on whether the method is used for classification or 

regression. For data classification, the output is a class membership. A data sample is classified by a majority 

vote of its neighbors. If k is selected as 1, the output of the data sample will simply be assigned to the class of 

its nearest neighbor. For data regression, the output is a continuous value for the data sample. Normally, the 

output value for the predicted data sample is determined through averaging the values of its k nearest neighbors. 

In this method, the model structure is totally open to any type. For both classification and regression, NN or k-

NN has been considered as one of the simplest methods of ML algorithms. 

In the past years, like other supervised ML algorithms, NN or k-NN has also been used for various applications 

in the process industry, e.g., process monitoring, fault classification and soft sensor development. 

developed a statistical pattern analysis and process monitoring method based on the nearest neighbor 

method, and applied it in Semiconductor Batch Processes; carried out hybrid incremental 

modeling based on least squares and fuzzy K-NN for monitoring tool wear in turning processes. 

Decision support tool that uses a tree-like graph or model to describe relationships among different 

variables and makes decisions. DTs are commonly used in operations research, particularly in decision analysis, 

in order to help identify a strategy that most likely to reach the aim  Recently, DT has also been 

introduced into the process industry.  

The most common applications have been made in process monitoring, FDi, and quality prediction. 

used NN and DT for prediction of machine reliability; used the decision algorithm to 

extract classification knowledge in mold tooling test; A fuzzy DT method was proposed by for 

fault classification in the steam generator of a PWR; carried out inductive data mining based 

on genetic programming for automatic generation of DTs from data, and used it for process historical data 

analysis; applied the DT learning technique for online monitoring and FId of mean shifts in 

bivariate processes; proposed a FDi method for production system with SVM and DTs 

algorithms; An approach for automated FDi based on a fuzzy DT and boundary analysis of a reconstructed 

phase space has been proposed by  

The main goal of the unsupervised learning method is to explore the data and find some hidden structure 

among them. Furthermore, unsupervised learning is used to discover groups of similar examples within the data 

which is called clustering, or to determine the distribution of data within the input space, known as density estimation, 

or to project the data from a high-dimensional space down to low dimensional space for the purpose of dimensionality 

reduction and data visualization. For industry applications, this type of ML methods is mainly used for dimensionality 

reduction, information extraction, data visualization, density estimation, outlier detection, process monitoring, etc. 

Conventionally applied unsupervised learning methods in the process industry include PCA, Independent Component 

Analysis (ICA), k-means clustering, Kernel Density Estimation (KDE), SOM, manifold learning, Support Vector Data 

Description (SVDD) and so on. 

 K-means clustering is a method of vector quantization, which was originally developed for SP  

It is one of the simplest and popular unsupervised ML and the most known among the regrouping methods 

that solve the well-known clustering problem. The procedure follows a simple and easy way 

to classify a given data set through a certain number of clusters (assume k clusters) fixed a priori. The main 



         

 

                                                            

 
 

applications of this method in the process industry are for dividing the process data into various operating 

modes, different fault types, or different grades of products. Kernel k-means clustering based local support vector 

domain description method has been developed for FDe of multimodal processes used the 

k-mean clustering algorithm for monitoring the offshore pipeline; combined the k-means 

clustering method and the PCA method for FDid in multiples processes; developed an adaptive 

multimode process monitoring strategy based on the k-means clustering algorithm. 

KDE is a non-parametric way to estimate the probability density function of a random variable. In cases 

where the distributions of the data are not known which are usually non-Gaussian, the KDE is used as a 

fundamental data smoothing method which can provide an inference about the population, given a finite 

number of training data samples  In the process industry, the KDE method has been used 

for estimating the distributions of process variables, monitoring statistics, or other related quantities that are 

used for describing the nature of the process.  

KDE method is applied in the process industry. proposed a regularized KDE method for 

clustered process data; Jiang and Yan used the KDE approach in the weighted kernel PCA 

model for monitoring NL chemical processes; applied the KDE method for estimating the 

distribution of the froth color texture, in order to monitor the Sulphur flotation process; a control-loop diagnosis 

approach has been developed by continuous evidence through KDE  KDE was combined 

with the nearest neighbor method for process FDe  in the PCA-based control chart 

application, KDE has been used for multivariate non-normal distribution estimation. ; 

 combined KDE with Bayesian networking for process monitoring. 

GMM is a probabilistic model for representing the presence of subpopulations within an overall 

population, without requiring that an observed data set should identify the sub-population to which an 

individual observation belongs  For those processes which have multiple operating modes or aim 

to produce multiple grades of products, the GMM is particularly useful to characterize those multi-modal data 

natures. Besides, the GMM would also be helpful in those processes which have highly NL relationships among 

process variables, or the distributions of some process variables are non-Gaussian. In those cases, the GMM 

serves as local linearization or local Gaussianity tools for data descriptions, based on which basic linear or 

Gaussian sub-models can then be developed for further data mining and analytics. 

Similarly, GMM can also be used for general process applications, such as data clustering analysis, process 

monitoring, dimensionality reduction, data visualization, etc. 

used a GMM via PCA and discriminant analysis for process monitoring. 

proposed a multimode process monitoring scheme based on Bayesian inference with finite GMMs; 

used the GMM for online multivariate statistical monitoring of batch processes; proposed a 

GMM and Bayesian method to incorporate both local and nonlocal information for monitoring the 

semiconductor manufacturing process; developed a robust mixture model for process 

monitoring; combined the GMM with the canonical variate analysis method for monitoring 

dynamic multimode processes; developed a semi-supervised mixture model for discriminant 

monitoring of batch processes; developed a particle filter driven dynamic GMM for monitoring of 

complex processes; employed the GMM to extract a series of operating modes from the 

historical process data, and then formulated a nonstationary FDD method for multimode processes; 

discussed the application of GMM for Modeling and Performance Monitoring of Multivariate 

Multimodal Processes; combined the GMM with multiway ICA for FDD of multiphase batch 

processes. 

For dimensionality reduction of high-dimensional data for the process industry, the manifold learning 

method has recently been introduced. High-dimensional data requires more than two or three dimensions to 



         

 

                                                            

 
 

represent, which is practically difficult to interpret. One approach to simplification is to assume that the data of 

interest lie on an embedded NL manifold within the higher-dimensional space  If the 

manifold is of low enough dimension, the data can be visualized in the low-dimensional space. 

Conventionally used manifold learning methods include principal curves, generative topographic mapping, 

Gaussian process latent variable model, maximum variance unfolding, isomap, locally linear embedding, 

Laplacian Eigen maps, diffusion maps, neighborhood preserving embedding, locality preserving projections, 

etc. Based on the NL dimensionality reduction procedure provided by the manifold learning method, further 

data analytics can be carried out, such as process monitoring, FDD, soft sensor modeling and applications, and 

so on. 

The method of SVDD is similar to one-class SVM, based on which the boundary of a dataset can be used 

to detect novel data or outliers  SVDD obtains a spherically shaped boundary around a dataset, 

which defines a region for description of normal data samples. By introducing the kernel trick, the SVDD 

method can be made flexible to use various kernel functions and thus is able to describe highly NL data. The 

main features of the SVDD method are demonstrated in Figure III.20. 

According to the feature of the SVDD method, it can be used for novel detection, outlier detection, monitoring 

abnormality of data, etc. Along the past years, the SVDD method has been introduced into the process industry, 

and lots of applications of this method have been reported.  

 

 

Figure III.20 - Illustration of SVDD method (Liu et al., 2008). 

Later, a new non-Gaussian fault reconstruction method has been formulated upon the SVDD model, which 

can be used for sensor FId and isolation in the process industry  extended the 

application of SVDD for batch process monitoring, and later boosted its performance by introducing the bagging 

strategy  improved the NL PCA method with introduction of the SVDD model, 

and applied it for process monitoring. developed a multiclass SVDD model and combined it 

with a dynamic ensemble clustering method for transition process modeling and monitoring. 

proposed a probabilistic weighted NPE-SVDD method for process monitoring. developed a 

batch process monitoring based on functional data analysis and SVDD.  developed a monitoring 

scheme based on lazy learning, SVDD, and modified receptor density algorithm, and used it in NL multiple 

modes processes. 

For applications in the process industry, the semi-supervised learning method is particularly useful when 

the cost of labeling data samples is expensive or time consuming. Compared to unsupervised and supervised 



         

 

                                                            

 
 

learning, the application of semi-supervised learning has not received too much attention in the process industry 

until in the recent several years. Represented semi-supervised learning schemes include generative MBT, self-

training, co-training, graph-based method, etc.  There are already some 

semi-supervised application examples in both data classification and regression. proposed a 

semi-supervised Bayesian method for soft sensor development, which can successfully incorporate the 

information from unlabeled data. proposed a semi-supervised FiDiAn model for fault 

classification in industrial processes. proposed a semi-supervised mixture discriminant 

monitoring method for batch processes. proposed a semi-supervised PLVR models for process 

monitoring with unequal sample sizes of process variables and quality variables. proposed a 

robust form of mixture semi-supervised PCR model for soft sensor applications. combined the 

co-training strategy with PLS for development of a semi-supervised soft sensor. 

The ML process can be represented as a series of steps composed of data acquisition and preprocessing as 

shown on Figure III.21, where possibly different data sets and modalities are integrated, cleaned of outliers, etc. 

(a) Feature selection and extraction: important signals and characteristics are identified and extracted from the data. 

(b) Model selection: an appropriate model is chosen, taking into consideration the task to be solved. (c) Validation: 

a performance measure is used that is specific to the task, including accuracy (classification) and Mean Absolute 

Error (MeAE) (regression), evaluated on a validation set of data. 

 

Figure III.21 - General structure of ML System. 

A FM system may rely on several types of datasets. Most FM models discussed in the literature are based 

on operational and event datasets, such as the ones provided by SCADA. SCADA systems generally provide, by 

time-series signals in regular intervals. This type of system collects basic information with the use of sensors 

(e.g., bearing vibration, temperature, phase currents, wind speed, etc.). There is no common set of available 

SCADA signals nor is there a generally accepted taxonomy of signals, with different systems having different 

names. 

Data collection and preparation is the first and crucial step in developing a predictive model. Data preparation 

is an indispensable step in order to convert various data forms and types into proper format that is meaningful 

to ML predictive model. During the system operation, larger amounts of data are collected during processing 

on a regular basis. The collected data comprise all the variables including the predictor variables that can be 

used for establishment of prediction models operating conditions. 

As well as SCADA time series signals, different other types of data might be collected such as drone images or 

event data in text-free form. 

Data cleansing phase is an important phase in predictive modeling for anomalies which consist to obtain a 

complete cleansed data set that can be modeled with outliers removed and solutions for handling of missing 

data applied. Missing values were substituted with the class mean.  

Also, the extracted data should be normalized for all the range of values of raw data varies widely. To normalize 

a data set, the continuous variables were transformed on a linear scale to a value with a range of 0 to 1 or -1 to 



         

 

                                                            

 
 

1. Ordinal data were spaced equally over the same range. In order to normalize the raw data of input and output 

the following normalization equation is used: 

                                                                       xnorm = 2x 
(x−xmin) 

(xmax −xmin) 
 – 1 (III. 7)  

where x is the data to be normalized, i.e., and x min and x max are minimum and maximum values of the raw 

data. In such a way, all the inputs and the desired outputs are normalized within the range of ±1. 

One of the major challenges in process is that the number of tool variables is usually very high; in such 

setting, variable selection techniques often prove to be useful  Feature selection is the process of 

selecting variables the most influential that we wish to study, understand or predict. This can be achieved under the 

guidance of an expert. This step is the most important in the whole process of predictive modeling because the 

success of any predictive model is largely depending on the predictor variables that are selected to use as inputs 

for the model. 

Feature extraction is used to compress high-dimensional time series (such as sensor signals) by keeping their 

main characteristics intact while discarding noise and removing correlations. This should speed up model 

training and produce better outcomes than when applied to the original, dataset. Several techniques of feature 

extraction can be used, such as (a) statistical indicators  is the simplest to compute and sometimes 

the most efficient; these include mean, standard deviation, maximum, minimum, skewness, kurtosis, peak-to-peak, crest 

factor, wave factor, impulse factor, margin factor, root mean square, etc. (b) Time-frequency domain 

include the largest coefficients of the Discrete Fourier/WT  Haar WTs etc. 

(c) Parameters of fitted time series models such as coefficients of fitted ARIMA models  etc. 

The ML model selection step is particularly significant as it is the core functionality that learns from past 

data and generalizes into the future. Such models have been used for different tasks, including classification, 

regression, anomaly detection, synthesis and sampling, imputation of missing values, de-noising, density 

estimation and many others  

Validity of ML models can be estimated through several specific measures in combination with an out-

of-sample technique such as n-fold cross validation which assess how well the results of the model will 

generalize beyond the training data. 

DD FM methods are well suited for complex highly NL and large-scale systems. They can save time and 

cost since they do not require understanding of the physics of the system being modeled; they are model-free 

 So, DDTs are preferred when the product data is available 

while the system model is not  An additional benefit of DDTs is the detection of unknown 

faults via outlier detection. DDTs may be applied for prognostics as well, i.e., predicting the time at which a system 

or a component will no longer perform its intended function. However, they mainly require large set of data 

for training for both normal and faulty operations, and depend on the quantity and the quality of data 

 This brings out a crucial point of distinction between approaches based on historical 

process data and model-based approaches. 
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The knowledge-based tools are popularly used for FM. These tools are mainly built on the expert opinion 

and using if-else-then logics  KBTs 

typically mimic the behavior of a human expert. They are based on qualitative models and their 

performances are based on the quantity and quality of knowledge of a specific domain.  

KBTs are suitable when the representation mode of the knowledge is of symbolic type, the detailed MM is not 

available, and when the number of inputs, outputs and states of a system is relatively small 

 Furthermore, when obtained information is incomplete or uncertain in nonlinear, complex 

systems, it is essential to deal with the incomplete knowledge in an efficient way. Therefore, a more suitable 

solution to process incomplete knowledge may be the utilization of KBTs ( ). In practice, it is 

demonstrated that, in that case, human operator can supply a better supervision by using his own knowledge 

and his experience to insure a good process operation ( ). 

The requirements for a knowledge representation include: (a) it should be able to describe the precedence 

information, (b) potential process faults should be included as complete as possible, and (c) the CE relationships 

between process faults and affected quality variables should be expressed explicitly. 

( ) define five requirements for KBT: (a) sensor data to tune the KBT parameters (b) a known 

data-label for model verification (i.e., our knowledge regarding when faults appear and disappear). (c) good 

system knowledge (d) knowledge regarding normal and abnormal behavior among the various monitored 

system parameters (e) that the technical system allows for formulating the continuous queries (i.e., ‘‘rules’’; 

therefore, too complex systems may need to be simplified. 

KBTs can be applied in FDe and all phases of FDi. KBTs use qualitative models in FDD process 

. Knowledge-based FDi is performed based on the evaluation of on-line monitored data 

according to a set of rules which the human expert has earned from past experience  KBTs 

can be usually obtained through causal modeling or detailed description of systems, expert knowledge, or typical fault 

symptoms  

The role of the knowledge-based approach in process supervision and monitoring is to provide some interesting 

solutions for the supervision problems. It is necessary to consider this approach not as a substitution of the 

traditional methods, but as a supplementary tool for an engineer who has to find a solution to a specific problem. 

The role of the knowledge-based approach for FM can be considered from several points of view 

: (a) declarative: the implementation of several reasoning strategies (prediction, FDi, etc.) is permitted and 

is not based on the existing knowledge; (b) explicative: the man-machine co-operation is enhanced, using causal 

reasoning as a base for diagnosis and explanations; (a) management of different types of data: imprecise (measurement 

noise), incomplete (sensor faults), non-homogenous (logical and analogical data), dependent of the context, 

temporal, etc. These data are used in order to include in the system all the available information, even the 

heuristic one. 

FDi for technical systems and processes need experiential knowledge in parallel to scientific knowledge for the 

effective solution of the FDi problem-solving process. Different FDi approaches require different kinds of knowledge 

about the process. These approaches include first principal knowledge governing the process operation, empirical 

knowledge such as operators’ experiences and historical data about the process operation under various normal 

and faulty conditions. Furthermore, the knowledge includes the locations of input and output process variables, patterns 

of abnormal process conditions, fault symptom, operational constraints, and performance criteria. The operator and 

engineer’s intelligence related to the specific process systems has a major importance. Their knowledge can 

help to recognize the potential faults based on previous experiences. This approach can reduce the burdens on 

exact numeric information and automates the human intelligence for process supervision  

file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/Comparing%20a%20knowledge-based%20and%20a%20data-driven%20method%20in%20querying%20data%20streams%20for%20system%20fault%20detection.%20A%20hydraulic%20drive%20system%20application%20(n°1826,%202014).pdf


         

 

                                                            

 
 

The knowledge-based procedures can consist of an existing expert knowledge, an inference engine, or an ES 

interface which can combine with the knowledge from first principles or structural description of the system in terms 

of rules ( ). The FDi methodology is comprised of three steps. The first step is acquiring the real-time 

process information, from critical equipment, such as boilers, compressors, separators or reactors. Temperature, 

pressure, level, and FR are the most important process variables to be monitored and have the capability of 

representing the state of operation in a variety of equipment. The fault in these variables can affect the stability 

and safety of the whole process system. The second step is making inferences based on acquired process 

information. The last step is making actions according to the inference values, such as informing operators, raising 

alarms, shutting down equipment, activating higher layer protections and trying to bring the system back to 

normal condition. 

The schematic diagram of knowledge-based FM is depicted by Figure III.22 ( ). 

Before implementing the KBT  extensive data collection such as technical specifications and 

schemes should be performed and analyzed for system understanding  Process data 

contains valuable information about the state, operation, and behavior of the process plant, more so in case 

with limited available process knowledge  Interviews and workshops representatives should 

conduct to elicit common faults affecting system reliability  Further information regarding the data 

collection and analysis for the KBT can be found in . 

proposed a knowledge-based FM method, which uses the valuable knowledge from experts and 

operators, as well as real-time data from a variety of sensors. 

 

Figure III.22 - Steps of KBTs for FM. 

Knowledge-based FDe is constructed by analytical and heuristic symptom (event) generation. The features 

from system characteristic values (variances, amplitude, frequency, model parameters, state variables, transformed 

residuals, special noise, and vibration) are extracted, while the system is working under normal and faulty 

conditions using analytic and heuristic knowledge. Then the features containing faults are compared with the 

features of the non-faulty process and methods of change detection are applied. The features related to the 

system behavior are extracted from system characteristic values. The features related to the system behavior are 

extracted from system characteristic values ( ). 

The objective of this step is to guide the process back to normal in the case of abnormal conditions. After 

detecting an abnormal event, which could cause severe accidents, the proper actions are required immediately. 

This will be achieved by developing a set of actions which include activating safety measures and a higher layer 

of protection. 

The most popular knowledge-based FDD tools including FTA, expert systems (ES), signed direct digraph 

(SDG), CE graph, BN, etc. The main feature of this family of approaches is that knowledge used here is obtained 

empirically. A survey of knowledge-based FM methods was performed by 

.

The extraction process of the knowledge base may be either qualitative or quantitative. It also shows that KBTs can 

be either model-qualitative-based (such as causal models) or qualitative data-based (such as ESs). Quantitative 

information (or features) can be either extracted by using statistical or non-statistical (e.g., NNs) methods. Therefore, 

the quantitative knowledge-based FM can be roughly classified into statistical analysis-based FDi and non-statistical 

analysis-based FM. 



         

 

                                                            

 
 

Applying a variety of AI techniques (either symbolic intelligence or computing intelligence) to the 

available historic data of the industrial processes, the underlying knowledge, implicitly representing the 

dependency of the systems features, can be extracted. The consistency between the observed behavior of the 

operating system and the knowledge base are then checked, leading to a FDi decision with the aid of classifier. 

Qualitative model is derived from a fuzzy model using the linguistic approximation method. Therefore, 

qualitative model is a generalized fuzzy model consisting of linguistic explanations about system behavior. A 

linguistic model is a model that is described or expressed using linguistic terms instead of mathematical equations 

with numerical values or conventional logical formula with logical symbols. Linguistic terms in linguistic 

explanations are found such that they linguistically approximate the fuzzy sets in an underlying fuzzy model. 

MQlBM utilizes a model where the input-output relationship of the plant is expressed in terms of qualitative 

functions centered on different units in the process. MQlBM is broadly classified into abstraction hierarchy, FTrs, 

diagraphs and fuzzy systems. 

Conversely to quantitative models, qualitative are limited to reproducing observed behavior without 

particular knowledge of the process. These models are implemented by using qualitative equations, models based 

on fuzzy sets, rules, description of behavior, etc. Differences between knowledge-based systems and other techniques: In 

mathematics, control theory and computer, trying to solve the problem through its modeling (model problem). 

In an expert system the problem is attacked by building a model of “expert” or problem solver (expert model); 

in the Alarm Management with FDi the human knowledge will be so important for defining the Failure mode 

of the equipment to analyze. It is worthy to point out model-based diagnosis methods, signal-based diagnosis 

approaches and knowledge-based diagnosis algorithms all have to utilize real-time data when doing real-time 

monitoring and on-line FDi, however, only knowledge-based diagnosis approaches need to employ a large 

volume of historic data available. From this point of view, knowledge-based FDi is also referred to data-driven 

FDi.  

For the sources, i.e., information or data, for qualitative modeling, we find the following classification of the 

sources: (a) conventional MMs; (b) observation based on knowledge and/or experience; (c) numerical data; (d) 

image data; and (e) linguistic data. 

Among the most popular qualitative methods, let us mention: qualitative differential equations 

Influence/causals graphs such as: digraphs  bond-graph 

classified the qualitative methods used in model-based for redundancy as causal models such as structural graphs, 

FTrs, quantitative physics; and abstraction hierarchy which can be structural or functional as shown by Figure III.23.  

 

Figure III.23 - Classification of qualitative methods used in model-based. 



         

 

                                                            

 
 

( ) divide methods of qualitative modeling into two parts: fuzzy modeling and linguistic 

approximation. According to ( ), the most popular qualitative models in FDi are: structural models; 

BGs; and Causal Graphs (CGs). 

A distinct symptom-cause linkage can be expressed without any deep knowledge of the systems’ structure, 

function or principles of operation. The use of this compiled, shallow knowledge of a FDi expert in the form of 

heuristic rules has been shown to provide good results in domain areas where the underlying knowledge of the 

symptom-cause linkage is not clearly defined, or where an adequate model of the system to be diagnosed is not 

readily available, such as in the field of medicine ( ). 

In the late 1960's to early 1970's, ESs began to emerge as a branch of AI. The first diagnostic ESs for 

technical FDi were developed in the early 1970’s at MIT as is reported by  From the early 

stage, when published the reference for the early ESs, 

numerous systems have been built in a variety of domains. Early diagnostic ESs were rule-based and used 

empirical reasoning whereas new model-based ESs use functional reasoning. Since then numerous systems 

have been built. Surveys of the first diagnostic ESs of technological processes are provided by 

 

During the period 1985-1995 ESs were the “hot topics” in AI developments due to the attention in knowledge 

management issue. After 1995 ES applications started to decline as stand-alone systems and their technology 

embedded in mainstream of information technology. New ESs started to combine symbolic with numerical 

information or with other AI techniques to produce more effective systems.  

One of the most known qualitative FDi methods is expert system-based method. 

ESs are system based on a set of rules presenting human’s expertise 

by using a symbolic representation of the human knowledge. ESs are powerful tools that use AI techniques for 

providing information just like a human expert would. ESs are intelligent computer-based applications that uses 

knowledge and inference procedures to solve problems that are difficult enough to require significant human 

expertise for their solution.  

ESs are used to imitate the reasoning of human expert when used in diagnosing faults. 

The experience from an expert can be combined with the knowledge from first principles or a structural 

description of the system for diagnosing faults. ESs are able to capture human FDi associations that are not 

readily translated into mathematical or causal models. 

Meanwhile, an ESs approach can be classified into: (a) shallow-knowledge ESs using the formulation of if-

then rules for generating rule-based methods; (b) deep-knowledge ESs including functional reasoning or first-

principles ESs for diagnosing faults and (c) ML methods ( ). Rule-based ESs has been investigated very 

intensively for FDD problems  

Expert system-based FDi was initialized in 1980s  which was performed 

based on the evaluation of on-line monitored data in terms of a set of rules, learned by the human experts from 

past experience. 

Advanced software applications, based on the ES, has the potential to assist engineers in monitoring, detecting, 

and diagnosing abnormal conditions and thus providing safe guards against these unexpected process 

conditions. 

On-line diagnostic ESs usually use a combination of quantitative and qualitative methods for FDe that allows 

interaction and evaluation of all available information sources and knowledge about the technical process. In 



         

 

                                                            

 
 

these systems although basic FDi procedures are very satisfactory, real-time issue such as sensors drift can lead 

to problems with nuisance alarms in a system. 

Usually, the main components in the ES development include knowledge acquisition, choice of 

knowledge representation, the coding of knowledge in a knowledge base, the development of inference 

procedures for FDi reasoning and the development of input-output interfaces. 

According to  ES is composed of two independent parts: knowledge base and inference engine, 

as is shown on Figure III.24.  

The first part is in turn composed of rule base which models the knowledge of the considered domain and 

fact base which contains the information of the treated case. The second part is able to reason from information 

contained in the knowledge base, to make deduction. As the data are applied, new facts are deducted and are added 

to the fact base. 

 

Figure III.24 - ES architecture (Kempowsky, 2004). 

Numerous ESs have been developed for monitoring applications in a wide variety of domains, as 

catalogued by  The ES approach for monitoring is intuitively attractive, as symptoms can be 

linked to causes explicitly, in a rule-based knowledge representation scheme ( ). Owing to the 

advantages, ES-based FM methods received much attention particularly in 1980s and 1990s, which have been 

successfully applied to a variety of engineering systems such as gas turbine combustion chambers 

 boiler feed water systems  energy systems  chemical processes 

turbo-generators  refrigeration process of a hydraulic power plant  

and vehicles etc. 

developed an on-line expert system to detect faults in electro-hydraulic systems using on 

line connections with sensors, signal analysis methods, model-based strategies and deep reasoning techniques. 

Expert knowledge is contained primarily in a model of the expert domain. The final FDi conclusions are 

conducted after interaction among various sources of information. 

reported a FDIso scheme for hydroelectric power stations based on a NN and expert system 

subsystems. The expert system stores knowledge acquired by operators for the FDi conclusions while the NN 

has been trained with data automatically collected for one year in order to decide between normal and abnormal 

states. This system was in the implementation state at the time of the report. presented the 

development and implementation of an expert system for real time FDi in chemical processes that provides 

suggestion to the operator when abnormal situations occur. Industrial applications to the fluid catalytic cracking 

process in refinery are also presented. 

reported an on-line expert system for NPPs that uses a combination of NNs and an expert 

system in order to monitor and diagnose the system status. The expert system uses the outputs of the NNs 

generated from the measured plant signals as well as a priori knowledge base from the PWR. The electric power 

coefficient is simultaneously monitored from the measured reactive and active power signals. 

depicted a description of an expert system capable of monitoring the performance of a cogeneration plant. 



         

 

                                                            

 
 

Though the approaches are simple both of them consider limited number of faults and the cases of multiple 

faults are not included. have described the architecture of an expert system for FDi in 

a hydraulic brake system where the acquired knowledge for the knowledge base is based on software simulation. 

This simulation-based knowledge generation in combination with fuzzy knowledge representation is used for 

the final FDi reasoning. A task-based diagnosis expert system was proposed in recently, where 

object-oriented knowledge representation methods were utilized so that the rules of a specific machine can be 

customized flexibly on the basis of general rules. In  a universal FDi expert system 

framework was presented, where the object-oriented paradigm and rule-based expert system were integrated, 

providing a flexible and powerful environment for FDi process. 

 Some of the advantages in the development of ESs for monitoring solving are ease of development, 

transparent reasoning, the ability to reason under uncertainty and the ability to provide explanations for the 

solutions provided. Nevertheless, FM using rule-based ESs needs an extensive database of rules (sometimes 

difficult to acquire), and the accuracy of FDi depends on these rules. Creating a rich and detailed database of 

rules is usually a time-consuming task and many process experts are needed. The main weaknesses are that 

they are very specific to a system, hence the updating or change of rules and the uniqueness of knowledge are 

problems when large industrial plants are considered for these require large amount of effort. Furthermore, the 

limitations of rule-based ESs are revealed when they are confronted with novel fault situations for which no 

specific rules exist. If the knowledge base does not contain the necessary information about a particular fault 

situation, the ES will fail and be unable to diagnose the fault. Also, within the knowledge-based concept, the 

lack of a founded, tried and tested theory is a problem. 

More advantages and disadvantages of ESs technology regarding the FDi processes for technical systems are 

given by  

Fuzzy systems use the concepts of the fuzzy set and FL theory, introduced by in the early 1960’s. 

A fuzzy model considered as qualitative models is a representation of system characteristics by means of fuzzy 

rules which describe its behavior. The purpose is to generalize the information imitating the approximate 

reasoning executed by the man by introducing inaccuracy. In systems based on fuzzy rules, relations between 

variable are represented by means of fuzzy rules under the form: If premise Then conclusion. Decision in FL is 

based on the notion of expertise, which allows quantifying the fuzzy from a priori knowledge or acquired before.  

FL is another class of CI group, was designed originally to describe vague linguistic concepts. Block diagram of 

FL controller is shown in Figure III.25 

Inputs to a controller pass through the fuzzification process using membership functions. The membership 

function is a graphical representation of the magnitude of participation of each input. The shape of some 

membership functions. All rules are evaluated in parallel using fuzzy reasoning. The process of fuzzy inference 

use membership functions. Converting the fuzzy information to crisp is known as de-fuzzification.  

 

Figure III.25 - FL controller (Miljković, 2011). 



         

 

                                                            

 
 

Sometimes, the faults are detected by a model-plant mismatch. A possible solution to this problem was 

proposed in  where an adaptation of a FL based threshold is used to detect faults in 

robots. Fuzzy FDI methods support in a natural way the direct integration of human operators in the FDiso 

process. This approach can be an important way of taking account of modeling uncertainty. Model-based fuzzy 

methods use the residuals generation to detect and isolate faults  

proposed the use of fuzzy reference models describing faulty and normal operation. The FDi is made by a 

classifier based on fuzzy matching.  

Thus, FDI can benefit from NL fuzzy modeling. The use of fuzzy models increases the capability of FDI to work 

with systems without complete information and noisy. The key advantage of FL is that it enables the system 

behavior to be described by “if-then” relations  The main trend in developing fuzzy FDI 

systems has been to generate residuals using either parameter estimation or observers, and allocate the decision 

making to a FL inference engine. By doing so, it has been possible to combine symbolic knowledge to 

quantitative information and, thereby, minimize the FAl rate. 

Fuzzy systems are useful in any situation in which (a) there is no prior knowledge about fault-symptom 

causal relationship in the design of a FDD system; (b) the measurements taken are imprecise; (c) or their 

interpretation depends strongly on the context or on human opinion. 

Similar to the NNs, fuzzy systems can be used either as residual generator or PR technique. 

The application of fuzzy methods in FDI can be made in different ways. The use of expert knowledge in the 

form of a rule-based knowledge format is one of them  Another approach is presented in 

 where FL is used to classify the frequency spectra of various rolling element bearing with 

faults. Fuzzy sets can also be used to locate and identify the type of faults  or for residual 

evaluation  Industrial applications of FL in FDI can be found in 

 The detection of faults can be performed by using fuzzy decision making (FDM), 

which avoids FAls, as presented in  

The main difference between usage of FL in model-based and history-based FM is the type/method of fuzzy 

model/observer generation. In model-based FM, the fuzzy model is generated having some knowledge of the 

system behavior allowing the construction of the rule-base and selection of type and number of membership 

functions for each input/ output variable. In history-based FM, the fuzzy model is generated using observed 

input/output data. With input/output observation data, clustering techniques can be used to auto-generate a 

fuzzy model. examined the use of adaptive fuzzy inference system 

(ANFIS) for FDe in a NPP. proposed a FIS for monitoring the status of the compressor based 

on Daubechies WT and DTs.  

The advantage of using FL is that it supports, in a natural way, the direct integration of the human operator 

into the FDe and supervision process using rules which are easy to understand. FL methods are rapidly becoming 

a powerful alternative to the use of artificial ESs. Sometimes the residuals in fault-free conditions are affected by 

the noise contamination and uncertainty effects. The consequence of this influence is the residual variation 

around the zero value, which can hide the faulty effects. The interesting capability to describing vague and 

imprecise facts and work with systems when the complete information is not available makes FL a powerful 

tool in this case. However, one drawback of fuzzy modeling is its complexity and time-consuming modeling 

procedure. 



         

 

                                                            

 
 

The FTrs, developed at the beginning of 1960's  They are symbolic logic models which 

describe all possible causes of a specified system state in terms of the state of the components within the system. 

They are used to quantify the likelihood of a system failure and for analysis of technological risk, to locate and 

to correct incidents. They can be used to prevent or to identify incidents before they happen, but they are used 

with more frequency in the analyses of reliability, availability and safety of systems, and to analyze accidents. 

When accident or a fault are happened, it can be identified the root cause of the negative event. They are 

deductive methods in which graphic representation of combinations is realized by an arborescent structure 

(tree), allowing a qualitative and quantitative treatment at the same time. This tree is established in the form of 

a logical diagram and contains in the summit undesirable event. The immediate causes which produce this 

event are then organized into a hierarchy by means of logical symbols "And" and "Or". In this way, the tree is 

created bit by bit to reach a set of events considered as elementary. The main drawback of FTrs is that the 

development is sensitive to errors at various stages. Indeed, the constructed tree is only as good as the mental 

model of the creator. To realize a correct FDi from the FTrs, these have widely to represent all the causal 

relations of the process, i.e., that they must be capable of explaining all the scenarios of possible defects. 

FTr can be achieved with the use of coherent and non-coherent FTrs. A coherent FTr is constructed from AND 

and OR logic, therefore only considers component failed states. The non-coherent method expands this 

allowing the use of Not logic which implies that the existence of component failed states and working states are 

both taken into account. Non-coherent FTrs to represent the causes of sensor outputs provide more reliable 

results compared with those obtained using the coherent FTrs. 

FTrs offer the analyst comprehensive qualitative or quantitative analysis. Event trees allow the analyst to 

assess a system in both the success and failure domains. has carried out work using state 

charts and FTrs to provide continuous OLM and rectification of systems. Not logic is excluded from the FTrs; 

therefore, only component failures are taken into account to obtain FDi. As a result, some faults occurring 

simultaneously have required conflicting remedial procedures. also developed a FTr-based 

method that only considers component failures, which uses GAs to continuously monitor for faults in NPPs. 

Genetic search is slow in obtaining solutions and there can be problems determining when a global rather than 

a local FDi has been obtained. 

These techniques allow the analyst to overcome weaknesses of one analysis technique by transforming a 

system model into an equivalent logic model as another analysis technique. For example, a complex system 

that may be hard to model as a FTr might be easily modeled. However, the use of this method shows itself 

difficult for systems strongly dependent on time. Finally, there is no formal method to verify the exactness of 

the developed tree. Furthermore, FTA can be used to identify multiple faults in a system FDi capability. 

However, the use of this method shows itself difficult for systems strongly dependent on time. Finally, there is 

no formal method to verify the exactness of the developed tree. 

FTA is widely used in industry for safety analysis. FTA is a top-down symbolic logic 

model generated in the failure domain. This model traces the failure pathways from a predetermined, 

undesirable condition or event, called the Top event, of a system to the failures or faults (FTr initiators) that 



         

 

                                                            

 
 

could act as causal agents. Previous identification of the undesirable event also includes recognition of its 

severity. An FTA can be carried out either quantitatively or subjectively. 

The FTA includes generating a FTr (symbolic logic model), entering failure probabilities for each FTr initiator, 

propagating failure probabilities to determining the Top event failure probability, and determining cut sets and 

path sets. A cut set is any group of initiators that will, if they all occur, cause the Top event to occur. A minimal 

cut is a least group of initiators that will, if they all occur, cause the Top event to occur. A path set is a group of 

FTr initiators that, if none of them occurs, will guarantee the Top event cannot occur. The probability of failure 

for a given event is defined as the number of failures per number of attempts. 

FTA is a structural approach, in which a complex system hazard is broken down in events that may lead to this 

hazard. Such events may be intermediate events which are further broken down into basic events. FTr gates 

connect the intermediate or basic events, resulting in a tree with the hazard at the root as the top event and the 

basic events on the leaves. A simple FTr with basic events (here failure modes) fmi (I =1… 

5) and hazard H is shown in Figure III.26. 

The FTr gates which connect basic and intermediate events are most often simply the Boolean AND and OR 

gates. More complex variants of gates, e.g., INHIBIT, also exist  but tool support for FTrs is 

most often limited to Boolean gates. The informal semantics of the Boolean gates is that for the AND gate, all 

connected events must occur, for the OR gate, one of the connected events is enough to trigger the Top-level 

event. 

  

Figure III.26 - Example of FTr. 

FTA is used in the aerospace Pn, chemical and process pharmaceutical, petrochemical and other high-

hazard industries; but is also used in fields as diverse as risk factor identification relating to social service system 

failure. FTA is also used in software engineering for debugging purposes and is closely related to cause-

elimination technique used to detect bugs. 

FTA’s are particularly useful for high energy systems (i.e., potentially high severity events), to ensure that an 

ensemble of countermeasures adequately suppresses the probability of mishaps. An FTA is a powerful FDi tool 

for analysis of complex systems and is used as an aid for design improvement. 

This type of analysis is sometimes useful in mishap investigations to determine cause or to rank potential causes. 

Action items resulting from the investigation may be numerically coded to the FTr elements they address, and 

resources prioritized by the perceived highest probability elements. 

FTA’s are applicable both to hardware and non-hardware systems and allow probabilistic assessment of system 

risk as well as prioritization of the effort based upon root cause evaluation. The subjective nature of risk 

assessment is relegated to the lowest level (root causes of effects) in this study rather than at the top level. 

Sensitivity studies can be performed allowing assessment of the sensitivity of the Top event to basic initiator 

probabilities. 



         

 

                                                            

 
 

The procedures, as described in  for performing an FTA are presented below. These 

procedures are divided into the four phases: (a) FTr generation, (b) probability determination, (c) identifying 

and assessing cut sets, and (d) identifying path sets. The analyst does not have to perform all four phases, but 

can progress through the phases until the specific analysis objectives are met. provide 

a detailed description of FTr development and analysis for a process system. 

In the case of the KBT, FTA was performed using the collected data and heuristic 

knowledge by industrial representatives and researchers in collaboration. Based on faults, found through 

interviews, FTA can be performed. In the FTA was used to determine 

the system elements that need to be monitored. A list of identified measurement points was made and used to 

detect critical faults through analyzing the FTA basic events. Thereafter, the structure and logic of the FTA was 

used to develop the relationships between the measurement points; that is, defining causal relationships between 

various parameters and parameter sets. presented a method for diagnosing faults or 

combinations of faults in systems using FTA to explain the deviations from normal operation observed in sensor 

outputs. In this application the logic diagram is used to develop causes of a system symptom exhibited by a 

sensor reading, in terms of component conditions. The concepts of this method are illustrated by applying the 

technique to a simplified water tank level control system.  

FTA provides the following advantages (a) Enables assessment of probabilities of combined 

faults/failures within a complex system. (b) Single-point and common cause failures can be identified and 

assessed. (c) System vulnerability and low-payoff countermeasures are identified, thereby guiding deployment 

of resources for improved control of risk. (d) This tool can be used to reconfigure a system to reduce 

vulnerability. (e) Path sets can be used in trade studies to compare reduced failure probabilities with increases 

in cost to implement countermeasures. 

FTA possesses the following limitations: (1) Address only one undesirable condition or event that must 

be foreseen by the analyst. Thus, several or many FTA’s may be needed for a particular system. (2) FTrs used 

for probabilistic assessment of large systems may not fit or run on conventional PC-based software. (3) The 

generation of an accurate probabilistic assessment may require significant time and resources. Caution must be 

taken not to “over work” determining probabilities or evaluating the system, i.e., limit the size of the tree. (4) 

A FTr is not accurate unless all significant contributors of faults or failures are anticipated. (5) Events or 

conditions under the same logic gate must be independent of each other. (6) A FTr is flawed if common causes 

have not been identified. (7) Events or conditions at any level of the tree must be independent and immediate 

contributors to the next level event or condition. (8) The failure rate of each initiator must be constant and 

predictable. Specific (non-comparative) estimates of failure probabilities are typically difficult to find, to achieve 

agreement on, and to successfully use to drive conclusions. Comparative analyses are typically as valuable with 

better receptions from the program and design teams. 

DT is popular inference algorithm and is one of the most significant techniques in data-mining, initially 

introduced by and in 1963. DTs are statistical models and widely used tools for supervised training 

for classification, prediction and data decisions . 

DTs are symbolic learning algorithms based on the knowledge. A DT is the main technique that defines 

the various logical paths that knowledge base must follow to reach conclusions. From the DT the relevant rules 

to each node can be written and so the initial knowledge base can be constructed. A DT is a tree structure 
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consisting of nodes connected by internal and external branches. An internal node is a processing unit that takes 

the decision from the assessment of a decision function to determine which child node must be visited later. Unlike 

an internal node, an external node, also known as a leaf or terminal node, has no children and is associated with a 

caption or a value that characterizes the data in that path  The DT plays the role in knowledge 

discovery while the FTr could not. 

DTs can contribute to ease and simplicity of developing high-precision fuzzy interference system since DT are 

structurally simple and they could develop fuzzy rules and threshold values of membership functions.  

In the literature, there are several methods and variety of algorithms for the construction of DTs that offer 

the desired quality of interpretation. DTs were extensively studied and developed in the 1980s, notably thanks 

to Breiman's work, giving the CART model and Quinlan's, giving the Id3 model 

then C4.5 or J48 . The first two methods are well-known symbolic learning algorithms that 

work with recursive partitioning. The basic idea of these algorithms is to divide the spaces of sampling and to 

represent the partitions as a tree (a “divide-and-conquer” strategy). proposed a fuzzy inference 

system (FIS) for monitoring the status of the compressor based on Daubechies WT and DTs. 

What makes DTs attractive is the fact that they can represented as rules. The rules can easily be expressed 

in an interpretable way. DTs have been applied in various areas, and such rules as “if-then” statements can be 

extracted, which are easily understood. 

FMEA is widely used for safety analysis in industrial practice 

 and was used for the first time, from the 1960s, in the field of aeronautics for the analysis of aircraft safety 

 This method allows a systematic and very comprehensive component-by-component analysis of 

all possible failure modes and specifies their effects on the overall system . 

FMEA is a structured, qualitative analysis of a system, subsystem or function that can be used to identify 

potential system failure modes, their causes and the effects on the system operation associated with the failure 

modes occurrence. The use of FMEA tables for industrial FDi purposes leads to the use of a deductive procedure, 

i.e., to use these tables as a tool for identifying causes of failure from observed effects  The 

modeling of the CE relationships carried out by the FMEA makes this approach very powerful for the resolution 

of the problems of FDi of industrial process. FMEA basically consists of three steps: FId modes, determination 

of the causes for the failure modes and the number of times they occur and definition of detection methods for 

the failure modes. demonstrated the use of automated FMEA to generate reports that could be used 

in a FDi tool to diagnose multiple faults in systems at one point in time. The failures from the FMEA are only 

generated to a chosen likelihood of occurrence; therefore, all possible outcomes of failure for a system scenario 

may not be obtained. 

The FMEA is therefore very widespread in many industrial fields, aeronautics in particular; yet it is heavy 

and insufficient. Indeed, it is necessary to identify a priori defects and / or malfunctions prior to failures and 

their possible relationships can never be exhaustive and generally requires a long experience. In addition, any 

modification or evolution of the system requires a rewriting of the table. Finally, this method cannot handle 

multiple failure cases and integrate the functional aspect. 



         

 

                                                            

 
 

Causality tends to be important in qualitative models. Causality is a physical phenomenon based on CE 

relationship between different variables  There are two basic kinds of causal accounts used in 

qualitative modeling, structural and dynamical. The causality is used to describe relationships that are algebraic 

in form. For example, in one part of a causal explanation of the effects of a change on an analog electronic 

circuit, an increase in voltage across a resistor might cause the current through it to increase. Another example; 

the increase in heat causes an increase in temperature, which in turn causes an increase in pressure. 

CE reasoning was originally introduced as a reasoning tool to account for the propagation of fault 

symptoms within a system  It has been extended to model-quantitative-based FDI when MMs are 

available  

A CE (or cause-consequence) analysis is a symbolic logic technique explores system response to an initiating 

“challenge” and enables assessment of the probabilities of unfavorable outcomes at each of a number of 

mutually exclusive loss levels. The analyst starts with an initiating event and performs a forward (bottom-up) 

analysis using an event tree. This technique provides data similar to that available with an event tree; however, 

it affords two advantages over the event tree - time sequencing of events is better portrayed, and discrete, staged 

levels of outcome are analyzed. 

The cause portion of this technique is a system challenge that may represent either a desired or undesired event 

or condition. The cause may be a FTr Top event and is normally, but not always, quantified as to probability. 

The consequence portion of this technique yields a display of potential outcomes representing incremental 

levels of success or failure. Each increment has an associated level of assumed or calculated probability, based 

on variations of response available within the system. 

The CE relationship between the inputs and the outputs of a model has two connotations  From 

physics point of view, the CE relation represents the pathway of the signal propagation. From the computational 

point of view, the cause effect relation means that any changes in the model inputs will sufficiently cause some 

changes in the model outputs and the model outputs will not change without any changes in the model inputs. 

Popular among these methods are fault-trees and signed digraphs. FTrs use backward 

chaining until a primary event is found that presents a possible root cause for observed process deviation. signed 

digraphs is another representation of the causal information in which the process variables are 

represented as graph nodes and causal relations by directed arcs. 

The CE analysis is particularly useful in analyzing command-start/command-stop protective devices, 

emergency response systems, and engineered safety features. Cause-consequence analyses are useful in 

evaluating operating procedures, management decision options, and other non-hardware systems. Also, it will 

evaluate the effect/benefit of sub tiered/redundant design countermeasures for design trades and assessment. 

This technique may be used in conjunction with an FTA to provide a technique sensitivity assessment. This 

technique may also be used to compliment an FMEA. 

developed a two-level FDi and root cause analysis (RCA) scheme for a class of interconnected 

invertible dynamic systems and aims at detecting and identifying actuator fault and the causes. Outputs of the 

actuator subsystem are assumed inaccessible and are 

reconstructed by measurements of the global system, thus providing a means for monitoring and diagnosing 

the plant at both local and global level. proposed a methodology for detecting and identifying 

process faults of multi-operational manufacturing system. For this subject he developed an integrated approach 

to develop CE models from engineering knowledge and to conduct associated statistical analysis of the 



         

 

                                                            

 
 

measurement data. First, a CE diagram and predicted symptom vectors (PSV) are formulated to recognize the CE 

relationship between process variables and product qualities. Then factor analysis and factor rotating technique 

are employed to extract the relationships reflected from measurement data. Finally, the potential process faults 

are identified by comparing predicted symptoms and extracted symptoms. 

CE analyses provide the following advantages: (a) The analysis is not limited to a “worst-credible case” 

consequence for a given failure. Therefore, a less conservative, more realistic assessment is possible. (b) Enable 

assessment of multiple, coexisting system faults and failures. (c) End events need not be anticipated. (d) The 

time order of events is examined. (e) Probabilities of unfavorable system operating consequences can be 

determined for a number of discrete, mutually exclusive levels of loss outcome. Therefore, the scale of partial 

successes and failures is discernible. (f) Potential single-point failures or successes, areas of system vulnerability, 

and low-payoff countermeasures are identified and assessed, thereby guiding deployment of resources for 

improved control of risk and optimized utilization of limited resources. 

CE analyses possess the following limitations: (a) Address only one initiating challenge. Thus, multiple 

analyses may be needed for a particular system. (b) The initiating challenge is not disclosed by the analysis, but 

must be foreseen by the analyst. (c) Operating pathways must be foreseen by the analysts. (d) The establishment 

of probabilities is often difficult and controversial. (e) Determining the severity on consequences may be 

subjective and difficult for the analyst to defend. 

CG shows relations between variables. It represents a group of influences between variables with a set of 

relations among themselves. A model CG consists of individual nodes connected by quantitative models. The 

individual nodes represent plant parameters, state variables and measurement variables. The quantitative 

models represent the CE relationship between the nodes.  

CGs can be developed with the use of expert knowledge or from equations describing processes, when 

they are known. There has been a lot of work on automatic methods of building CGs using piping and 

instrumentation diagrams or archival industrial databases introduced 

to express the cause effect relationships. The model CG is not a simple network of structural models. It includes 

the dynamic information about process flow-path, signal flow-path, and control logic so that a fault can be 

localized based on the cause effect analysis for a process system. 

When the directed graph nodes represent the system variables, the directed arcs symbolize the normal relations 

among them and these relations are deterministic, the graph is frequently referred to as an influence graph 

 

Several major types (categories) of symptoms, which are included in the developed CG -modeling 

structure could be selected, determined and applied in the analysis of the causal relations. (a) Failure symptoms 

(or just failures). These symptoms indicate an abnormal behavior of the diagnosed system(s). If a certain failure 

is detected and/or observed, then the FD process can be started. (b) Basic symptoms (referred also as initial cause 

symptoms). A basic symptom represents a symptom, which is included in the core of the modeling structure, 

could emerge without any visible reason, and for which there is no necessity to search for any further cause for 

its generation. This is the most presentable set of symptoms that is determined by the genetic operators (in fact, 

they create the so-called “pool of the chosen symptoms”). (c) Ambiguity symptoms are neither faults, neither have 

they belonged to some of the sub-sets of basic symptoms. 

Extended model CGs are multi-model CG, model CG with hidden nodes, model CG approach with fuzzy inference 

modeling, procedures of model CG approach and graph of a process (GP).  



         

 

                                                            

 
 

A CG, which represents a process at a high level of abstraction, is appropriate for supervising the process. 

CGs are useful tools for FDi system analysis. This topic was first concerned in  Graph vertices 

can represent process variables, system components and events like faults and operator interventions. 

Simulation of fault propagation can be obtained and set of rules for fault discrimination can be built 

 Another application of CGs is multiple FDi  

presented a CG approach to FDi of industrial liquid waste-processing systems, under real 

operational conditions. The main goal consists in a development of necessary algorithmic structures, which are 

applied in an intelligent FDi system, based on a deep representation of the knowledge. The FDi process is 

developed as a multi-stage algorithm, consisting of FDe, search for solutions, model tests, causal relations 

among symptoms and faults, and validation procedures. 

In GP is introduced as a new formalization of CG useful in FDi. The author proposed a 

method for the generation of model structures (MSs) for FDe and diagnosability analysis for processes processes 

where no MM is known. The approach is explained on a three-tank system example. The author showed that 

GP can be constructed on the basis of process diagrams and expert knowledge. 

CG is a model which captures deep-level knowledge about process topology. At the same time, the model 

is very simple and can be easily understood by process engineers. This model can be developed from 

mathematical description, archival industrial databases, piping and instrumentation diagrams, or expert 

knowledge. GP is a model for clear description of FDi knowledge, redundancy searching, and diagnosability 

analysis. GP is not limited to a steady state. Models used for FDe should describe process dynamics. GP can 

also describe NL processes and transport delays. 

Among the graphical approaches, the BG language allows to deal with the 

enormous amount of equations describing the process behavior and to display explicitly the power exchange 

between the process components starting from the instrumentation architecture. It is a unified language for all 

engineering science domains that considers energy and information channels. Indeed, that is very useful since 

multidisciplinary systems constitute the majority of industrial products that exist nowadays.  

BG is a unified graphical description that presents a domain independent and energy-based methodology for 

modeling the dynamic behavior of physical systems from different domains (electrical, mechanical, hydraulic, 

thermodynamic, etc.). The causality is an important characteristic used in BG models to derive the constitutive 

equations of the process behavior in a systematic and an algorithmic way. The verification of the causality 

assignment avoids design and numerical simulation problems.  

The BG methodology encompasses various kinds of information due to its causal and structural features that enable 

to deduce directly a set of fault indicators.  

BG has been used to generate residuals in a systematic and generic way. Recently, the BG model the parameters 

uncertainties in order to generate robust and adaptive thresholds for the residual’s evaluation stage. The 

procedure for obtaining residuals is based on covering causal paths and is 

implemented in dedicated software  Notice that 

proposed BG modeling approach in the LFT (Linear Fractional Transformation) configuration that enables to take 

into account parameter uncertainties. However, this approach cannot address the measurements uncertainties. 

BG modeling has been used for both qualitative and quantitative FDe and isolation 

 The FDi procedure using BG is given by  



         

 

                                                            

 
 

has presented multiple FIso method based on causal reasoning. BG modeling was used to describe the relationship 

CE existing between process variables, and influence graph method is used for isolating faults. Experimental 

have shown that the causal reasoning through the example of influence graph can localize multiple faults in the 

three-tank process successfully. used BG for FDe and isolation. 

The main advantage of BGs is their description of process dynamics. On the other hand, the model is 

rather limited to linear differential equations. The main drawback of the BG approach is a need for detailed 

mathematical description and estimations of model parameters. Also, in some cases fault influence modeling 

is needed. Another issue is model complication. Though BGs are widely used for modeling, they are not well 

understood by process engineers. To work with experts, we need easier process descriptions. 

Directed graph is used to describe causal relationships between process variables and faults. SDG is the 

group of qualitative graphical models to describe process variables and their CE relationships in continuous 

systems, where the process variables are represented as nodes and their relationships through directed arcs. The 

SDG obtained from flow diagrams, MMs and empirical knowledge is an expression of high knowledge. The 

search for patterns in the propagation of faults in a directed graph helps greatly and finds the root causes 

 The hierarchical description of large-scale complex systems is based on the 

decomposition and approximate aggregation, where a simple SDG level model can be transformed into a 

hierarchical model which makes it easier in the understanding of a complex system 

 

Graph modeling real system can be obtained from mathematical description  piping and 

instrumentation diagrams and from archival industrial databases 

 

Directed graphs can be used to fault symptoms propagation analysis 

and to find fault signatures  The advantage of 

using a DBN is that it enables comprehensive FDD using a single tool as well as it can identify the fault 

propagation pathway.  

proposed a direct graph-based approach for sensor or actuator FDD of demand-controlled 

ventilation (DCV) system. It combines precise and detailed rules represented by the rule-based approaches, and 

the dynamic solutions, scalability and adaptability offered by the DDTs. This approach shows the connection 

between the FDi features extracted from the inserted instances in the ontology and their data properties. 

A BN is a causal network which belongs to the family of probabilistic graphical models which 

shows the complex interaction among the variables of a system in the pictorial view. It represents the knowledge 

in the graphical form. It is a directed acyclic graph, which links up the uncertain observations and helps to reach 

a certain conclusion  

The semantic of the BN makes it possible to understand the causal mechanism linking a symptom to its root 

cause. BN nonetheless requires more resources compared to the other methods. To set up a Bayesian model, 

two elements have to be defined: the structure of the network (nodes and arcs) and the network parameters 

(conditional probabilities distributions). 

Although the aforementioned knowledge-based tools can diagnose the root cause of the faults, uncertainty 

affects their performance. Since process measurements are extremely noisy and FDi is a process of reaching to 



         

 

                                                            

 
 

a certain conclusion compiling several noisy uncertain evidences, the FDi tool needs to have robustness to 

uncertainty. BN formalism explicitly incorporates uncertainties and allows exploiting both data and expert 

knowledge. It is widely used in the fields of medical science  safety, risk and reliability 

engineering  dependability and maintenance engineering 

 The power of BN has not been fully exploited in the area of process FDD. 

The most robust feature of a BN is that it can be constructed with limited data or even in absence of data 

integrating expert knowledge  

The conventional BNs used in most of the current literatures are discrete and static. Static BN cannot 

model dynamic systems and therefore, it is not suitable for monitoring the dynamic processes, since it cannot 

capture the temporal relationships among the process variables. introduced a dynamic BN 

(DBN) based process monitoring technique. It is an extension of a static BN. It can represent the temporal 

relationships  A DBN has two robust features: smoothing and prediction inferences. 

Prediction is forecasting the future of a state in a node based on the current evidence, while smoothing refers to 

the estimation of the probability of a node in the past based on collected evidence up to current time slice.  

BN has been used for FDi and applied for various range of systems. It becomes popular due to its ability 

to incorporate process data with expert opinion, and it has many successful applications in root cause diagnosis. 

However, it is possible to build a BN using expert opinion only when process data are unavailable. Furthermore, 

it has ample application in the fields of risk analysis, dependability, and maintainability  An 

application of a BN in dimensionality reduction is available in literature . 

used BN in sensor FDiso in both steady and transient 

operating conditions. proposed a BN based FDId method for three types of sensor faults: 

noise, bias and drift in steady operating condition. extended the methodology for 

transient operating condition. utilized a BN to diagnose the root cause of variation of a machine 

tool. One of the interesting applications of a BN was presented by . They used the BN for 

FDi as well as dimensionality reduction. Knowledge of a fault was utilized to reduce the network size. 

proposed another Condensed Semi Naïve Bayesian Network (CSNBN) based FDi approach. They collected 

the structured residuals in an incident matrix which provided the evidence to the BN to diagnose the root cause. 

used a dynamic BN (DBN) based process monitoring approach for detecting the fault, 

diagnosing the root cause of the fault, and identifying the fault propagation pathway. 

developed a modified ICA (MICA) and BN based framework which can capture the non-Gaussian 

feature of process data. They showed that a BN can be used to diagnose the faults that originated from an 

unmonitored variable. used a semi-parametric PCA and BN based methodology. Semi-

parametric PCA enables capturing the NL, non-Gaussian and non-monotonic natures of the process data. They 

also demonstrated the capacity of a BN to diagnose the unmonitored root cause variable. 

presented a hybrid framework combining KPCA and BN. KPCA can handle NL process data using the 

kernel mapping function. Limited FDi information from KPCA was used to update the BN and diagnose the 

root cause of the fault. applied KPCA with a BN to capture the non-Gaussian feature 

of process data, and to diagnose the root cause of a fault. integrated the BN with PCA to 

improve its FDi capacity. used MICA and the BN to diagnose the root cause in an unmonitored 

variable. 

For large-scale systems, such information may not be available or it may be too costly and time-

consuming to obtain. An alternative method for process monitoring is to use KBTs. A KBT is useful to tackle 



         

 

                                                            

 
 

some limitations such as computational, and modeling requirement; meanwhile it enhances the performance 

in terms of reducing classification error and increasing robustness due to noise and disturbance, but it cannot 

eliminate all errors ( ). 

Compared with model-based approach, KBT is particularly suitable for large industrial plants since those NL 

real plants are extremely difficult to model and linear approximation of the model will introduce large errors in the 

results. In addition, knowledge-based approach is able to reduce the complexity of implementing the 

corresponding safety system and make it flexible and easy to understand and follow. Symptoms are quickly 

associated with diagnoses. A knowledge-based approach or expert rule practically provides reasonable fault 

explanation. The strength of KBTs is the opportunity to combine model-based and DDTs in a hybrid FDD 

approach  e.g., a DDT can detect a fault, and a model-based approach can associate the fault 

to a FDi. Combining knowledge-based FDi method with real-time process variables monitoring will improve 

the efficiency and reliability of detecting fault behavior and overall effectiveness of the system. On the other 

hand, KBTs achieved good performance in detecting pre-known faults without the need of a data set as 

discussed by   

With all the advantages of rule-based approaches, they still have some disadvantages that might put many 

researchers off using them. As the inferred rules are based on the historical failure cases and engineers’ 

experience, it is difficult to search a wide range of yield loss cases beyond the engineers’ current knowledge 

 Furthermore, the enormous amount of effort needed to link the rules and their 

requirements with the system’s components that the rules are applied on. In addition, the continuous need for 

changing the thresholds within the rules to fit the new system can be considered as another issue. Thus, 

configuring such systems can take a lot of time and effort ;  

Furthermore, while the knowledge-based tools provide excellent performance in FDi, they lack in robust 

detection capacity. 

In order to improve the reliability and safety considered as key design issues in most computer systems 

operations such as in aeronautics and NPs, FM is usually employed to handle online faults by detecting, locating 

and identifying them in dynamic systems by using the concept of redundancy of component (i.e., sensor, actuator), 

equipment or systems, either HR, software, AR or hybrid configuration. 

In wide sense, redundancy is a system property that generally refers to duplication of state information or 

system function. From a modeling standpoint, have found the following redundancy 

categorization: state, functional, temporal and control. Functional redundancy form arises when, for example, we 

compute the same function using three different algorithms, and we take a vote on the outputs. We do not 

distinguish, in functional redundancy, between whether the components that compute the same function are 

running concurrently, or in sequence. In this thesis, we are interesting of the functional redundancy. 

Therefore, using AR for FM is defined as the determination of faults of a system from the comparison of 

available system measurements with a priori information represented by the system’s model, through generation 

of residual quantities and their analysis. 

As it is shown on Figure III.27, there are two types of redundancies. It can be made physically (i.e., hardware, 

static ( ), direct ( ) or by model (dynamic) ( ; ). For 

more details on redundancy and its models, we can refer to   



         

 

                                                            

 
 

 

Figure III.27 - Kind of redundancy. 

Combination of static and dynamic redundancy lead to hybrid redundancy schemes to avoid the disadvantages 

of both ones on cost of higher complexity   

In order to improve the reliability of an installation, HR called also simple redundancy ( ) is 

the first redundancy methods, considered as conventional approach for FM and control ( ; 

; ). The principle of this redundancy is to duplicate (double, triple or more), either 

identical or diverse, some physical samples of a hardware component in the vast application context. It 

implements multiple parallel or hardware in their components (e.g., sensor, actuation, processors, memories), devices 

(e.g., pump), and systems (e.g., control systems) in order to measure and/ or 

control a particular variable of interest ( ; ). Outputs from the redundant 

sensors can serve as references for cross-checking each other and to make consistency checks between related 

measurements ( ).  

If these identical components placed in the same environment provide identical signals, one considers that these 

components are in nominal operation and, in the opposite case, one considers that a fault is happened in at 

least one component On the other hand, an odd number, usually three, is required if one wants 

to make the system able to decide (majority arbitration). 

There exist mainly two basic approaches for HR, static and dynamic. The static HR approaches have been 

widely used in safety-critical systems for their simplicity and robustness. Their general idea is to measure one 

critical variable using two or more identical parallel hardware modules (e.g., sensors) that have the same input 

signal and are all actives as shown by Figures III.28a and b. Their outputs are connected to a voter who compares 

these signals and decides by consistency checking and majority voting which signal is the correct one then 

detects as well as isolate the faulty sensor. If a triple modular-redundant system is applied, and the fault in one 

of modules generates a wrong output, this faulty module is masked (i.e. not taken into account) by the two-out-

of-three voting. Hence, a single faulty is tolerated without any effort for specific FDe, n odd redundant modules 

can tolerate (n-1) /2. To improve the fault tolerance also the voter can be made redundant 

  

Figure III.28 – Sort of HR: (a: left) static, (b: right) dynamic (Hussain et al., 2015). 

Voting techniques are often used in systems incorporating a high degree of parallel HR. Voting techniques are 

fairly easy to implement and mostly suited for FDi in instruments with mechanical faults. To describe how a 

file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/Aircraft%20Sensor%20Estimation%20for%20Fault%20Tolerant%20Flight%20Control%20System%20using%20Fully%20Connected%20Cascade%20Neural%20Network%20(n°1618-2013).pdf
file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/A%20Dynamic%20Neural%20Network-based%20Reaction%20Wheel%20Fault%20Diagnosis%20for%20Satellites%20(n°1820,%202006)%20used.pdf


         

 

                                                            

 
 

voting technique will work, consider three identical sensors measuring the same variable. If one of the three 

signals differ distinctly from the other two, the differing signal is identified as faulty. The difference between 

the two signals in every pair of sensors in a redundant group indicates a fault. 

Typically, a voting scheme is applied to the outputs of the hardware redundant system who 

compares these output signals and decides by majority which signal value is the correct one to decide whether a 

fault has occurred or not and identify any faulty component .  

HR is also used in the cross-calibration technique  where the average of a set of redundant 

sensors is considered to be the true value of a variable being measured. A fault in a sensor can be detected if the 

sensor shows any abnormal deviation from the average. 

Disadvantages of static redundancy are high costs, more power consumption and weight. Further, it cannot 

tolerate common-mode faults, which appear in all modules because of common faults sources. 

Dynamic HR needs less modules at the cost of more information processing. A minimal configuration consists 

of two modules as shown by Figure III.28b. One module is usually in operation and, if it fails, the standby or 

back-up unit takes over. The standby module can be continuously active (hot standby) or inactive (cold 

standby). This requires FDe to observe if the operation modules become faulty which is based on generating 

residuals by comparison of measurements provided by HR ( ). A fault in the process component 

is then detected if the output of the process component is different from that of the redundant hardware. After 

a fault is detected, the fault indicator (i.e., residual) is used to switch to the standby module and remove the 

faulty one. 

Combination of static and dynamic redundancy lead to hybrid redundant schemes to avoid the disadvantages 

of both ones on cost of higher complexity  

Fault-tolerance (FTo) can also be designed for purely mechanical and electrical systems. Static redundancy is 

very often used in all kind of homogeneous and inhomogeneous material (e.g., metals and fibers) and in special 

mechanical constructions like lattice-structures, pokes-wheels, dual tires or in electrical components with 

multiple wiring, multiple coil windings, multiple bushes for DC motors and multiple contacts for 

potentiometers. Fault tolerance by redundant kinematics was proposed by  

Similar redundant schemes as for electronic hardware exist for software FTo, i.e. tolerance against 

mistakes in coding or errors of calculation. Dynamic redundancy by using standby software with diverse 

programs can be realizes by using recovering blocks. This means that in addition to the main software module 

(e.g., computers), other diverse software modules exist  

This same principle is also used for control systems, both for the hardware part (calculator) and for the software 

part (program). In this case, in order to overcome the program faults (bug), a code developed by three different 

editors are located on each computer. This is called software redundancy ( ). 

Traditionally, FDIA is achieved through high-levels of HR. This HR method has the advantage to be 

conceptually simple. The main advantage of this scheme is its high reliability and its direct FIso. This stills today 

the state-of-the-art practice in high-performance systems and high-level of operating security such as the aircraft 

manufacturing industry and NPPs. Therefore, HR is well known as high reliability. 

This kind of method is very reliable and widely used in many practical industries ( ). So, HR is 

considered critical for the operation of the system and is very wide-spread in the domains where the security of 

operation is crucial for the safety of the individuals and the environment, such as in the aircraft manufacturing 

industry (aeronautics) flight control systems ( ) and NPs. So, HR is used in several works (

). Example ( ) and more details on HR are available in 

.

However, by using redundant hardware, the major setbacks and weaknesses encountered are the extra 

equipment which lead to high and serious cost (economic penalties and, installation and maintenance cost), power, size 

file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/A%20Dynamic%20Neural%20Network-based%20Reaction%20Wheel%20Fault%20Diagnosis%20for%20Satellites%20(n°1820,%202006)%20used.pdf
file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/A%20Dynamic%20Neural%20Network-based%20Reaction%20Wheel%20Fault%20Diagnosis%20for%20Satellites%20(n°1820,%202006)%20used.pdf


         

 

                                                            

 
 

and space, and weight implications and penalties. Thus, particularly when the space is very limited in the system, 

such a satellite ( ) and small aircraft’s ( ; ), the application of 

this scheme is restricted to only a number of key components and uniquely reserved for cases where continuity 

of service is mandatory, or for critical subsystems whose failure would lead to a disaster (NPP, aeronautics, etc.). 

In addition to the previous limitations of HR, usually identical components can drift in the same manner 

(direction) and break down in the same time so it is difficult to detect faulty component in these conditions (

). To overcome this constraint, the solution is to use different components which insure the same function. 

Further, it cannot tolerate common-mode faults, which appear in all modules because of common fault source 

( ). All these over mentioned drawbacks make HR an unpopular method for FM. 

However, when reduced complexity, cost, and cumbersome, weight are of concern, AR ( ) is 

more appealing, practical and common approach for FDD of sensor and 

actuator in systems and for nuclear industry. 

Due to the draw-backs, constraints and implications of HR and in view of the conflict between the reliability 

and the cost of adding more hardware, it may not be feasible to use multiple components (e.g., sensors) for the 

measurement due to physical limitations or due to the specific operating condition. But it is sensible to attempt 

to use the dissimilar measured values together to cross check each other. This procedure is sometimes referred 

to as DR, rather than replicating individually each hardware. As a result, most HR approaches have been 

substituted by MBR, the most frequent scheme  to overcome the aforementioned barriers. This 

approach (i.e., MBR) is more appealing, common and practical for FDe of S/Ds in NR systems. Furthermore, 

the continuous development of the computer science and computational techniques have generalized and 

become the main potential innovation in terms of software forms on computers applied in automated processes. 

It allows today application, in the industrial environment, modern methods of the automatic and the AI. This 

new approach allows eliminating partially, even altogether, HR for the monitoring of industrial systems 

( ). ) presented a comparative study of sensor FDe methods using HR and 

AR which have been applied to a real process. 

AR is an interesting tool for monitoring studies. It uses a model to predict the output quantity. The 

difference between this prediction and the measurement of the output constitutes a fault indicator. If this 

difference reaches a significant value, it becomes a symptom of the abnormal behavior of the system: one of the 

components or devices of the physical system is faulty ( ). 

The MBR (functional, computation strategy) is the manner of identifying a failed instrument in a system using a 

fault- model-free of the system and comparing its estimated outputs considered as references to the measurement 

of the actual, i.e., real behaviors, of the system able of replacing a faulty sensor ( ). These 

references can describe normal operation when it is about the FDe or the various types of fault when it concerns 

the analysis or the isolation of faults. So, MBR uses a model of the monitored system to estimate continuously the 

output process signal-based on the actual inputs which requires the processing of various accessible process 

measures. But the model should not, however, be too complicated, because calculations easily become very 

time-consuming  So, MBR for FDD used the model of system to generate a signal called 

residual from the difference between measured parameters and estimated values (see Figure III.29) which 

becomes large in the case of fault and small in the absence of fault.  

Finally, this is the concept of AR which uses redundant analytical relationships between various measured 

variables of the monitored process. 

file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/A%20Dynamic%20Neural%20Network-based%20Reaction%20Wheel%20Fault%20Diagnosis%20for%20Satellites%20(n°1820,%202006)%20used.pdf
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After that, faults, noise and disturbance in terms of residuals are evaluated and isolated by computing suitable 

thresholds. However, the essential barriers of FDi isolated by MBR FDD are classification error, modeling 

requirement, novelty identifiability and computational requirements ( ).  

 

Figure III.29 - Block diagram of AR. 

Usually, providing a FDi system consists in making a comparison between the measured information, 

during the actual operation of the system, and the a priori knowledge of its modes of operation. Based on the 

results obtained from this comparison, the user can intervene and put in place the corrective actions necessary 

for a return to normal. 

AR is obviously a more favorable approach when weight optimization is a primary concern (

). It needs fewer modules at the cost of more information processing. A minimal configuration consists 

of two modules ( ). AR is used for FDe of sensor and actuator as presented in ( ; 

) and some authors have applied AR in the nuclear industry ( ). 

Typically, a DDT such as PCA or FiDiAn can appropriately and conveniently detect faults in terms of residual 

generation. Although model-based approach can provide physical understanding for residuals. These residuals may 

include disturbance and noise due to measurement and control signals leading to the degradation of detection 

robustness.  

The conceptual MBT diagram for a FDi system is depicted on Figure III.30. It consists essentially of two 

sequential steps (stages) namely: (a) residual generation and residual evaluation considered as the key phase of the 

FM in order to determine the state of the process, and (b) residual evaluation 

 

 

Figure III.30 - The general structure of FDi system (Palade et al., 2002). 

Difficulties with model-based FDe methods arise from the fact that the accuracy of the measurements needed 

to calculate the evolution of faults should be of high quality. In practice, FDe systems make usually use of 

measurements from process instrumentation that is not necessarily installed for this purpose. In consequence, 

the instrumentation may not be sensitive enough and special sensors should be connected to the process equipment. 

Use of MBTs may require assumptions about the process that are not valid, such as the assumption that the 

process is linear as well as that the influence of noise and disturbances to the FDe process is of minor importance. 

Recent contributions to model-based FDi include  



         

 

                                                            

 
 

In parallel of the HR belonging to the MBTs  has been 

recognized as an effective technique for monitoring  Simulation studies and experimental results 

have shown that the FDI schemes using AR have reached a certain degree of maturity. For the sensor failure 

case, AR is often introduced along with, at least, a dual HR ( ).  

Over the past decades many SFDA publications have targeted fixed model-based approaches, with MM-based 

methods being the most popular . 

AR methods require a MM of the system to monitor. This model includes a number of parameters which the 

values are assumed to be known during nominal operation. In so far as the monitoring is established from the 

sampled measurements of the observable quantities of the system, the modeling of this latter in discrete form 

seems to be reasonable ( ). 

AR relationships are used when the model involves measurable quantities. AR relationships are relationships 

between available system variables taken in a time window. 

An alternative approach can take advantage of AR to provide SeV capabilities. AR essentially 

implies taking advantage of the functional relationship existing between the system inputs, states, and outputs; 

in other words, AR is available when the modeling of the system is known or at least partially known. The 

comparison with actual state provides residual that will be used to determine if the system is in a failed state or 

not. 

In the literature, several approaches are presented, where they base their AR on different mathematical modeling 

techniques. Sensor and actuator fault are detected and identified using AR as presented in the different works 

 AR based methods have been widely discussed by several authors 

 Specific applications have also been developed in the field of flight control systems 

.  

Some authors have applied AR in the nuclear industry aeronautics 

or chemical industries  Comparisons of the performances of the different approaches of AR exist in 

 

Beside Model, FDe is also carried out using DDT such as statistical testing methods  If 

precise analytical models are not available or difficult to obtain, like in NRs, the model-based FM approach is 

still difficult to apply. In such cases, the support by DDTs may be the solution. In these techniques applied to 

the FM, we find the category: digital (e.g., delivered by sensor) and/or symbolic as knowledge, historic and/or 

instantaneous, on the considered system. Several studies were presented and various methods have been proposed 

about FDe using data-based methods in which data can be quantitative (e.g., output of sensors), and/or qualitative 

(e.g., observations made by operators) ( ; ; ). The accuracy of 

the DDTs depends on the applied algorithm; thus, the results may vary from one algorithm to another 

 

The use of DDTs includes statistical methods and AI for FM is justified because it is possible to model the 

process without the need a deep and a specific knowledge about the monitored system (i.e., algebraic equations), 

by using only the process measured database ( ) which contains the process plant information 

( ). In addition; DDTs have the ability to capture information and provide knowledge which is 

beyond the engineers’ current knowledge  However, data-driven models 



         

 

                                                            

 
 

cannot be built without data sets. Therefore, when ABTs are difficult to apply, DDTs can be considered (

). 

The idea behind the qualitative observer-based FDI is that a fault causes a deviation of the system output 

in such a way that its counterpart of the estimated output is no more consistent, i.e. a fault will produce an 

empty set of qualitative estimated states, which is impossible in a fault-free case. A model for FDI can now be 

derived following the basic idea of using fuzzy relational models. 

The fuzzy observer is founded on a fuzzy relational model of the process, which is formed by the composition operator 

(T-co-norm/T-norm operator) applied to a fuzzy relational matrix R defining the relation between process input and 

output, and the fuzzy Cartesian product of the fuzzified input-output signals and its delays on a time window. 

The fuzzy residual generator as shown in Figure III.31 determines the difference between the measured and the 

estimated output using a fuzzy output observer.  

Note that the structure of the residual generator based on fuzzy relational models is similar to the one based on 

neural nets. A basic difference is that the signals used for the fuzzy relational model have been previously 

fuzzified, for the neural net approach the measured signals are utilized directly. 

 

Figure III.31 - Fuzzy observer-based residual generation.  

introduced a general procedure for FDI using innovations (or residuals) generated by 

a KF. On the other hand, for non-additive failures, even for linear state systems, the known results are less 

abundant. The situation is even less flourishing for NL systems. However, in order to monitor low amplitude 

failures, a general approach has been developed at IRISA which, based on a local approach, allows 

the design of algorithms for the generation of residuals from the estimation functions and for their evaluation. 

It applies to a broad class of NL systems with additive or none ( ). 

The purpose of the residual is to be sensitive to the presence of faults. Thus, normally, in the absence of 

failures, that is to say in normal operation, the residual must have a value of zero. On the contrary, in the 

presence of a fault, the residual will have a non-zero value ( ). 

Figure III.29 illustrates the simplest form of AR method and most general principle for residual generation 

for FM. The error signal, prediction error or residual is based on signal measure produced by 



         

 

                                                            

 
 

the difference (i.e., comparison, discrepancy, changes) between currently (actually) coming observed output (as 

measurement reading) of the behavior of the operating process (real system) or the simulation value of the process 

variable and the predicted (reconstructed) output of an exact nominal ( ) (typically empirical) (Baraldi et al., 

2011a) process model estimating the values of measurable variables (signals) in normal (no faulty) conditions made 

by the model of the system to be monitored, driven by the same inputs ;   

Therefore, the residual signal reflects the correlation and inconsistencies between the behavior of observed system 

conditions and the expected ones that should result under normal conditions and its shape represent the fault 

signature . Particularly, when the KF is used as predictor, this residual is 

called the innovation  

So the residual can be formulated as: 

r(k) = y(k) - ŷ(k)  (III.4)  

where y(k) and ŷ(k) are the measured and estimated outputs, respectively.  

However, in real-life conditions, the filter residuals may be nonwhite and/or biased due to: (a) occurrence 

of a sensor failure; (b) bad measurement and/or intermittent failure (statistical outliers, data gaps, temporary loss 

of signals); (c) use of a reduced-order filter, because of constraints on available computational power. 

Once the residuals have been generated as shown by Figure III.32, they must be evaluated to determine 

whether or not a fault has occurred. The basic principle of the anomaly and potential FDe is to monitor the 

residual signal-based on the measurements and the predicted signal comparison. The latest is used as reference 

system, usually calculated off-line ( ) by MBTs (AMBTs or DDBTs), is considered as the way to 

indicate the operation state (i.e., normal or abnormal) of the process and then to determine the deviations from 

the expected operating conditions, compare the evolution of the real process, validate the correct operation of 

the process and reconstruct the measurement ( ; ).  

 

Figure III.32 - Conceptual structure of model-based FDi. 

So the FDe is performed by using MBR approach  where when residual (calculated on-line 

or off-line) is zero or nearly zero, the system is in normal condition (operation) and regarded as fault-free, 

conversely when error signals is large and distinctively diverge from zero, the fault is declared (e.g., release of 

alarm) and the system is defined as in abnormal condition (operation) ( ). This zero and 



         

 

                                                            

 
 

non-zero property of the residual is used to determine whether or not faults have occurred ( ; 

). Therefore, the residual is a fault indicator or an accentuating signal which reflects the faulty 

situation of the monitored system ( ). Furthermore when the model is not well designed, small 

amplitude of the residual signal is due to noise, disturbance and/or modeling errors ( ). However, 

the residual noise has a mean of zero and a variance related to the amount of noise which helps to its elimination by 

with statistical decision logic ( ). The residuals should have favorable properties like minimal 

sensitivity to disturbances and maximum sensitivity to faults. 

As shown by Figure III.32, when the residual is properly generated, in addition to allowing detection of faults 

and the knowledge of the symptom, it helps the analysis and evaluation of the residual by decision making to provide 

a valuable information necessary to describe and characterize the declared faults 

 Then, it allows to validate measured data and recover failed measurements 

To perform this analysis of the generated signal-residuals, several techniques have been developed, for example, in 

a statistic method is presented, in and ES is proposed and in (

; NNs are used. Furthermore, existing theoretical FDId techniques (GLR, 

sequential probability likelihood ratio, maximum likelihood detector, multiple-model Kalman filtering) implement a 

constant monitoring of the signals from the sensors of the flight control system ( ). 

 So, in order to detect the occurrence of fault in systems by using a model-based, a dynamic model of the normal 

behavior is required  However, due to the non-linearity, complexity and absence of steady-state 

operating conditions, the application of the MMBTs to batch processes is usually very difficult. 

Faults in the system are detected and diagnosed by checking the residual ( ). After that, faults, 

noise and disturbance in terms of residuals are evaluated and isolated by computing suitable thresholds. However, 

the essential barriers of FDi isolated by MBR FDD are classification error, modeling requirement, novelty 

identifiability and computational requirements ( ). 

Many techniques are based on the monitoring of the residual signal  for detecting a fault 

when the residual exceeds a threshold value previously set. 

So, any significant increase in this residual above a specified threshold level (exceed) is indicative of anomalous 

behavior, then that system to be monitored is declared as faulty  So, 

the residual is a fault indicator or an accentuating signal which reflects the faulty situation of the monitored 

system   

The threshold overtaking is therefore used to trigger automatic safety commands such as closing / opening 

valves if the high limit level is reached, stopping the heating if the temperature has reached the threshold 

temperature, starting an emergency pump if the usual pump is overheating, etc. ( ). 

Thus, the rule of FDe is. 

                                                                        r(k) ≤ Th. Normal 

                                                                        r(k) ≤ Th. Failure 
(III.5)  

where Th is the threshold. 

The residual is also used to identify faults  For additive failures in time-constant linear state 

systems, the generation and evaluation of residuals have been extensively studied, both deterministically and 

stochastically   

A partial list of theoretical FDI techniques can be given by: (a) GLR; (b) Multiple Model 

Kalman Filtering (MMKF); (c) Sequential Probability Likelihood Ratio Test (SPLRT; (d) Generalized Likelihood 

Test/Maximum Likelihood Detector (GLT/MLD). These techniques feature a CtM of the measurements from the 

sensors. At nominal conditions these signals follow some known patterns with a certain degree of uncertainty 

due to system and measurement noises. However, when sensor failures occur, the observable outputs deviate 

from the predictable trajectories calculated on-line or off-line from state estimation schemes, namely KFs. 

The residuals evaluation consists to identify all classes of system behavior ( ) with the goal to 

diagnose different possible faults ( ). 

file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/Comparing%20a%20knowledge-based%20and%20a%20data-driven%20method%20in%20querying%20data%20streams%20for%20system%20fault%20detection.%20A%20hydraulic%20drive%20system%20application%20(n°1826,%202014).pdf


         

 

                                                            

 
 

FDI methods are usually based on the residual generation and analysis concept. The residuals should have 

favorable properties like minimal sensitivity to disturbances and maximum sensitivity to faults. Residual 

evaluation is making decisions based on these residuals  The residuals evaluation 

consists to identify all classes of system behavior with the goal to diagnose different possible faults. When 

applying the AR methods, the evaluation of signal residuals allows to determinate whether component faults, 

sensor faults or actuator faults are affecting equipment, measuring or control instruments, respectively 

 Beside residual evaluation, faults can also be isolated using structured residuals . 

Residuals are a crucial issue for FDe. During operation, a deviation of the residual values from zero (low 

value) reveals the presence of an abnormal condition. An ideal residual must remain at zero in the absence of 

failure and move away from zero in the event of a failure. But in practice, due to the measurement noise, 

modeling errors and disturbances, a real residual is often different from zero. So, the residual is compared to a 

threshold instead of zero.  

For residual generation, the choice of thresholds is therefore crucial. Therefore, the optimal threshold 

level must be determined (set) beforehand properly for each system parameters to be monitored, in order to 

detect accurately abnormality caused by fault.  

The threshold is defined by process experts according to safety criteria set by the operator but usually, it 

is established from a series of simulations in which its value is adjusted, and a trade-off between the FAl rate 

and the detection capabilities ( ; ). In the opposite case, FAl and missed 

detection may occur, which seriously affects the accuracy of FDe ( ; ).  

Choosing the threshold at low-level would be suitable. However, the presence of residual noise (caused by 

measurement disturbances, process disturbances and model uncertainties) causes the residuals to become 

nonzero which lead to increase the rate of FAls  choosing it too large reduces the net effect 

of FDe. There is therefore a strong motivation to reduce the sensitivity of the residual with respect to modeling 

errors. 

If the threshold is chosen too small, FAls occur, if it is chosen large, small faults can be detected. Therefore, it 

has been shown that it is advantageous to use time-variant thresholds that are adapted 

to the operation of the system of interest ( ). 

Indeed, a trigger value is too low can frequently generate FAls (related to disturbances). On the contrary, when 

the trigger value is high, the system is considered in normal operation while it is in default. This fault will then 

be detected later (especially for the faults settling slowly). 

The reason for this is that with residual noise being present; thresholds are usually set at a high-level to avoid 

FAls. Consequently, small magnitude faults do not exceed this threshold and pass by undetected. Of course, 

one can raise the threshold but this can also increase the number of missed faults. A common solution is to 

amplify the residual but this can also have the adverse effect of amplifying residual noise.  

The choice of optimal threshold of the residual is subject to many difficulties ( ) mainly 

spatial uncertainty and temporal uncertainty. The first one lies in the choice of the threshold from which the 

difference between the real value and that obtained by the reference model is considered "abnormal". In this 

case a threshold that is too low leads to FAls: the situation is supposed to be abnormal when it is not. - On the 

other hand, a threshold set at a value that is too high risks generating no detection: The situation is assumed to 

be normal even though it is not. On the other hand, the simulation of the reference model must evolve in real 

time and synchronously with the monitored process. Usually, this feature cannot be guaranteed at all times. 

Indeed, a temporal uncertainty.) exists because of the intrinsic parameters of the simulation models describing 



         

 

                                                            

 
 

the dynamics of the system. Thus, certain temporal or state events may appear at the level of the simulated 

reference model either in advance or behind the observations made on the monitored method. Here again, there 

is the problem of determining from what distance can be considered that a failure is potentially detected. In all 

cases, a procedure for resetting the reference model to the actual process must be performed in order to be able 

to validate a detection test. 

On the other hand, there are currently several approaches to increase the FDI robustness either by a proper 

choice of the threshold or by making the threshold adaptive to the input, as proposed in 

the book by  In the simple case, this threshold is fixed (a constant), but in particular cases, its 

shape is variable as in the case of adaptive threshold to avoid FAls 

 

The simplest residual test is to punctually compare signals with pre-established thresholds. The fixed 

threshold was the subject of the first work on the problem of choice of the threshold. Crossing this threshold by 

one of the sensor signals generates an alarm. Practically, there are two types of thresholds. The detection 

obtained is independent of the time and the type of the system inputs. A first type is called the pre-alarm 

threshold which makes it possible to undertake a preventive maintenance action; the second type is the alarm 

threshold which imposes the stop of the production and the commitment of a corrective maintenance action. 

This type of method is very simple to implement but seems unsuitable for a system subject to disturbances 

because it is very sensitive to disturbances and noise, and can lead to FAls as shown on Figure III.33 (

). If the threshold chosen is too small, uncertainty cause false signal otherwise small faults cannot be 

detected. 

 

Figure III.33 - Sensitivity of the threshold crossing test method of FAls. 

Using LC, the process variables are measured and compared to a known limit for each variable. Typically, 

the first step is to establish the variables threshold and then to compare them with the measured values. Any 

measurement or comparison between known threshold and measured value outside the expected range would 

indicate the presence of fault. 

Generally, two limit values of thresholds are preset, a maximal value Ymax and a minimal value Ymin. A normal 

state is when: 



         

 

                                                            

 
 

Ymax > Y(k) >Ymin (III.6)  

which means that the process is in normal situation if the monitored variable stays within a certain tolerance 

zone. Exceeding one of the thresholds indicates that a fault is somewhere happen in the process, as shown on 

Figure III.34. 

  

Figure III.34 - Limit checking. 

Figure III.35 shows the idea of adaptive threshold and it is clear that if a fixed threshold is used then the false signal 

occurs at the time Tfa and the fault at Tf cannot be detected. When adaptive threshold is used, the residual caused 

by the input in fault-free case, the FAl can be avoided and fault at Tf can be detected  

This figure shows the advantage of using adaptive thresholds rather than fixed thresholds. It can be seen that 

the adaptive threshold makes it possible to avoid the emission of FAls. Many studies deal with this technique 

. 

 

Figure III.35 - Illustration of the concept of the adaptive threshold. 



         

 

                                                            

 
 

Although research on model-based approaches for FM has been actively carried out with noteworthy results 

 it is still a challenging task, especially in researches related to robustness in presence of different 

sources of uncertainties  NL systems and hybrid system issues. Various works focused recently 

on the design of consistency tests for dynamical systems with additive and multiplicative parameter uncertainties 

by dealing with intervals analysis . There exist several FDI approaches to handle the robustness 

issue ) in which the model uncertainty effect is suppressed. The aim of these techniques is not only 

to suppress all the uncertainty effect but to formulate a mini-max optimization problem in which the model 

uncertainty is minimized while the sensitivity to the fault is maximized   

These robustness approaches are divided into two groups as active and passive as shown on Figure III.36. 

The active robustness approach deals with the model uncertainty in the residual generation phase. The aim is to 

avoid model uncertainty effects on the residuals. The passive robustness approaches are implemented in the 

residual evaluation phase, e.g., by using time varying thresholds, also known as adaptive thresholds. For further 

details about robust FDD, the papers  can be seen. A robust observer FDI 

based on threshold and adaptive threshold methods are applied. 

Although redundancy techniques are very appealing, there are some important issues related to the 

application of these techniques in terms of robustness to nonlinearities, low signal-to-noise ratios (SNR’s), and 

modeling discrepancies between the actual system and the filter model. Model-based FDI makes use of MMs of 

the supervised system; however, a perfectly accurate and complete MM of a process is never available in practice. 

Usually, the parameters of the system may vary with time in an uncertain manner, and the characteristics of 

the disturbances and noise are unknown so that they cannot be modeled accurately. Hence, there is always a 

mismatch between the actual process and its MM even if there are no process faults. Hence, there is always a 

mismatch between the actual process and its MM even if there are no process faults.  

 

Figure III.36 – Robustness. 

Hence there is a need for developing robust FDe algorithms (i.e., reduce the sensitivity of the residual with 

respect to these negative effects. The model must only be sensitive to faults, even in the presence of the 

perturbation and interference). Ideally a residual is nonzero only when a fault is present, so it carries information 

only about fault   

However, in real applications, the residuals may be influenced by the presence of undesired effects such as 

disturbances, interferences, noise and modeling errors which represent unknown and uncontrolled inputs acting on 

the system. Therefore, the residual will always be nonzero due to unknown inputs and other uncertain factors 

which represent unknown and uncontrolled inputs acting on the system and consequently, interfere with the 

file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/Fault%20Diagnosis%20in%20robotic%20manipulators%20using%20Artificial%20Neural%20Networks%20and%20Fuzzy%20logic%20%202014%20(n°1576-2014).pdf


         

 

                                                            

 
 

detection of faults ( ; ) which make the residual as stochastic process (

).  

Thus, for the purpose of FDiso, proposed to compute the residuals by decoupling the effect 

of a fault from the effects of different inputs (the disturbance decoupling principle) and from other faults. 

This can increase the risk of FAls especially if simple threshold logic is implemented for residual evaluation. 

The model uncertainties and their effect are the most crucial point in the model-based FDI concept have to 

be considered since they may lead to a bias in the residuals, which can be interpreted as a faulty situation. The 

solution of this problem is the key for its practical applicability. 

To overcome the difficulties introduced by modeling uncertainty, a model- based FDI has to be made robust, 

i.e. insensitive or even invariant to modeling uncertainty. Sometimes, a mere reduction of the sensitivity to 

modeling uncertainty does not solve the problem because such a sensitivity reduction may be associated with 

a reduction of the sensitivity to faults  

Hence there is a lot of effort and strong motivation has been invested to overcome the difficulties 

introduced by undesired effects for developing robust FDe procedure (to reduce the sensitivity with respect to 

negative effects) which means that model has to be a crucial issue and robust against the presence these negative 

factors (perturbation and interference) in manner that this model be only sensitive to faults 

 

After presenting the basic FDI approaches, their structures and design parameters, we now focus our attention 

to solve the central task of residual generator design: making the FDI system robust to the model uncertainty 

and disturbances, and simultaneously sensitive to the faults.  

The importance of robustness in model-based FDI has been widely recognized by both academia and industry. 

The development of robust model-based FDI methods has been a key research topic during the last decades. A 

number of methods have been proposed to tackle this problem, for example, the UIO, Eigen structure 

assignment, optimally robust parity relation methods. However, the research is still under the way to develop 

the practically applicable methods ( ). 

The robustness problem has been recognized early on and several approaches to increase the robustness of FDI 

schemes have been suggested over the years. Frank and co-workers have developed state estimator design 

techniques for robust residual generation, the results of which are summarized in and in the book 

by  Other significant contributions to the robust observer design for FDI were made by 

and others. In the robustness problem was primarily tackled from 

the parity space point of view. From this perspective the residual of an estimator can be viewed as the most general 

parity function containing the complete set of redundancy relations. The underlying idea of robustness 

generation is to utilize only those redundancy relations that are most reliable. Procedures for finding optimal 

solutions are given in   

proposed a method to develop robust observers with respect to noise, unmodeled dynamics, 

unknown fault dynamics and disturbances, using NN based Online approximation (OLA) with RISE feedback 

structure. The proposed method increases observer robustness while improving performance over conventional 

observers utilized for FDe unknown fault dynamics and disturbances, using NN based OLA with RISE feedback 

structure is proposed. The observer outputs are utilized to perform FDi. 

Another famous approach is the UIO which attempts to decouple the effects of unknown inputs 

. Alternatively, ( ) suggest a novel residual processing approach which will be 

referred to as residual padding. A model-based FDI has to be made robust ( ).  

mainly used adaptive threshold for robustness.  

Sometimes, a mere reduction of the sensitivity to modeling uncertainty does not solve the problem 

because such a sensitivity reduction may be associated with a reduction of the sensitivity to faults. A more 

meaningful formulation of the robust FDI problem is to increase the robustness to modeling uncertainty, whilst 



         

 

                                                            

 
 

without losing (or even with an increase of) fault sensitivity. An FDI scheme designed to provide satisfactory 

sensitivity to faults, associated with the necessary robustness with respect to modeling uncertainty, is called a 

robust FDi scheme   

Ways to improve model-based FDI robustness to unknown inputs is a widely studied topic. Examples include 

adaptive thresholds, originally proposed in  or the application of alternative residual 

evaluation techniques which do not rely on simple threshold logic, e.g., statistical tests on the KF innovation 

sequence   

Robustness can be achieved in the residual generation stage known as active, or in the DM stage known as 

passive mainly using an adaptive threshold . For more details on passive and active approaches for 

robust FDe, see ( ). 

During the past decades the use of SP methods in the fault feature detection has gained important attention 

and a large variety of SiBTs have been used to detect undesirable performance changes in industrial systems 

( ). These methods are often used to monitor process signals to extract features that can characterize 

component conditions. Based on these features, health of the equipment can be assessed using engineering 

judgment. 

SP methods consisting of: (a) periodic signals (e.g., band-pass filtering, Fourier analysis, spectral estimation and 

correlation functions); (b) stochastic signals; and (c) non-stationary signals which include WT and short-time Fourier 

analysis   

Usually, the acquired signal always contains noise and interference that affects the signal characteristics 

that will mislead the analysis of signal and provide the wrong indication. So, good SP tools is required to clean 

(i.e., reduce the noise) the signal without removing the important features to turn the signal more informative. 

 SP for FM is used when the possibility of building a reliable model and identifying of its parameters are 

limited. Indeed, SP use measured signals rather than explicit input-output models for FM. SP can be applied when 

changes in signal are related to faults in a process. SiBTs make FDe decisions by comparing desired normal 

behavior with features (e.g., spectrum) extracted from a signal. By assuming MMs for the measured signal, 

suitable features are calculated (e.g., amplitudes, phases, and spectrum), and are considered as analytical 

symptoms which give a deeper insight into the process behavior. Features in time domain, frequency domain, and 

joint time-frequency domain have been used. 

A general scheme of the SP for the purpose of FM is presented in Figure III.37 

 

Figure III.37- SP scheme for FM. 



         

 

                                                            

 
 

On the hypothesis that information about the faults in the process are reflected or carried in some measured signals. 

The SP methods analyzes the acquired signals to extracted features as process variables and to generate the fault 

symptoms or signatures, which can be analytical or heuristic symptoms  The signal 

features well known are time domain functions like magnitudes, arithmetic or quadratic mean values, limit values, trends, 

statistical moments of the amplitude distribution or envelope, or frequency domain functions like spectral power 

densities, frequency spectral lines, spectrum, etc. The fault symptoms are the input of the FDi process that determines 

the size, type and location of the system fault. Then, a FDi decision is then made based on the symptom analysis 

and prior knowledge on the symptoms of the healthy systems. 

In industries, often parameters to be monitored are the induced effects by the system operation. The SiBTs 

consider input and output of the device measurement signals as key characteristics. The most used measured 

signals are: mechanical vibration, acoustic, magnetic, thermic, IR thermograph and electric. The vibratory signatures, 

are adapted to the detection of anomalies affecting mechanical assemblies whose structural elements are 

subjected to dynamic forces resulting in mechanical vibrations. Vibration analysis detects repetitive movements 

of a surface belonging to a dynamic mechanical material (rotating machines, alternative machines, etc.) or to a static 

material (structure, piping, etc.). For the majority of the defects found on rotating machines the vibrations are 

periodic in nature. For defects that result in shocks to structures, the vibrations are characterized by transient 

signals of short duration, repetitive or random. There are also random signals over time (e.g., cavitation in 

hydraulic machines). 

Acoustic signatures originate from the noise induced by certain phenomena such as leakage of fluids through 

small openings (sealing problem), cavitation in hydraulic machines, and vaporization due to overheating in 

steam engines. Acoustic signature is based on listening to noises emitted by the materials when they are put 

under stress. 

The approaches to FDe involve various methods and algorithms of SP  The feature signals 

to be extracted for symptom (or pattern) analysis can be either time-domain (e.g., mean, trends, standard deviation, 

phases, slope, and magnitudes such as peak and root mean square) or frequency-domain (e.g., spectrum). Therefore, 

signal-based FDi methods can be thus classified into time-domain, frequency-domain and time-frequency SiBTs. The 

basic groups of methods which employ SiBT to FDe are presented in Figure III.38. It should be emphasized that 

the FDe methods utilizing SA of the signals play an important role in analysis of all types of signals: periodic, 

non-stationary and stochastic ones. 

 

Figure III.38 - FDe methods based on signal models (Świercz, 2015).  

Time domain refers to analysis or display of signal axis with the function of amplitude and time. Every 

signal contains several time domains features that are very informative for FM and are usually related to statistical 



         

 

                                                            

 
 

parameters extracted from a signal such as peak value, mean value, RMS value, cumulative sum  

kurtosis, skewness and exponentially weighted moving average (EWMA)  Therefore, for a continuous 

dynamical process to be monitored, it is natural to extract time-domain features for FDe and FDi. 

The statistical methods and time series modeling methods are applied in FDe tasks. Several statistical 

parameters, calculated in the time domain, are generally used to define average properties of process variables, which 

can change after fault occurrence. The two basic parameters are the mean value and the standard deviation. These 

statistical parameters may be used to perform a quick check of the changes in the statistical behavior of a signal. 

In addition, under different defect model, the statistical analysis will produce a different statistical feature of 

time domain data. The AutoRegressive Moving Average (ARMA) modeling is used commonly in time series 

analysis, due its simplicity and ability to show sharp peaks in the frequency domain. The autoregressive coefficients 

of the model represent signal features, which can be used for FDe purposes. Autoregressive modeling is a 

parametric method which can be used for signal prediction, what can be employed to forecast the fault occurrence. 

The extraction of fault-relevant signal characteristics can be restricted to the amplitudes or amplitude 

densities within a certain bandwidth of the signal. Despite their effectiveness, the classical digital SP techniques 

have several limitations to be considered for a reliable FM. The main restriction on practical use of classical 

techniques on real signals is caused by additional noises which are always present in any industrial environments 

and may result in erroneous decision-making process  Another drawback is that classical methods 

make little physical sense in dynamic conditions such as fast and frequent load variation and other time-varying 

circumstances (e.g.in the case of electrical machines). 

The conventional simplest and direct method, referred to as an absolute value check, is based on single 

process variable. It consists in releasing a fault symptom as soon as the maximum value (presumed tolerances) 

of the output signal is exceeded or its minimum value is fallen below. In this approach the distance from the 

limits to the physical boundaries is a sort of a tuning parameter, which should be set properly, to avoid the 

appearance of damage on the one hand and unnecessary alarms on the other. More advanced checking can be 

also applied on the trend (time derivative or speed), or even on the acceleration of the output signal for symptom 

generation. Also, a combination of absolute value and trend checking is possible.  

Big advantage of LC is its simplicity and reliability however, they are able to react after relatively large 

change of feature  The distribution of normal condition (non-fault) data is not 

always Gaussian, in such cases GMMs can be used  However, the techniques of LC have two 

disadvantages: it is impossible to predict the fault in advance (since the fault has already occurred when detected) 

and the methods do not provide the type, size and location of faults, what can be possible by applying model-based 

FDe techniques  Usually, it is assumed that residuals are the sums of two 

components: one caused by noise (which is a zero-mean random) and the other by faults (which is deterministic, 

but unknown). The disadvantage of this detection method is that normal fluctuations around one of the thresholds 

could cause FAls. 

Furthermore, a mean value identifies on usual values of a signal. If the current value differs strongly from 

mean, a faulty measurement can be assumed. We compute the mean value over a sliding window with length 

T. Hence, mean is defined by. 

                                                              E {x(t) } = x̅(t)  = 
1

T
∑ xT−1
 (t-)  

(III.7)  

The Standard Deviation quantifies the width of a probability distribution and defines the expected 

deviation of a measurement related to the mean. For parametric distribution functions we can calculate the 



         

 

                                                            

 
 

probability of the current difference from mean. Standard Deviation is defined for a sliding window with length 

T by: 

                                                       s{x(t) } = x̅(t) =√
1

T
∑ [xT

=0 (t − ) − x̅(t) ]2 

 

(III.8)  

The first deviation reflects the dynamic of the observed system. The value allows to recognize outliers, 

spikes, etc. The deviation can be calculated by: 

                                                               
dx

dt
 = 

x(t)−x(t−1) 


 (III.9) 

The Signal-to-Noise-Ratio (SNR) allows to estimate the noise level of a signal. In literature it is often defined 

as signal power divided by noise power. However, to compute a running SNR we apply the following definition: 

                                                                                     SNR{x(t) } = 
E{x(t) }

s{x(t) }
 (III.10) 

 The Correlation-Coefficient describes the similarity of two signals. Therefore, the correlation-coefficient 

is defined as : 

                                                                        rxy = 
E{x(t)−y(t)}−E{x(t)}E{y(t)}

s{x(t)}{x(t) }
 (III.11) 

Furthermore, the Correlation-Coefficient allows to derive a functional relation between to signals. As the 

coefficient is in the [-1,1] interval, it can be interpreted as: 

 rxy > 0: high values in x yield high values in y. 

 rxy < 0: high values in x yield low values in y. 

 rxy = 0: x and y are not correlated. 

 rxy = 1: x, y are linear correlated: y = ax + b with a>0;  

 rxy = -1: x, y are linear correlated: y = ax + b with a<0;  

For instance, in  by analyzing the changes of the measured root-mean-square current 

characteristics between healthy conditions and the situations under single/dual transistor short circuit or open 

circuit, a FDi method was developed for power converters of switched reluctance motors. In  

the absolute value of the derivative of the Park’s vector phase angle was used as a fault indicator, which was employed 

for diagnosing multiple open-circuit faults in two converters of permanent magnet synchronous generators (PMSG) 

drives for wind turbine applications. By observing the slope of the induction current over time, a FDi method was 

addressed in for open and short circuits switch FDi in non-isolated DC-DC converters, 

and the Field Programmable Gate Array (FPGA) digital target was then used for real-time experimental 

implementation. In  it was shown that, under balanced supply voltage, the phase 

angle, the magnitude of the negative and zero-sequence currents can be considered as reliable indicators of stator faults 

in the induction motors. In  a statistical method for the detection of sensor abrupt faults in 

aircraft control systems was presented, where the covariance of the sensing signals was used for feature extraction. 

Different from the approaches for FDD using features of the measured signal in one-dimension domain, a two-

dimension SiBT was proposed in 



         

 

                                                            

 
 

The spectral information extracted from a signal is usually used as frequency domain features Most plant 

variables exhibit a typical frequency spectrum under NOCs. Since different fault types generate different frequency 

spectrum distributions, the monitoring may be based on frequency features of signals. Therefore, frequency analysis of 

plan measurements can be successfully used in FM of dynamic systems. Any deviation from the normal feature 

can be interpreted as abnormality. 

Frequency domain refers to the function of the signal with respect to frequency instead of time. Frequency-

domain SBT is to detect changes or faults by using spectrum analysis tool such as Discrete Fourier Transform (DFT).  

Frequency domain contains several analyses such as SA, power spectrum analysis, PSD Analysis and envelope 

analysis. The FT is a well-known technique for electrical signal analysis. Frequency content of a signal at certain 

frequency bands can be found by FT which is mainly used in the analysis of periodical signals. However, when 

it is applied to non-periodical signals, this transformation does not generate satisfactory results 

. Therefore, other analytical techniques designed for non-periodic signals must be used. 

Furthermore, FT work well on stationary, therefore, frequency-domain feature extraction using the FT is unsuitable 

when the underlying signal is nonstationary, i.e. when the signal does not have the same mean/ variation over 

the entire time domain space  

Fast Fourier transform (FFT) is one of the example methods by transforming time series to frequency spectrum 

(SA). It is an efficient algorithm which can be used to calculate frequency content of a periodic signal. FFT 

based on periodic function, can be expressed as an infinite sum of periodic complex exponential function. Power 

spectrum analysis is an inverse of FT where the signal is converted to time domain that represents peaks 

corresponding to the period of the frequency in the spectrum. 

However, an FFT-based method is not applicable for non-stationary signal analysis due to various factors that 

affects the signal characteristics such as environment factor and failure in the machine. 

While PSD is derived after FFT analysis where the highest amplitude (power) at a given frequency can be 

obtained. PSD is useful for FDi and hidden periodicity finding. Envelope analysis is also known as high-

frequency resonance techniques used to determine the resonance excites by the impacts. 

The Cross Power Spectral Density (CPSD) between the input and the output signals can be also estimated and used 

as the fault indicator. 

Parametric signal models like ARMA can also be used to calculate frequency content of signal 

 But parametric models are very sensitive to small frequency changes. 

SA is a useful tool to diagnose machine faults using signals such as vibration, motor current 

 and acoustic emissions  In addition, SA of process noise is shown 

to be a useful tool to detect dynamic performance degradation of sensors 

and to monitor NR internal structures  Higher order spectral analyses have also been utilized 

in FDD applications  

Vibration signal analysis is a common method for CM for mechanical equipment such as gear box, as machine 

sound indicates a lot about working condition of the machine. In  an acoustic FDe method was 

addressed for gear box on the basis of the improved frequency domain blind de-convolution flow. Recently in 

 Fourier spectrum and the demodulated spectra of amplitude envelope were employed to detect 

and locate multiple gear faults in planetary gearboxes. 

One of the most powerful frequency-domain methods for diagnosing motor faults is MCSA, which utilizes the SA 

of the stator current to sense rotor faults associated with broken rotor bars and mechanical balance. Without 

requiring access to the motor, the MCSA approach has received much attention, which was well reviewed in 



         

 

                                                            

 
 

 Recent development of current based spectrum signature analysis for FDi can be 

found in  

Finally, we conclude that in the frequency domain, the frequency resolution and the spectrum leakage are two 

important factors which influence the performance of frequency domain analysis. The fault related frequency 

components in electrical signatures are commonly dependent on time-varying circumstances. An effective 

solution for minimizing the spectrum leakage is the usage of a convenient window function for data processing 

 The frequency resolution is also a crucial factor since any accurate frequency tracking in 

a spectrum is essential for a consistent FDi. The FT is a well-known technique for electrical signal analysis, 

mainly used in the analysis of periodical signals. However, when it is applied to non-periodical signals, this 

transformation does not generate satisfactory results  

The main challenge for frequency and time-domain methods is the inability to provide both time and 

frequency resolution restricted the effectiveness of frequency domain. The ideal assumption that has been made 

for stationary time series is not useful for bearing FDi practice since the waveform produced will be attenuated 

by noise and other factors. For machines under an unloaded condition, or unbalanced supply voltages, varying 

load, or load torque oscillations, the measured signals are generally transient and dynamic under the concerned 

time section. Therefore, analysis of the stationary quantities in some cases finds difficult to monitor or detect 

faults via either a pure time-domain or frequency-domain method. Due to the time-varying frequency spectrum of 

the transient signals, suitable time-frequency decomposition tools are needed for real-time monitoring and FDi. 

Nowadays, researchers shifted to the time-frequency domain to analyze the energy distribution of the frequency 

components through time transient signal since the needs of time localization of the spectral components. Thus, 

representations of time-frequency. 

TFA can identify the signal frequency components, and reveal their time variant features, which has been 

an effective tool for monitoring by extracting feature information contained in non-stationary signals 

 In TFA, the energy of power spectrum of waveform signal will be resented in along both functions of 

time and frequency which better to reveal fault patterns for more accurate FDi. In the joint time-frequency 

domain, a time-frequency representation (TFR) maps a one-dimensional time series signal to a two-dimensional 

distribution function in both time and frequency, which shows the spectral variations over time. The joint Time-

Frequency Distribution (TFD) is an important tool for analysis of non-stationary signals that can be found in 

various FDD applications in practice   

TFA methods have been widely investigated in the literature  Various TFA methods have 

been proposed and applied to system FM. Among these methods, STFT, WT, DWT, Wavelet Packet Transform 

(WPT) Hilbert-Huang transform (HHT), and WVD are most common used.  

STFT is one of the examples of time-frequency domain analysis which use a sliding window to produce a 

spectrogram. In another word, they will divide the signal into small segments where these small segments of 

the signal will be assumed to be stationary. The width of segmented signal and window must be related to 

ensuring the stationarity of the signal. Next, FT is applied on each small segment. The STFT efficiency depends 

on the scale and type of window used for analyzing the signal to obtain a good frequency resolution. STFT has 

some issue with the time and frequency resolution which makes the interpretation of signal is difficult. The 

STFT method suffers the high computational cost if it is required to obtain a good resolution. However, there 

is still a study using STFT is done by researchers.  



         

 

                                                            

 
 

WT was developed as an alternative method to STFT. WT is a mathematical tool which adjusts consecutive 

time series data signals in the time domain to time-frequency domain using different translation and dilation 

function called `mother wavelet’. WT decomposes signal into several scales at different levels of resolution and 

capable to analyze waveform data of bearing signal. As a linear decomposition, WT based method can provide 

a good resolution in time for high-frequency components of a signal and a good resolution in frequency for low-

frequency components, which has demonstrated the effectiveness for tracking fault frequency components 

under non-stationary conditions  Basic theory of WT as potential FAn tool can be found in 

several papers, e.g.,  

DWT decomposes the signal into mutually orthogonal set of functions which are generated by translations and 

dilations of a main analyzing function known as the mother wavelet. DWT decomposed signal into several 

levels comprised with the low pass approximation and high pass detailed coefficients where after first level only 

the detailed coefficient is decomposed further. The discrete decomposition can be made in pyramidal or packet 

mode. Usually, the DWT employs a dyadic (power of 2) grid and orthonormal wavelet basis functions 

exhibiting zero redundancy. However, DWT has several restrictions that limit its effectiveness for example shift 

invariances, aliasing, less directional selectivity, oscillation of wavelet coefficients and highly redundant 

representation that require higher computational cost. 

Continuous Wavelet Transform (CWT) is able to work with every scale where the entire signal will be scaled and 

shifted over which sometimes lead to redundancy of information. Redundancy of information will consume a 

lot of time during SP even though large dataset is useful for signal de-noising and feature extraction. WPT 

analysis is a generalization of discrete WA providing a redundant decomposition structure. That means the 

decomposition is applied to both low pass results (approximations) and high pass results (details). Both detail 

and approximation signals are split at each level into finer components which offers the richest analysis. 

WVD method features a relatively low computational cost and high resolution, as the entire signal is utilized to 

obtain the energy at each time-frequency bin, which has been successfully applied to the FDi along with current 

analysis or vibration analysis  A significant defect of the conventional 

WVD method is the appearance of the cross terms in the distribution of artifacts, which hinders the application 

of WVD methods. Very recently, via combining advanced notch FIR filters and the conventional WVD method, 

an improved WVD based FDi algorithm was proposed in  which can effectively 

minimize the cross terms and provide seamless high-resolution time-frequency diagrams enabling the FDi of 

rotor asymmetries and eccentricities in induction machines directly connected to the grid even in the worst 

cases. In  a self-adaptive WVD method, based on local mean decomposition. 

 WT was applied to cables and transmission line faults using a model-based approach by transforming 

the voltage and current measurements to capture fault signatures   

applied SWT and WPT for FDe. They conclude that Wavelet packet decompositions 

are more flexible than the DWT and the FT because the basic functions that are used in a DWT are also available 

in the wavelet packet decomposition. 

STFT method has been widely applied to detect both stator and rotor faults in inductor motors 

 In  the STFT and discrete WT were integrated to do early diagnosis and prognosis 

of the abnormalities in the monitored industrial systems. It is noticed that STFT and WT may suffer some 

uncertain limitations. For instance, the selection of a suitable window size in STFT is required, but it is generally 

not known priori.  

The type of the basic wavelet function in WT has a direct effect on the effectiveness in identifying transient 

elements hidden within a dynamic signal. However, on the basis of the instantaneous frequencies resulting from 

the intrinsic-mode functions of the signal being analyzed, HHT method is not constrained by the uncertain 

limitations with respect to the time and frequency resolutions suffered by some time-frequency techniques (e.g., 

STFT and WT), which has shown quite interesting performance in terms of fault severity evaluation  



         

 

                                                            

 
 

The main advantage of the SiBTs of FDe is that a MM is not used in this approach; as such a model can 

be difficult and even in some cases impossible to derive. 

However, the SP -based scheme is mainly used for processes in the steady state, and its efficiency for the 

detection of faults in dynamic systems, which are of a wide operating range due to the possible variation of 

input signals, is strongly limited. Furthermore, the main drawback is the need for data from the system when it 

is affected by faults, as these data should be used in the development of the database of fault scenarios. 

Moreover, it can be difficult to ensure robustness of the FDI algorithm based on signal models, as (according 

to theoretical considerations) all possible operation conditions should be tested before robustness is ensured. 

Some of these problems can solve by simulations, but then a model of a process is needed, undermining one of 

the advantages of the approach. So, the SiBT is most suitable for systems, which are difficult or in particular 

cases impossible to describe with a MM. 

This chapter presented a review of basic concepts and advances of FDD methods and the benefits and 

limits of each approach are pointed out. These methods are categorized as data-driven methods, SiBTs, 

knowledge methods and MBTs. Principles of different categories of methods are discussed and some algorithms 

are introduced. Their applications in industry and particularly in NPs have also been reviewed. The survey 

shows that different types of FDD methods have properties desirable for different types of problems. Since an 

industrial system usually contains components of great diversities, FDD system needs to deal with potentially 

diverse types of fault scenarios. Some solution approaches may perform better than the others due to the 

difference in the problem formulation. Therefore, selection of FDD methodology is dependent on the behavior 

and feature of applications. Tools for FDD should be selected from the variety of choices such as the availability 

of data and knowledge on the process, and the technical and economic considerations.  

While desirable characteristics are defined for a well-designed approach, nevertheless, according to the 

comprehensive review by 

 it is apparent that no individual method can provide robust performance alone and no  single 

approach is adapted to all the requirements for a FDD system. Each method has own advantages and limitations 

and is effective in detecting only a certain kind of failures. Perfect method does not exist and there doesn’t exist 

any single technique that can completely identify all possible types of failures  

A framework for solving problems in a collective way, using different and parallel reasoning as hybrid methods, 

have been proposed by many researchers to overcome these handicaps of the individual methods and they 

proved to be an attractive alternative. These methods are constructed using two or more independent FDD 

methods which enable to integrate the advantages of different individual methods and improve 

the monitoring performance. 

Because of extensive current research activity in supervision field, it was not possible to provide and cover 

all comprehensive representation of the scene. We have therefore focused on basic concepts in the existing 

theory and may gain some relevance for future research and practical applications. 
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In the context of complex processes, the generation of an appropriate mathematical model is a real challenge that 

what we will see in in the next chapter. One solution is to use NNs as an alternative method particularly, when 

the knowledge of the process is not sufficient or not present at all. 

Therefore, our goal of this present chapter is to describe a strategy for detecting and identifying, as early as possible, 

the failures and abnormal situations resulting from malfunctions of the monitored process by using NNs and, 

historical and online data acquired during the system operation. At first, we describe the elementary structure of 

NNs and their fundamental categories, and then we explain the different manners applying these NN types to the 

supervision of faults. 

  



 

 

                                           
 

Methods based on NNs are researched widely over the past decades. Nowadays, the NNs have been rapidly 

developed and successfully applied to solve challenging problems with good results in a large variety, almost all 

branches, of science: research field, e.g., SP, classification, prediction, modeling, process identification; optimization, 

filtering; process engineering, e.g., image processing, PR  and technology, e.g., monitoring and control 

of dynamic system in industrial plant ( ), medical diagnosis ( ; ). 

NNs have been successfully applied to many areas involving nuclear and chemical reactor since the late 1980’s 

). First applications of NNs for FM in chemical and NR have 

demonstrated the potential to give important solutions. published the first results in TI in 

NPP. Since the early 90’s a plethora of computer systems based on NNs have been proposed for NPP monitoring, 

see ( ) and references therein. Nowadays, the vast number of applications has increased 

significantly. 

The use of NNs is considered when the knowledge of the process is not sufficient or is not available at all. 

NN is applied for process CM where the focus is on small irreversible changes in the process which develop into 

bigger faults ( ). When developing NN models, the only required knowledge is usually the 

process input and output data. In many FM problems of physical systems, such as NPP, the inputs to the NNs 

usually are S/D measurements and each output neuron is a process alarm corresponds to one particular fault 

possibility. In such monitoring applications, the network must be able to handle continuously the input data and 

the learning must be supervised. The input variables can be quantitative (e.g., output of S/Ds), and/or qualitative 

(e.g., observations made by the operators). From these input variables, NNs give outputs which can be an 

estimation or classification of monitored parameters. 

NNs have been rapidly developed and successfully applied in a large variety of research field in almost all 

branches of science (e.g. SP, PR, process identification, etc.), engineering applications including image processing, 

PR and technology (e.g. monitoring and control of dynamic system in industrial plant; medical diagnosis, etc.) with 

good results. Nowadays, among these applications, NNs have been widely used as a powerful intelligence-based 

technique and have become a sort of ideal tool for FM issues and accommodation schemes using the history of a 

system’s generated data. gives a general theory of NNs and includes application areas. Using NNs 

for monitoring is not only considered as alternative to traditional methods, but also, they have an important 

feature. The major capabilities and advantages of NNs allow them when applied to FM system to be robust, noise 

tolerant and applied in real time which represent an important solution for CtM of plant parameters, instruments, 

equipment, systems and process. Therefore, NNs are ideally appropriate as a candidate for FM, control, and risk 

evaluation in NPP environments. 

In many cases, it is necessary to employ more robust techniques. Many methods driven by data 

had been proposed for monitoring a complex NL processes (such as NPs), to overcome some of the difficulties 

of using MMs (e.g., real-time response, the accurate MMs are too difficult or too expensive to get), to make FDI 

algorithm’s more applicable to real systems and when it is necessary to use more robust techniques. Among 

these methods, we find the NNs approach ( ; ). The ability of NN to 

identify complex NL system without the needs of any physical knowledge of the system itself makes NN one of 

the most popular black-box models, once it has been trained to recognize the various states of the system. So, in 

this case, the NNs can be used to both residuals generation for FDe, and residuals analysis and evaluation for isolate 

faults. In this case, NNs only takes one cycle to detect specific conditions ( ; 

). 
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The origin of the inspiration of NNs goes back to 1890 when , American psychologist, introduces the 

concept of associative memory. He proposes what will become a working law for the learning of NNs, later 

known as Hebb's law. NN concept was first proposed by under the name: formal neuron 

and later, it has been subject matters among the researchers around the world after the introduction of a first 

NN training algorithm by  

 NN concept was first proposed by McCulloch and Pitts in 1943 under the name: formal neuron 

 Later, the NN has been subject matters among the researchers around the world after the introduction of 

a first NN training algorithm by Rosenblatt in way back 1958  The concept of NNs was inspired 

from neurobiology, and attempts to mimic the function and structure of the human brain. Therefore, a great deal 

of the terminology is borrowed from neuroscience. However, NNs are extremely simplified compared to the 

complex behavior of biological neurons. In literature, we find others names for NNs, such as connectionism, 

parallel distributed processing, neuro-computing, natural intelligent systems, ML algorithms, and so on 

 In literature, we find others names for NNs, such as connectionism, distributed parallel processing, neuro-

computing, natural intelligent systems, ML algorithms, and so on. 

 NNs are mathematical algorithms and promising learning technique. A NN is a highly complex NL and 

adaptive system made up of parallel interconnections with different strengths (weight) between a large numbers 

of elementary processing units called artificial neurons, often just simply called neurons, or nodes of the same 

structure to perform predetermined functions. These neurons are grouped into layers which constitute the neural 

structure and gives power for neural computation. It has the ability to keep experimental knowledge and making 

it available for use. This knowledge is acquired by the networks through a learning process from example which 

allows him improving its performance and adapt to changes in the environment. NNs map sets of input data 

onto a set of appropriate outputs. So, the goal of NNs application is to find the complex relationships between 

the input and the output variables. This is accomplished by adjusting the weights set through a learning process 

to allow the overall network to produce appropriate results.  

A lot of different models of NNs have been developed till now. Currently, there is no simple way to determine 

the best architecture. Each network type has advantages and disadvantages; the aptness of a type with regard to 

others is strongly bound to the considered application. So, experience is the only key factor to determine 

whether it is the best or bad architecture.  

In viewing NNs structures and architectures, we can be classified them mainly into FF, called also Static 

Neural Networks (SNNs), and Temporal Neural Networks (TNNs) categories according to the nature of used neurons 

(i.e. static or dynamic neurons) and how they are connected (Figure IV.1) 

  

 

Figure IV.1 - Classification of NNs: static and temporal. 

Other popular NNs classification can be found in Ham, Kostanic, 2001  Static networks were the first and simplest 

type of networks. As the name indicates, they do not incorporate any feed-back 

and do not possess any time delay units. Their outputs are calculated directly from 

the input through FF connections  In temporal 

networks, the output depends not only on the current input to the network, but also on the previous inputs; 



 

 

                                           
 

current or previous outputs, or states of the network  

For more details on static and temporal NNs, see 

In a NN, each neuron can be considered as a mathematical function. It receives weighted multiple inputs 

which are summed and added to the bias. The total value is processed through an activation function 

called also transfer or transmission function 

to generate at the end a single output as is illustrated on Figure IV.2. This conventional neuron, called 

sometimes static neuron  ignores many of the characteristics of its biological counterpart, 

and is a grossly simplified version. 

So, the MM of neuron output is presented by:  

                                                                           z = f (s), s = ∑ 𝑤𝑛
𝑖=1 i xi + w0 x0 (IV.1)  

where (x1, x2, …, xn) are inputs from layers neurons; (w1, w2, …, wn) are the corresponding weights; w0 x0, denoted 

usually by b, is the bias also known as threshold of the neuron which can be positive, zero or negative. It has the 

effect of increasing or lowering the summation result (i.e. the input of the activation function), depending on its 

sign; f is a NL activation function and its input s is named induced local field or activation potential; n is the number of 

input connections to the current neuron, and y is the output of the neuron. The role of weights is controlling the 

rate of passage of signal. So, they are crucial because they allow modifying the relative importance or strength 

of connections between neurons. The activation function has a task to limit the amplitude of the output of a 

neuron. There are several types, linear and NL, of activation functions in which Sigmoid have been 

the first proposed and most used transfer function. Others type have been proposed like unit step or threshold, 

Gaussian, Lorentzian, plane wave, and rational fraction, etc. 

 

Figure IV.2 – Basic architecture of a static artificial neuron (Gupta et al., 2003).  

Beside static neuron, dynamic neuron units considered as the basic 

of the DNNs, receive not only external inputs but also state feedback signals from themselves, its outputs, its 

synapses or other neurons (Figure IV.3). Some other dynamic neuron structures are given in 

  



 

 

                                           
 

 

Figure IV.3 – Different representation of internal dynamics at the neuron (Frank et al., 2000a). 

FFNN, called also, SNN, was the first and simplest type of network. FFNN respond instantaneously to the 

inputs, for they do not possess any time delay units. FFNN consists of three layers: input layer, one or more 

intermediate layers and output layer. Layer is a group of units not connected between them. So, there is no a 

recursive in the connections inside the same layer. Layers are connected such that the signal (i.e., data or 

information) fed on the input layer can pass (propagate) forward (i.e., only in one direction) 

through the intermediate layer (s) and reach the output layer to generate the exits 

. Every neuron in a hidden and output layer receives its inputs from bias and whited output 

neurons in its precedent layer and sends its output to the neurons in its subsequent layer. So FFNNs respond 

instantaneously to the inputs and are conditionally stable. 

The first layer represents the input layer which receives the external information (i.e. input data) and each 

its neuron corresponds to an input variable. The output layer where the desired output values received from the 

outside world and the calculated values are presented to the environment. Output layer has the same number of 

neurons as a size of output signal of the network. Intermediate layers collect information from the input layer in 

each of their neurons. These layers are commonly known as hidden layer since the neurons (hidden neurons) in 

this layer are essentially concealed from view  and they do not converse directly with the 

outside world  Therefore, the hidden layer neurons and the bias neuron are 

fully connected to the output neurons. So, the role of the hidden neurons is to link the external inputs to the 

network outputs by performing a mapping between them in a FF arrangement  The hidden 

layer is used to characterize the NL properties of the system to be analyzed and many researchers believe that 

the hidden layers of a NN act as feature extractors. Hidden layer size (i.e., number of hidden neurons) and 

number of hidden layers should be optimally determined because 

they influence on the performance of the trained network. They are one of the important issues in the 

development of the network architecture and the success of many NN applications  

Choosing the best number of layers, special attention should be paid to the “curse of dimensionality” 

 The NN model with one hidden layer is used frequently  However, NN model with 

multiple hidden layers is used to solve complex problems and the number of neurons in the hidden layer is totally 

dependent on the complexity of the process, the optimum network structure did not necessarily consist of the 

highest number of neurons but it is apparently based on the structure that effectively captured the system’s 



 

 

                                           
 

complexity. state that an alternative approach might be to increase the number of neurons 

in the hidden layer rather than to add another layer to the network and a single hidden layer should be sufficient 

for the majority of real-world applications. However, one hidden layer may require a very large number of 

hidden nodes, which is not desirable because the training time will increase and the network generalization 

ability will worsen. However, NN model with multiple hidden layers is used to solve complex problems 

 indicate that the use of two or more hidden layers might not substantially improve 

the network performance but only add delay to the training time. There are a number of studies indicating that 

one or two hidden layers would generally have better convergence, because more than two hidden layers would 

result in the ability of convergence to reduce gradually and produce many local minima  

Using additional levels of hidden neurons lead to increase flexibility, more processing accuracy and converges the 

NN faster, but this comes at the cost of the generalization capabilities reducing (i.e. the NN responds poorly to 

test patterns never used in the training) , complexity increasing in the training algorithm (e.g. 

increase the training time) without significant improvement in training results, and over-fitting (i.e. inability to 

capture the underlying relationships in the data) can occur. So, using more hidden neurons than necessary is 

wasteful, as a less number of neurons would serve the desired performances just fine

 In general, networks with fewer hidden nodes are preferable as they usually have better 

generalization capabilities and less over-fitting problems. The computational time required is also less with a 

smaller number of nodes. On the other hand, indicates that using less hidden neurons than 

required may have insufficient degrees of freedom to capture the underlying relationships in the data which 

impaired the performance of the network   

Determination of the appropriate structure and parameters of the NN model in the presented way is a 

complex task. Furthermore, an arbitrary selection of the NN structure can be a source of the model uncertainty. 

Thus, it seems desirable to have a tool which can be used to the automatic selection of the NN structure, based 

only on the measured data. Besides the type of NN we have to define, the determination of minimum (optimal) 

number of necessary hidden neurons and hidden layers is a crucial yet complicated one  This 

is typically done by cross validating different NN structures. It is completely practical and there is no theoretical 

basis for selecting these parameters, although a few systematic approaches have been reported. Since, there is 

not a systematic or standard way to select the size and number of hidden layers, the best and most common 

way to decide is by trial-and-error with the help of some guidelines  

A rule of thumb is that the number of samples in the training set should at least be greater than the number of 

synaptic weights  This gives the upper limit of the number of nodes for the network 

 Moreover, the structure and behavior of a SNN is determined by 

the transfer function; the number and the size of hidden layer (number of neuron within); and learning algorithms that 

determine how the weights are adjusted which all participate to the performance determination and to the 

choice of the best NN architecture for a given application. The operation of the SNN can be divided into two 

steps: feed forward and back-propagation. In the feed forward step, an input pattern is applied to the input layer and 

its effect propagates, layer by layer, through the network until an output is produced. The network's actual 

output value is then compared to the expected output, and an error signal is computed for each of the output 

nodes. Since all the hidden nodes have, to some degree, contributed to the errors evident in the output layer, 

the output error signals are transmitted backwards from the output layer to each node in the hidden layer that 

immediately contributed to the output layer. This process is then repeated, layer by layer, until each node in 

the network has received an error signal that describes its relative contribution to the overall error. 

 Four static networks are well-known: MLP network, RBF networks, AANN Kohonen’s Networks and PNNs. 

The last one is not treated seen the limited space. 



 

 

                                           
 

MLPs are currently the most commonly used neural structures in technique. This fact results from the 

simplicity of their implementation in programmable systems, as well as the mapping capabilities of any 

function. The MLP is an abbreviation to MLP which is a simplification of feed forward multilayer perceptron 

network, also called feed forward multilayer network ( ). It is considered as an extension to the single-

layer perceptron (SLP) which is the most influential work done in the development of NNs in the 

mid-1960s. It is based on supervised learning and uses one or more hidden layers between 

input and output layer. Figure IV.4 shows a typical MLP that consists of three layers which are an input layer with 

three inputs, one hidden layer and an output layer with two outputs. All neurons in each layer are fully connected 

to every neuron in the succeeding layer. For simplification, the bias levels at each neuron have been omitted for 

convenience of presentation (this is applicable throughout the rest of this document). The MLP provides, at 

each output node, a linear combination of the outputs of the hidden-layer neurons ( ; 

). Many different activation functions are used in the MLP. Sigmoid functions are usually used for 

hidden layer neurons ( ; , ) and linear activation 

function for the output layer neurons ( ; ). The fundamental and the most 

widely applied training algorithm for the MLP is the Levenberg-Marquardt (LM) gradient algorithm (

), the gradient descent in error, error BP or simply back-propagation, BP, learning algorithm 

 So, the MLP is usually called BP network   

concluded that the BP learning algorithm is the best algorithm applied to MLP which 

allowed exceeding the limits of simple perceptron. It could be argued that the MLP architecture is the most 

popular choice for NN applications   

 

Figure IV.4 - MLP with one hidden layer, 3 inputs, 2 outputs n neurons in hidden layer. 

MLP is used in many applications to solve some problems that a SLP is not able to do 

 The MLP is the most common and popular choice for NN applications, widely studied and, 

frequently used and applied, class of network architecture today. MLP are often used to approximate unknown 

functions from their inputs to outputs. MLP’s capability of approximating any continuous function with support 

in the unit hypercube with only single hidden layer and sigmoid activation function was first proved by 

 NNs of multi-layered perceptron type are essentially semi-parametric regression estimators 

and well-appropriate for this purpose, as they can approximate virtually any (measurable) function up to an 

arbitrary degree of accuracy. In  it was shown that an MLP with at least one hidden layer 

is able of approximating any NL function once enough training is provided.  



 

 

                                           
 

Nevertheless, despite its popularity, MLP architectures require more neurons, to solve a problem, than 

other architectures  MLP architectures require more neurons. Although 

increasing the number of neurons converges the NN faster, the network loses its generalization ability

 It also suffers of numerous drawbacks, as long learning time, a sensibility 

on initial weight conditions, and probable presence of local minima ( ; ). Therefore, 

this architecture is neither powerful nor efficient, in comparison to other SNN architectures 

  

The use of the RBF, networks dates back to the 1970s to solve multi-variable interpolation 

problems. The theoretical bases of these networks were then deepened by  

Other works have followed each other where the application of RBF has been extended to other areas, namely 

the prediction of the evolution of dynamical systems and the classification of phenomenon. The RBF network 

is a special, important class and the most commonly used type of MLP network. It 

has a very simple architecture with different characteristic 

topologies. In RBF, the Gaussian function ( is mostly applied as an activation function 

in hidden neurons  Thus, the RBF network is 

different than MLP network activation functions in the hidden layer  The particularity of these 

networks lies in the fact that they are able to provide a local representation of space through RBFs, whose 

influence is restricted to some area of this space, represents the Euclidean norm. Hybrid learning algorithm for 

training the RBF network converges much faster than the BP algorithm for MLP training. So, RBF network has the 

advantage that local minima are avoided, but it has the disadvantage of requiring good coverage of the input space. 

Furthermore, the RBF network has a very good robustness property and in recent years, it has been enjoying 

greater popularity as an alternative solution to the slowly convergent MLP.

Beside the MLP and RBF networks, other SNNs are well known; basically, AANN is one special type and the 

most frequently used network structure, first proposed by . The AANN has a symmetrical topology 

composed of five layers. Input layer, three hidden layers (mapping layer, bottleneck layer, de-mapping layer), and an 

output layer with bottleneck layer is the middle layer (Figure IV.5). The use of the three hidden layers in the 

structure of the AANN as opposed to one hidden layer is due to the need for data compression inside the network 

in order to filter out both noise and biases. The AANN should be viewed as a cascade combination of two single-

hidden layer networks (two independent three layer NNs connected in series). The first network mixes and compresses 

the n redundant measurements into a smaller number of characteristic variables which should ideally represent 

the essential characteristics of the process. The second network works in the opposite way and uses the 

compressed information to regenerate the original n redundant measurements. The mapping and the de-mapping 

layers have the same number of neurons and the size of the bottleneck layer should be smaller than the other 

hidden, input or output layers. The outputs are trained to reproduce the output identical to its inputs therefore, 

an AANN have a unit overall gain  The bottleneck layer has linear activation functions. The 

de-mapping layer has the same activation functions as the mapping layer which can be sigmoidal, tangent 

hyperbolic, or any other similar nonlinearities.  



 

 

                                           
 

 

Figure IV.5 - AANN architecture (Shah et al., 2013) where  denotes the sigmoidal nodes (tan-sigmoid transfer functions, 
and l denotes the linear nodes. 

The bottleneck layer (hidden layer) plays important role in the effectiveness of the network. It has a 

dimension. It prevents a simple one-to-one mapping as result of training and the least-square training criterion 

assures that the internal representation developed by the network contains the maximum information it can 

accumulate with the existing structure. Therefore, the bottleneck layer output is the compressed representation 

of the data given in the input layer and the output of the nodes in the bottleneck layer can be viewed as principal 

components (PCAs). So, the AANN is motivated from and based on the concept of PCA that it can deal with both 

linear and nonlinear correlations among the variables and produce a compact and concise data representation. 

The minimum number of nodes in the bottleneck layer that will provide sufficient information for data recovery 

represents the degree of freedom of the data system. So, the size of bottleneck layer is critical to obtain the 

desired effect of eliminating the redundancies in the measurements. The goal of AANN is not simply copying 

the inputs to the outputs (this would be trivial), but instead of this, it is to eliminate the redundancies and extract 

the key features in the input data. This is done by compressing these data at the bottleneck layer into a set of 

new and uncorrelated variables in the new space having reduced dimensionality in order to learn 

a correlation model of the input data, and removing noise at the output layer.  

The auto-associativity has the advantage of detecting unknown plant conditions. AANN based models are 

much faster and assuming optimal training, they are more reliable too. On another hand, one more important 

feature of AANN is that it plays the role of noise reduction (filtering) Mathisen, 2010  Enhanced training 

performance due to noise filtering phenomenon of AANN with plant signals is reported in the literature 

and it is termed as robust training  

AANN allows predicting outputs based on what it learned. One of its interesting aspects is that the 

network is trained with the same inputs and targets and thus the network is performing an identity mapping in 

which the output layer is providing an approximation of the inputs. Therefore, the auto-associativity has the 

advantage of detecting unknown plant conditions. Furthermore, this network is suitable to formulate NL PCA 

on a given data set. The network has been used by some researchers for sensor FDe in gas turbines 

 The NL mapping and de-mapping provides that, in such multivariate plant monitoring, 

the network can be much more sensitive to process changes, and may help to highlight incipient problems (early 

FDe) before they become obvious yielding serious problems.  

Recently, different AANN approaches have been developed in the field of sensor FDD. The motivation is 

due to the capabilities of these networks in providing a robust identity map between their input and output. 

presented a novel algorithm called Self-Reconstructing AANN (S-AANN) which is able to 

detect and isolate single faulty sensor via reconstruction. The algorithm is extended to be applicable to multiple 



 

 

                                           
 

fault conditions. So, this algorithm appropriate candidate for online applications. applied the 

AANN method to detect faulty sensors. The authors in proposed a sensor FDe and repair 

methodology based on AANN to detect multi-faulty transducers of an IEEE 1451 based intelligent sensor 

synchronously. The work in identified a single fault sensor using an enhanced AANN and the 

exact value of the fault sensor was reconstructed. The authors in used AANN for SeV of rotor 

speed measurements in the engine control loops. proposes of AANN architecture for sensor data 

computation, FDIso. have compared the potential of AANNs and SOM network for signal 

FDe and reconstruction. have proposed FDIso scheme based on the MuM approach based on a 

bank of AANNs. This methodology provided a novel integrated solution to the problem of both sensor and 

component FDIso even though possibly both engine and sensor faults may occur concurrently. Moreover, the 

proposed algorithm can be used for sensor data validation and correction as the first step for health monitoring 

of jet engines  

 Kohonen model is another well-known SNN type called Kohonen SOM or simply SOM ( ; 

). The SOM was first proposed by as competitive type of networks 

and a specific type of unsupervised NN based on three major steps: competition, co-operation and adaptation 

 SOM maps the multi-dimensional space onto a two-dimensional space 

such that the original order is preserved. The SOM algorithm is a hybrid method in that it combines the goals 

of projection and clustering algorithms. It can be used at the same time to visualize the clusters in a data set, 

and to represent the set on a two-dimensional map. Furthermore, SOM is a mean for automatically arranging 

high-dimensional data. So, it is used particularly in classification patterns. SOM is an unsupervised learning 

algorithm of NN, which is presented to solve the FDD problem. 

 In the SOM network the neurons are arranged in two layers: input layer and output layer (Figure IV.6). The output 

layer also known as the competitive or Kohonen layer is organized as one, two (the most common), or three 

dimensional  In the case of 2D representation, a rectangular or hexagonal map can be used. A 

toroidal or cylindrical map could be used in case of 3D representation. The input layer is fully connected to the 

output layer, i.e., each unit in competitive layer is connected to every unit in the input layer by a weighted 

connection or weight vector  The Kohonen’s units are interconnected with their local neighbors, 

and these connections could be excitatory 

The SOM is a mean for automatically arranging high-dimensional data sets quickly and availably. It 

projects the high-dimensional input data into a lower dimensional output map  Thereby, it is 

able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple 

geometric relationships on a low dimensional display  while preserving the topology 

structure of the data Kohonen, 1997  Therefore, SOM is considered an effective tool for feature extraction, 

similarities display and classification of high dimensional data. Kohonen's network is not as successful as MLP and 

RBF, but its capacities of auto-adaptation (non-supervised learning) are much appreciated   

The SOMs are very often used in other problems of the analysis of large data structures e.g. in the problems 

image processing and robotics 

 In recent years, they have gained popularity as an alternative to PCA for complex industrial processes 

 SOM surpasses PCA as a nonlinear dimensionality reduction technique. It is able to capture 

the nonlinear variations of the process and visualize them on a low-dimensional display in a topologically 

ordered fashion  The following Example is 

generated from a Java applet developed by Mirkes, 2011 to illustrate the comparison between PCA and SOM 

based process monitoring. 



 

 

                                           
 

 

Figure IV.6 - Basic SOM structure. 

 The SOMs have been successfully applied in various engineering fields including 

process and system analysis, FDe, voice recognition, robotics, and PR. The SOMs have been used in time series 

forecasting and they raising much interest recently, since, 

besides giving better results than the prediction approaches based on MLP or RBF. SOMs were investigated for 

early FDe capabilities in  They are applied in FDD ; 

and they have demonstrated good performance for FDD in induction machines 

 with concluding that SOMNNs generally provide better solutions than other SNNs for 

this application field. SOM has been successfully used in process monitoring because of its ability to aggregate 

clusters of input information from raw data and project these data on a simpler two- or three-dimensional 

networks, resulting in relatively comprehensible visualizations  The self-organizing feature 

map (SOFM) NN model is one of the best-known clustering techniques with unsupervised learning rules 

 SOM is widely used in data clustering and forms clusters by a self-

organized collection of similar grids on the competition layer. The U-matrix represents the distances between 

each Kohonen’s unit and its neighboring units and can reveal the local cluster structure of the map  

Distinct clusters in a given data set are easily identified using the U-matrix. The SOM-based classification is 

attractive, due to its topology preserving properties for solving various problems that traditionally have been 

the domain of conventional statistical and operational research techniques 

  

 ( ) proposed a novel FDi method which combines SOM with correlative component (CCA) is 

in order to visualize the occurrence of the fault clearly. Based on the sample data, CCA can extract fault 

classification information as much as possible, and then based on the identified correlative components, SOM 

can distinguish the various types of states on analysis the output map. The results show that the SOM integrated 

with CCA method is efficient and capable for real-time monitoring and FDi in complex chemical process. 

( ) proposed a scheme based on SOM for FDD and Temporal Kohonen Map (TSOM) for fault 

prediction. ( ) proposed a SOM based methodology for FDD of processes with nonlinear and non-

Gaussian features. ( ) proposed a novel FDi method which combines SOM with FiDiAn in 

order to get a better visualization effect. FiDiAn can reduce the dimension of the data in terms of maximizing 

the separability of the classes. After feature extraction by FiDiAn, SOM can distinguish the different states on 

the output map clearly and it can also be used to monitor abnormal states. The result shows that the SOM 

integrated with FiDiAn method is efficient and capable for real-time monitoring and FDi in complex chemical 

process. It is a promising approach to catch a preliminary overview on intricate data sets. The TSOM derived 



 

 

                                           
 

from the SOM algorithm is used for time series prediction  A two-level SOM network augments the 

conventional SOM network with an additional one-dimensional Kohonen layer in which each neuron is connected 

to neurons in the previous Kohonen layer. It is a promising approach to catch a preliminary overview on intricate 

data sets ( ).  

During the last years the use of NNs in dynamic systems modeling has increased significantly. This is 

justified by its feature listed above. Some applications of NNs, like monitoring and safety, require architectures 

able to treat the temporal aspects. Therefore, TNNs have been recently attracting great attention from the 

scientific community because they are really useful for temporal processing, DSP, system identification and spatio-

temporal pattern recognition. Time factor plays a big role in the processing of dynamic systems and offer better 

computational capabilities compared to those of static counterparts ( ). TNNs offer this possibility 

of taking into account the temporal aspect of the data and thus perform temporal tasks performance. TNNs 

have dynamic capabilities to generate and process temporal information. They are more versatile and provide 

the strong capability to store an internal state and consequently process sequences of inputs (

; ; ). In TNNs, the output depends not only on the current input to the network, 

but also on the previous inputs, the current or previous outputs or states of the network ( ; 

). 

Taking into account the temporal aspect of the data by NNs, requires some architectural modifications in 

the SNN models by introducing delay time and feedback loops inside the neurons or in the network between layers 

and neurons in different manners and positions ; 

 Therefore, the presence of delay time and feedback loops has 

a profound impact on the learning capability of the network, and on its performance ( ).  

There are multiple manners and classifications representing temporal information in NNs 

used in the extensive applications for dynamic systems cited in literature. In 

literature we find a lot of sort of NNs belong to the TNN category such as the RNNs developed by 

 Brain-State-in-a-Box developed by  the-delay NN developed by  

dynamic neural unit (DNU) developed by  One also finds other models such as of 

 

 divide DNNs into two groups: with internal dynamics and with external dynamics. NNs with 

internal dynamics are based on the extension of SNNs with internal memory. These extended networks show 

dynamic behavior in the sense that actual output data depend on actual and past input data. 

have classified TNNs to DTNNs and RNNs respectively according to the 

time if it is treated by delay time in a FFNNs; or by feedback or recurrence. have 

classified TNNs to three categories: TDNNs, RNNs and DNNs. Indeed, there is a great ambiguity between DNNs 

and TNNs. The main representation of time is given by according to the time where 

is treated, externally by delay time of the network, or internally by recurrence or dynamic nodes as shown Figure IV.7 

 First, the time is inserted externally as delays at inputs 

to the NNs to memorize data for certain duration. So, this technique, called spatial presentation of time according 

to , has the advantage to use the architectures of the SNNs to process time. The NNs in this case 

are named Time Delay Neural Networks (TDNNs) Second, the time is treated 

internally in the NNs, where the name internal representation is derived according to  

The in this case are usually named, ( ). In this internal presentation, the time can be treated by two 

manners: (a) implicitly by using feedback loops (recurrence) of connections as in the case of RNN; or (b) explicitly by 

file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/Fault%20detection%20of%20gas%20turbine%20engines%20using%20dynamic%20neural%20networks%20(n°1573-2012).pdf
file:///J:/Profession/Formation/Doctorat/Thesis/Bibliographie/Fault%20detection%20of%20gas%20turbine%20engines%20using%20dynamic%20neural%20networks%20(n°1573-2012).pdf


 

 

                                           
 

using dynamic neurons in the case of Dynamic Neural Networks (DNNs). The structure of a simple DNN is similar 

to an MLP, with the difference that instead of conventional static neurons, dynamic neurons viewed previously 

have been used ( ). In both cases, implicit or explicit, the network has the capacity to 

memorize information. Furthermore, a combination can be doing between the different types of TNNs, 

particularly the TDNNs and RNNs which gives the existence to the Time Delay Recurrent Neural Network (TRNNs) 

(Figure IV.7).  

 

Figure IV.7 - Time representation in NNs. 

One of the first architectures of TDNN called also Tapped Delay Neural Network has been introduced by 

for text-to-speech conversion, then used this structure for speech 

recognition. The TDNN is straight forward TNNs which is simply consist of two components: A memory 

structure realized by time delay which hold on the relevant past information by introducing delayed inputs and 

outputs that are then fed to conventional MLP which uses the memory to predict future 

occasions  Depending on the choice of the linear filters the following three 

different external dynamic approaches can be distinguished. Nonlinear Models with Output Feedback, Nonlinear 

Finite Impulse Response Model (NFIR) and Nonlinear Orthonormal Basis Function Model (NOBF). For more details 

with regard to mathematical development and learning algorithm, readers are referred to  The 

general TDNNs architecture is shown in Figure IV.8 

 

Figure IV.8 - TDNN architecture.  

Another type of TDNN is NETtalk ( ; ) and Time Delay Radial Basis Function 

(TDRBF) with the same spatial representation of the time has been used for the same application by 

 This type of network combines features from the spatial representation of time of the MLP and the RBF 

networks. His major advantage compare to the TDNN is the simplicity and flexibility of the training process, and 

the reduce number of parameters to adjust the training time  Furthermore, it is envisaged that 

TDNN, in addition to better representation of biological neural systems, offer better computational capabilities 

compared to their static counterparts. The major inconvenience of these TDNN algorithms is due to the spatial 



 

 

                                           
 

representation of the time, i.e., the existence of an external interface with the environment to delay and store 

data. The second disadvantage is the use of a temporal window that imposes a limit of the sequence length. 

have applied this type of neural structure for system identification and control of 

NL dynamical systems. 

 RNNs  are special type of TNNs which are widely applied today owing 

to its effectiveness to solve almost all types of problem and has been investigated in 

 RNNs are equipped with one or more feedback connections that can be of local nature 

called also self-feedback where output of neuron is fed back to its own input), or global nature 

where output of neuron loop are fed back to neurons of the layer or to the preceding layers. 

So, the feedback can be between the neurons of a layer, and/or between the layers of the network. Therefore, 

in RNNs all possible connections between neurons are allowed which implies 

that signals can flow in both forward and backward directions Because of feedback paths 

from their outputs to the inputs, the response of RNNs is recursive which in turn increases its 

performance and learning abilities and RNNs becomes a NL dynamic system which changes 

continuously until it reaches a state of equilibrium. By construction, RNNs have an intrinsic dynamic memory:  

the output of a RNN networks is a function of the current external input together with its previous inputs and 

outputs which are gradually quenched. The output is described by the following differential equations

: 

                y(k) = f {u(k), u(k-1), …, u(k-m), y(k), y(k-1), …, y(k-n) } (IV.2)  

Therefore, RNN is great for sequential data because each neuron acts as an internal memory to store 

information of previous input. 

Different networks were built based on the recurrent network structure  Generally, 

there are different kinds of recurrent networks depending on the way in which the feedback is. RNN can be 

classified as Simple Recurrent Networks or locally recurrent globally feedforward (LRGF); Partially Recurrent Networks; 

and Fully RNNs  Two kinds of the recurrent networks are well known, one of them is 

Jordan’s network and another one is Elman’s network  

Elman’s RNNs  (Figure IV.9) in which feed-back connections are 

from the outputs of neurons in hidden layer to the input layer neurons and Jordan’s (Figure IV.10) 

from outputs of the neural net to the inputs of the NNs   

Elman’s RNNs is a powerful network to extract the informative feature related to the dynamic system in its 

hidden layer. This property provides very important advantage, especially, in real time applications to follow 

the dynamical change in the considered system. On other side, Elman network has the unique time series 

prediction capability because of its memory nodes as well as local recurrent connections ( ).  

Other types of RNNs can be found in the literature like Moakes  Mak  

Miyoshi  Recurrent RBF  Dynamic General NN 

 Hopfield  Boltzmann machine, 

), hierarchical RNN  RNN with regularizations , differential 

RNN and part-aware Long Short-Term Memory (LSTM) . For other types 



 

 

                                           
 

of RNNs refer to A comparison between major RNN 

architectures and some of the major advances in RNNs through time are provided in  

 
 

Figure IV.9 - Architecture d’Elman. Figure IV.10 - Architecture de Jordan. 

It was shown analytically that the RNN proposed by is capable of identifying 

any nonlinear dynamic system provided that the initial states of the network are chosen appropriately with 

respect to the initial conditions of the system. Furthermore, RNNs architectures are naturally suitable for the 

sequence classification, where each input sequence is assigned with a single class ( ). RNNs 

are particularly appropriate for system modeling, control and filtering applications ( ). Although 

for identification purposes this technique has not been as popular as the TDNN due to inherent stability 

complications, nevertheless this problem has been investigated by  Feedback 

allows the RNNs to acquire state representations, making them appropriate devices for different dynamic 

applications such as: prediction or modeling NL systems, control of industrial installations, processing of 

temporal signals and filtering  The RNNs prediction approach learns the model 

of the system from the external input information and the system itself. The RNNs inherit the mapping 

capability of FFNNs and, at the same time, capture the dynamic features of load information  

Recently, RNNs have recently received a great deal of attention due to their capabilities in modeling NL dynamic 

systems  They have been developed as a modeling technique for predicting and 

showed high accurate prediction when compared with conventional creep models  RNNs 

are capable to represent arbitrary NL dynamical mappings  such as those 

commonly found in NL time series prediction tasks. Therefore, these networks are important because many of 

the systems that we wish to model in the real world are NL dynamical systems  This is true, 

for example, in controls area in which we wish to model the forward or inverse dynamics of systems such as 

airplanes, rockets, spacecraft and robots .  

When both adaptive time delays and recurrences were used, It is more useful to improve performance 

 The combination of a typical MLP network with adaptive time delay units and 

feedback for processing temporal information of inputs sequences is known as TDRNNs 

 This TDRNN will be well applicable for temporally continuous domain, such as speech recognition, 

language processing, temporal signal identification and FM. 



 

 

                                           
 

has presented a TDRNN for temporal correlations and prediction. The simulation results have 

shown that the TDRNN well learn temporal correlations between current data and past events by using dynamic 

time delays and recurrences and the best performance is attained. 

The NL Auto-Regressive with eXogenous inputs (NARX) is one class of TDRNN models. The NARX network 

was developed based on AutoRegressive with Exogenous Input (ARX) which is commonly used in time-series 

modeling  So, NARX is the extension of an ARX model 

 In this study NARX NN is used and it represents feedback dynamic TDR NN where the outputs 

in time series depends on both, current inputs and previous outputs  

Figure IV.11 shows the topology of NARX network 

in which two types of NARX networks architecture are presented as proposed in the literature 

 They are parallel (P) and series-parallel (SP) architectures   

 

Figure IV.11 - Serial/parallel architecture for NARX model (Shahbazi et al., 2016)  

suggested dynamic recurrent NNs (DRNNs) for FDe system by using a comprehensive dynamic 

model which contains both mechanical and electrical components of the wind energy conversion systems.  

NNs are data-driven self-adaptive methods in that they can adjust themselves which involves tuning the 

weights associated to connections by learning from a set of existing input/output training data. These data can 

either be collected from the process itself or from a simulation model. The second possibility is of special interest for 

collecting data of the different faulty situations in order to test the residual generator, since generally; those kinds of 

data are not available at the real process. Before the beginning of training, the initial weights and node threshold 

are chosen randomly. The goal behind weights and biases adjustment by an appropriate training (using a 

learning) of a NNs is to minimize the difference between output of the network and desired output represented 

as Mean Square Error (MSE), shall reach the minimum probable value.  

                                                                      MSE = 1
2

∑ (𝑁
𝑗=1  targeti - outputi) 

2 (IV.3)  

where targeti denotes desired output (provided by teacher) and outputi is network’s prediction of the output for 

the corresponding input, both (i.e. input and output) of size N and order i. For learning operation of the NN, the 

training data are usually divided into three subsets, training, validation and testing. Moreover, the number of 

training samples should be large enough to satisfy the Vapnik–Chervonenkis requirements. The most important 



 

 

                                           
 

task in the validation phase is to check the performance of the network to determine the epoch at which training 

should be stopped to avoid over-fitting  

During the training phase, the training data set is presented repeatedly to the network followed by 

adjustment of the weights according to the training algorithm until the output signal converges to the desired 

one. The training is periodically interrupted for validation set presentation, in order to evaluate the network 

generalization. The test set is applied to evaluate the NN performance. Finally, once a network has been structured 

for a particular application, it is ready for training. 

There are three major learning paradigms; supervised, unsupervised and reinforcement learning 

 Each learning paradigm has many training algorithms. Various types of learning algorithms have been 

proposed such as back-propagation, gradient descent, MSE, Livenberg-Marquardt, etc. The extension of back-

propagation to dynamic applications is known as extended dynamic back-propagation algorithm. The three first 

ones are widely used for effective learning in feed forward networks. (For more details about NN training methods 

refer to  Basically, the purpose of every algorithm is to estimate the local error at each neuron and 

systematically update the network weights. Their convergence is a crucial criterion for NNs to be useful in 

different applications  Therefore, considerable effort has gone into developing 

techniques for accelerating this convergence. Among NNs learning algorithms, back-propagation, or backward 

propagation of errors, “error back propagation” propagation is the most commonly used, supervised learning 

(training) algorithm for adapting connection weights because of its capabilities for solving complex NL 

problems. However, error back propagation algorithm is slow and inefficient therefore, many enhancements have 

been introduced. By using error back propagation algorithm, connecting weights are tuned on the basis of a 

Gradient Descent Method to minimize square error for all training input–output pairs (the difference between the 

desired output values and the output signals produced by the network).  

The main features that facilitate and attract the use of NNs are as follows: (a) The highly NL characteristics (

; ) of NNs make them suitable for dealing with NL and complex dynamic systems 

;  (b) NN is considered as a veritable massively parallel distributed 

processor which can compute simultaneously several similar and independent operations. 

This feature allows NNs to perform different tasks more efficiently with high speed of operation and processing 

when implemented in hardware(c) Furthermore, NNs have the ability to self-learn through examples 

and to generalize the learned information (knowledge) which are 

extremely interesting properties to adapt itself by modify its internal structure during use 

to unlearned and arbitrarily data, and in response to changing environmental conditions (

 (d) Moreover, The generalization capability of NNs enables NNs to have a great promise for 

use and to make intelligent decisions in environments even the incoming data are distorted, noisy, sparse, 

incomplete, uncertain, corrupted or erroneous  Finally, 

NNs have capabilities to deal with highly nonlinearity, complexity, uncertainty, noisy or corrupted data. 

Furthermore, every type of NNs has its advantages and its drawbacks with a size vary from one neuronal 

architecture to other and the relevance of one type over the others is strongly related to the considered 

application  However, they are a promising alternative to various conventional methods because 

they have potential advantages over them  
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Due to their high potential dynamics, NNs have been emerged as a viable, power and effective tool for 

many researchers to solve challenging problems for a variety of applications in different field of engineering 

and science combinatorial optimization  information prediction 

and other fields. These application can be dynamic or static according to the nature of the used 

NNs. provided a good overview of potential and successfully 

applications of NNs. These applications, particularly of FM, are generally based, as is shown on Figure IV.12, 

on two main categories 

: (a) the approximation (

; ) including estimation ( or prediction ( ), identification 

( ; ) and modeling ; of the dynamic of 

complex NL systems  (b) and the classification including 

PR function from noisy complex data with great flexibility and capability 

 

 

Figure IV.12 – General classification of NN applications. 

Approximating a continuous function is an underlying relationship between input and output (

). It is a real mapping (link) of set of input to output data variables and parameters of dynamic system 

 The approximation of one or more process variables is made 

with a set of other related variables ( ). The learning and generalization features permit to NNs to 

approximate the relationship between the input and the output by using unseen input data. 

NNs have been shown to possess an inherent ability in approximating both the linearity and highly non-linearity 

of continuous complex relationship or function representing the behavior of dynamic systems and process 

; ). Recently, they have been shown the ability to give continuously excellent 

and proficient approximation  massively and fast up to any desired level of accuracy 

even for large data sets Therefore, NNs

are known as universal approximates  Approximation capabilities of NNs are widely publicized 

and for a detailed review of the issue one may refer to  The MLP and 

RBF networks are widely used and gave good results in approximation ( ; ). Particularly, 

with at least one hidden and large enough number of hid neurons, these networks are the most commonly used 

network type for data approximation once enough training is provided. Therefore, both networks are proved to 

be universal approximators of any static NL mapping  However, SNN has become the most 

used form of NN in representing NL processes, this network is not dynamic in nature and does not take into 

consideration the delay time that affect the dynamics of the system. 

The nature of NN makes it possible to model systems without using physical expressions when only operating 

samples (data) of system inputs and outputs are available  Due to its approximation (

; ) and prediction capabilities, NNs are able of performing modeling the behavior of highly 
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complex dynamic NL systems and providing an excellent black box tool of modeling, by provide the necessary tools 

for establishing mappings between system readings and its state ; ; 

). NNs are recommended to be used for modeling multi-output process system based on the 

operating measurement (data) information. When NN is used to model a system, the input layer of NNs 

corresponds to the input signals of modeling system, and the output layer has one or several signals to be 

predicted or estimated ( ; ; ). NNs learn from given data and 

capture the underlying (unknown) functional relationships. Indeed, many of the systems that we wish to model 

in the real world are complex and NL dynamical, in their nature ( )  

such as nuclear and chemical reactors, airplanes, rockets, spacecraft and robots. The distinguishing features 

make NNs the most powerful computer techniques and suitable modeling tools of the process dynamics of the 

industrial plant in recent years as an excellent flexible alternative with 

good capabilities to the conventional MM-based approach 

describing the process under normal operation. NNs online training capabilities can reduce modeling errors (and 

therefore reduce the FAl rate) in comparison to other time-invariant mathematical methods. The most commonly 

used network architectures for process modeling include the MLP, the RBF and the AANNs. However, the SNNs 

with no temporal aspect in structure, cannot model accurately this kind of systems. Advanced network architectures 

such as DNNs including recurrent, time delay networks are important and particularly appropriate for dynamic 

system modeling applications ( ; ). DNNs are appeared to be very promising 

approaches and more versatile. They provide the capability to learn the dynamics of complicated NL systems and 

provide better understanding which conventional SNNs cannot do  For this reason, these 

networks (i.e., DNNs) have recently received a great deal of attention for use in NPs due to their capabilities in 

modeling of slower dynamic behavior which is inherent to reactors. 

Obviously, the NN is a powerful tool for NL prediction of states and parameters ( ; 

). The success of NN architecture in describing the dynamics of a system and predicting the future 

behavior depends largely on the choice of its type and structure ( ; ; Wei, Chaudhary, 

2015). have mentioned 

that networks with one hidden layer show their ability to estimate a value with a sufficient degree of freedom. 

Unlike SNNs, DNNs contain delay times and feedbacks. This aspect gives them more ability to predict dynamic 

systems. Among numerous of possible of NNs configurations, the RNNs are known to be particularly effective 

in learning temporal patterns, to be superior in performing modeling technique predictions 

and showed high accuracy when compared with conventional other models  Indeed, RNNs 

are able to represent arbitrary NL dynamical mappings  such as those commonly 

found in NL time series prediction tasks. RNN model extracts the true dynamics from the noisy data, and ideally 

the prediction error will be only the measurement noise. Two NNs architecture has been considered: a TDNN 

for response prediction and a RNN for identification. Comparisons between the TDNN and RNN have been 

presented   

The RBF and MLP are widely used and give good results in process identification ( ; 

). Due to their local and global generalization capabilities, RBF networks have been extensively used as the 

basic structure of NNs for NL system identification  Within the different 

architectures of NNs, an important class is given by the RBF networks  A class of this network, 

which has shown to be particularly suitable for on-line system identification problems  is 

known as Resource Allocating Networks (RAN). 



 

 

                                           
 

Moreover, of the approximation application, NNs demonstrated the ability to be robust and speedy approach, 

and provide a powerful capacity and optimal solution for performing classifiers ( ; 

) in different domains such as in FM ( ) including PR problems ( ). 

Classification methods get all their information from the data through training. The classification network needs 

to be trained to create decision surfaces which minimize the classification error. The classes should be equally 

big and a batch training method employed, i.e., the network weights should be updated after seeing all data 

patterns. MSE Traditional classification methods are normally parametric, which means that the discriminant 

function separating different classes has a well-defined mathematical form (e.g., Gaussian) which depends on a set 

of parameters, mean and variance. However, NNs are considered to be semi-parametric, which means that the data 

is used to create the discriminant functions. This form of input-output mapping is well appropriate for PR (

) applications where both the input and output represent spatial patterns that are time independent (

). Like other PR techniques, NNs act on data by detecting some form of underlying organization not 

explicitly given or even known by human experts ( ). 

Many types of NNs can be used for classification purposes ( ). Four principal types of neural 

classifiers have been usually applied: the MLP, RBF, self-organizing Kohonen’s network and hybrid NN. The RBF 

and MLP give good fairly classification ( ) and PR  With both MLP and 

RBF networks architectures it is possible to achieve better performance than other techniques such as the nearest-

neighbor classifier and SVMS ( ). The MLP network is used in many classifications 

( ; ;  and mapping problems due to their good results. They can 

reliably classify the training patterns and allow obtaining satisfactory performance ( ). MLP 

with one hidden layer, a NL transfer function in the hidden layer, and sufficient number of neurons and training 

data is able to create any arbitrary discriminant function ( ). On other side, the result showed 

that RBF network has very high learning convergence speed and better classifying performance ( ). RBFs 

network are not as easy to use as the MLPs but RBFs may perform classification better and showed severe limits 

when they are trained with noisy data ( ) as long as their parameters are carefully 

determined. The Kohonen’s feature map is unsupervised trained, is not always able to classify even the data training 

correctly. However, its ability to classify the measurement data autonomously is useful and very interesting, 

particularly when real industrial processes are considered  In practice, the definition of 

different fault situations is a big problem and therefore unsupervised trained NNs provide a promising method 

for FDD. In three types of NNs were tested: the MLP, the RBF and the Kohonen's card. On the other 

hand, the Kohonen’s network is not as good as the MLP and RBF, but its self-adaptation capabilities (unsupervised 

learning) are very much appreciated.  

used six NNs for the classification of high impedance faults (HIF), namely BP network, 

cascade correlation network, RBF, learning vector quantization, NARX network and adaboost classifier. Other references 

of the use of NNs in the classification can be found in  

NN-based model has been used in the FM for several decades. In late 80s 

proposed a NN-based methodology for process FM. In recent years, a great deal of attention has been paid to 

the development of a large variety of methods for different applications for real-time monitoring and control issues. 

One of the popular among these methods, that based on AI and mostly NNs are widely researched 

 Reviewing the application of Computational Intelligence (CI), methods 

to FDD were the subject of many researches  The application of NNs for FM has generated 



 

 

                                           
 

considerable research. Usually in this field, NNs can be classified along two dimensions 

 the architecture of the network and the learning strategy.  

The NNs capabilities, cited above, permit the NNs to have been successfully applied to FM (

). Various studies were presented about CM, FDe, and FDi using NNs ( ) and already shown 

good performance  NNs have been used in various applications, including FDe and FDi 

and have been successfully applied in different domains 

cited above. But even more NNs have become a sort of ideal and powerful tool for FM ; 

) of NL dynamic systems using the system’s generated data.  

Most of the NNs applications for FM use the FFNN structure with some variation of the BP training 

algorithm Jeong et al., 1996  Among other types of network structures 

proposed for FM are the Kohonen self-organizing network  the perceptron-like network 

the temporal network Uluyol, Ragheb, 1993  the probabilistic network  the Boltzman machine 

 and RBF network  

 NNs are used in two ways regarding process FDD in power plants. The first use is as residual generator 

in the sense that NNs are used to capture NOCs of the system. The second application is as 

fault isolator or classification technique  

NNs can be used for FDD in three different manners. (a) Instead of performing the two steps of FM, one-

step monitoring might also be possible ( ) which means FDe and FDi are made together 

with the same NN. So, the ability to combine detection, isolation, and accommodation in one step is the key 

advantage of NN supervision scheme. (b) In both-steps of FM 

which means NN is used in FDe in conjunction with an additional NN for FDi ( ; ). 

(c) Only one time, in FDe or in FDi and the remain stage is mad by another approach 

 Example, a NN used as model-based FDe and FDi is made by another technique 

( ). When NN is used in FDi to perform the classification task for residual evaluation 

and therefore FIso ( ), all residuals have to exist which can be generated analytically by 

using MM methods ( ; ). 

In the case (a), the NNs can be used to generate residuals and isolate faults  FFNNs have been 

used primarily as a transient classification tool to detect and identify a set of pre-specified component failures 

Jeong et al., 1996  As example in the case (b), have 

constructed FM of NPP by using two-steps NNs; one is to detect the failure severity and the other is to classify the 

failure type. ( ) developed two NNs for NPP monitoring. MLP is used as residual generator to detect 

the symptom of anomalies and RBF to identify the abnormal events. ( ) used successfully two RBF 

networks for sensor FDIso in a chemical reactor process; one is used as model to for generate residual for FDe and 

another as classifier for FIso. In  the analysis of the data obtained is done using two stage NN, where, 

the first stage is used for estimation of PC and the second stage for classification.  

Furthermore, for the case (c), other studies used a hybrid FDI scheme in which observers are used for residual 

generation and NNs for FId  In some cases of the hybrid FDI scheme use, 

the FDe tasks were performed through the use of a bank of dynamic observers, particularly a bank of KFs and 

EKF when the measurement noises are not negligible ( ), and NNs for FId. ( ) 

presented a scheme for FDI of sensors and actuator fault of an induction machine. The generation of residual for 

the FDe phase is based on NN and the residual analysis is made with FL. used a hybrid method 

involving a combination of MM with NN and arrived at a faster computing algorithm for the study of HEs. 

NNs can handle NL and undetermined processes because no process model is needed but NNs learn the FDi by 

means of the information of the training data ( ). 



 

 

                                           
 

The detection function is necessary since it is placed at advanced place in monitoring procedure. In the ideal 

situation, if the value of a neuron in the output layer of the network is equal to one, then the fault represented 

by that particular neuron is considered to be present. Conversely, if the output of a neuron in the output layer 

is equal to zero, the fault is judged to be absent.  

Moreover, of the approximation application as modeling processes with strong non-linearity and robustness for FDe 

( ), 

Several FDe methods have been introduced including geometric and 

adaptive estimation methods for NL continuous-time systems while 

others have used sliding mode observers and fuzzy-based observers 

 Advanced methods of FDe are mainly based on process modeling and on mathematical SP to generate fault 

symptoms ( ). A survey of FDe schemes for robot  hydraulic systems, 

flight control etc., are given   

Reactors have complex NL dynamics such that classical analytical model and other FDe methods have several 

drawbacks so, they are too heavy to use in practice and too expensive to get.  

It should be noted, however, that in cases where only poor or imprecise analytical models are available, the 

model-based FDI approach still problematical especially when there is no, or not sufficiently accurate 

mathematical and physical expressions acknowledge. In such cases, the support by data-based methods may be 

unavoidable. Hence, an approach based on physics is still far from being realized and researchers have therefore 

focused attention on the use of DDTs in the recent years. 

With the development of AI, many techniques and systems based on intelligent and learning-based strategies 

 have been applied in FDe with the purpose to assist the NPPs operators to correctly interpret 

the fault data, including ESs, NN  FL GAs 

and combination of them such as fuzzy NN. Many methods driven by data have 

been proposed to model NL processes  The non-limitation on LSs is why the use of NNs with online 

learning capabilities is steadily growing in the FDe field   

However, in comparison, a KF provides better noise filtering and excellent dynamic estimates of the outputs of LS. 

For NL systems, the EKF can be used, but it imposes a much greater computational burden because of the 

complexities involved with representing a NL system with a family of piecewise linear models. 

So, NN have been as a good mathematical tool for modeling the process of the industrial plant for model-based 

abnormal detection. investigates SNNs and DNNs that are used to approximate the NL 

dynamic models of a plant, for both normal behavior and components' faults. In three 

different types of NNs (RBF network, perceptron NN and MLP) are used for generate a fault model for FDe of 

RC-Coupled amplifier circuit and show their high efficiency. These NNs are based on slope fault feature extraction 

method. 

 The ability of NN to detect any process faults is based on their ability to learn from example and requiring 

little knowledge about the system structure ( ). Different advantages of using NNs instead of 

other FDe techniques are discussed in more detail in   

Due to the capability of NNs with respect to noise, it is able to provide stable, highly sensitive and economic 

FDe. 



 

 

                                           
 

Due to their proprieties (mentioned above) NN have been used as a dynamical model in FDI of the process 

of the industrial plant  NNs modeling techniques were suggested as viable 

solutions for monitoring issues in NPP as early as 1988  However, the modeling for 

complex and NL systems such as an NPP is a formidable task if many reasonable approximations and 

simplifications are not tolerated. The power ability of NNs to model give them a great benefit to the NR 

monitoring, apart from other numerous application areas   

For evaluating the performance of a network, some criterions can be used to observe the error between 

desired responses and calculated outputs. Among them, we find MSE  Index of Agreement 

(IA), MeAE, MAE, Symmetric Mean Absolute Percentage Error (SMAPE) RMSE, Relative Mean 

Absolute Error (RMAE)  MAE (%) and CC. MSE, given by Equation IV.3, is 

able to observe deviations between experimental and calculated values of process variables.  

The IA developed as a standardized measure of the degree of model prediction error and 

varies between 0 and 1. A value of 1 indicates a much perfect and 0 indicates no agreement at all. It is 

dimensionless statistics and its value should be evaluated based on the studied phenomenon, measurement 

accuracy and the used model. IA becomes intuitively meaningful after repeated use in a variety of problems. It 

is expressed in the following equation (Equation IV.6).  

                                                                   IA = 1 - 
∑ (yi− ŷi) 2n

i=1

∑ (yi
′− ŷi

′) 2n
i=1

 (IV.4)  

where 𝑦𝑖
′ = yi - ym and �̂�𝑖

′ = �̂�i - ym 

The MeAE is given by 

                                                                         MAE = 
∑ (yk− ŷi) N

k=1

N
(IV.5)  

The SMAPE index is an average of the absolute percentage errors can be used for the evaluation of NNs. These 

errors are computed using a denominator representing the average of the forecast and observed values. SMAPE 

offers a well-designed range to judge the level of accuracy and should be influenced less by extreme values 

 It is expressed in. 

                                                                           SMAPE = 
1

𝑛
 ∑

|yi− ŷi|

(|yi|− |ŷi|) /2

N
i=1  × 100 (IV.6)  

The Root Mean Square Error (RMSE) is given by :

           RMSE = √
1
n

∑ (yi − ŷi) N
i=1  (IV.7)  

The RMAE:  

                     RMAE = 
MAE

y̅
 (IV.8)  

gave the modified performance function which is defined by adding a term that consists 

of the mean of the sum of squares of the network weights and biases to the original MSE function as: 

                                MSEreg =  MSE + (1-) MSW (IV.9)  



 

 

                                           
 

where  is the performance ratio that takes values between 0 and 1 and MSW is computed as: 

                            MSW = 
1

M
∑ wj

2M
j=1  (IV.10)  

where M is the number of weights used inside the network structure and w is the weight matrix of the network. 

The CC is a measure of the strength of the linear relationship between two variables. A CC’s value which is 

close to -1 or +1 indicates a strong correlation between the variables. 

Due to their proprieties (mentioned above) NN have been used as a dynamical model in FDI of the process 

of the industrial plant  Furthermore, due to its 

modeling abilities and noise prevention, NN is considered as promising and even ideal tools for generating 

residuals from the measurement information independently of the nature of application and dynamic 

characteristics of the plant and dependent only on faults. They are able to detect any small process faults 

independent of the dynamic characteristics of the plant with high accuracy and earlier than the conventional 

approach by using only input-output data measurement of the system.  

Furthermore, on-line approximation based schemes using NNs are considered as NL adaptive observers 

which are used to detect changes in NL system behavior due to faults progression when the dynamics 

of these faults are unknown. have proposed the use of FFNNs exclusively for FDe. (

) used the RBF network as model for the fault-detection residual generator.  

Before applying the NN for residual generation for FDe then evaluation for FDi first, the network has to be 

trained for this task. For this purpose, a residual data base and a corresponding fault signature data base are needed. 

Therefore, an input signal and a corresponding output signal data base have to exist as illustrated by Figure IV.13. 

 

Figure IV.13 - Scheme for training and on-line application of NNs for residual generation (Köppen-Seliger, Frank, 1995). 

The appropriate choice of the input space is one of the most difficult tasks when configuring the NN. One either 

needs to have enough process knowledge and then use a trial and error strategy or has to apply an optimization 

algorithm such as a GA  After the training is properly finished, the NN internal 

parameters allow to NN to be used for residual generation in real-time without need to prior qualitative MM 

( ). 

( ) used three-layered AANN as modeling tool for symptoms detection of small 

anomalies in real-time operation of NPPs in over the wide power range including start-up, shut-down and steady 

state operations. used the AANN to model the reactor dynamics for CM and SeV during power 

increasing and steady state operation in real-time of multi-purpose reactor (RSG-GAS) in Indonesia. The test results 

showed that this plant monitoring system is successful in detecting the symptoms of small anomalies in real-time 

over the wide power range. In RNN and FFNN were able to detect the very small anomaly 



 

 

                                           
 

induced towards the tail of the operation but the RNN has shown a better performance than the FFNN model 

during the simulation beyond the learning period. suggested dynamic recurrent NNs (DRNNs) 

for FDe system by using a comprehensive dynamic model which contains both mechanical and electrical 

components of the wind energy conversion systems. 

To improve the performance of FDi system, AI techniques such as FL NNs 

 GAs and SVM have been 

increasingly applied over conventional approaches. Among AI, NNs are a promising alternative to various 

conventional statistical methods  More recently, the potential of NNs for FDi has been demonstrated 

because they have potential advantages over them. The general mapping 

capability of the NN enables to identify a fault easily ( ). NNs used for process FDi usually use 

measurements and process alarms as inputs, while the outputs represent particular fault types, or categories 

( ). 

In practice, there are usually a few measurement patterns for each fault situation and plenty of data 

corresponding to normal operation. In addition, in industrial applications it is not always possible to determine 

the causes of faults. Therefore, supervised learning cannot always be applied in a direct way and it is important 

to investigate both supervised and unsupervised learning alternatives for NNs. This issue has not been seriously 

discussed in the FDi literature. One possible way to approach problems where the causes of faults are difficult 

to determine is to classify the process measurements according to the way the process is run. Unsupervised 

trained networks can be used to find different ways of running the process  The use of output 

neuron values to determine fault magnitudes has been examined  Moreover, fault size 

estimation can be performed by means of different NN architectures  

In particular, NNs can be used as function approximators to estimate single sensor fault size. gives 

a good presentation on various NNs application in FDi of chemical process and plants. A large number of NN 

architectures in use such as MLP, RBF, etc., are among the most frequently used structures for FDi. Recently 

DNN was successfully applied for FDi  It allows improving fault prediction accuracy of CM 

systems. ( ) investigates the development of a new type of recurrent wavelet network and its 

application to FDI of a dynamic process. A neural Generalized Observer Scheme (GOS) is used to generate the 

residuals (symptoms) in the form of one step-ahead prediction errors.  

In FDI, before applying the NN for the residual evaluation and analysis, first, the residual must be existing under 

the form of data base known as fault signature, generated with NNs or with any other approach, and then the 

network has to be trained by examples for this evaluation task. After finishing training, the NN can be applied for 

on-line residual evaluation ( ). 

NNs have been usually used very successfully in FDi to classify different input patterns into different classes and 

therefore classify faults present in measurement according to the operation of the process 

 For this reason, recently, NNs have emerged as potential tools in the area of FDi 

because of their capability to learn the features of different fault classes from examples, and their demonstrated 



 

 

                                           
 

ability as robust classifiers  Few literature studies had acknowledged the efficiency of NN 

as PR in FId and FDi ( ). After training, the learnt symptom-fault relationships are stored as the 

trained network weights and the network is ready to be used to classify the symptoms into the corresponding 

faults. In  a classification of high impedance faults, HIFs, has been done with six NNs 

namely Back propagation network, cascade correlation network, RBF, learning vector quantization, NARX network and 

adaboost classifier. FFNNs have been used primarily as a transient classification tool to detect and identify a set of 

pre-specified component failures  

In some applications, the classification is based on the processing or evaluation ( ) of the residuals 

( ) and it is used as PR ( ) for FId in FDi ( ) which consists 

to identify all faulty modes behavior  

have mentioned that networks with one hidden layer show their ability to effectively 

identifying process faults using feature classification ( ). 

In ( ), FIso is implemented by RBF network as a classifier. 

In the context of classification, recently, NNs have been used successfully in PR and they have been advocated 

as a possible technique for FDi too. have presented the application of two NNs (MLP and 

linear associative memory networks where all neurons have linear activation function), in shape recognition for FDi. 

( ). In the isolation problem is formulated as a PR problem, was solved 

using BP network. NNs are used for FIso. The event detection can be considered as PR problem. 

For instance, FFNN might incorrectly give a classification answer with high confidence for a new type of transient 

on which it has never been trained  FFNNs have been used primarily as a transient 

classification tool to detect and identify a set of pre-specified component failures  

When an event occurs starting from the steady state operation, instruments’ readings develop a time dependent 

pattern which is unique with respect to the type of an event. Therefore, by properly selecting the plant 

parameters, the Initiating Events (IEs) can be distinguished. To tackle this problem, a number of linear and NL 

PR techniques can be used. For this work, NNs will be used for event identification. Since the NNs cannot be 

trained on all possible IEs, it is important that it does not classify the IEs on which it has not been trained. 

Otherwise, the system will wrongly classify the patterns that it does not know  

In addition to stand-alone NN-based systems, some authors have concluded that the most effective NN 

methods in numerous monitoring applications are the use of more than one networks and their combination with 

other advanced computational tools as hybrid systems ( ; ; ). 

The purpose of the development of hybrid monitoring systems ( ) is to enhance the substantial 

performance of the functionality of the FM algorithm to be more applicable to real industrial systems by taking 

advantage of the strengths of each individual technique and combine them for finally avoiding the weaknesses 

and alleviate some of the limitations of NNs. The role and responsibilities of each part of the hybrid system and 

how they interact must be clearly described. NNs are combined with other AI methods such as FL, ES (

) and GAs ( ; ; ); SP such as WT, statistics such as PCA; and 

quantitative modeling methods (e.g., KF) ( ).  

 NNs techniques are based on the existence of a learning database, as input variables which can be 

quantitative or qualitative, consisting of a set of measurements of different modes of operation, normal or 

abnormal, of the system to be monitored. In the safety-critical processes, data must be first validated before any 
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work is to be done using these data. Although NN-based FDi tools can tolerate a certain degree of corruption 

or incompletion in data input. When the output of the NN represents the state of the considered system, the 

problem of monitoring can be considered as problem of PR. The form to be recognized is characterized by the 

set of data (quantifiable and / or qualifiable) and the membership classes representing the different modes of 

operation. The NN can then inform us about the operating state while ensuring both the FDe function (normal 

operation or not) and the FDi function, since it specifies the failure mode. 

Depending on the quality of input measurements and recurred results, these measurements are either fed 

directly to the NNs based monitor or they are first preprocessed or conditioned to reduce the effect of noise and 

disturbance  Also, for improving the network training step, it is preferable to normalize 

the set of data before being input to the NN  On other hand, the post-processing is considered 

as a way of increasing network reliability   

In NR, particularly in control room, there are many parameters (variables) which indicate the plant status 

operation. Thus, it is important to choose the smallest possible parameters numbers that have some degree of 

coherence with each other and contain the most necessary information for NNs to monitor a plant. Therefore, 

it is interesting to have an automatic selection method of optimal inputs (e.g., GAs) and consequently, the 

obtained results will be a faster training time  

KBTs acts as the overall controller in the monitoring process, interacting with the user, retrieving sensor 

measurements and other data directly from the system being diagnosed as well as from the plant operator, 

running the NN module, interpreting the NN results and performing any necessary post-processing FDi reasoning 

before providing a FDi to the system user.  

presented the application of wavelet multi 

resolution analysis in combination with NN for accurate classification of faults in transmission lines. Filtering and 

analysis of this high frequency spectrum is done using discrete WT. The NN is used to classify faults considered as 

spectrum pattern characterized by a band of frequency changes and depends on the location of fault in the 

transmission line.  

have presented the High Impedance Faults (HIFs) detection based on six different 

methodologies of combination of WT and NNs. This FDe is made in two stages. In the first stage, the current signals 

of the feeders are analyzed using WT to obtain the relevant data signals. In a second stage, the properly trained 

NNs are used as a classifier processing, in order to classify the state of each feeder. Authors conclude that the 

methods which give accurate classification in less time among the mentioned methods are combination of 

wavelet entropy and RBF, wavelet entropy and BP network, wavelet entropy and cascaded back propagation network, 

WT and Learning vector quantization. The method which uses the combination of wavelet entropy and NARX 

networks takes more time in classification though the accuracy is very high as previous methods. These methods 

given accurate classification in less time, knowing that time and accuracy are two things to take into consideration. 

used a combination of DWT and RBF network to identify the fault type in underground 

cable. DWT was used in order to decompose high frequency components from fault signals. The RBF network 

was divided into two case studies training for comparison between classification of fault type and identification 

of the phase with fault appearance. 

Monitoring can be performed by means of NNs and DTs were also presented in numerous works 

 presented a new technique of FDI based on NNs fault-free 

and faulty behavior models used for residual generation, while DTs are introduced for residual selection and 

evaluation.  

investigated the use of NNs and sliding observers for FDe in a thermal power plant. The 

NN and KF schemes for SeV were proposed for flight control systems. 



 

 

                                           
 

PR techniques are also combined with NNs in developing dedicated models for different operating regions of a 

power plant   

( ) have used MLP and PCA for the detection of failed (fissured) rods, within a nuclear fuel 

assembly by sounding the rods with ultrasonic pulses and examining the received echo waveforms classifier. 

The MLP is used as classifier and the PCA is used as data compaction for reducing the network’s input with no 

efficiency loss. 

 When using NN in combination with KBTs, such as fuzzy set theory and ESs 

 adaptation (interpretation) between them is necessary. NNs require interpretation of their 

outputs before a FDi can be made and are unable to explain their reasoning methodology  This 

integration with NNs technology is used individually ( ) in FDe and FDi or both (

). Thus, if the symptoms of the FDi task are numeric values, such as sensor measurements, the NN module 

should logically be placed in front of the KBT, thus taking a NN as numeric-to-symbolic preprocessor approach. If 

the FDi symptoms are symbolic in nature, such as commonly occur in medical diagnoses as well as alarm states 

in plant monitoring, the data should pass through the KBT first. The input symbolic data are then converted by 

the ES to equivalent numeric values useful for NN. Hence, the KBT is used as symbolic-to-numeric preprocessor. 

So, the combination of NNs and KBT s in a two-level hierarchical architecture has been reported by different 

researchers. This integration exhibited good FDi performance under a variety of conditions including novel faults 

and the presence of sensor noise.  

Fuzzy reasoning is able of handling uncertain and imprecise information, while an NN is able of learning 

from examples. In order to make model-based FM algorithms more applicable to real industrial systems, NNs, 

fuzzy sets or their combination (NF) can be considered. The combination of NNs and fuzzy systems can be done 

in two main ways; NNs are the basic methodology and FL is the second and FL is the basic methodology and 

NNs the subsequent ( ). From an engineering point of view, much of the interest in NNs and 

fuzzy systems, named Fuzzy Neural Networks (FNNs), has been used for dealing with difficulties arising from 

uncertainty. FNNs intend to combine the advantages of both fuzzy reasoning and NNs. Several FDi researches 

based on various types of fuzzy NNs have been studied 

 have proposed FDi methods using fuzzy models 

implemented by a special type of NNs. has proposed a process modeling and FDi using 

fuzzy models implemented by a special type of NNs which combine the capability of fuzzy reasoning in handling 

uncertain information and the capability of NNs in learning from examples. The main drawback of NNs-based 

FM is their lack of transparency in human understandable terms, represented by their black box nature, while 

the disadvantage of fuzzy systems is represented by the difficulty and time-consuming process of knowledge 

acquisition. On the other hand, the advantage of NN over fuzzy systems is learning and adaptation capabilities, 

while the advantage of fuzzy system is the human understandable form of knowledge representation. NNs use 

an implicit way of knowledge representation while fuzzy and NF systems represent knowledge in an explicit 

form, such as rules. ( ) presented an application of recurrent NF systems to FDI in NRs. In 

 NF techniques were exploited for both residual generations for FDe and 

residual evaluation for FIso of actuator fault in an industrial gas turbine. have applied FL and 

NN for alternator FDe. have proposed a fuzzy NN-based CM by using fuzzy ARTMAP. 

In  fuzzy NNs based on bidirectional associative memories have been proposed for FDi system 

of rotary machines FM. were using fuzzy NNs method for on-line process FDi. (

) presented a new approach to real-time FM (FDe and Classification) in power transmission 

systems by using fuzzy-neuro techniques. ( ) presented an application of recurrent NF systems 

to FDI in NRs. The NN is adapted to the recognition of the dynamic evolution of process variables and related 

faults. Process data is fuzzified in order to reason on qualitative rather than on quantitative values. 

have focused on the application of NF techniques in FIso in industrial gas turbine. have 



 

 

                                           
 

presented a scheme for FDI of sensors and actuators in an induction machine in which the generation of residual 

for the detection phase is based on NN and the residual analysis is made with FL. The obtained results shown that 

actuator and sensor fault are detected and isolated successfully. ( ) have used Local Linear NF for 

robust FDe of NL systems with application to a gas turbine engine. NF techniques were also exploited for both 

residual generation and evaluation in detection and isolation of actuator fault of an industrial gas turbine 

proposed NF FDI scheme based on a two-step procedure: a NARX 

network model is used for residual generation and a recurrent fuzzy NN performs the residual evaluation task. 

have been successfully used recurrent NF networks for the FDi of a 

simple electrical motor. 

ESs can obviously provide a useful post-processing function for NN diagnoses, providing a more natural user-

interface, interpretation and explanations regarding their reasoning. As NNs are basically, numerical 

algorithms, the inputs and the outputs to the NN subsystem will be numeric, as well. ( ) 

developed an artificially intelligent system, composed of ESs and FFNNs, for the FDi in large-scale chemical 

process plants. The NN is used as a first-level filter to diagnose faults commonly encountered in chemical process 

plants. Once the faults are localized within the process by the NNs, the deep knowledge ES analyzes the results, 

and either confirms the FDi or else offers an alternative solution. ( ) presented a hybrid 

monitoring system for NR using NNs and a rule-based real-time ES. The NN is used to model the plant dynamics 

with normal operation data and to detect the symptoms of anomalies. The real-time ES is used in diagnosing and 

displaying the system status by using the outputs of NNs and a priori knowledge base. 

suggested the use of an ES followed by an array of NNs where the purpose of the ES is to generate hypothesis 

about the possible failures which are then tested by an array of networks to identify the faulty component from 

the hypothesized candidates. In contrast. have developed an artificially intelligent system, 

composed of ES and FFNNs, for the FDi commonly encountered in large-scale chemical process plants. Once the 

faults are localized within the process by NNs, the deep knowledge ES analyzes the results. Finally, the researches 

have shown that the FDi methods integrating NNs with ES is superior, compared with the individual ES and the 

fuzzy diagnosis system  

They can be used to find approximate solutions to numerical optimization problems in case where finding 

an exact optimal solution to complex problems, is prohibitively expensive. proposed a system 

that uses Elman’s nets based motor FDe scheme with a training-aided GA, further introduced to improve the 

approximation accuracy, and achieve better FDe performance. have applied hierarchical GAs to 

determine the structure and parameters of NNs used to three-phase inverter circuit FDi. used 

GAs and NN for gear CM. The selection of input features and the number of nodes in the hidden layer are 

optimized using a GA-based approach.  

The FDI technique was developed by integrating two successful data-driven methods, PCA and NN by 

 In a hybrid system was demonstrated that combines NNs with PCA to 

identify and isolate faults. In some cases, PCAs are also used for dimension reduction in the process of model 

identification through NNs examined the 

feasibility of using NNs combined with statistical control charts (CUSUM) for FDD.  

The incorporation of the NNs into the monitoring domain may yield great benefits in terms of speed, 

robustness, and knowledge acquisition. More recently, the potential of NNs for monitoring has been demonstrated 
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For applicability to FM, the NN features are important and give capabilities to provide 

real-time responses.  

Last two decades, a great deal of attention has been paid to the application of NNs for FM issues 

 This is due to the great capabilities and advantages of NNs which leads as decision support 

systems and represents an important solution for CtM of complex and NL plant parameters applications (

; ), because NNs provide an excellent mathematical tool for dealing with 

NL problems ( ). 

NN is an effective alternative for performing system FDe while avoiding the need for a MM. NNs are one 

candidate which is not only able to tackle NL systems, but are also developed from data without the need of 

model specifications (i.e., they are data-driven). has presented a comparative, at linear 

dynamic conditions, of the performance between a bank of KF-based and an NN-based scheme as on-line state 

estimators for sensor FDIA scheme in a flight control system. The comparison is performed through testing of FDIA 

capabilities of the schemes for several types of failures presenting different levels of complexity in terms of 

detectability. Authors conclude that while the KF-based scheme takes advantage of its robustness capabilities, 

on-line learning neural architectures have potential for on-line estimation purposes in a SeV scheme, particularly 

in the case of poorly modeled dynamics. Over the past decades many FM publications have targeted fixed model-

based approaches, with parameter estimation and observer-based methods being the most popular. This is why the 

use of NNs with online learning capabilities is steadily growing in the FDe field  So, the 

drawback of MM-based approaches can be avoided by taking advantage of the flexible learning and 

generalization capabilities of a NN and make FDe algorithms more applicable to real systems. 

A second desirable feature of NN is their highly parallel structure allowing them to achieve a higher degree of FTo 

then conventional schemes   

Online training of NN makes it possible to change the FM system easily when changes are happening in the 

physical process, control system or parameters ( ; ). 

So, NNs are able to detect the symptoms of small anomalies earlier than the conventional alarm system 

 The majority of the reviewed articles discuss the FM performance of NNs with noise 

added to the data  Jeong et al., 1996 and concluded that NNs can 

successfully classify transient events when a 10% noise (equivalent to approximately 3 standard deviations) is 

present in the data. The results also indicate that NNs trained with input noise appear to become less sensitive 

to input noise in the test data  The intrinsic ability of NNs to filter noisy data while preserving 

its structure and detail is perhaps one of the major advantages of using NNs for FDId ( ).  

Other desirable feature of NN is their ability to respond in real-time to the changing system state descriptions 

provided by continuous sensor input. For complex systems involving many sensors and possible fault types 

(such as NPPs), real-time response is a challenge to both human operators and ESs ( ).  

The FDA is an implementation as FDe and FA. At FDe stage, a FAl is triggered if the residual exceeds its threshold 

then; the faulty sensor measurement is replaced, at FA stage, with a reliable model estimate, a reasonably close 

value to the original one and the system such as the control loop can remain operating even with multiple sensor 

failures. Sometimes, the use of estimation for FA is not possible such as with KF  However, 

the system will continue operating by using the most recent corresponding output which is a good estimation of 

the failed sensor measurement. In Figure IV.14, the estimation is made by NN and once a faulty sensor 

measurement is detected, it will be disconnected from the input layer of the network so that the output is the 

estimation instead of the sensor measurement.  



 

 

                                           
 

 

Figure IV.14 - FFNN for accommodation. 

Traditional approaches to SeV involve periodic instrument calibration which present many drawbacks. 

An alternative, NN, offers several advantages ( ; ). AANNs are widely 

used for SeV because of their capability to detect fault and reconstruct the original signal. These NN are discussed 

and implemented with various algorithms in  In  AANN 

is used for sensor FDid, FDiso and reconstruction. have presented two approaches to the SeV 

problem; a model-based approach using an AANNs and a NL observer which used functional approximation NNs to 

model the variation of the system at the operating point. In recent SeV studies, the AANN has been used

 The use of AANNs approach for SeV has often been proposed by and used 

subsequently by other researchers  ( ) have used AANNs to instrument 

monitoring and calibration monitoring for SeV at Florida Power Corporation’s Crystal River 3 NPP and at the Oak 

Ridge National Laboratory High Flux Isotope Reactor. presented an AANN approach to SeV for 

an aircraft engine. ( used an AANN for SeV of a rocket engine and indicated that the NN 

estimates of the sensor values could be used to replace failed sensor values in a feedback control system. (

) presented the results of applying two different types of NNs in two different approaches to the SeV 

problem. The first approach uses a functional approximation NN as part of a NL observer in a model-based 

approach to AR. The second approach uses an AANN to perform NL PCA on a set of redundant sensors to provide 

an estimate for a single failed sensor. ( ) used an AANN for the SeV of the F100 turbofan engine. In this 

network, the redundant sensor information is compressed, mixed and reorganized into a smaller number of nodes in 

the first part of the network. The compressed information is then used to regenerate the original redundant data 

at the output. Due to the information mixture, if a sensor fails, other sensor data still provide enough 

information to generate a good estimate to replace the faulty measurement. ( ) used AA and 

hetero-associative NNs together to provide validation for pressure and temperature sensors and then FDId for these 

sensor faults. In ( ), the NN of monitoring aids (NNMOA) system is applied to the CM and SeV of 

multi-purpose reactor (RSG-GAS) in Indonesia. The FFNN in auto-associative mode learns reactor's normal 



 

 

                                           
 

operational data and models the reactor dynamics. The on-line test results showed that the NN successfully 

monitored the reactor status during power increasing and steady state operation in real-time. 

( ) proposed an approach based on the use of SOM for multi-parameter data 

validation and reconstruction of data. 

As an alternative to traditional model-based SFDA schemes which rely on an analytic MM of the real 

system, NN-based SFDA schemes have received a huge amount of research interest over the past decade 

 They have been successfully designed and tested on a variety of engineering systems 

 In an attempt to widen the scope of NN-based SFDA 

schemes, have designed and applied such a scheme to a NL UAV model. The NN structure 

chosen is based on the extended-minimum resource allocating RBF network due to its good generalization ability and 

fast performance  ( ) proposed two schemes for SFDA; one is based on a NN and 

the other on an EKF. The objective was to compare both approaches in terms of execution time, robustness to 

poorly modelled dynamics and sensitivity to different fault types. Results have shown that the NN-SFDA 

scheme outperforms the EKF-SFDA scheme with good missed fault, zero FAls and an average estimation error 

for different test conditions. ( ) investigates the potential and demonstrates the accuracy of two 

different NN approaches, five-layer MLP with a global feedback loop and SOM, for signal FDe and reconstruction 

(SFDR) using real data. It is established that both methods are able to reconstruct single soft failure as well as two 

consecutive faults but the reconstruction quality becomes poorer if more faults occur consecutively. 

When NNs are used in FDIA and once a faulty sensor measurement is detected and identified, it will be 

disconnected from the input layer of the network for the purposes of isolating the false information. Many 

approaches proposed, developed and documented in recent research literature; implement NN-based AR as an 

alternative approach of MMBT for FDIA  Also, there has been an 

increasing interest in the application and development of NNs for SFDIA and Actuator FDe, Identification and 

Accommodation (AFDIA) schemes and an important implementation has lately been proposed and developed 

; ;  has demonstrated a complete solution 

for SFDIA through employing NN as a classifier in combination with NNs configured as a regression networks for 

the production of soft measurements. presented a NN-based approach for the problem 

of SFDIA for a flight control system without HR in the sensors. In  the Neuron By Neuron 

(NBN) learning algorithm, considered as an improved version of the Levenberg-Marquardt (LM) algorithm is 

combined with the Fully Connected Cascade (FCC) NN to develop the sensor estimators of an aircraft. These 

estimators can be used in any SFDIA scheme to provide the FAc. have used AA network, 

trained using the BPA, in SFDIA scheme for sensors in the Space Shuttle Main Engine (SSME). The AA network 

architecture has also been used for FDe in intelligent sensors  

developed an SFDIA scheme using the hetero-associative MLP trained using the extended BP algorithm 

(EBPA). This scheme was evaluated on sensors. proposed an SFDIA scheme 

using the RBF network, trained using the EMRAN algorithm. In ) a NN-based scheme for 

SFDIA, implemented with different neural approximators, MLP trained with the EBPA (MLP-EBPA) and RBF 

network trained with the EMRAN (RBF-EMRAN), has been analyzed using experimental flight data of a research 

aircraft model of a B777 and the performances were compared. ( ) has presented a comparative 

study of performance between a KF-based and a NN-based scheme used for SFDIA in a flight control system 

assumed to be without HR. In  the performance of the NN-based SFDIA scheme was 

compared with the performance of an identical scheme with KFs instead of the Main Neural Network (MNN) and 

a set of n Decentralized Neural Networks (DeNNs). This comparison showed the advantages of the on-line learning 

by the NN-SFDIA scheme vs. the robustness of the KF SFDIA scheme for modeling discrepancies between the 
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actual system and the filter model; additionally, the study showed a similar level of computational effort for on-

line applications. 

Over the past decades, there has been an increasing interest and a great deal of attention has been paid to 

the application of NNs for FM issues and accommodation schemes 

 The fields of FM and control systems have benefited from the application of NNs 

 NNs show great promise for use for FM in environments in which robust, FTo, a good classification, 

intelligent decisions and recognizing faulty component patterns are necessary to achieve in a real-time with higher 

degree than conventional schemes  Nowadays, the vast number of applications has raised 

significantly. The potential applications of NNs include, but are not limited to: (a) diagnosing specific abnormal 

conditions, (b) identification of NL dynamics and transients, (c) detection of the change of mode of operation, 

(d) control of temperature and pressure during start-up, (e) SeV, (f) plant-wide monitoring using AANNs, (g) 

monitoring of check valves, (h) modeling of the plant thermodynamics, (i) emulation of core reload calculations, 

(j) analysis of temporal sequences in NRC’s licensee event reports," and (k) monitoring of plant parameters. The 

vast majority of the proposed systems for FM use the FFNN architecture with different variations of the BP 

training algorithm. presented a good synthesis on the application of the NNs in industrial FM. It 

gives the neuronal architectures the most used in this domain with practical results in statics and dynamics 

monitoring applications. Other references for application of NNs in FM can be found in  

Seen the limitation of space, we are limited to main two instrument, sensor and actuator, usually 

intensively used in plant and particularly in NRs.  

Many works are used NNs methods to adopt the detection sensor/actuator faults for various systems as presented 

in  Sensor and actuator fault are detected and identified using AR as 

presented in the different works  ( ) have used NN successfully for the 

detection and FL of sensors and actuators fault in an induction machine. ( ) used a system model-

based on MLP with dynamic neurons in the state-space representation for the actuators and sensors FM. (

) addressed the problem of reconstructing the correct signal values measured by faulty sensors in NPPs. 

One practical approach to effectively handle the dimensionality of the problem due to the large number of 

sensors typically involved is offered by resorting to an ensemble of AA models for signal reconstruction.

presented a dual NNs combined strategy to detect the faults of sensors ( ). 

studied a sensor FDe system based on MLP and back-propagation learning algorithm. They also discussed traditional 

FDe algorithms. constitutes an application of two different NN approaches, AANN and 

Kohonen, for FDe and reconstruction of sensors' faults in a water treatment plant. ( ) proposed an online 

sensor FDe scheme in NPPs by NN. The method is validated using data from Fast Breeder Test Reactor. Compared 

to all other methods, he concludes that this method is robust and reduces the spurious/FAl. In 

a DNN was used to detect actuator faults in the attitude control subsystem of a satellite. In 

) DNN with an internal feedback is applied for FDe of boiler-turbine actuators. In 

two networks are proposed to detect sensor failures and Recover the lost measurements from a 

group of redundant sensors. The NN structure selected for this task is a FFNN with the sigmoidal activation 

function for each node. The first network is trained to detect the sensor which is inconsistent with other sensor 

readings. The second NN is to perform the recovery of the measurement due to the failed sensor. A back-

propagation algorithm is used here to train the NNs. The scope of this study is limited to the sensor FDe during 



 

 

                                           
 

the nominal operating condition. The proposed scheme is tested using the simulated data of the SSME inflight 

sensor group.  

In this thesis, we are limited to three main systems, equipment and process, well known in NRs which are HEs, 

core and rotating machinery.  

It is difficult to study the performance of HEs experimentally because of the variety of parameters involved in 

the physical structure of the HE. Therefore, the application of NNs appears to have potential for CM of a HE 

even for situations in which there are substantial variations in the composition, temperatures and FRs of the 

individual fluid streams. NNs can offer an attractive method for identifying both sudden and gradual degradation 

in the performance of complex multiple HE systems. The NNs were able to predict the overall characteristics of the 

HE with a high degree of accuracy and in this respect were found to be superior over conventional NL regression 

models in capturing the underlying nonlinearity in the data. NN has been applied to many thermal problems 

 including the prediction of the steady-state and the dynamic behavior of HEs 

The CRC handbook discusses usually the applications of 

NN and GA in thermal engineering. A handful of works has been done in the past to analyze the performance of 

HE using NN. studied in detail the simulation of HE using limited experimental data. 

used a self-adaptive method using NN and presented a model for accurate simulation of HEs. 

applied NN for thermal analysis of HEs. NN techniques are extensively used to model the NL 

dynamic and complexity of HEs to predict the overall and detailed heat transfer characteristics. ( ) 

used NN to predict the overall heat transfer of a compact fin-tube exchanger and he demonstrated how the SOM, 

can be used for HE CM by identifying and classifying the deterioration in exchanger performance. 

Several authors have also used NN as an alternative modeling method for the prediction of fouling 

 Online fouling detection and estimation of the overall heat transfer coefficient (U) were reported in 

literature  ( ) demonstrate how SOM, can be used for HE CM by identifying 

and classifying the deterioration in HE performance such as fouling or sudden changes in fluid, using data only from 

the NOCs. predicted heat transfer coefficient of fin-tube HE using NN. 

applied NN for thermal analysis of HEs. have used MLP network with single 

hidden layer and 5 neurons as model of shell and tube HE to estimate successfully hot and cold temperatures as a 

function of FRs and concentration of fluids. developed and compared two different types of 

NNs models, MLP and NARX, for predicting the change in outlet temperatures over time in the shell and tube sides 

of the HE. He concludes that NARX model supersedes that of FFNN model. The aim of the work presented by 

is to predict the value of pressure drop for different inlet-outlet configurations of an air-cooled 

cross flow HE using NN. In a NN model with NARX structure was proposed and developed 

to describe the complex behavior of a HE in crude preheat train (CPT) in a refinery. It was observed that the 

developed model has a good predictive capability. predict the pressure drop for a given 

configuration (inlet-outlet combination) and given mass FR for an air-cooled cross flow HE using NN. NN has 

been applied to many thermal problems  including the prediction of the steady-state 

and the dynamic behavior of HEs  



 

 

                                           
 

Rotating machineries are used in NPs in different manners as pumps of cooling circuits, motors, compressors 

and cooling fans which cool the control rod drive-mechanism. The motor parameters (e.g., current, voltage, 

winding temperatures, etc.) should be monitored in accordance with manufacturer’s recommendations, industry 

standards and Practices, and plant experience. Different techniques are used rotating machinery mainly 

vibration analysis, lube oil analysis, thermography and MCSA ( ). 

The MLP system is able to diagnose the faults that can be seen in most frequencies in starter motors. 

used an MLP to detect and diagnose automatically, in a nearly stage, the broken bars fault in the rotor of 

the induction motor. ( ) developed an MLP network with BP algorithm for induction motor 

monitoring. presented a FDi system for a serial wound starter motor based on MLP. This NN-

based FDe system has been developed for implementation on the emergency vehicles system. 

applied the BP network algorithm is to the training of multiple alarm patterns for the identification of faults in 

a reactor coolant pump (RCP) system ( ) presented the application of RBF for the induction motor 

rotor FDe and conclude that this network can be an alternative to the well-known MLP-based FDe. RBF network 

is introduced into the FDi for rotary machinery and the result showed that an RBF network is able to correctly 

identify the various faults. So, RBF network has good practicality in the field of equipment FDi. ( ) propose 

a FDi method based on RBF networks applied to air-conditioning fan FDi. The result shows that RBF network 

has very high learning convergence speed and better classifying performance. presented a 

monitoring system of serial wound pre-engaged starter motors by using a Kohonen NN. detected 

faults in switched reluctance motors and diagnosed them in real-time with the Kohonen’s NN. In  

Elman’s net, is used for monitoring of high-temperature gas cooled NR and bearing damage condition in 

induction motors. 

On-line SeV and CM has become a significant issue to ensure stable operation and achieve higher plant 

operability. Especially, it is more important for aged reactors to detect the symptom of anomalies and deal with 

them at the beginning of serious accidents. Reactors are considered as complex NL dynamics system such that 

classical MM-based and other conventional monitoring methods are too heavy to use in real applications. NN 

applications play the major role in this field, specially, with their model-free structures and powerful NL properties. 

Hence, NNs are considered as a powerful and an effective technique in the NPP FM, and has a compatible structure 

with the real time applications. The emerging’ technology of NNs offers a method of implementing real-time 

FM and FDi in NPP. Moreover, the NN-based systems can run very fast if hardware implementations are 

becoming available. This makes the systems, especially well appropriate for real-time applications such as alarm 

processing and FDi in NPPs. IAEA meeting on NPP I&C systems recognized potential usefulness of NN and 

recommended their development and implementation  To get the satisfactory results 

in real time and for wide-range monitoring studies, several application studies of the NNs on NPPs have been 

carried out  NNs have been extensively used to monitor and control wide variety of 

applications studies of NL dynamic systems in nuclear industry have been carried out  These 

applications have all obtained satisfactory results in real time and for wide-range monitoring studies. They 

include, but are not limited to: prediction of core parameters plant control and monitoring 

NL dynamics and transient diagnosing signal prediction and SeV 

diagnosing specific malfunction conditions detection of the changes of the operational mode Pazsit, 

Kitamura, 1996 component monitoring and event classification fuel management optimization 

and system control  A review of AI applications in NPP FDi and FDe by 

finds that mostly ES and NN techniques were researched and proposed. It reviews and classifies 95 

publications (of which 33 were NN-based), and presents most of the issues that are involved in the Al-based 



 

 

                                           
 

applications in the Pn industry. NNs have a great benefit to the NR monitoring, apart from other numerous 

application areas  ( ) presented a study on various NN algorithms for selecting a 

best suitable algorithm for diagnosing the transients, due to equipment failure, malfunctioning of process systems, 

etc., of a typical NPP. has demonstrated the ability of NNs technique to identify the causes of 

perturbation in the steam generators of NPP. have proposed the applicability of thermal power 

prediction. Also, the feasibility studies on the multiple alarms processing in electrical power systems have been 

reported in references  Among several methods Kreider, Schneider, 1990 to detect failed rods 

(fissured ; ) have used MLP classifier for the detection 

of failed rods, within PWRs fuel assembly by sounding the rods with ultrasonic pulses and 

examining the received echo waveforms. The classification was efficient with low false-alarm probability. 

( ) presented an application of recurrent NF systems to FDI in NRs. 

focused on the application of MLP to monitor the faults in a Continuous Stirred Tank Reactor (CSTR). (

) gave how to use NNs for detecting anomalies of NPPs in operation and they used three-layered 

AANNs for FDe in real-time of NPPs in operation in real-time by using AR. The test results showed that this 

plant monitoring system is successful in detecting the symptoms of small anomalies in real-time over the wide power 

range including start-up, shut-down and steady state operations.  

For FM, the input variables of NNs can be quantitative (e.g., output of sensors), and/or qualitative (e.g., 

observations made by the operator). From these input variables, the NN give outputs which can be an estimation 

or classification of monitored parameters ( ; ). In many FDi problems of 

physical systems, such as nuclear process plants, the inputs to the NNs usually are S/D measurements and while 

each output neuron is a process alarm corresponds to one particular fault possibility. 

have presented a method based on integrated NNs (INNs), and logical fusion to improve the 

reliability of FDi in NPPs. Different methods of NNs were applied simultaneously. ( ) have 

applied The self-learning techniques for training a RBF network to learn and diagnose fault conditions from 

measured process data to the FDD of faults in a simulation of a continuous stirred tank reactor (CSTR). Related 

nuclear work includes the monitoring of the Borssele NPP using NN techniques is considered in Nabeshima et al., 

1995  A monitoring system with various NNs has been developed for a PWR and implemented by 

in the Netherlands. ( ) addressed to the problem of use of the NNs for 

anomalies detection as well as physical parameters monitoring of NPP during power operation in real time. Three 

different types of NN algorithms were used namely, FFNN and two types of RNNs. The latest have shown a 

better performance than the first model. constitutes a very interesting NNs application of 

FDL of sensors' faults in a power plant. ( ) presented an application of a NNs-based scheme for the pressurizer 

of a PWR NPP. More recently, researchers at University of Tennessee (UT) developed a sensor monitoring system for 

Florida Power Corporations Crystal River 3 NPP and Oak Ridge National Laboratory’s High Flux Isotope Reactor

  

In  a reactor power is predicted by a three-layer MLP network by using control 

rod position, core exit temperature, and intermediate HE secondary sodium outlet temperature as inputs to the network. 

proposed constrained NN control for the adaptive tracking of power profiles in the TRIGA 

Mark-III research reactor. proposed a neural adaptive inverse controller to control 

the core power of a PWR reactor. proposed constrained NN control for the adaptive 

tracking of power profiles in the TRIGA Mark-III research reactor.  

The model-based prediction assumes a fixed structure for characterizing steady-state or dynamic 

relationship among process variables. The generation of an accurate model requires time proportional to the 



 

 

                                           
 

size and complexity of the system. Relationship between signals in a subsystem of a plant can be modeled using 

NNs which provide results easily and faster than MBTs s if hardware implementations are becoming available. 

This makes the systems, especially well appropriate for real-time applications such as Fault Monitoring and 

Accommodation (FMA) in NPs. Generally, NNs can provide, in some cases, more interesting solutions than other 

monitoring tools, provided that the type of neural architecture is chosen wisely and, above all, that the learning 

phase is well conducted. 

This chapter has been dedicated to the presentation of basic concepts NNs such as neuron model; 

architectures; training; advantages and drawbacks. We also treated the application of NNs for the monitoring of 

industrial equipment by using the recorded and online data acquired by DAS on supervision computer at control 

room. We distinguished that NNs are used into two different main ways: classification and identification. In 

the first type of application (i.e., classification), the NNs associate an operation mode with each set of data (i.e. 

quantifiable such as sensor outputs or qualifiable such as observations on the system). In the second type of 

application (i.e., system identification), NNs are used to give a model of the equipment in black box form. 

Nevertheless, through the list of non-exhaustive but representative references that we have consulted, we notice 

two temporal representations of the NNs: a spatial or external representation and a dynamic or internal 

representation. We showed that the NN architectures can be divided into two main categories; static and temporal 

networks. The latest, in turn, can be also classified into two groups; dynamic and recurrent networks. We have 

particularly detailed some architecture in each class.  

An important criterion in monitoring is taking into account the dynamics of the system. This dynamic 

makes it possible to better identify the failure modes and to be able to anticipate the evolution of equipment 

(preventive monitoring). Therefore, we have addressed in this chapter a very important aspect to the temporal 

dimension in monitoring. We have given a state of the art as wide as possible of the different ways of taking 

into account this temporal aspect by the NNs, the different architectures of temporal networks and the way in 

which temporal learning are conducted. This study allowed us to conclude that there are many approaches of 

temporal NNs as well as works and publications concerning applications and architectures of NNs. 

 



 

 

V - CHAPTER V 

 

 

Based on historical data and online data during the normal and faulty operations of the process, the strategy of this chapter 

is to build a model of the process behavior and to use it in redundancy for detection and identification of abnormal situations 

process resulting from malfunctions in monitored, to help human operators in their decision-making. More specifically, the 

goal is to monitor, as early as possible, the failures of the process, by reducing the number of false alarms. 

In this chapter we present a comparative result by using different analytical model-based methods (i.e., heat balance, -NTU, 

log mean temperature difference, Kalman filter) and neural networks for the detection, localization and accommodation of 

some parameter of the core and heat exchanger in Triga-Mark II research reactor. 

 

  



 

 

 
                                                             

 

 

Therefore, the strategy consists of two different but non-independent steps. A step off-line in which 

historic data are analyzed and treated to characterize the known behavior for the system, a second stage in 

which the behavior of the previously obtained process and the on-line data are used to determine the expected 

state of process. 

In the present work, an experimental system is developed to investigate the performance of HE and some 

parameters of the core of the reactor. We applied the mathematical estimation methods described previously in 

Chapter I on the shell-and-tube HE situated between the primary and secondary cooling circuit of Triga Mark II 

NRR at LENA, with the purpose to predict its temperatures and MFRs. In this experience part, it is assumed that 

all internal coefficients of the HE are known, constant and positive, as given in Table V.1. The only data needed to 

be collected are the four inlet/outlet temperatures (Thi, Tho, Tci and Tco) and MFRs (�̇�h and �̇�c) at both streams of 

the HE unit. These parameters are all measurable in the case of the present HE. Second, we used NNs to estimate 

the four temperatures of the HE and also some parameters of the core of the reactor such as Pn,  and Tf.  

The FDA software used in this experimental part is developed in Matlab and Simulink by exploiting NN Toolbox 

model, and executed for real-time monitoring (RTM) on portable PC. This software is chosen due to its 

capabilities and ability to provide solutions in technical computing.  

The data used in this experiment as fault free are gathered from the data acquisition supervision PC at LENA 

Reactor (Figure I.7). One notes that these training data sets can be also extracted from the system simulation rather 

than the real online data acquired while the reactor operates.  

An off-line experimental data set taken at LENA reactor, particularly after the starting of the cold stream 

pump, is used with different methods for estimation. This data set, as shown on Figures V.1 - V.3, is composed of 

measurement of temperatures and MFRs of both fluids of the HE. In addition, this data set includes 

accompanying Pn to the associating operating modes of the reactor.  

 

Figure V.1 - Global data set of inlet and outlet temperatures of the HE, used for the estimation.  



 

 

 
                                                             

 

 

On Figure V.2, we note that the cold fluid pump starts at time k = 2654s, the moment when the outlet temperature, 

Tho, of the hot fluid reaches 30°C as shown by Figure V.1. Consequently, the MFRc jumps from 0 to 8.9 (Kg/s). 

 
Figure V.2 - Global data set of the MFR of both HE fluids, accompanying the global data set, given on Figure V.1. Mean 

values at steady state for hot and cold fluids are 9.19 and 8.96 kg/s, respectively. 

 

 
Figure V.3 - Pn accompanying the global data set, given on Figure V.1. 

In this experiment, we distinguish two applications cases of the mathematical estimation methods on the 

present HE according to the availability of the parameter measurements. First, when all the measurement of the 

four, inlet and outlet, temperatures, and MFRs are available, as in the case of the current HE at LENA reactor. In 

this condition, all the methods can be applied. Second, when some measurements of parameters are not available. 

In this case, the HB and the LMTD methods can’t be used, only the -NTU and the KF methods can be applied 

according to the available parameters. Finally, the application conditions of the CM depend on those of the 

individual estimation approaches used in the combination. 

In this monitoring application, we mention that the use of the three mathematical methods, HB, -NTU 

and LMTD needs a pre-calibration which consists to find: the thermal power ratio, R, between the hot and cold 

fluids given by Equation I.17, the effectiveness at both fluids of the HE given by Equations I.26a and b, and the 

coefficient FcUA from Equation I.24 after correction. For this computation, we used an independent data set, 

different of that used for estimation (Figures V.1 and V.2) but with the same values of the MFRs. The calculation 

of these three calibration values of the HE are represented on the following figures (Figures V.4 - V.6). 



 

 

 
                                                             

 

 

After stabilization (i.e., time k = 1000s), these values are relatively constant: R =1.49, h = 0.61, c = 0.41 and 

FrUA = 4.2×10-5. 

  

Figure V.4 - Thermal power ratio, R, between the hot and cold fluids of the HE. 

 

Figure V.5 - Efficiencies, Eh (h) and Ec (c), respectively, at the hot and cold fluids of the HE.  

 

Figure V.6 - FcUA coefficient of the HE.  

The estimation results of the inlet and outlet temperatures, the MFRs and their corresponding estimation errors at 

both fluids of the HE are presented on Figures V.7 and V.8.  



 

 

 
                                                             

 

 

  
(a) Inlet temperature of the hot fluid, Thi. 

  
(b) Inlet temperature of the cold fluid, Tci. 

  
(c) Outlet temperature of the hot fluid, Tho. 

  
(d) Outlet temperature of the cold fluid, Tco. 

Figure V.7 - (Left) Measurement and estimation of temperatures at both fluids of the HE by using mathematical methods. 
(Right) Estimation error of these temperatures. 



 

 

 
                                                             

 

 

  
(a) MFR of the hot fluid, �̇�h. 

 
 

(b) MFR of the cold fluid, �̇�c. 

Figure V.8 - (Left) Measurement and estimation of MFRs at both fluids of the HE by using mathematical methods. (Right) 
Estimation error of these MFRs. 

The KF is suitable to predict the outlet temperatures of the cold and hot fluid streams in a specified HE. The 

internal coefficient and some parameters values of the HE are given in Table V.1. The estimation results of Tho 

and Tco and their estimation errors, by using the KF are presented, consecutively, on Figures V.9a and V.9b. 

Symbol  Value Symbol  Value 

Vh 13110-3 [m3] h, c  993.94 [kg/m3] 

Vc 39010-3 [m3]  A 30,7 [m2] 

cph, cpc 4187 [J/(kg.K) ] U 1080,80 [W/m2°C]  

Table V.1 - Coefficient values of the used HE. 



 

 

 
                                                             

 

 

 
 

Figure V.9 – (Left) Measurement and estimation of outlet temperatures, Tho and Tco, of the HE by using KF. (Right) 
Estimation error of the outlet temperatures. 

Based on Figures V.7 and V.8 at the steady state (i.e., after k =1000s), the four previous errors of the 

estimation by using mathematical approaches and their combination of the inlet and outlet temperatures of both 

streams of the HE are calculated and presented on Table V.2. These errors are represented by two values: one for 

the Power Up (Pu) and the other for the Power Down (Pd). 

By using the methods combination approach, the percentage composition of the estimation spectrum, function 

of the selected optimal estimation from the used mathematical methods is, respectively: (51.4, 48.6, 0), (19.6, 

47.8, 32.6), (51.9, 48.1, 0), (28.4, 33.8, 37.8), (22.8, 77.2, 0) and (22.7, 77.3, 0) for the six supervised HE 

parameters (i.e., Thi, Tho, Tci, Tco, �̇�h and �̇�c) as shown on Figure V.10.  

 

Figure V.10 - Percentage (%) composition of the combination estimation spectrum function of the used mathematical methods. 

We not that the estimation is better during the Pu for all mathematical methods. The methods combination 

approach is more accurate because it takes the best of previous approach regarding the estimation. Thus, we 

can class the used mathematical methods against their estimation accuracy as follow: the methods combination, 

the LMTD, the -NTU and the HB. For the estimation by the KF, the MAE, Percent Maximum Absolute Error (MAE 

(%)) and RMSE, of the outlet temperatures are calculated over the entire spectrum, Pa. We note that the estimation 



 

 

 
                                                             

 

 

accuracy is the best even during the transition period (i.e., just after the starting of the cold fluid pump) thing 

which has not realized elsewhere. 

Globally we can say that these results are satisfactory which allowed generating residual with a good accuracy 

and consequently a better sensitivity of FDe. 

 

  Temperatures (°C)  MFRs (kg/s)  

Errors Methods Or Thi Tho Tci Tco ṁh ṁc 

MAE 

HB 
Pu  0.306  0.212 0.496 0.508 

Pd  0.572  0.395 0.912 0.803 

-NTU 
Pu 0.368 0.151 0.258 0.165 0.223 0.211 

Pd 0.532 0.219 0.372 0.282 0.437 0.404 

LMTD 
Pu  0.290  0.290   

Pd  0.240  0.240   

Comb. 
Pu 0.232 0.150 0.162 0.160 0.223 0.210 

Pd 0.464 0.150 0.321 0.140 0.437 0.404 

KF Pa  0.59 m  0.60m   

MAE (%)  

HB 
Pu 0.999 1.227 1.00 0.853 5.399 5.708 

Pd 1.597 1.966 1.674 1.358 9.917 9.023 

-NTU 
Pu 1.131 0.663 1.189 0.663 2.425 2.367 

Pd 1.842 0.969 1.800 0.969 4.757 4.541 

LMTD 
Pu  1.124  1.137   

Pd  0.996  1.006   

Comb. 
Pu 0.676 0.555 0.693 1.137 8.421 2.364 

Pd 1.576 0.608 1.524 1.006 4.757 4.541 

KF Pa  0.002  0.002   

RMSE 

HB 
Pu  0.078  0.054 0.098 0.095 

Pd  0.236  0.163 0.357 0.326 

-NTU 
Pu 0.110 0.045 0.077 0.046 0.063 0.060 

Pd 0.187 0.077 0.131 0.118 0.124 0.117 

LMTD 
Pu  0.077  0.093   

Pd  0.131  0.052   

Comb. 
Pu 0.058  0.040 0.033 0.051 0.049 

Pd 0.176  0.123 0.047 0.123 0.157 

KF Pa  0.53m  0.54m   

Table V.2 - Presentation of the estimation errors: the MAE, MAE (%) and RMSE. They are calculated after the time 
k=1000s (i.e., transition period) for the HB, e-NTU, LMTD and CM; and over the entire spectrum for the KF methods. In 

this table we used the following notation : Milli or 10-3(m), Operating Regime (Or), Pu, Pd and All Power Regimes (Pa). 

In this part of experience, NN is applied to model the HE and the core to validate signals of the different 

parameters and to accommodate them in the case of faults, by using experimental data. In order to better do 

that, it is necessary to select the right structure which train correctly the network with the appropriate data, and 

predict accurately the network outputs.  

In our application, seven prototype parameters of the reactor in two different systems are selected to be monitored. 

The Nuclear Power (Pn), Tf and  in the core; and the inlet and outlet temperatures of both streams of the HE of the 

primary cooling circuit of Triga Mark II NRR. So, the major scope of this experimental part is to develop a NN 

model to predict these different parameters.  



 

 

 
                                                             

 

 

We based on the use of a smaller number of input variables of NNs which permit to realize a faster training 

time. 

The number of hidden layer and neurons inside (hidden neurons) was changed several times and the training 

parameters were varied; and the error from the network in all cases was investigated. The optimum NN 

architectures were established by choosing the configuration that obtained the minimum prediction error and 

highest CC. 

In order to obtain a suitable structure, several architectures are used and several configurations for each 

architecture were tested then optimized through trial and error procedure. As a result of these tests for this 

monitoring application, NARX structure is selected owing to its best performance to estimate the dynamic of 

signals.  

Furthermore, the optimum number of the hidden layer was found to be one and the optimum number of 

neurons of the hidden layer was found to be six. mention that networks with 

one hidden layer can show their ability to estimate the value with a sufficient degree of freedom as well as 

effectively identifying process faults or feature classification. 

The number of nodes in the input layer is set to be equal to that of the input signals in each system and the 

output layer has only one node from which the output is predicted. 

The connection weights were randomly assigned in the initial learning stage; then they were adjusted after every 

learning epoch using the backpropagation learning rule.  

Using three activation functions, hyperbolic tangent (sigmoid function), linear and sigmoid functions, we found 

that the last one is more suitable to predict network outputs.  

The samples for training test and validation are collected from measurement channels and data acquisition 

(Data Acquisition Supervision PC) at LENA Reactor for fault-free (i.e., healthy) systems.  

All input and output data are normalized to the range from 0 to 1.  

In this experiment, the data set of the three core signals; Pn, Tf and  (Figures V.12a and b); and the four inlets and 

outlet temperature of the HE (Figure V.14) to be monitored was divided into three subsets with approximately 70% 

for training, 10% for validation, and 20% for test. 

Error signals were arbitrarily simulated by adding or subtracting supplement values to or from the normal 

graph. 

The NN model is trained using several algorithms with early stopping to avoid over-fitting. Training of 

the network is done several times until a maximum CC for the validation data occurs. The Levenberg-Marquardt 

(LM) routine often finds better optimal solution for a variety of problems as compared to other optimization 

methods. Its error decreases much more rapidly with time than the other algorithms.  

After the training of NN with a large number of offline data, the dynamics of the healthy systems is learned 

and the knowledge about the system dynamics and mapping characteristics are implicitly stored within the 

networks. Then the NN is used as a reference model to compare it with the output of the actual system and to 

generate the residual signal. This residual would act as a fault signature, since when a fault occurs in the system 

the magnitude of the residual increases. 

In this experiment we are interested by the maximum error of prediction, mean value and RMSE, over all the reactor 

mode of operation (i.e., start-up, nominal and shoot-down). Indeed, these values are used for the choice of the 

threshold value of the alarm activation. So, our goal is to get the lowest value of this quantity to have the best 

sensitivity possible for the FDe.  

For the  measurement, all the three control rods were calibrated in dependence on the rod position by the 

positive period method. This method consists of withdrawing the control rod from a known critical position through 



 

 

 
                                                             

 

 

a small distance, and then to measure the stable period of the resultant reactor transient. The period was obtained 

using the doubling time that is the time required for the power, given by Equation I.2, to increase by a factor of 

two. The experimental integral worth curves relative to these three control rods (i.e., shim, regulation and safety) 

are respectively given on Figures V.11a - c. 

The total  in the core is calculated by adding the resulting ’s of the move of each rod (SHIM and REG). We 

suppose that the safety control rode is not used (out of service). 

(a)  (b)  (b)  

Figure V.11- Experimental integral control rod worth curve: (a) shim, (b) regulating and (c) safety. 

For the core we used tree similar networks to estimate individually Pn, Tf and Rho. For the estimation of 

Pn, we used Tf and Rho as inputs, individually and together to compare the different accuracy results. For the 

estimation of Tf and Rho, we used Pn as a single input. 

The number of input nodes is equal to the number of input variables (in this part of experiment, the number of 

input variable is one or two). The output nodes form the output layer and their number is linked to that of signals or 

parameters to be monitored.  

The three-experimental data set, Pn, the Tf and  of the core to be monitored at LENA Reactor are shown 

on Figures V.12a and b.  

 

Figure V.12a -Data set of Pn and  in the core. 
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Figure V.12b - Data set of Pn and Tf in the core. 

The observed minimum RMSE, ME (%) and MeE for every estimated output parameter are mentioned on Figure 

V.13. This Figure shows that three principal manners are used for the prediction of the Pn by using Tf and  

independently and together. We not that the errors of these prediction manners are almost the same, but still the 

prediction of Pn is better when we use  alone as input for the network-based estimator which gives a stable and 

minimum error over all operation modes of the reactor. 

 

 

 

 



 

 

 
                                                             

 

 

 

 

(a) Pn of the Core.  

 

 

(b) Tf of the Core.  

 

 

 (c)  of the Core. 

Figure V.13 - (Left) - Measurement and estimation of outlet temperatures, Pn,  and Tf. (Right) - Absolute error of the 
estimated parameters. 



 

 

 
                                                             

 

 

The estimations of Tf and  are presented respectively on Figures V.13b and c. We note that the estimation error 

is high at the transition (i.e., the start-up and shoot-down) regime. Furthermore, we can also predict the Tf  by using 

 alone or with Pn as input to the network-based estimator and the same thing for the estimation of the  by 

using Tf and Pn as inputs. 

For the HE we used four similar networks to estimate individually inlet and outlet temperatures of the hot 

and cold streams. The input variables for each network model are both the two outlets and inlet temperatures 

measurements except that to be estimated. 

Each network model has one input layer with three nodes which equal to the number of input variables and the 

number of neurons in the output layer is equal to one. 

The four-experimental data sets of inlet and outlet temperature of the HE are shown on Figure V.14. The prediction 

of these temperatures is given on Figure V.15. 

 
 

Figure V.14 - (Left) Data set used for the prediction of inlets and outlets of the HE. (Right) The corresponding Pn. 

 
 



 

 

 
                                                             

 

 

  

 
 

  
Figure V.15 - (Left) estimation by NNs of one among four, inlets and outlets, temperatures of the HE vs. other temperatures. 

(Right) Absolute error of the estimated temperature. 

To be able to detect and locate several possibly faults and accommodate them, there are several well-

established schemes, proposed in the literature, which are specifically designed to manipulate multiple sensor 

faults. These include the using of the observers bank, so-called DOS and GOS  bank of the KFs 

 Interacting Multiple Model (IMM) 

and MMKF and NNs based SA  



 

 

 
                                                             

 

 

The general structure represented on Figure V.16 is indicated to detect, isolate and accommodate multiple 

faults fast and accurately, in sensors. It uses a bank of estimators, Ej, where the subscript j takes values from 1 

to m, with m is the number of parameters to be monitored.  

Each estimator Ej is designed for detecting a specific parameter fault. It is excited by all input parameters 

(supposed non-faulty) except that to be estimated, Pj. 

The difference in absolute error, AEj, between the measurement of the parameter to be monitored, Pj (k) and its 

estimation, �̂�j (k), is made by Daj. The result, present the residuals, is compared at a logic compactor, Cj, with a 

prefixed maximum tolerated error threshold, Thj. When any of the parameters is not faulty, their measurements 

are forwarded to the outputs. In the opposite case when one parameter, Pi, is faulty, the residual exceed a 

prefixed maximum tolerated error Thi, the output of the comparator Cj which represents the residual Rj (k), 

jumps from 0 logic to 1, then the parameter Pj will be declared faulty and the estimation, �̂�j(k), takes place as 

FAc or fault recovery on the output P̃j via the switch Sj (controlled by the output of the comparator Cj). So, by 

checking properly residuals, R1, R2 … Rm, multiple faults can be detected, isolated and reconciled by using this 

scheme. 

By waiting for the intervention of maintenance and calibration teams, this solution can be used occasionally 

for control, for display to plant operators, or for other critical tasks and therefore, the plant could continue 

operating without interruption (by supposing that other parameters are not degraded).  

 

Figure V.16 - Bloc diagram of the FDe, isolation and accommodation system of m parameters.  

We not on Figure V.16 that we have used the output �̂�j, provided by the estimator Ej for both the FDe and the 

FA of the parameter Pj. Unfortunately, some estimators cannot do both. As the KF which is considered as a 

perfect tool for FDe in LSs, but in the case of fault, it cannot ensure accommodation task because its output 

prediction, given by Equation I.46, depends on the a posterior state, x̂k
+, which in turn depend on the present input 

measurement, as appears consecutively in Equations I.37 and I.41. Therefore, in this case, we need to use a second 

estimator for FA as shown on Figure V.17. 



 

 

 
                                                             

 

 

Figure V.17 is the result of applying the accommodation scheme presented on Figure V.16 with six input 

parameters: Thi, Tho, Tci, Tco, �̇�h and �̇�c, and six output parameters to be accommodated: T̃hi, T̃ho, T̃ci, T̃co, 

�̃̇�h and �̃̇�c. 

 

Figure V.17 - Scheme of FDIA of the HE parameters.  



 

 

 
                                                             

 

 

Due to their high estimation accuracy, two KFs are used as E1a and E2a, which provide the estimations T̂ho1 and 

T̂co1 for FDe. Furthermore, a combination, CM1, of HB, NTU and LMTD methods are used as E1b and E2b, which 

provide respectively the estimations T̂ho2 and T̂co2 for FAc. The choice of this methods combination technic is due 

to its better estimation capability.  

Moreover, a combination, CM2, of HB and NTU methods are used as E3 - E6 for both, the FDA of parameters: 

Thi, Tci, �̇�h and �̇�c, respectively. For each parameter, a residual is generated by comparing the absolute difference 

between the estimation and the measurement generated by Da1 and Da2 for Tho and Tco, and by AE3 - AE6 for 

Thi, Tci, �̇�h and �̇�c, with the thresholds Th1 - Th6 respectively. These thresholds are adjusted slightly above the 

corresponding MAEs to avoid frequent FAls due to noise and uncertainties. These thresholds are specific to the 

used estimation method for each parameter as given in Table V.2. 

On Figure V.18, we simulated on the Thi measurement the three types of faults given on Figure I.4, i.e., 

abrupt, intermittent and incipient, and we presented the supervision result by applying the schematic given on 

Figure V.17. As result, we not that the FAc of this parameter, Thi, is independent of the shape of the simulated 

fault but depends only on its amplitude. We note also that this fault simulation can be generalized to the other 

HE parameters and the same remarks on the FS will be made. 

 

Figure V.18 - FS result with simulation fault of Thi temperature of the HE. 

In our application, seven parameters P1 to P7 are monitored. P1, P1 and P2 are respectively the Pn and the 

Tf at the core, and P4 to P7 represent the inlet/outlet temperatures; Tho, Tco, Thi and Tci of the HE situated between 

the primary and secondary cooling loops (Figure I.1). So, seven estimators E1 to E7, based on the NNs, are needed 

for the monitoring and reconciliation of these seven parameters respectively.  

We used two independent monitoring systems. One for the core and the other for the HE. The first one given 

by Figures V.19 and V.20, receives the Pn and the Tf and the  parameters and generates the reconciliation relative 

to these parameters. The  is computed from control roads measurements as given on Figures V.11a - c, is used 

as input for the estimation of the two precedent parameters (Pn and Tf). 

The second system, given by Figures V.21 and V.22, receives inlet/outlet temperatures; Tho, Tco, Thi and Tci of the 

HE situated between the primary and secondary cooling loops. 

Hence, the monitoring system composed of two sub-systems given by Figures V.20 and V.22 operates with plant's 

operational data collected on-line from ADS of the reactor every second. Thresholds Thi in both sub-systems are 

adjusted to values in concordance of the maximal error found in the test part of the network relative to each 



 

 

 
                                                             

 

 

parameter to be monitored. If the deviation between measured and estimated values is small enough, the plant 

is considered to be operated normally. If one of the deviations exceeds the limit, a default is declared. So, the 

operator can recognize which parameter is abnormal and when the anomaly starts. We can conclude that it has 

been shown that the proposed monitoring system works satisfactorily in (RTM) of the plant conditions of a 

TRIGA MARK II Reactor at LENA. Also, this monitoring system is able to detect, locate and accommodate anomalies 

quickly with a good precision. The drawback of this scheme that it cannot detect more than one faulty 

parameter at the same time. 

 

Figure V.19 - Bloc diagram of the supervision system of the Core. 

 

Figure V.20 – Detailed bloc diagram of the supervision system of the Core. 

 

 

Figure V.21 - Bloc diagram of the supervision system of the HE. 



 

 

 
                                                             

 

 

 

Figure V.22 – Detailed bloc diagram of the supervision system of the HE. 

In this chapter, we have presented and analyzed the obtained simulation results by applying two methods 

in the automatically FM and FAc of faults in NRR systems, particularly the HE and core. The first method is 

based on mathematical method and KF used to estimate the hydraulic parameters of the HE. The second 

method is based on NNs which is used to estimate the parameters of the HE and the core. For the two 

experiment methods, all the used signals were recorded under real conditions on supervision computer in 

control room made by data acquisition system in normal operation. For the test, we have introduced a set of 

consecutive faults of different type on one parameter to be supervised. Finally, we compared the two methods 

and by appearing their advantages and drawbacks. These approaches can be applied on the other systems of 

NRR. If we have a detailed acknowledge, mathematical methods are preferred, but in the opposite case, NNs 

are recommended. In both cases, the requirement is to have a significant amount of operating data of the system 

to be monitored. However, if the data are not available, they can be obtained by means of computer simulations 

with reliable models of the system under study   

We conclude that a model with good predictive capabilities can be used as a tool to assess changes during 

the operating conditions of a system and to check its performances. Finally, we can say that the obtained results 

are satisfactory for these types of systems. 



 

 

This thesis deals with an automatic monitoring (detection and diagnosis) and accommodation of the 

parameters of the HE and core of a NRR by using two different approaches. The first method is based on NNs 

used to estimate the parameters of the HE and the core. The second method is based on mathematical method 

(i.e., HB, -NTU, DTLM and CM) and KF used to estimate the hydraulic parameters of the HE. The FMA system 

can report the operation state quickly and continuously at any time, in real time, and to present a simplified 

analysis and results to the operator and assist him in his decision. 

Among the supervised parameters in this work, the fuel temperature, reactivity and nuclear power which 

are the most monitored in the core under both steady-state and transient operations. For the HE, the mainly 

supervised thermal-hydraulic parameters are temperatures and MFRs at both streams. This HE is a shell-and-tube 

type in which the overall heat transfer coefficient, U, is assumed temperature independent, making the model linear in 

the state representation. In the opposite case, the model will be NL and an EKF, UKF or other NL estimators can 

be applied.  

The results of the two experiment methods (i.e., analytical and NNs) are presented. All the used signals 

acquired by data acquisition system were recorded at real time in supervision computer of at control room 

during normal operation conditions. For the test, we have introduced a set of consecutive faults of different 

type on one parameter to be supervised. Finally, we compared the two methods according to their advantages 

and drawbacks. These approaches can be applied on the other systems of NRR. If we have a detailed 

acknowledge, mathematical methods are preferred, otherwise, NNs are recommended. In both cases, the 

requirement is to have a significant amount of operating data of the system to be monitored. However, if the 

data are not available, they can be obtained by simulations with reliable models of the system under study. 

NN, considered as part of Soft Computing (SC) techniques has a highly parallel structure and a capability for 

storing experiential knowledge acquired by the networks from its environment through a learning process and 

making it available for use. On the condition of choosing judiciously the neuronal architecture and depending on 

the completeness and goodness of the learning process, NN is considered more interesting solutions for 

monitoring (i.e., FDe and FDi) to achieve a higher degree of fault-tolerance than conventional tools and, an 

excellent and efficient prediction technique with a good NL propriety and, minimization of noise and 

disturbance. NNs have the ability to make intelligent decisions in cases of corrupted data. So, many researchers 

have perceived NN as an alternative way to represent knowledge about the faults. 

The strategy of FMA system is based on the exploitation of data acquired on the process to be monitored 

and it is executed in two main steps; the first is the development of a reference model of normal state of the 

parameters to be supervised. For NNs, this model is obtained by repetitive off-line training by using historical 

data, which allow getting a best possible representation by adjusting the network parameters to optimal values. 

The second step realizes the recognizing of the operation state by using the on-line measurement and introduces 

necessary corrections in case of fault.  

The determination of most of the reactor systems parameters is based on the on-line measurements of 

S/D signal. So, monitoring and accommodation of these kinds of parameters is considered as SeV operation 

which permits to monitor the entire trajectory of the signal; from the source, i.e., S/D, passing by the associate 

measurement chains (i.e., data and nuclear instrumentation for S/D respectively) and connection till the supervision 



 

 

                                                               
 

 

computer at the control room. If the signal is not correct, we would like to be able to distinguish between a faulty 

sensor and a faulty condition of the process being measured. 

Finally, we can conclude that from the off-line results, it has been shown that the proposed monitoring system 

works satisfactorily in real-time monitoring of the NRR plant conditions. This monitoring system detects 

anomalies at the early stage and gives operators a sufficient time to deal with them for the avoidance of reactor 

shutdowns. Through the integration of FDe, FDi, and control strategies, good predictive capabilities can be used 

as a tool to assess changes during the operating conditions of a system and to check its performances. Therefore, 

this automatic monitoring and accommodation system is considered as potential earnings for a reactor: 

financials gains, by reducing the cost of equipment maintenance and production losses; material gains by 

reducing premature deterioration of machines; and especially human gains by reducing the risks to which the 

operators are exposed.  

Other parameters can be monitored in the same HE, like pressure and FRs. With the same manner, we can 

supervise entirely the parameters of the HE of the secondary cooling circuit. Besides HEs in the cooling circuits, 

there are other components to monitor especially pumps. Also, it is important to mention that these methods 

used to supervise the parameters of the first HE, can be also applied with the same manner on the second HE 

of cooling circuits of LENA reactor which is of the same type as the present HE with slight differences in 

characteristic coefficients. Furthermore, we can apply this supervising procedure to other important parameters 

in different reactor systems. 

This work is performed offline, however, its implementation for online monitoring can be carried out 

efficiently using dedicated equipment installed at the reactor. Hence, the expected work of the present project 

will be the implementation of the developed algorithm, to supervise the HEs parameters, in standalone board 

using one of the FPGA chips. Other future activity is to generalize this work on some other types of HEs, by 

considering them as NL systems. This requires the use of the appropriate estimators as the extended and unscented 

KFs. Also, in future, for practical applications, the human-machine interface of this monitoring system will be 

improved by using ES technique. It can be noted that the FMA scheme and experiments presented in this thesis 

only addresses one failure once time. However, this scheme could be extended to address multiple failures 

(simultaneously or in series). Moreover, until now, we have essentially used ARBMs and DDM for the parameter 

estimations of the HE and the core of the NRR. Nevertheless, the use of simulation codes such as RELAP and 

APROS is important to extend this application to other reactor systems and process. 

 



 

 

 

Note: The word “Technique” is used instead “Methods” to do not make confusion with “Model” when 

abbreviation is used  

Subscripts - h: hot, c: cold, i: inlet o: outlet and n = h or c 

Notation Designation 

An  Heat transfer (exchange) surface area of the fluid n, [m2]  

cpn  Specific heat of the fluid n, [J/(Kg°C) ]  

Cn  Heat (thermal) capacity or specific heat capacity of the fluid n, [W/°C]  

n Effectiveness of the fluid n of the heat exchanger, [ ]  

Fc Correction factor, [ ]  

keff Effective Multiplication Factor 

Tf fuel temperature  

k Discrete Time  

ṁn Mass flow rate of the fluid n, [Kg/s]  

N Sample number of the data set 

Pn Nuclear Power 

�̇�n Heat transfer rate or heat power of the fluid n, [W]  

R Heat transfer rate ratio, [ ]  

 Reactivity 

n  Density of the fluid n, [Kg/m3]  

Tni, Tno  Inlet and outlet temperatures of the fluid n, [°C]  

Un Overall heat transfer coefficient of the fluid n, [W/(m2°C) ]  

vn Volume velocity, [m3/s]  

Vn  Volume of the fluid n, [m3]  

These acronyms are used in this thesis for the interest of space 

A 

Abbreviation Designation 

AANN Auto-Associative Neural Network  

ABT Analytical-Based Technique  

AC Alternative Current 

ADS Aided Decision System  

AE Acoustic Emission 

AFDA Actuator Failure Detection and Accommodation  

AFDIA Actuator Failure Detection, Identification and Accommodation  

AFTC Active Fault-Tolerant Control 

https://en.wikipedia.org/wiki/Alternating_current


 

 

                                                                             
 

AHU Air-Handling Unit  

AI Artificial Intelligence  

Pa All Power Regimes 

AMBT Analytical Model-based Technique  

AR Analytical Redundancy  

ARMA AutoRegressive Moving Average  

ARX AutoRegressive with eXogenous input  

B 

BG Bond Graph  

BN Bayesian Network  

BWR Boiling Water Reactors 

C 

CANDU Canada Deuterium Uranium 

CBM Condition-Based Maintenance 

CC Correlation Coefficient 

CE Cause-Effect  

CG Causal Graph 

CI Computational Intelligence 

CM Condition Monitoring 

CMd Combined Method 

CtM Continuous Monitoring  

CWT Continuous Wavelet Transform 

D 

DC Direct Current 

DDT Data-Driven Technique  

DDMBT Data-Driven Model-Based Technique 

DFT Discrete Fourier Transform 

DM Decision-Making 

DOS Dedicated Observer Scheme 

DT Decision Tree 

DeNN Decentralized Neural Network 

DNN Dynamic Neural Network 

DR Data Reconciliation 

DSet Dominant Set 

DWT Discrete Wavelet Transform  

E 

e-NTU Effectiveness - Number of Transfer Units  

EKF Extended Kalman Filter  

EMRAN Extended Minimal Resource Allocating Network  

ES Expert System  

https://en.wikipedia.org/wiki/Alternating_current


 

 

                                                                             
 

F 

FAc Fault Accommodation  

FAn Fault Analysis  

FAl False Alarm  

FDA Fault Detection and Accommodation 

FDD Fault Detection and Diagnosis  

FDe Fault Detection  

FDi Fault Diagnosis  

FDI Fault Detection and Identification/Isolation  

FDIA Fault Detection, Identification and accommodation  

FDIso Fault Detection and Isolation  

FDId Fault Detection and Identification  

FDIdIso Fault Detection, Identification and Isolation  

FEst Fault Estimation  

FFNN Feed Forward Neural Network 

FFT Fast Fourier Transform  

FiDiAn Fisher Discriminant Analysis  

FId Fault Identification  

FIso Fault Isolation  

FM Fault Monitoring  

FMA Fault Monitoring and Accommodation  

FMEA Failure Modes and Effects Analysis 

FL Fuzzy Logic  

FLo Fault Location (Localization)  

FNN Fuzzy Neural Network  

FPGA Field Programmable Gate Array 

FR Flow Rate 

FS Fault Supervision  

FT Fourier Transform  

FTA Fault Tree Analysis  

FTC Fault-Tolerant Control 

FTo Fault-Tolerance 

FTr Fault Tree  

G 

GA Genetic Algorithm  

GMM Gaussian Mixture Model  

GOS Generalized Observer Scheme 

GP Graph of a Process  

H 

HB Heat (Thermal) Balance  

HE Heat Exchanger  

HHT Hilbert-Huang transform  

HMM Hidden Markov Model  

HR Hardware Redundancy  



 

 

                                                                             
 

HTR Heat Transfer Rate  

I 

IR Infrared 

I&C Instrumentation and Control 

ICA Independent Component Analysis 

IRT Infrared Thermography 

K 

KBT Knowledge-Based Technique 

KDE Kernel Density Estimation 

KF Kalman Filter  

KICA Kernel Independent Component Analysis 

K-NN K-Nearest Neighbor  

L 

LC Limit Checking 

LENA Laboratorio Energia Nucleare Applicata  

LMTD Log-Mean Temperature Difference  

LPMS Loose Part Monitoring Systems 

LR Logistic Regression 

LS Linear System  

LSE Linear State Equation  

LTIS Linear Time-Invariant System 

M 

MAE Maximum Absolute Error  

MAE (%)  Percent Maximum Absolute Error  

MeAE Mean Absolute Error  

MBT Model-Based Technique 

MCSA Motor-Current Signature Analysis 

MFR Mass Flow Rate  

ML Machine Learning 

MLP Multi-Layer Perceptron 

MLR Multivariate Linear Regression 

MM Mathematical Model 

MMBT Mathematical Model Technique 

MuM Multiple Model 

MSE Mean Square Error 

MSET Multivariate State Estimation Technique 

N 

NARX NL Auto-Regressive with eXogenous inputs 

NF Neuro-Fuzzy 



 

 

                                                                             
 

NL Non-Linear  

NN Neural Network  

NOC Normal Operating Condition 

NP Nuclear Plant  

NPP Nuclear Power Plant  

NPR Nuclear Power Reactor 

NR Nuclear Reactor  

NRR Nuclear Research Reactor 

O 

OLA Online Approximation  

OLM On-line Monitoring  

Or Operating Regime 

P 

PCA Principal Component Analysis  

PCR Principal Component Regression  

Pd Power Down  

PI Proportional And Integral 

PoI Power Interrupt 

PLS Partial Least-Squares  

PR Pattern Recognition 

PNN Probabilistic Neural Networks 

PSA Power Signature Analysis 

PSD Power Spectral Density 

Pu Power Up  

PWR Pressurized Water Reactor 

R 

RMAE Relative Mean Absolute Error  

RNN Recurrent Neural Network 

RMSE Root Mean Square Error 

RCS Reactor Coolant System 

RBF Radial Basis Function 

S 

SA Spectral Analysis 

SCADA Supervisory, Control, and Data Acquisition 

S/D Sensor and Detector  

SDG Signed Direct Digraph  

SFA Sensor Failure Accommodation  

SFDA Sensor Failure Detection and Accommodation 

SFDIA Sensor Failure Detection, Identification and Accommodation 

SiBT Signal-Based Technique 

SLP Single-Layer Perceptron 



 

 

                                                                             
 

SMAPE Symmetric Mean Absolute Percentage Error 

SNN Static neural network 

SP Signal Processing 

SPND Self-Powered Neutron Detector  

S/P System/Process 

SeV  Sensor Validation 

SOM Self-Organizing Map 

SSME Space Shuttle Main Engine 

SR System Reconfiguration 

STFT Short-Time Fourier Transform  

SVDD Support Vector Data Description 

SVM Support Vector Machine 

T 

TDNN Time Delay Neural Network 

TDRNN Time Delay Recurrent Neural Network 

TFA Time-Frequency Analysis 

TI Transient Identification 

Triga Training Research and Isotope Production General Atomic 

TSOM Temporal Kohonen Map 

U 

UAV Unmanned Air Vehicle  

UIO Unknown Input Observer 

UKF Unscented Kalman Filter 

W 

WPT Wavelet Packet Transform 

WSN Wireless Sensor Network 

WT Wavelet Transform 

WVD Wigner-Ville Distribution 
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