Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/24958
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Touahria, Nesrine | |
dc.contributor.author | Bouhamam, Romaissa | |
dc.contributor.author | Bentrad, Hocine (promoteur) | |
dc.contributor.author | Kechida, Ahmed (promoteur) | |
dc.date.accessioned | 2023-09-26T11:03:04Z | |
dc.date.available | 2023-09-26T11:03:04Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/24958 | |
dc.description | Mémoire de Master option Avionique.-Numéro de Thèse029/2023 | fr_FR |
dc.description.abstract | In the past years, 40 831 hectares of forests have been devastated by rampant wildfires, resulting in the tragic loss of numerous lives. To address this challenge, our research focuses on developing an early wildfire detection system capable of identifying potential fire outbreaks before they escalate, as controlling them once they have spread becomes arduous. Our proposed approach utilizes unmanned aerial vehicles (UAVs) to capture aerial data, which is then processed on board to automatically detect early signs of wildfires. This enables us to promptly alert relevant emergency services and facilitate a rapid response. The core technique employed in our approach is transfer learning, specifically applied to the YOLOv3 model for object detection through several Batch sizes and epochs. We validate the effectiveness of our model using FLAME dataset. The performance metrics we have achieved demonstrate the success of our approach, with Precision, Recall, F1-Score and Accuracy rates reaching impressive levels of 100%, 96.66667%, 98.305085%, and 96.66667% respectively. | fr_FR |
dc.language.iso | en | fr_FR |
dc.publisher | Université Blida 01 | fr_FR |
dc.subject | Wildfires | fr_FR |
dc.subject | UAVs | fr_FR |
dc.subject | Detection | fr_FR |
dc.subject | Transfer learning | fr_FR |
dc.subject | YOLOv3 | fr_FR |
dc.subject | Early detection | fr_FR |
dc.title | UAV aerial image-based forest fire detection using artificial intelligence | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Final Thesis.pdf | 3,83 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.