Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/32417
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMerouche, Abdelkader-
dc.contributor.authorLandjas, Fatiha-
dc.contributor.authorFrihi, Redouane (Promoteur)-
dc.date.accessioned2024-11-04T13:47:27Z-
dc.date.available2024-11-04T13:47:27Z-
dc.date.issued2024-07-04-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/32417-
dc.descriptionill., Bibliogr. Cote:ma-510-185fr_FR
dc.description.abstractGARCH models, artificial neural networks (ANN), and their hybridization.Then we applied it to real financial data to evaluate its performance. The study aims to analyze the performance of the GARCH(1, 1) model and assess its predictive accuracy compared to other models. Finally, we propose a hybrid model that combines multiple components of the previous models to further enhance predictive performance. This study contributes to a deeper understanding of how to improve the accuracy of financial volatility forecasts by using advanced and hybrid models. Keywords: GARCH; Artificial Neural Networks (ANN); Model Hybridization; Financial Volatility Forecasting; Predictive Accuracy; GARCH(1, 1) Model; ANN Linear; ANN Tanh; Hybrid Models; Advanced Financial Models.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectGARCHfr_FR
dc.subjectArtificial Neural Networks (ANN)fr_FR
dc.subjectModel Hybridizationfr_FR
dc.subjectFinancial Volatility Forecastingfr_FR
dc.subjectPredictive Accuracyfr_FR
dc.subjectGARCH(1, 1) Modelfr_FR
dc.subjectANN Linearfr_FR
dc.subjectANN Tanhfr_FR
dc.subjectHybrid Modelsfr_FR
dc.subjectAdvanced Financial Modelsfr_FR
dc.titleTime series prediction with a combined GARCH (Generalized Autoregressive Conditional Heteroskedasticity) and ANN (Artificial Neural Network) Modelfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Merouche Abdelkader et Landjas Fatiha.pdf3,86 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.