Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/19960
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBouchelaram, Ishrak-
dc.contributor.authorChita, Ramzi-
dc.contributor.authorKameche, A. (Promoteur)-
dc.date.accessioned2022-11-07T12:50:08Z-
dc.date.available2022-11-07T12:50:08Z-
dc.date.issued2022-09-25-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/19960-
dc.descriptionill., Bibliogr. Cote: ma-004-869fr_FR
dc.description.abstractThe main purpose of this project is to design an environmental general audio content description using text, where a system accepts as an input an audio signal and outputs the textual description of that signal. This task has drawn lots of attention during the past several years as a result of quick devolvement of different methods that can provide captions for a general audio recording. To accomplish the automatic audio captioning task, we have performed multiple experiments using a Clotho dataset. Two deep neural networks have been employed in the construction of our systems Recurrent Neural Network and Gated Recurrent Unit, along with encoder-decoder architecture and a combination of feature representations based on audio processing techniques like Mel Spectrogram and text processing techniques used in text decoding from word embeddings like one-hot-encoding and BERT. Keywords: Audio Captioning, Machine Learning, Encoder Decoder Models, Signal Processing, Natural Language Processing.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectAudio Captioningfr_FR
dc.subjectMachine Learningfr_FR
dc.subjectEncoder Decoder Modelsfr_FR
dc.subjectSignal Processingfr_FR
dc.subjectNatural Language Processingfr_FR
dc.titleENCODER-DECODER NEURAL NETWORK ARCHITECTURES FOR AUTOMATIC AUDIO CAPTIONINGfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Bouchelaram Ishrak et Chita Ramzi.pdf2,66 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.