Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/35854
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorFeddamadji, Baya-
dc.contributor.authorAmaouche, Lina-
dc.contributor.authorBenyahya, Mohamed ( Promoteur)-
dc.contributor.authorTiberkak, Allal ( Promoteur)-
dc.date.accessioned2024-12-18T13:29:32Z-
dc.date.available2024-12-18T13:29:32Z-
dc.date.issued2024-07-02-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/35854-
dc.descriptionill., Bibliogr. Cote:ma-004-1030fr_FR
dc.description.abstractIn today's world, the demand for reliable and efficient localization systems has become more important. Traditional systems like GPS often fall short in complex environments such as buildings or conflict zones, where reliable positioning can be challenging. This limitation highlights the need for precise, cost-effective localization solutions that can function seamlessly in various scenarios. To address this gap, we propose a proprietary indoor positioning system based on cell phone tower signals and located devices, offering an alternative that is both reliable and accessible. Our system uses machine learning and deep learning techniques to process data col- lected from various mobile devices. By analyzing signals from cellular towers, it can accurately predict the location of users. This method enhances location accuracy in dif- ferent environments while providing an alternative to traditional GPS systems. Our work addresses the growing demand for reliable location solutions. Keywords: localization systems, indoor positioning, machine learning, deep learning, cellular.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectlocalization systemsfr_FR
dc.subjectindoor positioningfr_FR
dc.subjectmachine learningfr_FR
dc.subjectdeep learningfr_FR
dc.subjectcellularfr_FR
dc.titleProprietary location system based on cell phone tower signals and located devicesfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Feddamadji Baya et Amaouche Lina.pdf5,47 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.