Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25477
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorHORRI, WALID-
dc.contributor.authorHAMZA, ISHAK-
dc.date.accessioned2023-10-10T12:42:31Z-
dc.date.available2023-10-10T12:42:31Z-
dc.date.issued2023-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25477-
dc.description4.629.1.170/p97fr_FR
dc.description.abstractThis final year project investigates the use of artificial intelligence (AI) to enhance the inspection process of printed circuit boards (PCBA) at Bomare Company. Utilizing a convolutional neural network (CNN), we developed an AI model capable of accurately distinguishing defective from non-defective PCBA. Trained on a large dataset of images, the model demonstrated excellent performance in terms of accuracy, recall, and AUC score. We also discussed in detail the integration of the model into the production process, highlighting the importance of collaboration among various teams, operator training, and continuous performance monitoring of the model. The potential of AI to improve efficiency, quality, and reduce production costs was underscored, making this technology a viable solution for PCBA inspection in the manufacturing industry.fr_FR
dc.language.isofrfr_FR
dc.publisherblida 1fr_FR
dc.subjectartificial intelligence (AI), PCBA, convolutional neural network (CNN), AUCfr_FR
dc.titleImplémentions De l`IA Dans Une Machine D`inspection Par Camerafr_FR
dc.typeOtherfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
mémoire finale (1).pdf3,88 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.