Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/19532Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | Abbaci, Safaa | - |
| dc.contributor.author | Saidi, Manel | - |
| dc.contributor.author | Rassoul, Abdelaziz (Promoteur) | - |
| dc.date.accessioned | 2022-09-29T12:16:50Z | - |
| dc.date.available | 2022-09-29T12:16:50Z | - |
| dc.date.issued | 2022-07 | - |
| dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/19532 | - |
| dc.description | ill., Bibliogr. Cote: ma-510-135 | fr_FR |
| dc.description.abstract | Missing data is a major issue in many applied problems. in our work we examine data that are missing and . the aims of multiple imputation in comparison to single imputation, we also studying the statistical inference by likelihood Maximum method for sample with missing data with Maximization-Expectation algorithm. Finally, we present the mains packages for imputation of missing data, and we applied the EM algorithm for Mixture Gaussian model Keywords: expectation maximization algorithm, missing data, imputation, maximum likelihood Method | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.publisher | Université Blida 1 | fr_FR |
| dc.subject | expectation maximization algorithm | fr_FR |
| dc.subject | missing data | fr_FR |
| dc.subject | imputation | fr_FR |
| dc.subject | maximum likelihood Method | fr_FR |
| dc.title | Imputation of missing data and Inference by EM algorithm | fr_FR |
| dc.type | Thesis | fr_FR |
| Collection(s) : | Mémoires de Master | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| Abbaci Safaa et Saidi Manel.pdf | 1,16 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.