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المحيط و بدافع من الحاجة المتزايدة في الآونة الأخيرة للكشف والتصنيف الدقيق للأحداث  ملخص:

منازل الذكية والمراقبة كتشاف العيوب في الآلات ، والإ، ومثل الأمن  المختلفة من المجالات العديد، في الصوتي

 الأساليب تطبيقهتمام ، من خلال المثيرة للإموذج للأحداث الصوتية الصحية ، يهدف هذا العمل إلى تصميم ن

التعلم الآلي مجال الأدوات الموجودة في مجال معالجة الإشارات لاستخراج المعالم و بإستعمال المستخدمة الشائعة

لتجهيز المعالم.الإحصائيات في ميدان كذلك للتدريب   

.؛ معالجة الإشارات الالي؛ التعلم إستخراج المعالم ؛  كشف الحدث الصوتي كلمات المفاتيح:  

 

 

Résumé: Motivé par le besoin croissant récent de détection et de classification 

précises des événements sonores et de l’environnement, dans une multitude de 

domaines tels que la sécurité, la détection des pannes dans les machines, les maisons 

intelligentes et la surveillance de la santé, ce travail vise à modéliser les événements 

audio d’intérêt, en appliquant des méthodes communes en utilisant les boîtes à outils 

existantes dans les domaines du traitement du signal pour l'extraction de 

caractéristiques, de l'apprentissage automatique pour la formation et des statistiques 

pour le prétraitement des caractéristiques. 

Mots clés: Détection d'évènements audio; Extraction des caractéristiques; 

Apprentissage automatique; Traitement de signal 

 

 

Abstract: Motivated by the more recent growing need for accurate detection 

and classification of sound events and environment, in a plethora of domains like 

security, fault detection in machinery, smart homes and health monitoring, this work 

aims to model audio events of interest, by exerting common methods using existing 

toolboxes in the fields of signal processing for feature extraction, machine learning for 

the training and statistics for feature preprocessing. 

Keywords: Audio event detection; Feature extraction; Machine learning; 

Signal processing. 
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Introduction 

The world witnessed a rapid development in the consumer electronic devices in the 

last few decades. This affected the interaction of humans with the electronic devices in a 

major way. For instance, computers are not giant, bulky machines that are only used by the 

scientists for specific purposes anymore. They are smaller, more powerful, easier to use, and 

the vast amount of the world’s population are using them daily for leisure or work purposes. 

The introduction of smartphones, pocket-size computers with phone capabilities, has led to 

an even tighter bond between the humans and the computers. 

In this direction, one of the goals is to make devices that can recognize and 

understand the things and events happening around them without any user input, and then 

perform some operations based on their understanding. 

Acoustic Event Detection (AED) is denoted as the recognition of any general individual 

sound events in audio, requiring estimation of onset. One of the senses that we use most 

while interacting within our physical context is hearing. Humans are very good at interpreting 

and assigning meanings to the sounds. On the other hand, computers still cannot offer 

reliable accuracy for this task. AED differs from another well-studied audio information 

retrieval task called Automatic Speech Recognition (ASR), in the sense that the aim is not to 

map the speech audio into words/phonemes, but to map non-speech audio to their 

corresponding semantic labels and offset for distinct sound event instances and identification 

of the sound  

Our aim is to implement a system of audio detection and classification, the thesis work 

focuses on algorithms for both feature extraction and classification. The developed systems 

are tested and evaluated through existing common methods in recent literature. A large part 
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of the work has to be concerned with the problem of acoustic event classification, since 

detection relies heavily on classification.  

This thesis will be structured as follows: 

1. Audio Features Extraction Techniques 

2. Machine Learning  

3. Fundamentals of Audio Event Detection 

4. Implementation under Python 

We will end this dissertation by defining the various research perspectives that will be 

interesting to continue this line of work. 
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Chapter 1 Signal Analysis and Features Extraction 

1.1 Introduction 

For machine learning to be successful, we need a language to describe everyday things 

that is sufficiently powerful to capture the similarities and differences between them and yet 

is computationally easy to manage. It has also been studied in field psychology and 

philosophy that humans perceive the world around as attribute-value pairs. In early research 

in Artificial Intelligence (AI) this notion became a common way of representing knowledge, 

one can think of it as a spread sheet with columns representing attributes and cells as values. 

We (humans), absorb all sorts of information around us on a daily basis, in many 

situations, discerning between different attributes is almost instinctive, without much effort 

or thought, for instance, one can easily tell the difference between let’s say sound of water 

dripping and a car horn, because, as one grows up the brain develops to learn what the 

distinct differences between these two sounds are. To incorporate the same learning 

experience in a computer (so we can make predictions afterward), one must have an 

understanding of: sound, how humans perceive sounds and find out what creates the 

differences between sound A and B, in a quantifiable reliable manner. 

In this chapter, we lay grounds for different audio features (attributes) and the 

methodology for extracting them as well as signal processing tools that make that a 

possibility. 
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1.2 Audio Signal Classification 

To start off, we need to discuss the nature of sound, its taxonomy and human 

perception of sound. 

1.2.1 Sound 

From a physical viewpoint, it is a wave motion through a medium, this motion 

propagates by a series of condensations and rarefactions created within the transmitting 

medium [1]. 

From a subjective viewpoint, sound is a sensation produced through stimulation of the 

cochlea, specifically, the hair-like nerve cells, which generate electrical impulses that get 

transmitted to the brain, where it’s decoded and perceived as sound [2]. 

Furthermore, sounds are divided into groups: 

 

Figure 1 Taxonomy of sound [3] 
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 Non-Hearable Sounds 

Consists of Ultrasound (greater than 20 kHz) and infrasound (lesser than 20 Hz) or 

sounds that are within the audible range, however too quiet to be perceived [4]. 

 Hearable Sounds 

Sounds that lay within the audible frequency interval (20 Hz – 20 kHz). In addition they 

must be loud enough for that particular frequency Figure 2 shows this in more detail [4]. 

 

Figure 2 Human auditory field: Frequency-Intensity curves [4] 

Hearable sounds are divided into subgroups, depending on the source that generates 

them: 

a Noise 

Noise is defined as any undesired signal that interferes with the information-bearing 

signal, there’s several categories of noise a signal could be subjugated to, that would degrade 

the latter in quality, such as: acoustic, electromagnetic, electrostatic and processing noises 

[5]. 
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In addition to that, depending on the frequency of the noise or time characteristics a 

noise can be arranged into several categories:  

 White noise: a purely random uncorrelated noise process with a theoretical equal 

power at all frequencies [5]. 

 Coloured noise: non-white noise or any wideband noise characterized by a non-flat 

spectrum such as pink and brown noise. Pink noise for instance has a 
 

 
 frequency 

dependence and a constant power per octave, brown noise on the other hand has a 

frequency distribution of 
 

   [5] [6]. 

 Narrowband noise: a noise identifiable by its narrow bandwidth, most notable form is 

50/60 Hz main’s power [5]. 

b Natural Sounds 

Natural sounds are the ones that are not generated by humans or created through 

human influence, they’re caused by nature and the natural world that includes animals, the 

earth, the weather and water etc. They can be classified depending on the object that created 

the sound, however, it’s also important to keep in mind that the objects can interact with and 

another making newer sounds [6]. 

c Artificial Sounds 

We can view these as the opposite of what natural sounds are, i.e., human made 

sounds or human-influenced, excluding speech and music. The reason for not including the 

two in this category, is because they have multiple sub-classes that it’s better to just put them 

into their own separate category. Artificial sounds, to give a few examples, are made by cars, 

buildings and machinery. In practice, the source of the sound is what we use for the 

classification feature, in addition we can include the intent of certain sounds, for instance, a 

sound of a telephone ringing or a siren signifies something [6].  
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d Speech 

Speech can be described as human made sounds through the vocal tract for the 

purpose of communicating, including speech that’s recorded or computer synthesized. There 

are several sub-categories that we can divide speech into, such as language, gender, 

emotional content, the subject matter, we can even go deeper and classify per word basis 

and phonemes. 

e Music 

Music can be defined as human made sounds using instruments, including the human 

body. There are multiple ways we can categorize music, like whether the music is made by 

one or many instruments (monophonic or polyphonic). Monophonic music (or polyphonic for 

that matter) then branches into family of the instrument(s) that is (are) being used (brass, 

string, percussion, voice, etc.) we can go further and classify by the type of instrument(s) 

(tuba, trombone, etc.). Then there’s also sub-classes of content such as culture of origin, 

composer and genre. As with speech, we can also reduce our classification to most basic 

building blocks like notes. 

1.3 Signal Representations 

A lot of effort went into finding the proper representations in the field of acoustics, 

which permits the extraction of important information from audio signals. 
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 Figure 3 Standard feature extraction process [7] 

 

1.3.1 Signal Acquisition and Preprocessing 

First step towards event audio detection is capturing the actual audio signal data, 

storing and preprocessing it, this part focusses on these steps. 

a Signal acquisition 

In the following section, we define   as a continuous signal at time   to have an 

amplitude     . Signal   may represent for example the analog electrical current waveform 

created by a microphone’s coil vibration. 

So, to process the analog signal   we have to convert it to discrete time by sampling it, 

plus into discrete amplitudes through quantization. The reason we want discrete values is so 
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we can compute the signal, and processors can only represent values with limited precision, 

add to that the storage constraints. 

The discretization in time is referred to as Nyquist-Shannon sampling. The signal      

is represented by a fixed amount of N values      (samples) per unit of time. The sampling 

rate    is the frequency at which the original analog      is sampled into, producing the      

values.    is the sampling period, the relation between the discrete time index   and 

continuous time   is as follows: 

 

   
 

  
 

 Equation 1 

as: 

       Equation 2 

The sampling theorem ensures that original analog signal can be reconstructed from a finite 

set of   samples, the condition below must be met 

        Equation 3 

where    is the highest frequency in      also known as Nyquist frequency. In practice an 

analog low pass filter is applied to      to ensure proper sampling of any type of input. 

Subsequently, quantization is applied by converting the continuous values to discrete 

fixed amplitudes      where each      value is mapped to the nearest fixed value. These 

fixed values are specified by the Analog to Digital Converter (ADC) one characteristic of an 

ADC is its precision in bits, typically in Digital Signal Processing (DSP) b=16 or b=24 are used 

and quantized values are stored as integer or floating point format, as for music and speech 

analysis b=32 bits floating points then scaled to [-1;+1] range. The number of possible sample 

values is given by    [8] [9]. 

b Preprocessing 

Before sound features are extracted, several preprocessing steps needs to be applied 

to the signal in time or frequency domain. To give a few examples: 
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 Down-Mixing: Conversion of multi-channel audio to a single channel (mono) in order 

to reduce redundant feature by linearly averaging all the channels signals into one   , 

C is the number of channels: 

      
 

 
∑      

 

   

 

 Equation 4 

 

 Pre-emphasis: Typically, consists of applying a high pass first order digital filter i.e. a 

finite Impulse response (FIR) filter, for the purpose of amplifying frequency bands 

which carry important information [7] [8]. 

                   Equation 5 

 

Other pre-processing steps can also be performed such as noise reduction and echo 

cancellation [8]. 

1.3.2 Time-Frequency Representations 

Before any analysis, the signal is commonly converted to frequency domain using 

Discrete Fourier Transform (DFT) we assume      to be periodic. The spectrum       is 

defined by: 

     
 

 
∑     

   

   

 
      

  

 Equation 6 

This gives us a representation which we can plot on a linear frequency scale. There are 

other spectra representations which can have a non-linear magnitude or frequency scaling, or 

a combination of linear and nonlinear on either axes.  

It is often desirable to search for information in specific frequency bands, which is the 

motivation behind the many scales that spawned, these scales vary in terms of: logarithmic or 

perceptual laws, the number of bands, the filters used and the overlap length between them 

[9] [7] [8]. 
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One of the more widely used non-linear frequency scale is the mel-scale 

 Mel-scale: It aims to mimic the psychological sensation of heights of harmonics  

B is the mel-scale conversion from Hz to mels and its inverse     are given by: 

           (  
 

   
) 

 Equation 7 

 

          (     
 

    
    ) 

 Equation 8 

b is the frequency in mels 

There are also other slight variations of B and     expressions [7]. 

Other scales include: 

 Bark-scale 

 Gamma-tone filters 

 Critical bands 

 Constant-Q transform 

1.4 Feature Extraction 

The purpose of this step is to reduce the audio signal into a form that describes the 

more important information about the sound event. A measure of a good feature is the ability 

to discriminate between different classes with ease, while keeping the variation within the 

same class to a minimum, plus the resiliency to external effects such as noise. Commonly, 

frame based features are used. Extracted from sequential short-time windowed frames, 

usually 25—60 ms in size. 

Sound event classes differ from one to another, and each one have a more optimal set 

of features that describes them. For instance, in ASR applications it is common to rely mainly 

on just frame-based features, however for Sound Event Recognition (SER) uses, these frame-
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based features are not enough on their own, so, it is common to add supplementary features 

to better capture the information [10]. 

1.4.1 Windowing 

Let us consider a signal      with         divided into   short, overlapping frames 

    ̂              of    (frame size in samples) and  ̂ is the discrete sample index, 

relative to a single frame  ̂           the start index of the kth frame          in      is 

described by the relation 

             
  

 Equation 9 

  
 is the frame period in samples, the end index is given as: 

             
     

 Equation 10 

The overlap percentage defined as    where    is the frame size in seconds and   is the 

frame period (also known as hop length or frame step) in seconds 

   
     

  
 

 Equation 11 

Overlapping is used to maintain continuity within frames [11]. 

 

Figure 4 Representation of the framing process [12] 
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The excess frames towards the end of     , are ignored, since we assume that the 

signal is more than just a few frames, the discarded samples won’t contribute much to the 

final model [8]. 

1.4.2 Window Functions 

Framing is simply put is a multiplication of      with window function      there are 

multiple window functions, their usage depends on the type of analysis performed later on 

(spectral or time) and the application at hand (recognition of speech, music or general 

sounds..) [8]. 

 Rectangular window: 

A constant function best suited for time analysis, efficient in computational power, 

defined as follows [8]: 

                    
 Equation 12 

 Hanning window: 

 Also known as Hann-window, it is defined for           as: 

                                 (     (
   

   
)) 

 Equation 13 

This window is suitable for spectral analysis due to the fact that the side lobes in the 

spectrum roll off by around 18 dB per octave plus it is fitting for applications in which 

     needs to be reconstructed from spectra [8]. 

 Hamming window: 

 A modified version of a Hanning window, except that it doesn’t reach zero at the 

edges. It is the most commonly used window in spectral analysis especially for speech, 

it reduces the amplitude of the first side lobe in the spectrum significantly, defined for 

          [8]. 
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                 (
   

   
) 

 Equation 14 

 
 

Now there are different features that belong to different domains, as shown in the figure 

below 

 

Figure 5 Simplified block diagram for extracting features in different domains [7] 

 

In the following sections, we are introducing a variety of features in different domains 

1.4.3 Time Domain Features 

a Zero and mean crossing rate 

Zero-Crossing Rate (ZCR) simply describes the number of sign changes of      per unit 

time 

A sign change occurs whenever: 

              Equation 15 

or 

               and         Equation 16 
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Figure 6: Zero crossings in a signal [13] 

Mean Crossing Rate (MCR) is similar to ZCR in the sense that: it is the rate of changes 

between the mean value    of      crossing from below to above or vice-versa [8]. 

with 

   
 

 
∑     

   

   

 

 Equation 17 

A high ZCR or MCR implies a high frequency content, it’s also important to note that the two 

are very sensitive to additive noise [8]. 

b Energy 

One basic temporal feature is energy, assuming that the audio signal doesn’t have a 

DC offset. The normalized form of energy E for the signal      is [8]: 

  
 

 
∑      

   

   

 

 Equation 18 

There are also other forms for signal energy that can be used 

 Root Mean Square (RMS) energy 

     √
 

 
∑      

   

   

 

 Equation 19 

It is also a reliable tool for silence detection [7]. 

 Log Energy 
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c Amplitude 

For this temporal feature, maximum and minimum amplitudes are used [8]. 

d Autocorrelation coefficients 

We can view it as the signal spectral distribution in the time domain. Usually only the 

first K coefficients are kept [7]. 

     
∑                

   

√∑           
   √∑             

   

 
 Equation 20 

k is the time delay 

1.4.4 Spectral Features 

Frequency domain features are extracted typically from the transformed time signal, 

typically a Fourier transform. Common spectral features are: 

a Spectral envelope 

Can be viewed as the boundary within which the spectrum is contained, we can 

approximate it using Linear Predictive Coding (LPC) 

b Spectral moments 

 This one describes multiple characteristics of the spectral shape, like the spectral 

centroid, spectral width, spectral asymmetry and spectral flatness. 

Other spectral features include: 

 spectral slope 

 spectral roll-off 

 spectral flux 

 alpha ratio 

etc. 
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1.4.5 Cepstral Features 

Before we can delve into cepstral features we need to explain what a cepstrum is. 

 Cepstrum: The cepstrum definition by Bogert, Healy, and Tukey, given as the inverse 

Fourier transform (inverse DFT in our case) of the log of magnitude spectrum of the 

signal, was first motivated by echo detection, then became widely used as a pitch 

indicator. Cepstral analysis consists of applying a homomorphic transformation 

turning a convolution into a sum, which allows the separation of the filter from the 

source, for instance we can separate the vocal tract transfer function from the 

excitation. The independent variable for the cepstrum is called quefrency, and the 

process of linear filtering in that domain is called liftering [14]. 

The cepstrum c[n] is given by: 

          {       |     {    }  |    } 
 Equation 21 

Cepstral features are among the most successful acoustic features in ASR, they have 

also been exploited in other domains such as acoustic geo-sensing, music mood recognition 

and acoustic gunshot detection. In the following section we’re presenting the main cepstral 

features [8]. 

a) MFCC 

MFCC are the most common cepstral coefficients, used for both speech analysis and 

sound scene analysis, it is inspired by the human auditory system. Coefficients are obtained 

through the following process: 

 

Figure 7 MFCC block diagram  

Since we have already discussed the first 4 steps previously, we’re only going to touch 

on the remaining steps 
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 Fast Fourier Transform (FFT): A more efficient algorithm to calculate the DFT, 

significantly reducing the calculation time, it converts the time domain signal to 

frequency domain. If a frame size is not the power of two the typical thing to do is to 

apply zero-padding, which adds samples of 0 values increasing the frame length to the 

next higher power of two [7]. 

 Mel Filter bank: 20-40 triangular bandpass filters with increasing bandwidths, and a 

50% overlap are applied to the spectrum, this is motivated by the fact that: human 

perception of small frequency changes, is indiscernible. The effect gets magnified as 

we go higher in frequencies. The filter banks typically start at 20 Hz, each filter 

endpoint to the left and right matches the center of the two adjacent filters. 

 This step serves to reduce the number of features and help smooth out the 

magnitude spectrum [8] [15]. 

We define a filterbank of M filters (m=1,2...M), the triangular filters functions 

are given by: 

 

Where k is the discrete frequency and      represent the boundary points, 

which are uniformly spaced in the mel-scale, it is given by: 
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 Equation 22 

     (
 

  
)   (       

           

   
) 

 Equation 23 

   and    are the lowest and highest frequencies of the filterbank in Hz 

   sampling frequency in Hz 

N size of the FFT 

B and     are given by Equation 7 and Equation 8 



19 

 

 

 Figure 8 Mel filterbanks [15]  

Then we sum the energies in each filter and take the log-energies (natural logarithm) 

       ∑ |    |       

   

   

               

 Equation 24 

  

 

 Discrete Cosine Transform (DCT): The transformation gives us Mel Frequency 

Cepstrum Coefficients, there are 26 coefficients, and we usually keep around 

13 of the first coefficients. One reason for this step is to decorrelate the 

overlapping mel filterbanks [13]. 

Note that we mentioned previously that the cepstrum is obtained by applying       

to the log of the DFT of the signal, however we can alter this step by using DCT type II, 

or type III (also known as the inverse DCT) [8] [9]. DCT of the M filters is given by: 

     ∑        (
  (  

 
 )

 
)

   

   

              

 Equation 25 

  

b) Delta and Delta-Delta MFCC 

Delta values describes the change in MFCCs from one frame from to another while 

delta-delta is the change between frames of the delta values, these features are called 

dynamic cepstral features. The first derivative is commonly implemented as least-squares 

approximation. The delta coefficients    are given by:  
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 Equation 26 

The first row is filled with zeroes,   is the mel coefficient, t is the current frame index 

and N is typically 2 

1.4.6 Statistical Functionals 

In order to process segments with variable length and get rid of the dependency of the 

feature vector dimensionality on the segment length, statistical descriptors can be applied to 

the previously mentioned features, common descriptors are [8]: 

a Mean 

Describes the average of series of samples 

  
 

 
∑     

   

   

 

 Equation 27 

b Standard deviation 

  √
 

 
∑         

   

   

 

 Equation 28 

c Maximum and Minimum 

Describes the largest and smallest values in series of samples 

                  and                  Equation 29 

d Percentile 

The     percentile    is defined as the value s below which   percent of all the values 

     are, i.e., for j percent of the values in      the following is true:          . 

The series      is sorted in ascending order, the     percentile can be found in the 

sorted set of values at the index   . 
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        [
 

   
         ] 

 Equation 30 

e Median 

Median is the middle value in a sorted series. 

1.5 Conclusion 

So far, we have discussed sound categories and a variety of preprocessing and feature 

extraction techniques, this is a crucial first step in every acoustic detection system, this entire 

chapter boils down to collecting and summarizing audio data. Selectively stacking these 

features together makes for a robust AED. 
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Chapter 2 Basic Machine Learning Techniques 

2.1 Introduction 

The term machine learning refers to the automated detection of meaningful patterns 

in data. In the past couple decades, it has become a common tool in almost any task that 

requires information extraction from large data sets. We are surrounded by a machine 

learning based technology: search engines learn how to bring us the best results, anti-spam 

software learns to filter our email messages. Digital cameras learn to detect faces, as well as 

intelligent personal assistance applications on smart-phones can learn to recognize voice 

commands.  

One common feature of all of these applications is that: in contrast to more traditional 

uses of computers, in these cases, due to the complexity of the patterns that needs to be 

detected, a human programmer cannot provide an explicit, fine detailed specification of how 

such tasks should be executed. Taking example from intelligent beings, many of our skills are 

acquired or refined through learning from our experience (rather than following explicit 

instructions given to us).  Machine learning tools are concerned with endowing programs with 

the ability to “learn” and adapt.  

Roughly speaking, learning is the process of converting experience into expertise or 

knowledge. The input to a learning algorithm is training data, representing experience, and 

the output is some expertise, which usually takes the form of another computer program that 

can perform some task.   

The goal of this chapter is to go through the Machine learning landscape and lay out 

the basic concepts upfront for the chapter that follows. We will focus more on a single 

machine learning technique, successfully used in recent literature which is Support Vector 

Machine (SVM) [16]. 
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2.2 Types of Machine Learning Algorithms  

Machine learning algorithms are organized into taxonomy, based on the desired 

outcome of the algorithm. Common algorithm types include:  

 Supervised learning where the algorithm generates a function that maps inputs to 

desired outputs. One standard formulation of the supervised learning task is the 

classification problem: the learner is required to learn (to approximate the behavior 

of) a function which maps a vector into one of several classes by looking at several 

input-output examples of the function.  

 Unsupervised learning which models a set of inputs: labeled examples are not 

available. 

 Semi-supervised learning which combines both labeled and unlabeled examples to 

generate an appropriate function or classifier. 

 Reinforcement learning where the algorithm learns a policy of how to act given an 

observation of the world. Every action has some impact in the environment, and the 

environment provides feedback that guides the learning algorithm. 

 Transduction similar to supervised learning, but does not explicitly construct a 

function: instead, tries to predict new outputs based on training inputs, training 

outputs, and new inputs. 

 Learning to learn where the algorithm learns its own inductive bias based on previous 

experience [17].  

2.2.1 Supervised Machine Learning 

The majority of practical machine learning uses supervised learning. Supervised 

learning is where you have input variables X and an output variable Y and you use an 

algorithm to learn the mapping function from the input to the output. 

          Equation 31 

The goal is to approximate the mapping function so well that when you have new 

input data (X) that you can predict the output variables (Y) for that data. 
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Figure 9 Process of supervised machine learning [17] 

It is called supervised learning because the process of an algorithm learning from the 

training dataset can be thought of as a teacher supervising the learning process. We know the 

correct answers, the algorithm iteratively makes predictions on the training data and is 

corrected by the teacher. Learning stops when the algorithm achieves an acceptable level of 

performance.  
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2.2.2 Supervised Machine learning algorithm types 

Supervised learning problems can be grouped into regression and classification 

problems. 

 Classification: A classification problem is when the output variable is a category, such 

as red or blue or disease and no disease. 

 Regression: A regression problem is when the output variable is a continuous value, 

such as dollars or weight. 

 Some common types of problems built on top of classification and regression include 

recommendation and time series prediction respectively. 

Some popular examples of supervised machine learning algorithms are: 

 Linear regression for regression problems. 

 Random forest for classification and regression problems. 

 Support vector machines for classification problems. 

2.2.3 Linear classifier 

In machine learning, the goal of classification is to group items that have similar 

feature values, into groups. Timothy et al in 1998 stated that a linear classifier achieves this 

by making a classification decision based on the value of the linear combination of the 

features. If the input feature vector to the classifier is a real vector X, then the output score is: 

     ⃗⃗⃗   ⃗⃗    (∑    

 

) 

 Equation 32 

where  ⃗⃗  is a real vector of weights and f is a function that converts the dot product of the 

two vectors into the desired output. The weight vector  ⃗⃗  is learned from a set of labelled 

training samples. Often f is a simple function that maps all values above a certain threshold to 

the first class and all other values to the second class. A more complex f might give the 

probability that an item belongs to a certain class. 

 For a two-class classification problem, one can visualize the operation of a linear 

classifier as splitting a high-dimensional input space with a hyperplane: all points on one side 
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of the hyperplane are classified as positive classes, while the others are classified as negative 

classes. A linear classifier is often used in situations where the speed of classification is an 

issue, since it is often the fastest classifier, especially when    is sparse. However, decision 

trees can be faster. Also, linear classifiers often work very well when the number of 

dimensions in    is large, as in document classification, where each element in    is typically the 

number of counts of a word in a document (see document-term matrix). In such cases, the 

classifier should be well regularized.  

There exists multiple classifiers, to mention a few: 

 K-Nearest Neighbor (K-NN) 

 Gaussian Mixture Model (GMM) 

 Random Forest 

 Support Vector Machine(SVM) 

Each classifier is more fitting depending on the task at hand. 

2.2.4 Support Vector Machine 

To give a little background, SVM was first introduced by Vapnik and Lerner in 1963, 

they proposed that the optimal hyperplane is the one that separates the training examples 

with the widest margin, from the 1960s to 1990s, Vapnik and Chervonenkis developed the 

Vapnik-Chervonenkis theory, which justifies the maximum margin principle from a statistical 

point of view. However, SVM really exploded in the 90’s when it was proven to be incredibly 

accurate in recognizing handwritten digits [18]. 

A Support Vector Machine as stated by Luis et al (Luis Gonz, 2005) performs 

classification by constructing an N-dimensional hyper plane that optimally separates the data 

into two categories. 

SVM models are a close cousin to classical multilayer perceptron neural networks. In 

fact, an SVM model using a sigmoid kernel function is equivalent to a two layer, perceptron 

neural network. 

In the parlance of SVM literature, a predictor variable is called an attribute, and a 

transformed attribute that is used to define the hyperplane is called a feature. The task of 
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choosing the most suitable representation is known as feature selection. A set of features 

that describes one case (i.e., a row of predictor values) is called a vector. So the goal of SVM 

modelling is to find the optimal hyperplane that separates clusters of vector in such a way 

that cases with one category of the target variable are on one side of the plane and cases with 

the other category are on the other size of the plane. The vectors near the hyper plane are 

the support vectors. The figure below presents an overview of the SVM process. 

a Two-Dimensional Hyperplanes 

Before considering N-dimensional hyper planes, let’s look at a simple 2-dimensional 

example. Assume we wish to perform a classification, and our data has a categorical target 

variable with two categories. Also assume that there are two predictor variables with 

continuous values. If we plot the data points using the value of one predictor on the X axis 

and the other on the Y axis we might end up with an image such as shown below. One 

category of the target variable is represented by rectangles while the other category is 

represented by ovals.  

 

Figure 10 Variations of separating hyperplanes [17] 

In this idealized example, the cases with one category are in the lower left corner and 

the cases with the other category are in the upper right corner; the cases are completely 

separated. The SVM analysis attempts to find a 1-dimensional hyper plane (i.e. a line) that 

separates the cases based on their target categories. There are an infinite number of possible 

lines; two candidate lines are shown above. The question is which line is better, and how do 

we define the optimal line. The dashed lines drawn parallel to the separating line mark the 

distance between the dividing line and the closest vectors to the line. The distance between 
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the dashed lines is called the margin. The vectors (points) that constrain the width of the 

margin are the support vectors. The following figure illustrates this. 

 

Figure 11 Difference of margin length between different hyperplanes [17] 

An SVM analysis (Luis Gonz, 2005) finds the line (or, in general, hyperplane) that is 

oriented so that the margin between the support vectors is maximized. In the figure above, 

the line in the right panel is superior to the line in the left panel. If all analyses consisted of 

two-category target variables with two predictor variables, and the cluster of points could be 

divided by a straight line, life would be easy. Unfortunately, this is not generally the case, so 

SVM must deal with: 

(a) More than two predictor variables. 

(b) Separating the points with non-linear curves. 

(c) Handling the cases where clusters cannot be completely separated. 

 (d) Handling classifications with more than two categories. 

b Multi-Dimensional Hyperplane 

The support vector machine is fundamentally a binary classifier. In practice, however, 

we often have to tackle problems involving K > 2 classes. Various methods have therefore 

been proposed for combining multiple two-class SVMs in order to build a multiclass classifier. 
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One commonly used approach (Vapnik, 1998) is to construct K separate SVMs, in 

which the     model is trained using the data from class    as the positive examples and the 

data from the remaining K − 1 classes as the negative examples. This is known as the one-

versus-the-rest (OVR) approach. 

Another approach is to train K(K−1)/2 different 2-class SVMs on all possible pairs of 

classes, and then to classify test points according to which class has the highest number of 

votes, such approach is called one-versus-one (OVO) [19]. 

2.2.5 Kernels 

Kernel methods refer to a class of techniques that employ positive definite kernels. 

This mathematical trick is motivated by the need to separate between samples of different 

classes that regular linear separation doesn’t handle very well, At an algorithmic level, its 

basic idea is quite intuitive: implicitly map objects to high-dimensional feature spaces and 

then directly specify the inner product there, in other words, it adds more dimensions and 

warps the shape of the data points so it becomes more separable [18]. 

 

Figure 12 Demonstration of separable and non-separable classes [20] 
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Figure 13 Visualization of a kernel trick [21] 

2.2.6 Kernel types 

Here’s example representations of each kernel’s separation of 3 different classes with 

an SVM classifier [22]: 

 Linear 

 

Figure 14 Linear kernel [23] 

 Polynomial 

 

Figure 15 Polynomial (degree 3) kernel [23] 
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 Radial Basis Function (RBF) 

 

Figure 16 RBF kernel [23] 

 Sigmoid 

 etc. 

2.2.7 Gamma and C Hyperparameters 

A model can be adjusted to fit input data using certain parameters, which allows to 

tweak how far the influence of a single training example reaches (Gamma) as well as control 

underfitting and overfitting (C parameter). High gamma values means a single data point 

influence is small and constrained while low values, extends the influence farther, it is specific 

to RBF, sigmoid and polynomial kernels only. As for C also known as the penalty parameter, 

when it’s larger the model overfits, and it underfits when C is smaller, so, it’s important to 

find a balance. 
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Figure 17: The impact of different gamma and C combinations on classification 
boundaries [24] 

2.2.1 Curse of dimensionality 

This rather emotive term is used to describe difficulties associated with the feasibility 

of density estimation in many dimensions. Adding a dimension stretches the points across 

that dimension making them further apart. In a multi-dimensional space, samples drift further 

apart when the dimensionality becomes too large, as a result, the process will be 

computationally expansive [25]. 

To help reduce the number of dimensions needed and bring down all features to the 

same level of magnitude, feature normalization and selection methods are utilized, the more 

common ones are as follows: 

a Z-score Normalization (Standard Scaler) 

Features are rescaled so that they’ll have the properties of a standard normal 

distribution. Given by: 

      
   

 
 

 Equation 33 

where   and   are the mean and standard deviation of a feature respectively [26]. 
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b Min-Max Normalization 

An alternative approach, is to scale data to a fixed range usually [-1,1] or [0,1] defined 

by the relation [27]: 

      
      

         
 

 Equation 34 

  

a Variance Threshold 

This feature selection method allows to only keep features with high variance 

discarding features below a specified threshold, since the ones with high variance contain 

more useful information [28]. 

2.2.2 Unsupervised Machine Learning 

Unsupervised learning is where you only have input data X and no corresponding 

output variables. The goal for unsupervised learning is to model the underlying structure or 

distribution in the data in order to learn more about the data. These are called unsupervised 

learning because unlike supervised learning above there is no correct answers and there is no 

teacher. Algorithms are left to their own devises to discover and present the interesting 

structure in the data. Unsupervised learning problems can be further grouped into clustering 

and association problems. 

 Clustering: A clustering problem is where you want to discover the inherent groupings 

in the data, such as grouping customers by purchasing behavior. 

 Association: An association rule learning problem is where you want to discover rules 

that describe large portions of your data, such as people that buy A also tend to buy B. 

Some popular examples of unsupervised learning algorithms are: 

 k-means for clustering problems. 

 Apriori algorithm for association rule learning problems.  
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2.3 Classification Evaluation 

Once we have designed a classifier, we like to know how well the system can do the 

job or quantify the quality of the system performance. 

The accuracy of a machine learning classification algorithm is one way to measure how 

often the algorithm classifies a data point correctly. Accuracy is the number of correctly 

predicted data points out of all the data points. Sometimes, this quantity is expressed as a 

percentage rather than a value between 0 and 1. The accuracy of a model is often assessed or 

estimated by applying it to test data for which the labels (Y values) are known. The accuracy 

of a classifier on test data may be calculated as number of correctly classified objects/total 

number of objects. Accuracy is directly related to error rate, such that: 

                           Equation 35 

2.3.1 Hold Out Method (Train Test Split) 

If the data set at hand is large, we may divide it in two parts; use one for training and 

hold out the other for testing, typically, one third for testing and two thirds for training, hence 

the name hold-out method. This is a popular method to assess the system’s performance. In 

most cases the data are limited in size; thus a hold-out method is ad-hoc in the sense of which 

subset is held out for testing. The performance evaluation via this method depends on how 

the data are separated. 

 

Figure 18: Train and test splitting 
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2.3.1 K-Fold Cross-validation (CV) 

Cross-validation is a process for creating a distribution of pairs of training and test sets 

out of a single data set. In cross validation the data is partitioned into k subsets,         , 

each called a fold. The folds are usually of approximately the same size. The learning 

algorithm is then applied k times, for i = 1 to k, each time using the union of all subsets other 

than    as the training set and using     as the test set [18]. 

 

Figure 19   10 Fold cross-validation method [29] 

where    is the accuracy for a particular iteration and A is the average accuracy. 

2.3.2 Confusion matrix 

A confusion matrix summarizes the classification performance of a classifier with 

respect to some test data. It is a two-dimensional matrix, indexed in one dimension by the 

true class of an object and in the other by the class that the classifier assigns. Table 1 presents 

an example of confusion matrix for a three-class classification task, with the classes A, B and 

C. The first row of the matrix indicates that 13 objects belong to the class A and that 10 are 

correctly classified as belonging to A, two misclassified as belonging to B and one as belonging 

to C. 
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Assigned class 

 A B C 

A 10 2 1 

B 0 6 1 

C 0 3 8 

Table 1: Example of a 3 class confusion matrix [18] 

2.4 Audio Event Detection 

Audio Event Detection or AED for short, is a relatively recent discipline, it consists of 

processing acoustic signals and converting them into symbolic descriptions corresponding to a 

listener’s perception of the different sound events present in the signals and their sources i.e. 

The determination of both the identity of sounds and their position in time. One common 

approach consists of using a binary classifier, training it to audio events (positive class) and 

background noise (negative class), then, a sliding window on the audio signals is used for 

detection, this is known as detection-by-classification, this is the main reason why Audio 

Event Classification is so intertwined with AED [30] [31]. 

 

Figure 20 Sound event detection: finding temporal positions and textual labels [7] 
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2.5 Conclusion 

To summarize, we discussed classification categories and existing algorithms focusing 

mainly on SVM combined with kernel tricks as well as dimensionality reduction and 

evaluation technics. This sets up the basis for Detection and Classification in conjunction with 

extracted features we’ve seen in the first chapter, allowing us to implement it under a 

computer. 
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Chapter 3 Detection and Classification of Audio 

Events : Experiment Results 

3.1 Introduction 

So far, we have discussed audio features and methods which allows to separate, 

classify and detect input data. In what follows we’re tackling the procedures and results of 

audio events and scenes feature extraction, detection and classification by training extracted 

features with an SVM algorithm. Figure 21 encapsulates the general plan and the way it was 

implemented under python. 

.   
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Figure 21 Explanatory diagram of classification and detection task 
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3.2 Audio Dataset (Database) 

For the classification aspect, Environmental Sound Classification-50 database or ESC-

50 for short, is used. It consists of 2000 labeled environmental recordings with 50 classes in 

total, each class is given 40 wav mono recordings lasting 5 seconds in length each, sampled at 

44.1 kHz, containing a variety of common sounds such as: Human made sounds produced 

through speech or human activity, as well as natural sounds ranging from animal sounds to 

wind and rain. 

For the application, we split this database in half, in order to save the processing time 

during training and feature extraction phases, this is due to the limited computation 

resources at hands. 

The metadata is stored in sheet of a Comma Separated Values (CSV) file, which 

contains the name of each audio wav file as well as the corresponding label for it. 

The reasons for picking this particular database are: 

 The small size in terms of number of classes and audio files, hence a relatively shorter 

processing time (seconds to a few minutes) 

 Decent variety of sound events 

 Minimalistic background noise present in the recordings 

 High sample rate, which gives better results when down-sampled 

As for detection by classification, the entirety of previously mentioned database is 

used, in combination with background audio recorded using a crude microphone. 

In order to have a balance between the positive and negative classes each recording 

lasts 5 seconds in length, the process is done 1000 times ie: about 83 minutes of background 

noise capturing in a relatively noisy environment that includes sounds such as: people talking, 

kids shouting, cars going by, etc. While also making sure none of the audio events we want to 

detect, exist in the 83 minute recording. ESC-50 is treated as a positive class and the 

microphone background as a negative class [32]. 
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3.3 Preprocessing and Feature Extraction 

3.3.1 Preprocessing 

The audio files have silent portions, are unfiltered and have high sample rate, so, 

preprocessing them is the first step taken towards ensuring the data is filtered from 

unwanted extra information that do not contribute or degrade the model’s performance. 

Preprocessing operations applied to the .wav files are: 

a Silence trimming 

As shown below in Figure 22 the silent portions are removed entirely leaving only the 

information bearing parts, using trial on error approach to pick the optimal power threshold 

for silence detection, and individually inspecting wav file plots in audacity. 

 

Figure 22: Before (top) and after (bottom) silence removal 
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b Pre-emphasis 

Now, in order to balance the frequency spectrum between lower and higher 

frequencies, we apply a pre-emphasis filter to the audio files, with        the value again, 

was picked through a trial on error approach by testing out different values between 0.95 and 

0.97 and keeping the one that gives out better accuracy during the testing. Result of the 

filtering is shown below. 

 

Figure 23: Spectrum before (top) and after (bottom) pre-emphasis 
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c Down-sampling 

A high sampling frequency introduces more redundant information that’s 

unnecessary, costly in processing and doesn’t improve the model’s final score, the figure 

below shows some of that information loss when signal gets down-sampled. 

 

Figure 24 Effects of down-sampling the signal 

3.3.2 Feature Extraction 

Now that we have pre-processed the audio input we can move on to extracting 

features, the following features are used for training the model. 
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a Zero Crossing rating 

This adds a time domain information, more precisely, how often the signal crosses x=0 

axis in a single frame, the frame size taken is 25ms sample with a hop length of 10ms samples 

(default parameters). Modifying these two parameters to add more coefficients, doesn’t 

seem to be beneficial whatsoever in terms of final accuracy, ZCR results is shown in the figure 

below. 

 

Figure 25: ZCR with respect to the audio signal 

We can see that the higher the frequency content in a frame, the higher ZCR is, 

although there’s variation from one audio file to another in terms of how obvious this 

correlation is. 

b MFCC 

MFCC is one of the more important feature that is relied upon in this application, 

which works better with an SVM classifier. 

Python Speech Features library simplifies the process of obtaining the MFCC features, 

by bundling all the necessary steps and parameters tweaking into one function [33]. 

The first step is to frame the signal, initially the default built in parameters are used 

with the exception of using a hamming window instead of a rectangular one, with the frame 

size=25ms, and a step of 1ms which means a 60% overlap. 



45 

 

 

 

Figure 26: Visualization of framing process 

Then the power spectrum for each frame is calculated 
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Figure 27: Power spectrum of a single frame 

then we apply triangular filters to this power spectrum as such: 

 

Figure 28: Mel filterbanks 

Total energy in each frame is stored separately by summing the total energy, then the 

filterbank energies are obtained by a dot product of each mel filterbank with the power 

spectrum, and apply natural logarithm to the resulting filterbank energies and the total 



47 

 

energy. The number of mel filterbanks used is 26 by default, this results in a 2D matrix of size 

N_Frames x M_Filters each row holds a feature vector. 

Then, we decorrelate these overlapping filterbanks by a DCT type-II transform, and 

finally lifter the matrix of cepstra increasing the magnitude of the high DCT coefficients. The 

resulting MFCC feature matrix is: first column is replaced with the log total energy, for our 

case, using 18 cepstrum coefficients is the most optimal case. 

 

Figure 29: MFCC spectrogram 

c Delta and Delta-Delta 

18 delta features and delta-delta features each are computed from the MFCC feature 

vectors. 

3.3.3 Dimensionality Reduction 

At this point, there is a total of 54 features for each frame:  

 18 MFCC features 

 18 Delta MFCC features 

 18 Delta-Delta features 

 1 ZCR feature 
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This wouldn’t be a problem except that each trimmed audio file has a lot of frames (up 

to a few hundreds), and each file is different from the other in the number of frames, so this 

creates two problems. The first, is that training with a large number of feature vectors is time 

consuming, the second issue is: we’ll end up with certain classes having more training 

examples than other classes. In order to combat this, we employ two solutions. 

a Statistical Descriptors 

This reduces every feature for all frames into a single combination of 6 statistical 

descriptors: 

 Mean 

 Maximum 

 Minimum 

 Standard Deviation 

 Skew 

 Median 

Then, for each audio file we stack these descriptors horizontally in a single vector as such: 
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... 

0.18
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Table 2 Matrix of extracted features 

This produces a total of 330 features for each audio sample. 

b Min Max Scaling 

In order to have a better performance in terms of training time and accuracy, we use 

this particular scaling transformation which scales each feature to a particular range [0,1] in 

this case. 

c Variance Threshold 

Leaving out redundant and feature vectors enhances processing time, by inspecting 

feature vectors variances and comparing how many features gets removed by that, allows us 

to select a variance threshold interval. 

 

 



50 

 

3.4 Model Training 

SVM is the machine learning algorithm of choice for prediction and detection tasks, 

using the scikit-learn python library [34]. Recently, the Support Vector Machine (SVM) 

paradigm has proved highly successful in a number of classification tasks. As a classifier that 

discriminates the data by creating boundaries between classes rather than estimating class 

conditional densities, it may need considerably less data to perform accurate classification. 

This is one of the main reason the SVM classifier is initially chosen in this thesis as the main 

classification technique. Other advantages include: 

 Versatile: different Kernel functions can be specified for the decision function. 

 Effective in high dimensional spaces. 

 Memory efficient. 

Best gamma, C and kernel parameter combination is set using an exhaustive search 

over specified different values: 

C and Gamma = [0.001, 0.01, 0.1, 1, 10] 

Kernel = [rbf,linear] polynomial kernel was excluded due to very slow performance. 

3.5 Classification Results 

In this section, we’re presenting the results of parameter tweaking and selection by 

comparing accuracy scores. A 10 fold cross validation is used to evaluate the average score 

each time, with the exception of the confusion matrix which is obtained by randomly splitting 

one third of the database for testing and two thirds for training. An SVM with a combination 

of RBF kernel are used for the classification for all results. 

3.5.1 Downsampling  

Sampling 

rate (kHz) 

8 16 22.05 32 44.1 

Accuracy % 79.3 83.8 81.9 81.3 78.2 

Table 3: Accuracy with respect to sampling rate 
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As we can see, there is an increase in not only classification accuracy (to a certain 

point), but also time it takes to extract features when decreasing the sampling frequency. This 

is attributed to the fact that: lower sampling frequencies means less data points taken from 

the signal as a result less data to process add to that the time it takes to down-sample a 

signal. 44.1 kHz was the fastest due to no down-sampling being done, 16 kHz is the frequency 

of choice because it’s faster and have gotten a boost in accuracy from it. 

3.5.2 Silence Removal 

Through experimentation and careful examination of 50 randomly picked waveform 

plots, 12-38 dB interval showed that truncation of silent portion was more or less acceptable, 

22 dB threshold point seem to ensure no significant amount of information was lost and less 

noise present during the trimming process of our data, plus it yields one of the best 

classification results as shown below. 

 

Figure 30: Accuracy with respect to silence threshold 
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3.5.3 Pre-emphasis 

Varying Pre-emphasis coefficient made very little difference in terms of accuracy, only 

recommended values 0.95-1 were logged, a higher pre-emphasis coefficient implies a boost 

of influence of higher frequencies. The difference in classification accuracy we get is 

presented below: 

 

Pre-emphasis coefficient 0.95 0.96 0.97 0.98 0.99 1 

Accuracy % 83.7 83.6 83.8 83.6 83.4 83.2 

Table 4:Accuracy with respect to pre-emphasis coefficient 

3.5.4 MFCC, Delta and Delta-Delta Coefficients 

These three are the backbone of all features used, so, it is no surprise to find out that 

adding more coefficients results in a substantial increase in accuracy of the classification, the 

curve follows an exponential growth then settles down at around 81 – 83 % accuracy 

 

Figure 31: Accuracy with respect to number of coefficients 
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3.5.5 Feature Selection 

Table below shows impact of removing features below different variance threshold 

points on accuracy, 0.16 gave out best results.  

 

Variance 

Threshold 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

Accuracy % 83.3 83.1 82.5 82.9 83.4 83.2 83.7 84.1 83 82.8 

Number of 

Features kept 

254 244 227 214 203 197 189 183 175 171 

Table 5: Accuracy with respect to different variance thresholds 

3.5.6 SVM Kernels 

Two kernel types were tested: linear and RBF. RBF gave the best results with a slightly 

higher training time than linear kernel, results of finding the optimal C and gamma values that 

fit each class are shown below. 
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 RBF kernel 

 

Figure 32: Accuracy with respect to C and Gamma 

 Linear kernel 

 

Figure 33: Accuracy with respect to C 
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As we can see, gamma=0.1, C=10, kernel='rbf' combination yielded the best accuracy. 

If one desires to trade off accuracy for faster training time C=1 and kernel=’linear’ is a decent 

compromise. 

3.5.7 Confusion matrix 

To show how well each class performed during testing, a confusion matrix is put in 

place. 

 

 

Figure 34: Confusion matrix 

Two classes performed perfectly with no misclassifications which are: car horn and 

thunderstorm. Others, did not fare as good such as crow sounds, door knocking and 

helicopter going as low as 43% in accuracy.  
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3.6 Detection Result 

Now we turn our focus to the result of the detection process, parameter tweaking is 

skipped at this stage and we use optimal ones gathered from classification phase. For 

evaluation purposes a newly formed testing audio clip captured directly from different 

YouTube videos containing all 25 sound classes. By sliding a window of length 1 second and 

an overlap of 0.1 second, first we detect whether the processed window event/not event 

when an event is detected it uses the model from previous section to try and predict the label 

for it. 

 

Figure 35 Audio event detection result 

13 out of the 25 audio segments were correctly predicted, which is a significant decrease in 

accuracy, however the detection was way more precise in discerning between background 

noise and actual events. 
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3.7 Conclusion 

In this chapter, we presented an implementation of audio detection and classification 

starting by describing the technics used and highlighting parameters that need to be adjusted. 

The results of the system were evaluated based on evaluation approaches cited in the 

literature of audio event detection. 

The results obtained during the tests were satisfactory. However, testing the system in 

a new environment showed that it’s far from ideal and require a larger dataset or alternative 

learning methods. 

The main advantage of the method conducted lies in its ease of application and low 

consumption of memory. 
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Conclusion 

In this work, we have carried out classification and detection using support vector 

machine trained on both cepstral and temporal features that we extracted after reducing 

them to 6 statistical descriptors, this proved to be very effective as shown with the 

classification results especially when compared to regular frame based training, which takes 

way more time and processing power. As for detection, we’ve shown how well SVM can 

perform in detecting timestamps for the events in a low background noise environment, 

while leaving more room for improvement in the approach taken as we saw with the 

classification of detected events from random YouTube clips. 

This work allowed us to introduce ourselves to a very extensive and evolving research 

topic. It allowed us to familiarize ourselves with machine learning, audio features and event 

detection technics. 

By successfully implementing and evaluating a system of classification and detection, 

we were able to achieve the objectives set at the start. 

The developed system has limitations and restrictions, the main ones being not 

handling overlapping audio events very well and the system performs poorly to new different 

possible variations of the audio events, due to the small dataset. 

As perspectives to this research work, we suggest, in the first place, the 

implementation of other unsupervised deep learning algorithms which should help in 

accounting for the different variations of the audio events and handling the overlapping 

sounds more effectively. 
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