Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/26762
Titre: | Classification des défauts dans les réseaux électriques à l'aide de réseaux de neurones convolutifs CNN |
Auteur(s): | DIBOUNE, Khadidja FENNICHE, Rayane Feriel |
Mots-clés: | Réseau électrique, classification, problèmes, Deep Learning. |
Date de publication: | 2023 |
Editeur: | blida 1 |
Résumé: | De nos jours, les équipements utilisés dans les services d'électricité sont plus sensibles à divers types de défauts et de perturbations, et la continuité des services ne peut être garantie. Ces défauts pouvant être permanents, il est nécessaire de les détecter, de les classifier pour réparer et restaurer l'alimentation dès que possible. L’objectif de ce travail est l'utilisation de l'efficacité du la méthode Deep Learning pour la classification des problèmes sur un réseau électrique. Dans ce travail, on utilise des réseaux neuronaux convolutifs, que nous avons entraîné et testé à l'aide de la bibliothèque Tensorflow qui prend en charge l’apprentissage automatique en Python afin d'obtenir les résultats requis. |
Description: | 4.621.1.1279.p60 |
URI/URL: | https://di.univ-blida.dz/jspui/handle/123456789/26762 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
Dernier modification de mémoire.pdf | 2,89 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.