Veuillez utiliser cette adresse pour citer ce document : https://di.univ-blida.dz/jspui/handle/123456789/9435
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorZabat, Sarra-
dc.contributor.authorZidane, Nesrine-
dc.date.accessioned2021-01-27T10:28:07Z-
dc.date.available2021-01-27T10:28:07Z-
dc.date.issued2020-
dc.identifier.urihttp://di.univ-blida.dz:8080/jspui/handle/123456789/9435-
dc.descriptionill., Bibliogr.fr_FR
dc.description.abstractThis thesis is dedicated to an experimental study of home acoustic activity monitoring within sound event detection systems. The principal goal is to develop an efficient system for activity classification using a large set of audio activities within DCASE 2018 datasets. We have built a monitoring system by extracting features (Log Mel-Band energies) from time frames of each audio signal. Then, we have trained the extracted features using a deep neural network, namely Convolutional Neural Network (CNNs). Eventually, our study shows that the combination of Log Mel-band Energy features and CNN learning algorithm helps getting a good performance that allows the system to show a strong generalization ability. Key words: Acoustic Activity Monitoring, Sound Event Detection, Feature Extraction, Machine Learning.fr_FR
dc.language.isoenfr_FR
dc.publisherUniversité Blida 1fr_FR
dc.subjectAcoustic Activity Monitoringfr_FR
dc.subjectSound Event Detectionfr_FR
dc.subjectFeature Extractionfr_FR
dc.subjectMachine Learningfr_FR
dc.titleA Study of Sound Event Detection Techniques for Home Activity Monitoringfr_FR
dc.typeThesisfr_FR
Collection(s) :Mémoires de Master

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Zabat Sarra et Zidane Nesrine.pdf1,47 MBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.