Veuillez utiliser cette adresse pour citer ce document :
https://di.univ-blida.dz/jspui/handle/123456789/6132
Titre: | Détection de pathologies mammaires pour l'aide à l'interprétation |
Auteur(s): | Mebarki, Sihem Menseur, Kenza |
Mots-clés: | Cancer du Sein Image Histopathologique Apprentissage profond Réseau Neuronal Convolutif Diagnostic Assisté par Ordinateur Aide à l’Interprétation |
Date de publication: | sep-2020 |
Editeur: | Université Blida 1 |
Résumé: | La détection du cancer du sein est un sujet de recherche d’actualité, car sa détection précoce, peut contribuer à augmenter le taux de survie des patients en leur fournissant à temps, un meilleur traitement. Un système robuste est donc nécessaire pour détecter les pathologies mammaires, car il est difficile de les identifier à un stade précoce, à partir du processus clinique normal. Les techniques de vision par ordinateur offrent une nouvelle façon de comprendre les défis, liés à l'analyse des images médicales. Ce travail présente l’exploration d'images histologiques mammaires, suivant les réseaux neuronaux convolutifs, pour la distinction des carcinomes canalaires invasifs et des tissus normaux, en vue d’une aide à l’interprétation. L'idée du choix des CNN, est leur adaptation au traitement des images ainsi que leurs performances, relativement aux techniques traditionnelles. L'ensemble de données utilisé dans le cadre de ce mémoire, présente de nombreux défis, comme le nombre réduit de cas et surtout des données déséquilibrées ; ce qui signifie qu’elles nécessitent un prétraitement. Ce travail se concentre alors, sur la réalisation d’un système qui améliore le score F1 du classificateur CNN suivant un fine-tuning, une extraction des caractéristiques et la proposition d'un modèle prédictif adapté. Les résultats des expérimentations, montrent que l’approche proposée ‘HISTOCNN’, aide à améliorer le score F1, avec une valeur de 87% et la précision avec une estimation de plus de 93%. Cette étude contribue à la détection du cancer mammaire à un stade précoce, par des images que les processus cliniques, sont incapables de détecter. Mots clés : Cancer du Sein, Image Histopathologique, Apprentissage profond, Réseau Neuronal Convolutif, Diagnostic Assisté par Ordinateur, Aide à l’Interprétation. |
Description: | ill., Bibliogr. |
URI/URL: | http://di.univ-blida.dz:8080/jspui/handle/123456789/6132 |
Collection(s) : | Mémoires de Master |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
MEBARKI Sihem et Manseur Kenza ( Détection .....).pdf | 3,45 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.