Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25278
Titre: Détection d’activité vocale basée sur l’apprentissage profond
Auteur(s): KRAMOU, Rime
DJADI, Aya
Mots-clés: Convolutional Neural Networks, deep learning, database.
Date de publication: 2023
Editeur: blida 1
Résumé: Voice activity detection (VAD) is considered one of the most important techniques for many speech applications. It is an important method in speech processing, as it detects the presence or absence of speech. Previously VAD performance was based on methods that depended on signal processing signal processing, but did not perform satisfactorily in high-noise environments, so deep learning became an alternative. A , we adopted in the experimental study three structures for deep learning deep learning, namely Convolutional Neural Networks (CNN) and a DenseNet network, and we also used the three databases for speech and noise, namely LibriSpeech, TidiGets and Chimie5 in succession. We measured accuracy in low-noise environments with various sensitivities and achieved 100% accuracy.
Description: 4.621.1.1261/p65
URI/URL: https://di.univ-blida.dz/jspui/handle/123456789/25278
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
format mémoire ryma & Aya (1).pdf2,17 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.