Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/24958
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorTouahria, Nesrine
dc.contributor.authorBouhamam, Romaissa
dc.contributor.authorBentrad, Hocine (promoteur)
dc.contributor.authorKechida, Ahmed (promoteur)
dc.date.accessioned2023-09-26T11:03:04Z
dc.date.available2023-09-26T11:03:04Z
dc.date.issued2023
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/24958
dc.descriptionMémoire de Master option Avionique.-Numéro de Thèse029/2023fr_FR
dc.description.abstractIn the past years, 40 831 hectares of forests have been devastated by rampant wildfires, resulting in the tragic loss of numerous lives. To address this challenge, our research focuses on developing an early wildfire detection system capable of identifying potential fire outbreaks before they escalate, as controlling them once they have spread becomes arduous. Our proposed approach utilizes unmanned aerial vehicles (UAVs) to capture aerial data, which is then processed on board to automatically detect early signs of wildfires. This enables us to promptly alert relevant emergency services and facilitate a rapid response. The core technique employed in our approach is transfer learning, specifically applied to the YOLOv3 model for object detection through several Batch sizes and epochs. We validate the effectiveness of our model using FLAME dataset. The performance metrics we have achieved demonstrate the success of our approach, with Precision, Recall, F1-Score and Accuracy rates reaching impressive levels of 100%, 96.66667%, 98.305085%, and 96.66667% respectively.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 01fr_FR
dc.subjectWildfiresfr_FR
dc.subjectUAVsfr_FR
dc.subjectDetectionfr_FR
dc.subjectTransfer learningfr_FR
dc.subjectYOLOv3fr_FR
dc.subjectEarly detectionfr_FR
dc.titleUAV aerial image-based forest fire detection using artificial intelligencefr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Final Thesis.pdf3,83 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.