Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/41136
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorBouziane, Abdelillah-
dc.contributor.authorLadjenef, Mohamed-
dc.contributor.authorBouziane, Abdelghani. (promoteur)-
dc.date.accessioned2025-12-10T14:19:25Z-
dc.date.available2025-12-10T14:19:25Z-
dc.date.issued2025-
dc.identifier.urihttps://di.univ-blida.dz/jspui/handle/123456789/41136-
dc.descriptionill.,Bibliogr.cote:MA-004-1070fr_FR
dc.description.abstractSentiment analysis is a key area of natural language processing that aims to automatically identify and interpret opinions and emotions expressed in text. With the growing volume of user-generated content on social media, analyzing sentiment has become increasingly valuable for researchers and organizations. This study focuses on sentiment analysis in Arabic, with a particular emphasis on dialectal variations. Due to the complexity of the Arabic language-its morphology, diverse dialects, and lack of annotated resources this task presents unique challenges. The work explores various text representation techniques and evaluates a range of machine learning and deep learning models to determine suitable approaches for Arabic sentiment classification. Through systematic experimentation, this research highlights the impact of text encoding methods and model choice on sentiment classification performance in Arabic, offering insights for future studies in this under-resourced linguistic domain. Keywords: Sentiment Analysis, Machine learning, Deep learning,.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectSentiment Analysisfr_FR
dc.subjectMachine learningfr_FR
dc.subjectDeep learning,.fr_FR
dc.titleSentiment analysis in Arabic dialectfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Bouziane Abdelillah and Ladjenef Mohamed.pdf2,97 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.