Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/20465
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBedrane, Ilhem-
dc.contributor.authorBoumahdi, Faima ( Promotrice)-
dc.date.accessioned2022-12-13T12:26:58Z-
dc.date.available2022-12-13T12:26:58Z-
dc.date.issued2022-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/20465-
dc.descriptionill., Bibliogr. Cote: ma-004-881fr_FR
dc.description.abstractIn recent years, cyber criminals have successfully invaded many important information systems by using phishing mail, causing huge losses. The detection of phishing mail from big email data has been paid public attention. However, the camouflage technology of phishing mail is becoming more and more complex, and the existing detection methods are unable to confront with the increasingly complex deception methods and the growing number of emails. In this paper we transformed the probleme from classification of emails into similarity detection between two emails in order to classify them into 4 mains classes “ Normal, Harrassment , suspicious and fraudulent” to solve this probleme we used Siamese Neural networks which gave us an accuracy of 95.13%. Key words : NLP, Siamese network, deep learning, phishing attacks, phishing detection, similarity learning.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectNLPfr_FR
dc.subjectSiamese networkfr_FR
dc.subjectdeep learningfr_FR
dc.subjectphishing attacksfr_FR
dc.subjectphishing detectionfr_FR
dc.subjectsimilarity learningfr_FR
dc.titleDetection of Phishing Emailsfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Bedrane Ilhem.pdf1,97 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.