Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/26107
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAissani, Youcef-
dc.contributor.authorNeffah, Mohamed (Promoteur)-
dc.date.accessioned2023-11-05T13:45:32Z-
dc.date.available2023-11-05T13:45:32Z-
dc.date.issued2023-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/26107-
dc.descriptionill., Bibliogr. Cote:ma-004-988fr_FR
dc.description.abstractThis thesis focuses on the behavioral analysis of log data for anomaly detection and clustering in the field of cybersecurity. The objective is to obtain insights into patterns, anomalies, and potential threats present in sonatrach’s logs. Various algorithms, including K-means, DBSCAN, GMM, and Isolation Forest, were evaluated and compared in terms of their performance in detecting anomalies and clustering the data. The results showed that while K-means performed poorly, DBSCAN, GMM, and Isolation Forest exhibited different levels of sensitivity and performance. The findings provide valuable insights for improving anomaly detection and threat analysis in cybersecurity. Keywords : anomaly detection, behavioral analysis, clustering, preprocessing, machine learning.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectanomaly detectionfr_FR
dc.subjectbehavioral analysis,fr_FR
dc.subjectclusteringfr_FR
dc.subjectpreprocessingfr_FR
dc.subjectmachine learningfr_FR
dc.titleBehavioral analysis of Active Directory logsfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Aissani Youcef.pdf1,85 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.