Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/25329
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | AIT ALI, YAHIA Rayane | - |
dc.contributor.author | MENNAA, Maroua | - |
dc.date.accessioned | 2023-10-05T11:01:53Z | - |
dc.date.available | 2023-10-05T11:01:53Z | - |
dc.date.issued | 2023 | - |
dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/25329 | - |
dc.description | 4.621.1.1218 /p 91 | fr_FR |
dc.description.abstract | The objective of this end-of-study project is to create a system capable of counting crowds and and verify the faces of suspect people present in real-time video surveillance using deep learning. This project is divided into two parts, in the first part the yolov3 model is used to detect and count people, and the second part, it uses the FaceNet model in order to detect the faces of suspect people and we also train it on images, assuming they are images of suspect people, we obtained satisfactory results and finally, we combine these two parts in the graphic interface. | fr_FR |
dc.language.iso | fr | fr_FR |
dc.publisher | blida 1 | fr_FR |
dc.subject | deep learning, video surveillance, yolov3, face verification. | fr_FR |
dc.title | Application du Deep Learning en vidéo surveillance | fr_FR |
dc.type | Other | fr_FR |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
pfe_updated2.pdf | 9,73 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.