Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/1649
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | haoulia, Salima | - |
dc.date.accessioned | 2019-10-28T08:43:02Z | - |
dc.date.available | 2019-10-28T08:43:02Z | - |
dc.date.issued | 2013 | - |
dc.identifier.uri | http://di.univ-blida.dz:8080/xmlui/handle/123456789/1649 | - |
dc.description | 4.621.1.187 ; 111 p illustré ; 30 cm | fr_FR |
dc.description.abstract | The segmentation of mammograms plays a major role in isolating areas, which can be subject to tumors. The identification of these zones is done in three stages: contrast enhancement, overdense regions detection and finally texture and shape analysis of the regions of interest for a classification of masses. We use region growing algorithm for the masses detection. Classification of these structures is accomplished through Support Vector Machines, which separate them into two groups, Benign Tumors and Malignant Tumors, using shape and texture descriptors to aid clinical diagnosis. | fr_FR |
dc.language.iso | fr | fr_FR |
dc.publisher | Univ Blida1 | fr_FR |
dc.subject | image mammographique, morphologie mathématique, | fr_FR |
dc.title | Détection morphologique et texturale de pathologies mammographiques pour l’aide à la décision | fr_FR |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Untitled.pdf | 9,86 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.