Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/26025
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorHider, Ilyes-
dc.contributor.authorFekir, Idriss-
dc.contributor.authorDaoud, Hayat ( Promotrice)-
dc.date.accessioned2023-10-29T13:00:47Z-
dc.date.available2023-10-29T13:00:47Z-
dc.date.issued2023-06-26-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/26025-
dc.descriptionill., Bibliogr. Cote:ma-004-968fr_FR
dc.description.abstractHunger remains a persistent and serious global issue affecting millions of people worldwide. Despite advancements in agriculture and food distribution, chronic hunger and malnutrition continue to plague communities and nations. The rise in global population further amplifies the challenge of feeding people adequately. Innovativsolutions are being sought, and deep learning techniques offer promising avenues for addressing agricultural problems, particularly weed eradication, which poses a significant threat to crop production. Smart farming, empowered by advanced technologies like artificial intelligence (AI), presents a more efficient, precise, and sustainable approach compared to traditional agriculture. In this work, we present an initial effort towards a smart farming solution for weed eradication. Our approach applies transfer learning on DenseNet121 a Deep Convolutional Neural Network (CNN) pretrained on imagenet, trained on a dataset comprising images of eight weed species and various flora. The goal is to detect and classify weed images accurately, serving as a crucial first step towards developing robotic systems that can be deployed in agricultural fields. By harnessing the power of deep learning, we aim to contribute to the development of effective and automated weed eradication strategies. Despite not contributing much, this research holds significant potential to alleviate the challenges posed by weeds in agriculture and advance the adoption of smart farming practices. Keywords: Deep Learning, Convolutional Neural Network, Weeds Images, Images Classification.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectDeep Learningfr_FR
dc.subjectConvolutional Neural Networkfr_FR
dc.subjectWeeds Imagesfr_FR
dc.subjectImages Classificationfr_FR
dc.titleDeep Learning Model For Weeds Detection & Classificationfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Hider Ilyes et Fekir Idriss.pdf9,54 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.