
People’s Democratic Republic of Algeria Ministry of Higher

Education and Scientific Research

Saad Dahleb Blida University – Blida 1

Computer Science department

Generative models for automatic

multi-document summarization

In order to obtain the Master's degree

Domain: Mathematics and computer science

Branch: Software Engineering

 Realized by: Supervised by:

 Bensidiaissa Walid Mr. Abdallah Hicham Kamech

 Bouchetara Rym

Date : 26/10/2020

In front of the jury :

Ouahrani Leila

Zahra Fatima Zahra

Year: 2019 - 2020

Abstract

In recent years, there has been an explosion in the amount of text data from a variety
of sources. This data needs to be effectively summarized to be useful.
Text summarization in natural language processing has widely been approached with
extractive methods that stick to selecting parts of the original document to capture
the main topic ideas. What has been less attempted is abstractive summarization.
In our work, we focus on the latter type of automatic summarization. We performed a
series of experiments to judge the effectiveness of abstractive summarization systems,
whether or not they are applicable in a real context. Our choice went towards the use
of the machine learning approach with models inspired by the architecture of trans-
formers. At first, we focused on the extractive multi-document summarization, then we
finetuned DistilBart, a recent model proposed by the Huggingface team, for abstractive
summarization on different datasets and compared each of the obtained models with
the basic model, and then between them.
We also created an algorithm to be used during preprocessing. The objective of this al-
gorithm is to replace similar sentences that are grouped in clusters by a single sentence
belonging to that cluster. This algorithm also uses a model based on transformers.
Evaluation is done automatically using the ROUGE scores. Our method, as simple as
it is, has shown promising results since the scores were higher when using that prepro-
cessing.

Keywords: Automatic Summary, Abstract, Multi-Document, Deep Learning, Seman-
tic similarity, Fine-tuning, Transformers, BERT, GPT-2, BART.

i

 ملخص

في النص ملخص مع التعامل تم مختلفة. مصادر من الواردة النصیة البیانات كمیة في انفجارًا شهدنا الأخیرة، السنوات في

الأفكار لالتقاط الأصلي المستند من أجزاء باختیار تلتزم التي الاستخراج طرق باستخدام واسع نطاق على الطبیعیة اللغة معالجة

 الرئیسیة للموضوع. لكن ما تم التعامل به نادرا هو الملّخص النصي المبني على إعادة الصیاغة.

على للحكم التجارِب من سلسلة أجرینا فقد التلقائي. الملخص من الصیاغة إعادة على المبني النوع على عملنا في بالتركیز قمنا

التعلم نهج استخدام نحو موجهًا اختیارنا كان لا. أم حقیقي سیاق في للتطبیق قابلة كانت سواء المجردة، الملخصات أنظمة فعالیة

بتحسین قمنا ثم المستندات، متعدد الاستخراجي الملخص على أولاً ركزنا .Transformers هندسة من مستوحاة نماذج مع الآلي

وقارنا المختلفة البیانات لمجموعات المجرد الملخص أجل من ،Huggingface فریق اقترحه حدیث نموذج وهو ،DistilBart

 النماذج التي تم الحصول علیها مع النموذج الأساسي، ثم بینهم.

استبدال هو الخوارزمیة هذه من الهدف المتعددة. المستندات لملخص المسبقة المعالجة خلال تُستخدم خوارزمیة أیضًا أنشأنا وقد

نموذجًا أیضًا الخوارزمیة هذه تستخدم الأخیرة. إلى تنتمي واحدة جملة بواسطة مجموعات في تجمیعها تم التي المماثلة الجمل

أعلى لأنها واعدة نتائج أعطت هي، ما بقدر بسیطة طریقتنا، .ROUGE باستخدام تلقائیًا التقییم یتم .Transformers على یعتمد

 عند استخدام هذه المعالجة المسبقة.

Fine-tuning ، BARTالكلمات المفتاحیة : الملخص التلقائي، الملخص، المستندات المتعددة، التعلم العمیق، التشابه الدلالي

.،GPT-2 ،BERT ،Transformers

ii

Résumé

Nous avons connu ces dernières années une explosion de la quantité de données textuelles
provenant de diverses sources. Le résumé de texte dans le traitement du langage na-
turel a été largement abordé avec des méthodes d’extraction qui s’en tiennent à la
sélection de parties du document original pour capturer les idées principales du sujet.
Ce qui a été moins tenté cependant, c’est le résumé abstractif.
Dans notre travail, nous nous concentrons sur ce dernier type de résumé automatique.
Nous avons réalisé une série d’expériences pour juger de l’efficacité des systèmes de
résumé abstractif,s’ils sont applicables ou non dans un contexte réel. Notre choix s’est
orienté vers l’utilisation de l’approche de l’apprentissage automatique avec des modèles
inspirés par l’architecture des Transformers. Nous nous sommes d’abord concentrés sur
le résumé extractif multi-documents, puis nous avons affiné DistilBart, un modèle ré-
cent proposé par l’équipe Huggingface, pour le résumé abstractif sur différents corpus
de données et nous avons comparé chacun des modèles obtenus avec le modèle de base,
puis entre eux.
Nous avons également créé un algorithme qu’on utilise lors des prétraitements pour
le résumé multi-documents. L’objectif de cet algorithme est de remplacer les phrases
similaires qui sont regroupées dans des clusters par une seule phrase appartenant à
ce dernier. Cet algorithme utilise également un modèle basé sur les Transformers.
L’évaluation est faite automatiquement en utilisant les scores ROUGE. Notre méth-
ode, aussi simple soit-elle, a donné des résultats prometteurs puisque les scores étaient
plus élevés en utilisant ce prétraitement.

Mots-clés: Résumé automatique, Abstractif, Multi-documents, Apprentissage pro-
fond, Similarité sémantique, Raffinement, Transformers, BERT, GPT-2, BART.

iii

Acknowledgements

Above all, it is thanks to Allah that we were able to get to where we are. It is above
all thanks to Him that our path has been lit to finish our modest work.
We would also like to thank all those who helped us from near and far to finish this
work. Our promoter, who allowed us to work on this subject. Misters Sam Shleifer and
Suraj Patir for their patience, their availability, and especially their advice and answers
to our questions. Our parents who have been there for us all along, you have sacrificed
everything for your children sparing neither health nor efforts. You have given us a
wonderful model of perseverance. We are forever in your debt.
We would like to express our gratitude to our brothers and sisters, family, and friends
for their encouragement, especially to Messabhia Mohamed Amine who generously pro-
vided us with his own Google Cloud Platform storage that we needed. We also extend
our sincere thanks to the teachers who made these years more beautiful, especially Dr.
Ouziri, we have only memories to cherish by her side. Thank you Dr. Ouziri for being
who you are, passionate about your work, thank you for offering your time to help us
even outside of your working hours. We will never forget that your sessions were both
productive and fun. You are our example. Thank you also to Dr. Habani and Dr.
Chikhi for inspiring us to give our best. Lastly, we thank professor Benblidia, and Dr.
Guesmia for their big help and support.
To all of them, we extend our thanks, respect, and gratitude.

iv

Contents

1 Concepts and definitions of automatic text summarization 4
1.1 Introduction . 4
1.2 Definition . 4
1.3 Types of automatic text summarization 5

1.3.1 According to the input . 5
1.3.2 According to the output . 6
1.3.3 According to the audience . 6

1.4 Automatic summarization process . 8
1.4.1 Pre-processing . 8
1.4.2 Summary generation . 10
1.4.3 Post-processing . 12

1.5 Automatic text summarization evaluation 13
1.5.1 Intrinsic evaluation . 13
1.5.2 Extrinsic evaluation . 15

1.6 Conclusion . 17

2 Deep neural networks 18
2.1 Introduction . 18
2.2 Machine learning . 18

2.2.1 Supervised learning . 19
2.2.2 Unsupervised learning . 19
2.2.3 Semi-supervised learning . 20
2.2.4 Reinforcement learning . 20

2.3 Deep neural networks . 21
2.3.1 Artificial neural networks . 21
2.3.2 Forward propagation . 22
2.3.3 Backpropagation . 25
2.3.4 Convolutional neural networks 28
2.3.5 Recurrent neural networks . 28
2.3.6 GRU and LSTM . 30

v

CONTENTS

2.4 Generative models . 30
2.4.1 Variational Autoencoders . 30
2.4.2 Generative adversarial networks 32

2.5 Deep neural network with attention . 33
2.5.1 Attention for deep neural networks 33
2.5.2 BERT . 36
2.5.3 Generative Pre-Training-2 (GPT-2) 38

2.6 Conclusion . 38

3 Methods of automatic text summarization 39
3.1 Introduction . 39
3.2 Single-document summarization . 40

3.2.1 Extractive summarization . 40
3.2.2 Abstractive summarization . 50

3.3 Multi-document summarization . 55
3.3.1 Extractive summarization . 55
3.3.2 Compression approach . 59

3.4 Comparaison between machine learning works 61
3.4.1 Discussion . 66

3.5 Conclusion . 66

4 Design of our system Quiksum 68
4.1 Introduction . 68
4.2 Problematic . 68
4.3 Quiksum overview . 69

4.3.1 Functionalities . 69
4.3.2 Components . 70

4.4 Models architectures for summarization 71
4.4.1 Extractive summarization . 71
4.4.2 Abstractive summarization . 71

4.5 Process of generating summaries . 73
4.5.1 Single document summarization 73
4.5.2 Multi-document summarization 77

4.6 Conclusion . 80

5 Realization of Quiksum 81
5.1 Introduction . 81
5.2 Environment . 81

5.2.1 Google colaboratory . 81
5.3 Programming language and IDE . 82

vi

5.3.1 Python in the backend . 82
5.3.2 Javascript in the frontend . 83
5.3.3 Integrated Development Environment 83
5.3.4 Visual Studio Code . 83

5.4 Used libraries and frameworks . 84
5.4.1 Transformers by Hugging Face 84
5.4.2 Pytorch . 84
5.4.3 FastAPI . 84

5.5 Datasets . 85
5.5.1 CNN/DailyMail . 85
5.5.2 AESLC . 85
5.5.3 Multi-news . 85
5.5.4 Gigaword . 86
5.5.5 DUC Document Understanding Conferences 2004 87

5.6 Quiksum preview . 88
5.7 Evaluation metrics used . 90

5.7.1 ROUGE . 90
5.8 Experiments . 91

5.8.1 Extractive summarization . 91
5.8.2 Abstractive summarization . 94
5.8.3 Multi-document summarization 96

5.9 Discussion . 98
5.10 Conclusion . 99

References 112

vii

List of Figures

1.1 Weighted cosine similarity graph for a cluster of documents. 11
1.2 Two of six optimal summaries with 4 SCUs 15

2.1 Artificial neural network architecture. 21
2.2 Neuron illustrated. 22
2.3 Forward propagation illustrated. 23
2.4 ReLU function graph. 24
2.5 Leaky ReLU function graph. 24
2.6 Tanh function graph. 25
2.7 GELU function graph. 25
2.8 Base architecture of RNNs. 29
2.9 Variational autoencoders architecture. 31
2.10 Generative adversarial network training. 32
2.11 Transformer architecture. 34
2.12 Bert NSP. 36
2.13 Bert Masked LM. 37
2.14 High representation of some variants GPT-2. 38

3.1 Example of rhetorical relations. 44
3.2 A source document represented as a nested tree 45
3.3 Extractive Model Architecture . 48
3.4 The extractive model architecture. 49
3.5 Feature-rich-encoder. 51
3.6 Switching generator/pointer model. 52
3.7 The deep recurrent generative decoder (DRGD) for latent structure

modeling . 53
3.8 Local Attention . 53
3.9 Local attention with Shifts . 54

4.1 Architecture of our system. 70
4.2 Our extractive model. 71
4.3 Models finetuning script. 72

viii

4.4 Process for generating an extractive summary. 74
4.5 Organigram describing the generation of an extractive summary. 75
4.6 Organigram describing the generation of an abstractive summary. . . . 77
4.7 Organigram describing the preprocessing for multi-document summa-

rization . 80

5.1 Python Logo. 82
5.2 Python ranking. 82
5.3 Jupyter Notebook IDE logo. 83
5.4 Visual Studio Code IDE logo. 83
5.5 Tensors illustrated. 84
5.6 Screenshot of the web application. 88
5.7 Screenshot of the text area and animation of the web application. . . . 89
5.8 Examples of similarity values between sentences. 92
5.9 A generated summary from DistilBart-CM compared to the reference

summary. 97
5.10 A generated summary from DistilBart-CG compared to the reference

summary. 97

ix

List of Tables

1.1 Examples of normalization . 9

3.1 Classification of automatic text summarization works. 39
3.2 Machine learning approach works . 65

5.1 The dataset splits and the average number of words in each document
and reference summary. 86

5.2 Extractive model scores with ratio = 0.2 93
5.3 Extractive model scores with clusters = 6 93
5.4 Extractive model scores with clusters = 4 94
5.5 ROUGE scores and average length of generated summaries when fine-

tuning on each dataset. 95
5.6 Results of our models on DUC 2004 compared with the basline with just

concatenating the documents. 96
5.7 Results of our models on DUC 2004 compared with the basline when

preprocessed using our similarity algorithm and threshold = 0.8 98
5.8 Results of our models on DUC 2004 compared with the basline when

preprocessed using our similarity algorithm and threshold = 0.9. 98

x

General Introduction

Context

There are many people whose daily work consists of largely if not exclusively in
the production of summaries: judges who sum up the evidence presented in court,
the company secretary who records the minutes of a board meeting, the scientist who
reviews recent publications in his research field, and so we could go on. However, we
cannot possibly create summaries in every situation manually.
We live in an age of near-instant gratification where people are constantly searching
for the next hit, and they wouldn’t hesitate to switch to another product or service if
a company does not respond to their needs. Hence, companies have to think quickly;
and with the speed at which the world moves, keeping up is a constant task that never
gets easier.
Fortunately, massive online information is available. Information can come from any
source: media, blogs, books, journals and articles, web pages, etc. Most available data
however come as texts, and it is unthinkable to read every document a search engine
returns to find what we are searching for. Because generally, to get trusted information
we need to read from multiple trusted sources, and by doing so we waste a lot of time.
This volume of text is indeed an invaluable source of information and knowledge, but
it needs to be effectively summarized to be useful.
Those needs led to exhaustive research in the natural language processing area for
automatic text summarization.

Problematic

Automatic text summarization is the task of producing a concise and fluent summary
without any human help while preserving the meaning of the original text document [1].
Producing a summary can be a difficult task for humans and it is even more challenging
for machines. We usually read the integrity of the text to develop our understanding
before writing a summary highlighting its important ideas. Since computers lack human
knowledge and language understanding, it makes automatic text summarization a very
complex task. Most of the work in the field of automatic summarization is based
on the extractive approach which consists of extracting parts of the text, generally
sentences, and concatenating them to produce a summary. The second approach,
abstractive summarization, consists of producing the summary by interpreting the
text and generating a new shorter text, parts of which may not appear as part of the
original document and it is not enough to produce words and phrases that capture the
gist of the source, as the summary should be accurate and understandable. This is a
more challenging approach but it is the approach ultimately used by humans.

1

Objectives

In our project, we conduct a series of experiments on both extractive and abstractive
summarization while focusing on abstractive summaries of multiple documents. All
models we perform our experiments on are based on a very recent architecture called
Transformers, our objectives are:

• Finetune an existing model for abstractive multi-document summarization with
different datasets.

• Try to improve the quality of our generated summaries with a method indepen-
dent from the model used.

• Finally, evaluate the performance of these models, whether or not they are usable
in a real context.

Organization of the memoir

In order to facilitate the reading of this memoir, we will briefly present the chapters
that make it up. Our memoir is organized as follows:

• Chapter 1 - Concepts and definitions of automatic text summariza-
tion: In this chapter, we will start by defining what automatic summarization is
and present the types to which an automatic summarization system can belong.
Then we will briefly present the general steps that systems follow to generate a
summary. Lastly we will mention some evaluation methods.

• Chapter 2 - Deep neural networks: This chapter covers the necessary pre-
requisites for our work. Our choice is oriented towards a model that uses the
machine learning approach, so we will define this approach, the types of machine
learning, deep neural networks, and the most commonly used architectures.

• Chapter 3 - Methods of automatic text summarization: Over the past
half-century, the problem has been addressed from different perspectives, hence
we will present the different works that have been proposed and discuss our
choices.

• Chapter 4 - Design of our system Quiksum: In this chapter, we will define
our problem, present the systems we have used, and describe the steps of summary
generation for each of these systems. We will also detail the features of our
application and close with the method we proposed to improve the summaries.

2

• Chapter 5 - Realization of Quiksum: This chapter is dedicated to the im-
plementation and evaluation of our systems as well as the implementation of our
application. First, we will describe the specifications of the environment we have
been working on, then we will present our choice of programming languages, the
libraries used, and the training and evaluation corpora. Then we will present our
application, the metrics used, and finally present and discuss the results obtained
for our experiments.

3

Chapter One

Concepts and definitions of automatic
text summarization

1.1 Introduction

Data explosion or the century of big data is what defines this era the most; what we’re
witnessing is only natural given the number of users and the variety of their concerns.
As a consequence of this extraordinary growth, people are getting overwhelmed, first
because of the expanding availability of information and secondly because of the little
amount of time available to process it and make the best out of it; that’s where the
summaries come. Summaries are important when it comes to processing tremendous
amounts of information. Among the different types of data, we are particularly inter-
ested in text data, in this case, a summary is defined as a text that is created from one
or more writings, that conveys important information within the unique text(s), and
that is no longer than half of the original text(s), and usually, significantly less than
that [2].

This chapter covers the general concepts of automatic text summarization. We will
first give a general definition of automatic text summarization. Next, we will present
the different types of automatic summaries, we will also explain the steps for generating
a summary. Besides different approaches exist for this problem, hence we will describe
each one of them. Finally, we will conclude with the evaluation criteria of automatic
summaries.

1.2 Definition

Chettri and Chakraborty [3] define summarization as a way of abstracting pertinent
data from one or more sources. It increases the probability of finding the focuses of
writings, so the user will spend less time reading the entire documents. According to
Moiyadi et al. [4], automatic text summarization is the creation of a shortened version
of a text by a computer program. The product of this procedure still contains the

4

most important points of the original text and is generally referred to as an abstract
or a summary. From this definition, we can notice three significant aspects concerning
automatic summaries characteristics: first, the summary has to contain fewer words
otherwise there is no point in it. Second, it has to preserve the key information of the
source. Lastly, it is not created manually, rather by a computer.

1.3 Types of automatic text summarization

Although all summarizers have the same objective in common - producing a summary,
each summarizer focuses on a particular aspect. A summarization system can be
classified using many aspects [5]. We can classify the summarization according to the
input, the output, and the audience.

1.3.1 According to the input

This classification is based on the characteristics of the input document. Does the
text change, or is it constant? Does the summarizer take one document or multiple
documents at a time? The most common types of summarization when focusing on the
input aspect are static, dynamic, single-document, and multi-document summarization.
This section explains each one of them.

Static summarization

This type of summarization provides the same summary when summarizing the same
text meaning that the input is fed without performing any changes on it [6].

Dynamic summarization

This summarization does not have a fixed input which will lead to different summaries
each time [6]. We can give as an example the summarization of the content of a blog
where the summarizer dynamically generates the summary according to the current
content of the blog, hence each time the content changes, the summary changes too.

Single-document summarization

In single document summarization, the system takes one document at a time and
produces a summary for each input it takes [6]. A single document can be composed of
some subdocuments with multiple paragraphs. The described content of each of these
subdocuments emphasis different aspects all surrounding the same topic.

5

Multi-document summarization

In multi-document summarization, we summarize multiple documents that have the
same topic [6]. For example, summarizing documents talking about a crash accident,
or coronavirus recent discoveries, etc. This means that different articles can have
different sources, which is one of the advantages of this type of summarizers. Using
multi-document summarization on documents obtained after a google search is another
common use case. However, it is a big challenge to avoid redundancy since all of them
are more likely to include a certain degree of similar information.

1.3.2 According to the output

Based on the output, there are two commonly used types, which are extractive sum-
marization, and abstractive summarization.

Extractive summarization

Extractive summarization consists of pulling out the most relevant parts of the docu-
ments, generally, sentences, that yields the idea of the subject to form the summary
[6]. Extractive summarization is easier to perform because it just selects a subset of
the input text based on its relevance. This ensures that the summary is readable and
grammatically correct. However, consistency is not guaranteed. For example, if the
summary system selects sentences containing references (acronyms, personal pronouns,
etc.) and does not select sentences containing their antecedents, it’s very possible that
the summary produced will be unclear. In addition, the extractive methods may pro-
duce summaries containing a lot of redundancy.

Abstractive summarization

It is inspired by the method used by humans. As we generally proceed by under-
standing the documents then creating a summary using our own words [6], abstractive
summarization consists of creating new sentences without necessarily using the same
words to represent the global most pertinent content of the original documents; which
improves the focus of a summary, reduce its redundancy and keeps a good compression
rate [7]. Abstractive summarizers require a more profound analysis of the content,
one major issue is that they are difficult to design due to their heavy dependence on
linguistic techniques [8].

1.3.3 According to the audience

Usually, selecting information depends not only on the document(s) to be summarized
but also on contextual factors such as the audience [9]. For what category of readers

6

are we summarizing the document, and what are the needs of those readers ? In this
section we will present some of the types that are based on the audience.

Generic summarization

A generic summary provides an overall global idea of the original input by including
all the relevant information without focusing on a particular subject in the input [10].

Query-oriented summarization

A summarization system that considers the user’s preferences is called query-oriented.
A query-oriented summary is a summary that includes the parts of the original docu-
ment that are closely related to the query [10]. For example, if a user wants a summary
focusing on events of a particular date, it must contain events that turn around this
date without losing the main interest of the document.

Informative summarization

A summary can allow the person concerned with it to have a general idea of the
document as a substitute for it [11]. This way, he or she will not have to read the whole
document to have access to the relevant information. After reading an informative
summary, it’s easy to tell what are the main ideas presented. It includes informative
content and generally contains these three components: the purpose, the methodology,
results, and conclusion. This type is usually used in journals, thesis, research articles,
surveys, experiments, etc. where it’s a must to present all the essential information.

Indicative summarization

Unlike informative summaries, indicative summaries are summaries that do not include
details (informative content) [11]. They inform about the scope and give a global
description of the document to help one to decide whether he/she would be interested
in the document. The abstracts found in books and reports are an example of indicative
summaries.

Background summarization

A system may assume that the reader does not have extensive prior knowledge of the
subject, so it includes explanatory material [12]. Summaries of historical texts, for
example, pay attention to certain details such as actors, place, and time. This type of
summarization is called background summarization.

7

Just-the-news summarization

A system may assume that the reader has sufficient background to interpret it in the
context, providing just novel or principal themes. Such summaries are extremely useful
in tracking news stories, tracing new product reviews, etc. This type of summarization
is called just-the-news summarization [13].

Neutral summarization

When the input material contains opinion or pre-judgment content, we can decide
whether we want our summary to include those opinions or not. A neutral system
provides a summary of the relevant content of the input document(s) without including
criticisms or evaluation [5].

Evaluative summarization

Summarizing opinions from customer reviews or comments on social networks is very
useful, especially for decision making [14]. An evaluative summary is a summary
that includes some opinions either explicitly by including statements of judgment or
implicitly by including some materials and omitting others [5]. In the next few years,
it’s expected that the evaluative summarization will deal with the domain specifics and
also with user satisfaction [15].

1.4 Automatic summarization process

All summarizers generally follow these steps for generating a summary [6]:

• Pre-processing.

• Summary generation.

• Post-processing.

In this section, we will describe each one of these steps.

1.4.1 Pre-processing

Pre-processing of a text is a set of steps to make a document in a format that is
predictable and analyzable. In any input text, some words and symbols have no signif-
icant meaning related to the topic discussed and generally used to link words with each
other. The repeated occurrence of these words can mess with the score of the impor-
tant words. To solve this problem several methods have been used like Tokenization,
Normalization and others.

8

Normalization

Normalization is a set of steps to render the text in a standard form [16]. We often find
in many types of text like blog comments, chat conversations and customer reviews
in online shop abbreviations, misspelling words for example "wym" as "what do you
mean", "cy@" as "see you", even there are symbols to describe a certain meaning "fresh
food > canned food" means "fresh food is better than canned food". therefore the use
of Normalization is highly recommended to have a standardized meaning of the texts.
According to [17], normalization improved the accuracy by 4% in their work.

We can achieve the standard form of a text by applying certain operations such as:

• The removal of special characters and tags like HTML tags and other symbols.

• The Replacement of abbreviations and symbolized meanings with the correct
words.

• Correction of the common misspelling mistakes.

Table 1.1 shows some examples of normalization of words generally founds in social
media.

Raw Normalized version
FYI, B4 For your information, before.
Tomz, 2morrow, tmrw Tomorrow
:’(Sad face

Table 1.1: Examples of normalization

Tokenization

Tokenization is the process of breaking a stream of text into words, phrases, symbols, or
other meaningful elements called tokens [18]. The goal of Tokenization is to split a large
text into a set of sentences and then split those sentences to explore the words in it,
therefore the list of tokens becomes an input for many statistical approach algorithms
in extractive summarization that will be mentionned in chapter two.

• Segmentation into sentences
Generally, punctuation is key when it comes to separate sentences in a large
text. The period (.) is used to indicate the end of declarative sentences, the
exclamation point (!) for exclamatory sentences, the interrogation point (?) for
interrogative sentences. According to [19], a sentence starts with an uppercase
letter and ends with one of the mentioned punctuations. However, this definition
cannot be applied in some cases like:

9

– A sentence can have more sub-sentences splitted by punctuations like the
colon (:), the semicolon (;) and the comma (,) in order to describe a saying
or sequence of actions.

– Some languages don’t even have punctuation, like Thai and original Chinese.

– We can find the period (.) used in other cases like mentioning a website
"www.name.com", in numbers like "85.97", etc.

It is clear that we cannot just rely on the uppercase letters and the period to
determine sentence boundaries. In the following example we have meaningful
sentences if we split on the double points ":" , and the comma: "The moon does
not have a light of its own: it reflects the sun light, just like the moon humans
also does not shine on their own as they are the reflection of the people they are
surrounded by."
David D.Palmer [19] grouped many factors that can assist in sentence segmenta-
tion:

– Part of speech: Palmer and Hearst [20] declared that the use of parts of
speech can assist in sentence segmenting.

– Word length: Riley [21] used the length of the words before and after a
period as one contextual feature.

– Prefixes and suffixes: Reynar and Ratnaparkhi [22] used both prefixes
and suffixes of the words surrounding the punctuation mark as one contex-
tual feature.

1.4.2 Summary generation

The process of generating summaries relies on many factors such as the format of
the input, the purpose of the summarization, the type of summary, etc. Hence there
is no fixed method for generating a summary. Multiple solutions exist and follow a
certain approach. The most popular approaches that exist are: statistical approach,
graph-based approach, linguistic approach, sentence compression approach, and ma-
chine learning approach [23], [24]. In this section we will briefly explain each one of
them.

Statistical approach

Statistical approaches depend on statistical features to extract relevant units from the
input document(s) [25]. To do that, it uses one or several techniques that will be
combined to assign a score to the text units (words, sentences, or other). Eventually,
the highest score refers usually to the highest importance. A statistical approach does

10

not require many language-dependent tools. It is easy to implement and does not need
a lot of processing power. However, for the feature combination, it is critical to know
how to fuse them, and how much weight each one should have. The features weights
are generally set manually, by using optimization or using machine learning techniques.

Graph-based approach

These methods create graph structures to represent the documents. Vertices illustrate
sentences and edges in between indicate how similar two sentences. Documents can
also represent vertices and the edges represent the similarity between the documents.
The graph-based approach depends on transforming document or documents units
into a graph using a similarity measure [2]. Figure 1.1 illustrates a set of documents
represented as a graph.

Figure 1.1: Weighted cosine similarity graph for a cluster of documents [26].

We can use a graph-based approach for single as well as multi-document summa-
rization. It can be language-independent when using only lexical similarities such as
cosine similarity and statistical features [13]. One of its major problems is when we
use it to process a great volume of text. The greater the size the more it needs huge
processing power.

Linguistic approach

The linguistic approach uses sophisticated natural language processing (NLP) tech-
niques to generate summaries [24]. Some of these techniques are part-of-speech, rhetoric
relations, semantic, etc. It is more powerful than the statistic approach since it in-
tegrates more elaborate processing of the input text. Nenkova and McKeown [27]

11

suggested using it as a post-processing task to improve the linguistic quality of the
generated summary rather than a processing one.

Sentence compression

Sentence compression aims to retain the most salient information of a sentence, and
delete the least critical ones, rewritten in a short form [23]. In general, since sentence
compression is language dependant, it can’t be used alone to have a summary but in
conjunction with other approaches. Also, it can be used as a post-processing task after
generating a summary, which will eliminate more redundancy and allows more space
for other sentences to be included [13].

Machine learning approach

Machine learning is to make a machine perform the tasks that humans can do in a much
better and faster way. Similarly to humans, this is achieved by making the machine
learn using data. It can be applied to a wide range of fields such as image recognition,
speech recognition, automatic text summarization, etc. The process of using data refers
to training, while task execution refers to the prediction or inference. Machine learning
techniques use complex algorithms that improve by themselves based on observing the
data they are trained on, then they are used to predict based on unseen data [28].
In the case of automatic text summarization, we can feed the machine with pairs of
documents and their summary, then it will generate summaries after it has sufficiently
trained.

1.4.3 Post-processing

Post-processing is a step that is generally applied to improve the quality and readability
of the generated summary. It can remove the redundancy, resolve any inconsistencies
concerning the pronouns, etc. Anaphora resolution is a method used to replace the
pronouns in a sentence by the subject they refer to in the previous sentence, it is
considered as a pre-processing as well as a post-processing technique [29]. Redundancy
elimination concerns either the removal of repetitive sentences in terms of meaning
or the removal of consecutive repetitive words in the same sentence, resulting in a
more compressed and clear summary. Post-processing techniques are not always used
compared to the prepossessing ones which are usually crucial for this task.

12

1.5 Automatic text summarization evaluation

Evaluating a summary is a difficult task because there is no ideal summary for a given
document or set of documents. The goal of any summarization system is to optimize
topic coverage and readability. Topic coverage refers to the ability of the summary
to incorporate the main topics from the document, and readability means that the
sentences flow logically, hence it’s human-understandable [30]. For this, there are
many evaluation criteria [30]:

• Salience: Are we capturing the most valuable information of the document?

• Length: Is the summary of a proper length?

• Structure and coherence: Summaries must be well structured and organized. A
summary should not be just a block of information but should be assembled to
form a coherent body of information. If a person or entity is mentioned, the
relationship to the rest of the summary should be clear. Also, it should be simple
to identify to whom or to what pronouns and other non-self-referential elements
refer.

• Balance: Is it covering all the topics from the initial document?

• Grammar: Is the text grammatically correct?

• Non-redundancy: A redundant summary is a summary which, if we exclude a
particular sentence or a set of sentences, we can still get the overall pertinent
information.

There are two methods to evaluate these models: intrinsic techniques and extrinsic
ones [12].

1.5.1 Intrinsic evaluation

Intrinsic evaluation is meant to evaluate the system in of itself [30]. This one deter-
mines the summary quality based on a comparison between the automatically generated
summary and the original document, or to a human-made manual summary (reference
summary).

Cosine similarity

Similarity measures are a set of functions that can be used to compare how similar are
two entities such as words, sentences, documents, etc. Cosine similarity [31] is one of
these measures, it can also be used to rank documents based on a query. The value

13

represents the cosine of the angle between two vectors and determines whether those
two are pointing in roughly the same direction.

LetX and Y be the representations of a system summary and its reference document
based on the vector space model. Using the cosine measure as a similarity function,
we have the equation 1.1:

Cos(X, Y) =

∑
i xi ∗ yi

||x|| ∗ ||y||
(1.1)

Unit overlap

Another similarity measure is Unit Overlap [32]. Equation 1.2 describes how to calcu-
late it.

overlap(X, Y) =
||X

⋂
Y ||

||X||+ ||Y || − ||X
⋂
Y || (1.2)

Where X and Y are representations based on sets of words or lemmas. ||X|| is the
size of set Xand ||Y || is the size of the set Y .

Longest common subsequence

We calculate the longest common subsequence [33] as shown in equation 1.3.

lcs(X, Y) =
length(X) + length(Y)− editdi(X, Y)

2
(1.3)

where X and Y are representations based on sequences of words or lemmas, lcs(X, Y)

is the length of the longest common subsequence between X and Y , length(X) is the
length of the string X, and editdi(X, Y) is the edit distance of X and Y .

PYRAMID

The Pyramids method [34] is a semi-automatic evaluation method which its basic idea
is to identify summarization content units (SCUs) used for comparison of information
in summaries. A pyramid is a representation of the reference summary. It also rep-
resents the opinions of several writers, each of which has written a model abstract.
The key characteristic of a pyramid is that it quantifies the agreement between the
human abstracts. Since we use it to evaluate the content of the abstract, the units
of comparison in a pyramid correspond to the units of meaning. Hence, an SCU is a
set of textual units of reference abstracts expressing the same information. It has a
weight equal to the number of reference summaries that instantiate it. These SCUs are
organized in a pyramid where each tier group together SCUs of the same weight. The
number of annotated model summaries represents the maximum number of tiers in a
pyramid. Based on that, we can compute the informativeness of a new summary as the

14

ratio of the sum of the weights of its SCUs to the weight of an optimal summary with
the same number of SCUs. Pyramid has a set of formulas that we can use to calculate
the score. Figure 1.2 represents a pyramid with two SCUs at the top and four in the
next tier, it shows two optimal summaries that this pyramid provides.

Figure 1.2: Two of six optimal summaries with 4 SCUs [34].

ROUGE

ROUGE [35] stands for recall oriented understudy for gisting evaluation. It is an
intrinsic metric for evaluating summaries and is based on BLUE [36] defined for machine
translation. Although ROUGE is not as good as human evaluation, it gives acceptable
results and is more convenient. There are multiple variations of ROUGE, such as
ROUGE-N, ROUGE-L, ROUGE-S, etc. Further details will be provided in chapter
five, but essentially:

• ROUGE-N measures unigram, bigram, trigram, and higher-order n-gram overlap.

• ROUGE-L measures the longest matching sequence of words using the longest
common subsequences (LCS). An advantage of using LCS is that it does not
require consecutive matches but in-sequence matches that reflect sentence-level
word order.

• ROUGE-S is any pair of words in a sentence in order, allowing for arbitrary gaps.

1.5.2 Extrinsic evaluation

Extrinsic evaluation is a method that determines the impact of summarization on other
tasks [30]. If the task can be completed using the summary instead of the original
document, this means that the summary includes all the relevant information in the
original document. Some of these tasks are document categorization, informational
retrieval, and question answering.

Document categorization

This evaluation task seeks to determine whether the generic summary is effective in
capturing essential information to correctly categorize the document. The classifica-

15

Concepts and definitions of automatic text summarization

tion of summaries and comparing them to a full document categorization or random
sentence extracts allows determining if the generic summary permits an analyst to
categorize a document as quickly as possible. For instance, in TIPSTER SUMMAC
[37] evaluation, they proposed ad-hoc tasks and categorization tasks. In the ad-hoc
task, the objective is to test the pertinence of indicative summaries on a topic. First,
they proceeded with the evaluation as an ad-hoc task, then the human subject had to
choose after reading the document one category out of five, or "none of the above";
then, they calculated the scores using recall, precision, and F1-score.

Information retrieval

Relevance correlation is an information retrieval based measure for assessing the relative
decrease in retrieval performance when moving from full documents to summaries [33].
If we perform information retrieval on a summary, it should present as good results
as a full document. For example, given a query Q and a corpus of documents D, a
search engine ranks all documents in the corpus according to their relevance to query.
If rather than the corpus D, we substitute the full document with the corresponding
summaries and rank the resulting corpus of summaries S by the same retrieval engine
for pertinence to the query; we expect that the ranking will be very similar.

Question answering

Question answering seeks to evaluate the summaries in terms of their informativeness.
Such evaluation was carried out in [38], authors picked four Graduate Management
Admission Test reading comprehension exercises. The exercises were multiple-choice,
with a single correct answer. They measured how many of the questions the sub-
jects answered correctly under different conditions. Then, they compared the results
of answering in these different conditions. Also, in TIPSTER SUMMAC [37], they
compared the generated automatic summaries manually to some answer keys for each
input document; to decide if the answer is correct, partially correct or incorrect. Then,
they defined ARS (Answer Recall Strict), and ARL (Answer Recall Lenient) metrics
to measure accuracy (see Equation 1.4).

ARS =
n1

n3
, ARL =

n1 + (0.5 ∗ n2)

n3
(1.4)

Where n1 and n2 are the numbers of correct and partially correct answers in the
summary, and n3 is the number of questions answered in the key.

16

Concepts and definitions of automatic text summarization

1.6 Conclusion

Automatic text summarization is the task of generating a shorter version of one or
multiple documents. In this chapter, we went through its general concepts by presenting
the different types of automatic text summarization, the general steps that summarizers
follow for generating summaries, the approaches that exist, as well as the methods for
evaluating a summary. While summarization has been there for decades, it gained
more popularity in the past few years. In the following chapter, we will present some
of the works that have been proposed for this task.

17

Chapter Two

Deep neural networks

2.1 Introduction

Machine learning is a subfield of artificial intelligence that aims to give computers the
ability to learn and improve its performance from experience (training) without being
explicitly programmed [28]. It teaches what comes naturally to humans and is useful
when we have complex tasks or problems involving a large amount of data. Machine
learning covers multiple applications, such as image recognition, speech recognition,
natural language processing, etc.

In this chapter, we will briefly present machine learning, its concepts, and its sub-
sets. Besides, this chapter explains the most important points that lead to our proposed
solution.

2.2 Machine learning

Machine learning is a field of study that gives computers the capability to learn without
being explicitly programmed [39]. At a high level, machine learning is the process
of teaching a computer system on how to make accurate predictions when fed data
without human intervention or assistance. It might look similar to writing regular
code, we write an algorithm, the machine executes the algorithm on given data, then
it can do the same task with new data that it has never seen before. But with machine
learning, rather than manually writing code with a specific set of instructions, the
machine is trained using large amounts of data and learns to perform a task without
being explicitly told how to do so. The computer needs to train to achieve its goal,
and during training, it attempts to create a logic and improve it by having access to
more data, doing that process a certain amount of time.

There are many ways in which a machine learns: it can be either supervised learning,
unsupervised learning, semi-supervised learning, or reinforcement learning [40].

18

Deep neural networks

2.2.1 Supervised learning

In supervised learning, the data have labels to guide the machine towards the exact
patterns it should look for, for example, images of handwritten figures marked to in-
dicate which number they correspond to; a supervised-learning system would learn
the characteristics of each number and eventually recognize handwritten numbers and
make a distinction between them. We feed the system with example inputs and their
desired outputs, and the goal is to learn a general rule that maps inputs to outputs.
The training process continues until the model reaches the desired level of correctness
on the training data [40]. Besides, the learning algorithm can compare its output with
the correct one, find the errors, and modify itself accordingly. We can represent the
data in the following form: di = (xi, yi) with x the input, y the associated target, i the
index of the observation, and (xi, yi) represents one training example. That is, what
the algorithm does, it outputs a function called hypothesis function, and this function
takes the input x, tries to output the estimated value of y.

Depending on the nature of the output, there are two types of supervised learn-
ing: regression and classification. When the output value is discrete, it is called a
classification task. The hypothesis function predicts the class or category for a given
observation. Generally, classification models predict a continuous value as the prob-
ability of a given input belonging to each output class. Inversely, when the output
variable is real, it is called a regression task. The objective of the hypothesis function
is to map input variables to real value output variables. That is, the input can be
real-valued or discrete.

2.2.2 Unsupervised learning

Sometimes, the targets are not available, and we only have di = xi. Besides, it is
easier to get unlabeled data than labeled data and more practical to avoid manual
intervention; that’s where unsupervised learning comes. Unsupervised learning is to
train a machine using data that is unlabeled, so the machine has to learn using that
data without any guidance [40]. Unsupervised learning attempts to explore the data
and find some structure within, it can be a goal in itself to discover unknown hidden
patterns.

Clustering is a form of unsupervised learning. It groups data that have similar
patterns or structure into groups called clusters. In a clustering problem, we attempt
to find an algorithm to group unlabeled data into coherent clusters. The K-means
[41] algorithm is by far the most popular and most widely used clustering algorithm.
Suppose we would like to have k clusters:

The first step is to initialize randomly k points called the cluster’s centroid. K-
means is an iterative algorithm that repeats two steps: first is cluster assignment, and

19

Deep neural networks

then a move centroid step. The cluster assignment step loops through each example
and calculates the distance between the centroids and the dataset then assigns each
dataset to the closest centroid. The move centroid step takes the centroids and moves
them to the average (mean) of the dataset. These two steps are repeated until the
clusters stop changing. The K-means algorithm expects two inputs: the K value, and
the dataset. A good clustering result mainly depends on the K value.
Association is another important concept. Association allows discovering pertinent
relationships between elements by finding rules that describe large portions of data.
For example, people that tend to buy new houses are more likely to buy furniture.

We can also use unsupervised learning to help us visualize high dimension data or
use it to generate more data.

2.2.3 Semi-supervised learning

Semi-supervised learning is intermediate between supervised and unsupervised learning
[40]. When there’s not enough labeled data to produce an accurate model, and there
are no resources to get more data, we can use this technique to increase the size of the
training data. In case we want to train a model to classify data, but at the same time,
to give our algorithm a hint about how to construct the categories, we can use both
labeled and unlabeled data. Generally, this combination comprises a small amount of
labeled data and a large amount of unlabeled data. For example, one can perform
unsupervised learning on all data to extract features then perform supervised learning
on the new representation, or one can first perform supervised learning and then predict
targets on unlabelled data, and finally, incorporate this new data to supervised training
[42].

2.2.4 Reinforcement learning

Reinforcement learning is about taking proper action to maximize a reward in a specific
situation. The agent learns to perform an action in an uncertain environment. The
model is provided with feedbacks as rewards or punishments as it operates its problem
space [40].

There are two types of reinforcements: positive reinforcement is when the agent is
rewarded to encourage it to follow a particular behavior, and negative reinforcement is
when it is trained to avoid a negative behavior to increase the likelihood of the positive
one.

The input is the initial state from which the model starts and the output depends
on the state of the current input, at each time step, the next input uses the output of
the previous step. The best solution is the one that provides the maximum reward.

20

Deep neural networks

2.3 Deep neural networks

Deep learning is a sub-field of machine learning inspired by the functioning of the human
brain. When the features are not set manually and there are millions of parameters,
with enough data for training, deep learning models are easier than classic machine
learning solutions. Neural networks are two types: classic networks, and deep networks.
Deep neural networks are neural network with multiple layers and thousands of nodes
that are used to extract high level features. At every layer, the network learns a new,
more abstract representation of the input which massively improves the ability of the
network to do its task. Besides, when it comes to complex problems such as image
classification, natural language processing, and speech recognition they perform very
well compared to classic networks.

2.3.1 Artificial neural networks

Inspired by the biological neural network, artificial neural networks neural networks
(ANNs) also called feed-forward neural networks (FFNs) mimic how the brain works.
They are essentially multiple layers containing a set of neurons also called perceptrons
connected by multiple values called weights. Each neuron calculates a specific value
based on the inputs that precede it. They are also called feed-forward neural network
because they has no cycle between the output and the input. Figure 2.1 represents the
architecture of an artificial neural network with multiple hidden layers.

Figure 2.1: Artificial neural network architecture [43].

As we can see, each layer has perceptrons or nodes in it; there are no connections
between nodes in the same layer; however, each node from a given layer is connected
into all the nodes of the next layer.

• Layer i: The first layer (i) is the input layer; the input layer consists of a vector
representing the data in its vectorized form.

21

Deep neural networks

• Layers h: Each node in the hidden layer is a result of the application of a function
on the activations obtained by multiplying the inputs by the weights. Common
choices for the activation function include the sigmoid and the tanh function.
Another activation function that has become well used in deep learning research
is the rectified linear unit (ReLU). The hidden layers are intermediate layers
between the input and output layer.

• Layer o: It produces the neural network’s results based on given inputs.

The neuron

A neuron is a single computational unit in a neural network, it has multiple inputs
(x1, x2, ..., xn) associated with their weights (w1, w2, ..., wn), in addition to a bias input
x0 and its weight w0, and only one output y is calculated via application of an activation
function, for example, sigmoid (σ) on z which is the sum of multiplication of the inputs
with their weights. The figure 2.2 illustrates one neuron with n inputs and one output.

Figure 2.2: Neuron illustrated [44].

2.3.2 Forward propagation

Artificial neural networks consist of having multiple layers, the input layer represents
the input data that will flow into the hidden layer; the way it does this is by having
weights that connect each neuron in one layer with neurons of the next layer, these
weights are initialized randomly at first. We take each input and multiply it by each
associated weight of it, this value is fed to an activation function that performs other
transformations, we repeat the process between the hidden layer and the output layer
the resulting value is the network’s prediction and the process is called Forward Prop-
agation; however, if we want to compare these values with expected values the result
won’t be necessarily correct, thus we want the error value to be minimized and we can
do that with backpropagation (see figure 2.3).

22

Deep neural networks

Figure 2.3: Forward propagation illustrated. [45].

Activation functions

Activation functions can mean the entire difference between a neural network that
works, and a neural network that does not. Activation functions are mathematical
equations that transform their input to a useful output for the neural network. They
are attached to each neuron and decide whether each neuron’s input is relevant to the
model’s prediction; they can be linear or nonlinear.

A linear function takes the form of y = ax + b and can be effective only on one
layer deep neural network regardless of how complex the architecture is. Real-world
problems are nonlinear, and the derivative of a linear function is always equal to a
which has no relation with the input. It is a constant gradient, so the gradient descent
value will be constant. If there is an error in the prediction, the changes made by
backpropagation will not depend on the change of the input. Therefore, nonlinear
functions are used in almost all neural networks.
Nonlinear functions have to be continuous and differentiable. A neural network can
take any input from +∞ to −∞ and should be able to map it to an output range
between [0; 1] or [−1; 1] in some cases. Among nonlinear functions, there is ReLU
(Rectified Linear Unit), LeakyReLU (Leaky Rectified Linear Unit), Tanh, GELU, etc.

• ReLU is computationally efficient as it allows the network to converge very quickly
but when the input are smaller or equal to 0, the gradient of the function becomes
null, hence the model stops learning as the backpropagation does not adjust the
weights anymore. Equation 2.1 describes its formula and figure 2.4 represents
the graph of the ReLU function.

ReLU(x) = max(0,x) (2.1)

23

Deep neural networks

Figure 2.4: ReLU function graph [46].

• Leaky ReLU is a variation of ReLU and has a small slope in the negative area
to enable backpropagation even for negative value, though those predictions can
be inconsistent. Equation 2.2 describes its formula and figure 2.5 represents the
graph of the ReLU function.

LeakyReLU(x) =

{
0.01x for x < 0

x for x ≥ 0
(2.2)

Figure 2.5: Leaky ReLU function graph [46].

• Tanh makes it easy to model inputs that have strongly negative, neutral, or
strongly positive values, but it also suffers from the vanishing gradient problem.
The formula to calculate it is in equation 2.3 and its graph in figure 2.6.

tanh(x) =
(ex − e−x)
(ex + e−x)

(2.3)

24

Deep neural networks

Figure 2.6: Tanh function graph [46].

• GELU function solves most of the previous issues and more importantly avoids
the vanishing gradients problem. It provides a well-defined gradient in the neg-
ative area and prevents neurons from dying; besides it performs best in trans-
formers models. The formula to calculate it is described in equation 2.3 and its
graph in figure 2.6.

GELU(x) = 0.5x
(

1 + tanh
(√

2/π(x+ 0.044715x3)
))

(2.4)

Figure 2.7: GELU function graph [47].

As seen in the equation 2.4, it is just a combination of some functions and ap-
proximated numbers.

2.3.3 Backpropagation

Backpropagation is a widely used learning algorithm for feedforward neural networks
rediscovered in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald Williams. The
goal of backpropagation is computing the gradient (the derivative) of the loss function
with respect to each weight in one layer at a time iterating backward from the output
layer.

25

Deep neural networks

The cost function

Neural networks learn by updating the weights that connect the neurons and they do
that by applying the backpropagation algorithm based on the error function. A cost
function or the error function is how the global network did, a single value generally
measured via the average difference between the output and the expected output of a
training sample. We can conclude that cost function depends on the network weights,
the biases of the network, and one training sample with the expected value of that
training sample. Examples of commonly used cost functions:

• Mean squared error (MSE) Also known as the Quadratic cost function or
maximum likelihood,it is the default choice for regression problems. Equation
2.5 explains how to calculate it.

MSE =
1

N

N∑
i=1

(fi − yi)2 (2.5)

Where N is the total number of inputs in the training sample, fi is the value
generated by the model for input i, and yi is the expected value for the input i.

• Cross-entropy cost function (CE) When a model generates the output token
by token for example, at each time step, the network produces a probability
distribution over the possible next token. This distribution is penalized from
being different from the true distribution. The formula to compute cross-entropy
is described in the equation 2.6

CE = −
C∑
i

ti log(f(si)) (2.6)

Where ti and si are the groundtruth and the output probabilities for each class
i in C.

• Binary Cross-entropy cost function (BCE) also known as binary classifica-
tion generally used for prediction problems where the expected value for each
input is one of two values. Equation 2.7 explains how to calculate it.

BCE = −
C′=2∑
i=1

ti log(s1)− (1− t1) log(1− s1) (2.7)

• Multi class cost functions It is generally used for prediction problems where
the expected value for each input is one of more than two values or classes. For
example there is multi class cross entropy, sparse multi class cross-entropy, and
kullback leibler divergence.

26

Deep neural networks

Gradient decent and Adam optimization algorithm

Gradient decent is an iterative optimization algorithm for finding the minimum of a
function; in backpropagation it is used on the error function.

Adam optimization algorithm is an adaptive learning rate optimization algorithm
designed for training deep neural networks. The choice of an optimization algorithm
can mean the difference between good results in minutes, hours, or days. Stochastic
gradient descent is another algorithm that maintains a single learning rate for all weight
updates, and it does not change during training. Instead, Adam is an adaptive learning
rate method meaning it computes individual learning rates for different parameters.
However, in some areas, Adam does not converge to an optimal solution. A solution
to this problem is to use weight decay with this algorithm.

Neural network learning with backpropagation

Backpropagation algorithm looks for the minimal error value and the way it does that
is explained in the following algorithm:

• (a) Initializing weights randomly.

• (b) For each training sample:

– (1) Compute the prediction value of an input in the training sample with
forward propagation.

– (2) Calculate the error by using a cost function on the prediction value and
the expected value.

– (3) Compute new weights using the derived formula on the cost function
with respect to each weight with backpropagation.

– (4) Update network weights.

• (c) Repeat step (b) until the error is at its minimum.

Fine-tuning a neural network

Fine-tuning is to take the weights of a pre-trained neural network and use them as
the initial weights for the training on another dataset of the same domain and nature.
The weights are adjusted during this training such that they perform well to a certain
degree on the new dataset. This practice is useful in cases when the data available is
limited, and when the domains and tasks are similar, hence there is no need to train a
model from scratch.

27

Deep neural networks

2.3.4 Convolutional neural networks

A convolutional neural network (CNN) is an artificial neural network that is most
popularly used for analyzing images. Although the most common application of CNNs
has been image analysis, it can also be used for other data analysis or classification
problems. More generally, we can think of CNN as an artificial neural network that has
some type of specialization for being able to detect patterns and make sense of them.
CNN has hidden layers called convolutional layers, and these layers are precisely what
makes it a CNN.

The convolutional layer

Convolutional layers are the layers where a set of filters are applied to the original
input or other feature maps in a deep CNN, mainly to extract high/low-level features
from the input like edges and colors for images based on how deep the CNN is. Filters
or kernels are a group of weights initialized randomly and learned and adjusted later
alongside the size of kernels and the number of kernels.

The pooling layer

Pooling layers are similar to convolutional layers. Pooling involves selecting a pooling
operation, much like a filter to be applied to feature maps which are the result of an
applied convolutional layer on the input or other feature map. The size of the pooling
operation or filter is smaller than the size of the feature map; specifically, these are
typically used to reduce the dimensionality of the network.

The fully connected and classification layer

The fully Connected layer is simply a feedforward neural network. The input to the
fully connected layer is the output from the final pooling or convolutional layer, which
is flattened (turned from a dimensional matrix into a vector) and then fed into the
fully connected layer. This layer is placed before the classification layer of the CNN
that outputs the final result.

2.3.5 Recurrent neural networks

The problem with FFNS is that the inputs are independent of each other: in each
iteration, the network restarts fresh, it does not remember what it saw in the previous
iteration when processing the current set of data. It is generally used in classification
problems, such as telling whether or not the seller is good, filtering emails as spams or
not spams. Besides, the majority of current data have a sequential form. For example,

28

Deep neural networks

if we want to predict the next word in a sentence it requires the knowledge of all pre-
vious or most pertinent words before the current one.

Recurrent Neural networks (RNNs) are FFNs that can take a sequential input and
produce a model that changes over time in ways that yield accurate results depen-
dent on the context. Human memory is context-aware, some of those memories are
forged based on recent information, others are older, similarly, an RNN will remember
information in a form of hidden state. The first one introduced had a very simple
architecture and they computed in one way, either from left to right or from right to
left.

Recurrent neural network’s architecture

Since data are sequential, this means that each input will have a time step. Figure 2.8
represents the base architecture of the RNN.

Figure 2.8: Base architecture of RNNs [48].

Where:

• x<t> is the input at the time step t, it is passed on always as a vector.

• a<t> represents the hidden state at time step t, it is the memory of the network.

• y<t> is the output at the time step t.

Recurrent Neural Networks suffer from short-term memory. If a sequence is too
long, they won’t be able to carry all the important information from past steps. When
processing a text to do predictions, RNNs may leave out important information from
the beginning.

Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) were created
as the solution to short-term memory. They have internal mechanisms called gates
that can adjust the flow of information. These gates distinguish the relevant data in
a sequence which should be kept from the irrelevant that should be thrown away. By
doing that, it can pass the important information down the long chain of sequences to
make predictions.

29

Deep neural networks

2.3.6 GRU and LSTM

GRU uses gates called update gate and resets gate. The update gate decides how much
past information to push forward; while the reset gate sorts the irrelevant data and
tells the model to forget this data and move forward without it.

Meanwhile, LSTMs are more sophisticated but at the same time more complex as
well. They have four components: the forget gate, the input gate, the cell state, and
the output gate. The forget gate sorts out the relevant and irrelevant information and
pushes forward only the relevant information towards the cell state. The input gate is
necessary for deciding which values will be updated. The cell state transfers relative
information down the sequence chain and acts as the memory of the network. Lastly,
the output gate decides what the next hidden state should be. The new cell state and
the new hidden are used for the next time step and so on.

Although there is no simple way to decide which one to use for a particular use case,
GRUs train faster and perform better than LSTMs on less training data. Generally,
the decision is made after doing a trial and error to test their performance.

Limits of recurrent neural network

First, the sequential aspect of RNNs; every hidden state depends on the previous
hidden state when processing a sequence using RNNs. This makes RNNs very inef-
ficient and slow on GPUs. The second limit is the difficulty of learning long-range
dependencies in the network. Although LSTMs and GRU can have long-term memory,
remembering information for long periods is still challenging, and RNNs can still have
short-term memory problems. Finally, some words have multiple meanings and are
context dependent which is hard to capture.

2.4 Generative models

2.4.1 Variational Autoencoders

Autoencoders are a specific type of unsupervised feed-forward neural network consist-
ing of an encoder and a decoder.An autoencoder takes an input, converts it into a
smaller representation. This representation is called context vector. The decoder then
takes the context vector and reconstruct the original input using it. So at the encoder,
we are taking it from high dimensional input to lower-dimensional features, then it
goes the other way from low dimensional features back to a high dimensional output
of the same size as the input. This limitation size in the middle enables the discovery
of interesting information about the data.

The encoder and decoder are trained together as one big network. The loss func-

30

Deep neural networks

tion penalizes the network for creating outputs different from the input; it is usually
either the mean-squared error or cross-entropy between the output and the input. Fi-
nally, autoencoders are useful to construct a compressed version of data and to learn
features to initialize a supervised model by throwing the decoder part and using only
the encoder. However, they are not able to generate new data. The reason is that
the encoded vectors are not continuous, sampling a variation from there, the decoder
will generate an unrealistic output because the decoder has no idea how to deal with
that region of the latent space. During training, it never encountered encoded vectors
coming from that region of latent space.

With variational autoencoders (VAEs), the output of the encoder is not a value.
Instead of one value for each attribute, VAEs represent each latent attribute as a range
of possible values. By having an encoder model that output a range of possible values
from which it is possible to randomly sample and feed it into the decoder model, VAEs
force a continuous, smooth latent space representation. The decoder can create data
from any sample of of the latent distribution. Thus, nearby vectors in latent space have
very similar reconstructions. For that, VAEs combine autoencoders with variational
inference. Figure 2.9 describes this architecture.

Figure 2.9: Variational autoencoders architecture.

As figure 2.9 shows, the encoder outputs two vectors: a vector of means µ, and
another vector of standard deviations σ. The mean vector controls the horizontal
position of the encoding, while the standard determines its area. This way, even for
the same input, the encoding output will slightly vary on every single pass. So the
decoder can decode specific encodings in the latent space as well as encodings that
slightly vary, as the decoder is exposed to a range of variations of the encoding of the
same input during training.

31

Deep neural networks

2.4.2 Generative adversarial networks

On the contrary to VAEs, generative adversarial networks (GANs) do not work with
any explicit density function; instead, they take a game theoretic approach; they learn
to generate from training distribution through a two-player game. GANs are based on
a game scenario in which two neural networks pit against each other. The generator
produces new data from random noise sampled using a distribution. The new data
are fed to the discriminator along with the real examples from a training data set.
The discriminator plays the role of a cop and the generator the role of a counterfeit,
and the cop mission is to distinguish between real and fake data. Both the generator
and the discriminator try to improve their precision until the discriminator is unable
to make the difference between the real examples and the fakes ones. Conceptually,
the discriminator in GAN guides the generator on what data to create. Figure 2.10
describes GAN’s training.

Figure 2.10: Generative adversarial network training illustrated. [49]

As figure 2.10 shows, by training with real examples and generated examples, GAN
builds a discriminator to learn the features that make data real. Then the same dis-
criminator will provide feedback to the generator to create data that look like real ones.

The discriminator is trained like a deep network classifier. The output is the prob-
ability that the input is real. Through this process, it identifies the features that
contribute to real data by calculating the maximum likelihood of the observed data.
Both networks are trained jointly in a minimax game where the generator wants to min-
imize a value V while the discriminator wants to maximize it. Equation 2.8 describes
the objective funtion of GANs.

minGmaxDV (D,G) = Ex∼pdata [logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.8)

logD(x) is the discriminator output for real data x, so the first part is the likelihood
of real data being real, and the second one, z are the samples from the generator and
the term D(G(z)) is the output of the discriminator for generated fake data.
GAN training uses gradient ascent on the Discriminator to maximise the objective,

32

Deep neural networks

while it performs gradient descent on the Generator to maximize it, and it takes only
the part related with z. However in practice the gradient descent value on the generator
does not help so well. An alternative is to perform gradient ascent on the generator
and maximize the likelihood of the discriminator being wrong as shown in equation
2.9.

maxEz∼pz logD(G(z)) (2.9)

Training alternates between k steps of optimizing D and optimizing G on the mini-
batch. The process continues until the generator produces good quality examples.

2.5 Deep neural network with attention

2.5.1 Attention for deep neural networks

Attention

The motivation behind the attention mechanism is because a system needs different
information at different time steps to capture the meaning of a sentence. The attention
mechanism takes two sentences, turns them into a matrix. The words of one sentence
form the columns, and the words of another sentence form the rows, then it identifies
relevant context. It is also possible to put the same sentence along with the columns
and the rows, to understand how some parts of that sentence relate to others. A neural
network provided with an attention mechanism can understand what it is referring to.
That is, it knows how to disregard the noise and focus on what is relevant and connect
related words.

Transformers

There are three kinds of dependencies that we need to pay attention to in natural
language processing: the dependencies between the input and output tokens, between
the input tokens themselves, and between the output tokens themselves. The classic
attention mechanism the problem of dependencies between the input. The Transformer
[50] on the other hand, solved the three kind of dependencies. Figure 2.11 describes
the Transformer architecture.

33

Deep neural networks

Figure 2.11: Transformer architecture [50].

The Transformer uses an encoder-decoder architecture. The left component is the
encoder, and the right one is the decoder component. Each component has six blocks,
which are themselves divided into smaller ones, which we will call sub-layers.

The encoder has two sub-layer: a self attention layer that helps the encoder look
at other parts as it encodes a specific word; and a feed-forward network. The self-
attention has a mechanism called Multi-Head Attention (MHA) which computes the
self attention multiple times to learn diverse representations. A single attention head
has a simple structure: it applies a linear transformation to its query, key and value
vectors, calculates the relevance score between the key and the query, uses a softmax
to normalize the values, then uses it to weight the values and sum them up. The key,
query and value vectors are the result of the multiplication of the word embeddings by
three matrices. The MHA just performs this operation in par allele, concatenates the
attention of each head, then uses a linear transformation on the concatenated result.
As for the type of attention, the Transformer uses the scaled dot product attention
which is computed as follow (see equation 2.10):

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.10)

Where Q is the matrix of queries packed together, K and V are the matrices of keys
and values packed together. Finally, dk represents the dimensionality of the queries
and keys. The dot product grows in magnitude with large values of dk, it may push
softmax values into regions where it the gradient is very small. To deal with this, it
uses this scaling factor of

√
dk to rescale the value.

Between each sub-layer, there is a residual connection followed by a layer normal-

34

Deep neural networks

ization. The residual connection prevents the vanishing gradient problem, while the
normalization prevents the values from changing too much, allowing faster training and
better generalization. The formula is shown in the equation 2.11.

LayerNorm(x+ sublayer(x)) (2.11)

sublayer(x) is the function that is being generated from the sublayer. For any
vector x, the layer normalization is computed as shown in the equation 2.12.

LayerNorm(x) = γ
x− µ
σ

+ β (2.12)

Where µ, σ are the mean and standard deviation of the elements in x, scale γ and
bias vector β are parameters.

The feed-forward network (FFN) is a fully connected network applied to each po-
sition independently. This sub-layer is a two-layer feed-forward network with a ReLU
activation function. The first layer is four times the size of the model. This seems to
give the transformer enough representational capacity. The second layer will project
the output of this first layer into the original size. Given a sequence of vectors h1, .., hn
the computation of a position-wise FFN sub-layer on any hi is defined as shown in the
equation 2.13.

FFN(hi) = ReLU(hiW
1 + b1)W 2 + b2 (2.13)

Where W 1, W 2, b1, and b2 are parameters.
The decoder is very similar to the encoder but has a Multi-Head Attention layer

named masked multi-head attention; the reason it is called Masked Multi-Head At-
tention is that we need to mask the inputs to the decoder from future time-steps to
prevents future words from being part of the attention. Besides, there is an attention
layer between the Masked Multi-Head attention and the feed-forward network; this
helps the decoder look at the relevant parts of the input while decoding.

For the input, the embedding happens at the bottom most encoder. The MHA
cannot make use of the position of the word in the sequence. The Transformer takes
the embedding, adds to the embedding vectors that follow a specific pattern that the
model learn. Each pattern describe a particular position.

The top most decoder outputs a vector of floats, how is it turned into words ?
That’s the job of the final linear layer which is followed by a softmax layer. The linear
layer projects the vector in a much larger one called logits. It has the size of the vocab-
ulary. The softmax then turns the values inside the vector (scores) into probabilities.
Finally the word which has the highest probability is chosen, or by using an algorithm
called beam search.

35

Deep neural networks

2.5.2 BERT

BERT [51] (Bidirectional Encoder Representation from Transformers) is a pretrained
language model built on top of the Transformer blocks. There are many variants avail-
able, for example, BERT-Base has 12 layers and BERT-Large has 24 layers, and each
layer is a Transformer encoder. BERT is unique because it reads words from both
directions at once. Most language models are trained by predicting the next word in
a sequence, but since it is a unidirectional strategy it limits the context integration.
Hence BERT used different strategies: Masked Langage Model (MLM), and Next Sen-
tence Prediction (NSP); these are jointly trained and the loss is the combination of the
two.

Next sentence prediction

BERT is fed with two sentences as an input and is supposed to predict if the second
sentence is the subsequent sentence in the document. More precisely, 50% of pairs
have the second sentence as the next one, and the 50% left do not. BERT has specials
tokens: the [CLS] token and [SEP] token to separate sentences, it has also special
embeddings indicating if it’s sentence A or sentence B, plus the positional embeddings
as in the Transformer. The entire input during NSP goes through the model, the [CLS]
token aggregates feature sentences, then the output of the top [CLS] is fed to a softmax
that calculates the probability. This is shown in the figure in figure 2.12.

Figure 2.12: Bert NSP task for training [51].

36

Deep neural networks

Masked language model

Some parts of the input are masked, and the model is supposed to correctly predict the
masked tokens. In fact, 15% of all tokens were masked in each sequence at random. If
a token is chosen, it is replaced 80% of the time with the [MASK] token, 10% with a
random token, and 10% of the time it is kept unchanged. The final hidden vectors of
the [MASK] tokens are fed to a feed-forward network followed by a softmax layer to
predict the original token. The advantage of this method is that BERT does not know
which words it has been replaced and which words were kept the same. This way it
preserves a distributional contextual representation of every input token. Figure 2.13
describes MLM in BERT.

Figure 2.13: Bert MLM task for training [51].

BERT for fine-tuning

BERT can be used for multiple downstream NLP tasks. The advantage is that, since
it is already pretrained, the training takes much less time compared to when trained
from scratch. It has already a language understanding ability, hence it is easier to tune
the weights. BERT can be used for classification, question answering, and any other
task where the prediction at a certain position is allowed to look at other information
from both directions.

BERT for feature extraction

The finetuning approach is not the only way to use BERT. It can also be used to
extract features, then use these features as input to other models. The combination
of the vectors from BERT layers depends solely on the task on which they will be
employed.

37

Deep neural networks

2.5.3 Generative Pre-Training-2 (GPT-2)

GPT-2 [52] is a model based on GPT [53] and is a large transformer-based language
model that consists of solely stacked decoder blocks from the transformer architecture.
Like any traditional language model, GPT2 outputs one token at a time. After each
token is generated, that token is added to the sequence of inputs, and that sequence
is fed to the model as an input, and so on. There are many variations of GPT-2, each
one of them has more layers and more attention heads than the original Transformer
decoder. Figure 2.14 represents a high representation of some variants of GPT-2.

Figure 2.14: High representation of some variants GPT-2 [54].

As we can see, the smallest model has a stack of twelve decoder transformer blocks
and a dimension = 768. And the biggest model has four times more layers and a
dimension = 1600. Like classic language models, it was trained to predict the next
word in a sequence with a massive 40GB dataset called WebText that has a vocabulary
size of 50,000. During the evaluation, GPT-2 holds on to the key and value vectors
of the previous tokens that were already processed, so that it will have fewer tokens
to process in future time steps; besides, the way it works is exactly like the original
Transformer decoder.

2.6 Conclusion

Machine learning is nothing new, but the past years have been the biggest leaps and
bounds in terms of advances in automatic text summarization using this approach.
Factors like growing volume and massive data available, cheaper, more powerful com-
putational processing, and affordable data storage made it only natural to quickly and
automatically produce models that can process bigger, more complex data, and deliver
faster, more accurate results, even on a very large scale.
Many architectures can be used and combined for our task although recent models
using Transformers seem to have greater potential. The following chapters will address
our contribution. In the next chapter, we will therefore present the models we used
and the design details.

38

Chapter Three

Methods of automatic text
summarization

3.1 Introduction

After presenting the overall concepts of automatic text summarization, this chapter
covers some of the works that have been proposed for this problem. In the previous
chapter, we mentioned the five common approaches, namely the statistical approach
that came first, the graph-based approach, the linguistic approach, the compression
approach, and the machine learning approach. To classify the existing works, it is
possible to use these two criteria alongside the approaches classification [13]:

• If it is single or multi-document summarization.

• Whether it is abstractive or extractive summarization.

The following table summarizes our classification (see table 3.1). Sections 2.2 and
2.3 both present single-document summmarization works and multi-document summ-
marization ones. Section 2.4 discuss the works of the approach we will follow in our
work. Finally, section 2.5 concludes this chapter.

Input documents Output summary Approaches

Single-document
summarization

Extractive summary
Statistical, Graph-based, Linguistic
Compression, Machine learning

Abstractive summary
Statistical, Graph-based, Linguistic
Compression, Machine learning

Multi-document
summarization

Extractive summary
Statistical, Graph-based, Linguistic
Compression, Machine learning

Abstractive summary
Statistical, Graph-based, Linguistic
Compression, Machine learning

Table 3.1: Classification of automatic text summarization works.

39

Methods of automatic text summarization

3.2 Single-document summarization

3.2.1 Extractive summarization

Statistical approach

The first work of automatic summarization follows the statistical approach. Baxendale
[55] used a corpus of 200 scientific paragraphs to test the impact of the position of
sentences in a paragraph on its importance; and he found that in 85% of cases, the
first sentence is the most important for the paragraph. The last sentence is the most
important in 7% of cases. He explained the result by supposing that topic sentences
are more likely occur very early or very late in a document. He took the first and last
sentence in each paragraph to form the summary. Despite its simplicity it was a kind
of reasonable method for the type of documents he was trying to summarize.

Luhn [56] proposed a more complex way to generate summaries and used a feature
called term frequency which supposes that a term is important if it occurs many times.
During the preprocessing, he removed stop words and stems so that it can objectively
calculate the frequency of each word. He then grouped the sentences based on the
concentration of the keywords. The group which has the most significant words is used
to score the sentence, and the summary is generated by extracting the highest score
sentences. Term frequency formula is described below (see equation 3.1).

tf(t, d) =
fd(t)∑|d|
i=1 |ti|d

(3.1)

Where tf(t, d) is the term frequency of the term t in document d. fd(t) is the
number of appearances of the term t in the document and

∑|d|
i=1 |ti|d is the number of

the distinct words in document d.
The main advantage of term frequency is that it is language-independent. How-

ever; it may consider some terms that do not thoroughly characterize the topic being
addressed as being relevant. For instance, the words informatics and computer are
frequent in computer science topics. Another problem is the case when some words are
not so frequent but are supposed to be relevant.

To solve the problem discussed above, Salton and Yang [57] proposed another fea-
ture called tf ∗ idf where tf refers to term frequency and idf represents the inverse
document frequency. It expresses that a word is more important when it is more fre-
quent in the analyzed document and not frequent in the corpus of analyzed documents
(see equation 3.2).

idf(t) = log
|D|

|{d : t ∈ d}|+ 1
(3.2)

Where |D| is the number of documents in the corpus and |{d : t ∈ d}| is the

40

Methods of automatic text summarization

number of documents containing the word t. So, an inverse document frequency factor
is incorporated to reduce the weight of terms that occur very frequently in the document
set and increase the weight of terms that occur rarely. This way, the less frequent but
important words would not be ignored.
Finally, the factor tf ∗ idf will be calculated as in the equation 3.3.

tf ∗ idf(t, d) = tf(t, d) ∗ idf(t) (3.3)

Edmundson work [58] used some of the already mentioned features; he used the
position of a sentence in a document in the same way as Baxendale [55], he also looked
at term frequency, the same way as Luhn [56]; but he also added a feature called cue
words. Cue words such as our "results indicate", "in this article", etc. were used to
determine relevant information to the summary. These words were manually selected
and saved in a dictionary that comprises three sub-dictionaries: bonus words, stigma
words, and null words. Bonus words include superlatives, adverbs, etc. and add value
to the sentence. Stigma words are words that negatively affect sentence importance.
They include anaphoric expressions, belittling expressions, etc. Finally, null words
represent neutral or irrelevant words to the sentence and are often stop words. The
score of a sentence using cue words was the sum of the weights of its cue words shown
in the equation 3.4.

Scorecue(si) =
∑
w∈si

cue(w) (3.4)

Where cue(w) is the weight of the word w concerning the keyword dictionary (see
equation 3.5).

cue(w) =

b > 0 if(w ∈ Bonus)
δ < 0 if(w ∈ Stigma)

0 otherwise

(3.5)

Another thing he looked at was the structure of the document: is it a headline?
Is it a title? Is it the first sentence after a title? As for the score of the sentence, he
created a linear combination of these four features.

Besides, Fattah and Ren [59] defined positive cue words as words that have frequent
occurrences, while negative words are the ones that are most unlikely to be included
in a summary. To achieve that, we calculate the score of a sentence given a word w

and a summary S by using the equation 3.6.

Scorecue(si) =
1

|si|
∑
w∈si

tf(w) ∗ P (si ∈ S|w) (3.6)

Where P (si ∈ S|w) is the probability that the sentence si is in the summary S
knowing the word w. The formula 3.7 describes how to calculate P (si ∈ S|w), we can

41

Methods of automatic text summarization

get it using the training corpus.

P (si ∈ S|w) =
P (w|si ∈ S) ∗ P (si ∈ S)

P (w)
(3.7)

They computed the score of a sentence using negative cue words in the exact op-
posite way, shown in equation 3.8.

Scorecue(si) =
1

|si|
∑
w∈si

tf(w) ∗ P (si /∈ S|w) (3.8)

Another interesting technique is to combine the position with other features. Ouyang
et al. [60] used word position to calculate the score of a word according to its occur-
rences in the whole text. Not just according to other words in the sentence. They used
four different functions:

• Direct proportion attributes a score of 1 on the first appearance and 1
N

to the
last one such as N is the number of words in that sentence.

• Inverse proportion assigns 1
i
as a score where i is the position of the word.

Therefore, smaller positions are punished.

• Geometric sequence scores the appearance of a word as the sum of the scores
of all its occurrences; hence the equation is (1

2
)i−1.

• Finally, the binary function gives more importance to the first appearance of a
word, and the others are evenly less important. The value for the first appearance
is equal to 1 and λ� 1 for the rest.

The final score of each sentence is calculated as follows (see equation 3.9):

Score(s) =
∑
wi∈s

log(freq(wi) ∗ pos(wi))
|s| (3.9)

Where pos(wi) is one of the four functions, freq(wi) is the frequency of the word
and |s| is the length of the sentence s.

Rather than using the position in a sentence, Fattah and Ren [59] adopted the
position in a paragraph. The first sentences are given a score of N-i where N is the
number of important sentences and i is the position of the given sentence in a paragraph.
For example, assuming that we consider only the first four sentences, the score of each
sentence is given by the equation 3.10.

Scorepos(si) =

{
5− i if(i ≤ 4)

0 otherwise
(3.10)

Frequent itemset mining is a well-established data mining technique to discover cor-
relations among data [61]. In automatic text summarization, itemsets are sets of terms

42

Methods of automatic text summarization

extracted from sentences, and those which appear in many sentences determine the
frequent itemsets showing a significant correlation in the documents. MWI-Sum [61]
is a multilingual summarization algorithm that replaces the traditional itemsets with
weighted ones. It tries to create weighted itemsets representing word combinations with
significant high-frequency and relevance. Each itemset represents a relevant concept
within the news collection, itemsets are frequent ones that are not already included by
earlier selected sentences. Hence, the proposed selection method picks the document
sentences covering meaningful concepts yet not covered by any other sentence.

Graph approach

Salton et al. [62] constructed a graph of similarity using document paragraphs. Each
paragraph represents a node that is connected to another when their similarity exceeds
a given threshold. The authors defined a feature called bushiness which is the number of
a node’s connections. The most scored paragraphs in terms of bushiness are extracted
to form a summary. Equation 3.11 describes the score based on the number of arcs,
where G = {S,A} is the graph of similarities between the sentences, S is the set of
sentences and A is the set of arcs.

Score#arc = {sj : a(si, sj) ∈ A/sj ∈ S, si 6= sj} (3.11)

This equation means that the score of any sentence si is the number of the nodes
that sentence is linked to. Also, a(si, sj) ∈ A means that the sentence si has an arc
with a sentence si, and si 6= sj makes sure that we do not count the arc linked to the
same sentence.
Thakkar, Dharaskar, and Chandak [63] proposed a method that uses the shortest path
algorithm for the summary generation. First, they built a graph model for representing
the text as a way to connect text entities in the graph to form meaningful relations.
Then, they applied a ranking graph-based algorithm to score each vertex of the gener-
ated graph in the previous step. Finally, they used the shortest path algorithm on the
graph to generate the text summary.

Linguistic approach

Paice [64] defined indicators as “commonly occurring structures which explicitly state
that the sentences containing them have something important to say about the sub-
ject matter or the message of the document”, so this kind of expressions can help to
determine which sentences are more likely to be relevant.
In the work of Orasan [29], the author used an anaphora resolution to enhance the
informativeness of summaries. Sentences containing pronouns rather than words lead
to inaccurate score calculation. Anaphora resolution helps to increase the frequencies

43

Methods of automatic text summarization

of words associated with these pronouns and produces more accurate frequency calcu-
lations. The author used a term frequency algorithm to score sentences alongside six
anaphora resolution methods.

Also, the structure of discourse can be used through rhetorical relations between
sentences to generate summaries. The rhetorical structure represents relations between
various pieces of sentences in the body of each section. For example, Ono, Sumita, and
Miike [65] developed a system for Japanese expository writings based on rhetorical
structure extraction. The system first represents the rhetorical structure by two lay-
ers: an intra-paragraph whose units are sentences, and inter-paragraph whose units are
paragraphs. Then, it extracts the rhetorical relations by relying on connective expres-
sions, anaphoric expressions and idiomatic expressions. The figure 3.1 shows examples
of rhetorical relations for representing the rhetorical structure.

Figure 3.1: Example of rhetorical relations [65].

Finally, the system generates a summary of each section by examining its rhetor-
ical structure. For that, to determine the important text parts, it uses a penalty
score defined over different rhetorical relations to exclude non-important sentences.
The important trait of the generated summary is that since they are composed of the
rhetorically consistent units, the summary does not contain incomplete sentences.

Kikuchi et al. [66] proposed a system for single document summarization based on
a nested tree structure. They incorporated dependencies between words and dependen-
cies between sentences using a rhetorical structure. They first represented a document
as a nested tree formed of two types of tree structures: a document tree and a sentence
tree. Figure 3.2 illustrates a nested tree structure of a document.

44

Methods of automatic text summarization

Figure 3.2: A source document represented as a nested tree [66].

The document tree has sentences as nodes and head modifiers relationship obtained
by using the rhetorical structure theory as edges. The sentence tree has words as nodes
and head modifiers relationship between words obtained by the dependency parser as
edges. A dependency parser examines the grammatical structure of a sentence and
builds relationships between head-words and words that modify those heads. Then,
they expressed the problem of single document summarization as a combinatorial op-
timization problem, which will compact the tree and generate the summary.

The linguistic approach is harder than the statistical approach to be implemented
and takes more time to generate a summary [13]. Nenkova and McKeown [27] suggested
using it as a post-processing task to improve the linguistic quality of the generated
summary rather than a processing one. According to the authors, it is unclear how
much this approach can improve content selection compared to the methods using no
linguistic relations.

Compression approach

Sentence compression aims to retain the most salient information of a sentence and
delete the least critical information, rewritten in a short form [67]. In Jing and Mcke-
own [68], the authors claimed that it is often used by professional summarizers. They
found out that 78% of the summary sentences are taken from the input document, and
more than half were compressed. Sentence compression works can be classified into
two approaches: a sentence deletion approach and an abstractive approach.

The deletion based approach is based on the removal of unnecessary parts of the
input which is generally on a sentence level. That is, the result of the compression is a
subsequence of the source sentence. Consequently, those systems produce an extractive
summary [69]. For instance, Jing [23] work is one of the earliest ones in this direction.
He presented a sentence compression system that uses several knowledge sources. The
purpose is to compress by removing as many unnecessary parts of the sentences as pos-
sible without detracting from the main idea that the sentences convey. These sources
include syntactic knowledge, context information, and statistics extracted from a cor-
pus of professional summaries.

45

Methods of automatic text summarization

In Cohn and Lapata [70], instead of shortening the sentence by removing words
or components, they introduced additional operations such as substitution, reordering,
and insertion. Filippova [71] proposed a method based on the shortest path in word
graphs to compress many sentences into a single short one to generate the summary.
The sentences are clustered based on sentence similarity or relatedness.

Deep learning can also be applied to compress sentences. Filippova et al. [72]
use Long Short Term Memory (LSTM) models with word embeddings to perform a
deletion based sentence compression. Their method performs very well either in terms
of readability or informativeness, even without using syntactic information (Part of
Speech (PoS), Named Entity (NE) tags, and dependencies).

Inversely, Wang and al. [73] suggested that the incorporation of syntactic informa-
tion into a compression model would be useful. Thus, they proposed an LSTM model
which uses syntactic information such as POS, tags, and parsing information. They
demonstrated that it influences and leverages the robustness of a model in cross-domain
application. One of the weaknesses of the deletion-based approach is its incapacity to
produce expressive sentences. The abstractive approach to sentence compression solves
this issue by paraphrasing the sentences. This approach will be discussed later in this
section.

Machine learning approach

Machine learning can solve the problem of combining features in the statistical ap-
proach for extracting the key sentences. For instance, Yatsko, Starikov, and Butakov
[74] tuned the features according to the input document’s genre. They used forty-five
parameters of various types: statistical, positioning, and discourse to identify those
that are most meaningful for a given genre of the document. Then, using K-Means,
grouped the documents in a corpus according to genres: scientific, press, and artistic.
Finally, they used the corpus to identify the specific parameters for each genre by as-
signing a weight to each one. Hence, the system can distinguish the genre of the input
document and execute the adequate model of scoring.

Wong, Wu, and Li [75] proposed a learning-based approach to combine four crite-
ria: surface features, content features, event features, and relevance features. Surface
features base on the structure of documents or sentences, content features measure a
sentence based on content carrying words, event features represent sentences by events
they contain, and relevance features evaluate a sentence from its relatedness with other
sentences. After examining feature vectors of sentences, they employed a supervised
learning classifier. The system re-rank candidate sentences considering the length of
the final summary that is fixed. Finally, they extracted the top sentences to generate
the final summaries.

46

Methods of automatic text summarization

Besides, many works use machine learning in automatic text summarization as a
classification problem. Kupiec et al. [76] introduced an automatic text summarization
system based on Bayes classification. They developed a classification function, naive-
Bayes classifier, to classify the sentences as summary sentences and non-summary sen-
tences based on the features they have with a probability score, given a training set of
documents and their extractive summaries selected manually. For each sentence s and
a set of features F , equation 3.12 calculates the sentence probability.

P (s ∈ S|F1, F2, ..., Fk) =
P (F1, F2, ..., Fk|s ∈ S) ∗ P (s ∈ S)

P (F1, F2, ..., Fk)
(3.12)

The equation tells us that the probability that a sentence s belongs to the summary
S given that it has a set of features is the same as the probability that these features
occur if the sentence is in the summary times the probability that the sentence is in
the summary, divided by the probability that these features occur together. For P (Fi)

, they estimated it from the corpus. Assuming the independence of the features, the
equation then becomes as shown in equation 3.13.

P (s ∈ S|F1, F2, ..., Fk) =

∏k
j=1 P (Fj|s ∈ S) ∗ P (s ∈ S)∏k

j=1 P (Fj)
(3.13)

This equation means that the probability that the sentence ends up in the sum-
mary given a certain set of features is the product of the probability of the individual
features that appear for the sentence and appear in the summary. As for the features
used in their summarizer, they settled for: sentence length, fixed phrase, the position
of a sentence in a paragraph, thematic word, and uppercase word. Their results showed
that position was the most influential individual feature, and the best combination of
features was the position, fixed phrase, and sentence length. One of the limitations of
this method is that the features are rarely independent. Osborne [77] has addressed
this problem using a linear logarithmic model. The use of a classifier based on the prin-
ciple of maximum entropy performed lower than naive Bayes classifier but surpassed
it when using a prior probability with the maximum entropy (even when we extend
naive Bayes with a similar prior); and instead of ordering the sentences using their
probabilities, it used a learning algorithm to classify sentences in two classes: the first
one contains the summary sentences, and the second one contains the other sentences.

Reinforcement learning is to train an agent to behave correctly by rewarding it
when taking the right decision [78]. In [79], they took advantage of simple embed-
ding features in reinforcement learning to generate an extractive summary for a single
document and reduce the burden of hand-crafted features. According to the authors,
embedding is a useful technique to build features to represent words, sentences, or doc-
uments. In their work, they used content embeddings and position embeddings and
considered sentences as the unit of summarization. The content vector described the

47

Methods of automatic text summarization

meaning of a sentence, and the position vector designated the position of a sentence
in the document. Their method demonstrated that embedding features are useful for
reinforcement learning.

In [80], authors proposed a system that improves performance for both extractive
and abstractive single-document summarization following the encoder-encoder-decoder
paradigm. The extractive model classifies each sentence in a document as being sum-
mary worthy or not. To enhance the sequence classification process, they encoded the
input document with a Transformer. The input is the concatenation of the vector
representation of the document sentences. Each sentence representation is the average
of the vector representation of its constituent words. The transformer encoder is a six
stacked identical layers. The extraction model has a final softmax layer that gives the
probability of including a sentence in the summary. Figure 3.3 illustrates the extractive
model architecture.

Figure 3.3: The extractive model architecture [80].

Besides, the model called BERTSUM [81] is a variant of BERT (Bidirectional
Encoder Representations from Transformers) [51] for extractive summarization. The
global architecture of this model comprises two components: a BERT large component,
and a summarization component. BERT large consists of twenty-four transformer en-
coder layers. It expects an input of size 1024 and has sixteen head in the multi-head
attention sublayer.

In vanilla BERT, The [CLS] is used as a symbol to aggregate features from one
sentence or a pair of sentences. While in BERTSUM, they modify the model inserting
external [CLS] tokens at the start of each sentence, and each [CLS] symbol collects
features for the sentence preceding it. The vector Ti which is the vector of the i − th
[CLS] symbol from the top BERT layer is used as the representation for sentence i.

48

Methods of automatic text summarization

Also since BERT has only two labels for indicating sentences, those labels are hard to
use for extractive summarization to distinguish between sentences. Hence, they modify
the segment embeddings and assign EA or EB depending on whether the sentence is
odd or even. For example, a document with five sentences [sent1, sent2, sent3, sent4,
sent5], would assign embedding [EA, EB, EA, EB, EA]. The intuition behind this
modification is to learn document representations hierarchically where lower Trans-
former layers represent adjacent sentences, while higher layers, in combination with
self-attention, represent multi-sentence discourse. Figure 3.4 represents an overview of
the architecture of the BERTSUM model.

Figure 3.4: The architecture of BERTSUM [81].

They used the sentence representation from BERT as an input to other layers
which are specific to summarization. Those layers will capture document-level features
to generate the summaries. For each sentence, they calculate the final predicted score
and compute the error using the Binary Cross Entropy of the generated label output
Ŷi against the gold label Yi. These summarization layers are jointly fine-tuned with
BERT. The formula of Binary Cross Entropy is described in equation

BCE = − 1

N
yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)) (3.14)

Where yi is the gold label and p(y) is the predicted probability of the sentence being
into the summary and N is the number of scalar values in the model output.

The summarization layer is a built as two Transformer layers. The extraction of
document-level features from the BERT outputs is described in the equations 3.15 and

49

Methods of automatic text summarization

3.16:
h̃l = LN(hl−1 +MHAtt(hl−1)) (3.15)

hl = LN(hl + FFN(hl)) (3.16)

Where h0 = PosEmb(T) and T are the sentence vectors output by BERT; PosEmb
is the function of adding positional embeddings to t; LN is the layer normalization
operation [82]; MHAtt is the multi-head attention operation [50]; the superscript l
indicates the depth of the stacked layer. The final output layer is still a sigmoid
classifier (see equation 3.17) :

Ŷi = σ(Woh
L
i + bo) (3.17)

Where hL is the vector for the senti from the top layer (the L − th layer) of the
Transformer which in this case is layer 2.

The model is trained on the CNN/Daily Mail and NYT annotated corpus [83]. Since
the dataset from NYT annotated corpus is created for abstractive summarization, they
create a new ground truth using a greedy algorithm for generating an oracle summary
for each document. The algorithm greedily selects sentences that can maximize the
ROUGE [35] scores as the oracle sentences.

3.2.2 Abstractive summarization

Compression approach

For the compression approach in abstractive summarization there are fewer works com-
pared to extractive summarization. We can cite the work of Choi et al. [69] who
proposed an abstractive sentence compression method using event attention for com-
pression sentences of news articles. Event attention focuses on the event words of the
source sentence in generating a compressed one. The attention score represents the
combination of the event attention and the global attention used to understand the
global information of a sentence.

Machine learning approach

Abstractive summarization systems make use of deep learning in multiple ways. Rush,
Chopra and Weston [84] implemented successfully deep learning to automatic text
summarization by applying a local attention-based model to their summarizer called
NAMAS. The attention-based model generates the summaries by taking into consid-
eration all words when processing a particular word. Some of the limitations of their
method are: it processes only documents with a size of around 500 words and generates
very short summaries.

50

Methods of automatic text summarization

In the same direction, Nallapati et al. [85] used an attention model as an encoder-
decoder recurrent neural network (RNN) [86]. The encoder is a bidirectional GRU-RNN
[87] and the decoder is a unidirectional GRU-RNN. The decoder has the same hidden
size as the encoder and a softmax layer over the target vocabulary to generate words.

To identify key concepts and entities in the document, they captured linguistic
features such as part-of-speech tags, named-entity tags, and tf ∗ idf statistics of the
words. Finally, for each word in the source document, they looked-up its embeddings
from all of its associated tags and concatenated them into a single long vector, as
shown in figure 3.5. On the target side, they used only word-based embeddings as the
representation. As we can see, there is one embedding vector each for POS, NER tags,
TF and IDF values, which are concatenated together with word-based embeddings as
input to the encoder.

Figure 3.5: Feature-rich-encoder [85].

The attention is shared between words and between sentences. The word-level at-
tention is further affected by sentence-level attention for capturing important sentences
and important words within those sentences. In the decoding process, they only used
the words appearing in the source document. Then to include new words, they added
a layer of word2vec nearest neighbor in the input. They used a layer which they called
Switching Generator/Pointer layer to decide if the next output is a word from the input
or a new word. The decoder has a ‘switch’ that chooses between using the generator
or a pointer at every time-step. When the switch is on, the decoder generates a word
from its target vocabulary; and when it is off, the decoder instead generates a pointer
to one of of the words in the input document. Figure 3.6 illustrates the Switching
generator/pointer model mechanism.

51

Methods of automatic text summarization

Figure 3.6: Switching generator/pointer model [85].

When the switch shows ’G’, the generator consisting of the softmax layer is acti-
vated to produce a word, and when it shows ’P’, the pointer copies the word from one
of the source document positions. The pointer uses the embedding from the source as
input for the next time-step as shown by the arrow from the encoder to the decoder at
the bottom.

Sequence-to-sequence models with attention require a lot of time processing. To
address this problem, Ling and Rush [88] assumed that not every word of the source is
necessary for generating a summary. Hence, they tried to reduce the amount of com-
putation performed on the source by using two-layer hierarchical attention. The first
layer selects the important parts from the input document using a mecanism called
hard attention. Then this layer feeds it/them into the second one which is a sequence-
to-sequence model. Basically, They divided the document into chunks of text, sparsely
attending to one or a few chunks at a time using hard attention, then applied full
attention over those chunks. Unfortunately, their method failed to surpass the stan-
dard sequence-to-sequence model but showed promise for scaling up existing models to
larger inputs.

Li et al. [89] proposed a sequence-to-sequence encoder-decoder model where the
encoder is a variational encoder that has gated recurrent units, and the decoder is a
variational decoder that has gated recurrent units too. The input is a variable-length
sequence representing the source text, and its embedding is initialized randomly and
learned during the optimization process. The output is also a sequence that represents
the generated abstractive summaries. For latent structure modeling, they added histor-
ical dependencies on the latent variables of Variational Auto-Encoders and proposed
a deep recurrent generative decoder to extract the complex latent structures. The
decoder generates the summary using both the hidden state variables and the latent
structural information.

52

Methods of automatic text summarization

Figure 3.7: The deep recurrent generative decoder (DRGD) for latent structure mod-
eling [89].

As figure 3.7 shows, in the decoder component, the input reflects not only the
observed variable y < t but also the previous latent structure information z < t;
this allows the model to create effective representations for the generation of the next
state. Besides, the architecture called the Transformer [90] works well for abstractive
summarization, however its performance is quadratic, which makes the input processing
as well as the training considerably slow. Sabran and Matton [91] introduced models
that address the bottlenecks of the encoder.
The first one called Local Transformer divides the input sequence into chunks of a fixed
size, and each chunk is processed independently. They made the cost linear instead of
quadratic while preserving many benefits of self-attention by having a fixed-size window
attention. The Local Transformer replaces one self-attention on the whole input by
n
k
self-attentions on k tokens. Figure 3.8 illustrates the local Attention of the local

Transformer.

Figure 3.8: Local Attention [91]

This figure (3.8) clearly shows how the input is divided into chunks and how chunks
are fed to self-attention. The main problem with the Local Transformer is that each
chunk is processed independently, the information from other chunks cannot be used
while processing a particular one. As a result, words that are at the edge of a chunk

53

Methods of automatic text summarization

can’t see words at the other side of the chunk.
The Local Transformer with Shifts tries to solve that limit by shifting all chunks

by half of their size in odd blocks of the transformer. As a result, information can
travel between all parts of the input sequence. Figure 3.9 illustrates local Attention
with Shifts.

Figure 3.9: Local attention with Shifts [91]

The last model applies a stridden convolution layer to reduce the size of the input
before feeding it to the Transformer. From a high-level perspective, the convolution
abstracts small adjacent groups of words (typically 4), and the transformer processes
the summarized inputs.

In addition to their extractive model, [80] also introduced the encode - encode -
decode paradigm using Transformer and GRU-RNN for generating abstractive sum-
maries. The reason behind is to improve the performance of the decoder by providing
an interpretable and richly encoded sequence. The transformer encoder has the same
implementation as in [90], except the inputs are sentence’s vector representations, not
document. Besides, those sentences represent the output of the extraction phase. The
sentence representations in that module are not the average of the constituent word rep-
resentations as in the extraction module but concatenated. That is, for each sentence,
its vector representation is the concatenation of its constituent word embeddings. The
second encoder is a unidirectional GRU-RNN whose input is the output of the trans-
former. The GRU-RNN encoder produces a fixed-state vector representation of the
transformed input sequence. Finally, the output of the GRU-RNN encoder is fed to
the decoder. At each time step, the decoder receives the previously generated word and
hidden state. The softmax probability provides the output word, at each time step.

In [92] they proposed a model for abstractive summarization using a light version
of BART [93] called Distilbart. BART is a pretrained denoising autoencoder imple-
mented as a sequence to sequence model with a bidirectional encoder and a left to right
autoregressive decoder.

54

Methods of automatic text summarization

The original BART architecture consists of a BERT like encoder with six layers
or twelve for the large one, and a GPT2 [52] decoder with six or twelve layers for the
large one; except that the encoder and decoder are connected by cross-attention, where
each decoder layer performs attention over the final hidden state of the encoder out-
put. And contrarily to BERT, BART does not use an additional feed-forward network
before word prediction.

BART pretraining consists of two stages: the text is corrupted with an arbitrary
noising function, then the sequence-to-sequence model learns to reconstruct the original
text which is the standard way of training a denoising autoencoder. The noising func-
tion used is a combination of text infilling and sentence shuffling (permutation). They
masked 30% of tokens in each text and permuted all sentences and ran the training on
160GB of news, books, stories, and web text for 500000 steps with a batch size of 8000.
Finally, the training objective aims to optimize the reconstruction loss (cross-entropy)
between the output and the original text.

The encoder of Distilbart is the same as the BART large and is composed of twelve
layers. The decoder is a stack of six layers from BART large, more precisely the author
took the layers: 0, 2,4, 7, 9, and 11 because he arbitrarily wanted to keep the first and
last layer. Similarly to BART, each layer has a multi-head attention sub-layer with
sixteen heads and a feed-forward network with 4096 hidden units. The activation func-
tions in both the encoder and decoder are GELU [94] (Gaussian Error Linear Unit).
And both expects as an input an embedding of a size equal to 1024. The summary
generation is similar to a sequence to sequence model. The input is processed by the
encoder, then the decoder autoregressively outputs one token at a time.

3.3 Multi-document summarization

3.3.1 Extractive summarization

Statistical approach

Nobata and Sekine [95] proposed different metrics to score sentences for multi-document
summarization: tf ∗ idf , sentence position, sentence length, and headlines (based on
titles). They proposed three functions based on sentence position:

Scorepos(si) =

{
1 if(i < N)

0 otherwise
(3.18)

This function (see equation 3.18) gives a score of 1 to the first N sentences where i is
the position of the sentence in the text. So it assumes the first ones as being the most
relevant. As for the second function (see equation 3.19), the importance of sentences

55

Methods of automatic text summarization

is inversely proportional to their positions.

Scorepos(si) =
1

i
(3.19)

Lastly, the third one (see equation 3.20) suggests that the first and last sentences
are the most relevant:

Scorepos(si) = max(
1

i
,

1

N − i+ 1
) (3.20)

Where N is the number of sentences and i is the position of the sentence. They also
introduced two methods based on the title’s words. The first method (see equation
3.21) measures the relevance between a title T and a sentence si using the tf ∗ idf
values of words w (except for the stop words) in the title.

Scoretitle(si) =

∑
w∈T∩si

tf(w)
tf(w)+1

idf(w)∑
w∈T

tf(w)
tf(w)+1

idf(w)
(3.21)

The second function (see equation 3.22) measures the score using only named entities
instead of the nouns. According to the authors, the second method gives better results.
For a named entity e, the following equation (3.22) is used to calculate the score of a
sentence si:

Scoretitle(si) =

∑
e∈T∩si

tf(e)
tf(e)+1

idf(e)∑
e∈T

tf(e)
tf(e)+1

idf(e)
(3.22)

Finally, for scoring sentences based on their length they proposed two functions. The
first one assigns a score equal to the length of the sentence divided by a predefined
length Lmax. If the length of the sentence is greater than Lmax, the score is one (see
equation 3.23).

Scorelength(si) =

{
Li

Lmax
if(Li ≤ Lmax)

1 otherwise
(3.23)

The second one gives a negative score to penalize sentences that are shorter than a
predefined value Lmin (see equation 3.24). It turns out that it performs better than
the first function.

Scorelength(si) =

{
0 if(Li ≤ Lmin)

Li−Lmin
Lmin

otherwise
(3.24)

Where si is a sentence and Li is the length of that sentence. They combine the
scores of all metrics using a score function where each metric is also associated with
a weight that determines its importance. The sentences are extracted following their
order in the original documents.

Another statistical feature is by using clusters. Clustering is a data mining method
that we can use in automatic text summarization as a mean to group sentences be-
longing to a document into clusters, or cluster sentences of different documents. For

56

Methods of automatic text summarization

instance, Radev, Jing, and Budzikowska [96] proposed the MEAD text summarizer.
This summarizer works for both single and multi-document summarization. The first
step consists of topic detection that aims to group news articles that describe the same
event. For that, it represents the documents as tf ∗ idf vectors and removes words
whose tf ∗ idf scores are below a threshold. Then, it applies a clustering algorithm,
adding documents after another to clusters and recomputing the centroids by using the
equation 3.25 described below.

cj =

∑
d∈Cj

d

|Cj|
(3.25)

Where: cj corresponds to the j-th cluster and Cj is the collection of documents
that belongs to that cluster. Thus, |Cj| is the number of documents inside of it; finally,
d represents the truncated version of the document after removing irrelevant words
according to tf ∗ idf .

The result of this step is a set of clusters. Each one of them is a collection; generally,
two to ten news articles from multiple sources chronologically ordered.

The second phase consists of identifying sentences that are close to the centroid in
each cluster. The summarizer uses two utilities to achieve that: cluster-based relative
utility (CBRU) and cross-sentence informational subsumption (CSIS). The first one
estimates the relevance of a sentence to the general topic of its clusters and the second
one measures redundancy among sentences.

Finally, sentence selection relies on approximating the CBRU and CSIS. To rank
the sentences, MEAD applies three parameters for each sentence Si: a centroid value,
a positional value, and a first-sentence overlap.

• The centroid value Ci is the sum of the centroid values of all the words in the
sentence. For a sentence Si the equation 3.26 shows how to calculate Ci:

Ci =
∑
w∈Si

Cw,i (3.26)

Where Cw,iis the centroid value of a word w in sentence Si.

• The positional value Pi for a sentence Si is calculated according to its position
in the document with n sentences as follows (see equation 3.27):

Pi =
n− i+ 1

n
∗ Cmax (3.27)

Where Cmax is the maximum centroid score in that document; which benefits
leading sentences.

• The first-sentence overlap Fi computes the inner product between the word oc-
currence vector of a sentence i and the first sentence vector of the document.

57

Methods of automatic text summarization

The final score of each sentence is a combination of the three scores minus a redundancy
penalty for each sentence that overlaps highly ranked sentences.

WEBINESSENCE [97] is a web-based summarizer for web pages similar to MEAD.
This summarizer first collects different URLs from web pages and extracts news articles
of the same event. Then, it clusters the sentences from different documents. A centroid
algorithm is used to find the representative sentences, avoid redundancy, and generate
the summary.

Latent semantic analysis (LSA) is an unsupervised method that attempts to analyze
correlations between a set of documents and the terms they contain.

Gong and Liu [98] proposed a method using LSA to extract highly scored sentences
for single and multi-document summarization in the news domain. They first built a
term-sentence matrix (n x m matrix). Each row corresponds to a word from the input
(n words), and each column corresponds to a sentence (m sentences). The entry aij of
the matrix is the weight of the word i in the sentence j. These weights are the results
of the tf ∗ idf calculation. If a sentence does not include a particular word, the weight
of that word in the sentence is equal to zero. The next stage is the singular value
decomposition (SVD). It is used on the matrix to transform it into three matrices. If A
is the original matrix, then we can use the equation 3.28 to describe the decomposition:

A = UΣV T (3.28)

The first matrix U is an (n x m) dimensional matrix that represents a term-topic
matrix. The second matrix Σ is a diagonal matrix (m ∗ m) where each row i corre-
sponds to the weight of a topic i. Finally, the matrix V T is the topic sentence matrix.
Moreover, the matrix D = V T represents how much a sentence describes a topic; thus,
dij determines the weight of the topic i in sentence j. After that, based on the length
of summary in terms of sentences, they retained the number of topics and chose one
sentence per topic. The issue is that it is nearly impossible to preserve the overall topic
information in just one sentence.

In [99], they also introduced an LSA-based method that achieved better perfor-
mance than the previous work. They used almost the same algorithm, the only dif-
ference was the technique to calculate the sentence salience. To locate sentences, they
defined the weight of the sentence as follows (see equation 3.29):

si =

√√√√ n∑
j=1

d2ij (3.29)

Graph approach

In multi-document summarization, some documents are more important than others.
To favor certain sentence documents over others Wan [100] proposed a graph-based

58

Methods of automatic text summarization

ranking algorithm by adding a sentence-to-document relationship into the ranking pro-
cess. In addition to documents impact on sentences, the author explained that even
sentences in the same document must not be treated evenly. The position of a sentence
and its distance to the document’s centroid are two factors that he thinks it should be
included to score sentences.

LexRank [26] is a graph-based technique for automatic text summarization. This
method uses cosine similarity to create a weighted graph where nodes with a weight
less than the specified threshold are removed. The main idea is that if a sentence is
very similar to many others, it is likely to be very significant.

In TextRank [101], the authors created an undirected graph from the input text,
where each sentence represents a node, and the arc between two nodes is weighted by
their similarity. They compute the similarity between sentences and store them in a
matrix called a similarity matrix, the similarity between two sentences is calculated as
the number of words they have in common (content overlap). Then they convert it into
a graph where sentences are vertices and the scores are edges. Finally, they extract the
top-ranked sentences to constitute the summary.

Wan [102] introduced a method called TimedTextRank. TimedTextedRank is a so-
phisticated version of the TextRank method that includes that temporal information.

3.3.2 Compression approach

MASC [103] is a system that does sentence compression before selecting the sentence.
MASC performs single as well as multi-document summarization. It consists of three
steps: filtering, compression, and candidate selection. First, a filterer selects sentences
of high relevance and centrality for further processing. For multi-document summa-
rization, they consider the first five sentences in a document as the most relevant ones,
hence these are not filtered. Then, multiple alternative compressed versions of the
source sentences are generated. The final step is the selection of candidates. The se-
lection uses a linear combination of static and dynamic features to pick the highest
scoring candidate for the summary. Static features include the position of the original
sentence in the document, length, compression-specific features, and relevance scores.
These are calculated before the candidate selection process and do not change. Dy-
namic features include redundancy according to the current summary state and the
number of candidates already in the summary from a candidate’s source document.
A particularity of this system is that it generates multiple compressed versions of the
source sentences, and the selection process decides which one to use.

59

Methods of automatic text summarization

Machine learning approach

Topic modeling is very similar to document clustering, only instead of each docu-
ment belonging to a single cluster or topic, a document can belong to many clusters.
Bayesian topic models are probabilistic models that cover the topic of documents.
Consequently, they improve the topic and document representation. They are quite
powerful for multi-document summarization since they make a distinction between doc-
uments as opposed to most automatic summarization methods that regard them as one
giant document [27]. Celikyilmaz and Hakkani-Tür [104] introduced a two-tiered topic
model consisting of two levels: the first level concerns distributions over words and
is called the low level, the second level concerns correlations between the lower-level
topics given sentences. One of its limitations is that it doesn’t differentiate general
words from specific ones. The authors’ motivation was to have general frequent words
to have more chances to be included in the summary. Consequently, they presented an
enriched two-tiered model that has a generic process to sample words from high-level
topics leading to three-word distributions. The first one is a low-level topic and con-
tains corpus specific words. The second one is a high-level topic that includes corpus
general words. Finally, background word distributions which are document specific.
This model is capable of capturing focused sentences with general words related to the
main ideas of the document and has much less redundant sentences containing concepts
specific to the user’s query compared to the first model.
Some works used reinforcement learning for multi-document summarization. For in-
stance, Ryang and Abekawa [105] regarded the extractive approach as a search prob-
lem. It constructs an extractive summary through a process of reinforcement learning.
Their system uses TD(λ) to learn and then execute a policy for summarizing a cluster
of documents. A state corresponds to a candidate summary, and an action refers to an
insertion of a textual element. After each action execution, the system receives either
a reward, which is the score of the current summary according to the scoring function
or a penalty if the summary length exceeds the maximum allowed length. The scoring
function compromises between the relevance and non-redundancy of the sentences and
the reward function is a delayed reward based on tf ∗ idf values.

Rioux et al. [106] extended the method of Ryang and Abekawa [105] for single-
document summarization by using an improved version of TD called SARSA which in
addition to modeling state space, models actions space too. They used ROUGE as part
of their reward function and used bi-grams instead of tf ∗ idf as features. Their reward
function is immediate at every action to help the learner get immediate feedback. The
difference between immediate rewards and delayed rewards is that the learner receives
instant feedback at every action in the first one and feedback only at the end in the
second one.

60

Methods of automatic text summarization

3.4 Comparaison between machine learning works

This section summarizes some of the previously mentioned works regarding the machine
learning approach. This is illustrated in table 3.2; where the lines represent the works,
and the columns represent whether it is for single or multi-document summarization,
the way machine learning is used, as well as the advantages and disadvantages of each
work, and the methods used by each work. We did not consider the other approaches
and instead focused only on the machine learning approach since our work is oriented
toward this approach.

61

Methods of automatic text summarization

w
or
k

Si
ng

le
/

M
ul
ti
do

c
E
xt
ra
ct
iv
e/

A
bs
tr
ac
ti
ve

M
ac
hi
ne

le
ar
ni
ng

us
ag

e
B
en

efi
ts

D
is
ad

va
nt
ag
es

[7
4]

Si
ng

le
do

cu
m
en
t

E
xt
ra
ct
iv
e

Fe
at
ur
e

co
m
bi
na

ti
on

Fe
at
ur
es

ar
e
tu
ne

d
ac
co
rd
in
g

to
th
e
ge
nr
e
(m

or
e
fle

xi
bl
e)
.

C
an

ex
ec
ut
e
th
e
ad

eq
ua

te
m
od

el
fo
r
sc
or
in
g.

D
ep

en
de
nt

on
th
e
co
rp
us

ge
nr
e.

[7
5]

Si
ng

le
do

cu
m
en
t

E
xt
ra
ct
iv
e

Fe
at
ur
e

co
m
bi
na

ti
on

w
it
h
a

su
pe

rv
is
ed

le
ar
ni
ng

cl
as
si
fie

r

C
om

bi
ne

fo
ur

fe
at
ur
es

(s
ur
fa
ce
,c
on

te
nt
,e

ve
nt
,r

el
ev
an

ce
)

to
ge
t
fe
at
ur
e
ve
ct
or
s
fo
r
se
nt
en

ce
s.

R
eq
ui
re
s
la
rg
e
la
be

le
d
da

ta
.

Se
ns
it
iv
e
to

su
m
m
ar
y
le
ng

th
:

go
es

lo
w

w
he

n
th
er
e
is

fe
w

se
nt
en

ce
s
ch
os
en

.

[7
6]

Si
ng

le
do

cu
m
en
t

E
xt
ra
ct
iv
e

A
pp

ro
ac
he

d
as

a
st
at
is
ti
ca
l

cl
as
si
fic

at
io
n

pr
ob

le
m

w
it
h

su
pe

rv
is
ed

le
ar
ni
ng

P
ro
vi
de

s
a
m
et
ho

d
fo
r
se
le
ct
in
g

am
on

g
po

te
nt
ia
lf
ea
tu
re
s

an
d
ch
oo

se
s
a
w
ei
gh

te
d

co
m
bi
na

ti
on

.
D
oe
s
no

t
tr
ai
n
fe
at
ur
es

us
in
g
a
co
rp
us
.

R
ob

us
tn
es
s:

m
an

y
te
xt

ge
nr
es

do
no

t
co
nt
ai
n
an

y
of

th
e
in
di
ca
to
r

ph
ra
se
s
th
at

ar
e
co
m
m
on

in
th
e
us
ed

co
rp
us
.

A
s
th
e
nu

m
be

r
of

se
nt
en
ce
s
gr
ow

s
m
or
e
di
sp
er
se
d
in
fo
rm

at
iv
e
m
at
er
ia
l

te
nd

s
to

be
in
cl
ud

ed
.

Fe
at
ur
es

ar
e
ra
re
ly

de
pe

nd
en
t.

62

Methods of automatic text summarization

[7
7]

Si
ng

le
do

cu
m
en
t

E
xt
ra
ct
iv
e

D
ec
is
io
n
fu
nc

ti
on

(s
em

i-
su
pe

rv
is
ed

le
ar
ni
ng

)

In
te
gr
at
e
to
ge
th
er

fe
at
ur
es

th
at

ar
e
ig
no

ri
ng

us
el
es
s
fe
at
ur
es

an
d
ex
pl
oi
t
on

ly
us
ef
ul

on
es
.

W
el
ls

ui
te
d
fo
r
se
nt
en

ce
ex
tr
ac
ti
on

an
d
do

es
no

t
al
w
ay

s
ne

ed
to

pr
oc
es
s
th
e
en
ti
re

do
cu
m
en
t
be

fo
re

as
si
gn

in
g

cl
as
si
fic

at
io
n.

T
he

re
is

no
di
re
ct

w
ay

to
co
nt
ro
lt
he

si
ze

of
th
e
su
m
m
ar
y.

N
ee
ds

an
no

ta
te
d
m
at
er
ia
l:

co
st
ly

to
pr
od

uc
e.

Fe
at
ur
es

w
hi
ch

pr
ed

ic
t
w
he

th
er

a
se
nt
en

ce
sh
ou

ld
be

ex
tr
ac
te
d
te
nd

to
be

sp
ec
ifi
c
an

d
oc
cu
r
in
fr
eq
ue

nt
ly
.

[1
04

]
M
ul
ti

do
cu
m
en
t

E
xt
ra
ct
iv
e

D
ec
is
io
n
fu
nc

ti
on

(u
ns
up

er
vi
se
d

le
ar
ni
ng

)

D
is
co
ve
r
ty
pi
ca
llu

co
he

re
nt

se
nt
en

ce
s
th
at

co
nt
ai
n
ke
y
sh
ar
ed

in
fo
rm

at
io
n
w
it
h
lit
tl
e
re
du

nd
an

cy
.

D
ir
ec
tl
y
ca
pt
ur
es

co
he

re
nt

to
pi
cs

in
do

cu
m
en
ts
.

C
an

id
en
ti
fy

sa
lie

nt
se
nt
en

ce
s.

C
om

pl
ic
at
ed

to
al
lo
ca
te

la
te
nt

to
pi
cs

in
on

ly
tw

o
la
ye
rs
.

R
el
yi
ng

on
ex
pe

rt
su
m
m
ar
ie
s
fo
r

in
di
ca
ti
ng

to
pi
c
le
ve
l,
an

d
re
st
ri
ct
in
g
to
pi
c
la
ye
rs

lim
it
s
th
e

pr
ac
ti
ca
la

pp
lic

at
io
ns

of
th
e
m
od

el
.

[1
05

]
M
ul
ti

do
cu
m
en
t

E
xt
ra
ct
iv
e

D
ec
is
io
n
fu
nc

ti
on

(r
ei
nf
or
ce
m
en
t

le
ar
ni
ng

)

C
om

pr
om

is
es

be
tw

ee
n

re
le
va
nc

e
an

d
no

n-
re
du

nd
an

cy
of

se
nt
en

ce
s.

C
on

ve
rg
es

su
b-
op

ti
m
al
ly

an
d

ex
ce
ss
iv
el
y
de

pe
nd

s
on

th
e

fo
rm

ul
at
io
n
of

fe
at
ur
es

an
d

sc
or
e
fu
nc

ti
on

.

[1
06

]
M
ul
ti

do
cu
m
en
t

E
xt
ra
ct
iv
e

D
ec
is
io
n
fu
nc

ti
on

(r
ei
nf
or
ce
m
en
t

le
ar
ni
ng

)

C
on

ve
rg
es

fa
st

to
a
st
ab

le
so
lu
ti
on

.

N
ot

en
ou

gh
to

ca
lc
ul
at
e
si
m
ila

ri
ty

w
it
h
th
e
qu

er
y
to

pr
od

uc
e
a
go

od
qu

er
y
fo
cu

se
d
su
m
m
ar
y.

T
he

qu
er
y
fo
cu

se
d
su
m
m
ar
y
is

w
or
se

th
an

th
e
to
p
sy
st
em

fr
om

D
U
C

20
06

co
nf
er
en

ce
.

63

Methods of automatic text summarization

[7
9]

Si
ng

le
do

cu
m
en
t

E
xt
ra
ct
iv
e

D
ec
is
io
n
fu
nc

ti
on

(r
ei
nf
or
ce
m
en
t

le
ar
ni
ng

)

U
se
s
em

be
dd

in
g
fe
at
ur
es

in
st
ea
d

of
ha

nd
cr
af
te
d
on

es
.

La
ck

of
tr
ai
ni
ng

da
ta

to
up

da
te

em
be

dd
in
gs
.

[8
4]

Si
ng

le
do

cu
m
en
t

A
bs
tr
ac
ti
ve

A
tt
en
ti
on

(s
up

er
vi
se
d

le
ar
ni
ng

)

C
an

ea
si
ly

sc
al
e
on

a
la
rg
e
am

ou
nt

of
da

ta
.

C
an

be
tr
ai
ne

d
on

an
y
do

cu
m
en
t

su
m
m
ar
y
pa

ir
.

P
ro
ce
ss
es

on
ly

do
cu

m
en
ts

w
it
h
a

si
ze

of
ar
ou

nd
50
0
w
or
ds
.

G
en

er
at
es

ve
ry

sh
or
t
su
m
m
ar
ie
s.

[8
5]

Si
ng

le
do

cu
m
en
t

A
bs
tr
ac
ti
ve

A
tt
en
ti
on

(s
up

er
vi
se
d

le
ar
ni
ng

)

A
bl
e
to

id
en
ti
fy

th
e
ke
y
co
nc

ep
ts

an
d
en
ti
ti
es

in
th
e
do

cu
m
en
t.

R
eq
ui
re
s
a
lo
t
of

ti
m
e
pr
oc
es
si
ng

.
T
he

m
od

el
ca
nn

ot
ca
pt
ur
e
th
e

m
ea
ni
ng

of
co
m
pl
ex

se
nt
en

ce
s.

[8
8]

Si
ng

le
do

cu
m
en
t

A
bs
tr
ac
ti
ve

A
tt
en
ti
on

(s
up

er
vi
se
d

le
ar
ni
ng

)

C
an

ha
nd

le
lo
ng

se
qu

en
ce
s.

R
ed

uc
es

am
ou

nt
of

co
m
pu

ta
ti
on

pe
rf
or
m
ed

.

Fa
ils

to
su
rp
as
s
se
q2

se
q

m
od

el
s.

[9
1]

Si
ng

le
do

cu
m
en
t

A
bs
tr
ac
ti
ve

U
se
s
T
ra
ns
fo
rm

er
s

(s
up

er
vi
se
d

le
ar
ni
ng

)

T
he

co
st

of
se
lf-
at
te
nt
io
n
is

sm
al
le
r.

Fa
st
er

th
an

tr
ad

it
io
na

lt
ra
ns
fo
rm

er
s.

Se
qu

en
ce
s
fr
om

10
00

to
15
00

to
ke
n
pr
oc
es
si
ng

is
sl
ow

.

[8
0]

Si
ng

le
do

cu
m
en
t

E
xt
ra
ct
iv
e

an
d

A
bs
tr
ac
ti
ve

U
se
s
T
ra
ns
fo
rm

er
s

(s
up

er
vi
se
d

le
ar
ni
ng

)

D
oe
s
a
gr
ea
t
jo
b
at

id
en
ti
fy
in
g
th
e

m
os
t
sa
lie

nt
pa

rt
s
of

do
cu

m
en
ts
.

P
ro
vi
de

s
w
el
lf
or
m
ed

ab
st
ra
ct
iv
e

su
m
m
ar
ie
s
an

d
is

si
m
pl
e
to

tr
ai
n.

C
om

pu
ta
ti
on

al
ly

co
st
in
g.

[8
1]

Si
ng

le
do

cu
m
en
t

E
xt
ra
ct
iv
e

U
se
s
T
ra
ns
fo
rm

er
s

(B
E
R
T
)

(s
up

er
vi
se
d

le
ar
ni
ng

)

C
ap

tu
re
s
do

cu
m
en
t
le
ve
lf
ea
tu
re
s.

P
ro
vi
de

s
w
el
lf
or
m
ed

ex
tr
ac
ti
ve

su
m
m
ar
ie
s
an

d
is

si
m
pl
e
to

tr
ai
n.

C
om

pu
ta
ti
on

al
ly

co
st
in
g.

T
he

in
pu

t
se
qu

en
ce

le
ng

th
is

on
ly

10
24

to
ke
ns

64

Methods of automatic text summarization

[9
2]

Si
ng

le
do

cu
m
en
t

A
bs
tr
ac
ti
ve

U
se
s
T
ra
ns
fo
rm

er
s

(s
up

er
vi
se
d

le
ar
ni
ng

)

C
om

bi
ne

s
th
e
ad

va
nt
ag

es
of

re
ce
nt

ar
ch
it
ec
tu
re
s

A
bl
e
to

ca
pt
ur
e
th
e
ke
y
in
fo
rm

at
io
n

of
th
e
or
ig
in
al

do
cu

m
en
t.

C
om

pu
ta
ti
on

al
ly

co
st
in
g.

T
he

in
pu

t
se
qu

en
ce

le
ng

th
(1
02
4
to
ke
n)

T
ab

le
3.
2:

M
ac
hi
ne

le
ar
ni
ng

ap
pr
oa

ch
w
or
ks
.

65

Methods of automatic text summarization

3.4.1 Discussion

Among the works cited in the table, only [80], [84], [85], [88], [91], [92] concern abstrac-
tive summarization, and most of them deal with single-document summarization. The
extractive models attempt to identify salient sentences and use machine learning either
in the hope to combine features, decide what features to use, or as a classification prob-
lem where the model classifies sentences as "should be included in the summary" or
"should not be included in the summary". On the other hand, the abstractive models
use attention to prioritize information over others when processing a token. Over-
all, they can identify key information and handle long sequences; however, they are
computationally costing. Besides, in terms of the type of machine learning, they use
supervised learning, meaning that the data has to be labeled, which points to another
issue: gather enough labeled data for training. Although this detail is not mentioned
in the table 3.2, it’s evident that the training data is a huge factor to achieve good
performance. Finally, since most recent works deal with abstractive summarization,
we can conclude that researchers are finally starting to get familiar with this type of
summarization.

3.5 Conclusion

In this chapter, we have presented the state of the art on automatic text summariza-
tion. First, we have presented a classification for the existing works. An automatic
summarization system can be classified according to several criteria, and the choice
of the class greatly influences the summarization method used. These methods are
themselves part of one of the automatic summarization approaches. Indeed, different
approaches have been proposed since Baxendale’s first work that is based on the sta-
tistical approach.

Automatic text summarization continues to gain more importance due to a large
amount of information available. In our case, we are interested in the machine learning
approach since most of the recent works are based on it. The model we are interested
in is Distilbart which is based on transformers. Transformers can easily scale on a large
amount of data, handle long sequences, and deduce rules automatically [50]. Besides, in
abstractive summarization, the goal is to generate summaries from scratch depending
on the understanding of the documents. Since machine learning networks can acquire
knowledge during training, and since transformer-based components for Distilbart rep-
resent language models that have a general understanding of the language, we think
they have a great potential to reach our objectives. Also, we can exploit the full power
of GPUs and perform parallel computations. Distilbart deals with single-document
summarization, hence we will attempt to adapt it for multi-document summarization.

66

Methods of automatic text summarization

In the following chapter, we will introduce the deep neural network concepts and the
most used architectures to better understand our solution that will be discussed in the
third chapter.

67

Chapter Four

Design of our system Quiksum

4.1 Introduction

In the previous chapters, we have seen the different works on automatic summarization
with an emphasis on deep learning, especially on models that use transformers [50]. We
dedicate this chapter to cover all the aspects describing the purpose of our work. We
will first start with the presentation of the problem that inspired the creation of our
system which we named Quiksum, and describe the application; then, we will highlight
the architectures of the models used and explain our share of contribution. Third, we
will detail the different steps to generate an abstract using each model. Finally, before
concluding by wrapping up what we have achieved; we will discuss how to generate the
summaries after the fine-tuning which can be done in two ways: a simple preprocessing,
or a preprocessing that eliminates redundant sentences.

4.2 Problematic

Nowadays, people use the Internet to find information through information retrieval
tools such as Google, Yahoo, Bing, etc. Due to the exponentially increasing rate of
data, people need meaningful information in a reasonable amount of time. Thus, users
can’t read every document to find the one that is useful, hence the need to condense
or summarize this information. Among all modern technologies, multi-document text
summarization is one of the recent research topics that researchers in Natural Language
Processing have been interested in.

However, to create a summary from one or multiple texts there is no efficient, fixed
model yet that provides satisfactory results. Summarizing a text in such a way as to
keep only the key points of the original document is a difficult task; if on top of that, the
system has to be able to reformulate this information instead of copying the sentences
that contain it, the difficulty grows a step further. Furthermore, the summary must
be readable and coherent. What is also interesting is to be able to summarize several
documents dealing with the same subject while avoiding redundancy, as it is clear that

68

Design of our system Quiksum

some information will be repeated in at least two documents.
The work carried out in the context of automatic text summarization has shown

very encouraging results, but there is always room for improvement. Nonetheless,
most of this work favors an extractive approach. Very few works are interested in the
abstract multi-documentary summarization.

4.3 Quiksum overview

4.3.1 Functionalities

A part of the focus of this project was to build an application that enables us to im-
plement our models in a concrete example.

Firstly, a user can summarize one or multiple documents, either by entering text(s)
or by uploading the document(s). Secondly, before generating the summary, it is pos-
sible to include a reference summary to evaluate the result, again either by inserting
the summary or by uploading it. Finally, for a multi-document abstract, the texts can
be subjected to either a simple preprocessing or a more complex preprocessing that
tries to eliminate any redundancy. Each preprocessing type will be further explained
in the rest of the chapter.

Our application offers different (extractive/abstractive) models that can be used.
We can imagine a scenario where the user wants to summarize a collection of docu-
ments obtained from a search about a specific subject in a text format; in this case,
he can easily copy-paste it to include the content. In case the result is a file, he can
upload it directly instead.

We include the summary evaluation so that if the user has already a summary of
one of the results, he can choose the model that performs best on this particular topic.
As this situation is very unlikely to happen, this functionality is purely optional.

Other minor but certainly useful details concern the possibility to access all the in-
formation before and after the generation of the summaries; this includes the number
of documents (or text) inserted, the name of the chosen template, the type of pre-
processing, the length of each document (or text) and the summaries as well as their
content. Besides:

• Changing the model is optional. By default, we use the model that performs best
on our test dataset for abstractive summarization.

• Each time the user inserts a text or uploads a document its content is displayed
including the content length.

• Each time the user inserts a text or uploads a document its content is displayed
including the content length.

69

Design of our system Quiksum

• Finally, after generating the summary, our system can evaluate the resulted ab-
stract if the evaluation was activated, hence it will either display the summary
and the evaluation result including its length, or the summary alone.

• For multi-document summarization, the only difference is that there is also an
option to change the simple preprocessing to a more complex one. Hence during
generated summary will also be different as the input changed.

4.3.2 Components

Our system is a web application divided into two parts: the frontend, and the backend
as a server-client architecture; where the backend does all the calculations needed
and generates the results; as for the front end, it is the UI component for the users to
manipulate inputs and request results. The request is sent with fetch API and contains
the following arguments:

• Documents: represents all the documents inserted.

• Evaluation: whether the user wants to evaluate or not.

• Reference summary: the content of the reference summary if the evaluation is
activated. In the other case, it will have an empty value in the request.

• The model name: which user will use to employ the correct model to generate
the summary.

The response returns the content of the generated summary and ROUGE scores if the
evaluation was activated. Figure 4.1 illustrates our system.

Figure 4.1: Representative schema of the architecture of our system.

70

Design of our system Quiksum

4.4 Models architectures for summarization

4.4.1 Extractive summarization

In our case, we make use of the fine-tuned BERT large component of BERTSUM [81]
(see chapter 2) to extract sentences features then uses a clustering algorithm which is K-
means here to group them and output the closest sentence to each centroid. Features
extraction happens at the last layer in the [CLS] token, each [CLS] symbol collects
features for the sentence preceding it and will serve as input to the clustering algorithm.
Figure 4.2 illustrates better the architecture.

Figure 4.2: Represents the architecture of the extractive model consisting of two layers:
BERT large and a clustering layer.

As we can see, it is a very simple architecture. For the process part we will provide
more details in section 4.5.

4.4.2 Abstractive summarization

We chose Distilbart [92] which is a light version of BART [93] consisting of a BERT
[51] like encoder and a GPT-2 [52] like decoder. BERT works well for tasks where
the prediction at a certain position is allowed to use information from later positions;
however, it performs poorly on generation tasks. On the other side, GPT-2 [52] is more
effective for generation tasks but less effective on downstream tasks where the whole
input yields information for the output [107]. The main reason that we chose BART
is that it takes the best of both previous models. In total, BART large contains 406M
parameters, as a consequence pretraining it would take a considerable amount of time

71

Design of our system Quiksum

and requires a lot of memory. To compromise, we chose a compressed model called
DistilBart [92] that has 100M fewer parameters.

Instead of finetuning the resulting model from scratch, we decided to finetune a
model already capable of generating reasonable summaries, as we thought that it would
give even greater results. The author finetuned Distilbart only on CNN / Daily Mail
containing generated headlines of news articles which tends more to extractive sum-
marization. Hence, We tried to finetune it on more relevant abstractive datasets.

On a high level, the process is similar to finetuning a transformer encoder-decoder:
the encoder takes the input sequence, creates a representation of it, the decoder then
receives the encoder representation, generates the output sequence autoregressively us-
ing teacher forcing. On a deeper level, the author ran the model on two epochs with a
batch size of 32 and a half-precision, the learning rate was equal to 3e-5, the dropout
value was equal to 0.1, and they set the maximum length of the generated summary
to 142.
In our case, we tried with two learning rate values (2e-5 and 3e-5) and chose 3e-5 just to
reduce the execution time. Also, similarly to the previous step, we used half-precision
and a dropout value equal to 0.1. For the activation function we settled for GELU,
and the cost function is cross-entropy. During generation, we set the beam size as 4,
remove duplicated trigrams, and tuned the model with a maximum sequence length
of 142 and a minimum sequence length of 56, and a length penalty equal to 2.0. The
batch size is set according to how much our resources allow us to set, it was either 1,2,
or 16. The figure 4.3 shows the script we execute for fine-tuning our models.

Figure 4.3: Models fine-tuning script

Most of the hyperparameters are set in other files. To finetune each model we store
the datasets in Google Storage as well as the initial model before finetuning. Then
we load the model and the dataset in our execution instance and run the script shown
in figure 3. The data directory is where the dataset is loaded, the documents of the

72

Design of our system Quiksum

dataset are grouped into three sets: train set, validation set, and test set. Each one of
them is associated with a summary. For each dataset:

• We retrieve the articles one by one and their abstracts.

• We eliminate unnecessary spaces and line breaks so that each text is in a single
line.

• Finally, we write these data in six files, three source-format for the texts (train,
val, test), and three target-format files (train, val, test) for their references.

The output directory is the result of finetuning a part of the dataset, and the model
name or path is the path to the current model. The output directory is then stored
once again in Google Storage and is used in the same way, hence we iterate the process
until the model is finetuned on the entire dataset.

4.5 Process of generating summaries

In this section, we will describe how we generate our abstractive or extractive sum-
maries for one or multiple documents.

4.5.1 Single document summarization

Extractive summarization

Figure 4.4 is a simplified schema of our process for generating a single-document ex-
tractive summary.

73

Design of our system Quiksum

Figure 4.4: Illustrates the process for generating an extractive summary.

On a deeper level, to generate an extractive summary we:

• Take the text and tokenize it using BERT vocabulary; then we add the token
embeddings representing the vocabulary id for each token, we also add the at-
tention masks to distinguish paddings from tokens (1 for masked ones and 0 for
non-masked), add the positional embeddings and sentence embeddings then feed
it to BERT.

• Fetch the output of the CLS tokens at the last layer; this output represents the
features of the sentence.

• Use those features to create a matrix, where the rows are the sentences, and the
columns are the features of the corresponding sentence.

• Initiate the K-means model, such as it takes as input the features matrix and the
number of clusters.

• Execute K-means and compute the centroid of each cluster until the clusters do
not change.

74

Design of our system Quiksum

• Search for the closest argument (sentence features) to the centroid then return
for each cluster the index of the closest sentence to the centroid.

• Finally, extract the sentences based on these indices and concatenate them to get
a summary of sentences.

Figure 4.5 represents the algorithm organigram which summarizes the steps for gener-
ating an extractive summary.

Figure 4.5: Shows and organigram explaining the generation of an extractive summary.

Abstractive summarization

To summarize one document, the process is very straightforward:

• We take the text and tokenize it.

75

Design of our system Quiksum

• After breaking the text into tokens we convert the tokens from a list of strings to
a list of vocabulary indices, such as each token has its id (the vocabulary include
50265 token).

• We also add the attention masks to avoid performing attention on padding token
indices, we add a value of 1 for non masked tokens and 0 for masked ones.

• Then, we feed the input id and attention masks to the encoder to generate the
representation of the document.

• The decoder then will use the encoder output to generate tokens that will con-
stitute the summary auto-regressively:

– The decoder takes the output of the encoder and the starting token to
generate the first token.

– When the last decoder produces its output, the model multiplies the result-
ing vector by an embedding matrix, which will project the vector to the size
of the vocabulary; and each number is the score of a token of the vocabulary.

– Beam search is applied to select the most appropriate token.

– This token will be the next input to the decoder, we use then the output
of the encoder again until the end of sequence is reached or the maximum
length of sequence is reached.

Figure 4.6 represents the algorithm organigram which summarizes the steps for generat-
ing an extractive summary.

76

Design of our system Quiksum

Figure 4.6: Shows and organigram explaining the generation of an abstractive summary.

4.5.2 Multi-document summarization

Whether it is abstractive summarization or extractive summarization, we preprocess
our documents to get one global text and consider it as summarizing one document.
Hence, we perform the same process described above. We applied one of two different
preprocessing each time:

• Simple preprocessing
The preprocessing is very basic: we take the texts and concatenate them together
to get one single global text. The order of concatenation follows the order in which
documents are inserted.

• Similarity preprocessing
a- Bert for semantic similarity
We used Bert to calculate the similarity between sentences. Two sentences with

77

Design of our system Quiksum

different words and structure can convey the same meaning. Semantic similarity
of sentences bases on the meaning of the words and their combination together.
The easiest way to calculate the semantic similarity between a pair of sentences
is by taking the average of the word embeddings and calculate the cosine between
the resulting embeddings. Cosine similarity is a metric that performs an inner
product between two vectors; if two vectors are similar then the angle between
them would be equal to 0 degree, therefore the cosine value would be equal to 1.
BERT can be used for a huge variety of tasks without task-specific architecture
modifications. It can also be used for its features embedding, which in our case
we extract the features embeddings from the [CLS] token.
To compute the semantic similarity between two sentences, we don’t use basic
word embeddings such as Word2Vec [108] or Glove [109] for multiple reasons:

– These basic result embeddings do not take word position into account as
they are based on the bag-of-words method.

– These are context-free models that generate a single word embedding rep-
resentation for each word in the vocabulary and do not capture polysemy.

In contrast, BERT has positional embeddings and is context-dependent, hence a
word can have multiple embeddings.
An important note here is that BERT is not trained for semantic sentence sim-
ilarity. Therefore, we cannot apply the cosine similarity directly on the BERT
embeddings. In our work, we use a BERT base model finetuned on the AIINLI
dataset, then on a train set of STS benchmark; these datasets are specifically
suited for semantic textual similarity.
Now, to compute the similarity we:

– Feed the first sentence into BERT: we use the BERT tokenizer to convert
the words into tokens. Then we add the [CLS] token at the beginning of
a sentence, and the [SEP] token at the end. The tokenizer then replaces
each token with its id from the embedding table. We also add the attention
masks and positional embeddings.

– Extract the sentence embedding from the [CLS] token.

– Perform the same two previous steps for the second sentence.

– Finally, we compute the cosine value between those two embeddings: since
two vectors can be equal (cosine = 1) only if the two sentences are comprised
of the same words, we consider that two sentences are similar if the cosine
value is equal or greater than a threshold value.

• b- The preprocessing steps

78

Design of our system Quiksum

The main goal of this preprocessing is to eliminate redundant sentences. We
suppose that, as we are going to summarize multiple documents there are high
chances that we will have portions that has the same meaning. For example, we
have s1, s2, s3, s4, and s1, and s3 have the same meaning, instead of summarizing
s1, s2, s3, s4, we would abstract s1, s2, s1, s4, or s3, s2, s3, s4,.
To achieve that we:

– Take the texts and concatenate them to make them one long text and remove
any unnecessary spaces (we should have only one space, not two consecutive
spaces or more).

– Split the text into sentences:
A sentence always begins with a capital letter and ends with a period, ques-
tion mark, or exclamation mark. In some cases, however, a text can include
abbreviations or names such as John D. Rockefeller, and it obviously cannot
end in the D character. A simple solution is: we check the preceding two
characters; if it’s not a space then it means that there are more words after
the D, we concatenate the sentence with the next one and perform the same
process for each adjacent pair of sentences.

– We group similar sentences in clusters:
Initially, each cluster contains one sentence; there are as many clusters as the
number of sentences consisting of the text. For each sentence, we compare
it with all other sentences; if they are similar (similarity score greater than
a threshold), we add it to the cluster of that sentence.

– The previous step gives us a set of clusters; the number of clusters corre-
sponds to the number of sentences in the text. This means that there are
high chances that some clusters are redundant; however, this is not an issue,
if we extract the same sentence from similar clusters and concatenate them,
we would have exactly the desired input:
At first, we take the first cluster and randomly choose a sentence inside it
that will replace all the sentences of the cluster in the text, then we search
for that phrase in the second cluster; if it is present then we assign to the
second cluster the same sentence. We proceed in this way until all similar
clusters would have the same chosen sentence.

– Finally, we concatenate the chosen sentences to get a coherent text that will
be used to generate the summary of the initial documents.

Figure 4.7 represents the algorithm organigram which summarizes the steps to
preprocess the text with sentence redundancy elimination.

79

Design of our system Quiksum

Figure 4.7: Organigram explaining the preprocessing for multi-document summariza-
tion.

4.6 Conclusion

In this chapter, we have covered everything about our contribution from the design
point of view. We have described our application and presented our models for the
abstractive and extractive type, as well as the steps for generating summaries using
them. Finally, we explained the functioning of our proposed method that is used during
preprocessing in the generation of multi-document summaries.

In the next and last chapter, we will present the technical details related to the
implementation and the results obtained.

80

Chapter Five

Realization of Quiksum

5.1 Introduction

After presenting the architectures of our models as well as our application requirements
in the previous chapter, this chapter discusses the implementation of the system. The
first section provides technical information about the system, including hardware and
software decisions we took. There are several libraries we used, these are explained
along with the programming languages used in section 5.3 and 5.4. In section 5.5
we present the datasets for training as well as testing. In section 5.6 we will present
some screenshots of our implemented system and describe it. Section 5.7 provides an
overview of the evaluation metric, and section 5.8 describes in detail the experiments
we conducted as well as the results we obtained. Finally, in section 5.9 we discuss the
results and conclude this chapter by recapitulating what we have done.

5.2 Environment

5.2.1 Google colaboratory

Our finetuning and testing have been done on Google Colaboratory that is a Jupyter
notebook saved on Google Drive composed of cells where it is possible to write python
code, Linux commands, texts, and images on it. It is an executable file connected
to a cloud instance that runs on variable spec systems through time with a superior
upgrade each day passes. Below are the specs we took from google Colaboratory in
15/08/2020:
CPU: Intel(R) Xeon(R) CPU @ 2.20GHz.
RAM: 16 GB.
Disk: 70 GB.
GPU: Tesla T4 16 GB.
Python version: 3.8.

Personal Environment For our demo application we used a Windows 10 machine

81

Realization of Quiksum

with:
CPU: Intel I5-4460 @3.2GHz.
RAM: 8 GB.
GPU: Nvidia GTX 1050TI 4 GB GDDR5.
Disk: SSD 240 GB.
Python version: 3.8.

5.3 Programming language and IDE

5.3.1 Python in the backend

Figure 5.1: Python programming langage logo.

We used Python in our Backend system mainly in manipulating the Transformers mod-
els (fine-tuning and the evaluation as well as the production) this choice was made due
to how popular this language is in the machine learning domain. It is easy to use, has a
clear and readable syntax. Many useful libraries that we used such as Keras, Pytorch,
and TensorFlow are built with it. Python has a growing community with over 8 million
developers in 2019 [110] which made looking for help and solutions for some issues a
lot easier. Figure 5.2 represents Python programming language ranking and its most
popularusage cases and least usage case.

Figure 5.2: Python programming language ranking. [110]

As figure 5.2 shows, python is the second most popular programming language but
ranks first when it comes to machine learning.

82

Realization of Quiksum

5.3.2 Javascript in the frontend

The main language used for our front end is Javascript due to its flexibility, the control
over the UI elements, and the server communication using HTTP fetch as well as the
popularity in web development, we used it to create the UI interface below. Javascript
has also a growing community with over 11 million developers in 2019 [110].

5.3.3 Integrated Development Environment

An IDE, or Integrated Development Environment, is a software that enables program-
mers to write their code into a computer, it increases the productivity of writing code
because of multiple services, offers syntax highlighting for more readable code, auto-
complete for more fast typing. In our system we used Jupyter Notebook, and Visual
Studio Code.

Jupyter Notebook

Jupyter Notebook is an open-source web-based IDE that allows creating documents
containing code, images, narrative text heavily oriented to Machine learning, and data
visualization because of its block system that allowed us to execute partial code and
code snippets.

Figure 5.3: Jupyter Notebook IDE logo.

5.3.4 Visual Studio Code

We used Visual Studio Code IDE to build the demo application. It is free software
provided by Microsoft for code writing famous by its flexibility of adding open-source
plugins that help with the building of the application, like Live-Server plugin that will
auto-reload the pages after each change saving us humongous amount of time.

Figure 5.4: Visual Studio Code IDE logo.

83

Realization of Quiksum

5.4 Used libraries and frameworks

5.4.1 Transformers by Hugging Face

We used the transformer repository provided by Hugging Face which is a library built
with python. It uses Pytorch and TensorFlow 2.0 frameworks to provide the base
architecture of the popular transformer models we were interested in described in the
previous chapters (BERT, GPT, BART) as well as the orientation of that repository
that tends to Natural language understanding (NLU) and Natural language generation
(NLG) tasks which define the abstractive summarization. It contains a lot of features
like its simplicity and entry-level code that makes researchers and educators execute
and evaluate custom models faster, helper functions that allowed us to easily save
checkpoints, and results while fine-tuning to make it easier for researchers to share
their detailed results for more comparisons.

5.4.2 Pytorch

PyTorch is an open-source Machine learning framework built using python and the
torch library. PyTorch uses tensors which are multidimensional arrays designed for
employing the GPU power for computational operations like matrix multiplication.

Figure 5.5: Tensors illustrated [111].

5.4.3 FastAPI

As we mentioned before, our demo application is an API with a frontend application as
UI. The API is a python application built using a modern framework called FastAPI;
light and very fast simple framework. We chose this framework primarily because
it is built with Python which made the interaction with our model functions easier,
acknowledged by major development companies, which gave us the trust in its capa-
bilities. The implementation of the Web Service was very simple via HTTP Methods
GET and POST routing system as well as JSON being the input and output of the
backend.

84

Realization of Quiksum

5.5 Datasets

For fine-tuning, we used multiple datasets on the same architecture (DistilBart) sep-
arately to obtain multiple models, then evaluate each model on the same dataset to
compare how each model will perform based on the dataset it was finetuned on.

5.5.1 CNN/DailyMail

They represent two datasets created by Hermann et al. [112] containing over 300,000
articles in total (93,000 for CNN and 220,000 from Dailymail newspaper). This dataset
has each article paired with a short set of summarized bullets points that represent
meaningful highlights of the piece. Journalists are typically trained to communicate
the big ideas of an article in the first few sentences as bullets, a strategy which this
dataset also adopted. We used the non-anonymized version provided by Tensorflow
organized as two features:

• Article: which we considered as the text input for our model.

• Highlight: a joined text of news headlines and highlights that we considered a
reference summary.

5.5.2 AESLC

Created by Zhang and Tetreault, AESLC [113] consists of 18,000 email bodies and
their subjects from the Enron Corpus, a collection of email messages of employees in
the Enron corporation, designed for abstractive email summarization and available for
public usage.

The original Enron dataset contains 517,401 email messages from 150 user mail-
boxes, AESLC was obtained after a series of email body cleaning, email filtering, and
email de-duplication.

The email subjects are typically much shorter than summaries generated from other
datasets. Although our datasets are mainly news related, we were interested to see how
it would perform on our model, if the model would learn more abstraction. We used
the dataset provided by Tensorflow with two features.

• Email body: considered as an input document to the model.

• Subject line: considered a target summary for the model.

5.5.3 Multi-news

A large scale dataset created by Fabbri et al. [114] containing around 56,000 articles
collected from newser.com with their summaries, and each summary is professionally

85

Realization of Quiksum

written. The difference between Multi-news and other popular news datasets like
CNN/DailyMail is that the articles come from diverse sources: more than 1,500 sites
appearing as source documents five times or greater. Furthermore, a total of twenty
editors contributed to 85% of the total summaries on newser.com, and the thing about
those summaries is that they are notably longer with around 260 words as an average.
Fabbri et al. claim that their dataset tests its ability in the abstractive summarization
models where the generated text must be fluent and coherent. We used the dataset
provided by Tensorflow with two features:

• Document: which we considered as the text input for our model.

• Summary: considered a target summary for the model.

5.5.4 Gigaword

Gigaword fifth edition (v5) is a very large dataset created by Parker et al. [115]. It
contains 10 million documents with over 4 billion words collected from newswire in
several years by the Linguistic Data Consortiume (LDC).

We used the Annotated version of Gigaword created by Courtney Napoles, Matthew
R. Gormley, Benjamin Van Durme in LDC [116], it adds automatically-generated syn-
tactic and discourse structure annotation to English Gigaword Fifth Edition.

The goal of the annotation is to provide a standardized corpus for knowledge ex-
traction and distributional semantics which enables broader involvement in large-scale
knowledge-acquisition efforts by researchers. The annotation layers tokenize and seg-
ment sentences, it names entities as well as provides lemmas for words and also describes
some words like "Algiers" is a "location". We used a sample of the dataset provided
by Tensorflow containing 4 million articles organized as two features:

• Document: which is the article and we considered it as input.

• Summary: which is a headline for the article and we considered it as reference
summary.

Table 5.1 describes the characteristics of each dataset.

Dataset
#pairs

(train/val/test)
words
(doc)

#words
(summary)

Multi-News 44970/5622/5622 1781 216
CNN/DailyMail 287113/13368/11490 683 51

AESLC 14436/1960/1960 119 4
Gigaword 3803957/189651/1951 30 8

Table 5.1: The dataset splits and the average number of words in each document and
reference summary.

86

Realization of Quiksum

5.5.5 DUC Document Understanding Conferences 2004

To further progress in summarization and enable researchers to participate in large-
scale experiments, the National Institute of Standards and Technology began a new
evaluation series in the area of text summarization, which they called the Document
Understanding Conference (DUC) [117]. The basic design for the evaluation followed
ideas in a recent summarization road map that was created by a committee of re-
searchers in summarization. Aiming to create reference data consisting of documents
with their respective summarie for training and testing. The training data were dis-
tributed in early March of 2001. The test data were distributed in mid-June, and
results were due for evaluation on the first of July 2001. Then they discussed these
results during the same year in September.

The DUC became an annual event that every organization with interest in text
summarization can participate in a series of coordinated experiments. The results are
presented in the annual workshop where a comparison is made to preserve the com-
petitive nature of the conference. The NIST staff developed a series of guidelines that
protect the value of the conference as well as the participants.

The most important evaluation measure used in DUC 2001 to 2004 is coverage,
which means how well the system performed the content selection with other text
quality like readability and structure. The coverage of the submitted summaries was
manually evaluated by humans by comparing the system summary with a human-
written one. The system summary is split into clauses for each clause the system
summary answers the question “To what extent is the information conveyed in the
model clause expressed in the peer summary?” In 2001 they scored the summary on a
five-point scale where 1 means “The model clause is not covered at all by the peer” and
5 means “The meaning of the model clause is fully expressed in the peer summary”. In
later years they added another scale, making it six points, ranging from 0 to 1 with
0.20 increments. A choice X was interpreted to mean that X percent of the content of
the model clause is covered.

The strict laws of the conference and the evaluation system gave the data credibil-
ity to be used in summarizer systems. We used the DUC 2004 to test our models and
compare results, it contained 30 clusters, each cluster represented a topic and had 10
documents, and each cluster had an averaging of 3 to 4 reference summaries.

As we mentioned before, the distilBart base model is finetuned on a different dataset
each time to give us a new model ready to be tested. As each model performs best on
the test split of the dataset it was finetuned on, evaluating our model on one of these
datasets would give unfaithful results overall because it will favor the test split that
it was finetuned on. To have objective results, it is necessary to test each model on a
single dataset that it was not fine-tuned on and we chose DUC 2004.

87

Realization of Quiksum

5.6 Quiksum preview

Figure 5.6: Screenshot of the web application.

Quiksum offers a very refined UI that’s very friendly and simple to use. Figure 5.6
provides a preview of the documents summarization page, and we will explain each
element:

• 1: The menu enables us to change the model to summarize with. By default, the
summaries are generated using the model fine-tuned on Multi-news; in fact, we
do not load the model directly when the user changes the model, instead we load
it after clicking on the summarization button since he may change it multiple
times before actually starting the summarization process.

• 2: Model name - indicates the name of the model chosen.

• 3: By default, there’s always this area for single-document summarization. It
enables us to upload a document.

• 4: In the case of multi-document summarization, this button is used to upload
other files to summarize.

• 5: menu to change the page, either to documents summarization or to text sum-
marization.

88

Realization of Quiksum

• 6: Each time a file is uploaded, its content is displayed by clicking on the arrow
in this content area, it can also be hidden again by clicking on that same arrow.

• 7: The orange button activates or inactivates the evaluation. When it’s activated
an area appears to upload a reference summary, otherwise, it’s hidden.

• 8: This element will contain the generated summary.

• 9: After evaluation, scores will be displayed there.

• 10: Summarization button, used to start generating the summary.

• 11: This area contains the information relative to summarization such as the
number of documents to summarize, the evaluation state (activated or not), the
type of preprocessing (simple or the other one that changes when clicking on the
button in the left of the orange one).

In the text page, the only difference is that instead of uploading, we offer to insert
or type the texts to summarize. By default, there’s only one text area but similarly
to the document’s page, it is possible to add other text areas. Also, the reference
summary has to be inserted or typed instead of uploaded.

For user experience during generation we display a loading screen while the model
is generating the summary as shown in figure 5.7.

Figure 5.7: Screenshot of the text area and animation of the web application.

89

Realization of Quiksum

5.7 Evaluation metrics used

5.7.1 ROUGE

Recall-Oriented Understudy for Gisting Evaluation or ROUGE is an evaluation metric
used essentially to evaluate summaries. It works by comparing the generated sum-
maries against one or a set of other summaries usually human-written ones and is
recall-oriented. In general, it compares overlapping words in n-grames between two
texts; however, it is not enough to just compare overlapping words. That is why we
calculate the precision and the F-measure as well. It was our choice for evaluating the
summaries generated by our system; precisely, we used ROUGE-Ngram(1 and 2) as
well as ROUGE-L.

Recall: The recall is the quantity of right information recovered by a system com-
pared to what it should recover. It refers to the ratio of text units common to the
generated and reference summary over the number of all text units in the reference
summary . Recall in the context of ROUGE refers to how much the system sum-
mary was able to capture from the reference summary. If we are just considering the
individual words (1-grams), it is computed as:

R =
number_of_overlapping_words

total_words_in_reference_summary
(5.1)

Precision: The precision is the quantity of right information collected by a system
compared to what it has recovered. It measures how much of the system summary was
supposed to be included. Precision is measured as:

P =
number_of_overlapping_words

total_words_in_system_summary
(5.2)

In an ideal situation, a summary would have high recall and high precision. Unfor-
tunately, precision and recall are often in tension. Increasing precision would reduce
recall and increasing recall would also decrease the precision. As a result, different
metrics have been proposed that rely on both precision and recall.

F-Measure: The F-measure is a mix between the recall and the precision that
balances both matters in one number. F-measure is calculated as:

Fβ =
(1 + β2)P ∗R
β2P +R

(5.3)

Where Fβ is the F-score. If β is more than one, the recall is advantaged. If it is
less than one, the precision is advantaged.

90

Realization of Quiksum

ROUGE-N:

ROUGE-N is a recall of n-grams between the candidate summary and a set of reference
summaries. The value of ROUGE-N can be computed by equation 5.4:

ROUGE −N =

∑
S∈Summref

∑
N−gram∈S Countmatch(N − gram)∑

S∈Summref

∑
N−gram∈S Count(N − gram)

(5.4)

Where N is the size of the N-gram,Countmatch(N − gram) is the number of N-
grams in both the candidate and the reference summaries, and Count(N − gram) is
the number of N-grams in the reference summary. However, this metric does not take
the order of words into account; that is, it does not influence the result.

ROUGE-L:

To overcome the weakness of the ROUGE-N, ROUGE-L employs the concept of the
longest common subsequences (LCS). The motive is: the longer the LCS between two
summary sentences, the more similar they are. To apply LCS, the sentences in the ab-
stract represent a sequence of words. The problem with ROUGE-L is that it calculates
only the main sequence; therefore, other alternative or shorter LCS will not be consid-
ered in the calculation of the score. Equation 5.5 describes how to compute ROUGE-L
(recall and precision) between a reference abstract S and a candidate abstract C.

RLCS =

∑u
i=1 LCSU(si, C)

m
,PLCS =

∑u
i=1 LCSU(si, C)

n
(5.5)

Where u is the number of sentences in the reference summary, LCSU(si, C) is the
LCS score of the union of the longest sequences between the reference sentence and the
sentences in the candidate summary. Finally, m is the size of the reference summary,
and n is the size of the candidate summary.

5.8 Experiments

5.8.1 Extractive summarization

In our experiments, we used the model for multi-document summarization in two ways:
We used it to generate a summary directly from the input which represents the con-
catenation of multiple documents. We also used it to generate a summary after pre-
processing the input as described in chapter three where we exclude similar sentences
and choose only one of them.
In both cases we experimented with different summary length:

• Ratio = 0.2: where the summary represents 20% of the input document. This
is a very reasonable ratio considering that the documents are very long. This

91

Realization of Quiksum

parameter is used to compute the number of clusters, where the number of clusters
= number of sentences * ratio.

• Clusters = 6: where the summary contains the six most relevant sentences of the
input.

• Clusters = 4: where the summary contains the 4 most relevant sentences of
the original input; the clusters are obtained using K-means (k = 4) and these
sentences are the closest to their respective centroid.

The second way of generating the summaries relies heavily on the similarity value we
use to decide if two sentences are similar, as this method replaces similar sentences with
one random sentence of those sentences. The reason we settled to make it random and
not fix the first or third sentence is that these sentences are most likely located in
different documents:

Suppose we have two sentences s1, s2, one from document A, and the second from
document B; if both are located at the beginning of a paragraph, this means that they
are equally important. Hence, picking s1 or s2 would be the same.

The similarity metric as mentioned in chapter 3 is cosine similarity between the
sentence embedding generated by the BERT model. The highest value, the cosine
value would have is 1 (identical sentence), as this situation is nearly impossible we
had to choose a threshold value by running a test using human written samples. We
noticed that the minimum threshold for which they are indeed similar was equal to 0.8
or higher. In our case, we tried with 0.8 and 0.9. Figure 1.1 shows an example of two
similar sentences and two different sentences with their given cosine value.

Figure 5.8: Represents examples of similarity values between sentences.

The table 5.2 shows the results of the extractive model with the same ratio (0.2)
and two different preprocessing strategies. The average length of the documents is
equal to 4964 words and the average length of the generated summaries is equal to 908
words.

92

Realization of Quiksum

Preprocessing ROUGE 1 ROUGE 2 ROUGE L

Simple
Precision 75.17 23.19 40.23
Recall 9.25 2.81 4.9

F-measure 16.36 4.98 8.67

Similarity = 0.8
Precision 74.73 22.57 40.35
Recall 9.29 2.74 4.95

F-measure 16.42 4.85 8.76

Similarity = 0.9
Precision 74.92 23.00 41.07
Recall 9.22 2.77 4.87

F-measure 16.31 4.91 8.63

Table 5.2: Extractive model with ratio = 0.2 test set results on the DUC 2004 dataset
using ROUGE.

As illustrated in the table 5.2, the best scores on a ratio = 0.2 are obtained when
using the similarity preprocessing with a threshold = 0.8 when excluding ROUGE 2
which isn’t that far. We notice that the precision in all rouge variations is the highest,
meaning that the number of correct sentences included in both the generated and
reference summary is higher than the number of sentences that should not be included
in the generated summary. For instance, if we focus on rouge-1 scores 74% of the
1-grams in the generated summary are also in the reference summary. We also notice
that the recall value is very low, this is due to the fact that the generated summary
does not include all the sentences that should be included. Because the recall value is
very low, the F-score gets affected and results in a low score as well. Table 5.3 shows
the rouge scores obtained when the number of clusters = 6.

Preprocessing ROUGE 1 ROUGE 2 ROUGE L

Simple
Precision 48.17 10.34 23.16
Recall 25.07 5.41 12.04

F-measure 32.69 7.04 15.70

Similarity = 0.8
Precision 47.42 10.37 22.16
Recall 25.83 5.68 12.41

F-measure 33.10 7.26 15.92

Similarity = 0.9
Precision 46.98 10.34 22.66
Recall 26.06 5.70 12.56

F-measure 33.28 7.29 16.04

Table 5.3: Extractive model with clusters = 6 test set results on the DUC 2004 dataset
using ROUGE.

The average length of the generated summaries when the number of clusters = 6 is

93

Realization of Quiksum

equal to 190 words.
When the number of clusters = 6, the length of the generated summaries is much

smaller compared to when using a ratio = 0.2; we noticed that the recall got three times
higher, so the average of the n-grams captured in the generated summary and reference
summary compared to the reference summary was higher. However since recall and
precision go against each other, the precision scores got slightly lower. Though the
balance between these two scores is much better than the first one, and the F-scores are
also better. Besides the best scores are obtained when using a similarity preprocessing
with a threshold = 0.9. Table 5.4 shows the rouge scores obtained when the number
of clusters = 4.

Preprocessing ROUGE 1 ROUGE 2 ROUGE L

Simple
Precision 42.15 8.84 20.20
Recall 29.51 6.20 14.15

F-measure 34.52 7.24 16.55

Similarity = 0.8
Precision 40.11 8.19 19.52
Recall 29.80 6.17 14.60

F-measure 33.82 6.95 16.52

Similarity = 0.9
Precision 41.73 9.11 20.04
Recall 30.61 6.70 14.67

F-measure 35.16 7.67 16.83

Table 5.4: Extractive model with clusters = 4 test set results on the DUC 2004 dataset
using ROUGE.

Overall, the model gave the best results with these parameters: number clusters
= 4, similarity = 0.9. A good summary is expected to have good recall and precision
values when compared to a reference summary, as these are often in tension, we rank
the results based on the F-measure. The gain in score was 1.88/ 0.33/ 0.79 for rouge1
/ rouge2/ rouge L.

5.8.2 Abstractive summarization

Because our resources are limited, we used different batch sizes varying from 1, 2, and
16 depending on the dataset input length; we also split the training set and keep the
validation and test set as it is:

• Multi-news: the maximum batch size we chose to finetune Multi-news is equal to
2. The training set is split into portions of 2000 training data each. We report
one issue during finetuning Multi-news: as the GPU memory was not enough
we could not complete the entire dataset and only manage to run the model on

94

Realization of Quiksum

half of it. It took us around 70 hours to finetune it on 20,000 data using Google
colaboratory instance.

• AESLC: we finetune it on a batch size equal to 1 (which is also the maximum
for this dataset with our GPU capacity) for 31 hours and split the training set
by four portions, each time we use around 5000 data.

• Gigaword: we finetune our model on a batch size equal to 16 (also the maximum
capacity) for around 160 hours and split the dataset to portions of 10,000 each.

Besides, since the model is first fine-tuned on CNN/DailyMail, we only run it for one
epoch as it already takes a considerable number of hours (+100 hours knowing that we
are limited to 10 hours maximum daily) to be complete. CNN/DailyMail and Multi-
news datasets contain input documents longer than the maximum input length of a
base model (length input > 512 tokens). If we chose a model that accepts only 512
tokens, this would present a problem for position embeddings which would never be
updated for longer input lengths. Hence, having a model that accepts 1024 tokens
ensures it will be finetuned correctly.

Single-document summarization

Results of finetuning are presented in the table 5.5 which shows ROUGE scores on each
dataset. The last row represents the baseline model before the additional finetuning.

ROUGE 1 ROUGE 2 ROUGE L Average summary length
Gigaword 21.23 8.13 18.25 61 words
AESLC 12.33 5.51 11.45 57 words

Multi-News 41.96 15.35 23.40 140 words
CNN/DailyMail 43.30 20.50 30.29 78 words

Table 5.5: Represents ROUGE-F1 scores and average length of generated summaries
when fine-tuned on each dataset.

These results show that the baseline obtains the highest score, while the highest
score between our models is attributed to the one finetuned with Multi-News with a
small gap of 1.34/5.15/6.89 only for ROUGE 1, ROUGE 2, and ROUGE L respectively.
For simplicity, we will attribute names to each model: DistilBart-CM for the model
finetuned with CNN/DailyMail then with Multi-News, DistilBart-CG for the model
finetuned with CNN/DailyMail then with Gigaword, and DistilBart-CA for the model
finetuned with CNN/DailyMail then with AESLC.

We can see that DistilBart-CM performed best on its test set. The generated
summaries have an average length of 140 words which is somewhat close to the average

95

Realization of Quiksum

length of the reference summaries (216 words). In comparison, DistilBart-CA generated
summaries of around 57 words while the average reference summaries contain only 4
words; DistilBart-CG outputs are also far from the reference summaries length (61
words while in the test set an average of 9 words). We think that there is a possibility
that these huge gaps of length resulted in lower scores compared to DistilBart-CM.

5.8.3 Multi-document summarization

Although the scores are lower for our models than the baseline on their test respective
set, this does not mean the baseline is the most reliable for multi-document summariza-
tion. Therefore, to evaluate the models on multi-document summarization, we conduct
a series of experiments using the DUC 2004 dataset:

• We feed the models the documents concatenated with each other, then observe
the outputs and compare them with the reference summaries.

• We preprocess our input as in our extractive multi-document summarization
approach, once with similarity threshold >= 0.8 and another one with threshold
>= 0.9, and also compare them with the reference summaries.

Tables 5.6 shows the performance on DUC 2004 when doing a simple preprocessing.

Rouge 1 Rouge 2 Rouge L
DistilBart-CG 7.11/23.04/10.83 0.66/2.13/1.01 5.07/16.44/7.72
DistilBart-CA 14.36/39.42/20.96 2.89/8.17/4.25 9.09/25.20/13.30
DistilBart-MC 29.94/31.26/29.94 5.96/6.34/5.98 15.88/16.79/15.93
CNN/DailyMail 18.20/39.41/24.75 3.83/8.38/5.22 10.45/22.73/14.24

Table 5.6: Results of our models on DUC 2004 compared with the basline with just
concatenating the documents. These scores represent recall, precision and F-measure
respectively. Best ROUGE numbers are bolded.

Our model (DistilBart-CM) outperform the baseline version with higher 5.19 /0.76/
1.69 values considering F-measure in ROUGE 1/ROUGE 2/ROUGE L respectively.
We analyse the quality of its generated summaries manually; overall we observe a high
linguistic quality in terms of fluency and coherence, plus it was able to capture the
topic of the input. However, sometimes the last sentence is incomplete, this is due to
reaching the maximum sequence length. We can solve this issue by eliminating the
last sentence but we prefer to keep the few information included in the last sentence
instead.
Figure 5.9 shows an example of generated summary from DistilBart-CM compared to
a reference summary.

96

Realization of Quiksum

Figure 5.9: Generated summary from DistilBart-CM alongside the gold summary.

The worst results concern DistilBart-CG, sometimes the decoder predicted sum-
maries with the correct subjects and sometimes not. The summaries were not well-
formed syntactically and sometimes demonstrated a lack of semantic understanding of
the input article. For example, it would display the word "georgia" in the summary
even though the input was clearly not about georgia. After training on the entire
dataset, we noticed a large amount of tokens in the summaries that made them com-
pletely unreadable. Investigation on the dataset revealed that the real dataset is not
available for free usage, and the only dataset we used is one containing inadequate
preprocessing. We think that it is nearly impossible to produce coherent summaries
using the available Gigaword with DistilBart unless it is trained on the paid version.
Figure 5.10 shows an example of a generated summary using DistilBart-CG along side
with a reference summary.

Figure 5.10: Represents a generated summary from DistilBart-CG alongside the gold
summary.

Table 5.7 shows ROUGE scores when the input is preprocessed with our similarity
algorithm using a threshold equal to 0.8.

97

Realization of Quiksum

ROUGE 1 ROUGE 2 ROUGE L
DistilBart-CG 7.09/23.12/10.81 0.61/2.01/0.94 4.91/16.05/7.49
DistilBart-CA 15.13/39.80/21.87 3.18/8.50/4.62 9.66/25.57/13.99
DistilBart-CM 30.77/ 30.66/30.27 6.10/5.97/5.96 16.30/16.44/16.11
CNN/DailyMail 20.02/40.34/26.53 4.44/9.89/5.89 11.16/22.62/14.82

Table 5.7: Results of our models on DUC 2004 compared with the basline when pre-
processed using our similarity algorithm and threshold = 0.8. These scores represent
recall, precision and F-measure respectively. Best ROUGE numbers are bolded.

As we can see, all models besides DistilBart-CG have increased in scores compared
to when doing just a concatenation. Besides, DistilBart-CG value did not decrease
drastically.

Finally, the table 5.8 presents ROUGE scores when the input is preprocessed with
our similarity algorithm using a threshold equal to 0.9.

ROUGE 1 ROUGE 2 ROUGE L
DistilBart-CG 7.52/24.30/11.46 0.72/2.31/1.09 5.23/16.98/7.97
DistilBart-CA 18.30/44.47/25.87 4.26/10.45/6.04 10.90/26.60/15.43
DistilBart-CM 32.69/35.85/33.48 6.96/7.75/7.71 16.94/18.86/17.45
CNN/DailyMail 20.55/42.21/27.47 4.68/9.59/6.25 11.66/24.23/15.65

Table 5.8: Results of our models on DUC 2004 compared with the basline when pre-
processed using our similarity algorithm and threshold = 0.9. These scores represent
recall, precision and F-measure respectively.Best ROUGE numbers are bolded.

As we can see, there is a significant improvement compared to the result shown in
table 5.6; the best scores are attributed to DistilBart-CM. We observed that recall and
precision values are very close. In addition, it surprisingly exceeded the scores of the
extractive model in ROUGE L and has very close values for ROUGE 1 and ROUGE
2.

5.9 Discussion

A part of the results of our approach was on the DUC dataset for multi-document sum-
marization. Several experiments have been conducted, with and without application of
sentence redundancy elimination. Experimentation producing highest scores exploits
our proposed algorithm to preprocess the input with a threshold of 0.9. These results
allow us to confirm that there is room for improvement; that is, since the preprocessing
occurs before feeding the input to the model, there is a high chance that this method

98

Realization of Quiksum

would work for other models as well. The results we got also prove the power of such
models to provide summaries with high linguistic quality; the same evaluation proce-
dure has been applied to all our models. Our best abstractive system outperformed the
baseline and had scores that can rival the scores obtained from the extractive model
knowing that extractive models have higher scores than abstractive ones most of the
time. Also, we observed that the choice of training dataset has a huge impact on the
performance of a model. In most of the previous works, no matter whether it is extrac-
tive or abstractive summarization, they have used the ROUGE metric as an evaluation
measure. Similarly, we used unigram and bigram overlap (ROUGE 1 and ROUGE 2) as
a means of assessing informativeness, and the longest common subsequence (ROUGE
L) as a means of assessing fluency. The major problem when using ROUGE in abstrac-
tive summarization is that, since the model generates its own sentences based on the
context of the text documents, the output summaries contain a significant amount of
paraphrasing and may use different words from reference summary even though they
express similar meaning. And since ROUGE calculates the overlapping of the n-gram
in the gold summary and generated summary, what if both summaries do not hold any
n-gram in common? In our case, we had very good ROUGE 1 scores, but ROUGE 2
is even harder to use for abstractive summaries. This is probably why we obtained a
kind of low value. We think that an appropriate metric for this task is necessary as
those results do not fully describe the performance of our models.

5.10 Conclusion

This chapter described the technical side of our project including its software and
hardware information. The actual results were presented with an in-depth analysis and
explanation. We compared our models with a baseline model and were surprised that
DistilBart-CM had very close scores to the extractive one. In the discussion section, we
mentioned the need of an evaluation metric dedicated to abstractive summarization,
since the ROUGE metric has many weaknesses and does not provide 100% reliable
scores for this specific task. Despite that, we are positive that transformer-based models
have great potential and can be further improved.

99

Realization of Quiksum

General Conclusion

In this work, our objective was to propose a solution to the problem of multi-
document abstractive summarization. Automatic text summarization methods are
essential as the amount of available data and the need of relevant, fast, and concise
information is continuously increasing.

Our choice leaned towards the machine learning approach, which has proven its
effectiveness in this area. Thus, we proposed to finetune an existing model called
DistilBart to generate abstractive summaries. We experimented with different datasets:
Gigaword, Multi-news, AESLC and we found that the best results were obtained when
the model is finetuned on Multi-news. We also attempted to find a method that
improves the quality of our generated summaries and proposed a solution based on
replacing similar sentences with one that has the same meaning, and that is a part of
their cluster, as our algorithm groups sentences into clusters. This solution was first
used with an extractive model, then on our abstractive resulted models and we found
that all of them achieved better performance when using it with a threshold equal to
0.9.
The main contributions of our work are:

• We fine-tuned an existing model on new datasets for single document summariza-
tion, then we adapted the resulting models for generating abstractive summaries
of multiple documents.

• We proposed an algorithm to adapt our models to generate a summary for mul-
tiple documents for both the extractive and abstractive type.

The principal issue we faced during this project is related to the resources needed for
the execution. Google Colaboratory resources are not unlimited, although it is free to
use, the GPU provided is not powerful enough for big models to train fast. Also, an
instance connection limit is around 10 hours then it disconnects; so when our execu-
tion was not complete and saved, we lost multiple times hours of progress. Besides, the
GPU usage is also limited, after exceeding the limit one has to wait more than 8 hours
to be able to use it again. To overcome this particular issue, we had to create multiple
Google accounts then save the resulted model each time and execute it on another
account. Finally, the biggest problem is the limit of RAM available since users can use
up to 12GB of memory. As a consequence, we were not able to complete finetuning on
Multi-News which is unfortunate since the DistilBart performed best when fine-tuned
on this dataset.

To conclude, our best model (DistilBart-CM) gave very encouraging results, how-
ever, there is still room for improvement for it to be used in a real context. Besides,
since the datasets are news articles it works only for this specific type of documents.

100

Realization of Quiksum

Also, the fixed maximum length of the generated summaries (142 tokens) makes that
sometimes the last sentence is incomplete. Finally, the biggest weakness of our model
is related to the maximum input length. DistilBart can process up to 1024 token as
the input document. In the case of multi-document summarization, it is a huge prob-
lem. Processing longer sequences than that is still a topic of ongoing research. As a
perspective, we would like in the future to:

• Complete the fine-tuning on Multi-News.

• Fine-tune the model on the paid version of Gigaword.

• Propose a post-processing method to clean the text by eliminating the last sen-
tence if it returns no information or completes the sentence using a trained model
that takes the summary and non summarized document as input.

• Try extractive summarization followed by abstractive summarization, where in
the extractive step, we would like to choose the top k sentences without exceeding
the model maximum length.

• Try to apply successive abstractive summarization either by splitting the doc-
ument into shorter parts, summarize each part and concatenate the respective
summaries with post-processing; or summarize a part of the document then con-
catenate the resulted summary with another part of the document, and so on
until we would get the final summary. As expansive as it looks, we think it may
give good results.

101

References

[1] Luis Gonçalves. Automatic Text Summarization with Machine Learning — An
overview. Apr. 2020. url: https://medium.com/luisfredgs/automatic-
text-summarization-with-machine-learning-an-overview-68ded5717a25.

[2] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, et al. Text Summarization
Techniques: A Brief Survey. 2017. eprint: arXiv:1707.02268.

[3] Roshna Chettri and Udit Kr. Chakraborty. “Automatic Text Summarization”.
In: 2017.

[4] Hamza Shabbir Moiyadi, Harsh Desai, Dhairya Pawar, et al. “NLP Based Text
Summarization Using Semantic Analysis”. In: International Journal of Advanced
Engineering, Management and Science 2.10 (Oct. 2016).

[5] Eduard Hovy and Chin-Yew Lin. “Automated Text Summarization and the
SUMMARIST System”. In: Proceedings of a Workshop on Held at Baltimore,
Maryland: October 13-15, 1998. TIPSTER ’98. Baltimore, Maryland: Associa-
tion for Computational Linguistics, 1998, pp. 197–214. doi: 10.3115/1119089.
1119121. url: https://doi.org/10.3115/1119089.1119121.

[6] A. Sibsa K. Bouchelouche. “Vers un meilleur résumé automatique multi-documents”.
University Saad Dahlan Blida 1, 2018.

[7] Sindhu L Saranyamol C S. “A Survey on Automatic Text Summarization”. In:
International Journal of Computer Science and Information Technologies 5.6
(2014), pp. 7889–7893. issn: 0975-9646. doi: 10.1.1.666.536. url: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.5367&rep=
rep1&type=pdf.

[8] Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. “Opinosis: A Graph Based
Approach to Abstractive Summarization of Highly Redundant Opinions”. In:
vol. 2. Dec. 2010.

[9] Horacio Saggion. “Automatic Summarization: An Overview”. In: Revue française
de linguistique appliquée 8.1 (2008), pp. 63–81. doi: 10.3917/rfla.131.0063.
url: https : / / www . cairn . info / revue - francaise - de - linguistique -
appliquee-2008-1-page-63.htm.

[10] H. Van Lierde and Tommy W.S. Chow. “Query-oriented text summarization
based on hypergraph transversals”. In: Information Processing and Management
56.4 (2019), pp. 1317–1338. issn: 0306-4573. doi: https://doi.org/10.1016/

102

https://medium.com/luisfredgs/automatic-text-summarization-with-machine-learning-an-overview-68ded5717a25
https://medium.com/luisfredgs/automatic-text-summarization-with-machine-learning-an-overview-68ded5717a25
arXiv:1707.02268
https://doi.org/10.3115/1119089.1119121
https://doi.org/10.3115/1119089.1119121
https://doi.org/10.3115/1119089.1119121
https://doi.org/10.1.1.666.536
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.5367&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.5367&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.5367&rep=rep1&type=pdf
https://doi.org/10.3917/rfla.131.0063
https://www.cairn.info/revue-francaise-de-linguistique-appliquee-2008-1-page-63.htm
https://www.cairn.info/revue-francaise-de-linguistique-appliquee-2008-1-page-63.htm
https://doi.org/https://doi.org/10.1016/j.ipm.2019.03.003
https://doi.org/https://doi.org/10.1016/j.ipm.2019.03.003

REFERENCES

j.ipm.2019.03.003. url: http://www.sciencedirect.com/science/
article/pii/S0306457318300372.

[11] Min-yen Kan, Kathleen McKeown, and Judith Klavans. “Domain-Specific In-
formative and Indicative Summarization for Information Retrieval”. In: (Oct.
2001).

[12] Inderjeet Mani. “Summarization Evaluation: An Overview”. In: NTCIR. 2001.

[13] Abdelkrime Aries, Djamel Eddine Zegour, and Walid-Khaled Hidouci. “Auto-
matic text summarization: What has been done and what has to be done”. In:
ArXiv abs/1904.00688 (2019).

[14] Xiaojun Yuan, Ning Sa, Grace Begany, et al. “What Users Prefer and Why:
A User Study on Effective Presentation Styles of Opinion Summarization”. In:
Human-Computer Interaction – INTERACT 2015. Ed. by Julio Abascal, Si-
mone Barbosa, Mirko Fetter, et al. Cham: Springer International Publishing,
2015, pp. 249–264. isbn: 978-3-319-22668-2.

[15] Samuel Pecar. “Towards Opinion Summarization of Customer Reviews”. In: Pro-
ceedings of ACL 2018, Student Research Workshop. Melbourne, Australia: As-
sociation for Computational Linguistics, July 2018, pp. 1–8. doi: 10.18653/
v1/P18-3001. url: https://www.aclweb.org/anthology/P18-3001.

[16] Ismini Lourentzou, Kabir Manghnani, and C. Zhai. “Adapting Sequence to Se-
quence models for Text Normalization in Social Media”. In:ArXiv abs/1904.06100
(2019).

[17] R. Satapathy, C. Guerreiro, I. Chaturvedi, et al. “Phonetic-Based Microtext
Normalization for Twitter Sentiment Analysis”. In: 2017 IEEE International
Conference on Data Mining Workshops (ICDMW). 2017, pp. 407–413.

[18] Vairaprakash Gurusamy and Subbu Kannan. “Preprocessing Techniques for
Text Mining”. In: Oct. 2014.

[19] D. Palmer. “Chapter 2 : Tokenisation and Sentence Segmentation”. In: 2007.

[20] David D. Palmer and Marti A. Hearst. “Adaptive Multilingual Sentence Bound-
ary Disambiguation”. In: Computational Linguistics 23.2 (1997), pp. 241–267.
url: https://www.aclweb.org/anthology/J97-2002.

[21] Michael D. Riley. “Some Applications of Tree-Based Modelling to Speech and
Language”. In: Proceedings of the Workshop on Speech and Natural Language.
HLT ’89. Cape Cod, Massachusetts: Association for Computational Linguistics,
1989, pp. 339–352. isbn: 1558601120. doi: 10.3115/1075434.1075492. url:
https://doi.org/10.3115/1075434.1075492.

[22] Jeffrey C. Reynar and Adwait Ratnaparkhi. “A Maximum Entropy Approach
to Identifying Sentence Boundaries”. In: Fifth Conference on Applied Natural
Language Processing. Washington, DC, USA: Association for Computational
Linguistics, Mar. 1997, pp. 16–19. doi: 10.3115/974557.974561. url: https:
//www.aclweb.org/anthology/A97-1004.

103

https://doi.org/https://doi.org/10.1016/j.ipm.2019.03.003
https://doi.org/https://doi.org/10.1016/j.ipm.2019.03.003
http://www.sciencedirect.com/science/article/pii/S0306457318300372
http://www.sciencedirect.com/science/article/pii/S0306457318300372
https://doi.org/10.18653/v1/P18-3001
https://doi.org/10.18653/v1/P18-3001
https://www.aclweb.org/anthology/P18-3001
https://www.aclweb.org/anthology/J97-2002
https://doi.org/10.3115/1075434.1075492
https://doi.org/10.3115/1075434.1075492
https://doi.org/10.3115/974557.974561
https://www.aclweb.org/anthology/A97-1004
https://www.aclweb.org/anthology/A97-1004

REFERENCES

[23] Hongyan Jing. “Sentence Reduction for Automatic Text Summarization”. In:
Proceedings of the Sixth Conference on Applied Natural Language Processing.
ANLC ’00. Seattle, Washington: Association for Computational Linguistics,
2000, pp. 310–315. doi: 10.3115/974147.974190. url: https://doi.org/10.
3115/974147.974190.

[24] Adhika Pramita Widyassari, Supriadi Rustad, Guruh Fajar Shidik, et al. “Re-
view of automatic text summarization techniques and methods”. In: Journal of
King Saud University - Computer and Information Sciences (2020). issn: 1319-
1578. doi: https://doi.org/10.1016/j.jksuci.2020.05.006. url: http:
//www.sciencedirect.com/science/article/pii/S1319157820303712.

[25] Victoria McCargar. “Statistical Approaches to Automatic Text Summarization”.
In: Bulletin of the American Society for Information Science and Technology
30.4 (2004), pp. 21–25. doi: 10.1002/bult.319. eprint: https://asistdl.
onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / bult . 319. url: https :
//asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/bult.319.

[26] Günes Erkan and Dragomir R. Radev. “LexRank: Graph-Based Lexical Central-
ity as Salience in Text Summarization”. In: J. Artif. Int. Res. 22.1 (Dec. 2004),
pp. 457–479. issn: 1076-9757.

[27] Ani Nenkova and Kathleen McKeown. “Automatic Summarization”. In: Foun-
dations and Trends in Information Retrieval 5.2-3 (2011), pp. 103–233. issn:
1554-0669. doi: 10.1561/1500000015. url: http://dx.doi.org/10.1561/
1500000015.

[28] Techieness. “Machine learning how involved in our day to day life ?” In: (July
2019). url: https://www.techieness.org/post/machine-learning-how-
involved-in-our-day-to-day-life.

[29] Constantin Orasan. “Pronominal anaphora resolution for text summarisation”.
In: 2007.

[30] Josef Steinberger and Karel Jezek. “Evaluation Measures for Text Summariza-
tion.” In: Computing and Informatics 28 (Jan. 2009), pp. 251–275.

[31] Gerard Salton. Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer. USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1989. isbn: 0201122278.

[32] Horacio Saggion, Dragomir Radev, Simone Teufel, et al. “Developing Infrastruc-
ture for the Evaluation of Single and Multi-document Summarization Systems
in a Cross-lingual Environment”. In: Proceedings of the Third International Con-
ference on Language Resources and Evaluation (LREC’02). Las Palmas, Canary
Islands - Spain: European Language Resources Association (ELRA), May 2002.
url: http://www.lrec-conf.org/proceedings/lrec2002/pdf/158.pdf.

[33] Dragomir R. Radev, Simone Teufel, Horacio Saggion, et al. “Evaluation Chal-
lenges in Large-Scale Document Summarization”. In: Proceedings of the 41st
Annual Meeting of the Association for Computational Linguistics. Sapporo,

104

https://doi.org/10.3115/974147.974190
https://doi.org/10.3115/974147.974190
https://doi.org/10.3115/974147.974190
https://doi.org/https://doi.org/10.1016/j.jksuci.2020.05.006
http://www.sciencedirect.com/science/article/pii/S1319157820303712
http://www.sciencedirect.com/science/article/pii/S1319157820303712
https://doi.org/10.1002/bult.319
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/bult.319
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/bult.319
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/bult.319
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/bult.319
https://doi.org/10.1561/1500000015
http://dx.doi.org/10.1561/1500000015
http://dx.doi.org/10.1561/1500000015
https://www.techieness.org/post/machine-learning-how-involved-in-our-day-to-day-life
https://www.techieness.org/post/machine-learning-how-involved-in-our-day-to-day-life
http://www.lrec-conf.org/proceedings/lrec2002/pdf/158.pdf

REFERENCES

Japan: Association for Computational Linguistics, July 2003, pp. 375–382. doi:
10.3115/1075096.1075144. url: https://www.aclweb.org/anthology/P03-
1048.

[34] Ani Nenkova, Rebecca Passonneau, and Kathleen McKeown. “The Pyramid
Method: Incorporating Human Content Selection Variation in Summarization
Evaluation”. In: ACM Trans. Speech Lang. Process. 4.2 (May 2007), 4–es. issn:
1550-4875. doi: 10.1145/1233912.1233913. url: https://doi.org/10.
1145/1233912.1233913.

[35] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”.
In: Text Summarization Branches Out. Barcelona, Spain: Association for Com-
putational Linguistics, July 2004, pp. 74–81. url: https://www.aclweb.org/
anthology/W04-1013.

[36] Kishore Papineni, Salim Roukos, Todd Ward, et al. “Bleu: a Method for Auto-
matic Evaluation of Machine Translation”. In: Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics. Philadelphia, Penn-
sylvania, USA: Association for Computational Linguistics, July 2002, pp. 311–
318. doi: 10.3115/1073083.1073135. url: https://www.aclweb.org/
anthology/P02-1040.

[37] Inderjeet Mani, David House, Gary Klein, et al. “The TIPSTER SUMMAC
Text Summarization Evaluation”. In: Ninth Conference of the European Chapter
of the Association for Computational Linguistics. Bergen, Norway: Association
for Computational Linguistics, June 1999. url: https://www.aclweb.org/
anthology/E99-1011.

[38] Andrew H. Morris, George M. Kasper, and Dennis A. Adams. “The Effects
and Limitations of Automated Text Condensing on Reading Comprehension
Performance”. In: Information Systems Research 3.1 (Mar. 1992), pp. 17–35.
doi: 10.1287/isre.3.1.17. url: https://ideas.repec.org/a/inm/
orisre/v3y1992i1p17-35.html.

[39] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers”.
In: IBM J. Res. Dev. 3.3 (July 1959), pp. 210–229. issn: 0018-8646. doi: 10.
1147/rd.33.0210. url: https://doi.org/10.1147/rd.33.0210.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. url: http://www.deeplearningbook.org.

[41] J. A. Hartigan and M. A. Wong. “A k-means clustering algorithm”. In: JSTOR:
Applied Statistics 28.1 (1979), pp. 100–108.

[42] Glorot Xavier. “Apprentissage des reseaux de neurones profonds et applications
en traitement automatique de la langue naturelle”. Theses. Universite de Mon-
treal, Nov. 2014. url: http://hdl.handle.net/1866/11989.

[43] Facundo Bre, Juan Gimenez, and Víctor Fachinotti. “Prediction of wind pressure
coefficients on building surfaces using Artificial Neural Networks”. In: Energy
and Buildings (Nov. 2017). doi: 10.1016/j.enbuild.2017.11.045. url:

105

https://doi.org/10.3115/1075096.1075144
https://www.aclweb.org/anthology/P03-1048
https://www.aclweb.org/anthology/P03-1048
https://doi.org/10.1145/1233912.1233913
https://doi.org/10.1145/1233912.1233913
https://doi.org/10.1145/1233912.1233913
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/E99-1011
https://www.aclweb.org/anthology/E99-1011
https://doi.org/10.1287/isre.3.1.17
https://ideas.repec.org/a/inm/orisre/v3y1992i1p17-35.html
https://ideas.repec.org/a/inm/orisre/v3y1992i1p17-35.html
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1147/rd.33.0210
http://www.deeplearningbook.org
http://hdl.handle.net/1866/11989
https://doi.org/10.1016/j.enbuild.2017.11.045

REFERENCES

https://www.researchgate.net/figure/Artificial-neural-network-
architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051.

[44] Christoph Münker. “One perceptron with n inputs and one output. The circle
describes the perceptron, in which is applied the linear combination and the
activation function.” MA thesis. url: https://www.ke.tu-darmstadt.de/
lehre/arbeiten/master/2016/Muenker_Christoph.pdf.

[45] Genesis. “Forward propagation illustrated”. In: Fromthegenesis (June 2018).
url: https://www.fromthegenesis.com/artificial- neural- network-
part-8/.

[46] MissingLink. “7 Types of Neural Network Activation Functions”. In:missinglink.a
(Nov. 2018). url: https : / / missinglink . ai / guides / neural - network -
concepts/7-types-neural-network-activation-functions-right/.

[47] MissingLink. “Activation Functions Explained - GELU, SELU, ELU, ReLU and
more”. In: missinglink.a (Aug. 2019). url: https://mlfromscratch.com/
activation-functions-explained.

[48] Shervine Amidi and Afshine Amidi. “Architecture of a traditional RNN”. In:
Stanford (). url: https://stanford.edu/~shervine/teaching/cs-230/
cheatsheet-recurrent-neural-networks.

[49] Jonathan Hui. GAN Training Process Illustrated. 2018. url: http://miro.
medium.com/max/1600/1*9qW0I-2M6qKGBwifhnPKPQ.png (visited on 06/13/2020).

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. “Attention is All you Need”.
In: ArXiv abs/1706.03762 (2017).

[51] Jacob Devlin, Ming-Wei Chang, Kenton Lee, et al. “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding”. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Association for Computational Linguistics,
June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423. url: https://www.
aclweb.org/anthology/N19-1423.

[52] A. Radford, Jeffrey Wu, R. Child, et al. “Language Models are Unsupervised
Multitask Learners”. In: 2019.

[53] A. Radford. “Improving Language Understanding by Generative Pre-Training”.
In: 2018.

[54] Jay Alammar. “Illustrated GPT-2”. In: jalammar (Aug. 2019). url: https:
//jalammar.github.io/illustrated-gpt2/.

[55] P. B. Baxendale. “Machine-Made Index for Technical Literature: An Experi-
ment”. In: IBM J. Res. Dev. 2.4 (Oct. 1958), pp. 354–361. issn: 0018-8646. doi:
10.1147/rd.24.0354. url: https://doi.org/10.1147/rd.24.0354.

106

https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://www.ke.tu-darmstadt.de/lehre/arbeiten/master/2016/Muenker_Christoph.pdf
https://www.ke.tu-darmstadt.de/lehre/arbeiten/master/2016/Muenker_Christoph.pdf
https://www.fromthegenesis.com/artificial-neural-network-part-8/
https://www.fromthegenesis.com/artificial-neural-network-part-8/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://mlfromscratch.com/activation-functions-explained
https://mlfromscratch.com/activation-functions-explained
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
http://miro.medium.com/max/1600/1*9qW0I-2M6qKGBwifhnPKPQ.png
http://miro.medium.com/max/1600/1*9qW0I-2M6qKGBwifhnPKPQ.png
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://jalammar.github.io/illustrated-gpt2/
https://jalammar.github.io/illustrated-gpt2/
https://doi.org/10.1147/rd.24.0354
https://doi.org/10.1147/rd.24.0354

REFERENCES

[56] H. P. Luhn. “A Business Intelligence System”. In: IBM J. Res. Dev. 2.4 (Oct.
1958), pp. 314–319. issn: 0018-8646. doi: 10.1147/rd.24.0314. url: https:
//doi.org/10.1147/rd.24.0314.

[57] G. Salton and C. S. Yang. “On the specification of term values in automatic
indexing.” In: Journal of Documentation. 29.4 (1973), pp. 351–372.

[58] H. P. Edmundson. “New Methods in Automatic Extracting”. In: J. ACM 16.2
(Apr. 1969), pp. 264–285. issn: 0004-5411. doi: 10.1145/321510.321519. url:
https://doi.org/10.1145/321510.321519.

[59] Mohamed Abdel Fattah and Fuji Ren. “GA, MR, FFNN, PNN and GMM Based
Models for Automatic Text Summarization”. In: Comput. Speech Lang. 23.1
(Jan. 2009), pp. 126–144. issn: 0885-2308. doi: 10.1016/j.csl.2008.04.002.
url: https://doi.org/10.1016/j.csl.2008.04.002.

[60] You Ouyang, Wenjie Li, Qin Lu, et al. “A Study on Position Information in
Document Summarization”. In: Coling 2010: Posters. Beijing, China: Coling
2010 Organizing Committee, Aug. 2010, pp. 919–927. url: https : / / www .
aclweb.org/anthology/C10-2106.

[61] Elena Baralis, Luca Cagliero, Saima Jabeen, et al. “Multi-Document Summa-
rization Exploiting Frequent Itemsets”. In: Proceedings of the 27th Annual ACM
Symposium on Applied Computing. SAC ’12. Trento, Italy: Association for Com-
puting Machinery, 2012, pp. 782–786. isbn: 9781450308571. doi: 10.1145/
2245276.2245427. url: https://doi.org/10.1145/2245276.2245427.

[62] Gerard Salton, Amit Singhal, Mandar Mitra, et al. “Automatic text structuring
and summarization”. In: Information Processing and Management 33.2 (1997).
Methods and Tools for the Automatic Construction of Hypertext, pp. 193–
207. issn: 0306-4573. doi: https://doi.org/10.1016/S0306- 4573(96)
00062-3. url: http://www.sciencedirect.com/science/article/pii/
S0306457396000623.

[63] Khushboo Thakkar, Rajiv Dharaskar, and Manoj Chandak. “Graph-Based Al-
gorithms for Text Summarization”. In: Emerging Trends in Engineering and
Technology, International Conference on 0 (Nov. 2010), pp. 516–519. doi: 10.
1109/ICETET.2010.104.

[64] C. D. Paice. “The Automatic Generation of Literature Abstracts: An Approach
Based on the Identification of Self-Indicating Phrases”. In: Proceedings of the
3rd Annual ACM Conference on Research and Development in Information Re-
trieval. SIGIR ’80. Cambridge, England: Butterworth and Co., 1980, pp. 172–
191. isbn: 0408107758.

[65] Kenji Ono, Kazuo Sumita, and Seiji Miike. “Abstract Generation Based on
Rhetorical Structure Extraction”. In: COLING 1994 Volume 1: The 15th Inter-
national Conference on Computational Linguistics. 1994. url: https://www.
aclweb.org/anthology/C94-1056.

107

https://doi.org/10.1147/rd.24.0314
https://doi.org/10.1147/rd.24.0314
https://doi.org/10.1147/rd.24.0314
https://doi.org/10.1145/321510.321519
https://doi.org/10.1145/321510.321519
https://doi.org/10.1016/j.csl.2008.04.002
https://doi.org/10.1016/j.csl.2008.04.002
https://www.aclweb.org/anthology/C10-2106
https://www.aclweb.org/anthology/C10-2106
https://doi.org/10.1145/2245276.2245427
https://doi.org/10.1145/2245276.2245427
https://doi.org/10.1145/2245276.2245427
https://doi.org/https://doi.org/10.1016/S0306-4573(96)00062-3
https://doi.org/https://doi.org/10.1016/S0306-4573(96)00062-3
http://www.sciencedirect.com/science/article/pii/S0306457396000623
http://www.sciencedirect.com/science/article/pii/S0306457396000623
https://doi.org/10.1109/ICETET.2010.104
https://doi.org/10.1109/ICETET.2010.104
https://www.aclweb.org/anthology/C94-1056
https://www.aclweb.org/anthology/C94-1056

REFERENCES

[66] Yuta Kikuchi, Tsutomu Hirao, Hiroya Takamura, et al. “Single Document Sum-
marization based on Nested Tree Structure”. In: Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Pa-
pers). Baltimore, Maryland: Association for Computational Linguistics, June
2014, pp. 315–320. doi: 10.3115/v1/P14-2052. url: https://www.aclweb.
org/anthology/P14-2052.

[67] Kevin Knight and Daniel Marcu. “Summarization beyond sentence extraction:
A probabilistic approach to sentence compression”. In: Artificial Intelligence 139
(July 2002), pp. 91–107. doi: 10.1016/S0004-3702(02)00222-9.

[68] Hongyan Jing and Kathleen R. McKeown. “The Decomposition of Human-
Written Summary Sentences”. In: Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’99. Berkeley, California, USA: Association for Computing Ma-
chinery, 1999, pp. 129–136. isbn: 1581130961. doi: 10.1145/312624.312666.
url: https://doi.org/10.1145/312624.312666.

[69] Su Jeong Choi, Ian Jung, Seyoung Park, et al. “Abstractive Sentence Compres-
sion with Event Attention”. In: 2019.

[70] Trevor Cohn and Mirella Lapata. “Sentence Compression Beyond Word Dele-
tion”. In: Proceedings of the 22nd International Conference on Computational
Linguistics (Coling 2008). Manchester, UK: Coling 2008 Organizing Commit-
tee, Aug. 2008, pp. 137–144. url: https://www.aclweb.org/anthology/C08-
1018.

[71] Katja Filippova. “Multi-Sentence Compression: Finding Shortest Paths in Word
Graphs”. In: Proceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010). Beijing, China: Coling 2010 Organizing Committee,
Aug. 2010, pp. 322–330. url: https://www.aclweb.org/anthology/C10-
1037.

[72] Katja Filippova, Enrique Alfonseca, Carlos A. Colmenares, et al. “Sentence
Compression by Deletion with LSTMs”. In: Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, Sept. 2015, pp. 360–368. doi: 10.
18653/v1/D15-1042. url: https://www.aclweb.org/anthology/D15-1042.

[73] Liangguo Wang, Jing Jiang, Hai Leong Chieu, et al. “Can Syntax Help? Im-
proving an LSTM-based Sentence Compression Model for New Domains”. In:
Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for Com-
putational Linguistics, July 2017, pp. 1385–1393. doi: 10.18653/v1/P17-1127.
url: https://www.aclweb.org/anthology/P17-1127.

[74] V. A. Yatsko, M. S. Starikov, and A. V. Butakov. “Automatic Genre Recognition
and Adaptive Text Summarization”. In: Autom. Doc. Math. Linguist. 44.3 (June
2010), pp. 111–120. issn: 0005-1055. doi: 10.3103/S0005105510030027. url:
https://doi.org/10.3103/S0005105510030027.

108

https://doi.org/10.3115/v1/P14-2052
https://www.aclweb.org/anthology/P14-2052
https://www.aclweb.org/anthology/P14-2052
https://doi.org/10.1016/S0004-3702(02)00222-9
https://doi.org/10.1145/312624.312666
https://doi.org/10.1145/312624.312666
https://www.aclweb.org/anthology/C08-1018
https://www.aclweb.org/anthology/C08-1018
https://www.aclweb.org/anthology/C10-1037
https://www.aclweb.org/anthology/C10-1037
https://doi.org/10.18653/v1/D15-1042
https://doi.org/10.18653/v1/D15-1042
https://www.aclweb.org/anthology/D15-1042
https://doi.org/10.18653/v1/P17-1127
https://www.aclweb.org/anthology/P17-1127
https://doi.org/10.3103/S0005105510030027
https://doi.org/10.3103/S0005105510030027

REFERENCES

[75] Kam-Fai Wong, Mingli Wu, and Wenjie Li. “Extractive Summarization Using
Supervised and Semi-Supervised Learning”. In: Proceedings of the 22nd Inter-
national Conference on Computational Linguistics (Coling 2008). Manchester,
UK: Coling 2008 Organizing Committee, Aug. 2008, pp. 985–992. url: https:
//www.aclweb.org/anthology/C08-1124.

[76] Julian Kupiec, Jan Pedersen, and Francine Chen. “A Trainable Document Sum-
marizer”. In: Proceedings of the 18th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. SIGIR ’95. Seattle,
Washington, USA: Association for Computing Machinery, 1995, pp. 68–73. isbn:
0897917146. doi: 10.1145/215206.215333. url: https://doi.org/10.1145/
215206.215333.

[77] Miles Osborne. “Using maximum entropy for sentence extraction”. In: Pro-
ceedings of the ACL-02 Workshop on Automatic Summarization. Phildadel-
phia, Pennsylvania, USA: Association for Computational Linguistics, July 2002,
pp. 1–8. doi: 10.3115/1118162.1118163. url: https://www.aclweb.org/
anthology/W02-0401.

[78] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learn-
ing. 1st. Cambridge, MA, USA: MIT Press, 1998. isbn: 0262193981.

[79] Gyoung Ho Lee and Kong Joo Lee. “Automatic Text Summarization Using Rein-
forcement Learning with Embedding Features”. In: Proceedings of the Eighth In-
ternational Joint Conference on Natural Language Processing (Volume 2: Short
Papers). Taipei, Taiwan: Asian Federation of Natural Language Processing, Nov.
2017, pp. 193–197. url: https://www.aclweb.org/anthology/I17-2033.

[80] Elozino Egonmwan and Yllias Chali. “Transformer-based Model for Single Doc-
uments Neural Summarization”. In: Proceedings of the 3rd Workshop on Neural
Generation and Translation. Hong Kong: Association for Computational Lin-
guistics, Nov. 2019, pp. 70–79. doi: 10.18653/v1/D19-5607. url: https:
//www.aclweb.org/anthology/D19-5607.

[81] Yang Liu. “Fine-tune BERT for Extractive Summarization”. In:ArXiv abs/1903.10318
(2019).

[82] Jimmy Ba, J. Kiros, and Geoffrey E. Hinton. “Layer Normalization”. In: ArXiv
abs/1607.06450 (2016).

[83] Evan Sandhaus. “The New York Times Annotated Corpus”. In: abs/1607.06450
(Oct. 2008).

[84] Alexander M. Rush, Sumit Chopra, and Jason Weston. “A Neural Attention
Model for Abstractive Sentence Summarization”. In: Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. Lisbon, Por-
tugal: Association for Computational Linguistics, Sept. 2015, pp. 379–389. doi:
10.18653/v1/D15-1044. url: https://www.aclweb.org/anthology/D15-
1044.

109

https://www.aclweb.org/anthology/C08-1124
https://www.aclweb.org/anthology/C08-1124
https://doi.org/10.1145/215206.215333
https://doi.org/10.1145/215206.215333
https://doi.org/10.1145/215206.215333
https://doi.org/10.3115/1118162.1118163
https://www.aclweb.org/anthology/W02-0401
https://www.aclweb.org/anthology/W02-0401
https://www.aclweb.org/anthology/I17-2033
https://doi.org/10.18653/v1/D19-5607
https://www.aclweb.org/anthology/D19-5607
https://www.aclweb.org/anthology/D19-5607
https://doi.org/10.18653/v1/D15-1044
https://www.aclweb.org/anthology/D15-1044
https://www.aclweb.org/anthology/D15-1044

REFERENCES

[85] Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, et al. “Abstractive Text
Summarization using Sequence-to-sequence RNNs and Beyond”. In: Proceedings
of The 20th SIGNLL Conference on Computational Natural Language Learn-
ing. Berlin, Germany: Association for Computational Linguistics, Aug. 2016,
pp. 280–290. doi: 10.18653/v1/K16-1028. url: https://www.aclweb.org/
anthology/K16-1028.

[86] Dzmitry Bahdanau, Kyunghyun Cho, and Y. Bengio. “Neural Machine Transla-
tion by Jointly Learning to Align and Translate”. In: ArXiv 1409 (Sept. 2014).

[87] Junyoung Chung, Çaglar Gülçehre, Kyunghyun Cho, et al. “Empirical Evalu-
ation of Gated Recurrent Neural Networks on Sequence Modeling”. In: ArXiv
abs/1412.3555 (2014).

[88] Jeffrey Ling and Alexander Rush. “Coarse-to-Fine Attention Models for Docu-
ment Summarization”. In: Proceedings of the Workshop on New Frontiers in
Summarization. Copenhagen, Denmark: Association for Computational Lin-
guistics, Sept. 2017, pp. 33–42. doi: 10.18653/v1/W17-4505. url: https:
//www.aclweb.org/anthology/W17-4505.

[89] Piji Li, Wai Lam, Lidong Bing, et al. “Deep Recurrent Generative Decoder
for Abstractive Text Summarization”. In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing. Copenhagen, Denmark:
Association for Computational Linguistics, Sept. 2017, pp. 2091–2100. doi: 10.
18653/v1/D17-1222. url: https://www.aclweb.org/anthology/D17-1222.

[90] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. “Attention Is All You Need”.
In: (June 2017).

[91] Alexandre Matton and Amaury Sabran. “Faster Transformers for text sum-
marization”. In: 2019. url: https : / / pdfs . semanticscholar . org / 34be /
49a5a23343cb69508ed7b3a4b25f26210d57.pdf?_ga=2.68453907.36616089.
1598978775-852984914.1598022094.

[92] Sam Shleifer. 2020. url: https://github.com/huggingface/transformers/
tree/master/examples/seq2seq#distilbart.

[93] Mike Lewis, Yinhan Liu, Naman Goyal, et al. “BART: Denoising Sequence-
to-Sequence Pre-training for Natural Language Generation, Translation, and
Comprehension”. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Online: Association for Computational Linguis-
tics, July 2020, pp. 7871–7880. doi: 10.18653/v1/2020.acl-main.703. url:
https://www.aclweb.org/anthology/2020.acl-main.703.

[94] Dan Hendrycks and Kevin Gimpel. “Gaussian Error Linear Units (GELUs).”
In: arXiv: Learning (2016).

[95] Chikashi Nobata and Satoshi Sekine. “CRL/NYU Summarization System at
DUC-2004”. English. In: Document Understanding Workshop 2004. May 2004.

[96] Dragomir R. Radev, Hongyan Jing, and Malgorzata Budzikowska. “Centroid-
based summarization of multiple documents: sentence extraction, utility-based

110

https://doi.org/10.18653/v1/K16-1028
https://www.aclweb.org/anthology/K16-1028
https://www.aclweb.org/anthology/K16-1028
https://doi.org/10.18653/v1/W17-4505
https://www.aclweb.org/anthology/W17-4505
https://www.aclweb.org/anthology/W17-4505
https://doi.org/10.18653/v1/D17-1222
https://doi.org/10.18653/v1/D17-1222
https://www.aclweb.org/anthology/D17-1222
https://pdfs.semanticscholar.org/34be/49a5a23343cb69508ed7b3a4b25f26210d57.pdf?_ga=2.68453907.36616089.1598978775-852984914.1598022094
https://pdfs.semanticscholar.org/34be/49a5a23343cb69508ed7b3a4b25f26210d57.pdf?_ga=2.68453907.36616089.1598978775-852984914.1598022094
https://pdfs.semanticscholar.org/34be/49a5a23343cb69508ed7b3a4b25f26210d57.pdf?_ga=2.68453907.36616089.1598978775-852984914.1598022094
https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart
https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart
https://doi.org/10.18653/v1/2020.acl-main.703
https://www.aclweb.org/anthology/2020.acl-main.703

REFERENCES

evaluation, and user studies”. In: NAACL-ANLP 2000 Workshop: Automatic
Summarization. 2000. url: https://www.aclweb.org/anthology/W00-0403.

[97] Dragomir Radev andWeiguo Zhang. “WebInEssence: A PersonalizedWeb-Based
Multi-Document Summarization and Recommendation System”. In: (Sept. 2001).

[98] Yihong Gong and Xin Liu. “Generic Text Summarization Using Relevance Mea-
sure and Latent Semantic Analysis”. In: Proceedings of the 24th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’01. New Orleans, Louisiana, USA: Association for Computing
Machinery, 2001, pp. 19–25. isbn: 1581133316. doi: 10.1145/383952.383955.
url: https://doi.org/10.1145/383952.383955.

[99] Josef Steinberger and Karel Jezek. “Using Latent Semantic Analysis in Text
Summarization and Summary Evaluation”. In: Jan. 2004.

[100] Xiaojun Wan. “An Exploration of Document Impact on Graph-Based Multi-
Document Summarization”. In: Proceedings of the 2008 Conference on Empir-
ical Methods in Natural Language Processing. Honolulu, Hawaii: Association
for Computational Linguistics, Oct. 2008, pp. 755–762. url: https://www.
aclweb.org/anthology/D08-1079.

[101] Rada Mihalcea and Paul Tarau. “TextRank: Bringing Order into Text”. In:
Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing. Barcelona, Spain: Association for Computational Linguistics, July
2004, pp. 404–411. url: https://www.aclweb.org/anthology/W04-3252.

[102] Xiaojun Wan. “TimedTextRank: Adding the Temporal Dimension to Multi-
Document Summarization”. In: Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval. SIGIR ’07. Amsterdam, The Netherlands: Association for Computing
Machinery, 2007, pp. 867–868. isbn: 9781595935977. doi: 10.1145/1277741.
1277949. url: https://doi.org/10.1145/1277741.1277949.

[103] Nitin Madnani, David Zajic, Bonnie Dorr, et al. “Multiple alternative sentence
compressions for automatic text summarization”. In: In Proceedings of the 2007
Document Understanding Conference (DUC-2007) at NLT/NAACL 2007. 2007.

[104] Asli Celikyilmaz and Dilek Hakkani-Tür. “Discovery of Topically Coherent Sen-
tences for Extractive Summarization”. In: Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Tech-
nologies. Portland, Oregon, USA: Association for Computational Linguistics,
June 2011, pp. 491–499. url: https://www.aclweb.org/anthology/P11-
1050.

[105] Seonggi Ryang and Takeshi Abekawa. “Framework of Automatic Text Sum-
marization Using Reinforcement Learning”. In: Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning. Jeju Island, Korea: Association for Com-
putational Linguistics, July 2012, pp. 256–265. url: https://www.aclweb.
org/anthology/D12-1024.

111

https://www.aclweb.org/anthology/W00-0403
https://doi.org/10.1145/383952.383955
https://doi.org/10.1145/383952.383955
https://www.aclweb.org/anthology/D08-1079
https://www.aclweb.org/anthology/D08-1079
https://www.aclweb.org/anthology/W04-3252
https://doi.org/10.1145/1277741.1277949
https://doi.org/10.1145/1277741.1277949
https://doi.org/10.1145/1277741.1277949
https://www.aclweb.org/anthology/P11-1050
https://www.aclweb.org/anthology/P11-1050
https://www.aclweb.org/anthology/D12-1024
https://www.aclweb.org/anthology/D12-1024

REFERENCES

[106] Cody Rioux, Sadid A. Hasan, and Yllias Chali. “Fear the REAPER: A System
for Automatic Multi-Document Summarization with Reinforcement Learning”.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Doha, Qatar: Association for Computational Lin-
guistics, Oct. 2014, pp. 681–690. doi: 10.3115/v1/D14-1075. url: https:
//www.aclweb.org/anthology/D14-1075.

[107] Sam Shleifer. Introducing BART. Mar. 2020. url: https : / / github . com /
sshleifer/blog_v2/blob/master/_notebooks/2020-03-12-bart.ipynb.

[108] Tomas Mikolov, Ilya Sutskever, Kai Chen, et al. “Distributed Representations
of Words and Phrases and their Compositionality”. In: Advances in Neural In-
formation Processing Systems 26 (Oct. 2013).

[109] Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe: Global
Vectors for Word Representation”. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1532–1543. doi: 10.
3115/v1/D14-1162. url: https://www.aclweb.org/anthology/D14-1162.

[110] SlashData. The global developer population 20019: how many developers are
there. 2019, p. 17. url: https://slashdata-website-cms.s3.amazonaws.
com/sample_reports/EiWEyM5bfZe1Kug_.pdf.

[111] Juan Carlos. Scalars, vectors, matrices and tensors. May 2019. url: https:
//dev.to/juancarlospaco/tensors-for-busy-people-315k.

[112] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, et al. “Teaching
machines to read and comprehend”. In: Advances in neural information process-
ing systems. 2015, pp. 1693–1701.

[113] Rui Zhang and Joel Tetreault. This Email Could Save Your Life: Introducing
the Task of Email Subject Line Generation. 2019. arXiv: 1906.03497 [cs.CL].

[114] Alexander R. Fabbri, Irene Li, Tianwei She, et al. Multi-News: a Large-Scale
Multi-Document Summarization Dataset and Abstractive Hierarchical Model.
2019. arXiv: 1906.01749 [cs.CL].

[115] Junbo Kong Robert Parker David Graff and Kazuaki Maeda Ke Chen. “English
Gigaword Fifth Edition”. In: (June 2011).

[116] Matthew R. Gormley Courtney Napoles and Benjamin Van Durme. “Annotated
English Gigaword”. In: (Nov. 2012).

[117] Ani Nenkova. “Automatic Text Summarization of Newswire: Lessons Learned
from the Document Understanding Conference”. In: Proceedings of the 20th Na-
tional Conference on Artificial Intelligence - Volume 3. AAAI’05. Pittsburgh,
Pennsylvania: AAAI Press, 2005, pp. 1436–1441. isbn: 157735236x.

112

https://doi.org/10.3115/v1/D14-1075
https://www.aclweb.org/anthology/D14-1075
https://www.aclweb.org/anthology/D14-1075
https://github.com/sshleifer/blog_v2/blob/master/_notebooks/2020-03-12-bart.ipynb
https://github.com/sshleifer/blog_v2/blob/master/_notebooks/2020-03-12-bart.ipynb
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://slashdata-website-cms.s3.amazonaws.com/sample_reports/EiWEyM5bfZe1Kug_.pdf
https://slashdata-website-cms.s3.amazonaws.com/sample_reports/EiWEyM5bfZe1Kug_.pdf
https://dev.to/juancarlospaco/tensors-for-busy-people-315k
https://dev.to/juancarlospaco/tensors-for-busy-people-315k
https://arxiv.org/abs/1906.03497
https://arxiv.org/abs/1906.01749

