UNIVERSITÉ DE SAAD DAHLEB BLIDA

Faculté de Technologie

Département de Génie Civil

MEMOIRE DE MASTER EN GENIE CIVIL

Option : Géotechnique

ETUDE DU PUITS DE VENTILATION PV3 DE L'EXTENSION DU METRO D'ALGERELHARRACH-AEROPORT INTERNATIONAL D'ALGER

Soutenu par

BOUMAIZA AMEL

ISMAEL SALIMA

Promoteur : N. OUHDADOU

•

Blida, Décembre 2020

ملخص

في إطار مشروعنا النهائي (ماستير 2 في الهندسة المدنية)، اقترحنا دراسة نظام دعم عمود التهوية PV3 الخاص بامتداد مترو الجزائر: الحراش-المطار الدولي هواري بومدين. المشروع يتضمن حفرتين، الأولى لغرفة الألات والثانية لعمود التهوية.

من خلال استغلال نتائج الاستطلاع الجيوتقني ، طورنا نموذج تمثيلي تقريبي للخصائص الليتوليجية الذي يمثل التربة التحتية للموقع.

فيما يتعلق بدعم الحفر المخصص لغرفة الماكينة، قمنا بدراسة حلين (جدار المصبوب وجدار الأوتاد)، بينما بالنسبة لعمود التهوية، تم اختيار جدار الأوتاد فقط سمح لنا استخدام دعامة قضبان الشد بين الجدران بتقليل سدادة التثبيت للجدران الاستنادية بشكل كبير.

تم تنفيذ نمذجة الدعامات بواسطة برنامجPlaxis 2Dباستخدام طريقة العناصر المحدودة. نتائج الحسابات المعبر عنها في التشوهات مقبولة عند العتبات المعتبرة. تم التحقق بشكل مناسب من الثبات ضد الانزلاق وكذلك رفع قاع الحفر

.الكلمات المفتاح:جدار الأوتاد،عمود التهوية،اجدار المصبوب،قضبانالشد،التصميم،Plaxis 2D

RESUME

Dans le cadre de notre projet de fin d'étude (Master 2 en génie civil), nous nous sommes proposé d'étudier le dispositif du soutènement du puits de ventilation PV3 de l'extension du métro d'Alger : El Harrach-Aéroportinternational Houari Boumediene. Le projet prévoit deux excavations, la première concerne la salle des machines et la deuxième correspond au puits de ventilation.

A partir de l'exploitation des résultats de la reconnaissance géotechnique, nous avons élaboré le modèle lithologique représentant du sous-sol dusite.

Concernant le soutènement de la fouille dédiée aux salles machine, nous avons étudié deux solutions (paroi moulée et paroi en pieux sécants), tandis que pour le puits de ventilation, l'option pieux sécants a été choisit. Le recours à la mise en place d'un dispositif de butons entre les parois nous a permis de réduire sensiblement la fiche d'ancrage des parois de soutènement.

La modélisation des soutènements a été effectuée par le logiciel Plaxis2D en utilisant la méthode des éléments finis. Les résultats des calculs exprimés en déformations sont tolérables aux seuils considérés. La stabilité vis-à-vis du glissement ainsi que le soulèvement du fond de fouille ont été convenablement vérifiés.

Mots clé : Soutènement, puits de ventilation, parois moulée, pieux sécants,modélisation,Plaxis 2D, modélisation.

ABSTRACT

As part of our end-of-study project (Master 2 in civil engineering), we proposed to study the support system for the PV3 ventilation shaft of the extension of the Algiers metro: El Harrach-International Airport Houari Boumediene. The project provides for two excavations, the first for the machine room and the second for the ventilation shaft.

From the exploitation of the results of the geotechnical investigation, we developed the lithological model representing the subsoil of the site.

Regarding the support of the excavation dedicated to the machine rooms, we studied two solutions (diaphragm wall and wall of secant piles), while for the ventilation shaft, the secant pile option was chosen. The use of the installation of a device of braces between the walls allowed us to significantly reduce the anchor sheet of the retaining walls.

The modeling of the supports was executed by the Plaxis2D software using the finite element method. The results of calculations expressed in deformation are tolerable at the thresholds considered. The stability against sliding as well as the lifting of the excavation bottom have been suitably verified.

Keywords: Retainer, ventilation shafts, diaphragm walls, secant piles, modeling, Plaxis 2D

REMERCIMENTS

Toute notre gratitude et remercîments vont à ALLAH le tout puissant pour nous avoir gardé en bonne santé et nous avoir donné force, patience, courage et volontépour bien mener et achever ce modeste travail.

Nous tenons aussi à exprimer notre profonde gratitude et nos sincèresremerciements à nos chers parents et familles pour leurs prières, leur encouragement et leur patience tout au longde notre parcours.

Toute notre profonde reconnaissance et nos vifs remerciementsà notre promotrice Madame ADJLANEpour les moments de discussion précieux qu'elle nous a réservé, pour sa confiance, sa disponibilité, pour son soutient infini et son aide jusqu'à la dernière minute durant l'évolution de ce travail, ainsi que ses précieux conseils avisés et ses remarques pertinentes qui nous ontgardés sur le droit cheminafin de bien mener ce projet.

Nous tenons à remercier Monsieur AMEZIANE Mehanad Azzi Ingénieur à COSIDER TP M28 pour son accueille, ses conseils et sa disponibilité ainsi que ses explications pertinentes qui nous ont été d'une grande utilité.

Nous remercions vont également aux membres du jury pour avoir accepté d'évaluer notre modeste travail.

Nous tenons à remercier l'ensemble des enseignants de l'université Saad Dahlab de BLIDA 1.

Enfin, nos sincères reconnaissances et gratitudes à toute personne qui a contribué de près ou de loin au bon déroulement de ce travail, sans oublier nos camarades de génie civil.

Dédicaces

Je dédie ce modeste travail à

À MES CHERS PARENTS

Aucune dédicace ne saurait exprimer mon respect, mon amour éternel et ma considération pour les sacrifices que vous avez consenti pour mon instruction et mon bien être.

Je vous remercie pour tout le soutien et l'amour que vous me portez depuis mon enfance et j'espère que votre bénédiction m'accompagne toujours. Que ce modeste travail soit l'exaucement de vos vœux tant formulés, le fruit de vos innombrables sacrifices, bien que je ne vous en acquitterai jamais assez. Puisse Dieu, le Très Haut, vous accorder santé, bonheur et longue vie et faire en sorte que jamais je ne vous déçoive.

A mes chers sœurs Soumia, Amina et Samia et à mon unique frère Mouhamed, je vous remercie pourvotre compréhension et votre encouragement qui étaient pour moi le soutient indispensable je vous souhaite plein du bonheur et de réussites dans votre vie. A mes chers copines et cousines Yasmine, Lina, Farida, Nawel, Hayet, Meriem, Sihem et Nadjet pour les bons conseils et leur affection, leur présence et leur soutient morale qui m'ont été d'un grand secours au long de ce cycle.

> A tous les membres de ma famille, petits et grands Veuillez trouver dans ce modeste travail l'expression de mon affection.

A tous mes professeurs, qui ont contribué à ma formation.

Et je tiens à remercie finalement tous les gens qui ont cru en moiet qui me donnent l'envie d'aller en avant.

SALIMA

Dédicaces

Je dédie ce travail à

A mes très chers Parents

Votre prière et bénédiction m'ont été d'un grand secours pour mener à bien mes études. Aucune dédicace ne saurait être assez éloquente pour exprimer ce que vous méritez pour tout le sacrifice que tu donnes toi maman et toi papa. Merci pour tout, que dieu tout puissant vous préserve et vous accorde la santé et une longue vie heureuse. J'espère que vous serez toujours fiers de moi.

A mes chers frères Fouad et Chakib et ma chère sœur Ahlem qui ont été toujours présents pour moi par leurencouragement, leur aide pendant mon parcours. Je vous dédie ce travail avec tous mes vœux de bonheur, de santé et de réussite.

À mon fiancé Abd-El-kader qu'il a été toujours à mes côtés dans les bonnes et mauvais moments de ma vie.

A tous les membres de ma famille, petits et grands. Veuillez trouverdans ce modeste travail l'expression de mon affection.

A vous ma copine Hana, En témoignage de l'amitié sincère qui nous aliée et les bons moments qu'on a passée ensemble, je vous dédie ce travail, en vousje vous souhaite une vie pleine de santé et de bonheur.

A tous mes professeurs, qui ont contribué à ma formation.

AMEL

TABLE DES MATIERES

RESUME	•••••
REMERCIMENTS	
TABLE DES MATIERES	•••••
LISTE DES SYMBOLES	
CHAPITRE I : INTRODUCTION GENERALE ET PRESENTATION DU PROJI	ET
I.1 Introduction	1
I.2 Historique sur le métro d'Alger	2
I.3Les extensions de la ligne 1 en service	2
I.4 Description de l'extension d'El Harrach vers l'Aéroport	3
I.5 Les puits de ventilation	4
I.5.1 Les différents puits de ventilation de la ligne	5
I.5.2 Présentation du puits de ventilation PV 03	6
CHAPITRE II : RECHERCHE BIBLIOGRAPHIQUE	11
II.1 Introduction	8
II.2 L'excavation	8
II.2.1 Méthodes d'excavation	9
II.2.2 Processus de choix d'une méthode d'excavation	16
II.3 Types de soutènement	16
II.3.1 Murs en béton ou en maçonnerie	16
II.3.2 Ouvrages cellulaires	17
II.3.3 Mur en terre armée	17
II.3.4 Murs cantilévers	18
1.3.5 Pieux sécant	18
II.3.6 Parois moulées	20
II.3.7 Rideaux de palplanche	22
II.3.8 Tirants d'ancrages	23
II.3.9 Butons	24
II.4 Modes de ruptures des ouvrages de soutènements	24
II.5 Méthodes de calcul de soutènements	25
II.5.1 Méthodes classiques	26
IL5.2 Méthodes au coefficient de réaction	29

II.5.3 Méthode des éléments finis (MEF)	
II.6 Vérification de calcul de stabilité	31
II.6.1 Soulèvement du fond de fouille	31
II.6.2 Vérifications des déformations	
II.7 Conclusion	34
CHAPITRE III : RÉSULTATS ET INTERPRETATION DE LA SYNTHÈ	SE
GEOTECHNIQUE	
III.1 Introduction	35
III.2 Géologie régionale	35
III.3 Sismicité	37
III.4 Compagnes de prospection et reconnaissance géotechnique	
III.4.1 Résultats de l'investigation	40
III.4.2 Résultats des essais de laboratoire	47
III.5 Paramétrage adopté	56
III.6 Conclusion	61
CHAPITRE IV : MODÉLISATION DES SOUTENNEMENTS DU PUITS	DE
VENTILATION PV03	63
IV.1 Introduction	63
IV.2 Le logiciel PLAXIS	63
IV.3 Caractéristiques géométriques et géotechniques	64
IV.3.1 Caractéristiques géométriques	64
IV.3.2 Caractéristiques géotechniques des matériaux	64
IV.3.3 Caractéristiques mécaniques du soutènement	65
IV.3.4Considération de la surcharge	66
IV.4 Modélisation de la salle des machines	66
IV.4.1 Paroi moulée	66
IV.4.2 Paroi moulée avec butons	68
VI.4.3Paroi en pieux avec butons	80
IV.5 Modélisation du puits de ventilation	91
IV.6Vérification de déformations	
IV.6.1 Vérification de déformations de la salle des machines	108
IV.6.2 Vérification de déformations du puits de ventilation	109
IV.7 Vérification du soulèvement du fond de fouille	
IV.7.1 Vérification du soulèvement du fond de fouille de la salle de machine	110

IV.7.2 Vérification du soulèvement du fond de fouille du puits	111
IV.8Conclusion	111
CONCLUSION GÉNÉRALE	
APPENDICES	
RÉFÉRENCES BIBLIOGRAPHIQUES	

LISTE DES SYMBOLES

- Z : Profondeur moyenne
- W : Poids propre du massif de sol
- φ: L'angle de frottement interne
- C : Cohésion
- K_0 : Coefficient de pression des terres au repos.
- K_a : Coefficient de poussée des terres.
- K_p : Coefficient de butée des terres
- v: coefficient de poisson
- C: la résultante d'adhésion sur le plan de glissement
- K_h : Coefficient de réaction
- σ: Contrainte normal
- τ : contrainte tangentielle
- u : pressions interstitielles
- α : Angle de la ligne de rupture
- β : Angle d'inclinaison d'un talus par rapport à l'horizontale.
- τ : Contrainte de cisaillement
- Ψ: Angle de dilatance.
- θ : Angle d'inclinaison d'un mur par rapport à la verticale
- q : Pression répartie des surcharges
- δ : L'angle de frottement sur le mur.

H: la hauteur du mur

- Fad: La charge totale exercée sur le mur
- $K_{a\gamma}$: Coefficient de poussée des terres normales à l'écran
- K_{aq} :Coefficient de poussée due à la surcharge
- K_{qy} :Coefficient de butée due à la surcharge
- K_{pq} :Coefficient de butée due à la surcharge
- σ_a : La contrainte de poussée
- σ_p : La contrainte de butée
- σ_v : la contrainte verticale
- σ_h : la contrainte horizontale
- p_a: La pression active
- C_w : Résultante due à l'adhérence mur-sol
- R: La réaction sur le plan de glissement

- Ic : Indice de consistance
- WL : limite de liquidité
- WP : limite de plasticité
- PI : Pression limite moyenne
- Ep : Module pressiométrique
- Ø : Diamètre
- d : Epaisseur équivalente de la paroi
- EA : Module de rigidité normal
- EI : Module de rigidité en flexion
- Gref: Module de cisaillement de référence
- Eoed: Module ædométrique
- Eref: Module d'Young de référence
- F_S : Degré de sécurité anti glissement
- Msf: Valeur de coefficient de sécurité au Plaxis
- Nb: facteur de stabilité dépendant de la géométrie de l'excavation
- τu: Résistance au cisaillement non drainée du sol sous le niveau de base
- F_{sb} : Le facteur de sécurité vis-à-vis du soulèvement de la base

LISTE DES ILLUSTRATIONS, GRAPHIQUES ET TABLEAUX

Figure I.1. Réseau du Métro d'Alger	3
Figure I.2. Tracé de l'extension du métro El Harach – Aéroport international	4
Figure I.3. Localisation des puits des ventilations	5
Figure I.4. Plan de situation du PV 03 (capture Google Earth)	6
Figure I.5. Localisation du PV 03 dans le tracé de ligne 1 Lot 1 extension B	6
Figure II.1. Méthode de tranchée ouverte inclinée [2]	9
Figure II.2. Méthode de tranchée ouverte en porte-à-faux [2]	10
Figure II.3. Méthode d'excavation contreventée ; (a) vue en élévation et (b) vue en plan [2]	10
Figure II.4. Photo représentant la méthode d'excavation contreventement [2]	11
Figure II.5. Configuration de base d'un tirant d'ancrage [2]	12
Figure II.6. Photo représentant la méthode d'excavation ancrée [2]	13
Figure II.7. Méthode d'excavation d'iles avec un seul niveau d'entretoises [2]	14
Figure II.8. Méthode d'excavation Top-down [2]	15
Figure II.9. Murs en maçonnerie ou en béton [2]	17
Figure II.10. Exemple d'un mur cantilever	18
Figure II.11. Parois à pieux sécants	19
Figure II.12. Les phases d'une réalisation d'une paroi moulée [4]	22
Figure II.13. Rideau de palplanche [5]	23
Figure II.14. Coupe schématique d'un tirant d'ancrage au sein du rideau [6]	23
Figure II.15. Pieux avec buttons [7]	24
Figure II.16. Modes de rupture des ouvrages de soutènement [1]	25
Figure II.17. Equilibre du coin de Coulomb [9]	27
Figure II.18. Cercle de Mohr à l'équilibre limite [10]	
Figure II.19. Coin de Boussinesq [9]	29
Figure II.20. Exemple de maillage dans Plaxis [6]	31
Figure II.21. Le facteur de sécurité	32
Figure II.22. Facteur de stabilité dépendant de la géométrie de l'excavation [8]	32
Figure III.1. Carte géologique de l'Algérie dans le grand Maghreb.	35
Figure III.2. Coupe nord sud des principales unités structurales de l'Algérie	
Figure III.3. Extrait de la carte de zonage sismique du territoire national.	
Figure III.4. Plan d'implantation des sondages carottés.	40
Figure IV.1. Schéma représentant la fiche de la paroi moulée sans butons	67
Figure IV.2. Schéma représentant la fiche de la paroi moulée avec butons	68
Figure IV.3. Schéma de la modélisation de la structure sous le logiciel PLAXIS	69
Figure IV.4. Représentation du maillage obtenu à l'aide du logiciel PLAXIS	69
Figure IV.5. Nombres d'éléments et de nœuds	70
Figure IV.6. Modélisation de la 1 ^{ère} phase à l'aide du logiciel PLAXIS	71
Figure IV.7. Résultats des déformations (Phase 1).	
Figure IV.8. Schéma représentant les déplacements horizontaux et verticaux (Phase 1).	
Figure IV.9. Modélisation de la 2ème phase à l'aide du logiciel PLAXIS.	
Figure IV.10. Résultats des déformations (Phase 2)	
Figure IV.11. Schéma représentant les déplacements horizontaux et verticaux (Phase 2).	
Figure IV.12. Modélisation de la 3éme phase à l'aide du logiciel PLAXIS	
Figure IV.13. Résultats des déformations (Phase 3)	78
Figure IV 14 Schéma représentant les déplacements horizontaux et verticaux (Phase 3)	
Figure IV 15 Valeur de coefficient de sécurité Msf	80
Figure IV.16. Schéma représentant le cercle de glissement	
Figure IV.17. Schéma de la modélisation de la structure sous le logiciel PLAXIS	80 81
Figure IV.18. Représentation du maillage obtenu à l'aide du logiciel PLAXIS	
Figure IV 19 Modélisation de la lère phase à l'aide du logiciel PLAXIS	
Figure IV 20 Résultats des déformations (Phase 1)	
Figure IV 21 Schéma représentant les déplacements horizontaity et verticaity (Phase 1)	83 8/
Figure IV 22. Modelisation de la 2^{eme} phase à l'aide du logiciel PLAXIS	
Figure IV 23. Résultate des déformations (Phase 2)	ده مو
Figure IV 24. Schéma représentant les déplacements horizontaire et vortioner (Dhase 2).	
Figure IV 25 Modélisation de la 3 ^{ème} phase à l'aide du logiciel DI AVIS	/ ٥ وو
rigure rv.23. Mouchsation de la 5 phase à l'aide du logicier r LAAIS	

Figure IV.26. Résultats des déformations (Phase 3)	89
Figure IV.27. Schéma représentant les déplacements horizontaux et verticaux (Phase 3)	90
Figure IV.28. Valeur du coefficient de sécurité Msf	91
Figure IV.29. Schéma représentant le cercle de glissement	91
Figure IV.30. Schéma représentant la fiche de la paroi en pieux	92
Figure IV.31. Schéma de la modélisation de la structure sous le logiciel PLAXIS	93
Figure IV.32. Maillage de la paroi en pieux avec butons sous PLAXIS	93
Figure IV.33. Nombres d'éléments et de nœuds	94
Figure IV.34. Modélisation de la 1ère phase à l'aide logiciel PLAXIS	95
Figure IV.35. Résultats des déformations (Phase 1)	96
Figure IV.36. Schéma représentant le déplacement horizontal (Phase 1)	96
Figure IV.37. Modélisation de la 2 ^{ème} phase à l'aide du logiciel PLAXIS	97
Figure IV.38. Résultats des déformations (Phase 2)	98
Figure IV.39. Schéma représentant le déplacement horizontal (Phase 2)	98
Figure IV.40. Modélisation de la 3 ^{ème} phase à l'aide logiciel PLAXIS	99
Figure IV.41. Résultats des déformations (Phase 3)	100
Figure IV.42. Schéma représentant le déplacement horizontal (Phase 3)	100
Figure IV.43. Modélisation de la 4 ^{ème} phase à l'aide logiciel PLAXIS	101
Figure IV.44. Résultats des déformations (Phase 4)	102
Figure IV.45. Schéma représentant le déplacement horizontal (Phase 4)	102
Figure IV.46. Modélisation de la 5èmephase à l'aide du logiciel PLAXIS	103
Figure IV.47. Résultats des déformations (Phase 5)	104
Figure IV.48. Schéma représentant le déplacement horizontal (Phase 5)	104
Figure IV.49. Modélisation de la 5èmephase à l'aide du logiciel PLAXIS	105
Figure IV.50. Résultats des déformations (Phase 6)	106
Figure IV.51. Schéma représentant le déplacement horizontal (Phase 6)	106
Figure IV.52 Valeur de coefficient de sécurité Msf	107
Figure IV.53 Schéma représentant le cercle de glissement	107
Figure IV.54. Facteur de stabilité dépendant de la géométrie de l'excavation [8]	110

Tableau III-1 Coefficient d'accélération de la zone "A"	39
Tableau III-2 Les lectures des piézomètres à corde vibrante SC24B	43
Tableau III-3: Résultats des essais au Standard Pénétration Test (SPT) du sondage SC24B	44
Tableau III-4: Résultats des essais au Standard Pénétration Test (SPT) du sondage SC24C	45
Tableau III-5: Résultats des essais au Standard Pénétration Test (SPT) du sondage SC24D	46
Tableau III-6 Résultats des essais Préssiométrique (PMT) de sondage SC24B (SP15)	47
Tableau III-7 Résultats d'essais d'humidité	48
Tableau III-8 Résultats de l'analyse granulométrique	49
Tableau III-9 Résultats de limites d'Atterberg	50
Tableau III-10 Classification des sols fins	51
Tableau III-11 Classification des sols grenus	52
Tableau III-12 Résultats de l'essai au bleu méthylène	52
Tableau III-13 Résultats de l'essai de cisaillement à la boite et l'essai de compression simple	53
Tableau III-14 Résultats de l'essai de compressibilité	54
Tableau III-15 Résultats de l'analyse chimique du sol	55
Tableau III-16 Paramètre géotechnique	61
Tableau IV-1: Caractéristiques géotechniques du sol	64
Tableau IV-2: Caractéristiques des pieux	65
Tableau IV-3: Caractéristiques des butons	65
Tableau IV-4: Caractéristiques des parois moulées	66
Tableau IV-5: Caractéristiques des dalles	66
Tableau IV-6: Les déformations maximales de la paroi moulée avec butons de la salle des machines	108
Tableau IV-7: Les déformations maximales de la paroi en pieux avec butons de la salle des machines	109
Tableau IV-8: Les déformations maximales de la paroi en pieux avec butons du puits de ventilation	109

CHAPITRE I : INTRODUCTION GENERALE ET PRESENTATION DU PROJET

I.1 Introduction

La ville d'Alger a connu un accroissement démographique considérable et une accélération importante du processus de son urbanisation, qui ont généré d'énormes difficultés de circulation de ses habitants et visiteurs. Afin de faire face à cette situation, les autorités ont opté pour la mise en place d'un réseau de transport capacitaire en site propre capable de donner une réponse efficace à la demande en constante évolution. Dans cette optique, le métro a été retenu comme solution structurante de l'offre de déplacement de la capitale Alger, apte à répondre aux exigences d'un tissu urbain très dense. Pour la réalisation de ce type d'ouvrages souterrains, l'ingénieur en génie civil doit faire face à une variété de difficultés techniques particulière.

S'inscrivant dans ce cadre, notre projet de fin d'étude (Master 2 en génie civil) se propose d'étudier les soutènements nécessaires pour la réalisation du puits de ventilation de l'extension du métro d'Alger entre El Harrach et l'Aéroport international Houari Boumediene. Ce puits de ventilation dont la fonction est primordiale pour l'aération et les secours du tunnel du métro est localisé entre les stations de Pôle universitaire et Beaulieu au point kilométrique PK 2+254.00 m sa configuration nécessite la réalisation de deux excavations : la première pour les salles machines et la deuxième pour le puits de section carré.

Le développement de ce travail est scindé en deux principales parties :

La première partie d'ordre théorique consacrée à l'exposé des différentes méthodes d'excavation à ciel ouvert, à la variété de types de soutènement avec la description de leurs mises en œuvre, et en finir par une présentation des différentes méthodes de dimensionnement et calcul d'un écran de soutènement.

La deuxième partie d'ordre pratique dédié à la partie pratique de notre travail : elle est entamée par l'exploitation des résultats de la reconnaissance géotechnique effectuée sur site permettant d'élaborer un modèle fiable de la structure du sol. Par la suite, deux types de solutions ont été développées; à savoir : la paroi moulée et la paroi en pieux sécants. L'option d'introduire un dispositif de butons entre parois a été évalué pour réduire les fiches d'ancrage des écrans. La phase de modélisation a été effectuée en utilisant le logiciel Plaxis 2D. Les calculs développés consistent d'une part, à déterminer les déformations et les comparées avec le seuil tolérable ; et d'autre part, à vérifier la stabilité vis-à-vis du glissement et le soulèvement de fond de fouille.

L'étape suivante consacré à l'étude de soutènement autrement dit une exposition d'une analyse de comportement d'écran de soutènement du puits de ventilation considérée pour les deux types de soutènement à savoir paroi moulée avec buttons et paroi en pieux avec buttons. La structure du soutènement a été modélisée en utilisant le logiciel Plaxis dans le but de vérifier les déformations du soutènement et le soulèvement du fond de l'excavation.

I.2 Historique sur le métro d'Alger

Les études du métro d'Alger ont commencé en 1932, dont l'objectif premier était de réaliser une ligne de 14 km entre « Bologhine » et « El Harrach ». En 1955 l'administration coloniale décida d'entreprendre une étude pour la réalisation de la ligne entre « Bologhine » et « El Harrach », qui devait être lancée, a été en fin de compte abandonnée.

En 1972, une étude de transport confiée au Bureau Britannique Buchanan concluait qu'une sorte de métro de type classique serait la solution la plus appropriée.

En 1981, SOFRETU (Société Française d'étude et de Réalisation de Transport Urbain) a fait une étude pour le compte de la RSTA (Régie syndicale des transports algérois) et conclu que la meilleure solution serait d'implanter un système de transport du métro à l'intérieur des zones denses de la ville. Ce système assurerait le transport de 40 000 voyageurs par heure en un seul sens.

En 1982 Le lancement des études du métro d'ALGER s'est concrétisé par la création de l'E.M.A (Entreprise du Métro d'ALGER) qui avait pour rôle de veiller au bon déroulement des différentes étapes de ce projet de grande envergure, dont le lancement des travaux n'a débuté qu'en 1990.

Les études de conception générale ont abouti à la définition d'un schéma de réseau à long terme constitué de trois lignes, totalisant environ 56 Km avec 54 stations. L'analyse des flux de déplacement des personnes dans la ville d'Alger, faite par l'E.M.A, montre une forte densité sur l'axe: Bab El-Oued - Hussein Dey. C'est pour cela que le choix s'est porté pour la réalisation en priorité de la première phase de la première ligne qui s'étend de Hai El Badr à TAFOURAH Grande Poste, d'une longueur de 9,5km et comportant dix stations, ligne inauguré le 31 octobre 2011, la ligne est mise en service commercial le lendemain 1er novembre.

I.3Les extensions de la ligne 1 en service

- a) Extension A de (Tafourah Grande-Poste vers la Place des Martyrs). Le tunnel de cette extension est long de 1,69km et comporte deux stations, Ali Boumendjel et Place des Martyrs.
- b) Extension B de (Hai el Badr vers El-Harrach). Elle a une longueur de 4km, comporte quatre stations (Bachdjarah – Tennis, Bachdjarah, El Harrach Gare et El Harrach Centre) et un viaduc de 250m au-dessus de la bretelle d'autoroute d'Oued Ouchaïah (entre la station Hai-El- Badr et Bachdjarah 1).
- c) Extension C de (Haï El Badr vers d'Aïn Nâadja).Cette nouvelle branche de la ligne 1, d'une longueur de 3,70km comporte trois stations (Une station aérienne «Halte des ateliers», et deux stations souterraines, «Gué de Constantine et Aïn Nâadja»), un viaduc de132m, près de 2,350 km de tunnel et trois puits de ventilation.

Il va y'avoir deux extensions de la ligne 1 :

- a) Extension B1 (D'El Harrach vers l'aéroport). Cette extension a une longueur de 9km 575m, La ligne contient 9 stations (Hassan Badi, Pôle Universitaire, Beaulieu, Oued Smar, Université Houari Boumediene, Rabia Tahar, Smail Yefsah, Centre des Affaires, Aéroport) et 10 puits de ventilation (dans lesquelles on trouve le PV03 notre projet)
- a) Extension C1 De (Ain Nâadja vers Baraki). S'étend sur une longueur de 6 km avec 6 stations (Mohamed Boudiaf, Ain Nâadja Gare, Futur Parc Urbain, Mohamed Belarbi, Jardin, Cité 2004) et un viaduc de longueur de 1,450 km qui traverse en hauteur la ligne ferroviaire de la SNTF.

Figure I.1. Réseau du Métro d'Alger

I.4 Description de l'extension d'El Harrach vers l'Aéroport

Les travaux de cette extension ont débuté en 2015 par COSIDER travaux publics sur un linéaire de 10 km. Il comporte 10 puits de ventilation et 9 stations, cette ligne desservira des quartiers denses en population tel que : Beaulieu, Oued Smar, Cité 5 juillet, Bab Ezzouar, le Pôle Universitaire d'El Harrach, le Centre des affaires de Bab Ezzouar et l'université Houari Boumediene. Elle reliera le tramway au carrefour de l'université Houari Boumediene et offrira une multi modalité au niveau de cette station. La réception pour cette extension est prévue pour 2022.

Le Lot1 Extensions de la ligne 1 s'étend sur un linéaire total de 9 575,0 m à partir de la station El Harrach centre jusqu'à la station Aéroport. Il est scindé en deux tronçons.

Le 1er tronçon s'étend sur une longueur de 3 766,9m à partir de la station El Harrach centre jusqu'à la station Oued Smar (station Oued Smar non incluse). Le 2éme tronçon s'étend sur une longueur de 5 808,1m à partir de la station Oued Smar jusqu'au point d'arrivée de ce projet l'aéroport.

Figure I.2. Tracé de l'extension du métro El Harach – Aéroport international

Dans cette extension 09 stations sont réalisées, chaque station est localisée dans l'endroit le plus pertinent en tenant compte des plusieurs aspects tels que : tracé, demande de transport, état actuel d'infrastructure, largeur des routes existantes, déviation du trafic routier pendant les travaux, emplacement des accès et dimension de la station. Les stations de cette ligne sont :

- Station Hassan Badi
- Station Pôle Universitaire
- Station Beaulieu
- Station Oued Smar
- Station Université Houari Boumediene
- Station Rabia Tahar
- Station Smail Yefsah
- Station Centre des Affaires
- Station Aéroport

I.5 Les puits de ventilation

Les puits de ventilation sont des ouvrages souterrains indispensables dans tous les tunnels. Sa géométrie dépend de l'espace et de sa profondeur. Plus cette dernière est conséquente il est préférable de raison de stabilité et de résistance.

4

Le puits de ventilation est implanté en général au milieu de deux stations, mais si les situations environnantes ne le permettent pas, cet ouvrage est localisé dans l'endroit le plus approprié. Il est composé de plusieurs éléments :

- Une salle des machines pour l'emplacement des différentes machines utilisées en phase d'exploitation ou de réalisation.
- Escalier pour permettre l'accès aux tunnels.
- Rameau qui relie le puits et le tunnel principal.

La création d'un nouvel ouvrage de ventilation souterrain nécessite la réalisation d'un puits de ventilation. L'air est évacué, en partant d'un rameau reliant le tunnel principal vers une gaine de ventilation située au niveau de la voirie (surface de terrain naturel).

I.5.1 Les différents puits de ventilation de la ligne

Sur notre extension de la ligne 1, ils sont réalisés 10puits de ventilations entre chaque station, qui permettent d'assurer une bonne ventilation du tunnel en ligne:

- > Puits de ventilations PV 1 au PK 0+510.00m
- Puits de ventilation PV 2 au PK 1+260.00 m
- > Puits de ventilation PV 3 au PK 2+254.00 m
- > Puits de ventilation PV 4 au PK 3+312.00 m
- ▶ Puits de ventilation PV5 au PK 4+331.00 m
- ▶ Puits de ventilation PV 6 au PK 5+232.00 m
- > Puits de ventilation PV 7 au PK 6+220.00 m
- > Puits de ventilation PV 8 au PK 7+057.00 m
- > Puits de ventilation PV 9 au PK 8+238.00 m
- Puits de ventilation PV 10 au PK 9+549.00 m

Figure I.3. Localisation des puits des ventilations

Université de Blida\ Faculté de technologie\ Département de Génie civil\ Master géotechnique.

I.5.2 Présentation du puits de ventilation PV 03

Le puits de ventilation « PV03 » fait partie des dix puits de l'Extension B1 de la ligne 1, il comprend unegaine de ventilation et sortie de secours. Dans les environs immédiats du ce puits de ventilation nous retrouvons des villas, une caserne militaire, et une route principale.

Figure I.4. Plan de situation du PV 03 (capture Google Earth)

Par rapport au tracé de l'extension Lot-1, l'ouvrage est implanté entre les stations de Pôle universitaire et Beaulieu au point kilométrique PK 2+254.00 m.

Figure I.5. Localisation du PV 03 dans le tracé de ligne 1 Lot 1 extension B

Ce puit est constitué d'une salle des machines et de stockage de largeur de 27 m et d'une longueur de 35 m qui descend à une profondeur de 9m sous le niveau du terrain naturel. Il contient aussi un puits qui a pour dimensions de 14 m de largeur, 16m de longueur et d'une profondeur de 27m à partir de 9m . Il est connecté au tunnel principal par l'intermédiaire d'un rameau (tunnel transversal).

CHAPITRE II : RECHERCHE BIBLIOGRAPHIQUE

II.1 Introduction

L'excavation à ciel ouvert ou le creusement et la réalisation des ouvrages en sous-sols nécessite la mise en place des dispositifs de soutènement capables d'assurer la sécurité et la stabilité exigée pendant et les travaux. Grâce à la grande variété de méthodes d'excavation et de systèmes de soutènements latéraux, la conception la plus appropriée, nous devons combiner les conditions géologiques locales, les conditions environnementales, la période de construction autorisée, le budget et les équipements de construction disponibles et établir un plan global en conséquence.

Le présent chapitre est consacré à la partie de recherche bibliographique, et propose d'exposer deux volets essentiels liés à l'objet de notre travail, soit l'étude des soutènements pour l'exécution des ouvrages souterrains. Le premier volet propose de définir les différents méthodes d'excavation à ciel ouvert ainsi que la variété des types de soutènements, suivie par la description de leurs mises en œuvre ainsi que leurs principaux avantages et inconvénients. Le deuxième volet est dédié à la présentation des différentes méthodes de dimensionnement et calcul d'un écran de soutènement.

II.2 L'excavation

L'excavation est une partie de terrain creusée à une profondeur d'au moins 1.2 m,les travaux d'excavation sont généralement des travaux impliquant l'enlèvement de terre ou de roche d'un site pour formerune face ouverte, un trou ou une cavité à l'aide d'outils, de machines ou d'explosifs. [1] Elle est un segment important de la technologie de base. Par exemple, dans la construction des bases ou des sous-sols de hauts bâtiments d'élévation, les réservoirs d'huile souterrains, les souterrains ou le passage rapide, etc [2]

Lorsque Terzaghi (1943) a envisagé pour la première fois la stabilité de l'excavation, il a défini celles dont la profondeur d'excavation était inférieure à leur largeur comme une excavation peu profonde tandis que celles dont la profondeur était supérieure à leur largeur étaient une excavation profonde . Des années plus tard, Terzaghi et Peck (1967) et d'autres, dont Peck et al (1977), ont mis à jour que l'excavation dont les profondeurs étaient inférieures de 6 m pouvait être définie comme étant des excavations peu profondes, et celles plus profondes que ça en tant que des excavations profondes. Une fois l'excavation dépasse 6m (Excavation profondes), l'utilisation de palplanches comme un soutènement des parois verticales d'excavation devient peu retable (peu économique). D'une manière générale, les méthodes d'analyse pour l'excavation peu profonde sont relativement simples. En fait, de plus en plus de projets d'excavation sont situés dans des zones urbaines peuplées.

Pour éviter d'endommager les propriétés adjacentes en raison de l'excavation, des murs de diaphragme sont couramment utilisés en tant que murs de soutènement. De plus, la programmation informatique a fait la plupart du travail d'analyse et de conception, qui s'applique à toutes les

profondeurs, en suivant les mêmes théories. Par conséquent, il n'est plus significatif de distinguer entre l'excavation profonde et peu profonde. [2]

II.2.1 Méthodes d'excavation

A nos jours, il existe une grande variété de méthodes d'excavations utilisées pour la construction. On cite ci-après quelques méthodes d'excavation couramment utilisées pour la construction de fondations profondes :

II.2.1.1 Méthode de tranchée complètement ouverte

Cette méthode se devise en deux types principaux : la méthode de tranchée en pleine pente inclinée illustrée à la figure II.1 et la méthode de tranchée en porte-à-faux complète illustrée à la figure II.2. La première méthode ne nécessite pas l'utilisation de murs ou de contrefiches de soutènement car les côtés sont inclinés par rapport au mur de fondation. Elle est considérée économique. Cependant, dans le cas où la pente est considérablement très douce, ou que l'excavation est profonde une grande quantité de remblais sera nécessaire une fois la construction terminée, de ce fait le coût reviendra cher.

Figure II.1. Méthode de tranchée ouverte inclinée [2]

La méthode de tranchée en porte-à-faux complète nécessite l'utilisation des murs de soutènement pour supporter le sol et éviter l'effondrement des murs de fondation. Par conséquent, on ne peut pas affirmer que cette méthode est la plus économique. La méthode la plus économique peut être déterminée en fonction des résultats de l'analyse, de la conception et de l'évaluation. [2]

Figure II.2. Méthode de tranchée ouverte en porte-à-faux [2]

II.2.1.2 Méthode d'excavation contreventée

La méthode d'excavation contreventée (entretoisée) consiste à installer des entretoises horizontales devant les murs de soutènement pour résister à la pression de la terre à l'arrière des murs, comme le montre la figure II.3, la disposition typique des entretoises horizontales. Le système de contreventement du procédé d'excavation contreventé contient des contrefiches (des entretoises), des contreventements d'extrémité, des contreventements d'angle, les galles et les poteaux centraux.

Le fonctionnement des composantes de ce système de contreventement, c'est comme suit :

- Les galles servent à transférer la pression de la terre à l'arriéré des murs de soutènement audessus des entretoises horizontales (les contrefiches horizontales).
- Les contreventements d'extrémité et l'angle d'extrémité servent à raccourcir la portée des galles sans augmenter le nombre d'entretoises.
- Les poteaux centraux servent à empêcher la rupture des entretoises à cause de leur proprepoids.

Figure II.4. Photo représentant la méthode d'excavation contreventement [2]

La procédure de construction de la méthode d'excavation contreventée est comme suit :

- 1) Placer les poteaux centraux dans le secteur de construction ;
- 2) Procéder à la première étape de l'excavation ;
- Installer Gales au-dessus de la surface d'excavation, puis installer les contrefiches horizontales et les avoir préchargée ;
- 4) Répéter les procédures 2 et 3 jusqu'à la profondeur conçue ;
- 5) Etablir la base du bâtiment ;
- 6) Démolir les contrefiches au-dessus de la base ;
- 7) Construire la galette de plancher ;
- Répéter les procédures 6 et 7 jusqu'à ce que la construction des galettes de plancher du rez-dechaussée soit accomplie.

Cette méthode est considérée comme la plusutilisée, malgré que les contrefiches et les poteaux centraux puissent entraver le processus d'excavation, elle est applicable à toute profondeur ou largeur d'excavation d'une contrefiche simple et finie. Etant donné que la longueur d'une seule contrefiche est finie, il peut requérir l'épissage de plusieurs contrefiches ensemble pour couvrir la largeur. À cause de la difficulté de maintenir les contrefiches épissées alignées et le désalignement peut avoir comme conséquence la déficience de la résistance latérale. [2]

II.2.1.3 Méthode d'excavation ancrée

La méthode d'excavation ancrée a le même principe de la méthode d'excavation contreventée par contre dans la méthode d'excavation ancrée on utilise les ancrages à la place des entretoises pour offrir un support latéral contre la pression latérale de la terre et pour assurer la stabilité du mur.

Les tirants d'ancrage sont capables de transmettre les forces résistantes au massif rocheux ou au terrains dans lequel ils sont insérés. La configuration d'une ancre peut être divisée en :

- La section fixe (longueur scellée) : cette section offre une surface d'ancrage pour transmettre les forces de traction au terrain environnant, par l'intermédiaire du coulis de scellement.
- La section libre (longueur libre) : cette section transfère la force d'ancrage à la tête d'ancrage, elle se situe entre le point de fixation de l'armature sur la tête d'ancrage et le début de la section scellée.
- La tête d'ancrage : qui verrouille les tendons et transfère la force d'ancrage à la structure (mur de soutènement).

Figure II.5. Configuration de base d'un tirant d'ancrage [2]

La procédure de construction de la méthode ancrée est décrite comme suit :

- 1) Viser l'excavation du premier étage ;
- 2) Aléser pour des ancres ;
- 3) Insérer les tendons dans les alésages ;
- 4) Injecter les coulis ;
- 5) Précharger les ancres et les fermer ;
- 6) Procéder à la deuxième étape de l'excavation ;
- 7) Répéter les procédures 2-6 jusqu'à la profondeur conçue ;
- 8) Etablir la base du bâtiment ;
- 9) Construire les galettes de plancher de la base jusqu'à la terre séquentiellement.

L'excavation ancrée compte uniquement sur la résistance du sol pour offrir la force d'ancrage. Plus la résistance du sol est élevée, plus la force d'ancrage est forte et vice versa.

La méthode d'excavation ancrée présente les avantages suivants :

- 1) Haute efficacité pour l'excavation et la construction de structures souterraines ;
- 2) Période de construction courte ;
- 3) Adapté aux projets d'excavation avec de grandes surfaces et de faibles profondeurs.

Les inconvénients de la méthode d'excavation ancrée sont :

- 1) Cette méthode d'excavation n'est pas applicable aux couches de sol hebdomadaires ;
- 2) Applicable à une profondeur de 10m sous la nappe phréatique dans les sols granulaires (tels que les sols sableux ou les sols graveleux), les ancrages doivent être installés avec soin.

Un tassement important peut se produire si la qualité de construction des ancrages n'est pas suffisante. [2]

Figure II.6. Photo représentant la méthode d'excavation ancrée [2]

II.2.1.4 Méthode d'excavation des iles « ISLAND »

La conception de la méthode d'excavation des iles peut s'expliquer comme suit :

Excaver d'abord la partie centrale du site et garder les matériaux excavés (le sol) près des murs de soutènement pour former des pentes. Par la suite, construire la structure principale dans la partie centrale. Ensuite, le sol en pente sera creusé et des entretoises seront installées entre les murs de soutènement et la structure principale. Et pour finir, les entretoises seront démontées et les autres parties de la structure seront construites. Parfois, on peut utiliser des « Rakers » pour se pavaner au lieu des entretoises ce qui permet de terminer l'excavation en une seule étape, en particulier lorsque l'excavation n'est pas trop profonde.

Dans le cas d'excavation profonde, l'enlèvement des pentes entrainera le recours à la technique d'ancrage ou de contreventement, c'est-à-dire l'excavation et l'installation de contrefiches ou d'ancrage en procédant par tourne jusqu'à la profondeur prévue.

Cette méthode d'excavation « Island » doit être appliquée à un site, le site doit être suffisamment grand et la méthode de construction doit tenir compte de l'emplacement de la structure principale. Les largueurs et les gradients des pentes doivent être de manière à ne pas provoquer de ruptures de pente. Même si, les ruptures de pente ne se produisent pas, la résistance passive offerte par les pentes est plus petite que celle à l'état normal, ce qui entraînera une plus grande déflexion des parois ou un tassement de la surface du sol. Par conséquent, une analyse est requise avant l'excavation pour la protection des propriétés adjacentes. [2]

Figure II.7. Méthode d'excavation d'iles avec un seul niveau d'entretoises [2]

II.2.1.5 Méthode d'excavation Top-down

La méthode d'excavation Top-down que l'on peut appeler aussi, la méthode de construction descendante consiste à ériger des moules et à construire des dalles de plancher juste après chaque excavation. Les dalles de plancher sont des structures permanentes, qui remplacent les entretoises en acier temporaire contreventées pour contrer la pression de la terre à l'arrière du mur de soutènement. De cette façon, la construction de la structure souterraine est terminée avec l'achèvement du processus d'excavation. La construction de la structure souterraine est de haut en bas.

Les dalles de plancher utilisées dans cette méthode sont plus lourdes que les entretoises en acier utilisées dans les méthodes d'excavation conventionnelles. De plus, la superstructure, qui est construite simultanément pendant l'excavation met plus de poids sur la colonne. La capacité portante de la colonne doit être prise en compte. En conséquence, les fondations sur pieux sont souvent choisies pour être utilisées pour la méthode de construction typique de la méthode de construction descendante est la suivante [2] :

- 1) Construire le mur de soutènement ;
- 2) Construire des pieux ;

- 3) Passer à la première étape de l'excavation ;
- 4) Couler la dalle de plancher du premier sous-sol (dalle B1).
- 5) Commencer à contracter la superstructure ;
- 6) Procéder à la deuxième étape de l'excavation. Couler la dalle de plancher du deuxième soussol (dalle B2) ;
- 7) Répéter les mêmes procédures jusqu'à la profondeur prévue ;
- 8) Construire des dalles de fondation et des poutres au sol, etc. Compléter le sous-sol.
- 9) Continuer à construire la superstructure jusqu'à la fin.

Les avantages de la méthode de construction Top-down comprennent :

- La période de construction raccourcie en raison de la construction simultanée du sous-sol et de la superstructure ;
- 2) Plus d'espace opérationnel gagné grâce à la construction avancée de dalles de plancher ;
- La rigidité élevée des dalles de plancher par rapport aux entretoises en acier améliore la sécurité de l'excavation.

Les inconvénients de la méthode de construction Top-down sont :

- 1) Coût plus élevé (dû à la construction de fondations sur pieux) ;
- La qualité de la construction peut être influencée en raison de la détérioration de la ventilation et de l'éclairage sous les dalles de plancher.

Figure II.8. Méthode d'excavation Top-down [2]

II.2.2 Processus de choix d'une méthode d'excavation

Le processus de choix d'une méthode d'excavation passe en général par trois phases [3] qui sont :

> Phase I

Le choix résulte, en première phase, d'un compromis entre les exigences :

- Du terrain encaissant ;
- Du site et de l'environnement ;
- De la géométrie ;
- Du procédé de construction lui-même.

> Phase II

Par la suite la considération des critères suivants :

- La sécurité de l'ouvrage, pendant et après sa construction ;
- Une uniformité de méthode sur toute la longueur de l'ouvrage ;
- La souplesse d'emploi (de façon à s'adapter aux difficultés souvent imprévisibles);
- La limitation des nuisances engendrées sur l'environnement en site urbain notamment.

> Phase III

Ultérieurement, lors de la consultation des entreprises et du choix définitif, interviennent de nouveaux critères liés à la conjoncture, à la technicité propre des entreprises et à l'économie du projet.

II.3 Types de soutènement

La notion « d'écran de soutènement » couvre l'ensemble des structures servant à retenir un massif de sol autour d'une excavation à l'aide d'éléments de matériaux résistants à la poussée des terres. Dans la définition de l'Eurocode (EC 7-1, 2004), un « ouvrage de soutènement » retient des terrains (sols, roches ou remblais) et/ou de l'eau. L'effort de poussée exercé par le massif de terre retenu peut être repris de diverses manières. On cite ci-après les principales techniques utilisées :

II.3.1 Murs en béton ou en maçonnerie

C'est le cas où la poussée est reprise par le poids de l'ouvrage de soutènement. C'est le type d'ouvrage le plus classique et le plus ancien. Ce sont des ouvrages rigides qui ne peuvent supporter sans dommages des tassements différentiels supérieurs à quelques pour-mille.

Figure II.9. Murs en maçonnerie ou en béton [2]

II.3.2 Ouvrages cellulaires

Sont très variés et le type le plus ancien est le mur caisson en éléments préfabriqués. Dans les travaux maritimes, par exemple, on utilise pour la construction des quais de grands batardeaux cellulaires en palplanches métalliques ou de grands caissons en béton armé. Dans un ouvrage cellulaire, la cellule est remplie de sol et l'ensemble forme un ouvrage qui peut être, dans certains cas, trèssouple.Les ouvrages cellulaires sont des caisses de treillis métalliques rectangulaires multicellulaires, remplies de roches ou d'autres matériaux appropriés.

- Il est utilisé pour la construction de structures de contrôle de l'érosion.
- Il est également utilisé pour stabiliser les pentes raides [2].

II.3.3 Mur en terre armée

Il s'agit d'une méthode de soutènement assez récente (1963) développée par Henri Vidal, qui consiste à utiliser le sol, et non un mur en béton pour assurer la stabilité d'un versant. Le concept est de renforcer le sol par l'ajout d'armatures qui solliciteront un frottement entre elles et les cailloux du remblai. Un massif en terre armée est constitué de trois composants :

- Un remblai granulaire compacté en couches peuépaisses.
- Les armatures disposées en lit dans le remblai qui peuvent être de deux natures :
 - Les métalliques qui sont jusqu'à maintenant les plus répandues ;

- Les géosynthétiques qui ne présentent pas de problème de corrosion et qui tendent à remplacer lespremières.

• Un parement, faisant le lien entre les armatures et assurant l'esthétique du mur, il est généralement réalisé en éléments de béton préfabriqué faciles à assembler, en pneus ou autres éléments récupérés destinés à être couverts de végétaux. L'ensemble forme un massif stable assurant la retenue de la poussée du sol enplace [2].

II.3.4 Murs cantilévers

Ce type de mur de soutènement est très couramment employé. Il est constitué d'un voile résistant en béton armé encastré sur une semelle de fondation, en béton armé également, et généralement horizontal. La semelle peut être pourvue d'une bêche pour améliorer la stabilité de l'ouvrage au glissement. Les murs sont normalement pourvus d'un dispositif de drainage disposé à l'arrière du voile auquel est associé un dispositif d'évacuation des eaux (barbacanes). Un mur cantilever peut d'ailleurs être considéré comme un ouvrage poids si l'on y inclut le poids du remblai compris entre le mur et la verticale qui passe par l'extrémité arrière de la semelle.

Ces murs sont bien adaptés pour la réalisation d'ouvrages en remblai comme en déblai, en site terrestre hors d'eau. Ils sont souvent économiques pour des hauteurs qui atteignent jusqu'à 6 à 8 mètres, voir une dizaine de mètres. Ils nécessitent en principe un terrain de fondation de qualité moyenne à bonne, susceptible de faibles tassements (quelques centimètres au plus), dans la mesure où le recours à des fondations profondes (ou éventuellement à un traitement préalable du sol) rend généralement la solution peu avantageuse.

Figure II.10. Exemple d'un mur cantilever

1.3.5 Pieux sécant

Le mur de soutènement en pieux est construit en enfonçant des pieux en béton. Les pieux sont forcés dans une profondeur suffisante pour contrarier la force qui tente de pousser sur le mur. Il est employé dans les travaux temporaires et permanents. Les murs empilés offrent des éléments de retenue de haute rigidité capables de maintenir une pression latérale dans les grandes profondeurs d'excavation sans pratiquement aucune perturbation des structures ou des propriétés environnantes.

Figure II.11. Parois à pieux sécants

Méthode d'exécution

- Un tube métallique et une tarière à spirale continue sont vissés dans le sol sans vibrations.
- La terre est remontée vers la surface à l'aide d'une tarière hélicoïdale qui se trouve à l'intérieur du tube.
- Lorsqu'on a atteint la profondeur souhaitée, le béton est pompé sous pression à travers l'axe de la tarière jusqu'à son extrémité.
- Le tube et la tarière sont vissés lentement vers le haut, tandis que le bétonnage se fait en continu à la bonne pression.
- Une fois le pieu bétonné, l'armature est mise en place dans le béton frais.
- Dans une paroi en pieux sécants, les pieux non armés réalisés en premier (pieux primaires) alternent avec les pieux armés réalisés dans une seconde phase (pieux secondaires).
- Lorsqu'on fore les pieux secondaires, une partie des pieux primaires forés précédemment est enlevée pour obtenir un bon raccord.
- Les forces exercées sur la paroi par la poussée des terres et la pression hydrostatique sont transmises par les pieux primaires aux pieux secondaires. Les pieux non armés servent donc seulement à combler les espaces.
- Le fond de fouilles est excavé jusqu'au niveau éventuel des ancrages ou jusqu'au niveau définitif.

Avantages

- Le procédé s'adapte aux conditions de sol les plus défavorables mais avec une sécurité accrue par.rapport aux murs emboués. En cas de perte de bentonite par des canalisations non repérée, il n''y a aucun risque d'effondrement ;
- La capacité portante des murs est améliorée grâce à une surface de contact au sol supérieure, à volume égal de béton.

Inconvénients

- La profondeur des pieux est limitée par la résistance à l'enfoncement et au retrait du tube de guidage ;
- Dans les terrains très durs, le tube a tendance à gauchir ce qui provoque la rupture des raccords entre viroles. La reprise des travaux exige le remplissage de la fouille au sable stabilisé et l'arrachage du tube avarié ;
- Difficultés d'assurer l'étanchéité en cas de non-séquence de deux pieux.

II.3.6 Parois moulées

Les parois moulées sont des ouvrages de fondations en béton armé utilisées à titre de structure définitive pour la réalisation de nombreux ouvrages, elles permettent d'excaver en toute sécurité sous la nappe phréatique [4].

La technique de la paroi moulée est récente (1952 en Italie, 1955 en France), elle se prête à la réalisation d'une grande diversité d'ouvrages dans des sites et des conditions géotechniques très variées. Elle permet de réaliser des ouvrages de formes et de dimensions diverses jusqu'à des profondeurs très importantes. Cette technique est couramment utilisée pour la réalisation de puits de moyenne profondeur (10 et 50m de profondeur) [5].

La paroi moulée assure simultanément trois fonctions : soutènement, portance et étanchéité. Elle sert pour :

- Fondation : lorsqu'elle est descendue jusqu'aux couches porteuses profondes.
- Soutènement : en maintenant les terres et les surcharges sur la périphérie.
- Paroi étanche : en protégeant de l'eau extérieure le volume enclos.

Les phases de réalisation de la paroi se schématisent comme suit :

1- Exécution d'une murette guide

Le premier ouvrage exécuté est la murette guide qui permet de:

- matérialiser l'ouvrage à exécuter et d'en définir avec précision le tracé,
- guider l'outil de forage,
- caler les cages d'armatures.

2- Excavation des panneaux

La paroi est réalisée par panneaux unitaires creusés par un trépanbenne ou une hydro haveuse montés sur une grue à câble ou une pelleteuse spécialisée.

3- Les joints entre panneaux

Le joint entre panneaux qui doit assurer la continuité de la paroi constitue un point délicat du procédé : il s'agit à cet endroit de garantir le bon alignement ainsi que le contact béton/béton des deux panneaux adjacents. On peut également dans des cas particuliers envisager d'équiper le joint d'une lame d'étanchéité.

4- Utilisation de la boue de perforation

La boue de perforation joue un rôle capital dans le procédé en maintenant la stabilité de la tranchée durant toute l'excavation, l'équipement et le bétonnage des panneaux.

Durant l'excavation, le niveau de la boue doit toujours être maintenu de 1 m à 1.5m au-dessus du niveau de la nappe.

5- Mise en place de la cage d'armature

Le ferraillage d'une paroi est réalisé en éléments discontinus par armatures horizontales et verticales en acier HA ou lisse assemblées sous formes de cages comme représenté sur le schéma.

On assure un enrobage de béton minimum de 7cm en centrant la cage dans la tranchée à l'aide de centreur de préférence non métalliques, par exemple des écarteurs en béton en forme de patin.

6- Le bétonnage

Le béton de paroi est mis en place au tube plongeur et sans être vibré. Il doit s'écouler facilement pour suivre les contours de l'excavation et enrober correctement les aciers, tout en évitant les ségrégations et les inclusions de boue.

Avantages

- Pas de décompression des terrains, pas de limitation en profondeur ;
- Possibilité d'intégrer le soutènement dans la structure définitive ;
- Permet de réaliser la couverture avant les gros travaux.

Inconvénients

- Nécessite une plate forme de travail horizontale ;
- Matériel lourd ;
- Raccordement des radiers ;
- Ne permet pas une étanchéité extérieure.

Figure II.12. Les phases d'une réalisation d'une paroi moulée [4]

II.3.7 Rideaux de palplanche

Les rideaux de palplanches ce sont des ouvrages de soutènement flexibles, où l'interaction structure-remblai a une influence prépondérante sur le comportement de l'ouvrage. Ils sont constitués de palplanches métalliques en général, emboîtées les unes dans les autres et battues dans le sol de fondation, pour former un écran vertical, le plus souvent rectiligne, servant de soutènement à un massif de sol. Cette technique est utilisée dans les terrains meubles.

Les rideaux de palplanches peuvent constituer des ouvrages provisoires ou définitifs, leur caractéristique essentielle est que le soutènement ainsi formé est souple, ce qui nécessite une méthode spécifique de dimensionnement.

Les pressions exercées par le massif de terre à retenir peuvent être équilibrées par les forces de butée mobilisées dans la partie en fiche, si la hauteur hors fiche est faible .Ils sont auto stables pour une hauteur de terre à soutenir de 3 à 4 mètres. Au-delà ils doivent être ancrés ou boutonnés. L'un des avantages de cette technique est la rapidité d'exécution

Outre les sécurités classiques vis-à-vis d'une rupture de l'ouvrage par renversement ou glissement consiste à vérifier que les déformations du rideau restent en tout point admissible, c'est-à-dire que la contrainte maximale dans une palplanche ne dépasse pas le niveau de contrainte admissible pour l'acier [5].

Figure II.13. Rideau de palplanche [5]

II.3.8 Tirants d'ancrages

Un tirant d'ancrage est un dispositif d'ancrage capable de transmettre les forces de traction qui lui sont appliquées à une couche de sol résistante en prenant appui sur la structure à ancrer. Il est utilisé pour stabiliser un soutènement et de reprendre une partie de la poussé des terres .

Les tirants d'ancrages sont très fréquents dans le cas des rideaux pour limiter la profondeur à encastrer et reprendre provisoirement les poussées des terres. Ils comportent en général une armature de tirants enfouie dans une gaine remplie de coulis, et un bulbe d'ancrage. Le tirant est scellé dans le rideau à l'aide d'une plaque. La figure 1.15 montre une coupe schématique d'un tirant d'ancrage [6].

On utilise les tirants d'ancrages dans le cas des parois en pieux sécants, les parois moulées et les rideaux de palplanches.

- A plaque d'appui
- B tête d'ancrage
- C massif d'appui
- D paroi de soutènement
- E forage
- F gaine de protection
- G armature
- H bulbe d'ancrage
- I coulis de scellement de l'armature
- l. longueur de scellement
- le longueur libre
- L longueur totale

Figure II.14.Coupe schématique d'un tirant d'ancrage au sein du rideau [6]

II.3.9 Butons

Les butons sont constitués de poutres en béton armé, de profilés ou de tubes en métal ou en bois, disposés à l'horizontale ou incliné, prenant appuis sur deux structures construites en vis-à-vis.

Les butons ne peuvent exercer leur réaction qu'au près d'un déplacement de la paroi.Le butonnage est une technique de renforcement de la face extérieure de l'écran de soutènement.Après la mise en place des cornières scellées dans la paroi, on met en place les butons avec une grue de levage. Les butons sont ensuite scellés avec un mortier spécial.

On peut distinguer deux types de butonnage :

- le butonnage direct : le buton prend appui directement sur la paroi ou par l'intermédiaire d'une plaque de raidissement ;

- le butonnage sur lierne : le buton transmet les charges par l'intermédiaire d'un ou de deux lits de profilés. Cette technique permet de reprendre les efforts de poussée sur la paroi et de les transmettre aux butons. La paroi est ainsi rigidifiée. Les butons peuvent aussi être mis en œuvre sous une force de précontrainte.

Figure II.15. Pieux avec buttons [7]

La stabilité de ce type de soutènement est assurée par la fiche des éléments verticaux auxquels sont souvent associés des dispositifs d'appuis (tirants ou buttons) qui sont mis en place au fur à mesure de l'avancement de creusement [7].

II.4 Modes de ruptures des ouvrages de soutènements

Pour la conception des murs de soutènement, il est nécessaire de définir «*la rupture*» et de savoir comment les murs peuvent s'effondrer.

Le mode de rupture d'un mur de soutènement dépend des différentes forces liées à la masse de la paroi, des pressions du sol et des forces extérieures ainsi des conditions de son ancrage dans le sol, la nature de sol et la charge hydraulique.

Les différentes formes d'instabilité qui peuvent être rencontrées dans les ouvrages de soutènement sont :

- ➤ Le glissement de l'ouvrage sur sa base (Figure 1.20a) ;
- Le renversement de l'ouvrage (Figure 1.20b) ;
- > Le poinçonnement du sol de fondation (Figure 1.20c) ;
- Le grand glissement englobant l'ouvrage (Figure 1.20d) ;
- > La rupture des éléments structuraux de l'ouvrage (Figure 1.20e).

Figure II.16. Modes de rupture des ouvrages de soutènement [1]

II.5 Méthodes de calcul de soutènements

Dans la littérature géotechnique, on recense qu'il existe pratiquement autant de méthodes de calcul et de justification pour cette famille d'ouvrages de soutènement. En effet, il n'existe pas une seule méthode spécifique à un type ou à l'ensemble de la famille d'ouvrages mais plusieurs méthodes peuvent être appliquées et qui donnent des résultats voisins des unes aux autres. Le choix de la méthode est donc libre et il dépend du modèle de calcul considéré. Ainsi, ces méthodes relèvent de textes, de règles de calcul et de recommandations comme elles concernent aussi des méthodes de calcul pratique en s'appuyant sur les théories inspirées de l'expérience, de l'observation et de calcul codifié. On distingue plusieurs méthodes de calcul à savoir :

- Les méthodes classiques dites à la rupture ;
- La méthode du coefficient de réaction ;
- Méthodes de calcul de l'état limite ultime ;
- La méthode des éléments finis.....

II.5.1 Méthodes classiques

Les méthodes classiques nécessitent la détermination des distributions classiques de poussée et de butée, influencées par différents coefficients. Ces méthodes sont basées sur des schémas de comportement simplifiés admettant que le sol est en poussée ou en butée limite.

Les trois principales méthodes de calcul des ouvrages de soutènement utilisant les hypothèses classiques de poussée et de butée limite sont les suivantes :

- La méthode de Coulomb,
- ➢ La méthode de Rankine,
- La méthode de Boussinesq-Caquot-Kerisel.

a. La méthode de Coulomb

Les théories de poussée et de butée sont fondées sur les travaux de Coulomb (1776). Dans la méthode de Coulomb, la zone de rupture est réduite à un plan (surface de glissement critique) et il n'y a aucune prise en compte de l'état des contraintes dans le sol. L'hypothèse du plan de rupture est relativement bien vérifiée pour les sols pulvérulents en état de poussée, mais ne l'est pas pour les sols cohérents, ni pour les états de butée.

La théorie de Coulomb repose sur deux hypothèses :

- Le sol se rompt suivant une surface de rupture plane ;
- La force agissante sur le mur à une direction connue. En d'autre terme cela signifie que l'angle de frottement φ entre l'écran et le mur est connu.

Ces deux hypothèses faites, la force agissante sur le mur est calculée par de simple considération d'équilibre statiques à partir d'une règle d'extremum.

Figure II.17. Equilibre du coin de Coulomb [9]

On suppose que la surface de rupture potentielle est un plan passant par le pied de l'écran et faisant un angle θ avec l'horizontale.

On fait l'hypothèse que la contrainte de cisaillement est complètement mobilisée le long de ce plan.

$$\boldsymbol{T} = \boldsymbol{\sigma} \boldsymbol{t} \boldsymbol{g} \boldsymbol{\varphi}' \tag{II-1}$$

Le coin de coulomb se comporte de façon rigide-plastique, ce qui n'est pas le cas généralement, surtout si l'écran est de grande hauteur. En chaque point M du plan de rupture s'exerce une contrainte faisant l'angle φ avec la normale au plan et située d'un côté ou de l'autre de cette normale, suivant que le massif est en buté où en poussé.

Le principe de calcul consiste à écrire la nullité de la résultante générale des forces agissantes sur le coin de sol ABC. Ces forces sont :

- Le poids W ;
- La réaction exercée par le sol sur le plan de rupture BC ;
- La force exercée par le mur et inclinée de l'angle δ (frottement sol/mur) sur la normale au parement du mur. Cette force est notée F ;
- On détermine ainsi la valeur de la force en fonction de l'angle θ que fait le plan de rupture avec l'horizontale. Le diagramme des forces appliquées sur le coin ABC donne, dans le cas de la poussée :

$$\mathbf{F} = \mathbf{W} \frac{\sin{(\theta-\varphi)}}{\sin{(\delta+\eta+\varphi-\theta)}} (\text{II-2})$$

Et

$$W = \frac{1}{2}\gamma H^2 \frac{\sin(\eta - \beta)\sin(\eta - \beta)}{\sin^2\eta\sin(\theta - \beta)} (\text{II-3})$$

La force de poussée sera obtenue en prenant le maximum de $F(\theta)$ et on écrira que :

$$dF(\theta)/d\theta = 0 \tag{II-4}$$

Sachant que :

 $F=\frac{1}{2} K_p \gamma H^2(II-5)$

La formule générale du coefficient de poussé sera [9] :

$$K_{\rm P} = \frac{\sin^2(\eta - \varphi)}{\sin^2\eta \sin(\eta + \delta) \left[1 + \sqrt{\frac{\sin(\varphi + \delta)\sin(\varphi - \beta)}{\sin(\eta + \delta)\sin(\eta - \beta)}}\right]^2} (\text{II-6})$$

Dans le cas particulier ($\delta=0$; $\eta=\pi/2$; $\beta=0$):

 $\mathbf{K}_{\mathrm{P}} = tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) (\text{II-7})$

b. Méthode de Rankine

Rankine considère l'état de l'équilibre plastique limite (tout juste avant la rupture). Cette théorie satisfait la solution de la borne inférieure de l'analyse limite. L'état de contrainte est alors représenté par le cercle de Mohr à la rupture. Les plans de rupture sont inclinés de $\theta = \pm (45^\circ + \frac{\varphi}{2})$ par rapport au plan principal majeure. Lorsqu'une masse de sol est caractérisée par une contrainte principale qui agit dans la même direction en tout point, il se forme un réseau de plans d'écoulement dit lignes de glissement, également inclinés par rapport aux plans principaux. [10]

Figure II.18. Cercle de Mohr à l'équilibre limite[10]

En plus des hypothèses suivantes : Sol semi-infini, homogène, isotrope, condition de déformation plane, courbe intrinsèque de Mohr–Coulomb et massif à surface libre plane, Rankine avait rajouté l'hypothèse que la présence de mur ou d'un écran ne modifie pas la répartition des contraintes dans le massif.

c. La méthode de Boussinesq

Cette méthode prend en compte le frottement sol-mur. Elle conduit à la modification de l'orientation des lignes de glissement. Elle est donc plus rigoureuse que la méthode de Rankine. L'obliquité δ de l'action limite sur la paroi est une donnée mécanique qui dépend de l'angle de frottement sol-écran et du déplacement relatif terrain-écran. Cet angle de frottement est souvent appelé "rugosité" et il est souvent considéré, conventionnellement, comme égal à 2/3 (en valeur absolue) de l'angle de frottement dans le sol. [10]

Figure II.19.Coin de Boussinesq [9]

Les coefficients de poussée et de butée respectivement ($K_{a,P}$) seront calculés en fonction de l'angle du mur (λ), de l'angle du talus derrière le mur (β), du frottement sol/mur ou rugosité (δ) et de l'angle de frottement interne du sol (ϕ).

IL5.2 Méthodes au coefficient de réaction

La méthode de calcul utilisant la notion de module de réaction est largement utilisée pour le calcul des ouvrages de soutènement souples, particulièrement en France. Il existe ainsi, sur le marché, un certain nombre de programmes de calcul automatique des rideaux et parois utilisant cette méthode et reposant sur des hypothèses variées en matière de discrétisation, construction des courbes d'hystérésis, règles de chargement, déchargement, etc.[11].

Elle est basée sur l'hypothèse fondamentale de Winkler (1967) dans le domaine des petits déplacements, selon laquelle les contraintes à l'interface sol/structure sont proportionnelles au

déplacement de celle-ci. Ainsi, si le rideau à une profondeur z, S'est déplacé de u(z), la pression horizontale P(z) du sol est telle que :

$$P(z) = K_h.u(z)(II-8)$$

 K_h : Appelé coefficient de réaction (KN/m³), n'est pas une grandeur intrinsèque puisqu'il dépend de la nature du sol, de sa rigidité, et des dimensions de rideau [11].

II.5.3 Méthode des éléments finis (MEF)

Le calcul automatique en géotechnique a vu ces dernières années, un développement important avec l'introduction de la méthode des éléments finis au calcul des ouvrages [6]. Elle offre la possibilité de prendre en compte des modèles de comportement très sophistiqués, plus réalistes que ceux prisent en compte par des méthodes plus traditionnelles, pour cela elle a eu un grand intérêt de la part des ingénieurs de la géotechnique et du génie civil.

D'une façon générale, la résolution par la MEF inclut les étapes suivantes :

- Obtention de la formulation du problème ;
- Réalisation d'un maillage, correspondant à la discrétisation du domaine d'étude en éléments (triangles, tétraèdres, hexaèdres...) sur lesquels les champs sont écrits en termes d'un nombre fini de degrés de liberté et de fonctions de base à repère local;
- Calcul des matrices élémentaires qui, après assemblage, génèrent un système matriciel ;
- Résolution du système algébrique pour l'obtention d'une solution approchée du problème.

Il existe plusieurs logiciels spécialisés d'éléments finis en géotechnique, tels que PLAXIS, CRISP, CESAR, permettant de par leur convivialité et leur interactivité une modélisation aisée de ce type de problème [6].

Figure II.20. Exemple de maillage dans Plaxis [6]

II.6 Vérification de calcul de stabilité

II.6.1 Soulèvement du fond de fouille

La base d'une excavation peut échouer selon trois modes généraux, à savoir:

1. Défaut de cisaillement dans le sol dû à une résistance inadéquate des charges imposée par les différences de niveaux à l'intérieur et à l'extérieur de l'excavation ;

2. Conditions rapides dues à l'infiltration d'eau dans les sols granulaires au fond de l'excavation;

3. Soulèvement des sols en couches dû à la pression de l'eau confinée par des sols à faible perméabilité intermédiaires.

Le premier mécanisme se produit principalement dans les argiles molles à moyennement raides. Toutefois, en fonction de la profondeur de l'excavation, la pression du mort-terrain peut être si importante qu'elle dépasse la résistance des argiles raides, raison pour laquelle les termes « souple » à « moyennementrigide » doivent être considérés comme relatifs. La rupture par cisaillement des bases d'excavation est généralement rare dans les sols granulaires et si un soutien latéral adéquat est fourni, le facteur de sécurité contre l'instabilité du fond est généralement satisfaisant. Le soulagement inadéquat de la nappe phréatique peut toutefois provoquer une instabilité dans les excavations effectuées à travers des sols granulaires ou stratifiés.

A- Sols cohésifs

Les excavations profondes dans des argiles molles à fermes sont sujettes à des ruptures de soulèvement de la base résultant d'un effort excessif du sol en cisaillement (Figure II.22). Le facteur de sécurité vis-à-vis du soulèvement de la base, F_{Sb} , est donné par [8]:

$$F_{sb} = \frac{N_b \tau_u}{\gamma H + q}$$
(II.13)

Avec :

Nb: Facteur de stabilité dépendant de la géométrie de l'excavation donné par la figure II.22.

 τ_u : Résistance au cisaillement non drainée du sol sous le niveau de base.

Figure II.21.Le facteur de sécurité

Figure II.22.Facteur de stabilité dépendant de la géométrie de l'excavation[8]

Au fur et à mesure que le potentiel d'instabilité de fond augmente, le soulèvement à la base de l'excavation et le mouvement autour de l'excavation augmentent d'où F_{Sb} diminue. Dans le cas d'argiles molles sous la base d'une excavation où F_{Sb} est inférieur à 2, des déformations importantes peuvent survenir. Lorsque F_{Sb} est inférieur à 1,5, la profondeur de pénétration du système de support doit s'étendre sous la base de l'excavation.

B- Sols granulaires

Dans les sols sans cohésion, l'instabilité à la base prend la forme d'un soulèvement et est associée à l'écoulement des eaux souterraines. Le contrôle des eaux souterraines peut être obtenu par drainage ou en utilisant des palplanches pour soutenir la surface de l'excavation et en assurant une pénétration adéquate de l'empilement à des fins de coupure, ou par une combinaison des deux méthodes.

II.6.2 Vérifications des déformations

A- Sols granulaires

En général, pour des systèmes de support d'excavation équivalents, l'amplitude des mouvements verticaux dans les sols granulaires de la plupart des densités est généralement inférieure à celle des mouvements latéraux dans les sols cohésifs lisses à rigides. Si les supports horizontaux sont installés dès que le niveau de support est atteint, on peut s'attendre à ce que les mouvements verticaux du sol se situent entre 0,2% et 0,3% de la profondeur de l'excavation, en fonction de la rigidité du mur, de la qualité de fabrication et du degré de précontrainte du support.

B- Argiles douces à fermes

Des mouvements importants se produisent souvent lorsque des coupes verticales sont effectuées dans des argiles molles. Ces mouvements se produisent malgré des systèmes de soutien bien construits. Les mesures ont montré que 60% à 80% du rendement latéral total à chaque niveau de support se situe en dessous du niveau de l'excavation

Même si le système est correctement installé et que les supports sont correctement sollicités, les mouvements latéraux et verticaux maximaux du sol sont généralement compris entre 1% et 2% de la profondeur de l'excavation, en fonction de la rigidité de la paroi et du facteur de sécurité. Contre le soulèvement de la base.

C- Argile raide

Les mouvements latéraux des systèmes de soutien temporaires diminuent fortement avec l'augmentation de la résistance au cisaillement du sol. Les mouvements sont généralement faibles si les supports horizontaux sont installés dès que le niveau de support est atteint et peuvent être compris entre 0,1% et 0,3% de la profondeur de l'excavation, en fonction de la qualité de l'exécution, de la rigidité de la paroi, etc. degré de soutien précontraint.

II.7 Conclusion

Cette synthèse bibliographique a été consacrée à la revue de littérature traitant les concepts liés au sujet de notre travail, soit les méthodes d'excavations, les modes de soutènement ainsi que les approches de calculs traitant ce type de problématique.

Il ressort qu'il existe plusieurs méthodes d'excavation à ciel ouvert : tranchée ouvert, excavation contreventée, excavation ancrée, excavation des iles et excavation Top-down. Pendant ces travaux souterrains, l'ingénieur est appelé à appliquer un type de soutènement parmi la variété des dispositifs de existantes (paroi moulée, paroi en pieu sécants, soutènement métallique,etc. Pour choisir la meilleure technique, il faut tenir compte de nombreux facteurs qui nous permettent d'exécuter et de soutenir l'excavation, parmi ces facteurs on cite, la période de construction admissible, le budget de construction, la disponibilité du matériel de construction, l'impact sur les ouvrages voisines, l'adaptation pour différents terrains et la géométrie du projet.

La conception du soutènement est souvent conditionnée par l'importance et la répartition des efforts qu'il devra supporter. Plusieurs méthodes et approches existent pour la conception et le calcul de ces écrans. L'objectif étant de vérifier certaines conditions de stabilité et tolérances de déformations : les déformations, le soulèvement du fond de fouille et La stabilité au glissement.

CHAPITRE III : RÉSULTATS ET INTERPRETATION DE LA SYNTHÈSE GEOTECHNIQUE

III.1Introduction

Le développement de l'étude de soutènement de notre projet est basé sur une bonne connaissance des différentes unités géotechniques ainsi que les caractérisations physiques et mécaniques de chaque couche constituant le massif est nécessaire. L'objectif assigné à cette étape est d'établir un modèle géotechnique des différentes couches du sol du site choisi pour exécuter le puits de ventilation.

Pour se parvenir, une compagne de reconnaissance géotechnique a été effectuée proposant une de réaliser une série d'investigation sur terrain et un programme complet d'essais au laboratoire sur les échantillons récupérés.

Le présent chapitre est consacré à l'exploitation des résultats des essais effectués, suivie par une interprétation géotechnique du site et une proposition du modèle lithologique du sol à prendre en charge pour la phase de modélisation et le calcul du dispositif du soutènement objet de l'étude.

III.2 Géologie

III.2 Géologie régionale

L'Algérie est le plus grand pays d'Afrique avec une superficie de 2 381 741 km², il se situe en Nord-Ouest de l'Afrique, limité par la mer méditerranée au Nord avec plus de 1200 km de côte, le Maroc à l'Ouest, la Tunisie et Libye à l'Est, la Mauritanie et le Sahara Occidental au Sud-Ouest et finalement le Mali et le Niger au Sud.

La géologie de l'Algérie se divise en deux unités structurales :

Domaine méridional

Localisé dans le Sahara algérien, ce domaine est considéré stable depuis 550 millions d'années. Il est constitué de deux massifs où affleurent des roches métamorphiques et magmatiques et d'une plateforme appelée « plateforme saharienne », structurée en bassins sédimentaires remplis de sédiments du Néo protérozoïque et du Phanérozoïque.

- > Un domaine septentrional
- Au Sud :la zone atlasique, comportant un Atlas saharien qui se prolonge à l'Ouest (Maroc) par le Haut Atlas marocain et à l'Est (Tunisie) par l'Atlas tunisien.
- Au Nord : l'Atlas tellien, domaine varié et très complexe ayant aussi des équivalents au Maroc (le Rif et le Pré-Rif) et en Tunisie (Kroumirie et Nefza). Cet Atlas tellien comporte une zone interne et une externe formée de terrains allochtones (nappes de charriage). On distingue au nord trois zones :
- ✓ Les zones externes : appelées tell méridional résultent du décollement et du clivage au Miocène de la couverture sédimentaire mésozoïque paléogène déposée sur la marge nord de la plaque Afrique. En Algérie, les zones externes telliennes comportant de grandes nappes pelliculaires à matériel marneux du Crétacé-Paléogène.
- ✓ Les zones internes : appelées tell septentrional sont représentées par des « massifs anciens » littoraux, bordés au sud par une « chaine calcaire » ou « Dorsale ». En Algérie, les socles de grande et de petite Kabylie constituent l'essentiel des zones internes. Ces zones comportent un socle métamorphique surmonté par un Paléozoïque schisteux allant du cambrien au carbonifère inférieur. Au cours de l'orogenèse alpine, les zones internes ont été largement charriées vers le sud.
- ✓ Les zones des flysch : est constituée par un matériel crétacé et paléogène qui s'est déposé dans un sillon qui se situait entre les zones internes et les zones externes. Les flysch ont été charriés sur les zones externes puis, pour une partie, ils ont été ramenés sur les zones internes par des glissements plus tardifs.

Figure III.2. Coupe nord sud des principales unités structurales de l'Algérie.

Le puits de ventilation PV #3 se situe au nord du pays et plus précisément dans la zone des flysch, nous allons intéresser uniquement à cette zone.

Géologie et géotechnique du site

Selon l'information disponible jusqu'à ce jour, les sols où le Pv3 sera creusé s'agissent des dépôts quaternaires avec facies lithologiques constitués par des sables limoneux-argileux superposés aux formations du pliocène récent et quaternaire ancien constitués, à l'échelle de l'ouvrage, par les marnes et argiles marneuses dites d'El Harrach.et matériaux du Tertiaires constitués pour sable fin, moyenne a grossier, jaunâtre avec présence de grés sous-forme de fragments.

Les données disponibles ont permis d'établir un zonage en profondeur des sols selon ces caractéristiques géotechniques et de déterminer les paramètres géomécaniques caractéristiques de chaque horizon. Le dispositif géologique-géotechnique est constitué, de haut en bas, par remblais avec 4,50 m d'épaisseur maximale dans la zone de sondage SC24C, par galets à matrice argileuse et ou matrice sablo-argileuse (QG) jusqu'aux 7,5-12,0, par argile limoneuse peu sableuse (QA) jusqu'aux 3,0-6,0 m de profondeur (SC24B), par des sables limoneux-argileux brunâtre a marron claire (Qs) et par argiles marneuses sableuses, marron claire (QM), jusqu'aux 39,00 m de profondeur (SC24C).

Au-dessous des 36,00 de profondeur, nous avons identifié la séquence pleistocènique, constituées par des sables limoneux consolidés à passages grésifiées (TS) jusqu'aux 51,0m

III.3 Sismicité

Le niveau minimal de protection parasismique est caractérisé conventionnellement par le coefficient d'accélération et déterminé en fonction de la classe des ouvrages de la zone de sismicité dans laquelle l'ouvrage se trouve.

En Algérie, cinq zones sont définies en fonction de leur sismicité croissante

Zone 0 : Sismicité négligeable.Zone I : Sismicité faible.Zone IIa : Sismicité moyenne.Zone IIb : Sismicité élevée.Zone III : Sismicité très élevée.

La région d'étude est située dans la zone sismique III, caractérisée par une sismicité très élevée.

Figure III.3. Extrait de la carte de zonage sismique du territoire national.

Classification du site

Pour la prise en compte du risque sismique et en particulier de la valeur du coefficient d'accélération, les tunnels et puits, selon la partie II des RPOA 2008 – Règles Parasismiques Applicables au Domaine des Ouvrages d'Art, sont classés en deux groupes :

- Groupe 1 Tunnels stratégiques Ce groupe recouvre les tunnels stratégiques devant rester circulables après avoir subi l'action sismique ultime réglementaire.
- Groupe 2 Tunnels importants Dans ce groupe sont classés les tunnels qui se trouvent sur les chemins de wilaya, chemins communaux ou autre voies.

Cet ouvrage s'encadre dans le Groupe 1.

Le coefficient d'accélération est défini en fonction de la zone sismique et de la classe des ouvrages selon le tableau ci-dessous.

Croupe	Zone Sismique					
Groupe	I	Iia	IIb	III		
1	0.15	0.25	0.30	0.40		
2	0.12	0.20	0.25	0.30		
3	0.10	0.15	0.20	0.25		

Tableau III-1Coefficient d'accélération de la zone "A"

La région d'étude est située dans la zone sismique III et dans le groupe 1 - tunnels stratégiques, pour cette zone la valeur d'accélération sismique a adopté sera de a = 0.4g. Il est impératif de tenir compte de la sismicité régionale avant d'entreprendre toute action de construction définitive dans la région d'étude.

Cette valeur de 0.4g sera considérée pour tous les calculs des structures internes. Pour les phases provisoires, selon l'indication de l'EMA, une valeur de 0.1g devra être considérée.

III.4 Compagnes de prospection et reconnaissance géotechnique

Dans le cadre du développement de cette étude, une compagne de reconnaissance géotechnique a été effectuée au niveau du site du projet (2015). Le programme réalisé comprend l'exécution des essais suivants :

- Trois sondages carottés mentionnés dans la carte ci-après : SC24C, SC24B, SC24D de profondeur de 41m, 50m, 51m respectivement ;
- Trois essais au Standard Pénétration Test (SPT) ;
- Un essai Pressiométrique au niveau du sondage carotté SC24B ;
- La mise en place d'un piézomètre à corde vibrante noté PZ (CV) pour surveiller le niveau de la nappe phréatique au niveau de sondage SC24B ;

Dans une seconde phase, l'ensemble des échantillons récupérés depuis les sondages ont fait objet d'une série d'essais au laboratoire :

- Essais physiques d'identification et classification des formations rencontrées ;
- Essais mécaniques de caractérisation de la résistance des sols ;
- Et des essais chimiques.

L'analyse des résultats obtenus nous a permis d'aboutir à une caractérisation paramétrique des couches du sol du site du projet. L'objectif final étant d'élaborer le modèle du sol à considérer dans les calculs de la stabilité des soutènements projetés.

La figure suivante présente la localisation des essais in-situ réalisés.

Figure III.4. Plan d'implantation des sondages carottés.

III.4.1 Résultats de l'investigation

III.4.1.1 Résultats des sondages carottés

Les trois sondages réalisés au niveau de cette zone ont permis de rencontrer la succession lithologique suivante :

Sondage carotté SC24B

- 0.00 à 3.00m : Remblai à aspect tuffeaux.
- 3.00m à 6.10m : Argile limoneuse peu sableuse caillouteuse marron à brunâtre.
- 6.10m à 7.50m : Sable limoneux peu argileux avec trace de marne marron à brunâtre.
- 7.50m à 8.00m : Sable grossier caillouteux brunâtre.
- 8.00m à 9.70m : Sable argileux limoneux marron claire à foncé.
- 9.70m à 12.00m : Argile limoneuse sableuse avec trace de marne marron à brunâtre.
- 12.00m à 15.00m : Marne avec peu de sable grisâtre à nuancenoirâtre de consistance compacte.
- 15.00m à 16.50m : Galet à matrice argileuse.

- 16.50m à 21.00m : Argile limoneuse sa- 21.00m à 22.50m : Sable argileux limoneux graveleux brunâtre à marron foncé.

- 22.50m à 25.50m : Sable peu argileux limoneux peu graveleux brunâtre.

- 25.50m à 28.50m : Argile limoneuse sableuse avec trace de marne marron foncé.

- 28.50m à 32.50m : Sable limoneux peu argileux marron foncé.

- 32.50m à 33.50m : Sable moyen limoneux graveleux avec trace d'argile marron foncé à brunâtre.

- 33.50m à 36.00m : Argile marneuse peu limoneuse avec trace de sable brunâtre à verdâtre.

- 36.00m à 37.50m : Sable limoneux argileux marron foncé de consistance compacte bleuse avec trace de graviers de couleur marron claire à foncé.

- 37.50m à 41.00m : Sable limoneux argileux avec trace de marne marron foncé à brunâtre de consistance compacte.

Sondage carotté SC24C

- 0.00m à 1.50m : Remblai.

- 1.50m à 7.50m : Conglomérat poudingue broyés sous forme de cailloux.

- 7.50m à 10.50m : Argile limoneuse graveleuse sableuse brunâtre.

- 10.50m à 14.00m : Argile limoneuse sableuse avec trace de gravier brunâtre.

- 14.00m à 18.50m : Sable limoneux graveleux avec trace d'argile de couleur brunâtre à marron claire.

- 18.50m à 22.50m : Argile limoneuse sableuse avec trace de marne brunâtre à marron foncé.

- 22.50m à 23.20m : Conglomérat à matrice argileux marron.

- 23.20m à 27.00m : Sable limoneux argileux de couleur marron.

- 27.00m à 30.00m : Argile limoneuse sableuse avec trace de gravier de couleur rougeâtre à marron foncé.

- 30.00m à 34.50m : Sable limoneux peu argileux peu graveleux marrons claire.

- 34.50m à 39.00m : Sable limoneux avec trace d'argile de couleur marron claire.

- 39.00m à 48.00m : Sable à grain fin à moyen peu limoneux de couleur marron claire.

- 48.00m à 49.50m : Grés lumachellique coquillier broyé sous forme de cailloux blanchâtre.

- 49.50m à 51.00m : Sable fin à moyen limoneux marron claire.

Sondage carotté SC24D

- 0.00m à 1.5m : Remblai excavé.

- 1.50m à 3.50m : Argile limoneuse peu graveleuse marron foncé.

- 3.50m à 4.50m : Argile limoneuse peu sableuse marron foncé.

- 4.50m à 6.50m : Galets à matrice argileuse.
- 6.50m à 7.50m : Argile limoneuse peu graveleuse brunâtre.

- 7.50m à 12.00m : Galet à matrice sablo-argileuse avec présence de conglomérats broyé par endroit.

- 12.00m à 15.00m : Marne argileuse grisâtre de consistance compacte.
- 15.00m à 16.50m : Sable argileuse caillouteuse.
- 16.50m à 18.00m : Sable grossier avec passage de grés broyé sous forme de cailloux.
- 18.00m à 19.50m : Sable grossier caillouteux brunâtre à noirâtre.
- 19.50m à 21.00m : Argile limoneuse peu sableuse marron.
- 21.00m à 25.50m : Limons argileuse peu sableuse de couleur marron claire.
- 25.50m à 31.30m : Argile limoneuse sableuse caillouteuse marron claire.

- 31.30m à 33.00m : Sable caillouteux avec présence de conglomérat broyé sous forme de cailloux par endroit.

- 33.00m à 36.60m : Argile limoneuse sableuse avec trace de marne brunâtre.
- 36.60m à 37.50m : Sable argileux limoneux rougeâtre.

- 37.50m à 42.00m : Sable fin à moyen limoneux avec trace de gravier de couleur marron claire à brunâtre.

- 42.00m à 50.00m : Sable fin à moyen limoneux de couleur marron claire à brunâtre.

Les logs de sondages carottés sont présentés à l'appendice A.

.III.4.1.2 La campagne piézométrique

Afin de surveiller le niveau de la nappe phréatique, le sondage carotté SC24B a été équipé de piézomètre. Les résultats de cette campagne sont donnés dans le tableau III.2:

Piézomètre	Niveauxduterrain	Profondeurd'installation (m)	Date	Pression(bar)	Profondeur dela nappe phréatique (m)		
			30- 06-	2.15	18.04		
			11- 07-	2.02	19.32		
			12- 07-	2.03	19.31		
			14- 07-	2.03	19.26		
SC24B – PZ1		40	17- 07-	2.03	19.28		
			21-	2.03	19.31		
			25- 07-	2.03	19.29		
	20			01-	2.02	19.32	
			14- 08-	2.02	19.32		
		20			12- 07-	0.55	19.39
				14- 07-	0.55	19.40	
					17-	0.55	19.41
SC24B – PZ2		25	21- 07-	0.54	19.44		
			25- 07-	0.54	19.49		
			01-	0.53	19.56		
			14- 08-	0.52	19.66		
			14- 07-	0.12	9.74		
			17-	0.10	9.99		
SC24B –	_		11	21- 07-	0.09	10.12	
PZ3		11	25- 07-	0.08	10.16		
			01-	0.07	10.28		
			14- 08-	0.06	10.37		

Tableau III-2Les lectures des piézomètres à corde vibrante SC24B
--

III.4.1.3 Résultats des essais auStandard Pénétration Test (SPT)

L'essai S.P.T consiste à faire pénétrer dans le sol par battage, un carottier de dimensions normalisées, porté par un train de tiges et de compter le nombre de coups nécessaire à l'enfoncement de 30 cm. Cet essai est conçu essentiellement pour déterminer la capacité portante d'un pieu (élément de fondation profonde), et peut servir pour estimer la capacité portante d'une

CHAPITRE III

fondation superficielle. Lors de la reconnaissance des sols, il donne aussi une idée sur la nature des couches traversées. Les résultats de l'essai de Standard Pénétration Test sont résumés dans les tableaux III.3, III.4 et III.5 suivants :

Sondage					Interprétation		
Code	Profond	eur (m)	N _{SPT}	N ₆₀	(N ₁) ₆₀	des résultats	
Couc	Début	Fin					
	3.00	-	Refus	-	-	-	
	4.50	-	Refus	-	-	-	
	6.00	-	Refus	-	-	-	
	7.50	7.95	45	39	33	Dense	
	9.00	9.45	24	21	15	Compact	
	10.50	10.95	23	21	-	Compact	
	12.00	12.45	35	32	-	Dense	
	13.50	13.95	47	43	-	Dense	
	15.00	-	Refus	-	-	-	
	16.50	-	Refus	-	-	-	
	18.00	18.45	37	34	-	Dense	
	19.50	19.95	34	31	-	Dense	
SC24B	21.00	21.45	24	22	-	Compact	
50210	22.50	-	Refus	-	-	-	
	24.00	-	Refus	-	-	-	
	25.50	25.95	46	42	-	Dense	
	27.00	27.45	41	38	-	Dense	
	28.50	-	Refus	-	-	-	
	30.00	-	Refus	-	-	-	
	31.50	-	Refus	-	-	-	
	33.00	-	Refus	-	-	-	
	34.50	-	Refus	-	-	-	
	36.00	-	Refus	-	-	-	
	37.50	-	Refus	-	-	-	
	39.00	-	Refus	-	-	-	
	40.50	-	Refus	-	-	-	

Tableau III-3: Résultats des essais au Standard Pénétration Test (SPT) du sondage SC24B

	Sondage					Interprétation
Code	Profondeur (m)		Nspt	N60	(N1)60	des résultats
Coue	Début	Fin				
	1.50	1.95	58	40	-	Très dense
	3.00	-	Refus	-	-	-
	4.50	-	Refus	-	-	-
	6.00	-	Refus	-	-	-
	7.50	7.95	14	12	-	Compact
	9.00	9.45	18	16	-	Compact
	10.50	10.95	36	33	-	Dense
	12.00	12.45	32	29	-	Dense
	13.50	13.95	19	17	-	Compact
	15.00	15.45	31	28	17	Dense
	16.50	16.95	48	44	26	Dense
	18.00	18.45	31	28	-	Dense
	19.50	19.95	29	27	-	Compact
	21.00	21.45	28	26	-	Compact
	22.50	-	Refus	-	-	-
	23.95	24.40	36	33	-	Dense
SC24C	25.50	25.95	46	42	-	Dense
	27.00	27.45	33	30	-	Dense
	28.50	28.95	39	36	-	Dense
	30.00	30.45	44	40	-	Dense
	31.50	31.95	44	40	-	Dense
	33.00	33.45	53	49	-	Très dense
	34.50	34.95	30	28	-	Compact
	36.00	36.45	37	34	-	Dense
	37.50	37.95	44	40	-	Dense
	39.00	39.45	35	32	16	Dense
	40.50	40.95	42	39	20	Dense
	42.00	42.50	47	43	22	Dense
	43.50	43.95	37	34	17	Dense
	45.00	45.50	27	25	13	Compact
	46.50	46.95	45	41	21	Dense
	48.00	-	Refus	-	-	-
	49.50	-	Refus	-	-	-

 Tableau III-4: Résultats des essais au Standard Pénétration Test (SPT) du sondage SC24C

Sondage						Interprétations
Codo	Profond	eur (m)	NSPT	N60	(N1)60	des résultats
Coue	Début	Fin				
	3.00	3.45	30	21	-	Compact
	4.50	4.95	36	28	-	Dense
	6.00	-	Refus	-	-	-
	7.50	7.95	51	44	-	Très dense
	9.00	9.45	58	51	-	Très dense
	10.50	-	Refus	-	-	-
	12.00	12.45	27	25	-	Compact
	13.50	13.95	19	17	-	Compact
	15.00	15.45	14	13	-	Compact
	16.50	16.95	25	23	13	Compact
	18.00	-	Refus	-	-	-
	19.50	19.95	31	28	-	Dense
	21.00	21.45	35	32	-	Dense
	22.50	22.95	34	31	-	Dense
	24.00	24.45	38	35	-	Dense
SC24D	25.50	-	Refus	-	-	-
5C24D	27.00	27.45	36	33	-	Dense
	28.50	28.95	35	32	-	Dense
	30.00	30.45	28	26	-	Compact
	31.50	-	Refus	-	-	-
	33.00	33.45	37	34	-	Dense
	34.50	34.95	55	50	-	Dense
	36.00	36.45	47	43	-	Dense
	37.50	37.95	30	28	14	Compact
	39.00	39.45	25	23	12	Compact
	40.50	40.95	23	21	11	Compact
	42.00	42.45	24	22	11	Compact
	43.50	43.95	35	32	16	Dense
	45.00	45.45	22	20	10	Compact
	46.50	46.95	42	39	20	Dense
	48.00	48.45	31	28	14	Dense
	50.00	-	Refus	-	-	-

 Tableau III-5: Résultats des essais au Standard Pénétration Test (SPT) du sondage SC24D

III.4.1.4 Résultats des essais Pressiométrique (PMT)

L'essai Pressiométrique consiste à exercer sur la paroi duforage des pressions rigoureusement uniformesà l'aide d'une sondecylindrique dilatable, laquelle est disposée au sein du terrain. On mesure l'expansion de la sonde en fonction de la pressionappliquée. Cet essai permet de déterminer unerelation entre la pression P appliquée sur le sol et le déplacement de la paroi de la sonde.

Les résultats des essais Pressiométrique sont indiqués sur le tableau suivant :

Essais Pressiométrique							
Sor	ndage	EM	Pl	Pf			
Code	Profondeur	(MPa)	(MPa)	(MPa)	E_M/P_l		
	(m)						
	5.00	24.519	1.133	0.581	21.64		
	10.00	15.90	0.72	0.50	21.67		
	10.00	13.89	0.75	0.39	21.07		
	15.00	49.87	3.62	2.35	13.78		
SP15	20.00	27.47	1.690	0.98	16.25		
	25.00	51.23	2.18	1.45	23.46		
	30.00	52.04	3.41	2.39	15.24		
	35.00	87.37	5.16	3.30	16.94		
	40.50	136.46	6.58	4.10	20.75		

Tableau III-6Résultats des essais Préssiométrique (PMT) de sondage SC24B (SP15)

Les résultats des essais pressiométrique sont présentés à l'appendice B

III.4.2 Résultats des essais de laboratoire

Outre l'investigation expérimentale in-situ, une série d'essais au laboratoire pour l'identification des caractéristiques physiques et mécaniques du sol a été réalisée sur des échantillons intacts et remaniées. Faire une autre phrase

III.4.2.1 Paramètres physique

A-Humidité

Les paramètres physiques (Teneur en eau, Poids volumique sec et poids volumique humide, poids volumique des particules solides) de notre sol sont représentés dans le tableau III.7 :

Sondage	Profondeur (m)	$\gamma_s (\text{KN/m}^3)$	$\gamma_h (\text{KN/m}^3)$	$\gamma_d (KN/m^3)$	ω%
	9.90-10.50	27.25	20.75	17.21	20.57
SC24B	14.28-14.98	26.81	21.07	17.45	20.76
	18.8-19.30	26.20	20.71	17.69	17.04
SC24B	24.64-25.38	26.87	21	17.42	20.55
	27.45-28.05	26.97	21.11	17.60	19.89
	30.50-31.50	26.65	21.44	18.48	15.97
	35.00-35.80	26.53	20.22	16.36	23.55
	9.67-10.37	26.5	20.81	17.66	17.48
	12.92-13.20	26.06	20.62	17.95	14.90
	16.10-16.40	25.6	19.9	16.51	20.51
	20.58-20.80	26	20.14	16.25	23.90
SC24C	22.14-22.48	26.17	26.17 20.25		20.31
	27.90-28.20	25.6	20.85	18.51	12.67
	32.47-32.80	24.76	20.12	16.83	19.56
	35.70-35.90	26.18	-	-	17.52
	37.25-37.50	26.21	-	-	16.88
	41.50-42.50	27.1	-	-	22.58
	06.50-06.80	25.22	19.95	16.33	22.167
	07.10-07.50	25.26	19.06	15.95	19.487
	12.55-13.00	25.89	20.91	18.21	14.80
	13.00-13.37	26	20.75	17.34	19.64
	14.50-14.90	26.05	19.99	16.42	21.688
SC24D	20.40-20.80	25.72	20.64	17.11	20.60
3C24D	23.30-23.80	25.43	20.75	17.22	20.46
	24.65-25.00	25.79	20.45	17.12	19.420
	30.25-30.63	25.84	19.85	15.76	25.934
	34.10-34.50	25.50	20.25	16.53	22.504
	38.80-39.00	26.29	-	-	18.75
	44.60-44.90	26.48	-	-	20.977

Tableau III-7	Résultats	d'essais	d'humidité
---------------	-----------	----------	------------

B- Analyse granulométrique

Les résultats de l'analyse granulométrique sont regroupés dans le tableau III.8 :

	Analyse granulométrique		Interprétation		
Sondage	Profondeur	Pourcentage	Pourcentage %	Pourcentage	des résultats
		< % 2mm	< 0.08 mm	% < 2μm	
	9.90-10.50	99.88	80.87	28.33	Sol fin
SC24B	14.28-14.92	94.78	74.68	17.50	Sol fin
	18.80-19.30	99.07	80.16	19.10	Sol fin
	24.64-25.38	-	97.18	16.20	Sol fin
	27.45-28.05	-	77.69	12.40	Sol fin
	30.55-31.54	91.67	70.36	36.66	Sol fin
	35.03-35.80	100	98.18	70	Sol fin
	9.67-10.37	92.09	86.33	-	Sol fin
	12.92-13.20	100	85.90	-	Sol fin
	16.10-16.40	99.5	82.60	-	Sol fin
	20.58-20.80	100	93.49	-	Sol fin
SC24C	22.14-22.48	94.31	68.49	-	Sol fin
50240	27.90-28.20	93.20	61.19	-	Sol fin
	32.47-32.80	100	97.60	-	Sol fin
	35.70-35.90	97.80	11.80	-	Sol grenu
	37.25-37.90	89.40	39.90	-	Sol grenu
	41.50-42.50	98.80	2.20	-	Sol grenu
	06.50-06.80	98.25	96.51	-	Sol fin
	07.10-07.50	98.87	90.51	-	Sol fin
	12.55-13.00	100	96.6	-	Sol fin
	13.00-13.37	-	84.91	-	Sol fin
	14.50-14.90	100	81.83	-	Sol fin
SC24D	20.40-20.80	100	78.64	-	Sol fin
50240	23.30-23.80	-	94.54	-	Sol fin
	24.65-25.00	98.65	61.30	-	Sol fin
	30.25-30.63	100	80.60	-	Sol fin
	34.00-34.50	-	97.94	-	Sol fin
	38.80-39.00	99.44	17.39	-	Sol grenu
	44.60-44.90	98.86	05.91	-	Sol grenu

Tableau III-8Résultats del'analyse granulométrique

C- Plasticité

Les résultats des limites d'Atterberg réalisés sur la fraction des inférieurs à 0.4 mm, ont donné les résultats regroupés dans le tableau III.9 :

G 1	Del	Limites d'Atterberg		erg	Interprétation
Sondage	Profondeur	WL (%)	WP (%)	IP (%)	des résultats
SC24B	9.90-10.50	33.7	16.91	16.79	Sol peu plastique
	14.28-14.92	35.5	19.35	16.15	Sol peu plastique
	18.80-19.30	36.3	25.22	11.08	Sol peu plastique
	24.64-25.38	37.8	22.69	15.11	Sol peu plastique
	27.45-28.05	33.2	19.97	13.23	Sol peu plastique
	30.55-31.54	36.6	23.01	13.59	Sol peu plastique
	35.03-35.80	64.6	36.24	28.36	Sol très plastique
	9.67-10.37	38.7	23.08	15.62	Sol peu plastique
	12.92-13.20	39.50	22.55	16.95	Sol peu plastique
	16.10-16.40	47.90	26.86	21.04	Sol peu plastique
SC24C	20.58-20.80	35	19.69	15.31	Sol peu plastique
	22.14-22.48	31.4	20.62	10.78	Sol peu plastique
	27.90-28.20	38.7	20.43	18.27	Sol peu plastique
	32.47-32.80	58.9	29.22	29.68	Sol très plastique
	06.50-06.80	54.20	26.18	28.02	Sol très plastique
	07.10-07.50	46.50	24.32	22.18	Sol peu plastique
	12.55-13.00	35.40	18.47	16.94	Sol peu plastique
	13.00-13.37	30.90	19.02	11.88	Sol peu plastique
SC24D	14.50-14.90	31.70	18.54	13.16	Sol peu plastique
	20.40-20.80	35.20	20.36	14.84	Sol peu plastique
	23.30-23.80	34	14.26	15.62	Sol peu plastique
	24.65-25.00	30.60	16.95	13.65	Sol peu plastique
	30.25-30.63	34.60	19.43	15.17	Sol peu plastique
	34.00-34.50	54	26.37	27.63	Sol très plastique

Tableau III-9Résultats de limites d'Atterberg

D- Classification des sols

Le tableau III-10présente la classification des sols fins et le tableau III-11 celle des sols grenus.

Sondaga	Profondeur(m)	Limites d'Atterberg			Classification des
Sondage		WL (%)	WP (%)	IP (%)	sols
	9.90-10.50	33.7	16.91	16.79	Argile peu plastique
SC24B	14.28-14.92	35.5	19.35	16.15	Argile peu plastique
	18.80-19.30	36.3	25.22	11.08	Limons peu plastique
	24.64-25.38	37.8	22.69	15.11	Argile peu plastique
	27.45-28.05	33.2	19.97	13.23	Argile peu plastique
	30.55-31.54	36.6	23.01	13.59	Argile peu plastique
	35.03-35.80	64.6	36.24	28.36	Limons très plastique
	9.67-10.37	38.7	23.08	15.62	Argile peu plastique
	12.92-13.20	39.50	22.55	16.95	Argile peu plastique
	16.10-16.40	47.90	26.86	21.04	Argile peu plastique
SC24C	20.58-20.80	35	19.69	15.31	Argile peu plastique
	22.14-22.48	31.4	20.62	10.78	Argile peu plastique
	27.90-28.20	38.7	20.43	18.27	Argile peu plastique
	32.47-32.80	58.9	29.22	29.68	Limons très plastique
	06.50-06.80	54.20	26.18	28.02	Argile très plastique
	07.10-07.50	46.50	24.32	22.18	Argile peu plastique
	12.55-13.00	35.40	18.47	16.94	Argile peu plastique
	13.00-13.37	30.90	19.02	11.88	Argile peu plastique
SC24D	14.50-14.90	31.70	18.54	13.16	Argile peu plastique
50240	20.40-20.80	35.20	20.797	14.84	Argile peu plastique
	23.30-23.80	34	14.26	15.62	Argile peu plastique
	24.65-25.00	30.60	16.95	13.65	Argile peu plastique
	30.25-30.63	34.60	19.43	15.17	Argile peu plastique
	34.00-34.50	54	26.37	27.63	Argile très plastique

Tableau III-10Classification des sols fins

	Profondeur	l					
Sondage		Pourcentage % 2mm	Pourcentage % < 0.08 mm	D ₆₀ (mm)	D ₃₀ (mm)	D ₁₀ (mm)	Classification des sols
50240	35.70-35.90	97.80	11.80	0.28	0.18	-	Sable
SC24C	41.50-42.50	98.80	2.20	0.30	0.13	0.17	Sable propre mal gradué
SC24D	38.80-39.00	99.44	17.39	-	-	-	Sable
	44.60-44.90	98.86	05.91	0.31	0.26	0.21	Sable propre mal gradué

Tableau III-11Classification des sols grenus

Les résultats des essais physiques sont présentés à l'appendice C.

E-Essai au bleu de méthylène

Les résultats de l'essai au bleu de méthylène ont donné les valeurs regroupés dans le tableau III.12 :

Sondage	Profondeur (m)	VBS G de bleu /100g de matériaux				
	9.90-10.50	3.13				
	14.28-14.92	2.66				
	18.80-19.30	1.16				
SC24B	24.64-25.38	2.80				
	27.45-28.05	2.16				
	30.55-31.54	2.83				
	35.03-35.80	3.30				
	22.14-22.48	2.15				
	27.90-28.20	2.83				
SC24C	32.47-32.80	4.65				
	35.70-35.90	0.86				
	37.25-37.90	2.83				
	12.55-13.00	3.66				
SC24D	13.00-13.37	3.66				
	14.50-14.90	4.11				

Tableau III-12 Résultatsde l'essai au bleu méthylène

III.4.2.2 Paramètres mécaniques

A- Essai de cisaillement à la boite et Essai de compression simple

Les essais de cisaillement consolidé, drainé à la boite de Casagrande et les essais à la compression simple ont donné les caractéristiques insérés dans le tableau III.13:

Tableau III-13 Résultats de l'essai de cisaillement à la boite et l'essai de compression simple

Sondage	Profondeur	Compression simple	Cisaillement à la boite			
	(m)	R _C (KPa)	С' (КРа)	φ ′(°)		
	14.28-14.98	313.68	-	-		
SC24B	18.8-19.30	-	10	21.55		
50240	24.64-25.38	260.67	-	-		
	27.45-28.05	-	7	31.33		
	9.67-10.37	-	11	21		
SC24C	16.10-16.40	-	5	23.25		
	32.47-32.80	-	6	11		
	13.00-13.37	364.47	-	-		
	20.40-20.80	384.31	-	-		
SC24D	23.30-23.80	-	10	27.8		
	24.65-25.00	232.83	-	-		
	34.10-34.50	-	50	23.22		

B- Essais de perméabilité et de compressibilité à l'odomètre

Les caractéristiques de la compressibilité à l'odomètre obtenues sont insérées dans le tableau III.14 :

Sondage	Profondeur (m)	σ'_{V0} (bar)	P _c (bar)	Coefficient de perméabilité K(m/s)	Interprétation des résultats	
SC24B	27.45-28.05	592.14	-	7.10E-09	-	
SC24C	16.10-16.40	5.61	-	1.14E-08	-	
	27.90-28.20	5.87	-	5.86E-07	-	
	32.47-32.80	6.59	-	5.77E-08	-	
	12.55-13.00	2.71	6.2	4.85E-13	Sol sur consolidé	
SC24D	20.40-20.80	4.29	5.5	5.20E-13	Sol sur consolidé	
50212	24.65-25.00	5.11	9.5	2.75E-13	Sol sur consolidé	
	34.10-34.50	6.92	20	4.96E-14	Sol surconsolidé	

Tableau III-14 Résultats de l'essai de compressibilité.

Les résultats des essais mécaniques sont présentés à l'appendice D.

III.4.2.3 Paramètres chimiques

Dans le but de se prononcer sur l'agressivité ou non du sol, une analyse chimique a été réalisée sur trois (03) échantillons de sol extraient du site dont les résultats sont donnés au tableau III.15.

Sondage	Profondeur (m)	Chlorure CL ⁻	Sulfates SO ₄ (mg/kg)	Feret alumine (%)	Insolubles (%)	Perte au feu à 1000 [°] C	Matière organique (%)	PH	Carbonates CaCO ₃ (%)
SC24B	24.64-25.38	0.17	Néant	5	64.80	15.50	2.73	8.9	24.33
SC24C	16.10-16.40	0.16	Traces	7.56	67.65	14.42	-	8.4	18.95
	27.90-28.20	0.17	12628.7	8.97	68.10	12.33	-	8.4	15.03
	35.70-35.90	0.53	Néant	2.41	80.21	8.81	-	8.8	17.62
SC24D	14.50-14.90	0.65	9686.90	6.59	76.18	9.89	-	7.4	10.07
	20.40-20.80	0.38	Traces	7.60	63.41	16.65	-	8.4	24.10
	30.25-30.63	0.82	3019.82	1.47	65.75	16.19	-	8.4	21.85
	38.80-39.00	0.53	Néant	3.62	84.41	6.93	-	8.6	11.83

Tableau III-15 Résultats de l'analyse chimique du sol

Interprétation

- La teneur en carbonates(10% -30%), reflète que les échantillons sont d'argile marneuse ;
- Sol inorganique (teneur en Matière Organique (0%-3%))concernant l'échantillon situé à la profondeur 24.64-25.38 du sondage S24B.
- Les chlorures dépassent le seuil maximal admis pour l'attaque des aciers fixé à 100 ppm.Dans le cas d'implantation d'ouvrages armés au droit de ces sondages et aux profondeurs indiquées, il est nécessaire d'opter pour un béton très compact en adoptant en plus un enrobage suffisant de manière à protéger judicieusement les armatures.
- Le contenu en sulfates du sol, les résultats indiquent que, selon la norme UNE EN 206-1 2006, le sol n'est pas agressif pour le béton, sauf au niveau du sondage SC24D, le résultat se place dans la classe XA2, agressivité modérée (>3000mg/kg et i12000mg/kg) et pour le sondage S24C (12628,7 mg/kg)), le résultat se place dans la classe XA3 agressivité forte (>12 000mg/kg et i24 000mg/kg),
- Les résultats des essais chimiques sont présentés à l'appendice E.

III.5 Paramétrage adopté

Nous avons opté pour un paramétrage basé sur l'exploitation des essais de laboratoire, des essais in-situ ainsi que des corrélations entre les paramètres géotechniques. Les formules ayant servi aux corrélations sont insérées à l'appendice F.

a- Argile sableuse

• Cohésion non drainée C_u

Pour le paramétrage de cette unité, nous avons utilisé les résultats des corrélations des essais PMT du tronçon 9 du Tunnel, parce que les résultats des essais SPT sont refus. Ainsi nous avons obtenu des valeurs de cohésion non drainée (C_u) entre 163 et 204 kPa, environ, avec une valeur caractéristique (selon la méthodologie proposée par Schneider (1997) de 171 kPa, valeurs trop élevée, donc, de façon conservative nous avons adopté la valeur de 85 kPa.

• Module de déformabilité non drainé Eu

Concernant le module de déformabilité non drainé (E_u) , nous avons utilisé les données corrigées des essais pressiométrique. Selon la corrélation de Menard, du tronçon 9 du tunnel, parce que dans le PV3, il n'y a pas de résultats des essais pour l'unité QG, E_u est variable entre 40 et 70 MPa .La valeur caractéristique déterminée selon la méthodologie de Schneider (1997), donc, de façon conservative, nous avons adopté une valeur de (E_u) = 40 kPa.

• Module de déformabilité drainé E'

Sur la base des relations théoriques, David et Poulos (1963) ont établi que les modules de déformabilité non drainé (E_u) et drainé (E') ont la corrélation suivante :

$$E_u = 3 E' / (2 (1 + \nu'))$$

En 1969, Lambe et Whitman ont proposé que, pour un coefficient de Poisson drainé de $\nu' = 0.3$, la corrélation antérieure s'approxime de :

$$E_u = 1.15 \; E'$$

Pour la valeur du module de déformation non drainé 40 MPa, la valeur du module de déformation drainé est estimée à 35 MPa.

Les paramètres φ' et C'

Pour établir les paramètres de résistance drainée, φ' et C', nous avons utilisé les corrélations avec les caractéristiques physiques et les essais de cisaillement à la boite.
Sur la base des corrélations avec le IP, variable entre 23% et 28%, le φ' est situé entre 25° et 23°. Nous avons adopté la valeur caractéristique déterminée selon la méthodologie de Schneider (1997), c'est-à-dire, $\varphi' = 23^\circ$.

Selon les recommandations de Wilun & Starzewski (1975), les valeurs de C' obtenues pour cet horizon est de 15-30 kPa, respectivement. La valeur caractéristique déterminée selon la méthodologie de Schneider (1997), c'est, C'=18 kPa, donc, de façon conservative, nous avons adopté une valeur de C'=25 kPa.

• Perméabilité k

Pour l'étude de la perméabilité, nous avons utilisé les caractéristiques granulométriques des matériaux, et les essais de perméabilité au laboratoire. Ainsi, la perméabilité de cette couche est la suivante : A partir des caractéristiques granulométriques du matériau (Carter et Bentley ,1991) principalement classé comme CL et CH, le coefficient de perméabilité, k, de ces matériaux est variable entre 10⁻⁷ et 10⁻⁸ m/s.

b- Argile limoneuse peu sableuse

• Cohésion non drainée *C*_u

Pour le paramétrage de cette unité, nous avons utilisé les résultats des essais in situ SPT et PMT et les essais de laboratoire RCU, nous avons obtenu des valeurs de cohésion non drainée (C_u) entre 72 et 198 kPa, environ, avec une valeur caractéristique (selon la méthodologie proposée par Schneider (1997) de 105 kPa, mais nous avons adopté une valeur de 100 kPa.

• Module de déformabilité non drainé *Eu*

Pour l'unité QA, les valeurs de PMT (Tableau 11) sont peu représentatives, ainsi nous avons adopté pour l'intervalle 30-40 MPa.

• Module de déformabilité drainé E'

Sur la base de relations théoriques, David et Poulos (1963) ont établi que les modules de déformabilité non drainé (E_u) et drainé (E') ont la corrélation suivante :

$$E_u = 3 E' / (2 (1 + \nu'))$$

En 1969, Lambe et Whitman ont proposé que, pour un coefficient de Poisson drainé de $\nu' = 0.3$, la corrélation antérieure s'approxime de :

$$E_u = 1.15 E'$$

Pour une valeur du module de déformation non drainé entre 30-40 MPa, la valeur du module de déformation drainé est de 26 - 35 MPa.

• Les paramètres φ' et C'

Pour établir les paramètres de résistance drainée, φ' et C', nous avons utilisé les corrélations avec les caractéristiques physiques et les essais de cisaillement à la boite.

Sur la base des corrélations avec le IP, variable entre 12% et 17%, le φ' est situé entre 30° et 28°. Les essais de cisaillement indiquent une valeur de $\varphi' = 21^\circ$. Ainsi, nous avons adopté la valeur caractéristique déterminée selon la méthodologie de Schneider (1997), c'est-à-dire, $\varphi' = 26^\circ$.

L'essai de cisaillement indique une valeur de C' = 21 KPa. Selon les recommandations de Wilun & Starzewski (1975), les valeurs de C' obtenues pour cet horizon est de 30-50 kPa, respectivement. La valeur caractéristique déterminée selon la méthodologie de Schneider (1997) est C' = 30 kPa.

• Perméabilité k

Pour l'étude de la perméabilité, nous avons utilisé les caractéristiques granulométriques des matériaux, et les essais de perméabilité au laboratoire. Ainsi la perméabilité de cette couche est la suivante : A partir des caractéristiques granulométriques du matériau (Carter et Bentley ,1991) principalement classé comme CL, le coefficient de perméabilité, k, de ces matériaux est variable entre 10⁻⁷ et 10⁻⁸ m/s.

c- Sable limono-argileux

• Les paramètres φ' et C'

Sur la base des corrélations avec le IP, variable entre 17% et 21%, le φ' est situé entre 28° et 26°. Les essais de cisaillement indiquent des valeurs de $\varphi'=23^\circ$. Nous avons adopté la valeur caractéristique déterminé selon la méthodologie de Schneider (1997), c'est-à-dire, $\varphi'=24^\circ$.

Les essais de cisaillement indiquent une valeur de C' = 5 KPa. Selon les recommandations de Wilun & Starzewski (1975), les valeurs de C' obtenues pour cet horizon est de 20-30 kPa, respectivement. La valeur caractéristique déterminée selon la méthodologie de Schneider (1997), c'est, C' = 12 kPa, mais nous avons adopté une valeur de C' = 10 kPa, comparativement avec l'outres puits de station.

• Module de déformabilité drainé E'

Concernant le module de déformabilité drainé E' nous avons utilisé les données des essais pressiométriques du tronçon 3, E' est variable entre 25 et 64 MPa, avec une valeur caractéristique (selon la méthodologie statistique proposée pour Schneider) de 42MPa.

• Perméabilité k

Pour l'étude de la perméabilité, nous avons utilisé les caractéristiques granulométriques des matériaux, et les essais de perméabilité au laboratoire. Ainsi la perméabilité de cette couche est la suivante : A partir des caractéristiques granulométriques du matériau (Carter et Bentley ,1991) principalement classé comme CL, le coefficient de perméabilité, k, de ces matériaux est variable entre 10⁻⁷ et 10⁻⁸ m/s.

d- Argile marneuse

• Cohésion non drainée C_u

Pour le paramétrage de cette unité, nous avons utilisé les résultats des essais in situ SPT et PMT les essais de laboratoire RCU, et les essais de cisaillement à la boite nous avons obtenu des valeurs de cohésion non drainée (S_u) entre 81 et 300 kPa, environ, avec une valeur caractéristique (selon la méthodologie proposée par Schneider (1997) de 173 kPa.

• Module de déformabilité non drainé *Eu*

Concernant le module de déformabilité non drainé (E_u) , nous avons utilisé les données corrigées des essais préssiométrique. Selon la corrélation de Menard, E_u est variable entre 51 et 87 MPa .La valeur caractéristique déterminée selon la méthodologie de Schneider (1997) est de 65 kPa.

• Module de déformabilité drainé E'

Sur la base de relations théoriques, David et Poulos (1963) ont établi que les modules de déformabilité non drainé (E_u) et drainé (E') ont la corrélation suivante :

$$E_u = 3 E' / (2 (1 + \nu'))$$

En 1969, Lambe et Whitman ont proposé que, pour un coefficient de Poisson drainé de $\nu' = 0.3$, la corrélation antérieure s'approxime de :

$$E_u = 1.15 E'$$

Pour valeur de module de déformation non drainé 65 MPa, la valeur de module de déformation drainé estimée c'est 57 MPa.

• Les paramètres φ' et C'

Sur la base des corrélations avec le IP, variable entre 11 % et 30%, le φ' est situé entre 30° et 23°. Les essais de cisaillement indiquent des valeurs entre 22° et 31°. La valeur caractéristique déterminée selon la méthodologie de Schneider (1997) est de $\varphi' = 23^\circ$.

Les essais de cisaillement indiquent des valeurs de C' de 6 à 50 KPa. Selon les recommandations de Wilun & Starzewski (1975), les valeurs de C' obtenues pour cet horizon est de 30-50 kPa, respectivement. La valeur caractéristique déterminé selon la méthodologie de Schneider (1997), c'est, C' = 18 kPa, mais nous avons adopté une valeur de C' = 50 kPa, parce que pour les essais de cisaillement à la boite la décompression provoquée par le procès d'échantillonnage, résulte que les sols ont été essayé en conditions plus décompressée et, ainsi, avec une résistance inferieure à son résistance in situ.

• Perméabilité k

Pour l'étude de la perméabilité, nous avons utilisé les caractéristiques granulométriques des matériaux, et les essais de perméabilité au laboratoire. Ainsi la perméabilité de cette couche est la suivante : A partir des caractéristiques granulométriques du matériau (Carter et Bentley ,1991) principalement classé comme CL, MH et CH, lecoefficient de perméabilité, k, de ces matériaux est variable entre les 10^{-7} et 10^{-10} m/s.Selon les essais de laboratoire dans la phasede la campagne complémentaire, présentés dans le chapitre III.5, tableau II1-14, la valeurvarie entre 5,86×10⁻⁷ et 4,96×10⁻¹⁴ m/s, la valeur moyenne est de 9,3×10⁻⁷ m/s.

Le coefficient de perméabilité adoptée pour ces matériaux est 10⁻⁸ m/s.

e- Sable fin à grossier

\blacktriangleright Les paramètres φ' et C'

Pour le paramétrage de cette couche, nous avons utilisé les résultats des essais in situ SPT et nous avons obtenu des valeurs de l'angle de frottement φ' entre 29° et 41°, et une valeur caractéristique (selon la méthodologie statistique proposée pour Schneider (1997) de 32°. Ainsi, nous avons adopté une valeur de $\varphi' = 32°$ et une valeur de C' = 10 kPa.

> Module de déformabilité drainé E'

Concernant le module de déformabilité drainé nous avons utilisé les données corrigées des essais Pressiométrique (SP14 et SP16) du tronçon 3, parce que la valeur pour le SP15 (PV3), n'est

pas représentative. Selon la corrélation de Menard, E' est variable entre 76 et 130 MPa, avec une valeur caractéristique (selon la méthodologie statistique proposée pour Schneider) de 93 MPa.

Perméabilité k

Pour l'étude de la perméabilité, nous avons utilisé les caractéristiques granulométriques des matériaux, et les essais de perméabilité au laboratoire. Ainsi la perméabilité de cette couche est la suivante : A partir des caractéristiques granulométriques du matériau (Carter et Bentley ,1991) principalement classé comme SP, le coefficient de perméabilité. k est variable entre les 10⁻⁴ et 10⁻² m/s. Le coefficient de perméabilité adoptée pour ces matériaux est de 10⁻³m/s.

Les caractéristiques géotechniques introduites dans les calculs sont représentées dans le tableau III.16.

Les couches	Remblai	Argile sableuse	Argile limoneuse peu sableuse	Sable limono- argileux	Argile marneuse	Sable fin à grossier
Z(m)	0 – 1.5	1.5 – 9.75	9.75 - 14.5	14.5 - 18.25	18.25-37.75	37.75-
$\gamma_h \text{ KN/m}^3$	20	19.5	20.6	19.9	20	20.61
γ_d KN/m ³	17	16	17.5	16.5	17	17
γ_{sat} KN/m ³	-	20	20.8	20	21	21
$arphi'(\degree)$	20	23	26	24	23	32
С'(КРа)	10	25	30	10	50	10
E'	10	35	33	42	57	93
k(m/s)	-	10-7	10-7	10-7	10-8	10-3

Tableau III-16Paramètre géotechnique

III.6 Conclusion

L'étude géotechnique effectuée dans le cadre de ce projet nous a permis de déterminer les différentes caractéristiques et paramètres des sols rencontrés. Elle a été basée sur l'exploitation des résultats des investigations effectuées sur terrain (Sondage carottés, les essais pressiométrique et les essais de pénétromètres), accompagnées par un ensemble d'essais d'identification physique, mécanique et chimique réalisés au laboratoire sur des échantillons récupérés des sondages à différents niveaux.

Sur la base de la caractérisation physique et mécanique des sols identifiés à partir des sondages, nous avons classé les différentes formations composant le sous-sol du site de notre projet. Par la suite, nous avons élaboré une représentation adaptée et approximative de la lithologie du site qui servira comme modèle de sol à considérer dans l'étude des soutènements.

En conclusion de cette analyse géotechnique, la lithologie représentative retenue est :

- [0 à 1.5 m] : Remblai ;
- [1.5 à 9.75 m] : Argile-sableuse ;
- [9.75 à 14.5 m] : Argile limoneuse peu sableuse ;
- [14.5 à 18.25 m] : Sable limono-argileux
- [18.25 à 37.7] : Argile marneuse ;
- [37.75 à 50.5] : Sable fin à grossier.

CHAPITRE IV : MODÉLISATION DES SOUTENNEMENTS DU PUITS DE VENTILATION PV03

IV.1 Introduction

A la suite de l'élaboration du modèle du sol, nous avons entamé la phase de modélisation de notre mémoire qui est consacrée à l'étude des soutènements du puits de ventilation PV 3.

Ce chapitre a l'objectif de trouver les types de solutions possibles à notre cas d'étude. Il est basé, d'une part, sur le modèle géotechnique et de l'environnement urbain du site, et d'autre part, sur la géométrie du puits de ventilation 3 [Salle des machines + puits de section rectangulaire]. Pratiquement, deux solutions ont été développées : la paroi moulée et la paroi en pieux sécants. Par soucis économique, visant la limitation de la fiche de l'ouvrage on a utilisé des butons.

Pour le développement des calculs, nous avons utilisé le logiciel Plaxis qui est un programme de calcul d'éléments finis en deux dimensions spécialement conçu pour réaliser des analyses de déformations et de stabilité pour différents types d'ouvrages géotechniques. Pour chaque solution, nous avons calculé les déformations horizontales, verticales et totales, tout en vérifiant la stabilité vis-à-vis du glissement ainsi que la stabilité du fond de fouille.

IV.2 Le logiciel PLAXIS

PLAXIS est le logiciel d'éléments finis de références en géotechnique, conçu pour créer un modèle 2D et pour réaliser des analyses de déformation et de stabilité pour différents ouvrages géotechniques, telles que les parois de soutènement : paroi en pieux et parois moulées.

L'algorithme général du code Plaxis consiste à résoudre un système d'équation algébrique non linéaire selon un processus pour déterminer les valeurs de déplacements aux différents nœuds du maillage, le champ de contraintes et les états de rupture de sol.

L'interface d'utilisation de Plaxis se compose de quatre sous-programmes qui sont:

- 1) Le programme d'entrée de données (Imput) : contient tout ce qui est nécessaire pour créer et modifier un modèle géométrique, pour générer le maillage et les conditions initiales.
- 2) Le programme de calcul (Calculations) : contient tous les éléments pour amorcer un calcul par la méthode des éléments finis.
- Le programme de résultats (Output) : contient tous les éléments qui permettent de voir les résultats des données générées et des calculs d'éléments finis.
- 4) Le programme courbe(Cuves) : contient tout le nécessaire pour générer des courbes, charges, déplacements, des chemins de contraintes et des courbes contraintes-déformations.

IV.3 Caractéristiques géométriques et géotechniques

IV.3.1 Caractéristiques géométriques

La coupe géotechnique

La coupe géotechnique retenue pour le calcul est décrite comme suit :

- [0 à 1.5 m] : Remblai;
- [1.5 à 9.75 m] : Argile-sableuse ;
- [9.75 à 14.5 m] : Argile limoneuse peu sableuse;
- [14.5 à 18.25 m] : Sable limono-argileux
- [18.25 à 37.7] : Argile marneuse ;
- [37.75 à 50.5] : Sable fin à grossier.

La nappe phréatique

La nappe phréatique se situe à une profondeur de 19.50m.

IV.3.2 Caractéristiques géotechniques des matériaux

Les caractéristiques géotechniques de terrain servi pour la modélisation sont regroupés dans le tableau (IV.1) :

Couches de sol	$\frac{\gamma_h}{(kN/m^3)}$	$\frac{\gamma_d}{(kN/m^3)}$	C _{ref} (kN/m ³)	φ (°)	<i>G_{ref}</i> (kN/m ³)	E _{oed} (kN/m ³)	<i>E_{ref}</i> (kN/m ³)	v
Remblai	20	17	0	20	3759,398	1,482.104	1,00 .104	0.33
Argile-sableuse	19.5	16	25	23	1,316.104	5,186 .10 ⁴	3,5.104	0.33
Argile limoneuse peu sableuse	20.6	17.5	30	26	1,241 .104	4,889 .10 ⁴	3,3 .10 ⁴	0.33
Sable limono -argileux	19.9	16.5	10	24	1,579 .10 ⁴	6,223.10 ⁴	4,2.104	0.3
Argile marneuse	20	17	50	23	2,143 .10 4	8,445 .10 ⁴	5,7.104	0.33
Sable	20.61	17	10	32	3,496 .10 ⁴	1,378.105	9.3 .104	0.3

Tableau IV-1: Caractéristiques géotechniques du sol.

 γ_h : Poids volumique humide.

 γ_d : Poids volumique sec.

C_{ref}: Cohésion de référence.

 Φ : L'angle de frottement.

 G_{ref} : Module de cisaillement de référence.

Eoed: Module œdométrique.

E_{ref}: Module d'Young de référence.

v :Coefficient de Poisson.

 R_{inter} : Interface , $R_{inter} = 1$.

IV.3.3 Caractéristiques mécaniques du soutènement

• Caractéristiques des pieux

Le tableau IV.2 donne les caractéristiques des pieux à introduire dans le logiciel PLAXIS2D :

Paramètres	Désignation	Valeur	Unité
Type de comportement	Modèle	Élastique	-
Rigidité normale	EA	1,99 .107	kN/m
Rigidité en flexion	EI	$1,25.10^{6}$	kNm²/m
Epaisseur équivalente	D	0.867	М
Poids	γ	15,10	kN/m ³
Coefficient de Poisson	ν	0,2	-

Tableau IV-2: Caractéristiques des pieux

• Caractéristiques des butons

Le tableau IV.3 donne les caractéristiques des butons à introduire dans le logiciel PLAXIS 2D :

Tableau IV-3: Caractéristiques des butons

Paramètres	Désignation	Valeur	Unité
Type de	Modèle	Elastique	-
Rigidité normale	EA/l	1.106	kN/m
Espacement	Lespacement	9,5	М

• Caractéristiques des parois moulées

Le tableau IV.4 présente les caractéristiques de la paroi moulée modélisée par le logiciel PLAXIS 2D.

Paramètres	Désignation	Valeur	Unité
Type de comportement	Modèle	Elastique	-
Rigidité normale	EA	3,216.107	kN/m
Rigidité en flexion	EI	2,678.106	kNm²/m
Epaisseur équivalente	D	1	М
Poids	γ	15,10	kN/m ³
Coefficient de Poisson	ν	0,2	-

Tableau IV-4: Caractéristiques des parois moulées

• Caractéristiques des dalles

Les tableau IV.5 présente les caractéristiques des dalles (Salle des machines et puits) modélisés par le logiciel PLAXIS 2D.

Tableau IV-5: Caractéristiques des dalles

Dalles	Profondeur	Epaisseur	L	EA	EI
	Z (m)	(m)	(m)	(KN/m)	(KN.m²/m)
Salle des machines	9	2.5	17.5	1,40 .10 ⁹	7,328 .10 ⁸
Puits	27	2.5	14	1.126 .10 ⁹	5,863 .10 ⁸

IV.3.4Considération de la surcharge

La surcharge prise dans les calculs est q = 55.6 kPa, elle correspond à la charge des engins.

IV.4 Modélisation de la salle des machines

IV.4.1 Paroi moulée

Le soutènement des parois de l'excavation est assuré par l'utilisation d'une paroi moulée dont l'épaisseur est de 1m.

✓ Calcul de la fiche D

1) Détermination de la fiche de la paroi moulée sans butons

La fiche de la paroi moulée sans butons est représentée schématiquement dans la figure IV.1

Figure IV.1. Schéma représentant la fiche de la paroi moulée sans butons

La valeur de la fiche enregistrée pour ce cas est de 18m, cette valeur semble importante. Donc pour des raisons économiques, on propose de mettre en place des butons pour réduire la fiche.

2) Détermination de la fiche de la paroi moulée avec butons

La fiche de la paroi moulée avec butons est représentée schématiquement dans la figure IV.2

Figure IV.2. Schéma représentant la fiche de la paroi moulée avec butons

Dans le cas de la paroi moulée sans butons, le déplacement horizontal calculé par le logiciel Plaxis est de 26.87 mm avec un coefficient de sécurité Fs=1.98 et une fiche D=18m. Cependant, dans le cas du même dispositif (paroi moulée) mais avec introduction de butons, le déplacement horizontal calculé est de 20.85 mm avec un coefficient de sécurité Fs=2,29 et une fiche D=4m. D'après ces résultats, on constate que la fiche a considérablement diminué, ce qui nous conduit à développer les calculs détaillés de déformations de la paroi moulée avec butons.

IV.4.2 Paroi moulée avec butons

Le modèle de la structure de la paroi moulée avec butons sous le logiciel PLAXIS est représenté dans la figure IV.3, le maillage correspondant est donné par la figure IV.4.

Figure IV.3. Schéma de la modélisation de la structure sous le logiciel PLAXIS

Figure IV.4. Représentation du maillage obtenu à l'aide du logiciel PLAXIS

General info	
Project Filename : Puits de ventilation (Directory : D:\SALIMA\ Title : Puits de ventilation (General options Model : Plane Strain Elements : 15-Noded
Comments	Mesh Number of elements : 523 Number of nodes : 4418 Number of stress points : 6276 Average element size : 1.84*10 ⁰ m
	OK I

Figure IV.5. Nombres d'éléments et de nœuds

Le maillage du modèle est constitué de 523 éléments, 4418 nœuds, 6276 points de contraintes et la taille moyenne d'élément est égale à 1.84 m. Le calcul s'effectue en déformation plane.

Le premier creusement qui se réalise c'est le creusement de la salle de machines et il se fait en trois phases, nous présentons dans ce qui suit les résultats obtenus pour chaque phase d'excavation.

II.4.2.1 Résultats de déformations pour les différentes phases d'excavation de la salle des machines

• Phase N° 1

L'excavation s'effectue jusqu'à une profondeur égale à 3,5 m. La modélisation est représentée par la figure IV.6.

Figure IV.6. Modélisation de la 1^{ère} phase à l'aide du logiciel PLAXIS

> Déformations

La figure IV.7 représente le schéma déformé de la de la structure (paroi moulée avec butons) donné par le logiciel Plaxis. Le déplacement horizontal maximal enregistré est de 10.33 mm, le déplacement vertical maximal enregistré est de 33.78 mm et le déplacement total maximal enregistré est de 33.78 mm.

Figure IV.7. Résultats des déformations (Phase 1)

La figure IV.8 représente les déplacements horizontaux et les déplacements verticaux de la phase 1 obtenus à l'aide du logiciel Plaxis.

Figure IV.8. Schéma représentant les déplacements horizontaux et verticaux (Phase 1)

• Phase N° 2

L'emplacement de la 1ère ligne de butons se fait à une profondeur de 2,75m et l'excavation s'effectue jusqu'à une profondeur égale à 7.2 m. La modélisation est représentée par la figure IV.9.

Figure IV.9. Modélisation de la 2ème phase à l'aide du logiciel PLAXIS

> Déformations

La figure IV.10 représente le schéma déformé de la structure (paroi moulée avec butons) donné par le logiciel Plaxis, les déplacements enregistrés sont comme suit, les déplacements horizontaux 19.60mm, les déplacements verticaux 46,81 mm et le déplacement total égal à 46,81mm.

Figure IV.10. Résultats des déformations (Phase 2)

La figure IV.11 représente les déplacements horizontaux et les déplacements verticaux de la phase 2 obtenu à l'aide du logiciel Plaxis.

Figure IV.11. Schéma représentant les déplacements horizontaux et verticaux (Phase 2)

• Phase N° 3

L'emplacement de la 2ème ligne de butons se fait à une profondeur de 6,45 m et l'excavation s'effectue jusqu'à une profondeur égale à 9 m. La modélisation est représentée par la figure IV.12

Figure IV.12. Modélisation de la 3éme phase à l'aide du logiciel PLAXIS

> Déformations

La figure IV.13 représente le schéma déformé de la de la structure (pieux avec butons) donné par le logiciel Plaxis. Le déplacement horizontal maximal enregistré est de 20,85 mm, le déplacement vertical maximal enregistré est de 47.62 mm et le déplacement total maximal enregistré est de 47.62 mm.

Figure IV.13. Résultats des déformations (Phase 3)

La figure IV.14 représente les déplacements horizontaux et les déplacements verticaux de la phase 3 obtenu à l'aide du logiciel Plaxis.

Figure IV.14. Schéma représentant les déplacements horizontaux et verticaux (Phase 3)

II.4.2.2 Vérification de la stabilité au glissement

La figure IV.15 donne la valeur du coefficient de sécurité calculé par le logiciel Plaxis.

Le coefficient de sécurité calculé dans la dernière phase par le logiciel Plaxis est de 2,297 Msf = 2,297> 1.5 , donc le glissement est vérifié.

Stop Info					
Step 1110 Step 235	of 235 Extrapolation fac	tor	0.500		
Plastic STEP	Relative stiffness	s	0.000		
Multipliers					
	Incremental	l multipliers	Total mult	ipliers	
Prescribed displacements	Mdisp:	0.000	Σ-Mdisp:	1.000	
Load system A	MloadA:	0.000	Σ-MloadA:	1.000	
Load system B	MloadB:	0.000	Σ-MloadB:	1.000	
Soil weight	Mweight:	0.000	Σ-Mweight:	1.000	
Acceleration	Maccel:	0.000	Σ-Maccel:	0.000	
Strength reduction factor	Msf:	0.000	Σ-Msf:	2.297	
Time	Increment:	0.000	End time:	0.000	
Dynamic time	Increment:	0.000	End time:	0.000	

Figure IV.15. Valeur de coefficient de sécurité Msf

Figure IV.16.Schéma représentant le cercle de glissement

VI.4.3Paroi en pieux avec butons

Le soutènement des parois de l'excavation est assuré par l'utilisation d'une paroi en pieux dont le diamètre de 0.8 m avec un espacement de 1.3m.

Le modèle de la structure de la paroi en pieux avec butons sous le logiciel PLAXIS est représenté dans la figure IV.17, le maillage correspondant est donné par la figure IV.18

Figure IV.17. Schéma de la modélisation de la structure sous le logiciel PLAXIS

Figure IV.18. Représentation du maillage obtenu à l'aide du logiciel PLAXIS

II.4.3.1 Résultats de calcul de déformations pour les différentes phases d'excavation de la salle des machines

Résultats de calcul de déformations pour les différentes phases d'excavation de la salle des machines

• Phase N° 1

L'excavation s'effectue jusqu'à une profondeur égale à 3,5 m. La modélisation est représentée par la figure IV.19

Figure IV.19. Modélisation de la 1ère phase à l'aide du logiciel PLAXIS

> Déformations

La figure IV.20 représente le schéma déformé de la structure (pieux avec butons) donné par le logiciel Plaxis. Le déplacement horizontal maximal enregistré est de 7.71 mm, le déplacement vertical maximal enregistré est de 26,91 mm et le déplacement total maximal enregistré est de 26,91 mm.

Figure IV.20. Résultats des déformations (Phase 1)

La figure IV.21 représente les déplacements horizontaux et les déplacements verticaux de la phase 1 obtenu à l'aide du logiciel Plaxis.

Figure IV.21. Schéma représentant les déplacements horizontaux et verticaux (Phase 1)

• Phase N° 2

L'emplacement de la 1ère ligne de butons se fait à une profondeur de 2,75 m et l'excavation s'effectue jusqu'à une profondeur égale de 7,2 m. La modélisation est représentée par la figure IV.22.

Figure IV.22. Modélisation de la 2^{ème} phase à l'aide du logiciel PLAXIS

> Déformations

La figure IV.23 représente le schéma déformé de la structure (pieux avec butons) donné par le logiciel Plaxis. Le déplacement horizontal maximal enregistré est de 17.91 mm, le déplacement vertical maximal enregistré est de 40,48 mm et le déplacement total maximal enregistré est de 40,48 mm.

Figure IV.23. Résultats des déformations (Phase 2)

La figure IV.24 représente les déplacements horizontaux et les déplacements verticaux de la phase 2 obtenu à l'aide du logiciel Plaxis.

Figure IV.24. Schéma représentant les déplacements horizontaux et verticaux (Phase 2)

• Phase N° 3

L'emplacement de la 2ème ligne de butons se fait à une profondeur de 6,45m et l'excavation s'effectue jusqu'à une profondeur égale à 9 m. La modélisation est représentée par la figure IV.25.

Figure IV.25. Modélisation de la 3^{ème}phase à l'aide du logiciel PLAXIS

> Déformations

La figure IV.26 représente le schéma déformé de la structure (pieux avec butons) donné par le logiciel Plaxis. Le déplacement horizontal maximal enregistré est de 20.39 mm, le déplacement vertical maximal enregistré est de 47.66 mm et le déplacement total maximal enregistré est de 47.66 mm.

Figure IV.26. Résultats des déformations (Phase 3)

La figure IV.27 représente les déplacements horizontauxet les déplacements verticaux de la phase 1 obtenu à l'aide du logiciel Plaxis.

IV.4.3.2 Vérification de la stabilité au glissement

La figure IV.28 donne la valeur du coefficient de sécurité calculé par le logiciel Plaxis.

Le coefficient de sécurité calculé dans la dernière phase par le logiciel Plaxis est de 2,256 Msf = 2,256> 1.5, donc le glissement est vérifié.

ulation information				-	
Additional Info Step Info	1				
Step Info					
Step 128 of 128	Extrapolation factor		1.000		
Plastic STEP	Relative stiffness		0.000		
Multipliers					
	Incremental multip	liers	Total multipliers		
Prescribed displacements	Mdisp:	0.000	Σ-Mdisp:	1.000	
Load system A	MloadA:	0.000	Σ-MloadA:	1.000	
Load system B	MloadB:	0.000	Σ-MloadB:	1.000	
Soil weight	Mweight:	0.000	Σ-Mweight:	1.000	
Acceleration	Maccel:	0.000	Σ-Maccel:	0.000	
Strength reduction factor	Msf:	0.010	Σ-Msf:	2.256	
Time	Increment:	0.000	End time:	0.000	
Dynamic time	Increment:	0.000	End time:	0.000	
				Print	<u>O</u> K

Figure IV.28. Valeur du coefficient de sécurité Msf

Figure 0IV.29. Schéma représentant le cercle de glissement

IV.5 Modélisation du puits de ventilation

> Détermination de la fiche de la paroi en pieux avec butons

La fiche de la paroi en pieux avec butons est représentée schématiquement dans la figure IV.30

Figure IV.30.Schéma représentant la fiche de la paroi en pieux

> Interprétation

Dans la modélisation du puits de ventilation, la valeur de la fiche enregistrée dans le cas du dispositif (paroi en pieux) avec introduction des butons est de 11m. Cependant, le déplacement horizontal calculé est de 30.84 mm avec un coefficient de sécurité Fs= 2.20. D'après ces résultats, on constate que la fiche est raisonnable, ce qui nous conduit à développer les calculs détaillés de déformations de la paroi en pieux avec butons.

> Modélisation de la paroi en pieux avec butons

Le soutènement des parois de l'excavation est assuré par l'utilisation de pieux et des butons. Nous avons pris une paroi de pieux de 1m avec un espacement de 1.3m

Le modèle de la structure de la paroi en pieux avec butons sous le logiciel PLAXIS est représenté dans la figure IV.31, le maillage correspondant est donné par la figure IV.32.

Figure IV.31. Schéma de la modélisation de la structure sous le logiciel PLAXIS

Figure IV.32. Maillage de la paroi en pieux avec butons sous PLAXIS

Elements : 15-Noded	
Mesh Number of elements : Number of nodes : Number of stress points : Average element size :	1243 10497 14916 1.18*10 ⁰ m
	Mesh Number of elements : Number of nodes : Number of stress points : Average element size :

Figure IV.33. Nombres d'éléments et de nœuds

Le maillage du modèle est constitué de 1243 éléments, 10497 nœuds, 14916 points de contraintes et la taille moyenne d'élément est égale à 1,18 m. Le calcul s'effectue en déformation plane.

Le creusement de la partie de puits de ventilation se fait en cinq (5) phases d'excavations, nous présentons dans ce qui suit les résultats obtenus pour chaque phase d'excavation.

IV.5.1.1 Résultats de calcul de déformations pour les différentes phases d'excavation du puits de ventilation

• Phase N° 1

L'excavation s'effectue jusqu'à une profondeur égale à 5,44 m. La modélisation est représentée par la figure IV.34

Figure IV.34. Modélisation de la 1ère phase à l'aide logiciel PLAXIS

- Déformations

La figure IV.35 représente le schéma déformé de la structure(pieux avec butons) donné par le logiciel Plaxis, les déplacements enregistrés sont comme suit, les déplacements horizontaux 14.71mm, les déplacements verticaux 30.19 mm et le déplacement total égal à 30.19 mm.

Figure IV.35. Résultats des déformations (Phase 1)

La figure IV.36 représente le déplacement maximal horizontal de la phase 1 obtenu à l'aide du logiciel Plaxis.

• Phase N° 2

L'emplacement de la 1ère ligne de butons se fait à une profondeur de 4,69 m et l'excavation s'effectue jusqu'à une profondeur égale de 11.44m. La modélisation est représentée par la figure s'effectue jusqu'à une profondeur égale de 11.44m. La modélisation est représentée par la figure IV.37

Figure IV.37. Modélisation de la 2^{ème}phase à l'aide du logiciel PLAXIS

- Déformations

La figure IV.38 représente le schéma déformé de la structure (pieux avec butons) donné par le logiciel Plaxis, les déplacements enregistrés sont comme suit, les déplacements horizontaux 13.35 mm, les déplacements verticaux 34.55mm et le déplacement total égal à 34.55mm.

Figure IV.38. Résultats des déformations (Phase 2)

La figure IV.39représente le déplacement maximal horizontal de la phase 2 obtenu à l'aide du logiciel Plaxis.

98 Université de Blida 1\ Faculté de technologie\ Département de Génie civil\ Master géotechnique.

• Phase N° 3

L'emplacement de la 2ème ligne de butons se fait à une profondeur 10,69 m et l'excavation s'effectue jusqu'à une profondeur égale à 17,94 m. La modélisation est représentée par la figure IV.40.

Figure IV.40. Modélisation de la 3^{ème}phase à l'aide logiciel PLAXIS

- Déformations

La figure IV.41 représente le schéma déformé de la structure (pieux avec butons) donné par le logiciel Plaxis, les déplacements enregistrés sont comme suit, les déplacements horizontaux 18.89mm, les déplacements verticaux 45.08 mm et le déplacement total égal à 45.08 mm.

Figure IV.41. Résultats des déformations (Phase 3)

La figure IV.42 représente le déplacement maximal horizontal de la phase 3 obtenu à l'aide du logiciel Plaxis.

• Phase N° 4

L'emplacement de la 3ème ligne de butons se fait à une profondeur de 17,19 m et l'excavation s'effectue jusqu'à une profondeur égale à 22,47 m. La modélisation est représentée par la figure IV.43.

Figure IV.43. Modélisation de la 4^{ème}phase à l'aide logiciel PLAXIS

- Déformations

La figure IV.43 représente le schéma déformé de la structure (pieux avec butons) donné par le logiciel Plaxis, les déplacements enregistrés sont comme suit, les déplacements horizontaux 27.06mm, les déplacements verticaux 60.60mm et le déplacement total égal à 60.60 mm.

Figure IV.44. Résultats des déformations (Phase 4)

La figure IV.45 représente le déplacement maximal horizontal de la phase 4 obtenu à l'aide du logiciel Plaxis.

• Phase N° 5

L'emplacement de la 4éme ligne de butons se fait à une profondeur de 22.47m et l'excavation s'effectue jusqu'à une profondeur égale de 27m. La modélisation est représentée par la figure IV.46.

Figure IV.46. Modélisation de la 5èmephase à l'aide du logiciel PLAXIS

- Déformations

La figure IV.47 représente le schéma déformé de la structure (pieux avecbutons) donné par le logiciel Plaxis, les déplacements enregistrés sont comme suit, les déplacements horizontaux 30.84 mm, les déplacements verticaux 68.74mm et le déplacement total égal à 68.74mm.

Figure IV.47.Résultats des déformations (Phase 5)

La figure IV.48 représente le déplacement maximal horizontal de la phase 5 obtenu à l'aide du logiciel Plaxis.

• Phase N° 6

Activation de la dalle. La modélisation est représentée par la figure IV.49

Figure IV.49. Modélisation de la 5èmephase à l'aide du logiciel PLAXIS

- Déformations

La figure IV.50 représente le schéma déformé de la structure (pieux avecbutons) donné par le logiciel Plaxis, les déplacements enregistrés sont comme suit,les déplacements horizontaux 30.84 mm, les déplacements verticaux 68.75mmet le déplacement total égal à 68.75mm.

Figure IV.50. Résultats des déformations (Phase 6)

La figure IV.51représente le déplacement maximal horizontal de la phase 5 obtenu à l'aide du logiciel Plaxis.

Les résultats de la modélisation(déplacement total et vertical) sont insérés dans Appendice G :

IV.5.1.2 Vérification de la stabilité au glissement

La figure IV.52 donne la valeur du coefficient de sécurité calculé par le logiciel Plaxis.

Le coefficient de sécurité calculé dans la dernière phase par le logiciel Plaxis est de 2,183 Msf = 2,18> 1.5, donc le glissement est vérifié.

Step Info	Extrapolation facto		2.000		
Plastic STEP	Relative stiffness	,	0.000		
Multipliers					
nurupiiers	Incremental m	nultipliers	Total multi	pliers	
Prescribed displacements	Mdisp:	0.000	Σ-Mdisp:	1.000	
Load system A	MloadA:	0.000	Σ-MloadA:	1.000	
Load system B	MloadB:	0.000	Σ-MloadB:	1.000	
Soil weight	Mweight:	0.000	Σ-Mweight:	1.000	
Acceleration	Maccel:	0.000	Σ-Maccel:	0.000	
Strength reduction factor	Msf:	0.000	Σ-Msf:	2.183	
Time	Increment:	0.000	End time:	0.000	
Dynamic time	Increment:	0.000	End time:	0.000	

Figure IV.52Valeur de coefficient de sécurité Msf

Figure IV.53Schéma représentant le cercle de glissement

IV.6Vérification de déformations

Les déformations horizontales au niveau des différentes couches (argiles et sables) sont vérifiées lorsque le rapport de déformation donné par la formule IV.1 satisfait les deux conditions IV.2 et IV.3.

Le rapport de déformation au niveau de chaque excavation est donné par la formule suivante

$$Rapportdedéformation(\%) = \frac{Déformationhorizontale}{Profendeurdvexcavation}$$
(IV-1)

• Pour les sols granulaires

$$0,2\% < Rapport \ de \ deformation < 0,3\%$$
 (0-2)

• Pour l'argile raide

 $0,1\% < Rapport \ de \ def \ ormation < 0,3\% \ (0-3)$

IV.6.1 Vérification de déformations de la salle des machines

IV.6.1.2 Paroi moulée avec butons de la salle des machines

Le tableau IV.6 restitue l'ensemble des déformations calculées avec le logiciel.

Tableau IV-6: Les déformations maximales de la paroi moulée avec butons de la salle des
machines

Phases	Profondeurs (m)	Déformations Horizontales (mm)	Déformations Verticales (mm)	Déformations Totales (mm)	Rapport de déformation (%)
1	3,5	10.33	33.78	33.78	0.295
2	7.2	19.60	46.81	46.81	0.272
3	9	20.85	47.62	47.62	0.231

IV.6.1.1 Paroi en pieux avec butons de la salle des machines

Le tableau IV.5 restitue l'ensemble des déformations calculées par le logiciel.

	Profondeurs	Déformations	Déformations Varticales	Déformations	Rapport de
Phases	(m)	(mm)	(mm)	(mm)	(%)
1	3,5	7.71	26.91	26.91	0.220
2	7.2	17.91	40.48	40.48	0.247
3	9	20.39	47.66	47.66	0.226

Tableau IV-7: Les déformations maximales de la paroi en pieux avec buton.	s de la s	salle des
machines		

IV.6.2 Vérification de déformations du puits de ventilation

IV.6.2.1Paroi en pieux avec butons du puits de ventilation

Le tableau IV.7 restitue l'ensemble des déformations calculées par le logiciel.

Tableau IV.7: Les déformations maximales de la paroi en pieux avec butons du puit de ventilation

	Profondeurs	Déformations	Déformations	Déformations	Rapport de
Phases	(m)	Horizontales (mm)	Verticales (mm)	Totales (mm)	déformation (%)
1	5.44	14.71	30.19	30.19	0.270
2	11.44	15.35	34.55	34.55	0.134
3	17.94	18.89	45.08	45.08	0.105
4	22.47	27.06	60.60	60.60	0.120
5	27	30.84	68.74	68.74	0.114
6	27	30.84	68.75	68.75	0.114

Tableau IV-8: Les déformations maximales de la paroi en pieux avec butons du puits deventilation

IV.7 Vérification du soulèvement du fond de fouille

Dans les sols cohésifs les excavations profondes sont sujettes à des ruptures de soulèvement de la base résultant d'un effort excessif du sol en cisaillement. Le facteur de sécurité vis-à-vis du soulèvement de la base τ_u , est:

$$F_{sb} = \frac{N_b \tau_u}{\sigma_V}$$
(IV.4)

Avec :

Nb: facteur de stabilité dépendant de la géométrie de l'excavation donné dans la figureIV.54

 τ_u : Résistance au cisaillement non drainée du sol sous le niveau de base.

Figure IV.54.Facteur de stabilité dépendant de la géométrie de l'excavation [8]

IV.7.1 Vérification du soulèvement du fond de fouille de la salle de machine

Le terrain présent à la base de la fouille est un limon très plastique avec une résistance au cisaillement moyenne : $\tau_u = 52.49$ KN

 $H=9m,\,B=27$ m, L=35 m, $\tau_u=52.49$ KN, $\sigma_v=175.5$ KN/m^3

Nb = 6.64

Donc :
$$F_{sb} = \frac{52.49 \times 6.64}{175.5} = 1,98 < 2$$
 vérifié

Donc il n'ya pas de risque de soulèvement du fond de fouille.

IV.7.2 Vérification du soulèvement du fond de fouille du puits

Le terrain présent à la base de la fouille est un limon très plastique avec une résistance au cisaillement moyenne : τ_u =74.71 KN

 $H=27m,\,B=14~m,\,L$ =16m, $\tau_u=74.71~KN~$, $\sigma_v=567~KN/m$

Nb = 8.14

Donc :
$$F_{sb} = \frac{74.71 \times 8.14}{567} = 1.07 < 2$$
 vérifié

Donc il n'ya pas de risque de soulèvement du fond de fouille.

IV.8Conclusion

Dans ce chapitre, nous avons étudié deux variantes de soutènement provisoire pour l'exécution du puits de ventilation 03 qui sont : paroi moulée sans et avec butons et aussi paroi en pieux avec butons, et on a présenté les résultats de cette étude.

Pour la salle des machines, la solution de la paroi moulée a donné une fiche importante: D=18m :

Dans l'objectif de réduire la longueur de cette fiche, nous avons introduit des butons entre les parois à des profondeurs arrêtées, ce qui nous a permis de réduire efficacement la longueur d'ancrage de la fiche : D=4m

A la suite des calculs effectués et la comparaison des résultats avec les seuils tolérés de déformations, nous retenons que les deux variantes de soutènement présentent des déformations horizontales inférieurs au seuil de déformation admissible. De même, la stabilité vis-à-vis du glissement et du soulèvement de fond de fouille ont été vérifiés.

CONCLUSION GÉNÉRALE

Dans le cadre de notre travail, nous avons développé l'étude des soutènements des excavations du puits de ventilation PV3 de l'extension du métro d'Alger entre El Harrach et l'Aéroport international Houari Boumediene.

Le travail a été scindé en deux phases, une première phase théorique dans laquelle une revue de littérature a été consacrée aux sujets des excavations à ciel ouvert, des procédés de soutènement ainsi que l'exposé des principales méthodes de calcul de ces écrans de soutènement.

Concernant la partie pratique, nous retenons ce qui suit :

Le modèle du sol retenu présente la lithologie suivante :

- [0 à 1.5 m] : Remblai ;
- [1.5 à 9.75 m] : Argile-sableuse ;
- [9.75 à 14.5 m] : Argile limoneuse peu sableuse ;
- [14.5 à 18.25 m] : Sable limono-argileux
- [18.25 à 37.7] : Argile marneuse ;
- [37.75 à 50.5] : Sable fin à grossier.

Les solutions proposées et étudiées sont de deux types :

- Paroi moulée avec (et sans) butons ;
- Paroi en pieux sécants avecbutons.

L'utilité des butons réside dans la diminution significative et économique de la longueur d'ancrage de la fiche des écrans de soutènement.

Les déformations résultantes de la modélisation et calculs sont inférieures aux seuils tolérés.

La stabilité vis-à-vis du glissement et la stabilité du fond de fouille ont été vérifiés.

A la fin, nous soulignons l'intérêt de cet exercice pratique que nous avons réalisé et de ses intérêts pour notre formation et fonction future entant qu'ingénieurs.

Durant ce travail, nous avons amélioré nos connaissances en géotechnique et nous avons atteint plusieurs conclusions importantes :

D'abord, la synthèse bibliographique nous a permis de reconnaitre qu'il existe plusieurs méthodes d'excavation et de soutènement qui varient d'une construction à l'autre selon leur domaine d'utilisation et suivant de nombreux facteurs tel que la nature géotechnique des terrains traversés, la géométrie et l'emplacement de l'ouvrage (profondeur, site...). En prenant comptes ces divers facteurs pour choisir une meilleure technique.

Ensuite, l'exploitation des résultats de la reconnaissance géotechnique effectuée, nous a permis de déterminer les différents caractéristiques et paramètres des formations constituant le sol du site étudié, à l'issue d'établir un modèle lithologique des formations identifiées.

La phase de modélisation et de calculs a été de même d'intérêt précieux puisque nous avons réussi à s'initier dans l'utilisation des outils de la modélisation (Plaxis) et de développer des calculs de déformations horizontales, verticales et totales des deux types de soutènements adopté (paroi moulée avec buttons et paroi en pieux avec buttons), ainsi que la stabilité vis-à-vis du glissement et la stabilité du fond de fouilles.

APPENDICES

Appendice A: Logs de sondages carottés

AppendiceB : Résultats des essais pressiométriques

Appendice C : Résultats des essais physiques

AppendiceD : Résultats des essais mécaniques

AppendiceE : Résultats des essais chimiques

AppendiceF : Corrélations des paramètres géotechniques

Appendice G : Résultats de la modélisation

Appendice A: Logs de sondages carottés

Sondage carotté SC24B

	C	051	d	C	2	2	1	TT .		کو	R 54	APPO	SC 24-B	RAGE	
	Projet	: METRO D'A	LGER	TRO	DINCO	ON EL I	HAR	RACH	E AI	ROPORT		Desai	er IP : COSIDER M28		
	Durie del	aut : 00-10-0015	8	10	carte	rniles (28S)	-23	60	ue de forag	EAU CLAIRE	Etat des é	Etat des échantilions		
	Professi Frankrak	ear fame (in)	1	8.7	ŝ.				Ty Fo	pe forepe : revee : 54/	CARDITE	Intact 2022	Familie	Parafine Roche	
-	AND R	a diaw (m) : 19,20 Z. E2223 LCS 1													
Echelle (m)	El évetion (m Protorideur (Ricupinaton	8PT ().2 + IS	001	Tubace	Cantrier	Cite	Profession Inchantice	Newson deer	Symbole	DESCR	aption		E SSAIS DE LABORATOIRE	
u .					Ĩ						Rentolai ili	aspet ts flex	an.		
10 -	-4.00		80	2		392	×	101		1000					
н.			-	S.		- 57	H	1.6		7.47 2073	Arglia imoreuse peu aat br	bleuse callo unatre	obuse marron à		
40	4.10		-	8		- 107	K	4.65		25	Sable Indoeux peu ara				
15	-151		-		+12	- 97	ų	1.11		547	Farrait Sable proster	A brunstre	COATE		
90	478	10 40	24			827	Ż			<i>44</i>	Sable argileux linione	ux merion (claire à foncé		
105	870	8.4	3			- 27	3	EH folle folle			Argie impresse sabie serre	iuser annoc tr à branatre	nace de marre		
120	-11.00		- 28	9		BPT CA	X	11.0 11.0				0.0900 20030 c		1	
155		28%	47			397	ž	13.8		1717	lileme avec per de sabi de consiste	e graate a	de		
110	11.00	25	-80	21	×	-	ð	12-0	¥	1000	Galet à ma	trice argies	se		
	18,80		50	8		-194	6	18		212					
180 -			27	ŝ.		547	8	14.00 14.00 74.00		100	Argle Imoneuse asbleus	e avectrac	a de graviers de		
195			34	j.		57	×	18.8			COLAR UT ITMET	en carro a 1	unde		
210.	-21.00		24	8		57	8	20 M 20 M			Sable argileux intorieux (pravialeux br	runatre è marron		
25.	-2.80 2550		50	ŝ		397	4	ILH ILH		E.	,	onoè			
24.0		-	60			डन	4	ья jtfi		E.	Sable peu argileux linee	esix peù gra	weleux branatre		
25.5	-215 2150						10	28.88		F.C.	Fin du foisge à une profor	deur de 41 m			
RE8 1927	LARQUI Portes Tres me	EB : ISPT #50 coupe-laip Light la demains lactu	endress An finan	n anti-	ntensu In and	rit-Corr NJ					PVPE CAROTTIER P Center fino) To 100-3 part mos Too-3 partier P Too sentier	ADREVIA AS ANNA B Decrem Content N Note of Primero	IONS : astructure Dis antre TR Nationg/AL/P, Ra Fille Dis contexture Dr.	Calenamento estivaria Calenamento estivaria Sobolección de conjuntación Calena estatutativos Calenamento filmo	
Pito	in an in	BINCINAM		-	-			10	the party	-		AC: AND H	otinggota e	Rage: 1 or 2	

	C	osi	d	C	2)	2	I may	una l	habi	كۋ	R	APPO ndage :	RT DE FO SC 24-B	DRAGE	
	Projet	LI METRO D'A	LGER	TRO	DINCO	IN EL	HAR	RACH	EA	EROPORT	þ(Dose	ier Mili La colonia Ma		
	Date for Date for Profess	itut : 03-12-2010 07-12-2010 suut fontile (m) : d'eaeu (m) : 16.2	41	D X Y N	oorde	nnées C	346		Bo Ty Po	ue de forag pe forage : reuse : 51/	e : EAU CLAIME CAROTTE 80	Etal das échantiliers Iraci Renaria Pasaffiné Rocie			
Echelle (m)	Elevation (m) Protondeur (m)	Récupération	8PT (701+N2)	CICEL	Tubop	Cardiar	Eter	Profession Editorition	Mirroru d'aut	Symboles	DESCR	SPTION		E SSAIS DE LABORATORE	
27.2 .	-3.9	B.C.	41			141		23,99 07,00 27,88 23,09	Contraction of the second		Argle Increase sable many	une evec t in tancé	nace de marne		
ma .	28.80	W.C.	80			জ্ব জ্ব	Ž	21.95 30.00 36.48 21.49	Contraction Contraction		Sable Imeneux peu	argieux m	arree fonce		
ns .	-22.00 12.00 -22.00	**	80			627 527		11.M	100000		Sable moyen interneux p marron for	niveleux ar cituit bruna	ec trace d'argle tra		
ы.	-8.8	18.5	80			601		14.30 14.86 建設	10000		Argle mensuse peu line brunebe	rieuse ave à verdatio	c trace de xable		
F.A .	-27,88 -27,88 -57,50	85	-00			LPT		26.46 27.30	000000		Sable Intoneux arg consistan	leux nami ce compac	e foncé de le		
81. 41.		84	80			197	Ž	19:00 28:45	10000		Sable Imoneux argileux i foncé à brunatre de	consistant	de marte mercon se compaide	ŝ	
	41.00							+030	1	27.089	Pin du forage à une profon	deur de 41 m			
a															
45.															
as . au .															
10.												Laure			
REA - 194	ARQU Roat in	ES : 1977 Sec cuipi la j 1 est la certeira lect	ane no	nen i	-	100) 9					TYPE CAROFTIER: CV Carobertenia TH: Tute & perimitive PS: Tute & perimitive PS: Tute & perimitie C4:: Tute certifie	ABREVIA AB Analysis B Bechan C United C M Research AC Analysis	novsi : perventreja : C oriene : M Robecon, M Hillo : C sereja : A sereja : A	Casterentrolige Casterentrolige Casterentrolige Mandatos & Consum Casterentrol Casterentrol Casterentrol Casterentrol	
Prepart par: Wr 85NDIAMAN								Ve	the p	e:			09122015	Page: 1 de 1	

Sondage carotté SC24C

-										an arriver		-			
	Projet	E BEAU LIEU	LGER	TRO	enco	MELI	IAR	RACH	AE	REPORT		Client	HER Nº : LI COSIDER M28		
	Date de	but : 14-07-201	8	04	i antio	noles G	999	6	-	iue de fotag	. EAU CLAIRE	Etat des é	ichantilions	and and	
	Parlond	aur foreis (m)	51	1					Fa	pe forage : reuse : SM	so so	E State	Tenane S	anafine Rochs	
_	Teresta	u deeu (m) : 1640 Z									<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				
Echelle (m)	El évalon (m Protondeur (Récupération	SPT IN +N	2	Tubace	Calottier	5te	Profession Schurtstee	Niveau deau	Symbole	DESCI	RIPTION		E SSAIS DE LABORATOIRE	
	200	шке			~		4	19		X	R	enbiai]	0 1	
•	180		-			57	1	1.H 1.H		00000					
• -			- 00			397	8	101		0000					
5 -		- 53	80			BPT .	H	4.91 4.91		0000	Conglomérat poutingue	broyê saus	forme de calloux	8	
0			-			-07	¥	8.00 9.44		00000					
	-130		-14			197	4	184 7.84		2000				-	
•		- 24	18			191	4	201			Argle kroneuse pra-	eleuse sab	euse brunatie		
u.	-11.85		28			-	Ż	10E		Z.C.				-	
10.			32			- 21	ų	42.00		Æ,	Argie Inoneuse sable	e linoneuse sableuse avec trace de gravier			
п.	-4.00		-19		-	28. 527	4	撞		12		Unione.			
10	16.00		_			307	Q	-						0	
55.			-			107	22	43			Sable Intoneux grave couleur bruns	leux anec tri tre à marror	ace d'argie de n claire		
50.							2	12.00		-74			170920-0		
18.	1950		41			341	2		H-	27				0	
10.		80.9				-	2	1938 278		20	Argie imoneuse sabi brunatre i	euse avec t marron for	nace de marrie Icé		
14	-0.00		22			197	Ť	17.88 22.54		41			38		
1	-新始 2020	115	- 50			198	2	113		2000	Conglomérat à ma	ritrice anglieu	INC TRITES	3	
A.,		-11	2			- 197	1	41.00 94.00			Sable Intotax arg	leux de cila	bur marron		
	8.55				-W.		11			ALS- 21	Fin du forage à une profo	ndeur de 5t n	L.		
RE) - 57	ARGU Rome	EB : (647 8450 couce in)			100	140m 0					TYPE CAROTTIER: 17 Centler fano 14 Tupe Long Interna- 15 Tupe Long Interna-	ASPECIAL ASI ANNO 5 Sectors 10 December 10	nons: osvorenda os orana 14. Antesto A.	California Congre California Talia Accesso à la congress Des congressiones	

F	hajet edro	: METRO OV	LGER	TRO	MCC	NI EL	HAR	ACH	AE	TROPORT		Doars	ier Nº : ti COSIDER	1428			
	Date object: 14-07-0016 Coostonneles GPS: Boue Date object: 19-07-0016 X Type Pastondeur foreix (m): 51 Y Farm Nivess d'eau (m): 10-07 Z Farm										Source de forage EAU CLAIRE Dat des échantilions : Types forage : CAROTTE Intact Remainé Fureuse : SMSS Intact Remainé						
In creater on	Matterdeur (m)	Ricupinator	COL INT + LOS	RCD	Tubase	Carolier	Diet	P 6004060F	Wreau deau	Symboles	DESC	aption		E SSAIS DE LABORATOIRE			
	L L		4		1	527	X	28.00	-	7.77	Sable intoeux arol	eux de cou	eur narron				
0	27.00		31			- 527	¥	17.05 17.40									
			22		-	197	8	118 118		1£	Argie intoneuse aubleu couleur rouges	en avec tra tre à marro	ce de gravier n fancé	de			
1	80,00 30,00		44		N	397		20 H		E.				-			
-			-44		8	127	4	11.H 12.W		1£	Sable Improvements	lass res -	recorder to marke				
		16	8		2	ca.	8	14.0 任用 15.4				claire.	articles, and				
+	8.00 3-50		30		3	397	g	14.00 24.00		E.							
-			21		3	-	8	11		E	Sable Interveux avec	trace darg	de de couleur	2			
		- 16-	44		2	- 527	8	8.8 17.6			Tait	se claire					
-	3.8 20.95		Z.		2000	57	K	14-2 16-2		7 <u>7</u> 7							
-			च		3	ङा	×	10.00		GP.							
-			e		ŝ	- 127	×	40		911	in Anna ann						
-		-	ज		CONVOUS CONVOLUCIÓN	য়া	×	40.00 42.00			Sable à grain fit à may marr	en peu inio an claire	neux de coule	wr.			
0			27		22	197	×	4.0		SP.							
-			8		ŝ	397	×	4.2		313							
0	600		-80		0000	397	×	10.00		A	Grés luniachelique coo	ullier broye	saus forme	de			
-	41.51	8	-80		×.	JPT .	×	49.8		22	Bable fill à moyen	Renew In	arras claire				
-	n.m 5.00									23622	Fin du forage à une profor	deur de 31 a	6.				
691J 697	ARQUE Pour les	EB : 547 al60 coupe la 1 est la senara ac	2016	2.440.P	Arteur Arteur	n der 19	2				TYPE CAROTTIER P Center Inni Tun Space once Tun Space once	ADREALA AS ANUA I Sector II Sector	TIONS : Igenvonercue Isanéve Maneregin, Pi	DB Destroyed opposite 1% Destroyed Table 5. Response Frank 260 Base Internet			

Sondage carotté SC24D

_		_	_	_			-	-		-	~	kininger i on	24+0			
	Projet	E NETRO D'A	LGER	TRO	DIVICO	ON EL I	AR	RACH	E AI	EROPORT		Client:	M" : COSIDER M28			
	Done-dé Data fin	but : 31-07-2018 : 08-38-2018	8	0 1	perte	nnées G	1992:	- 9	iio Ty	ue de fotag pe forape :	A EAU CLAIRE	Etar des écho Intect	Fammia	Paralitina Rocha		
1	Perford Novella	eur fordie (m) - 5 d'eau (m) - 19,5	0	ž	2		_	_	R	reuse : St	96		\boxtimes			
E chelle (m)	Elévation (m) Protondeur (m)	Ricupination	SPT (N2 + 1/2)	001	Tubade	Cantier	the	P 600e064F 6cbiardi be	réreau deau	Symboles	DESCR	UPTION		E SSAIS DE LABORATOIRE		
	201		1		ſ		0			28	Renti	ai excevé				
	180	77						141 1.8		77	Argile linoneuse peu	praveleuse na	erree tonoë			
	3.80	10	- 50			1947	Ŵ	2.41		7.72	Argle Indresse per	increuse peu sableuse merron foncé				
	450	15	38	E 13 arr 4:0 0 0 0 0 0 0 Galeta à matrice arginance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
	4.80		- 60		ŀ	ADT	ž	提		191	Argie imoreuse po	su praveleuse	brunatre			
2.4	7.80		51 55 80		+	997 397 397		144 138 143 144 143 144 143 143			Galet à notrice sable-a congamérats	rgileuse avec Brayé par enc	presence de roit			
a.	100	- 116-	वा छ		No.6	897 28 897		120			liların atgleuse şrainab	e de consiste	nce compede			
0	-9.E	- 114	14		\$	- 91	77	16.8		あた	Sable argin	se calbriere		<i>11</i>		
5.	-8.50	-	2		ŝ	327	8	14.00 14.00		10:20	Bable grossier avec pa	ssage te prés	s broyé saus			
0.	18.20		50		3	507	*	11.0		0.00	Sable grossier callo	neux brunatre	å sairatre			
5.	-4.5	-11	বা		22	397	#	18.81 18.88 20.41	44	C.A	Argie Increase ;	peu sabieure	-			
0-	2.00		35		ŝ	1PT	8	竹田 11.4		27				0		
5.		-16-	34		202	397	#	11.00 11.00 13.00		27	Lines argieuse peu s	ableuse de co	uleur sharton			
0			3		8	- 191	3	11.00 12.00		22		are				
	-8.85 3.55				3	-	11	-		141	Fin du forage il une profon	deur de 50 m.		-		
10 10 10	IARQUI Porte	EB : 697 also coupe la p		- 440	Herev Harrison	n Alem Age			-		INPE CAROTTIER P Centre lens TH TUDI Space enco TH TUDI Space enco TH TUDI Space enco TH TUDI Space	ABREVIATIO AS ANUBLINE E Descention V. Tessente	NS: Nontroje Dis No 19 Nontroje Ka No 240	Destruction Chains Chains and Chains Responses to converse Date instanting of		

Proje	IT: NETRO D/	ALGER	TRONC	ON EL 1	HAR	RACH		EROPORT	So	ndage : SC 24 - D Downler M : Client : COSIDER M28			
Date d Date f Profes Nines	Haus: 35-07-2011 In : 05-08-2017 Ideur Forsia (m) a d'anu (m) : 197	5 50 50	Coordi X : Y Z :	onsiles G	195:			ue de foraç pe foraçe reuse : SA	W : EAU CLAIRE CAROTTE ISS	Etat de échantiliene : Intact Rememi PenetTiné Roche			
Echelle (m)	Récupination	SPT (N1 + P.C)	Tubach	Cantiler	Cta	Profession Inchardice	réveau deau	Symboles	DESCR	IPTION	E SSAIS DE LABORATOIRE		
10 10 10 10 10 10 10 10 10 10 10 10 10 1			10-00-00 00 00-00-00 00 01-00-00-00-00-00-00-00-00-00-00-00-00-0	10 10 10 10 10 10 10 10 10 10 10 10 10 1		11 10 10000 11 10 10 10000 11 10 10 10 1			Argie imeneuse sableus bette camuteux over broyé saus forme Argie intoneuse sable tin Sable argieux i Sable argieux i Sable argieux i	e colloctouse maaran daire presense de congomérat de colloux par endroit use avec trace de marre moneux rougeatre en avec trace de gravier de n claire à brunatre			
20 400 400 10 400 10 400 10 40 10 40 10 10 10 10 10 10 10 10 10 1	JEB : M SPT ASX 75000 in man with the destruction acc werking (1) 80-75000 in man with the destruction acc	34 32 32 31 30 30 30 30 30 30 30 30 30 30 30 30 30							Sable fin ä moyet knone ä bi Pin du forage å ere profor TYPE CAROTTIEN Of Dentier fino 11 Toe soate mo 12 Toe soate mo 12 Toe soate mo 12 Toe soate	ux de couleur marrais claire unaitre deur de 10 m. Admissionnomenue op 8. Deimenuetre 19. 1. Demenuetre 19. 2. Deimenuetre 19. 2. Deimenuetre 19. 2. Deimenuetre 19. 2. Deimenuetre 19. 2. The currouet 19. Su	Desinents scharte Desinente Faste Rectantes for scharte Sectores for scharte Sectores for schartes Sectores fo		

Appendice B : Résultats des essais pressiométriques

Appendice C : Résultats des essais physiques

Résultats des essais de densité sèche et humide / Teneurs en eau

Sondage carotté SC24B

III- Résultats des essais :

Teneur en eau des matériaux NF P 94-050 NA 5210

and the second	- Professional Annual Annua	
Code échantillon	Profondeur (m)	Teneur en eau (%)
and the second s	SC 24 B	
2015-5\$-372	9.90 - 10.50	20.57
2015-55-373	14.28 - 14.92	20.76
2015-55-374	18.80 - 19.30	17.04
2015-SS-375	24.64 - 25.38	20.55
2015-55-376	27.45 - 28.05	19.89
2015-\$5-377	30,55 - 31.54	15.97
2015-55-378	35.03 - 35.80	23,55
	SC 26	
2015-SS-379	14.32 - 14.74	25.99
2015-55-380	18.90 - 19.50	22.40
2015-SS-381	26.00 - 26.25	22.94
	SC 33	
2015-55-382	17.53 - 18.00	21.11
2015-55-383	18.60 - 19.00	25.32
2015-55-384	20.25 - 20,68	19.77
2015-55-385	23.40 - 24.00	23.93
2015-55-386	25.11 - 25.50	17.06
	SC 97	
2015-SS-387	12.65 - 13.16	23.89
2015-SS-388	15.88 - 16.50	25.58
2015-SS-389	18.80 - 19.50	21.55
2015-SS-390	23.00 - 23.34	19.68
	SC 98	
2015-SS-392	17.50 - 17.85	23.53
2015-SS-394	20.73-21.00	11.89
2015-SS-396	27.64 - 28.08	17.33

Détermination de la masse volumique des sols Méthode de l'immersion dans l'eau NF P 94-053 NA 5210

		and the second s	
Code échantillon	Pröfondeur (m)	Masse volumique Humide	Masse volumique Seche (g/cm ³)
-			
	· · · · · · · · · · · · · · · · · · ·	SC 24 B	1 721
2015-55-372	9.90 - 10.50	2,075	1 745
2015-55-373	14.28 - 14.92	2.10/	1 759
2015-SS-374	18,80 - 19.30	2.0/1	1.762
2015-55-375	24,64 - 25.38	2,100	1.742
2015-SS-376	27.45 - 28.05	2.111	1.700
2015-55-377	30.55 - 31.54	2.144	1 695
2015-55-378	35,03 - 35.80	2.022	1,050
		SC 26	
2015-55-379	14.32 - 14.74	2.097	1.665
2015-55-380	18.90 - 19.50	2.097	1,713
2015-55-381	26.00 - 26.25	1,986	1.616
		SC 33	
2015 \$5,287	17.53 - 18.00	2.085	1.720
2015-35-302	18.60 - 19.00	1.987	1.585
2013-33-307	20.25 - 20.68	2.020	1.690
2015-55-504	23.40 - 24.00	2.060	1,662
2015-55-565	25.11-25.50	2.120	1.810
2010-00-009		SC 97	
2045 65 207	12 65 - 13 16	2.081	1.680
2015-55-567	15.88 - 16.50	2.031	1.620
2015-55-588	19.00 - 19.50	2.090	1,720
2015-55-389	23.00 - 23.34	2.190	1.830
2015-55-390	23,00 - 23,34	SC 98	
2015 65 202	17 50 - 17 85	2.043	1.654
2015-55-392	20 73 - 21 00	2.206	1.971
2015-55-394	20,75-22,00	2.125	1.811
2015-SS-396	27.04 - 20.00		

Code Ásbantillon	Profondeur (m)	Masse volumique (g/cm ³)
Code echantation	SC 24 B	
2015-55-372	9.90 - 10.50	2.725
2015-55-373	14.28 - 14.92	2.681
2015-55-374	18.80 - 19.30	2.620
2015-55-375	24.64-25.38	2.687
2015-55-376	27.45 - 28.05	2.697
2015-55-377	30.55 - 31.54	2.665
2015-55-378	35.03 - 35.80	2.653
LOIG GO GIO	SC 26	
2015 55-379	14.32 - 14.74	2.575
2015-55-380	18.90 - 19.50	2.630
2015-55-381	26.00 - 26.25	2,583
2010-00-004	SC 33	and the second se
2015-55-382	17.53-18.00	2.770
2015-55-383	18.60 - 19.00	2.700
2015-55-384	20.25 - 20.68	2.710
2015-55-385	23.40 - 24.00	2.740
2015-55-386	25.11 - 25.50	2.700
	SC 97	
2015-55-387	12.65-13.16	2.610
2015-55-388	15.88 - 16.50	2.660
2015-55-389	18.80 - 19.50	2.700
2015-55-390	23.00 - 23.34	2.605
	SC 98	
2015-55-392	17.50 - 17.85	2,569
2015-55-394	20.73 - 21.00	2.573
2015-55-396	27.64 - 28.08	2.643

Détermination de la masse volumique des particules solides des sols Méthode du pycnomètre à eau NF P 94-054

Sondage carotté SC24C

Teneur en eau des matériaux NF P 94-050

	NA 5210	
Codes échantillons	Profondeur (m)	Teneur en eau (%)
	Sondage SC 24 C	
2016-SS-224	09.67-10.37	17.48
2016-SS-225	12.92-13.20	14.90
2016-SS-226	16.10-16.40	20.51
2016-SS-227	20.58-20.80	23.90
2016-SS-228	22.14-22.48	20.31
2016-55-229	27.90-28.20	12.67
2016-SS-230	32.47-32.80	19.56
2016-SS-231	35.70-35.90	17.52
2016-SS-232	37.25-37.90	16.88
2016-SS-233	41.50-42.50	22.58

		NA 5210	
Codes échantillons	Profondeur (m)	Masse volumique humide	Masse volumique sèche
		(g/cm3)	(g/cm3)
	S	ondage SC 24 C	
2016-SS-224	09.67-10.37	2.081	1.766
2016-SS-225	12.92-13.20	2.062	1.795
2016-SS-226	16.10-16.40	1.990	1.651
2016-SS-227	20.58-20.80	2.014	1.625
2016-SS-228	22.14-22.48	2.025	1.683
2016-SS-229	27.90-28.20	2.085	1.851
2016-SS-230	32.47-32.80	2.012	1.683

Détermination de la masse volumique des sols Méthode de l'immersion dans l'eau

Détermination de la masse volumique des particules solides des sols Méthode du pycnomètre à eau

NF P 94-054

Code échantillon	Profondeur (m)	Masse volumique (g/cm ³)
	Sondage SC 24	4 C
2016-SS-224	09.67-10.37	2.650
2016-SS-225	12.92-13.20	2.606
2016-SS-226	16.10-16.40	2.560
2016-SS-227	20.58-20.80	2.600
2016-SS-228	22.14-22.48	2.617
2016-55-229	27.90-28.20	2.560
2016-SS-230	32.47-32.80	2.476
2016-SS-231	35.70-35.90	2.618
2016-SS-232	37.25-37.90	2.621
2016-SS-233	41.50-42.50	2.710

Sondage carotté SC24D
Teneur en eau des matériaux NF P 94-050

Code échantillon	Profondeur (m)	Teneur en eau (%)
	SC 24D	
2016-SS-235	06.50 - 06.80 m	22.167
2016-SS-236	07.10 – 07.50 m	19.487
2016-SS-238	12.55 – 13.00 m	14.800
2016-SS-239	13.00 – 13.37 m	19.640
2016-SS-240	14.50 – 14.90 m	21.688
2016-SS-244	20.40 - 20.80 m	20.600
2016-SS-245	23.30 - 23.80 m	20.460
2016-SS-246	24.65 - 25.00 m	19.420
2016-SS-247	30.25 - 30.63 m	25.934
2016-SS-248	34.10 - 34.50 m	22.504
2016-SS-249	38.80 - 39.00 m	18.750
2016-SS-250	44.60 - 44.90 m	20.977

Détermination de la masse volumique des sols Méthode de l'immersion dans l'eau NA 5210

Code échantillon	Profondeur (m)	Masse volumique Humide (g/cm ³)	Masse volumique Sèche (g/cm ³)
		SC 24D	
2016-SS-235	06.50 - 06.80 m	1.995	1.633
2016-SS-236	07.10 - 07.50 m	1.906	1.595
2016-SS-238	12.55 - 13.00 m	2.091	1.821
2016-SS-239	13.00 - 13.37 m	2.075	1.734
2016-SS-240	14.50 - 14.90 m	1.999	1.642
2016-SS-244	20.40 - 20.80 m	2.064	1.711
2016-SS-245	23.30 - 23.80 m	2.075	1.722
2016-SS-246	24.65 - 25.00 m	2.045	1.712
2016-SS-247	30.25 - 30.63 m	1.985	1.576
2016-SS-248	34.10 - 34.50 m	2.025	1.653
2016-SS-249	38.80 - 39.00 m	Non mesurable	Non mesurable
2016-SS-250	44.60 - 44.90 m	Non mesurable	Non mesurable

Détermination de la masse volumique des particules solides des sols Méthode du pycnomètre à eau NF P 94-054

Code échantillon	Profondeur (m)	Masse volumique Humide (g/cm ³)
	SC 24D	
2016-SS-235	06.50 – 06.80 m	2.522
2016-SS-236	07.10 - 07.50 m	2.526
2016-SS-238	12.55 – 13.00 m	2.589
2016-SS-239	13.00 – 13.37 m	2.600
2016-SS-240	14.50 – 14.90 m	2.605
2016-SS-244	20.40 – 20.80 m	2.572
2016-SS-245	23.30 - 23.80 m	2.543
2016-SS-246	24.65 – 25.00 m	2.579
2016-SS-247	30.25 – 30.63 m	2.584
2016-SS-248	34.10 - 34.50 m	2.550
2016-SS-249	38.80 – 39.00 m	2.629
2016-SS-250	44.60 - 44.90 m	2.648

Résultats de l'analyse granulométriqueSondage carotté SC24B

Analyse granulométrique NF P 94-056 et NF P 94-057 NA 5232 et NA 5251

Code échantillon	Profondeur (m)	< 0.08 mm (%)	Argile (%)	Limon (%)	Sable (%)	Grave (%)
		SC 24	В			
2015 \$5.372	9.90 ~ 10.50	80.87	28	39	32	01
2015-55-373	14.28 - 14.92	74.68	18	43	34	05
2015-55-374	18.80 - 19.30	80.16	19	50	30	. 01
2015-55-375	24.64-25.38	97.18	16	66	18	Q
2015-55-376	27.45 - 28.05	77.69	12	51	. 37	0
2015-55-377	30.55 - 31.54	70.36	35	28	29	08
2015-55-378	35.03 - 35.80	98.18	70	18	12	0
2010 00 070	(1) A statement of the statement of t	SC 2	6			
2015-55-379	14 32 - 14.74	97.03	34	51	15	0
2015-55-380	18 90 - 19.50	68.57	14	39	47	0
2015-55-500	26.00 - 26.25	31.96	06	20	59	15
2010-30-004		SC 3	33			
2015 55 292	17 53 - 18.00	92.46	38	48	12	2
2013-35-302	18.60 - 19.00	100	43	52	05	0
2015-55-585	20.25 - 20.68	97,97	37	46	16	1
2015-55-504	23.40 - 24.00	97,36	37	58	04	1
2015-55-386	25.11-25.50	93.85	54	35	09	2
2013-32-300		SC 9	97	and the second second		
2015 65 207	1265-1316	100	50	46	04	0
2015-55-567	15 99 - 16 50	100	45	48	07	0
2015-55-588	18.80 - 19.50	100	50	45	05	0
2015-55-389	23.00-23.34	73.65	38	28	31	3
2015-55-590	23.09 23.34	SC	98			
2045 55 202	17.50 - 17.05	08.91	54	38	08	0.
2015-55-392	17.50 - 17.65	52.43	16	25	37	22
2015-55-394	20.75-21.00	89.46	36	39	18	07
2015-55-396	27.04 - 28.08	09,40				

Sondage carotté SC24C

Analyse granulométrique NF P 94-056 et NF P 94-057 NA 5232 et NA 5251

Code échantillon	Profondeur (m)	< 0.08 mm	Argile (%)	Limon (%)	Sable (%)	Grave(%)
		(%)				
		Sondage S	C 24 C			
2016-SS-224	09.67-10.37	86.33			06	04
2016-SS-225	12.92-13.20	85.90	H	-	14	00
2016-SS-226	16.10-16.40	82.60	÷.	-	17	01
2016-SS-227	20.58-20.80	93.49	Ξ.		06	00
2016-SS-228	22.14-22.48	68.49			26	01
2016-SS-229	27.90-28.20	61.19	-	-	30	03
2016-SS-230	32.47-32.80	97.60	-	-	03	00
2016-SS-231	35.70-35.90	11.80		-	86	01
2016-SS-232	37.25-37.90	39.90		-	50	03
2016-SS-233	41.50-42.50	2.20	-	-	96	01

Sondage carotté SC24D

Analyse granulométrique NA 5232 et NA 5251

Code échantillon	Profondeur (m)	< 0.08 mm (%)	Argile (%)	Limon(%)	Sable(%)	Grave(%)
		SC 24D				
2016-SS-235	06.50 - 06.80 m	96.51	9	6	2	2
2016-SS-236	07.10 - 07.50 m	90.51	9	0	8	2
2016-SS-237	SPT 09.00 m	17.97	1	.8	20	62
2016-SS-238	12.55 - 13.00 m	96.60	9	6	4	0
2016-SS-239	13.00 - 13.37 m	84.91	8	4	16	0
2016-SS-240	14.50 - 14.90 m	81.83	8	2	18	0
2016-SS-241	SPT 15.00 m	58.44	42		18	24
2016-55-242	SPT 16.50 m	45.41	45		22	33
2016-SS-243	SPT 19.50 m	87.07	8	6	8	6
2016-SS-244	20.40 - 20.80 m	78.64	7	8	22	0
2016-SS-245	23.30 - 23.80 m	94.54	9	4	6	0
2016-SS-246	24.65 - 25.00 m	61.30	59		39	2
2016-SS-247	30.25 - 30.63 m	80.60	80		20	0
2016-SS-248	34.10 - 34.50 m	97.94	98		2	0
2016-SS-249	38.80 - 39.00 m	17.39	16		83	1
2016-SS-250	44.60 - 44.90 m	05.91		4	94	2

Sondage carotté SC24B

Limites d'Atterberg NFP 94-051 et NFP 94-052-1 NA 16213

· · · · · · · · · · · · · · · · · · ·		104 (04)	14/ (9/)	1. (96)
Code échantillon	Profondeur (m)	W _L (%)	VVp (70)	10(10)
		SC 24 B		10.70
2015-55-372	9.90 - 10.50	33.7	16.91	16.79
2015-SS-373	14.28-14.92	35.5	19.35	16.15
2015-SS-374	18.80 - 19.30	36.3	25.22	11.08
2015-55-375	24.64 - 25.38	37.8	22.69	15.11
2015-55-376	27,45 - 28.05	33,2	19.97	13.23
2015-55-377	30.55 - 31.54	36.6	23.01	13.59
2015-55-378	35.03 - 35.80	64.6	36.24	28.36
2013-35-370		SC 26		
2015-55-279	14 37 - 14 74	38.9	22.08	16.82
2015-55-379	18.90 - 19.50	34.3	23.67	10.63
2015-55-381	26.00 - 26.25	32.5	20.24	12.26
2013-33-301	20.00 20129	SC 33		
2015 55 297	1753-1800	45.90	30.78	15.12
2015-55-502	19.60-19.00	45.50	27.23	18.27
2015-55-505	20.25 - 20.68	43.50	28.09	15.41
2015-55-564	22.25 - 20.00	47.20	28.47	18.73
2015-55-385	25,40 - 24,00	48.80	21.66	28.14
2015-55-380	23,11-23,30	SC 97		
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	1 12 05 12 16	51.90	34.32	17.37
2015-55-387	12.65 - 13.10	55.60	29.77	25.23
2015-55-388	15.88 - 10.50	46.80	26.63	20.17
2015-55-389	18.80 - 19.50	40.00	20.00	14.16
2015-55-390	23.00 - 25.34	50.50	46187	
	1. 12. 14 June - 14	50.98	27.79	25,12
2015-SS-392	17.50 - 17.85	52.9	15.61	19.49
2015-SS-394	20.73 - 21.00	35.1	15.01	24.18
2015-SS-396	27,64 - 28.08	48.5	24.32	24.10

Sondage carotté SC24C

Limites d'Atterberg NF P 94-051 et NF P 94-052-1 NA 16213

Code échantillon	Profondeur (m)	W _L (%)	W _P (%)	l» (%)
	So	ondage SC 24 C		2010-1
2016-SS-224	09.67 - 10.37	38.7	23.08	15.62
2016-SS-225	12.92 - 13.20	39.5	22.55	16.95
2016-SS-226	16.10 - 16.40	47.9	26.86	21.04
2016-SS-227	20.58 - 20.80	35	19.69	15.31
2016-SS-228	22.14 - 22.48	31.4	20.62	10.78
2016-SS-229	27.90 - 28.20	38.7	20.43	18.27
2016-SS-230	32.47 - 32.80	58.9	29.22	29.68

Sondage carotté SC24D

Limites d'Atterberg NF P 94-051 et NF P 94-052-1 NA 16213

Code échantillon	Profondeur (m)	W _L (%)	W _P (%)	I _P (%)	
		SC 24D			
2016-SS-235	06.50 - 06.80 m	54.20	26.18	28.02	
2016-SS-236	07.10 - 07.50 m	46.50	24.32	22.18	
2016-SS-237	SPT 09.00 m		Non mesurable		
2016-SS-238	12.55 – 13.00 m	35.40	18.47	16.94	
2016-SS-239	13.00 – 13.37 m	30.90	19.02	11.88	
2016-SS-240	14.50 – 14.90 m	31.70	18.54	13.16	
2016-SS-241	SPT 15.00 m	Non mesurable			
2016-SS-242	SPT 16.50 m		Non mesurable		
2016-SS-243	SPT 19.50 m		Non mesurable		
2016-SS-244	20.40 - 20.80 m	35.20	20.36	14.84	
2016-SS-245	23.30 - 23.80 m	34.00	14.26	15.62	
2016-SS-246	24.65 - 25.00 m	30.60	16.95	13.65	
2016-SS-247	30.25 - 30.63 m	34.60	19.43	15.17	
2016-SS-248	34.10 - 34.50 m	54.00	26.37	27.63	
2016-SS-249	38.80 - 39.00 m		Non mesurable		
2016-SS-250	44.60 - 44.90 m	Non mesurable			

Résultats essais de bleu VBS

Sondage carotté SC24B

PROCES VERBAL DE L'ANALYSE CHIMIQUE

Client : Département Géotechnique, Labo GR Commande N°080/G /2018 Date de la commande : 12/01/ 2016 N° Dossier : PV/NC 010/2016 Date de L'Essai : 14/01/2016 Essais Demandés : VBs

Tableau1 : Résultat de l'essai au bleu :

référence	Désignation	Teneur en Eau	VBs (g bleu /100 g de matériau sec)
Norme u	tillsée	NA 528	8 Relatif à NFP 94-068
2015_SS_372	Sol	0.0 %	3.13
2015_SS_373	Sol	0.0 %	2.66
2015_SS_374	Sol	17.04 %	1.16

Client : Département Géotechnique, Labo GR Commande N°082/G /2016 Date de la commande : 13/01/ 2016 N° Dossier : PV/NC 012/2016 Date de L'Essai : 14/01/2016 Essais Demandés : VBs+ACC

Tableau1 : Résultat de l'essai au bleu :

référence	Désignation	Teneur en Eau	VBs (g bleu /100 g de matériau sec)
Norme u	tilisée	NA 528	8 Relatif à NFP 94-068
2015_SS_375	Sol	20.55 %	2.80
2015_SS_376	Sol	19.89 %	2.16
2015_SS_377	Sol	15.97 %	2.83
2015_SS_378	Sol	0.0 %	3.30

Sondage carotté SC24C

PROCES VERBAL DE L'ANALYSE CHIMIQUE

Client : Département Géotechnique, Labo GR Demande N°061 /G /2016 Date de la demande : 30/ 08/ 2016

N° Dossier : PV/NC 142/2016 Date de L'Essai : 30/08/2016 Essais Demandés : Vbs et ACS

Tableau 01 : Résultat de l'essai au bleu :

référence	Désignation	Granulométrie	Teneur en Eau	VBs (g bleu /100 g de matériau sec)						
Norme u	tilisée		NFP 94	-068						
2016_SS_228				2.15						
2016_SS_229	SOL								1	2.83
2016_SS_230	Sondage Sc 24 C	0 %	0%	4.65						
2016_SS_231					0.89					
2016_SS_232				2.83						

Sondage carotté SC24D

Client : Département Géotechnique, Labo GR Demande N°061 /G /2016 Date de la demande : 30/ 08/ 2016 N° Dossier : PV/NC 143/2016 Date de L'Essai : 30/08/2016 Essais Demandés : Vbs et ACS

Tableau 01 : Résultat de l'essai au bleu :

référence	Désignation	Granulométrie	Teneur en Eau	VBs (g bleu /100 g de matériau sec)	
Norme utilisée		NFP 94-068			
2016_SS_238				3.66	
2016 SS 239		0 %	0 %	3.66	
2016 SS 240	Sol Sondage			4.11	
2016 SS 241	SC 24D			2.66	
2016_SS_242				2.46	

Interprétation des Résultats :

Selon la norme NFP11300 Seuils retenus :

- 1,5 : seuil distinguant les sols sablo-limoneux des sols sablo-argileux.
- 2,5 : seuil distinguant les sols limoneux peu plastiques des sols limoneux de plasticité moyenne

Appendice D : Résultats des essais mécaniques

Essai de chargement àl'ædomètre

Sondage carotté SC24C

Essai œdométrique Partie 1 : Essai de compressibilité sur matériaux fins quasi saturés avec chargement par paliers XP P94-090-1

Code	e échantillon					2	016-55-22	16	Contraction of the local	
Sondage	Profondeur	ei	e ₀	e ₀ σ' _{ν0} σ' _ρ	Cc	Cc Cs	Coef de consolidation		Coef de perméabilité	
	1			(KPa)	(KPa)			Øv (MPa)	Cv (m ² /s)	K (m/s)
								0.490-0.979	3.05E-08	1.65E-09
SC 24C	16.10 - 16.40	0.6746	0.6468	-	-		×	0.979 - 1.958	2.14E-08	9.36E-10
	the Party Name and Address			1.958 - 3.916	1.51E-08	4.34E-10				
Code	échantillon					2	016-55-22	9		
Sondage	Profondeur	e,	e, e _o σ' _{v0} σ' _p	Cc	Cc Cs	Coef de consolidation		Coef de perméabilité		
	(m)	(m) (KPa) (KPa)			Ov (MPa)	Cv (m ³ /s)	K (m/s)			
								0.882-1.764	4.17E-07	1.688-08
5C 24C	27.90 - 28.20	0.5651	0.5148	- ×				1.764-3.528	1.24E-07	2.91E-19
				-				3.528-7.056	6.76E-08	7.73E-10
Code	échantillon	COME REPORT AND			Accession to	2	016-55-23	0		
Sondage	Profondeur	e,	e _o	σ'νο	σ' _p	Cc	Cs	Coef consolid	de lation	Coef de perméabilité
	(11)			(KPa)	(KPa)	Pa)		Or (MPa)	Cv (m ² /s)	K (m/s)
								0.990 - 1.980	3.53E-08	1.04E-09
SC 24C	32.47 - 32.80	0.6117	0.5762	- X - 1		÷ .	-	1.980-3.960	2.42E-08	4.78E-10
								3.960-7.919	1.70E-08	2.13E-10

Essai decisaillement à la boite (essais CD)

Sondage carotté SC24C

Essai de Cisaillement rectiligne à la boite

	Cisailleme	ent direct						
Sondage SC 24 C								
Code échantillon	Profondeur (m)	φ(°)	C' (KPa)					
2016-SS-224	09.67 - 10.37	21	11					
2016-SS-226	16.10 - 16.40	23.25	5					
2016-SS-230	32.47 - 32.80	11	6					

Sondage carotté SC24D

Essai de Cisaillement à la boite NF P94-071-1

Code échantillon	Profondeur (m)	φ(°)	C' (KPa)		
	SC	24D	*		
2016-SS-235 06.50 - 06.80 m Echantillon Friable impossible à tailler					
2016-SS-238	12.55 - 13.00 m	la carotte est fissurée longitudinalement			
2016-SS-245	23.30 - 23.80 m	27.80	10.00		
2016-SS-248 34.10 - 34.50 m		23.22 50.00			
2016-SS-250	44.60 - 44.90 m	Echantillon Non mesurable (sable)			

Essai de résistance à la compression

Sondage carotté SC24D

Essai de résistance à la compression uniaxiale NF P 94-077

Code échantillon	Profondeur (m)	Rc (Kpa)
	SC 24D	
2016-SS-236	07.10 - 07.50 m	Carotte fissurée et friable
2016-SS-239	13.00 – 13.37 m	364,475
2016-SS-244	23.30 - 23.80 m	384,313
2016-SS-246	24.65 – 25.00 m	232,835

Essai de perméabilité

Sondage carotté SC24D

Essai Perméabilité

NF P 94-090-1 Méthode d'Essai-LCPC

A THE CARD IN A REAL PROPERTY.			σ'νο	σ',	Cc	Cs	Coef	de lation	Coef de perméabilité												
	e,	e0	(KPa)	(KPa)		100	Ov (MPa)	Cv (m ² /s)	K (m/s)												
2016-SS-238							0.408 - 0.815	1,59E-11	7,93E-13												
	0.4507	0 4272	271.83	620			0.815 - 1,631	1,42E-11	4,59E-13												
	0.4307	0.4272	212.00		1		1,631 - 3,262	8,31E-12	2,02E-13												
ALCONOMIC COLO	2000	- Kathle	d '20	σ',,	Ca	Ce	Coef	de lation	Coef de perméabilité												
	e,	e ₀	(KPa)	(KPa)	cc	63	(Ty (MPa)	Cy (m ² /s)	K (m/s)												
2016-SS-244							0 644 - 1 288	2.54E-11	9,94E-13												
	0.0445	0 4543	420 212	EEO			1 288 - 2 576	1.48E-11	3,95E-13												
	0.5115	0.4512	429.312	330	55	15.1	2 576 - 5 152	9.83E-12	1,70E-13												
A STATE OF THE OWNER	States and the		CONTRACTOR OF	And the second s	1 4,070 0,000	Contraction of the local division of the loc	Confide														
			a' -	a'.	17.22	ic Cs	Coet	de	coer de												
	e,	e ₀	(KPa)	(KPa)	Cc		consoli	Gation	V le ki												
2010 00 246			turat	1/22			Ov (MPa)	Cv (m /s)	E COE.12												
2010-55-240				950			0,767-1,534	7,035,13	1 746-13												
	0.5593	0.4847	511.25				1,534 - 3,067	7,03E-14	8 ADE-14												
														-				No. of Concession, Name	and the second	3,067 - 6,135	3,070-12
			σ' _{v0}	σ',	Cc	Cs	Coef	de dation	Coef de perméabilit												
	C,	e0 ((KPa)	(KPa)	10.355-91	10021	Ov (MPa)	Cy (m²/s)	K (m/s)												
2016-SS-247	-		-				0,912 - 1,824	4,73E-11	1,87E-12												
	0.6488	0.5839	608.01	480	1.00	1.00	1,824 - 3,648	2,29E-11	6,748-13												
	0.0466	0.5055	000.01	400			3,648 - 7,296	9,63E-12	1,63E-13												
	Contraction of the		σ ¹ _{v0}	σ' _P	CC	Cs	Coe	f de idation	Coef de perméabilit												
	e,	e0	(KPa)	(KPa)			Ov (MPa)	Cv (m²/s)	K (m/s)												
2016-55-248	-				-		1.048 - 2.096	2,87E-12	4,41E-14												
	0 5 6 9 1	0.5440	697 625	2000	1.00		2,096 - 4,191	1,99E-12	4,07E-14												
	0.5081	0.3440	032.025	2000	1.1	- 63	4,191-8,383	1,15E-12	1,44E-14												
2016-55-249			A Carlotter	N	on mes	urable	(sable)														

Appendice E : Résultats des essais chimiques

Sondage carotté SC24B

Tableau2: Résultat des essais chimiques

Référence	Désignation	% chlorures	% Gypses	SO4 (mg/Kg)	% fer et alumines	% insolubles
Norme utilisée		Méthode de Mohr	NF ISC	11048	Méthode LCPC	NA 5042
2015-SS-375	SOL	0.17	Néant		5.00	64.80

Référence	Désignation	% Perte au Feu	% Matière Organique	РН	% CeCO3	
Norme utilisée		NA 5042	NA 16209 NF-P94-047	ISO 10390	NFP 94-048	
2015-SS-375	SOL	15.50	2.73	8.90	24.33	

Tableau 3: Interprétation des Résultats :

Selon la norme XP P 94-011 (Août 1999). Les sols analysés sont classée comme suit :

1	Valeurs	Classification
Teneur en matières organique(%)	3 10	Faiblement organique
Teneur en carbonate (%)	10 - 30	Faiblement marneux
РН	> 7	Non agressive

Sondage carotté SC24C

Référence	Désignation	% chlorures	% Gypses	% SO4	%SO4 (mg/Kg)	% fer et alumines
Norme ut	ilisée	Méthode de Mohr	Mé	thode d'es	sai	Méthode d'essai
2016_SS_226	SOL	0.164	Traces		7.56	
2016_SS_229	SOL	0.17	2.63	1.26	12628.7	8.97
2016_SS_231	SOL	0.53		Néant		2.41

Tableau2 : Résultat des Essais chimiques :

Référence	Désignation	% Perte au Feu	РН	% CaCO3	% Insolubles
Norme uti	lisée	NA 5042	ISO 10390	NFP 94-048	NA 5042
2016_SS_226	SOL	14.42	8.4	18.95	67.65
2016_SS_229	SOL	12.33	8.4	15.03	68.10
2016_SS_231	SOL	8.81	8.8	17.62	80.21

Tableau 3: Interprétation des Résultats :

Selon la norme XP P 94-011 (Août 1999). Les sols analysés sont classée comme suit :

1	Valeurs	Classification
Teneur en carbonate (%)	10 - 30	Faiblement marneux

РН	> 7	Non agressive

Sondage carotté SC24D

Tableau2 : Résultat des	Essais chimiques :
Tableduz Tresdinar des	Sol Sondage SC 24D

Référence	Stérence Désignation % chlorures % Gypses		% SO4	%SO4 (mg/Kg)	% fer et alumine	
Normout	ilicáo	Méthode de Mohr	Mé	thode d'es	sai	Méthode d'essai
Norme ut	001	0.65	1.74	0.97	9686.9	6.59
2016_55_240	SOL	0.00	Traces			7.60
2016_SS_244	SOL	0.30	0.54	0.20	2019 82	1.47
2016_SS_247	SOL	0.82	0.54	0.30	3013.02	2.62
2016 SS 249	SOL	0.53		Néant		3.02

Désignation	% Perte au Feu	РН	% CaCO3	% Insolubles
lisée	NA 5042	ISO 10390	NFP 94-048	NA 5042
SOL	9.89	7.4	10.07	76.18
SOL	16.65	8.4	24.10	63.41
SOL	16.19	8.4	21.85	65.75
SOL	6.93	8.6	11.83	84.41
	Désignation llisée SOL SOL SOL SOL	Désignation% Perte au FeuIliséeNA 5042SOL9.89SOL16.65SOL16.19SOL6.93	Désignation % Perte au Feu PH Ilisée NA 5042 ISO 10390 SOL 9.89 7.4 SOL 16.65 8.4 SOL 16.19 8.4 SOL 6.93 8.6	Désignation % Perte au Feu PH % CaCO3 Ilisée NA 5042 ISO 10390 NFP 94-048 SOL 9.89 7.4 10.07 SOL 16.65 8.4 24.10 SOL 16.19 8.4 21.85 SOL 6.93 8.6 11.83

Tableau 3: Interprétation des Résultats :

Selon la norme XP P 94-011 (Août 1999). Les sols analysés sont classée comme suit :

1	Valeurs	Classification	
Teneur en carbonate (%)	0 - 10	Non marneux	
	10 à 30	Faiblement marneux	

		Non agressive
DH	> 7	rion op -
[11		

Appendice F : Corrélations des paramètres géotechniques

La méthodologie proposée par Schneider (1997), pour le calcul de la valeur caractéristique de Nsx

$$N_{Sx,K} = N_{Sx,m} \cdot (1 \pm 0, 5 \cdot Vx)$$

Où:

- N_{Sx,K}est la valeur caractéristique de la résistance à la pénétration dynamique (corrigée) ;

N_{SPT,m} est la moyenne des valeurs de N_{SPT};

$$Vx = \frac{\mathrm{Sx}}{N_{Sx,m}};$$

Vx est Covariante des valeurs N_{SPT}

Sx est l'écart-type des valeurs de N_{Sx} .

Paramètre non drainée des sols cohésif :

Corrélation à partir du NSPT pour déterminer su

La corrélation la plus utilisée entre la cohésion non drainée (su) d'une argile et les résultats de l'essai SPT est donnée par Terzaghi & Peck et est approximativement de

$$\frac{Su}{Pa} = 0.06 \times Nspt$$

Où Pa est la pression atmosphérique.

Corrélations pour déterminer Eu

Pour estimer le module de déformabilité non drainé (Eu), nous avons utilisé l'abaque de Duncan & Buchigagnani (1976), dans lequel le quotient (Eu/Su) est corrélé avec le degré de sur consolidation (OCR) et l'indice de plasticité (IP), comme illustré dans la Figure

Relation Eu/Suversus OCRet IP

Corrélation utilisées entre le E_{PMT} et le E Ménard (1965):

Nous avons aussi utilisé les données des essais au pressiomètre de Menard (PMT) pour la détermination duE_u :

$$E = \frac{E_{PMT}}{\alpha}$$

Où α est un coefficient rhéologique dépendant du type de sol.

Paramètre drainée des sols cohésif

Corrélation à partir du *IP* pour déterminer ϕ '

Plusieurs auteurs ont démontré que l'angle de frottement effectif (φ ') des sols cohésifs peut être corrélé avec l'indice de plasticité (*IP*). Pour déterminer le φ ' des sols fins, nous avons utilisé la corrélation proposée par :

Mitchell (1976): Sin $\varphi' = 0.8 - 0.094 \cdot \ln (IP)$

Détermination de la cohésion effective (c')

Pour l'estimation de la cohésion effective (c') et balisage de l'angle de frottement effectif (φ') calculé selon l'équation proposé par de Mitchell (1976), nous avons utilisé les recommandations de Wilun & Starzewski (1975) que, en fonction de la consistance des sols fins, indique les valeurs typiques de φ' et c', tel que montre la Figure

Γ		Trans of a lit	Ι	Density	index of a	ohesionles	sz soits	
		I ype of soll	/n=	1-0	0-67	0-33	0	
	organie	gravels, tills, hoggins, etc.	ø	45°-40	° 40" -	-37°	37°-35°	
		sands: coarse and medium	ø	40"-38	38"-	-35° 3	15°-32*	
	5	sands: fine and silty	ø	37 - 35	35°-	-32° 3	2°-28°	
hunionle	organic	sands, organic	ø	30°-25°	25"-	25°-22°		
8				Con	Consistency of cohesive s			
				hard or very stiff	stiff	firm	soft to very soft	
				$w = w_s I_c$	-0 0·1 =	75 Q-	50 0-0	
		stightly clayey sands, sandy silts, silts J < 10%	\$ ' \$ \$	28°-24° 40°-30 25°-20°	24°-22° 30-20 20°-16°	22° -19° 20-15	$19^{\circ} - 5^{\circ}$ 15 - 2 $10^{\circ} - 7^{\circ}$	
	sanic	clayey sands, clayey sandy silts, clayey silts, J = 10 - 20%	\$ c \$2	26°-22° 50-40 20°-16°	22°-19° 40-30 16°-12°	19° -15° 30-20 12° -7°	15°-12° 20-3 7°-5°	
conceiv	lhor	sand-clays, sand-silt- clays, silt-clays J = 20 - 30%	\$'c \$_1	23°-20° 60-50 15°-12°	20°-17° 50-40 12°-9°	$17^{\circ} - 12^{\circ}$ 40-30 9^{\circ} - 5^{\circ}	$12^{\circ}-8^{\circ}$ 30-5 $5^{\circ}-2^{\circ}$	
		sandy clays, clays, silty clays J > 30%	¢ c ¢u	19 ⁸ -17 ⁶ 80-60 10 ⁶ -8 ⁶	17°-14° 60-50 8°-5°	14°-5° 50-40 5°-2°	10°-5° 40-10 2°-0°	
	organic	organic silts, peats, etc.		all strengt from labo	h paramete ratory lest	ers to be d	etermined	

Valeurs typiques de c' et ϕ' selon Wilun & Starzewski (1975)

Détermination du module de déformabilité drainée E'

La détermination de la valeur du module de déformabilité drainée E' a été faite selon la Loi de Hooke, à travers de l'équation suivant :

$$E'=\frac{E_u}{1.15}$$

Paramètre drainée des sols non cohésif :

Le paramétrage des couches des sols granulaires non-cohésifs a été effectué sur la base des données des essais SPT et PMT, en utilisant des corrélations depuis longtemps éprouvées.

Les corrélations utilisées entre l'angle de frottement effectif (φ') et les résultats de l'essai SPT sont :

Peck, et al. (1974):
$$\varphi' = 27.1 + 0.3 \times (N_1)_{60} - 0.00054 (((N_1)_{60})^2)^2$$

 $N_{60} = C_E \cdot \lambda \cdot N_{SPT}$ Pour les argiles (N_1)₆₀ = $C_E \cdot \lambda \cdot C_N \cdot N_{SPT}$ Pour les sables

Les corrélations utilisées entre le module de déformabilité drainé (E') et les résultats de l'essai SPT (N_{SPT}) sont :

- Bowles, J. E. (2002) $E' = 1200 (N_{SPT} + 6)$

- Mezenbach (1961) : $E' = C_1 + C_2 \cdot N_{SPT}$ Où C_1 et C_2 sont des coefficients dépend du type de sol

- Papadopoulos (1992) : $E' = 7.5 + 8. N_{SPT}$

Les corrélations utilisées entre le module de déformabilité drainé (E') et les résultats de l'essai PMT sont :

-Ménard (1965) :
$$E = \frac{N_{PMT}}{\alpha}$$

où α est un coefficient rhéologique dépendant du type de sol

- Baud et Gambin (2013) :
$$E = \frac{pl^*}{\sigma_{b0}} \cdot 0.5 \cdot pl^*;$$

Où la pression limite nette (pl^*) est calculée à partir de $pl^* = pl - \sigma_{OH}$ et σ_{OH} est la contrainte totale horizontale au niveau d'essai.

Nous avons aussi utilisé des corrélations indirectes entre la résistance à la pénétration statique (qc) et le (E'), pour aider dans l'évaluation des valeurs obtenues avec les corrélations directes. Les valeurs de qc ont été estimées à partir des valeurs du N_{SPT} et après ils ont été corrélés avec le E' selon les équations suivantes :

Robertson (1986): $qc = N_{60} \cdot pa \cdot a$

où a est un coefficient dépendant du type de sol

-Schmertmann (1978) : $E' = 2,5 \ qc$

-Webb (1970): $E' = 7,17 + 2,5 \cdot qc$

Appendice G : Résultats de la modélisation

Step Info					
Step 143 of 1	43 Extrapolation factor		1.000		
Plastic STEP	Relative stiffness		0.000		
Multipliers					
	Incremental mult	ipliers	Total multi	pliers	
Prescribed displacements	Mdisp:	0.000	Σ-Mdisp:	1.000	
Load system A	MloadA:	0.000	Σ-MloadA:	1.000	
Load system B	MloadB:	0.000	Σ-MloadB:	1.000	
Soil weight	Mweight:	0.000	Σ-Mweight:	1.000	
Acceleration	Maccel:	0.000	Σ-Maccel:	0.000	
Strength reduction factor	Msf:	0.000	Σ-Msf:	1.981	
Time	Increment:	0.000	End time:	0.000	
Dynamic time	Increment:	0.000	End time:	0.000	

Coefficient de sécurité soutènement paroi moulée sans butons

Résultats de calculs pour les phases d'exécution de l'excavation de la salle des machines (Paroi moulée avec butons)

Phase 1

Déplacements totales

Total displacements (Utot) Extreme Utot 46.81*10⁻³ m

Résultats de calculs pour les phases d'exécution de l'excavation de la salle des machines (Paroi en pieux avec butons)

Phase 1

Déplacements totales

Extreme Utot 26.91*10⁻³ m

Résultats de calculs pour les phases d'exécution de l'excavation du puits de ventilation (Paroi en pieux avec butons)

Phase 1

Déplacements verticaux

Déplacements totales

Phase 2

Déplacements verticaux

Déplacements verticaux

Extreme Utot 45.08*10⁻³ m

Déplacements verticaux

Déplacements verticaux

Extreme Utot 68.74*10 ⁻³ m

Déplacements verticaux

RÉFÉRENCES BIBLIOGRAPHIQUES

[1] Chang-Yu, O. (2006) "*Deep Excavation Theory and Practice*", Taylor and Francis Group, London,UK.

[2] Schlosser S. (1991) "*Murs de soutènements* ", Technique de l'ingénieur, Traité construction volume. C244. Paris,

[3] Centre D'étude Des Tunnels(CETU) (1998), "Procédés de creusement et de soutènement" Dossier pilote des tunnels génie civil section 4, France.

[4] Letif. M, Mellah A. (2017) " *Etude de la stabilité de la station de métro de l'aéroport Houari Boumediene*". Thèse de magister, Université Houari Boumediene.

[5] Galthon R, Houaiss F. "*Techniques de construction des tunnels en milieu urbain*", ULB-Faculté des sciences appliquées.

[6] Bouafia A.(2003)" Conception et Calcul des Ouvrages Géotechniques", Université Saad Dahlab de Blida.

[7] Gullati H, Ouazit Y. (2018)" Etude du puits de ventilation et du Rameau du PV4 Metro OUED SMAR-AEROPORT ". Thèse de magister, Université Houari Boumediene.

[8] **Canadian Geotechnical Society.** (2006) "*Canadian Foundation Engineering Manual*", 4thedition.

[9] Degoutte G et Royet P (2009), "Aide-mémoire de mécanique des sols", 95 pages.
[10]Plumelle C. (2003), "Cos de géotechnique", CNAM –Paris –Géotechnique.

[11] Balay J., Frank R., Harfouche L(1982), "Programme DENEBOLA pour le calcul des soutènements par la méthode des modules de réaction, Bulletin de liaison des Laboratoires des Ponts et Chaussées", pp. 3-12.