Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/40289
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBABAUOSMAIL, Idris-
dc.contributor.authorHadj Daoud, ABDERRAHMAN-
dc.date.accessioned2025-07-16T10:08:30Z-
dc.date.available2025-07-16T10:08:30Z-
dc.date.issued2024-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/40289-
dc.description4.333.1.366 ; 109 pfr_FR
dc.description.abstractThis thesis aims to investigate the impact of control parameters and variants of the DE algorithm on its performance. By analyzing parameters like population size and mutation rates, alongside exploring various DE algorithm variants, the study aims to understand their combined influence on algorithm efficiency. Moreover, this research has the potential to be applied to various fields requiring optimization, including Maximum Power Point Tracking (MPPT).fr_FR
dc.language.isoenfr_FR
dc.publisherBlida1fr_FR
dc.subjectGlobal Optimization, Meta-heuristic Algorithms (GA, ABC, PSO), Differential Evolution (DE), Control Parameters, DE Variants, Benchmark Functions, Convergence Quality, Convergence Speed, Execution Time.fr_FR
dc.titleNumerical Analysis of The Differential Evolution Optimization Algorithm and Its Control Parametersfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Final_THESIS.pdf2,71 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.