Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/26105
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorYahiaoui, Abdel Madjid-
dc.contributor.authorYkrelef, Imad Eddine-
dc.contributor.authorChachoua, Soraya (promotrice)-
dc.date.accessioned2023-11-05T13:33:41Z-
dc.date.available2023-11-05T13:33:41Z-
dc.date.issued2023-07-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/26105-
dc.descriptionill., Bibliogr. Cote:ma-004-986fr_FR
dc.description.abstractMachine learning has been used in the field of cybersecurity to predict trends in cyberattacks. However, adversaries can inject malicious data into the dataset during training and testing to cause disruption and predict false narratives. It has become difficult to analyze and predict correlations of cyberattacks due to their fuzzy nature and lack of understanding of the nature of threats. We use our model to create a cyber threat ontology and use its rules to detect adversarial machine learning attacks. Keywords: Cyber security, cyber attacks, cyber defense, machine learning, adversary attacks, cyber threat ontology.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectCyber securityfr_FR
dc.subjectcyber attacksfr_FR
dc.subjectcyber defensefr_FR
dc.subjectmachine learningfr_FR
dc.subjectadversary attacksfr_FR
dc.subjectcyber threat ontologyfr_FR
dc.titleAdversarial attacks detection based on an ontology of cyber threatfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Yahiaoui Abdel Madjid et Ykrelef Imad Eddine.pdf1,82 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.