Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25488
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorNAIT KACI, MOHAMED AMINE-
dc.contributor.authorSEKKANE, ABDELOUAHAB-
dc.date.accessioned2023-10-10T13:37:06Z-
dc.date.available2023-10-10T13:37:06Z-
dc.date.issued2023-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25488-
dc.description4.629.1.171/p80fr_FR
dc.description.abstractThis end-of-study project aims to diagnose faults in three-phase asynchronous machines. Firstly, we will develop the state model of the healthy machine, which will be simulated using Matlab/Simulink software. Then, we will study the machine in the presence of two specific faults, namely coil-to-coil short circuits and supply imbalance. Finally, the last part of this work will focus on detecting these faults using artificial neural network methods. For this purpose, the architecture of this Artificial Neural Network (ANN) is determined using the trial-and-error method. The data for training and testing are collected using the simulation model.fr_FR
dc.language.isofrfr_FR
dc.publisherblida1fr_FR
dc.subjectAsynchronous Machine ; Faults ; Artificial neural networks.fr_FR
dc.titleDiagnostic de la MAS triphasée par la méthode des réseaux de neurones artificielsfr_FR
dc.typeOtherfr_FR
Collection(s) :ouvrage

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
mémoire_final corrigé.pdf3,13 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.