Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/25650
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.author | Chegrani, Akram | |
dc.contributor.author | Yahiaoui, Mohamed | |
dc.contributor.author | Choutri, Kheireddine (promoteur) | |
dc.contributor.author | Lagha, Mohand (promoteur) | |
dc.date.accessioned | 2023-10-15T12:59:00Z | |
dc.date.available | 2023-10-15T12:59:00Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/25650 | |
dc.description | Mémoire de Master option Avionique.-Numéro de Thèse 069/023 | fr_FR |
dc.description.abstract | In an era marked by unprecedented technological advancements, the integration of machine learning, computer vision, and unmanned aerial vehicles has ushered in a new era of possibilities across various domains. The utilization of UAVs, commonly known as drones, has transcended the realm of recreational gadgets and has emerged as a transformative tool in fields ranging from surveillance and agriculture to disaster management. This work embarks on a journey into the intersection of these cutting-edgetechnologies, aiming to address a pressing issue of our times: wildfire detection and management. Within this context, various proposed systems seek to enhance wildfire detection using drones. This work aims to further develop these systems by harnessing the potential of drone swarms and addressing the challenges posed by restricted outdoor drone utilization in our country. The research endeavors to create an indoor positioning system to replace GPS-based position estimation, facilitating the development process within indoor environments. Additionally, the thesis initiates an attempt to establish a two-drone leader-follower drone formation,representing a pivotal step towards the realization of swarm-based wildfire detection and management solutions. | fr_FR |
dc.language.iso | en | fr_FR |
dc.publisher | Université Blida 01 | fr_FR |
dc.subject | UAV | fr_FR |
dc.subject | Machine learning | fr_FR |
dc.subject | wildfire detection | fr_FR |
dc.subject | Computer vision | fr_FR |
dc.subject | Swarm of drones | fr_FR |
dc.subject | Positioning system | fr_FR |
dc.subject | Distance estimation | fr_FR |
dc.subject | Camera calibration | fr_FR |
dc.subject | Yolo | fr_FR |
dc.subject | Indoor positioning | fr_FR |
dc.subject | Swarm | fr_FR |
dc.title | Swarm of drones for forest fire detection | fr_FR |
dc.type | Thesis | fr_FR |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
PFE Final.pdf | 26,89 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.