Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/40815Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.author | Laid Abderrahmane | - |
| dc.contributor.author | Ouffa Wissal | - |
| dc.date.accessioned | 2025-10-28T11:40:51Z | - |
| dc.date.available | 2025-10-28T11:40:51Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.uri | https://di.univ-blida.dz/jspui/handle/123456789/40815 | - |
| dc.description | 4.621.1.1382;157p | fr_FR |
| dc.description.abstract | This thesis presents an edge-computing system for real-time industrial machine monitoring, combining an STM32F103RB microcontroller with NanoEdge AI Studio to Monitor Machine state on-device without cloud dependency. Vibration data from an MPU6050 sensor is captured via DMA, analyzed by embedded AI, and displayed locally on an OLED while being relayed to a web dashboard (via CAN bus and ESP32). A custom 6-layer PCB and modular firmware architecture ensure low-latency processing and scalability. The solution demonstrates how lightweight embedded AI can enable cost-effective predictive maintenance. | fr_FR |
| dc.language.iso | en | fr_FR |
| dc.publisher | blida1 | fr_FR |
| dc.subject | Edge-computing, STM32, NanoEdge, DMA, PCB | fr_FR |
| dc.title | Design and Implementation of a custom PCBBased Edge AI System Using STM32 for Real-Time State Detection and Condition Monitoring | fr_FR |
| Collection(s) : | Mémoires de Master | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| Master_Thesis_ESE7 1382-9554.pdf | 8,48 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.