Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25289
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBINTOU SAIDOU, SOULEYMANE-
dc.date.accessioned2023-10-05T09:11:58Z-
dc.date.available2023-10-05T09:11:58Z-
dc.date.issued2023-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25289-
dc.description4.621.1.1236 /p53fr_FR
dc.description.abstractThis thesis presents the development of an innovative access control system that verifies kinship based on facial characteristics from images. The main objective is to design a robust and accurate method to determine the relationship between individuals. This system has applications in residential security, access control to restricted areas, and identification within a family environment. The thesis utilizes convolutional neural networks (CNN) to classify similarities and differences among family members. The proposed method achieved an accuracy of 91.75% on the KinFaceW-II database.fr_FR
dc.language.isofrfr_FR
dc.publisherblida 1fr_FR
dc.subjectParentage verification, CNN, access control, facial images.fr_FR
dc.titleContrôle d’Accès par Vérification Parentale à base d’Imagesfr_FR
dc.typeOtherfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
PFE Bintou 14-06-23.pdf2,14 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.