Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/31941
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorOldio Jose, Luis Dos Santos-
dc.contributor.authorOuadfeul, Adel-
dc.contributor.authorFrihi, Redouane (Encadreur)-
dc.date.accessioned2024-10-29T11:17:06Z-
dc.date.available2024-10-29T11:17:06Z-
dc.date.issued2024-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/31941-
dc.descriptionill., Bibliogr. Cote:ma-510-176fr_FR
dc.description.abstractAutoregressive Integrated Moving Average (ARIMA) is one of the popular linear models in time series forecasting during the past three decades. Recent research activities in forecasting with Artificial Neural Networks (ANN) suggest that ANN can be a promising alternative to the traditional linear methods. ARIMA models and ANN are often compared with mixed conclusions in terms of the superiority in forecasting performance. In this thesis, a hybrid methodology that combines both ARIMA and ANN models is also proposed to take advantage of the unique strength of ARIMA and ANN models in linear and nonlinear modeling. Experimental results with real datasets indicate that the combined model can be an effective way to improve forecasting accuracy achieved by either of the models used separately.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectARIMAfr_FR
dc.subjectANNfr_FR
dc.subjectforecasting performancefr_FR
dc.titleTime Series Forecasting Using Hybrid AutoRegressive Integrated Moving Average(ARIMA) and Artificial Neural Network (ANN) Modelfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Oldio Jose Luis Dos Santos et Ouadfeul Adel.pdf2,59 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.