Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/41071
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorDjait, Ikram-
dc.contributor.authorZerari, Sarah-
dc.contributor.authorMezzi, M. (Promotrice)-
dc.contributor.authorFareh, M. (Promotrice)-
dc.date.accessioned2025-12-08T14:23:04Z-
dc.date.available2025-12-08T14:23:04Z-
dc.date.issued2025-06-29-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/41071-
dc.descriptionill.,Bibliogr.cote:MA-004-1068fr_FR
dc.description.abstractKnowledge Graphs are employed to refer to entities and their relationships in a semantic, struc- tured form that enhances information organization and retrieval. However, due to their nature and size, traditional Information Retrieval techniques typically do not work for use against knowledge graphs. This thesis proposes a cutting-edge Information Retrieval approach based on Knowledge Graph Embeddings and Relational Graph Convolutional Networks. Dense vector representations of entities are initially acquired using KGE models to encode semantic relations. These embeddings are afterwards fine-tuned using R-GCN to incorporate structural and relation knowledge from the graph. The learned embeddings are used for retrieving relevant entities or concepts by semantic similarity. The system is evaluated across several scenarios, namely: the evaluation of embedding and similarity search techniques using standard metrics, the evaluation of queries using a semantic similarity module based on Bio_ClinicalBERT and the exploitation of the Knowledge Graph in a question-answering use case. Results indicate that adding KGE to R-GCN improves retrieval quality in a way it is possible to have better and more contextual search results. Keywords: Information Retrieval, Knowledge Graph, Knowledge Graph Embeddings, Rela- tional Graph Convolutional Network, Semantic Search, Medical Knowledge Graphs.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectInformation Retrievalfr_FR
dc.subjectKnowledge Graphfr_FR
dc.subjectKnowledge Graph Embeddingsfr_FR
dc.subjectRela- tional Graph Convolutional Networkfr_FR
dc.subjectSemantic Searchfr_FR
dc.subjectMedical Knowledge Graphs.fr_FR
dc.titleImproving Medical Information Retrieval via Knowledge Graph-Enhanced Graph Neural Networksfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
zerari_djait.pdf7,2 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.