Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/25650
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorChegrani, Akram
dc.contributor.authorYahiaoui, Mohamed
dc.contributor.authorChoutri, Kheireddine (promoteur)
dc.contributor.authorLagha, Mohand (promoteur)
dc.date.accessioned2023-10-15T12:59:00Z
dc.date.available2023-10-15T12:59:00Z
dc.date.issued2023
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/25650
dc.descriptionMémoire de Master option Avionique.-Numéro de Thèse 069/023fr_FR
dc.description.abstractIn an era marked by unprecedented technological advancements, the integration of machine learning, computer vision, and unmanned aerial vehicles has ushered in a new era of possibilities across various domains. The utilization of UAVs, commonly known as drones, has transcended the realm of recreational gadgets and has emerged as a transformative tool in fields ranging from surveillance and agriculture to disaster management. This work embarks on a journey into the intersection of these cutting-edgetechnologies, aiming to address a pressing issue of our times: wildfire detection and management. Within this context, various proposed systems seek to enhance wildfire detection using drones. This work aims to further develop these systems by harnessing the potential of drone swarms and addressing the challenges posed by restricted outdoor drone utilization in our country. The research endeavors to create an indoor positioning system to replace GPS-based position estimation, facilitating the development process within indoor environments. Additionally, the thesis initiates an attempt to establish a two-drone leader-follower drone formation,representing a pivotal step towards the realization of swarm-based wildfire detection and management solutions.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 01fr_FR
dc.subjectUAVfr_FR
dc.subjectMachine learningfr_FR
dc.subjectwildfire detectionfr_FR
dc.subjectComputer visionfr_FR
dc.subjectSwarm of dronesfr_FR
dc.subjectPositioning systemfr_FR
dc.subjectDistance estimationfr_FR
dc.subjectCamera calibrationfr_FR
dc.subjectYolofr_FR
dc.subjectIndoor positioningfr_FR
dc.subjectSwarmfr_FR
dc.titleSwarm of drones for forest fire detectionfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
PFE Final.pdf26,89 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.