Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25323
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBenaissa, Zineb-
dc.contributor.authorLardjane, Rania-
dc.date.accessioned2023-10-05T10:39:10Z-
dc.date.available2023-10-05T10:39:10Z-
dc.date.issued2023-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25323-
dc.description4.621.1.1222/p86fr_FR
dc.description.abstractOur project aims to implement a drowsiness detection system based on deep learning on Raspberry Pi(Tensorflow). This combination offers a portable and energy-efficient solution for accurate and real-time detection. The study examines the hardware and software aspects specific to Raspberry Pi, as well as the system's performance compared to another drowsiness detection method (Dlib). The goal is to enhance safety and vigilance in domains such as automotive driving and surveillance.fr_FR
dc.language.isofrfr_FR
dc.publisherblida 1fr_FR
dc.subjectdrowsiness, detection, tensorflow, raspberry pi, deep learning,dlib, driving.fr_FR
dc.titleImplémentation sur Raspberry pi de modèles de détection de la somnolence par deep learningfr_FR
dc.typeOtherfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
mémoire-finale.pdf3,55 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.