Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25329
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAIT ALI, YAHIA Rayane-
dc.contributor.authorMENNAA, Maroua-
dc.date.accessioned2023-10-05T11:01:53Z-
dc.date.available2023-10-05T11:01:53Z-
dc.date.issued2023-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25329-
dc.description4.621.1.1218 /p 91fr_FR
dc.description.abstractThe objective of this end-of-study project is to create a system capable of counting crowds and and verify the faces of suspect people present in real-time video surveillance using deep learning. This project is divided into two parts, in the first part the yolov3 model is used to detect and count people, and the second part, it uses the FaceNet model in order to detect the faces of suspect people and we also train it on images, assuming they are images of suspect people, we obtained satisfactory results and finally, we combine these two parts in the graphic interface.fr_FR
dc.language.isofrfr_FR
dc.publisherblida 1fr_FR
dc.subjectdeep learning, video surveillance, yolov3, face verification.fr_FR
dc.titleApplication du Deep Learning en vidéo surveillancefr_FR
dc.typeOtherfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
pfe_updated2.pdf9,73 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.