Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/40815
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorLaid Abderrahmane-
dc.contributor.authorOuffa Wissal-
dc.date.accessioned2025-10-28T11:40:51Z-
dc.date.available2025-10-28T11:40:51Z-
dc.date.issued2025-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/40815-
dc.description4.621.1.1382;157pfr_FR
dc.description.abstractThis thesis presents an edge-computing system for real-time industrial machine monitoring, combining an STM32F103RB microcontroller with NanoEdge AI Studio to Monitor Machine state on-device without cloud dependency. Vibration data from an MPU6050 sensor is captured via DMA, analyzed by embedded AI, and displayed locally on an OLED while being relayed to a web dashboard (via CAN bus and ESP32). A custom 6-layer PCB and modular firmware architecture ensure low-latency processing and scalability. The solution demonstrates how lightweight embedded AI can enable cost-effective predictive maintenance.fr_FR
dc.language.isoenfr_FR
dc.publisherblida1fr_FR
dc.subjectEdge-computing, STM32, NanoEdge, DMA, PCBfr_FR
dc.titleDesign and Implementation of a custom PCBBased Edge AI System Using STM32 for Real-Time State Detection and Condition Monitoringfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Master_Thesis_ESE7 1382-9554.pdf8,48 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.