UNIVERSITE SAAD DAHLEB DE BLIDA

Faculté de Technologie
Département de Génie Civil

MEMOIRE DE MASTER EN GÉNIE CIVIL

Spécialité : Structure

Etude d'un bâtiment (2SS+RDC+9) en BA, Application de la méthode dynamique temporelle en considérant le séisme de Boumerdès

Soutenu par

DJEMMAL ALAEDDINE SALEM ISMAIL

Devant le jury composé de :

Mme.K. TADJER USDB de Blida Promotrice

Blida, octobre 2020

ملخص

هذا المشروع ينقسم الى قسمين الأول عبارة عن دراسة بناية تتألف من طابقين تحت الأرضي و طابق ارضي +9 طوابق , تم انجاز ها بولاية الجزائر العاصمة المصنفة ضمن المنطقة الزلزالية رقم III حسب القواعد الجزائرية المضادة للزلازل (version 2003) .

مقاومة و استقرار البناية لكل الحمولات العمودية و الأفقية مضمونة بواسطة العارضات ,الأعمدة و الجدران المشكلة من مادة الخرسانة المسلحة.

الدر اسة الحركية تمت باستعمال برنامج ألي (Etabs17.01).

تحديد الأبعاد و التسليح كل العناصر المقاومة للبناية صمم طبق المعابير و القوانين المعمول بها في الجزائر

(RPA 99 version 2003, BAEL modifié 91 99)

تسليح العناصر المقاومة تم بواسطة برنامج (SOCOTEC)

تحديد الأبعاد وتسليح الأساسات الطوابق الأرضية.

اما القسم الثاني فهو عبارة عن بحث حول زلزال بومرداس 2003 و لمعرفة الاسباب الرئيسية للكوارث الناتجة عنه قمنا بدراسة حركية لزلزال بومرداس على البناية وفق للقواعد الجزائرية المضادة للزلازل (RPA99 ET RPA99version2003)

مع مقارنة النتائج الدراسة الحركية بينهما

وفي النهاية استخلاص كيفية تجنب هده الكوارث وفق شروط المضافة للقواعد الجزائرية المضادة للزلازل (RPA99 version 2003).

كلمات مفتاحية

الخرسانة المسلحة, تدعيم مختلط, الدراسة الديناميكية, معايير البنا، ,SOCOTEC, SAP2000, ETABS17, الخرسانة المسلحة (ارضية الاساس).

Abstract

Our project of end of study consists of detailed study of building R+9 with two basements, this project contains 7 chapter:

1st chapter

Our work is a study of a building of residential behaviour, contains a ground floor and nine floors resting on an infrastructure with two basements which is implanted in the commune of Draria Wilaya D'ALGER, precisely in the strong seismic (zone III) according to the Algerian Paraseismic Regulation 99 version 2003.

with a length of 27 metres, a width of 22.85 metres and a clear height of 30 metres.

It is chosen the 28 days resistance at 25 MPA and FEe500.

2nd chapter

It is the pre-dimensioning of the elements of the structure.

Based on the calculations of the slab dimensions (hollow body slab. solid slab), the load and overload of the slabs is determined.

It is also to dimension the Acropolis and determine the load and the dimensions of the beams.

As well as the Calculation of the load's descent and the determination of the dimensions of the columns, central, edge and corner columns.

Then the unfavourable post dimensions are taken.

In our 3rd chapter:

- -The design and dimensions of the staircase elements.
- -Calculates the moments and shearing forces of the staircase.
- Then the reinforcement of the staircase was calculated according to Algerian earthquake regulations 99 version 2003 and BAEL 91 modified 99.
- -Calculation of moments and shearing forces of slabs
- -Afterwards, the hollow body slab (the beams) and the solid slab were reinforced by means of compound bending.

Our 4th chapter:

is based on the dynamic study of the structure:

- -It has been drawn on an etabs 17.0.1 program.
- -Then we chose the safety coefficients according to the classification of the seismic zone and the Algerian earthquake regulations 99 versions 2003.
- Then the structure was reinforced with sails until the final model was found which verified all the conditions of the Algerian Seismic Regulation 99 version 2003.

In the 5th chapter:

The determination of the moments and efforts that are made on the column to make the reinforcement with a socotec program is based on the determination of the moments and efforts that are made on the post to make the reinforcement with a socotec program.

Then we determine the vertical and horizontal steel section of columns. After, we check the ELS and the check of shear force

Determination of the moments that are made on the beams to make the reinforcement with a socotec program.

Just at the end we make our service limit state checked and the check of the shearing force and the boom.

The reinforcement of walls is made using the method of stressing, removing the stresses from the ETABS17.01 and determining the steel cross-section of vertical, horizontal and joint.

In the 6 th chapter

Determination of type of radium and dimensions of radium and the nervous then the reinforcement of the latter and the reinforcement of periphrastic wall is made.

In the 7 th chapter

In the second part of our work and after a modest bibliography on the Boumerdes earthquake event which happened on May 23, 2003, we have applied the method of temporal dynamic analysis for the seismic study of our structure. For this we have considered accelerograms recorded by different

stations during the Boumerdes earthquake. we first did an analysis of our structure without bracing walls, then we did the analysis of the structure with bracing walls.

this study allowed us to make a simulation of the Boumerdes earthquake as well as a comparison between the temporal dynamic method and the spectral modal analysis method.

Keywords

Reinforced concrete, mixed bracing, dynamic analysis, construction rules, **ETABS17**, **SAP2000**, **SOCOTEC**, General Radier.

Résumé

Notre projet de fin d'étude porte sur l'étude d'un bâtiment R+9 avec deux sous-sol ainsi qu'une analyse dynamique en considérant le séisme de Boumerdes (2003), ce projet est réalisé à la wilaya d'Alger classée en zone séismique III selon les règlements parasismiques algérienne (RPA99 version 2003). La garantie de la résistance et la stabilité de ce bâtiment est assurée par des portiques et des voiles de contreventement. L'étude dynamique est faite par un programme automatisé (ETABS17.0.1)

Le calcul du ferraillage des éléments résistants a été fait avec le programme (SOCOTEC) selon les règlements suivants : RPA 99 version 2003, BAEL91 modifié99.

La deuxième partie de notre travail consiste en une bibliographie sur l'évènement sismique de Boumerdès (23 mai 2003). Nous avons appliqué la méthode d'analyse dynamique temporelle pour l'étude sismique de notre structure. Cette analyse nous a permis de simuler le tremblement de Boumerdès et de comparer les deux méthodes d'étude dynamiques, à savoir la méthode modale spectrale et la méthode dynamique temporelle.

Mots clés

Béton armé, contreventement mixte, analyse dynamique, règles de construction, ETABS17, SAP2000, SOCOTEC, Radier général.

DEDICACES

C'est avec l'aide et la grâce de DIEU que j'ai achevé cet humble travail.

Avec l'expression de ma reconnaissance, je dédie ce modeste travail à ceux qui, quels que soient les termes embrassés, je n'arriverais jamais à leur exprimer mon amour sincère

MES PARENTS pour leur grand amour leur soutien et sacrifice indéfectibles

À MES CHERES SŒURS, Nesrine, Soumia et mon frère Redha; pour leur encouragement et soutien tout au long de mes études. Que Dieu les protège et leurs offre la chance et le bonheur

À tous mes amis

Et à tous ceux qui sont proches de mon cœur et qui m'encouragent et supportent pour donner le meilleur de moi-même

A mon binôme ALa-eddine

SALEM Ismail

DEDICACES

Je dédie ce modeste travail

À MES PARENTS pour leur grand amour et leur soutien et sacrifice indéfectibles

À MA chère SŒUR: Nesma et MES CHERES FRERES, Med Amine, Abderrahmane et Younes pour leur encouragement et soutien tout au long de mes études. Que Dieu les protège et leurs offre la chance et le bonheur.

À tous mes amis : Islam, Kheir-Eddine , Ramzi , Mustapha Et à

Tous ceux qui sont proches de mon cœur et qui m'encouragent et me soutiennent pour donner le meilleur de moi-même.,

A mon binôme Ismail.

DJEMMAL Ala-eddine

Remerciements

Nous tenons à remercier tous ceux qui ont rendu ce travail, pour leur aide précieuse, leurs conseils fructueux et leurs encouragements

Une grande gratitude et nos sincères remerciements sont exprimés à notre chère promotrice TADJER Khalida, pour nous avoir encadrés, éclairés et orientés. Pour ses conseils et sa disponibilité qui nous ont permis de mener à bien ce travail.

Aux membres du jury qui ont bien voulu nous honorer par leur acceptation d'évaluer notre travail.

Nous tenons également à remercier tout le staff de Département de Génie civil pour leur professionnalisme et leur disponibilité tout au long de ces cinq ans d'études.

Je désire aussi remercier les professeurs de Département Génie civil, qui nous ont fourni les outils nécessaires pour la réussite de nos études.

Sans oublier en dernier, nos remerciements à tous nos amis pour leur aide et leur encouragement.

LISTE DES TABLEAUX

Partie 1:

CHAPITRE 1 : présentation de l'ouvrage

	Tableau 1.1 : Les dimensions en élévation.	29
	Tableau 1.2 : Les dimensions en plan.	29
CHA	APITRE 2 : Pré dimensionnement des éléments et décente des charges	
	Tableau 2-1 : Descentes des charges du plancher terrasse (Corps creux).	39
	Tableau 2-2 : Descente des charges permanentes du plancher de l'étage courant.	40
	Tableau 2-3 : Composition du Plancher en dalle pleine (Balcon).	40
	Tableau 2-4 : Composition du Plancher entre sol.	41
	Tableau 2-5 : Composition de Mur extérieur.	41
	Tableau 2-6 : Loi de dégression des surcharges.	46
	Tableau 2-7 : Surfaces des planchers reprises pour chaque type de poteaux.	47
	Tableau 2-8 : descente de charges du poteau centrale.	49
	Tableau 2-9: Choix Final des Poteaux centraux.	50
	Tableau 2-10 : descente de charges du poteau d'angle.	52
	Tableau 2-11: Choix Final des Poteaux d'angle.	53
	Tableau 2-12 : descente de charges du poteau de rive.	55
	Tableau 2-13: Choix Final des Poteaux de rive.	56
	Tableau 2-14: Choix Final des Poteaux.	57
	Tableau 2-15: Epaisseurs des voiles.	58

CHAPITRE 3 : Etude des éléments secondaires

Tableau 3.1: Les combinaisons des charges.	67
Tableau 3.2 : Ferraillage du balcon.	68
Tableau 3.3 : Vérification des contraintes.	70
Tableau 3.4: Charges et surcharges d'exploitation sur les poutrelles.	72
Tableau 3.5 : Tableau récapitulatif du calcul des sections d'armatures en travée.	79
Tableau 3.6: Tableau récapitulatif du calcul des sections d'armatures sur appuis	80
Tableau 3.7: Vérification de la contrainte de béton.	82
Tableau 3.8: Calcul de la flèche.	83
Tableau 3.9 : Ferraillage de la dalle pleine rectangulaire.	88
Tableau 3.10 : Vérification des contraintes à l'ELS.	90
Tableau 3.11 : Calcul des sollicitations.	94
Tableau 3.12: Ferraillage de l'escalier.	95
Tableau 3.13 : Vérification de compression du béton.	97
Tableau 3.14 : Vérification de la flèche de l'escalier	98
Chapitre 4 : Etude dynamique et sismique de la structure	
Tableau 4.1 : Facteur de qualité.	106
Tableau 4.2 : Participation massique du modèle initial	107
Tableau 4.3 : Participation massique du 1 ^{er} modèle.	108
Tableau 4.4: Vérification des déplacements inter étages du 2 ^{éme} modèle.	109
Tableau 4.5 : Participation massique du 2 ^{ème} modèle.	110
Tableau 4.6 : Vérification des déplacements inter étages du 2 ^{éme} modèle	111
Tableau 4.7 : Vérification de l'effort normal pour les poteaux carrés.	111
Tableau 4.8 : Participation massique du 3 ^{ème} modèle après la vérification l'effort norm réduit.	nal 112
Tableau 4.9: Vérification des déplacements inter étages du 4 ^{éme} modèle.	113

Tableau 4.10 : Vérification des portiques sous 25% de l'effort tranchant d'étage.	114
Tableau 4.11 : Vérification l'effet p- Δ inter étages du modèle final.	115

Chapitre 5 : Ferraillage des éléments structuraux

Tableau 5.1 : Caractéristiques du béton et de l'acier.	116
Tableau 5.2 : Ferraillages des poteaux carrées situation durable (N^{max} , $M^{corr)}$	117
Tableau 5.3 : Ferraillages des poteaux carrées situation durable (M ^{max,} N ^{corr}).	118
Tableau 5.4 : Ferraillages des poteaux carrées situation durable (N^{min}, M^{corr}) .	118
Tableau 5.5 : Ferraillages des poteaux carrées situation accidentelle (N ^{max} , M ^{corr}).	118
Tableau 5.6 : Ferraillages des poteaux carrées situation accidentelle (M ^{max} , N ^{corr}).	119
$\textbf{Tableau 5.7:} Ferraillages des poteaux carrées situation accidentelle (N^{min}, M^{corr}).$	119
$\textbf{Tableau 5.8:} \ \text{Ferraillages des poteaux carr\'ees situation accidentelle (N^{max}, M^{corr}).}$	119
Tableau 5.9 : Ferraillages des poteaux carrées situation accidentelle (M^{max} , N^{corr}).	120
$\textbf{Tableau 5.10:} Ferraillages des poteaux carrées situation accidentelle (N^{min}, M^{corr}).$	120
Tableau 5.11 : Choix des armatures des poteaux carrées.	120
Tableau 5.12 : Vérifications des contraintes pour les poteaux carrés	121
Tableau 5.13 : Vérification des contraintes pour les poteaux carrés.	122
Tableau 5.14 : Vérification de la contrainte de cisaillement pour les poteaux carrés.	123
Tableau 5.15: Espacement maximales selon RPA99 des poteaux carrés.	124
Tableau 5.16 : Choix des armatures transversales pour les poteaux carrés.	125
Tableau 5.17 : Ferraillage des poutres porteuses 30x40 (situation durable).	129
Tableau 5.18 : Ferraillage des poutres porteuses 30x40 (situation accidentelle).	130
Tableau 5.19 : Ferraillage des poutres porteuses 30x40 (situation accidentelle).	130
Tableau 5.20 : Ferraillage des poutres non porteuses (situation durable).	130

Tableau 5.21 : Ferraillage des poutres non porteuses (situation accidentelle).	131
Tableau 5.22 : Ferraillage des poutres non porteuses (situation accidentelle)	131
Tableau 5.23 : Choix des armatures pour les poutres porteuses 30x40.	131
Tableau 5.24 : Choix des armatures pour les poutres non porteuses 30x40.	132
Tableau 5.25 : Vérification de la condition de non fragilité.	132
Tableau 5.26 : Vérification des poutres porteuse 30x40 à l'ELS.	132
Tableau 5.27: Vérification des poutres non porteuse 30x45 à l'ELS.	133
Tableau 5.28 : Vérification de la contrainte de cisaillement dans le sens porteur 30x40	133
Tableau 5.29 : Vérification de la contrainte de cisaillement dans le sens porteur non 30x45.	133
Tableau 5.30 : Calcul des armatures transversales.	134
Tableau 5.31 : Calcul de la flèche des poutres.	135
Tableau 5.32 : Calcul de la flèche des poutres.	136
Tableau 5.33 : Valeurs de (l_f/l) .	140
Tableau 5.34 : Calcul de $\sigma_{u \text{ lim}\underline{\bullet}}$	141
Tableau 5.35: Aciers verticaux et horizontaux.	142
Tableau 5.36: Aciers transversaux.	142
Tableau 5.37 : Aciers supplémentaires.	144
Tableau 5.38 : Calcul de σ_{ba} et σ_{bna} pour l'exemple (V1).	146
Tableau 5.39 : Calcul des armatures verticales de l'exemple (Vy1).	146
Tableau 5.40 : Calcul des armatures du voile (V1Y).	147
Tableau 5.41 : Calcul des armatures du voile (y2).	148
Tableau 5.42 : Calcul des armatures du voile (V3Y).	149
Tableau 5 43 · Calcul des armatures du voile (VAV _V5V-V6V)	150

Tableau 5.44 : Calcul des armatures du voile (VX3).	151
Tableau 5.45 : Calcul des armatures du voile (VX2).	152
Tableau 5.46 : Calcul des armatures du voile (V1X).	153
Tableau 5.47 : Calcul des armatures du voile (V4X).	154
Tableau 5.48 : Calcul des aciers de couture des voiles.	155
Tableau 5.49: Calcul des aciers de couture des voiles.	156
Tableau 5.50 : Calcul des aciers de couture des voiles.	156
Tableau 5.51 : Calcul des aciers horizontaux des voiles.	157
Tableau 5.52 : Calcul des aciers horizontaux des voiles.	158
Tableau 5.53 : Calcul des aciers horizontaux des voiles.	159
Chapitre 6 : Etude des fondations	
Tableau 6.1 : Sections des semelles isolées.	165
Tableau 6.2: Sections des semelles filantes.	167
Tableau 6.3 : Choix de hauteur des nervures.	171
Tableau 6.4 : Contraintes sous le radier à l'ELU.	174
Tableau 6.5 : Contraintes sous le radier à l'ELS.	174
Tableau 6.6: Ferraillage des panneaux du radier.	176
Tableau 6.7 : Vérification des contraintes.	177
Tableau 6.8 : Vérification des contraintes (correction).	177
Tableau 6.9 : Ferraillage des nervures (sens porteur).	178
Tableau 6.10 : Ferraillage des nervures (sens non porteur).	178
Tableau 6.11 : Vérification de la condition de non fragilité.	179
Tableau 6.12 : Vérification des contraintes à l'ELS.	179

	Tableau 6.13 : choix des armatures transversales.	180
	Tableau 6.14 : Ferraillage du voile périphérique.	185
	Tableau 6.15 : Vérifications des contraintes.	186
	Tableau 6.16: Choix des Armatures.	187
	Tableau 6.17 : Vérifications des contraintes	187
Chap	pitre 7 :	
	Tableau 7.1: Les endommages des logements dans la wilaya d'Alger et de Boumerdés.	192
	Tableau 7.2 : Nombre des victimes et blessés.	192
	Tableau 7.3 : Les dimensions des poteaux.	196
	Tableau 7.4: Les dimensions des poutres.	197
	Tableau 7.5 : Ferraillage des poteaux	197
	Tableau 7.6 : Ferraillage des poutres.	198
	Tableau 7.7: Vérification Des Accélérations Spectrale à Période nulle.	201
	Tableau 7.8 : Vérification Des Accélérations Des Deux Spectres Avec La Condition (c) d'EC8.	202
	Tableau 7.9 : Les déplacements maximaux pour chaque accélérogramme (x-x).	205
	Tableau 7.10 : Les déplacements maximaux pour chaque accélérogramme (y-y).	205
	Tableau 7.11 : Déplacements inter étages sous l'accélérogramme de Kedara	206
	Tableau 7.12: Déplacements inter étages sous l'accélérogramme de Dar el Beida.	206
	Tableau 7.13 : Déplacements inter étages sous l'accélérogramme de Husseiny Dey.	206
	Tableau 7.14: Déplacements inter étages moyens pour tous les accélérogrammes.	207
	Tableau 7.15 : Effort tranchant maximum à la base de la structure pour chaque cas	207

Tableau 7.16 : Les déplacements maximaux pour chaque accélérogramme (x-x).

Tableau 7.17 : Les déplacements maximaux pour chaque accélérogramme (y-y).

209

209

d'accélérogramme.

Tableau 7.18 : Déplacements inter étages sous l'accélérogramme de Kedara.	209
Tableau 7.19: Déplacements inter étages sous l'accélérogramme de Dar el Beida.	210
Tableau 7.20 : Déplacements inter étages sous l'accélérogramme de husseiny dey	210
Tableau 7.21: Déplacements inter étages moyens pour tous les accélérogrammes.	210
Tableau 7.22 : Effort tranchant maximum à la base de la structure pour chaque cas	211
d'accélérogramme.	
Tableau 7.23: Déplacements inter étages moyens pour tous les accélérogrammes sens X-X.	211
Tableau 7.24 : Déplacements inter étages moyens pour tous les accélérogrammes sens Y-Y.	212

LISTES DES FIGURES

Figure 1.1 Site du projet.	28
Figure 1.2. Evaluation de la résistance de compression f_{cj} en fonction de l'âge de béton.	31
Figure 1.3. Evaluation de la résistance de traction f_{tj} en fonction la résistance de compression f_{cj} .	32
Figure 1.4 Diagramme Contraintes – Déformations ELU	33
Figure 1.5 Diagramme Contraintes – Déformations ELS.	33
Figure 1.6 Diagramme Contraintes – Déformations de l'Acier.	34
Figure 2-1: plancher à corps creux.	36
Figure 2-2 : coupe verticale du plancher en corps creux.	37
Figure 2-3 : Coupe transversale du plancher de la terrasse inaccessible reprendre l'image avec 16+4.	38
Figure 2-4 : Coupe transversale d'un plancher d'étage courant et du RDC.	39
Figure 2-5 : Plancher en dalle pleine.	40
Figure 2-6 : Mur extérieur.	41
Figure 2-7 : Acrotère.	42
Figure 2-8 : Section réduite du poteau.	44
Figure 2-9: coupe A-A.	45
Figure 2-10 : Poteau central.	47
Figure 2-11: vue en plan du poteau central.	48
Figure 2-12 : vue en plan du poteau d'angle.	51
Figure2-13 : Poteau de rive.	54
Figure 2-14 : vue en plan du poteau de rive.	54
Figure 2-14: Schéma du voile.	58
Figure 2-15 : Vue en plan du voile.	58
Figure 3.1 : Acrotère.	59
Figure 3.2 : Charges et surcharges agissent sur l'acrotère.	60
Figure 3.3: effort interne et moment.	61

Figure 3.4 : Ferraillage de l'acrotère.	61
Figure 3.5 : Distance de l'axe neutre.	63
Figure 3.6 : Ferraillage de l'acrotère.	65
Figure 3.7 : schémas statique du balcon.	66
Figure 3.8 : Diagramme du moment fléchissant à l'ELU.	67
Figure 3.9 : Diagramme de l'effort tranchant à l'ELU.	67
Figure 3.10 : Diagramme du moment fléchissant à l'ELS.	68
Figure 3.11 : Diagramme de l'effort tranchant à l'ELS.	68
Figure 3.12: Schéma de ferraillage des balcons	70
Figure 3.13 : Corps Creux en 3D.	71
Figure 3.14 : Schéma de poutrelle	73
Figure 3.15 : Schéma statique de la poutrelle à 6 travées.	77
Figure 3.16: Moment fléchissant, Effort tranchant de la poutrelle à 06 travées.	85
Figure 3.17 : Schéma de ferraillage des poutrelles type 2.	86
Figure 3.18 : Ferraillage de la dalle de compression	87
Figure 3.19: Dimensions d'une dalle pleine rectangulaire	90
Figure 3.20 : Ferraillage de la dalle pleine rectangulaire.	91
Figure 3.21 : schéma de l'escalier.	92
Figure 3.22: vue en plan de l'escalier.	94
Figure 3. 23: schéma statique de l'escalier.	99
Figure 3.24: Schéma de ferraillage de volé.	103
Figure 4.1 : Spectre de réponse	106
Figure 4.2 : Vue en plan du modèle initial	107
Figure 4.3 : Vue en plan du 1 ^{er} modèle	109
Figure 4.4 : Vue en plan du 2 ^{éme} modèle	114

Figure 4.5: Evaluation des effets du second ordre.	119
Figure 5. 1 : Schéma de ferraillage des poteaux.	135
Figure 5.2 : Arrêt des barres.	136
5.3.1 Schéma de ferraillage des poutres porteuses.	137
5.3.2 Schéma de ferraillage des poutres non porteuses.	138
Figure 5.4: Disposition des voiles dans la structure	138
Figure 5.5 : Section rectangulaire, soumise à la flexion composée.	139
Figure 5.6 : Schéma d'une voile pleine et disposition du ferraillage.	139
Figure 5.7: Définition de l'élément mur	140
Fgure 5.8 : Mur encastré	144
Figure 5.9 : Discrétisation d'un voile en élément (maille) coque.	162
Figure 5.10: Disposition des armatures verticales dans les voiles.	163
Figure 5.11 : Ferraillage des linteaux.	163
Figure 5.12 : Ferraillage Voile 3.	163
Figure 5.13 : Ferraillage Voile 4.	163
Figure 5.14 : Ferraillage Voile 1.	167
Figure 5.15 : Ferraillage Voile 4.	168
Figure 6.1 : Semelle filante.	172
Figure 6.2: Disposition des nervures par rapport au radier et aux poteaux.	173
Figure 6.3 : Schéma statique du bâtiment.	175
Figure 6.4 : Contraintes sous le radier.	178
Figure 6.5 : Panneau de la dalle du radier.	181
Figure 6.6 : Schéma de ferraillage du radier.	181
Figure 6.7 : Schéma de ferraillage des nervures (sens porteur).	182
Figure 6.8 : Schéma de ferraillage des nervures (sens non porteur).	182

Figure 6.9 : Schéma statique du débord.	183
Figure 6.10 : Diagramme des Moments.	183
Figure 6.11: Evaluation des charges.	187
Figure 6.12 : Poussées des terres.	188
Figure 6.13 : Ferraillage du Voile Périphérique sens x-x.	190
Figure 6.14 : Ferraillage du Voile Périphérique sens y-y.	191
Figure 7. 1 : Carte des structures actives de la région du nord (centre) d'Algérie montrant les principales failles [9].	193
Figure 7.2 : la faille de Boumerdès [10].	193
Figure 7.3 : Effet de site sur le comportement sismique des constructions.	193
Figure 7.4 Maison de la casbah de Dellys (11 ^{éme} siècle)	194
Figure 7.5 Construction en maçonnerie à Zemmouri (début du 20 ^{éme} siècle)	194
Figure 7.6 Effondrement des bâtiments en mille-feuilles.	194
Figure 7.7 Plastification des nœuds	195
Figure 7.8 : Cisaillement du poteau	195
Figure 7.9 : Absence des cadres dans les nœuds.	196
Figure 7.10: Espacement constant des cadres.	199
Figure 7.11 : Cisaillement des poteaux courts du vide sanitaire.	200
Figure 7.12 : Spectre De Réponse Elastique De L'RPA99v2003.	200
Figure 7.13 : Accélérogrammes Kedara correspondant au séisme de Boumerdès	200
Figure 7.14 : Accélérogrammes Dar el beida correspondant au séisme de Boumerdès.	201
Figure 7.15 : Accélérogrammes hussein dey correspondant au séisme de Boumerdès.	204
Figure 7.16 : Spectre de réponse moyen calculé pour tous les accélérogrammes regroupés en correspondance avec le spectre élastique du site cible à 5% d'amortissement.	204
Figure 7.17 : Etapes de l'Analyse Dynamique Temporelle Linéaire.	205
Figure 7.18 : Variation des déplacements pour chaque cas d'accélérogramme selon x-x	208
Figure 7.19 : Variation des déplacements pour chaque cas d'accélérogramme selon y-y.	209

LISTE DES SYMBOLES

A : Coefficient d'accélération de zone, Coefficient numérique en fonction de l'angle de frottement.

A_s: Aire d'une section d'acier.

A_t: Section d'armatures transversales.

B : Aire d'une section de béton.

ø: Diamètre des armatures, mode propre.

 φ : Angle de frottement.

C : Cohésion.

Q_{adm} : Capacité portante admissible.

Q: Charge d'exploitation.

PC: Pression de consolidation.

 γ_s : Coefficient de sécurité dans l'acier.

 γ_b : Coefficient de sécurité dans le béton.

 σ_s : Contrainte de traction de l'acier.

 σ_{bc} : Contrainte de compression du béton.

 $\overline{\sigma}_s$: Contrainte de traction admissible de l'acier.

 $\overline{\sigma}_{bc}$: Contrainte de compression admissible du béton.

 τ_u : Contrainte ultime de cisaillement.

 τ : Contrainte tangentielle.

 β : Coefficient de pondération.

 σ_{sol} : Contrainte du sol.

 $\sigma_{\scriptscriptstyle m}$: Contrainte moyenne.

G: Charge permanente.

 ξ : Déformation relative.

 V_0 : Effort tranchant a la base.

E.L.U: Etat limite ultime.

E.L.S: Etat limite service.

N_{ser}: Effort normal pondéré aux états limites de service.

N_u: Effort normal pondéré aux états limites ultime.

T_u: Effort tranchant ultime.

T : Période.

S_t: Espacement.

 λ : Elancement.

F: Force concentrée.

f: Flèche.

 \bar{f} : Flèche admissible.

D : Fiche d'ancrage.

L : Longueur ou portée.

L_f: Longueur de flambement.

I_p: Indice de plasticité.

I_c: Indice de consistance.

d: Hauteur utile.

F_e: Limite d'élasticité de l'acier.

M_u: Moment à l'état limite ultime.

M_{ser}: Moment à l'état limite de service.

M_t: Moment en travée.

M_a: Moment sur appuis.

M₀: Moment en travée d'une poutre reposant sur deux appuis libres, Moment à la base.

I: Moment d'inertie.

f_i: Flèche due aux charges instantanées.

f_v: Flèche due aux charges de longue durée.

I_{fi}: Moment d'inertie fictif pour les déformations instantanées.

I_{fv}: Moment d'inertie fictif pour les déformations différées.

M: Moment, Masse.

E_{ii}: Module d'élasticité instantané.

E_{vi}: Module d'élasticité différé.

E_s: Module d'élasticité de l'acier.

f_{c28}: Résistance caractéristique à la compression du béton à 28 jours d'âge.

f₁₂₈: Résistance caractéristique à la traction du béton à 28 jours d'âge.

F_{cj}: Résistance caractéristique à la compression du béton à j jours d'âge.

K : Coefficient de raideur de sol.

 δ : Rapport de l'aire d'acier à l'aire de béton.

Y: Position de l'axe neutre.

A_g: Section transversale brute du voile ou trumeau.

I₀: Moment d'inertie de la section totale homogène.

 δ ek : déplacement dû aux forces sismiques (y compris l'effet de torsion).

Acv : section brute du béton par mètre linéaire limité par l'épaisseur de l'âme.

Φ: Coefficient de sécurité.

αc : coefficient dépendant de l'élancement du mur.

ρv : Pourcentage des armatures verticales dans lame du mur.

ph: Pourcentage des armatures horizontales dans lame du mur.

on: Pourcentage nominale des armatures dans lame du mur.

hw: Hauteur totale du voile.

lw: Longueur du mur en plan.

δu : déplacement du voile au sommet.

Ig: Moment d'inertie du voile.

UNITES

Les unités utilisées en béton armé sont celle du système international (USI) (et leurs multiples) :

m; cm; mm: longueurs; dimensions; portées.

cm²: Section d'acier.

kN (MN; N): Charge ponctuelle.

kN/ml (MN/ml; N/ml): Charge linéaire uniformément réparties.

 kN/m^2 (MN/m^2 ; N/m^2): Charge surfacique.

kN/m³ (MN/m³; N/m³) : Charge volumique.

kNm (MNm; Nm): Moment d'une force.

MPa (kPa; Pa): Contrainte, pression; module d'élasticité ou déformation.

TABLE DES MATIERES

RESUME	2
DEDICACE	6
REMERCIMENTS	8
LISTE DES TABLEAUX	9
LISTE DES FIGURES	16
LISTE DES SYMBOLES	20
TABLE DES MATIERES	23
INTRODUCTION GENERALE	26
CHAPITRE 1 : PRESENTATION DE L'OUVRAGE	28
1.1 Introduction	28
1.2 A propos de notre ouvrage	28
1.3 Caractéristiques des matériaux	30
1.4 Hypothèse de calcul	35
CHAPITRE 2 : PRE DIMENSIONNEMENT	36
2.1 Introduction	36
2.2 Pré dimensionnement des planchers	36
2.3 Evaluation des charges et surcharges	38
2.4 Pré dimensionnement des poutres	42
2.5 Pré dimensionnement des poteaux	43
2.6 Pré dimensionnement des voiles	58
CHAPITRE 3: CALCUL DES ELEMENTS SECONDAIRES	59
3.1 Introduction	59
3.2 Acrotère	59
3.3 Etude des balcons	65
3.4 Etude des planchers	70
3.5 Etude des escaliers	91

CHAPITRE 4 : ETUDE DYNAMIQUE EN ZONE SISMIQUE	100
4.1 Introduction	100
4.2 Etude sismique	100
4.3 Choix de la méthode de calcul	101
4.4 Résultats de l'analyse sismique	106
CHAPITRE 5: FERRAILLAGE DES ELEMENTS RESISTANT	116
5.1 Introduction	116
5.2 Ferraillage des poteaux	116
5.3 Ferraillage des poutres	128
5.4 Ferraillage des voiles	138
CHAPITRE 6: ETUDE DES FONDATIONS	164
6.1 Introduction	164
6.2 Fonctions assurées par les fondations	164
6.3 Classification des fondations	164
6.4 Choix de type de fondation	164
6.5 Calcul des fondations	164
6.6 Choix de type de semelles.	165
CHAPITRE 7: APPLICATION DE LA METHODE D'ANALYSE	189
DYNAMIQUE TEMPORELLE EN CONSIDERANT LE SEISME DE	
BOUMERDES	
7.1 Introduction	189
7.2 Présentation de la wilaya de Boumerdés	190
7.3 Caractéristiques sismique de la région	190
7.4 Séisme de Boumerdès 21 mai 2003	191
7.5 Application de la méthode dynamique temporelle	196
7.6 Chargement Sismique	198
7.7 Élaboration du Spectre de Réponse Elastique Normalisé Pour Le Bâtiment	199

7.8. Vérification Des Spectres Elastiques Selon Les Conditions et Les	201
Recommandations De L'Eurocode 8	
7.9 Résultats	204
CONCLUSION GENERALE	214
REFERENCES	216
APPENDICES	217

Introduction générale

Le secteur du bâtiment et de la construction est l'un des secteurs les plus concerné par les enjeux du développement durable, l'homme a toujours essayé de suivre le progrès et apprendre des nouvelles techniques de construction, pour répondre à ses besoins ainsi que pour améliorer la qualité et le comportement des structures des bâtiments.

Le bâtiment est le premier élément à être touché par les catastrophes naturelles tels que : les séismes, les cyclones, les volcans...etc, son endommagement induit automatiquement des pertes humaines très importantes aussi la dislocation de la vie sociale et économique des régions sinistrées.

Parce que ce n'est pas le bâtiment qui tue mais la vulnérabilité sismique qui en est la cause ; il faut construire dans les règles de l'art. L'expérience a montré que la plupart des bâtiments endommagés pendant le tremblement de terre de Boumerdès du 21 mai 2003 n'étaient pas de conception parasismique. Pour cela, il y a lieu de respecter les normes et les recommandations parasismiques afin de protéger convenablement les constructions contre un éventuel séisme.

Dans notre projet de fin d'étude intitulé « Etude d'un bâtiment 2SS+RDC+9 en BA, Application de la méthode dynamique temporelle en considérant le séisme de Boumerdès » nous proposons dans la première partie de faire une étude technique complète de dimensionnement et de vérification qui sera menée selon les étapes principales suivantes :

- La première étape portera sur la présentation complète du projet à étudier, la définition de ses différents éléments et le choix de matériaux à utiliser.
- La deuxième étape sera la détermination des actions verticales présentes dans le bâtiment et le pré dimensionnement des éléments structuraux du bâtiment.
- Alors que la troisième étape sera le calcul des éléments non structuraux (acrotère, escalier, planchersetc.)
- La quatrième étape portera sur l'étude dynamique du bâtiment, l'étude sera réalisée par l'analyse du modèle de la structure en 3D sur le logiciel de calcul ETABS.
- La cinquième étape portera sur le calcul du ferraillage des éléments structuraux.
- La sixième étape portera sur l'étude de l'infrastructure.

Dans la deuxième partie de notre travail et après une modeste bibliographie sur l'évènement sismique de Boumerdès et qui y a eu lieu le 23 mai 2003, nous appliquerons la méthode d'analyse dynamique temporelle pour l'étude sismique de notre structure.

Pour cela nous allons en premier lieu et en considérant des accélérogrammes enregistrés par différentes stations pendant le séisme de Boumerdès, faire une analyse de notre structure sans voiles de contreventement, par la suite nous ferons l'analyse de la structure avec voiles.

Les résultats nous permettront, dans la première étude de faire une simulation de séisme de Boumerdès et dans la seconde de faire une comparaison entre la méthode dynamique temporelle et la méthode d'analyse modale spectrale.

• A la fin nous terminerons notre travail par une conclusion générale.

1.1 Introduction

L'objectif de ce chapitre est de présenter la liste des données du bâtiment analysé, concernant le type de structure, les éléments, la géométrie et les propriétés des matériaux. La structure, ou ossature est le squelette d'un bâtiment. Elle supporte les efforts dus aux poids de la construction elle-même, aux charges d'exploitation (poids des personnes, du mobilier et des équipements).

1.2 A propos de notre ouvrage

I.2.1 Situation et destination

Le présent travail a pour but d'étudier un bâtiment multifonctionnel qui regroupe, bureaux et logements d'habitations comportant un rez-de-chaussée et neuf étages reposant sur une infrastructure avec deux sous-sols ; qui est Implanté à commune de **Draria** Wilaya D'ALGER, selon le règlement parasismique algérien (**RPA 99 v 2003**), elle est classée comme étant une zone de forte sismicité (**zone III**). [1]

Figure 1.1 : Site du Projet.

1.2.2 Mise en évidence de notre mission

La mission qui nous a été confiée était de modéliser la structure sur un logiciel de calculs aux éléments finis (Etabs 17), de dimensionner de contreventement à tous les niveaux, et de dimensionner le système de fondation, tous cela en respectant la réglementation.

1.2.3 Caractéristique géométrique

Notre structure est entièrement prévue en béton armé et a une forme irrégulière en plan, le plancher terrasse est inaccessible.

Les dimensions en plan et en élévation sont récapitulées ci-après :

A- Les dimensions en élévation

Tableau 1.1: Les dimensions en élévation.

	Partie	Hauteur (m)	Hauteur total(m)
Partie ancrée	Sous-sol 1	4	7
	Sous-sol 2	3	
Partie		3	30
apparente			
(hauteur totale	Hauteur du RDC et l'étage		
à partir du	courant		
niveau 0,0m)			

B- Les dimensions en plan

Tableau 1.2: Les dimensions en plan.

Les dimensions en plan	Distance (m)
Longueur totale en plan	27.00
Largeur totale en plan	22.85

1.2.4 Ossature

L'ossature est constituée par des portiques en béton armé et par des voiles pour assurer une bonne tenue vis-à-vis de l'action sismique. Selon le règlement parasismique algérien. [1]

1.2.5 Classification de l'ouvrage selon son importance

Ce bâtiment est à usage d'habitation adopté par des bureaux en entre sol et sa hauteur ne dépasse pas 48 m, il doit donc appartenir aux ouvrages du groupe 02. [1]

1.2.6 Planchers

Le type du plancher est en fonction de :

- La portée des différentes travées.
- Les charges à supporter.
- La forme du plancher.

Selon les critères ci-dessus nous optons pour 02 types de plancher pour notre ouvrage :

- Plancher en corps creux à base de poutrelles.
- Plancher en dalles pleines.

1.2.7 Maçonnerie

On a deux types:

- 1- Murs extérieurs : sont composés de :
- Une cloison en briques creuses de 10 cm d'épaisseur.
- Plaque de plâtre de 1.2cm d'épaisseur.

2- Murs intérieurs : double plaque plâtre séparé par une isolation.

1.2.8 Revêtement

Le revêtement de la structure est constitué par :

- Carrelage (Ligneux).
- Dalle de sol pour RDC.
- Revêtement de façade (fibres-ciment)
- Faux plafond.

1.2.9 Acrotère

Au niveau de la terrasse, le bâtiment est entouré d'un acrotère créé en béton armé de 60 cm de hauteur et de 10 cm d'épaisseur.

1.2.10 Escaliers

Servent à relier les niveaux successifs et à faciliter les déplacements inter étages, notre structure comporte 1 type d'escaliers :

- escalier droit à deux volées.

1.2.11 Ascenseurs

Notre structure comporte une cage d'ascenseur du RDC jusqu'au 9ème étage.

1.2.12 Infrastructure

Elle sera réalisée en béton armé coulée sur place, elle doit constituer un ensemble résistant et rigide capable de remplir les fonctions suivantes :

- a- Réaliser l'encastrement de la structure dans le sol.
- b- Limiter les tassements différentiels.
- c- Transmettre les charges horizontales (charges sismiques) et les charges verticales au sol d'assise de la structure.
- d- La contrainte admissible du sol est de **2 bars**.
- e- La catégorie de site **S3**.

1.3 Caractéristiques des matériaux

L'objectif de cette partie est de présenter les principales caractéristiques des matériaux utilisés en Béton Armé, puis les modèles adoptés pour conduire les calculs réglementaires.

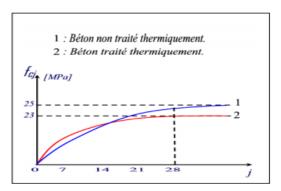
1.3.1 Le Béton

Le choix de la qualité du béton, doit répondre aux conditions suivantes :

- -Le béton doit être plutôt ductile, ce qui conduit à ne choisir que des bétons à résistance élevée.
- -Pour éviter que des désordres ou des endommagements ne se produisent trop facilement, il est recommandé de ne pas utiliser des bétons de trop faible résistance (≥ 22 MPA).
- -Les formes de coffrages et les dispositions du ferraillage seront conçues de façon à faciliter la mise en place du béton, particulièrement dans les nœuds d'ossature et les éléments verticaux.

Donc, on choisira de préférence un béton de bonne qualité, facile à mette en œuvre, sans chercher de performances exceptionnelles. [2]

En exécution, il conviendra de veiller à respecter la constance des propriétés du béton.


a- Résistance à la compression (j) jours

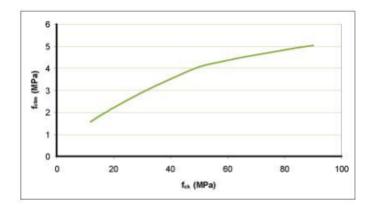
Le béton est défini par sa résistance à la compression à 28 jours. Cette dernière est notée par f_{c28} .

$$\begin{cases} j < 28 \text{ jours } : f_{cj} = 0,658 \times f_{C28} \times Log_{10} \ (j+1) \end{cases}$$
Pour :
$$\begin{cases} j > 28 \text{ jours } : f_{cj} = f_{C28} \end{cases}$$

$$j >> 28 \text{ jours} : f_{cj} = 1,1 \times f_{C28}$$

La résistance de notre béton est prise égale à $f_{c28} = 25$ MPA. Elle est mesurée par compression axiale de cylindres droits de révolution de diamètre 16 cm (section 200 cm²) et de hauteur 32cm.

Figure 1.2. Evaluation de la résistance de compression f_{cj} en fonction de l'âge de béton.


b- Résistance à la traction

Elle est déterminée par plusieurs essais, La résistance caractéristique à la traction est conventionnellement définie par la relation.

$$f_{tj} = 0.6 + 0.06.f_{cj}$$
 (MPa) [2]

Pour le cas de notre structure on utilise le même dosage en béton avec une résistance caractéristique à la compression f_{c28} et à la traction f_{t28} telle que :

$$f_{c28} = 25 \text{ MPa}$$
 donc $f_{t28} = 2,1 \text{ MPa}$.

Figure 1.3 Evaluation de la résistance de traction f_{tj} en fonction la résistance de compression f_{cj} **c- Module de déformation longitudinale**

Ce module est défini sous l'action des contraintes normales d'une longue durée ou courte durée d'application.

1. Module de déformation instantanée

Pour des charges d'une durée d'application inférieure à 24 heures

$$Eij = 11\ 000\ (fcj)^{1/3}$$

$$E_{i}$$
 28= 32164,2 *MPa*.

2. Module de déformation longitudinale différée

Pour des charges de longue durée d'application, on a :

Evi = 3700. (fci)
$$^{1/3}$$
 (MPa) [2]

$$E_{v}$$
 ₂₈= 10818,87 *MPa*

d- La masse volumique du béton armé

$$\rho = 2500 \text{ kg/m}^3$$

e- Coefficient de Poison

La déformation longitudinale est accompagnée par une déformation transversale, le coefficient de Poisson est le rapport entre la déformation transversale et la déformation longitudinale.

Dans les calculs, le coefficient de Poisson est égal à :

v = 0 ⇔ Béton fissuré à L'E.LU

 $v = 0.2 \Leftrightarrow Béton non fissuré à L'E.L.S.$

f- Les Contrainte Limites

1. Etat limite ultime « E.L.U »

Dans le cas d'une vérification à l'E.LU, on devra justifier :

- -la résistance de tous les éléments de la construction.
- -la stabilité de ces éléments compte tenu des effets du 2éme ordre.
- -l'équilibre statique de l'ouvrage.

La contrainte ultime du béton en compression est donnée par :

$$f_{bu} = \frac{0.85 f_{c28}}{\gamma_b}$$

Avec : γ_b : Coefficient de sécurité tel que :

 $\gamma_b = 1.5$ Cas des actions courantes transitoires.

 $\gamma_b = 1{,}15$ Cas des actions accidentelles.

Le coefficient réducteur de 0,85 tient compte de la dégradation de l'adhérence acier-béton sous l'action de quelques cycles de déformation post-élastique.

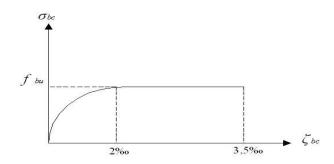


Figure 1.4 Diagramme Contraintes – Déformations ELU

2. Etat limite de service « E.L.S »

C'est un état au-delà duquel l'ouvrage (ou un de ces éléments) ne vérifie plus :

- Le confort
- Et/ou la durabilité

La contrainte limite de service est donnée par :

$$\sigma_{bc} = 0.6 \; f_{c28} = 15 \; MPa$$

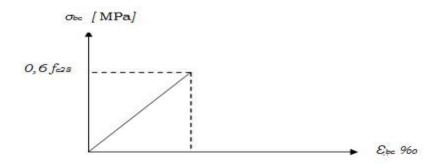


Figure 1.5 Diagramme Contraintes – Déformations ELS.

1.3.2 L'acier

Afin de remédier au problème de faible résistance du béton à la traction on intègre dans les pièces du béton des armatures pour reprendre ces efforts de traction.

Pour assurer une réserve de déformation plastique des éléments de structure, il est recommandé d'avoir un écart suffisant entre la contrainte de rupture et la limite élastique. Le règlement

demande donc que l'allongement minimal garanti soit $\geq 5\%$ hors la zone de striction. Il y a lieu d'éviter les barres lisses.

Les armatures pour le béton armé se distinguent par leurs nuances et leurs états de surface.

Dans notre projet on opte pour des armatures à haute adhérence (HA) : FeE500.

-Contrainte limite de l'acier [2]

1. Etat Limite Ultime « E.L.U »

On adopte le diagramme contrainte -déformation suivant avec :

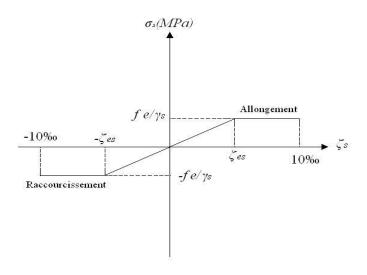


Figure 1.6 Diagramme Contraintes – Déformations de l'Acier.

 σ_s : Contrainte de l'acier

$$\gamma_s$$
: Coefficient de sécurité de l'acier il a pour valeur
$$\begin{cases} \gamma_s = 1.15 \text{ cas d'actions courantes.} \end{cases}$$
 $\gamma_s = 1.00 \text{ cas d'actions accidentelles.}$

 ε_s : Allongement relatif de l'acier $\varepsilon_s = \frac{\Delta}{I}$

2. Etat limite de service « E.L.S »

La vérification de la contrainte dans les aciers se fait :

- Pour une fissuration peu nuisible : pas de vérification ;
- Pour une fissuration préjudiciable : $\overline{\sigma}_s = \zeta_s = Min\left(\frac{2}{3}f_e, \max(0.5f_e; 110\sqrt{\eta f_{tj}})\right)$;
- Pour une fissuration très préjudiciable :

$$\overline{\sigma}_s = 0.8\zeta_s = 0.8 \times Min\left(\frac{2}{3}f_e, \max(0.5f_e; 110\sqrt{\eta f_{ij}})\right).$$

 η : Coefficient de fissuration tels que

 $\eta = 1$ pour des aciers ronds lisses

 $\eta = 1,6$ pour des aciers de H.A.

b. Module d'Elasticité de l'Acier

Le module d'élasticité de l'acier sera pris égale à : ES=2,1*10⁵ MPa

1.4 Hypothèse de calcul

Le calcul en béton armé est basé sur les hypothèses suivantes :

- Les sections droites restent planes après déformation.
- Il n'y a pas de glissement entre les armatures d'acier et le béton.
- Le béton tendu est négligé dans le calcul de la résistance à cause de sa faible résistance à la traction.
- Le raccourcissement unitaire du béton est limité à 3,5 % en flexion simple ou composée et à 2% dans la compression simple.
- L'allongement unitaire dans les aciers est limité à 10‰.
- La contrainte de calcul, notée « σ_s » et qui est définie par la relation est égale à : $\frac{feE}{\gamma_s}$

Haute adhérence
$$\left\{ \begin{array}{cccc} \sigma_{\it s} = 434.78 & \it MPa & \it Situation durable \\ \\ \sigma_{\it s} = 500 & \it MPa & \it Situation durable \\ \end{array} \right.$$

Allongement de rupture : $\zeta_s = 10\%$

2.1 INTRODUCTION

Avant d'entamer tout calcul, il est plus pratique d'estimer l'ordre de grandeur des éléments de la structure. Pour cela des règlements en vigueur, notamment le RPA99 version 2003, le BAEL91 modifié 99, et CBA 93 (règles de conception et de calcul des structures en béton armé) mettent au point ce qui est nécessaire pour un pré dimensionnement à la fois sécuritaire et économique.

2.2. PREDIMENSIONNEMENT DES PLANCHERS

Les planchers ont un rôle très important dans la structure. Ils supportent les charges verticales et les transmettent aux éléments porteurs. Les planchers isolent les différents étages du point de vue thermique et acoustique.

Pour notre bâtiment, deux types de planchers sont utilisés :

- Plancher à corps creux.
- Plancher à dalle pleine.

2. 2.1. Plancher à corps creux

- La structure étudiée comporte des planchers en corps creux. Ce type de plancher est constitué par des éléments porteurs (poutrelle), et des éléments de remplissage (corps creux), avec une dalle de compression mince en béton armé.

Figure 2-1: plancher à corps creux.

- Pour le pré dimensionnement de la hauteur des planchers on utilise la formule empirique suivante :

$$ht \ge L/22.5$$
 (Art B.6.8, 424) [2]

Avec:

- L : Portée maximale mesurée entre nus des appuis ;
- h: Epaisseur de la dalle de compression + corps creux;

$$L = 445 - 30 = 415 \text{ cm}$$
.

Donc: $ht \ge 415/22.5$ $ht \ge 18.44$ cm

Choix final: $ht=20 \text{ cm} \Rightarrow (16+4)$

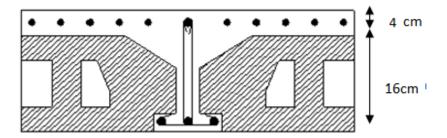


Figure 2.2 : coupe verticale du plancher en corps creux.

2.1.2 Plancher en dalles pleines

Ce type de plancher est le plus utilisé pour les bâtiments d'habitations et commerciales car ils subissent des surcharges d'exploitations importantes ($Q \ge 2,5 \text{ kN/m}^2$). Ce plancher est constitué par une dalle d'épaisseur constante reposant sur un système de poutre secondaire et principale. Les panneaux de la dalle reçoivent les charges statiques et dynamiques et les transmettent aux poutres. On déduira l'épaisseur des dalles à partir des conditions suivantes :

- Résistance au feu
- e = 7 cm Pour une heure de coupe-feu.
- e = 11 cm Pour deux heures de coupe-feu.
- e = 17.5cm pour quatre heures de coupe-feu

On choisit: e = 11 cm

➤ Isolation phonique [4]

Le confort d'une bonne isolation phonique exige une épaisseur minimale de :

e = 13 cm

On admet une épaisseur : e = 15cm.

Résistance à la flexion

Les conditions qui doivent être vérifiées selon le nombre des appuis sont les suivantes :

- Dalle reposant sur deux appuis : $\frac{Lx}{35} \le e \le \frac{Lx}{30}$ [5]
- Dalle reposant sur trois ou quatre appuis : $\frac{Lx}{50} \le e \le \frac{Lx}{40}$ [5]

Avec:

- Lx: La petite portée du panneau le plus sollicité; Lx = 4.45 m.
- *e* : Épaisseur de la dalle pleine.
- La dalle repose sur deux appuis, on aura donc : $11.85 \le e \le 13.83$

On prend : e= 12cm

-La dalle reposant sur trois ou quatre appuis : $8.9 \le e \le 11.95$

Le Choix final est:

e = 15cm

Conclusion: Pour le pré dimensionnement des planchers, nous adoptons:

Type de plancher	Epaisseur
Plancher à corps creux	e= 20 cm / (16+4)
Dalle pleine	e= 15 cm

2.3 EVALUATION DES CHARGES ET DES SURCHARGES

Cette étape consiste à déterminer les charges et les surcharges qui influent sur la résistance et la stabilité de notre ouvrage. [3]

2.3.1 Plancher à corps creux

> Plancher terrasse inaccessible

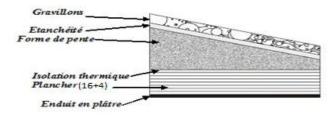


Figure 2.3 : Coupe transversale du plancher de la terrasse inaccessible.

Tableau 2.1 : Descentes des charges du plancher terrasse (Corps creux).

Designation	ρ (KN/m ³)	e(m)	G= ρ*e (KN/m²)	
1/ Protection gravillon roulés	17	0.05	0,85	
2/ Etanchéité multicouches	6	0.02	0,12	
3/ Forme de pente	22	0.1	2,20	
4/ Isolation thermique en liège	4	0.04	0,16	
5/ Dale en corps creux (16+4)	/	/	2.85	
6/ Enduit en plâtre	10	0.02	0,20	
Charge Permanente	$G = 6.38 \text{ KN/m}^2$			
Surcharge d'exploitation	Q= 1,00KN/m ²			

Plancher de l'étage courant et du RDC :

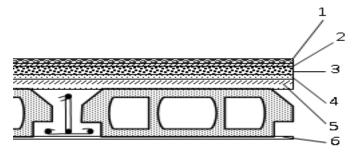


Figure 2.4 : Coupe transversale d'un plancher d'étage courant et du RDC.

Désignation G PkN/m^3) e(m) 20 0.02 1/ Carrelage 0,40 2/ Mortier de pose 20 0.02 0,40 3/ Lit de sable 18 0,54 0.03 4/ plancher en corps creux (16+4) / / 2.85 5/ Enduit en plâtre 10 0.02 0,20 6/ Cloisons légéres 10 0.1 1,00 **Charge Permanente** $G=5.39kn/m^2$

Tableau 2.2 : Descente des charges permanentes du plancher de l'étage courant.

Surcharge d'exploitation (Q) :

- Plancher RDC jusqu'à 9^{eme} étage : usage d'habitations ; $\mathbf{Q} = 1.5 \text{ KN/m}^2$.

-entre sol : usage de bureaux ; $Q = 2.5 \text{ KN/m}^2$

2.3.2 Plancher en dalle pleine

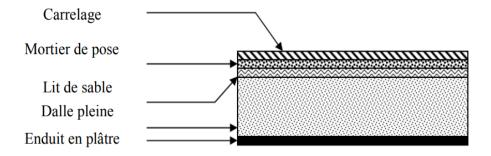


Figure 2.5 : Plancher en dalle pleine.

Tableau 2.3: Composition du Plancher en dalle pleine (Balcon).

Designation	$\rho(KN/m^3)$	e(m)	G
			(KN/m^2)
1/ Carrelage	22	0.02	0,40
2/ Mortier de pose	20	0.02	0,40
3/ Lit de sable	18	0.02	0,36
4/ Dale pleine (15cm)	25	0.15	3.75
5/ Enduit en ciment	20	0.02	0,36
Charge Permanente	G	=5,27kN/m ²	
Surcharge	137/ 3	Q=3,50	

Tableau 2.4: Composition du Plancher Sous-sol

Désignation	Poids surfacique G
	(KN/m²)
Carrelage	0,4
Mortier de ciment	0,40
Lit de sable	0,54
Dalle pleine: (0.15*25)	3.75
Enduit au plate	0,20
Cloison légères	1
Charge Permanente	G=6,29 KN/m ²
Surcharge exploitation	Q=2.5 KN/m ²

2.3.3 Maçonnerie

Murs extérieurs: La maçonnerie utilisée est en brique

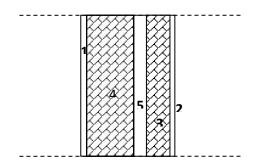


Figure 2.6 : Mur extérieur.

Tableau 2.5 : Composition de Mur extérieur

Désignation	e (cm)	$\rho (kN/m^3)$	G (kN/m ²)			
1- Enduit de ciment	2	18	0.36			
2- Enduit de plâtre	2	20	0.20			
3- brique creuse	10	8,66	0.90			
4- brique creuse	15	8,66	1.35			
5- vide d'aire	/	/	/			
Charge Permanente	G=2,81 KN/m ²					

Remarque:

Les murs peuvent être avec ou sans ouvertures, donc il est nécessaire d'utiliser des coefficients selon le pourcentage d'ouvertures :

- Murs avec portes (90% G).
- Murs avec fenêtres (80% G).
- Murs avec portes et fenêtres (70% G).

2.3.4 Acrotère

- $-G_T = G_1 + G_2$
 - $G_1 = S* \rho_{b\acute{e}ton}$ (poids propre de l'acrotère)
 - $G_2 = \rho_{ciment} * P *e.....$ (poids de revêtement de ciment)

On a:

-
$$S = \frac{0.1*0.02}{2} + (0.8*0.1) + (0.6*0.1) = 0.069m^2$$
;

$$\rightarrow$$
 G₁ = 0.069* 25 = 1.725 KN/ml;

-
$$P = 0.6+0.1+0.10+0.8+0.10+0.5 = 2,2 \text{ m}$$
;

$$\rightarrow$$
 G₂ = (0.015* (0.6+0.5) *18) =0,279 KN/ml

-
$$G_T$$
= 1.725+ 0.279 = 2.022KN/ml

 $G_{acrot\`{e}re} = 2.022 \ KN/ml$

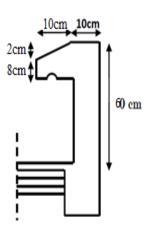


Figure 2.7 : Acrotère

2.4 PREDIMENSIONEMENT DES POUTRES

Les poutres sont des éléments horizontaux en béton, leurs sections doivent respecter le critère de rigidité selon BAEL 91 ainsi que les conditions imposées par le RPA :

Selon le BAEL 91 modifié 99 :

• La hauteur h de la poutre doit être : $\frac{L}{15} \le h \le \frac{L}{10}$

• La largueur b de la poutre doit être : $0.3h \le b \le 0.7h$

Avec:

- L : Portée de la poutre de la plus grande travée considérée.

- **h** : Hauteur de la poutre.

- **b** : Largueur de la poutre.

Selon le R.P.A 99 (version2003):

- La hauteur h de la poutre doit être : $h \ge 30$ cm;
- La largeur b de la poutre doit être : $b \ge 20$ cm;
- Le rapport hauteur largueur doit être : $\frac{h}{h} \le 4$.
- a) Poutre Principale (Porteuse): $L_{max} = 445$ cm.
- Selon le BAEL91 modifié 99 :
- $29.6 \le h \le 44.5$ \longrightarrow h = 40 cm
- $12 \le b \le 28$ b = 30 cm
- **❖** Vérification selon le RPA99 (version2003) :
- $h = 40cm \ge 30cm$
- $b = 30cm \ge 20cm$
- $\frac{h}{h} = 1.33 \le 4$
- b) Poutre secondaire (non porteuse): $L_{max} = 440 \text{ cm}$
- Selon le BAEL91 modifié 99 :
- $29.33 \le h \le 44$ \longrightarrow $h = 40 \ cm$
- $12 \le b \le 28$ \longrightarrow b = 30 cm
- **❖** Vérification selon le RPA99 (version2003) :
- $h = 40cm \ge 30cm$;
- $b = 30cm \ge 20cm$;
- $\frac{h}{h} = 1.3 \le 4$.

2.5 PREDIMENSIONEMENT DES POTEAUX

1. Définition

Les poteaux sont des éléments porteurs. Ils reprennent les charges et les surcharges issues des différents niveaux pour les transmettre au sol par l'intermédiaire des fondations et à participer au contreventement des bâtiments.

2. Principe

Le pré dimensionnement des poteaux se fait en considérant que ces derniers travaillent à la compression simple centrée. On procédera par la descente de charge puis par la loi de dégression de la surcharge d'exploitation en choisissant les poteaux les plus sollicités (défavorables) de la structure (un poteau central, un poteau de rive et un poteau d'angle).

- Ces poteaux doivent satisfaire le critère de stabilité au flambement et le critère de résistance

A. Critère de résistance : Selon B.A.E.L 91 R 99

$$N_u = \alpha \left[\frac{Br.f_{c28}}{0.9\gamma_b} + \frac{A_s fe}{\gamma_s} \right] \quad [2]$$

Tel que:

- Nu: Effort normal ultime de compression, $Nu = 1,35 N_G + 1,5 N_O$;
 - N_G: Effort normal due aux charges permanentes
 - N_Q: Effort normal dus aux surcharges d'exploitations
- α : Coefficient réducteur tenant compte de la stabilité $(\alpha = f(\lambda))$.
- λ : Elancement d'EULER $\left(\lambda = \frac{l_f}{i}\right)$.
- lf: Longueur de flambement ; dans notre cas : l_f =0.7 l_0 (poteau encastré a la base et articulé au sommet).
- i: Rayon de giration $\left(i = \sqrt{\frac{I}{B}}\right)$.
- *I*: Moment d'inertie de la section $\left(I = \frac{hb^3}{12}\right)$.
- Br: Section réduite du poteau, obtenue en réduisant de sa section réelle 1cm d'épaisseur sur toute sa périphérie :[Br = (a-0,02) (b-0,02)] m².

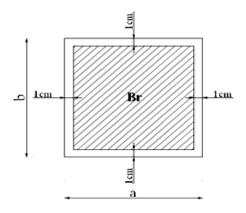


Figure 2.8 : Section réduite du poteau.

- f_{c28} : Contrainte caractéristique du béton à 28 jours ($f_{c28} = 25$ MPa).
- *fe*: Limite élastique de l'acier, (fe = 500 MPa).
- As : Section d'acier comprimé pris en compte dans le calcul, on prend :

- As=0.9% Br... (zone III)
- γ_b : Coefficient de sécurité pour le béton ($\gamma_b = 1,50$).....situation durable.
- γ_s : Coefficient de sécurité pour l'acier ($\gamma_s = 1,15$).....situation durable.
- ❖ Selon le «BAEL 91 modifié 99 »:

$$0.2\% \le \frac{A_S}{B} \le 5\%$$

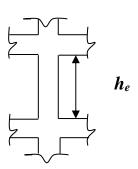
On cherche à dimensionner le poteau de telle sorte que : $\frac{A_s}{B} = 0.9\%$

$$\begin{cases}
\bullet \ \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} \quad Si \quad \lambda = 50 \\
& \dots [BAEL99/art : B.8.4, 1]
\end{cases}$$

$$\bullet \ \alpha = 0.6 \left(\frac{50}{\lambda}\right)^2 \quad Si \quad 50 < \lambda < 100$$

Avec $\lambda = 35 \rightarrow \alpha = 0.708$

-On tire de l'équation (1) la valeur de Br:


$$Br \ge \frac{N_u}{\alpha\left(\frac{f_{c28}}{0.9\gamma_b} + \frac{A_S fe}{B \gamma_S}\right)} = 0.0652 N_u$$

- $\frac{As}{Br} = 0.9$
- $\frac{Fe}{\gamma s} = \frac{500}{1.15} = 434.78 \text{ MPa}$

$$Br = 0.063 \ Nu$$
(2)

❖ Conditions de «RPA99 version 2003 »:

Pour une zone sismique III (Alger), on doit avoir au minimum : $\begin{cases} Min(a;b) \geq 30cm \\ Min(a;b) > \frac{h_e}{20} \\ \frac{1}{4} < \frac{a}{b} < 4 \end{cases}$

✓ Nous considérons des poteaux carrés (a=b)

Figure 2.9: coupe A-A.

B. Critère de flambement :

Il faut vérifier que : $\lambda = \frac{Lf}{i} \le 35$

Avec:

- *Lf*= 0.7 *Lo*
- $\bullet \quad i = \sqrt{\frac{I}{B}} = \frac{a}{\sqrt{12}} = \frac{a}{2\sqrt{3}}$
- I : Moment d'inertie, $I = \frac{a_4}{12}$... Pour une section carrée (a=b).

3. Evaluation de l'effort normal ultime

• Loi de dégression : [DTR B.C 2.2 / IV.6.3]

Comme il est rare que toutes les charges d'exploitation agissent simultanément, on applique pour leur détermination la loi de dégression qui consiste à réduire les charges identiques à chaque étage de 5% jusqu'à 0,5Q.

On adoptera pour le calcul des charges d'exploitation la formule suivante :

$$Q_0 + \frac{3+n}{2n}(Q_1 + Q_2 + \dots + Q_n)$$
 Donnée par [**DTR B.C.2.2**] [3]

Avec:

- n : nombre d'étage considérés à partir du sommet.
- Q_0 : la surcharge d'exploitation sur le toit ou la terrasse couvrant le bâtiment.
- Q_1Q_2 ,..., Q_n : les surcharges d'exploitation des planchers respectifs.

Tableau 2.7 : Loi de dégression

Niveau des planchers	Surcharge	∑ surcharge	∑ surcharge (kN/m²)
9ème	Q ₀	$\sum_{0}=\mathbf{Q}_{0}$	1
8ème	Q ₁	$\sum_1=Q_0+Q_1$	2,5
7 ^{ème}	\mathbf{Q}_2	$\sum_{2}=Q_{0}+0.95(Q_{1}+Q_{2})$	3,85
6 ^{ème}	Q_3	$\sum_{3}=Q_{0}+0.9(Q_{1}+Q_{2}+Q_{3})$	5,05
5 ^{ème}	Q ₄	$\sum_{4}=Q_0+0.85(Q_1+Q_2+Q_3+Q_4)$	6.1

4ème	Q_5	$\sum_{5}=Q_{0}+0.8(Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5})$	7
3 ^{ème}	Q ₆	$\sum_{6} = Q_0 + 0.75(Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6)$	7.75
2 ^{ème}	\mathbf{Q}_{7}	$\sum_{7}=Q_{0}+0.714(Q_{1}++Q_{7})$	8.90
1 ^{er}	Q_8	$\sum_{8}=Q_{0}+0.687(Q_{1}++Q_{8})$	9.66
RDC	Q9	$\sum_{9}=Q_{0}+0,66(Q_{1}++Q_{9})$	10.42
Sous sol 1	Q ₁₀	$\sum_{10}=Q_0+0,65(Q_1++Q_{10})$	11.18
Sous sol 2	Q11	$\sum_{11}=Q_0+0,636(Q_1++Q_{11})$	12.56

• Calcul de la descente de charge :

Remarque: On adopte un poteau carré de dimensions (30*30) cm² (min de l'RPA);

Tableau 2.8 : Surfaces des planchers reprises pour chaque type de poteaux

Type de Poteau	Surface (m²)
Poteau central	15.60
Poteau de rive	7.315
Poteau d'angle	3.575

1) Poteau central (Axe B4)

- Calcul des charges
- Sous Terrasse :

$$N_G = G_{plT} + G_{pp} + G_{ps} + G_{pot}$$

- Sous 8^{ème -}RDC:

$$N_G = G_{plc} + G_{pp} + G_{ps} + G_{pot}$$

- Sous-sol (1-2):

$$N_G = Gpl_{ss} + G_{pp} + G_{ps} + G_{pot}$$

Figure 2.10: Poteau central.

• Charges permanentes « G »

- $G_{Plancher terrasse (inaccessible)} = Gpl_T^* S = 6.38*15.6=99.52 \text{ KN}$
- $G_{plancher courant} = Gpl_c * S = 5.39*15.60 = 84.08 \text{ kN}$
- $G_{poteau (RDC; 9^{eme})} = 0.3*0.3*25*(3-0.4) = 5.85 \text{ KN}$
- G poteau (sous-sol 1) = 0.3*0.3*25*(4.05-0.4) = 8.21 KN
- G poteau (sous-sol 2) = 0.3*0.3*25(3.05-0.4) = 5.962 KN
- $G_{poutre principale} = 0.4*0.3*3.975*25=11.92 \text{ KN}$
- G poutre secondaire = 0.4*0.3*3.925*25=11.775 kN

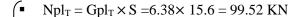
• Surcharges d'exploitation « Q »

-Q plancher terrasse =
$$Q_{plT}$$
 (S - S_{poteau}) = 1(15.6-0.3²) = 15.51 KN

-Q plancher courant = Qplc * (S- Spot) =
$$1.5*(15.6-0.3^2) = 23.26$$
 KN \longrightarrow $9^{\text{ème}}$ -RDC (habitation)

-Q plancher courant : Qplc * (S - Spot) =
$$2.5*(15.6-0.3^2) = 38.75 \text{ KN} \longrightarrow \text{entre sol (bureaux)}$$

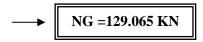
Exemple de calcul

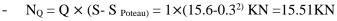

Poteau central du 9^{ème} étage (sous terrasse):

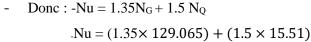
$$\begin{cases} - & S = 15.6m^2 \\ - & L_{pp} = 397.5cm = 3.975 \text{ m} \\ - & L_{ps} = 392.5cm = 3.925 \text{ m} \end{cases}$$

• Calcul de Nu

$$ELU : Nu = 1.35N_G + 1.5N_O$$


$$N_G = Npl_T + Npp + Nps + Npot$$




• Npp =
$$0.4 \times 0.3 \times 3.975 \times 25 = 11.92 \text{ KN}$$

• Nps =
$$0.4 \times 0.3 \times 3.925 \times 25 = 11.775 \text{ KN}$$

• Npot =
$$0.3 \times 0.3 \times (3 - 0.4) \times 25 = 5.85$$
 KN

$$-Nu = 197.502 \text{ KN}$$

Nu = 0.1975 MN

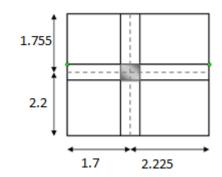


Figure 2.11: vue en plan du poteau central.

 $N_Q = 15.51$ KN

En remplaçant la valeur de Nu dans l'équation (2); on aura :

- Br
$$\ge 0.063 \times \text{Nu}$$
 Br $\ge 0.1244 \text{ m}^2$ Br = 124.42 cm²

- Br =
$$(a - 2^2)$$
 \longrightarrow $a = \sqrt{Br} + 2 = \sqrt{124.44 + 2} = 13.15$ cm

On prend $a*b = (30*30) \text{ cm}^2$

• Les résultats de la descente de charge du poteau centrale sont récapitulés dans le tableau (II-9) :

Avec:

$$\bullet \quad \mathbf{i} = \frac{a}{\sqrt{12}} = \frac{a}{2\sqrt{3}}$$

$$\bullet \quad \lambda = \frac{0.7L0}{i}$$

• Tableau 2.9 : descente de charges du poteau centrale.

Niveaux	G (KN)	Q (KN)	G _{cumulé} (KN)	Qcumulé (KN)	Nu _{cumulé} (KN)
9 ^{ème}	129.07	15.51	129.07	15.51	197.50
8ème	113.62	23.26	242.69	38.77	385.78
7 ^{ème}	113.62	23.26	356.31	62.03	574.06
6 ème	113.62	23.26	469.93	85.29	762.34
5 ^{ème}	113.62	23.26	583.86	108.55	95136
4ème	113.62	23.26	697.48	131.81	1139.31
3ème	113.62	23.26	811.11	155.07	1327.60
2 ^{ème}	113.62	23.26	924.72	178.33	1515.86
1 ^{er}	113.62	23.26	1038.34	201.59	1704.14
RDC	113.62	23.26	1151.96	224.58	1891.53
Sous sol 1	113.62	23.26	1265.58	248.11	2080.69
Sous sol 2	113.11	38.75	1378.69	286.86	2291.52

2) Poteau d'angle (Axe C1)

• Calcul des charges

- Sous Terrasse :

$$\boldsymbol{N_G} = Gpl_T + G_{pp} + G_{ps} + P_{ot} + G_{acrot\`{e}re}$$

- Sous 8^{ème} -RDC,

$$N_G = Gpl_c + G_{pp} + G_{ps} + G_{pot} + G_{mur \ ext}$$

- Sous s.sol(1-2):

$$N_G = Gpl_{ss} + G_{pp} + G_{ps} + G_{pot} + G_{mur \ ext}$$

Tableau 2.10: Choix Final des Poteaux centraux.

Niveaux	Nu _{cumulé} (KN)	Br (cm²)	a * b (cm²)	Vérification de l'RPA	Vérification de flambement			Section a * b	
					i (m)	L ₀ (m)	λ	λ≤35	(cm ²)
9 ème	197.50	124.42	30×30	Ok	0.086	2.85	23.2	ok	30×30
8 ^{ème}	385.78	243.04	30×30	Ok	0.086	2.85	23.2	ok	30×30
7 ^{ème}	574.06	361.65	30×30	Ok	0.086	2.85	23.2	ok	30×30
6 ^{ème}	762.34	480.27	30X30	Ok	0.086	2.85	23.2	ok	30X30
5 ^{ème}	95136	599.35	30X30	Ok	0.086	2.85	23.2	ok	30X30
4 ^{ème}	1139.31	717.76	35X35	Ok	0.101	2.85	19.75	ok	35X35
3 ^{ème}	1327.60	836.38	35X35	Ok	0.101	2.85	19.95	ok	35X35
2 ^{ème}	1515.86	954.99	35X35	Ok	0.101	2.85	19.75	ok	35X35
1 ^{er}	1704.14	1073.60	40X40	Ok	0.115	2.85	17.43	ok	40X40
RDC	1891.53	1191.66	40X40	Ok	0.115	2.85	17.43	ok	40X40

			45X45	Ok				ok	45X45
Sous sol	2080.69	1310.83			0.13	3.9	21		
			45X45	Ok		2.9		ok	45X45
Sous sol	2291.52	1443.65			0.13		15.61		

• Charges permanentes « G »

-
$$G_{Plancher terrasse(inaccessible)} = Gpl_T^* S = 6.38*3.575=22.80 \text{ KN}$$

-
$$G_{plancher courant} = Gpl_c * S = 5.39*3.575 = 19.27 \text{ kN}$$

-
$$G_{Plancher dalle plein} = Gpl_{dp} * S = 5.5*3.575=19.12 \text{ KN}$$

-
$$G_{\text{poteau (RDC : 9eme)}} = 0.3*0.3*25*(3-0.4) = 5.85 \text{ KN}$$

-
$$G_{poteau (entre-sol)} = 0.3*0.3*25*(4.05-0.4) = 8.21 \text{ KN}$$

-
$$G_{\text{poteau (sous-sol)}} = 0.3*0.3*25*(3.05-0.4) = 5.962 \text{ KN}$$

-
$$G_{poutre\ principale} = 0.4*0.3*2.2*25 = 6.6\ KN$$

-
$$G_{poutre\ secondaire} = 0.4*0.3*1.625*25 = 4.875\ kN$$

-
$$G_{acrotère} = G_{accro} * (L_1 + L_2) = 2.022 * (2.2 + 1.625) = 7.73 \text{ KN}$$

-
$$G_{mur\ ext} = G_{mur\ ext} * S = 2.81*5.72 = 16.07\ KN....... (RDC\ -9^{eme})$$

-
$$G_{\text{voile}} = G_{\text{voile}} * S = 5.35 * 5.72 = 30.6 \text{ KN} \dots (Sous-sol)$$

-
$$G_{\text{voile}} = G_{\text{voile}} * S = 5.35 * 4.22 = 22.60 \text{ KN} \dots$$
 (sous-sol)

• Surcharges d'exploitation « Q » :

-Q plancher terrasse = QplT *(S - Spoteau) =
$$1*(3.575-0.3^2) = 3.485KN$$

- Q plancher courant =
$$Q_{plc} * (S - S_{pot}) = 1.5 * (3.575 - 0.3^2) = 5.227 KN \longrightarrow 9^{eme}$$
 - RDC (habitation)

-Q plancher courant : Qplc * (S - Spot) =
$$2.5*(3.575 - 0.3^2) = 8.71 \text{ KN} \longrightarrow \text{entre sol (bureaux)}$$

• Exemple de calcul : poteau d'angle du 9^{ème} étage (sous terrasse) :

$$\begin{cases}
- & S = 3.575 \text{ m}^2 \\
- & \text{Lpp} = 220 \text{ cm} = 2.2 \text{ m} \\
- & \text{Lps} = 162.5 \text{cm} = 1.625 \text{ m}
\end{cases}$$

• Calcul de Nu:

$$ELU : Nu = 1.35N_G + 1.5N_Q$$

$$N_G = Npl_T + Npp + Nps + N_{accrot\`{e}re}$$

$$\blacksquare$$
 Npl_T = Gpl_T × S =6.38*3.575 =12.8 KN

Npp =
$$0.4*0.3*2.2*25 = 6.6 \text{ KN}$$

• Nps =
$$0.4*0.3*1.625*25=4.875$$
 kN

$$N_{\text{accrotère}} = 2.022*(2.2+1.625) = 7.73 \text{ KN}$$

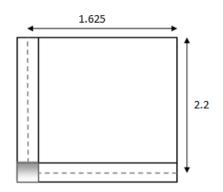


Figure 2-12 : vue en plan du poteau d'angle.

-
$$N_Q = Q \times (S-S_{poteau}) = 1 \times (3.575-0.3^2) = 3.485 \text{KN}$$

- Donc: $-Nu = 1.35N_G + 1.5 N_Q$
 $-Nu = (1.35 \times 42.49) + (1.5 \times 3.485)$
 $-Nu = 62.5 \text{ KN}$
 $N_Q = 3.485 \text{ KN}$
 $N_Q = 3.485 \text{ KN}$

En remplaçant la valeur de Nu dans l'équation (2) ; on aura :

- Br
$$\geq 0.063 \times \text{Nu} \longrightarrow \text{Br} \geq 0.009810 \text{m}^2 \longrightarrow \text{Br} = 98.10 \text{ cm}^2$$

- Br =
$$(a - 2^2)$$
 \longrightarrow $a = \sqrt{Br} + 2 = \sqrt{98.10} + 2 = 11.90 \text{ cm}$

On prend $a*b = (30*30) \text{ cm}^2$

• Les résultats de la descente de charge du poteau d'angle sont résumés dans le tableau 2.11 :

Tableau 2.11 : descente de charges du poteau d'angle.

Niveaux	G (KN)	Q (KN)	G _{cumulé} (KN)	Qcumulé (KN)	Nu _{cumulé} (KN)
9 ^{ème}	50.145	3.485	50.14	3.485	72.91
8ème	64.53	5.227	114.67	8.712	167.87
7 ^{ème}	64.53	5.227	179.2	13.93	262.81
6 ^{ème}	64.53	5.227	243.73	19.16	357.77
5 ^{ème}	64.53	5.227	308.26	24.39	452.73
4 ^{ème}	64.53	5.227	372.79	29.62	547.70
3 ^{ème}	64.53	5.227	437.32	34.84	642.64
2 ^{ème}	64.53	5.227	501.85	40.07	737.60
1 ^{er}	64.53	5.227	566.38	45.3	832.56
RDC	64.53	5.227	630.91	50.52	927.50
Sous sol 1	92.15	8.71	723.06	59.23	1064.97

		8.71			
Sous sol 2	89.75		812.81	67.94	1199.20

Tableau 2.12: choix final des poteaux d'angle.

Niveaux	Nu _{cumulé} (KN)	Br (cm²)	a * b (cm²)	Vérification de l'RPA	Vérification de flambement			bement	Section a * b
					i (m)	L ₀ (m)	λ	λ≤35	(cm²)
9 ^{ème}	72.91	45.93	30×30	✓	0.086	2.85	23.2	✓	30×30
8 ^{ème}	167.87	100.57	30×30	✓	0.086	2.85	23.2	✓	30×30
7 ^{ème}	262.81	165.57	30×30	√	0.086	2.85	23.2	✓	30×30
6 ^{ème}	357.77	225.39	30×30	√	0.086	2.85	23.2	√	30×30
5 ^{ème}	452.73	285.21	30×30	✓	0.086	2.85	23.2	√	30×30
4 ^{ème}	547.70	345.05	30×30	✓	0.086	2.85	23.2	√	30×30
3 ^{ème}	642.64	404.86	30×30	√	0.086	2.85	23.2	√	30×30
2 ^{ème}	737.60	464.68	30×30	√	0.086	2.85	23.2	√	30×30
1 ^{er}	832.56	524.51	30×30	√	0.086	2.85	23.2	√	30×30
RDC	927.50	584.32	30X30	✓	0.086	2.85	23.2	√	30×30
Sous sol 1	1064.97	670.93	35×35	√	0.101	3.9	27.02	√	35×35
Sous sol 2	1199.20	755.49	35×35	√	0.101	2.9	20.09	√	35×35

2) Poteau de rive : (Axe C2)

Calcul des charges :

- Sous Terrasse:

$$N_G = Gpl_T + G_{pp} + G_{ps} + G_{accrot\`{e}re} + G_{pot}$$

- Sous 8^{ème} -RDC:

$$N_G = Gpl_c + G_{pp} + G_{ps} + G_{pot} + G_{mur \ ext}$$

- Sous s.sol:

$$N_G = Gpl_{ss} + G_{pp} + G_{ps} + G_{pot} + G_{mur \ ext}$$

• Charges permanentes « G »

- $G_{Plancher terrasse(inaccessible)} = Gpl_T^* S = 6.38*7.315=46.66 KN$
- $G_{plancher courant} = Gpl_c * S = 5.39*7.315 = 39.42 \text{ kN}$
- $G_{plancher dalle plein} = Gpl_c * S = 5.35*7.315 = 39.13 \text{ kN}$
- $G_{\text{poteau(RDC}; 9EME)} = 0.3*0.3*25*(3-0.4) = 5.85KN$
- $G_{\text{poteau(SOUS SOL1)}} = 0.3*0.3*25*(4.05-0.4) = 8.21\text{KN}$
- $G_{poteau(SOUS\ SOL2)} = 0.3*0.3*25*(3.05-0.4) = 5.962\ KN$
- $G_{poutre\ principale} = 0.4*0.3*3.325*25=9.97KN$
- $G_{poutre\ secondaire} = 0.4*0.3*2.2*25=6.6\ kN$
- $G_{acrotère} = G_{acrotère} * L' = 2.621 * 3.325 = 8.71 KN$
- $G_{mur ext} = G_{mur ext} * S_{mur} = G*[L'*(He-hpp)] = 2.98*3.325 = 9.34KN... (RDC et 9) et age)$
- $G_{\text{mur ext (sous sol)}} = G_{\text{mur ext}} * S' = 5.35 * 3.325 = 17.78 \text{KN} \dots \text{(Sous-sol)}$

• Surcharges d'exploitation « Q »

-
$$Q_{plancher terrasse} = Q_{plT} * (S - S_{poteau}) = 1*(7.315-0.3^2) = 7.225 \text{ KN}$$

-
$$Q_{plancher courant} = Q_{plc} * (S-S_{pot}) = 1.5*(7.315-0.3^2) = 10.83 \text{ KN} \longrightarrow 9^{\text{ème}} - RDC \text{ (habitation)}$$

-
$$Q_{plancher courant}$$
: $Q_{plc} * (S - S_{pot}) = 2.5*(7.315-0.3^2) = 18.06 \text{ KN} \longrightarrow \text{entre sol (bureaux)}$

• *Exemple de calcul* : poteau de rive du 9^{ème} étage (sous terrasse) :

$$\begin{cases}
- & S = 7.315 \text{ m}^2 \\
- & \text{Lpp} = 332.5 \text{ cm}^2 = 3.325 \text{ m}^2 \\
- & \text{Lps} = 220 \text{cm}^2 = 2.2 \text{ m}^2
\end{cases}$$

• Calcul de Nu:

$$ELU : Nu = 1.35N_G + 1.5N_O$$

$$- N_G = Npl_T + Npp + Nps + N_a$$

Figure 2.14 : vue en plan du poteau de rive.

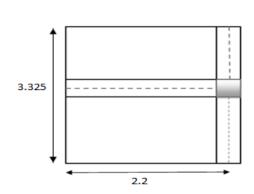



Figure 2.13 : Poteau de rive.

•
$$Npl_T = Gpl_T \times S = 6.38 \times 7.315 = 46.66 \text{ KN}$$

• Npp =
$$0.4 \times 0.3 \times 3.325 \times 25 = 9.97 \text{ KN}$$

• Nps =
$$0.4 \times 0.3 \times 2.2 \times 25 = 6.6 \text{ KN}$$

• $N_{accrotère} = 2.621 *3.325 = 8.71 \text{ KN}$

•
$$G_{poteau(RDC; 9EME)} = 0.3*0.3*25*(3-0.4) = 5.85KN$$

$$N_Q = Q \times (S - S_{poteau}) = 1 \times (7.315 - 0.3^2) \text{ KN} = 7.225 \text{KN}$$

NG =77.79KN

- Donc:
$$-Nu = 1.35N + 1.5 N_Q$$

$$-Nu = (1.35 \times 77.79) + (1.5 \times 7.225)$$

$$-Nu = 115.85 \text{ KN} \longrightarrow$$

Nu = 0.1158 MN

En remplaçant la valeur de Nu dans l'équation (2) ; on aura :

$$Br \ge 0.063 \times Nu$$
 \longrightarrow $Br \ge 0.0729 \text{ m}^2$ \longrightarrow $Br = 72.98 \text{cm}^2$

Br =
$$(a - 2^2)$$
 $\longrightarrow a = \sqrt{72.98 + 2} = 10.54$ cm

On prend $a*b = (30*30) \text{ cm}^2$

• Les résultats concernant le poteau de rive sont donnés dans le tableau 2.13 :

Tableau 2.13 : descente de charges du poteau de rive

Niveaux	G (KN)	Q (KN)	G _{cumulé} (KN)	Qcumulé (KN)	Nu _{cumulé} (KN)
9 ^{ème}	77.79	7.225	77.79	7.225	115.85
8ème	71.18	10.83	148.97	18.05	228.18
7 ^{ème}	71.18	10.83	220.15	28.88	340.07
6 ^{ème}	71.18	10.83	291.33	39.71	452.86
5 ^{ème}	71.18	10.83	362.51	50.54	565.2
4 ^{ème}	71.18	10.83	433.69	61.37	677.82
3 ^{ème}	71.18	10.83	504.87	72.20	789.87
2 ^{ème}	71.18	10.83	576.05	83.03	902.21

	71.18	10.83			
1 ^{er}			647.23	93.86	1014.55
	71.18	10.83			
RDC			718.41	104.7	1126.92
		18.06			
Sous sol 1	81.98		800.39	122.76	1264.66
		18.06			
Sous sol 2	79.44		879.83	140.82	1399

Tableau 2.14: Choix Final des Poteaux de rive.

Niveaux	Nu _{cumulé} (KN)	Br (cm²)	a * b (cm²)	Vérification de l'RPA	Verification de flambement			ment	Section a * b
					i (m)	L ₀ (m)	λ	λ≤35	(cm²)
9 ^{ème}	115.85	72.98	30×30	Ok	0.086	2.85	23.19	ok	30×30
8ème	228.18	143.75	30×30	Ok	0.086	2.85	23.19	ok	30×30
7 ^{ème}	340.07	214.24	30×30	Ok	0.086	2.85	23.19	ok	30×30
6 ^{ème}	452.86	285.30	30×30	Ok	0.086	2.85	23.19	ok	30×30
5 ^{ème}	565.2	356.07	30×30	Ok	0.086	2.85	23.19	ok	30×30
4 ^{ème}	677.82	427.02	30×30	Ok	0.086	2.85	23.19	ok	30×30
3 ^{ème}	789.87	497.62	30×30	Ok	0.086	2.85	23.19	ok	30×30
2 ^{ème}	902.21	568.39	30×30	Ok	0.086	2.85	23.19	ok	30×30
1 ^{er}	1014.55	639.16	30×30	Ok	0.086	2.85	23.19	ok	30×30
RDC	1126.92	709.94	35× 35	Ok	0.086	2.85	23.19	ok	35×35
Sous sol 1	1264.66	796.73	35×35	Ok	0.101	3.9	27.03	Ok	35×35
Sous sol 2	1399	881.37	35×35	Ok	0.101	2.9	20.09	Ok	35×35

REMARQUE

« Pour leur conférer une meilleure résistance aux sollicitations Sismiques, il est recommandé de donner aux poteaux d'angles et de Rives, des sections comparables à celles des poteaux centraux » et pour cela on regroupe ces sections dans le tableau ci-dessous :

Tableau 2.14 : Coffrages des poteaux par étage.

Niveaux	Sections carrées
	(axb) cm ²
9 ^{ème}	
	30×30
8 ^{ème}	30×30
$7^{ m ème}$	30×30
6 ^{ème}	30×30
5 ^{ème}	30×30
4 ^{ème}	35×35
3 ^{ème}	35X35
2 ^{ème}	35X35
1 ^{er}	40×40
RDC	40×40
Sous SOL1	45× 45
Sous- Sol 2	45×45

2.6 PREDIMENSIONEMENT DES VOILES

Pour augmenter la rigidité de notre structure et assurer un bon contreventement, on a prévu des murs voiles, dimensionnés selon le RPA99 version 2003.

• L'épaisseur du voile doit satisfaire les trois (03) conditions du [RPA99/A.7.7.1]: [1]

1)
$$l \ge 4e$$
 $\longrightarrow e \le \frac{l}{4}$

Avec : L : Largeur du voile correspondant à la portée maximale.

2)
$$e_{min} \ge 15 cm$$

Avec : e_{min} : Epaisseur minimal du voile.

3) Condition de rigidité aux extrémités :

$$e \ge \frac{he}{20}$$

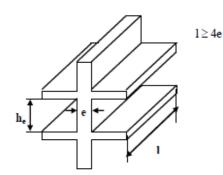


Figure 2.14 : Schéma du voile.

Avec:

- he : hauteur libre d'étage
- $he = h h_d$

e. 1

Figure 2.15: Vue en plan du voile.

Tel que:

- *h* : hauteur d'étage ;
- h_d : hauteur de la dalle

Pour notre structure ; les résultats de calcul de voiles sont illustrés sur le tableau ci-dessous :

Tableau 2.16: Epaisseurs des voiles.

l (cm)	$\frac{1}{4}$ (cm)	he (cm)	he / (cm)	Epaisseur adoptée (cm)
445	111.25	280	14	15

3.1 Introduction

Dans une structure quelconque on distingue deux types d'éléments :

- Les éléments porteurs principaux qui contribuent directement aux contreventements.
- Les éléments secondaires qui ne contribuent pas directement au contreventement.

Dans le présent chapitre, nous considérons l'étude des éléments secondaires que comporte notre bâtiment. (Les planchers, les escaliers, les balcons et l'acrotère) dont l'étude est indépendante de l'action sismique. Le calcul de ces éléments s'effectue suivant le règlement [BAEL91] en respectant le règlement parasismique Algérien [RPA99 version 2003].

3.2 Acrotère

3.2.1 Définition

L'acrotère est un élément secondaire de sécurité entourant la terrasse. Son calcul se fait à la flexion composée pour une bande de 1 m de largeur.

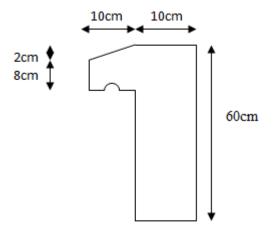


Figure 3.1: Acrotère.

3.2.2 Evaluation des charges

a. Charges permanentes

Le poids propre de l'acrotère pour 1 ml est de $G_1 = \rho_b.s$

 ρ_b : Le poids volumique du béton est $\rho_b = 25 \text{ kN/m}^3$

s: La surface transversale totale.

$$S = (0.1*0.6) + (0.8*0.1) + \frac{0.1*0.02}{2}$$
 \longrightarrow $S = 0.069 \text{ m}^2$

D'où le poids propre de l'acrotère :

$$G_1 = 25 \times 0,069 = 1,725 \text{ kN/m}$$

Le poids des enduits au ciment (ep=1,5cm) :

 $G_2 = [0.015 \text{ x} (0.6+0.5)] \text{x} 18 = 0.297 \text{ kN/m}$

Le poids total de l'acrotère :

$$G = G_1 + G_2 = 2,022 \text{ kN/m}$$

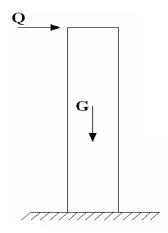


Figure 3.2 : Charges et surcharges agissent sur l'acrotère.

b. Charge d'exploitation

Q=1,00kN/ml

L'action des forces horizontales Q_h ; (F_p) .

L'action des forces horizontales est données par $:F_p=4AC_pW_p$ (6-3) [1]

Avec:

A : Coefficient d'accélération de zone [A=0,25], groupe 2.

C_p: Facteur de force horizontale donnée par le tableau (6-1)...... [C_p=0,8].

W_p: Poids de l'acrotère =2,022kN.

 $F_p=4x0,25x0, 8x2,022=1,617 \text{ kN}.$

 $Q_h = Max (1,5Q ; F_p)$

$$\begin{cases}
F_{p} = 1.617 \text{ KN} \\
1.5Q = 1.5 \text{ KN}
\end{cases}$$

Donc pour une bande de 1m de largeur

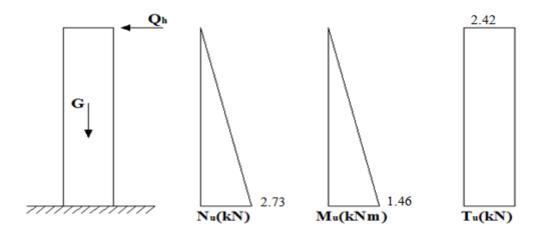
G=2,022kN/ml et Q_h=1.617KN/ml

3.1.3 Calcul des efforts

Pour une bande de 1m de largeur :

E.L.U:
$$N_u=1,35G=2.73 \text{ kN}$$

$$M_u=1,5.Q_h.h=1.46 \text{ kNm}$$


$$T_u=1,5.Q_h=2.42 \text{ kN}$$

E.L.S:

$$N_{ser} = G = 2,022kN$$

$$M_{ser}=Q_h.h=0,97kNm$$

$$T_{ser} = Q_h = 1,617kN$$

Figure 3.3: Efforts internes et moment.

3.2.4 Ferraillage de l'acrotère

h=10cm; b=100cm; f_{c28} =25MPa; σ_{bc} =14,17MPa ; c=c'=2cm ; fe=500MPa

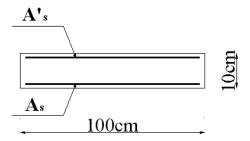


Figure 3.4 : Section de calcul de l'acrotère.

• Calcul de l'excentricité

Section partiellement comprimée.

Le centre de pression se trouve à l'extérieur de la section.

Les armatures seront calculées à la flexion simple en équilibrant le moment fictif M_f .

Calcul du moment fictif "M_f"

$$M_f = M_u + N_u \left(\frac{h}{2} - c'\right) = 1,541kNm$$

$$\mu = \frac{M_f}{bd^2\sigma_{bc}} = 0,017$$

$$\mu \prec \mu_R = 0.392 \Rightarrow A_s^{'} = 0$$
 (Les armatures comprimées ne sont pas nécessaires)

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu}) = 0.0214$$

$$Z = d(1-0.4\alpha) = 7.93cm$$

$$\mu = 0.0214 < 0.186 \Rightarrow \zeta_S = 10\% \quad et \quad \sigma_S = \frac{fe}{\gamma_S} = 435MPa$$

$$A_{sf} = f(M_f)$$

$$A_{sf} = \frac{M_f}{Z\sigma_s} = 44,66mm^2$$

$$A_{s1} = A_s' = 0$$

$$A_{s2} = A_{sf} - \frac{N_u}{\sigma_s} = 38,38mm^2$$

$$Donc: \begin{cases} A_{s1} = 0cm^2 \\ A_{s2} = 0.3838cm^2 \end{cases}$$

3.2.5 Vérification de la section d'acier selon le BAEL91

Il faut vérifier A_s avec la section minimale imposée par la règle du millième et par la règle de non fragilité :

$$A_s^{\min} \ge Max \left\{ \frac{bh}{1000}; 0,23bd \frac{f_{t28}}{fe} \right\}$$
 [2]

Avec:

$$f_{t28}=2,1MPa$$
; $f_{e}=500MPa$; $b=100cm$; $d=8cm$

$$A_s^{min} \ge Max \{1cm^2; 0,77cm^2\} = 1cm^2$$

Donc: on opte finalement pour 6T6=1,70cm²

Avec un espacement $S_t \ge \frac{100}{6} = 16.66$ cm

On prend 16cm.

3.2.6 Armatures de répartition

$$A_r \ge \frac{A_s}{4} \Rightarrow A_r \ge 0.425cm^2$$

On choisit 4T6=1,13 cm² avec un espacement : $S_t \ge \frac{60-5}{3} = 18.33$ cm

On prend: 18cm.

3.2.7 Vérification des armatures

A L'E.L. S

c. Détermination de l'axe neutre :

La fissuration est considérée comme préjudiciable.

$$e_0 = \frac{M_{ser}}{N_{ser}} = 47.97cm$$

Centre de pression Axe neutre

Figure 3.5 : Distance de l'axe neutre

On a : $e_0 > \frac{h}{2} - c' \Longrightarrow$ La section est partiellement comprimée (SPC).

C: La distance entre le centre de pression et la fibre la plus comprimée.

C=d- e_A

$$e_A = \frac{Mser}{Nser} + (d - \frac{h}{2})$$
 \rightleftharpoons $e_A = 50.97 cm$

$$C = d - e_A$$
 \subset $C = -42.97 \text{ cm} < 0$

D'après le "BAEL 91 modifié 99", on doit résoudre l'équation suivant :

$$y_c^3 + py_c + q = 0$$

 y_c : Distance entre le centre de pression et l'axe neutre.

Avec:

$$n = 15; \begin{cases} p = -3c^{2} + 6n(c - c')\frac{A'_{s}}{b} + 6n(d - c)\frac{A_{s}}{b} = -5461.28\\ et\\ q = -2c^{3} - 6n(c - c')^{2}\frac{A'_{s}}{b} - 6n(d - c)^{2}\frac{A_{s}}{b} = +154706.56 \end{cases}$$

La solution de l'équation du troisième degré est obtenue par :

$$\Delta = q^2 + \left(\frac{4p^3}{27}\right) = -197,113 * 10^6$$

$$\cos \varphi = \frac{3q}{2p} \sqrt{\frac{-3}{p}} = -0.99 \rightarrow \varphi = 171.89^{\circ}$$

$$a = 2\sqrt{\frac{-p}{3}} = 85,33$$

$$y_1 = a \cos\left(\frac{\varphi}{3} + 120\right) = -85,23cm$$

$$y_2 = a \cos\left(\frac{\varphi}{3}\right) = 46,10cm$$

$$y_3 = a \cos\left(\frac{\varphi}{3} + 240\right) = 39,13cm$$

La solution qui convient est : y_c=46.10 cm

$$Y_{ser} = Y_c + C = 3.13 \text{ cm}$$

Donc:
$$Y_{ser} = 3.13 \text{ cm}$$

 $Y_c = 46.10 \text{ cm}$

b. Calcul du moment d'inertie :

$$I = \frac{b}{3} y_{ser}^3 + n \left[A_s (d - y_{ser})^2 + A_s' (y_{ser} - c')^2 \right] \quad ; \quad n = 15$$

Avec :
$$A_s' = 0 \longrightarrow I = 1626.92 \text{ cm}^4$$

3.2.8 Vérification des contraintes :

a. Contrainte de béton :

$$\sigma_{bc} = \left(\frac{N_{ser}}{I}y_c\right)y_{ser} \le \bar{\sigma}_{bc} = 0.6f_{c28} = 15MPa$$

$$\sigma_{bc} = \left(\frac{2.022*10^3 \times 46.10.10}{1626.92*10^4}\right) \times 31.3 = 1.79MPa < \bar{\sigma}_{bc}.....v\acute{e}rifi\acute{e}e.$$

b. Contraintes de l'acier

$$\sigma_s = n \left(\frac{N_{ser}}{I} Y_c \right) (d - y_{ser}) \le \bar{\sigma}_s \dots \dots acier tendu$$

$$\sigma'_s = n \left(\frac{N_{ser}}{I} Y_c \right) (y_{ser} - c') \le \bar{\sigma}_s \dots \dots acier comprimé$$

$$\bar{\sigma}_{S} = min\left(\frac{2}{3} f_{e} ; \max(0.5f_{e}; 110 \sqrt{\eta. f_{tj}}\right) = 250MPa \dots.$$

$$(\eta = 1.6 \ pour \ les \ aciers \ HA)$$

$$\sigma_{S} = 15 \left(\frac{2.022*10^{3} \times 46.10.10}{1626.92*10^{4}}\right) (80 - 31.3) = 41.85MPa \le \bar{\sigma}_{S} = 250 \ MPa \dots \text{vérifiée.}$$

$$\sigma'_{S} = 15 \left(\frac{2.022*10^{3} \times 46.10.10}{1626.92*10^{4}}\right) (31.3 - 20) = 25.18MPa \le \bar{\sigma}_{S} = 250MPa \dots \text{vérifiée.}$$

$$\bar{\sigma}_{S} = min\left(\frac{2}{3} f_{e} ; \max(0.5f_{e}; 110 \sqrt{\eta. f_{tj}}\right) = 250MPa \dots \text{vérifiée.}$$

$$(\eta = 1.6 \ pour \ les \ aciers \ HA)$$

3.2.9 Vérification à l'effort tranchant :

La contrainte de cisaillement est donnée par la formule suivante :

$$\begin{split} \tau_u &= \frac{T_u}{bd} \leq \bar{\tau}_u = Min\{0,1f_{c28};4MPa\} = 2,5MPa \\ \tau_u &= \frac{2,42.10^3}{80.10^3} = 0,030MPa < \bar{\tau}_uv\acute{e}rifi\acute{e}e \end{split}$$

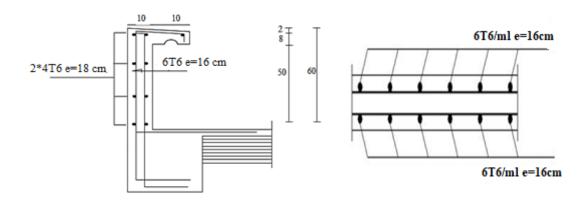


Figure 3.6 : Ferraillage de l'acrotère.

3.3 Etude des balcons :

3.3.1 Introduction:

Le bâtiment étudié comporte un seul type de balcon, et se calcul comme une console en dalle pleine encastrée à une extrémité et libre à l'autre, soumise à :

- Un poids propre.
- La surcharge d'exploitation.
- Charge concentrée à son extrémité libre, due au poids du garde-corps.

• Un moment à l'extrémité dû à l'effort appliqué sur le garde-corps.

Le calcul se fait pour une bande de 1 m de largeur.

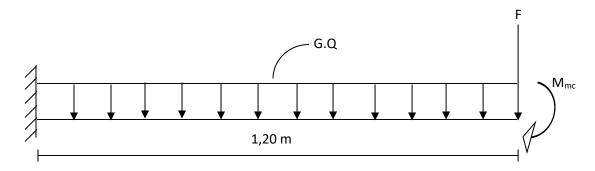


Figure 3.7 : Schéma statique du balcon.

3.3.2 Calcul des charges sollicitant le balcon

a. Charges permanentes et surcharges d'exploitation

• Charge permanente

- Carrelage (ép=2cm)	0,4 kN/m ²
- Mortier de pose	0,4 kN/m²
- Lit de sable	0,36 kN/m²
- Dalle en B.A (ép=15cm)	3,75 kN/m²
- Enduit au ciment (ép=2cm)	0,36 kN/m²
	\sum G=5,27 kN/m ²

Pour une bande de 1m : $G \times 1m = 5,27 \times 1 = 5,27 \text{ KN/m}$

• Charge d'exploitation

Q = 3.5 kN/m, pour une bande de 1m.

Charge concentrée

- Enduit au ciment :	$0,36 \text{ kN/m}^2$
- Maçonnerie (ép=10cm) :	0,90 kN/m ²
- Enduit au ciment :	0,36 kN/m ²
	$F = 1,62 \text{ kN/m}^2$

Pour une bande de 1m, $F = 1,62 \text{ kN/m}^2$

Moment due à la main courante :

$$M_{mc} = Q x L = 1x1x1 = 1kN/m$$

b. Combinaisons des charges

Tableau 3.1: Les combinaisons des charges.

	ELU	ELS
q (kN/m)	12,36	8,77
F(kN)	2,19	1,62
M _{mc} (kN.m)	1,5	1,00

c. Calcul des efforts internes

Le diagramme du moment fléchissant et de l'effort tranchent seront déterminer par les formules de la R.D.M suivantes :

$$M(x) = -\left[Fx + \frac{qx^2}{2} + Mmc\right] \qquad (1)$$

$$T(x) = -[F + qx].$$

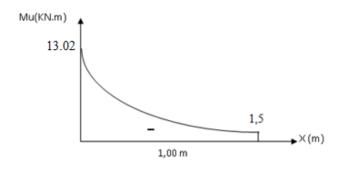


Figure 3.8 : Diagramme du moment fléchissant à l'ELU.

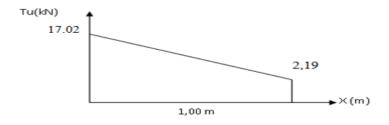


Figure 3.9 : Diagramme de l'effort tranchant à l'ELU

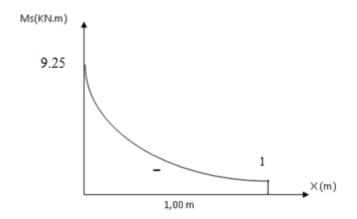


Figure 3.10 : Diagramme du moment fléchissant à l'ELS

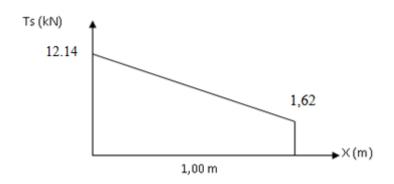


Figure 3.11 : Diagramme de l'effort tranchant à l'ELS.

3.3.3 Calcul du ferraillage

a. Armatures principales

Le calcul se fait en flexion simple, pour une bande de 1m de largeur, pour une section rectangulaire (bxh)=(100x15) cm².

Les données : f_{c28} = 25 PMa, f_{t28} = 2,1 MPa, f_{bc} =14,17 MPa, d=13,5 cm, fe= 500 MPa.

Tableau 3.2 : Ferraillage du balcon.

MU (kN,m)	μ	μ<μ _r	A _S · (cm ²)	α	Z (cm)	As (cm ²)	Le choix	As (cm ²)	ESP (cm)
13.02	0,050	oui	0	0,064	13.15	2.27	5T10	3,93	20

$$\begin{cases} 33 \text{ cm} \\ 22 \text{ cm} \end{cases} => \text{St= } 20 \text{cm} \dots \text{ Espacement v\'erifi\'e}$$

b. Armatures de répartition

$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \Rightarrow 0.98cm^2 \le A_r \le 1.97cm^2$$

On adopte: $3T8/m = 1.51cm^2$ avec: $S_t = 20cm$

3.3.4 Vérification

a. Condition de non fragilité

$$A_s \geq A_s^{min} = 0.23bd \frac{f_{t28}}{fe}$$

$$A_s = 3.93cm^2 \geq A_s^{min} = 1.30cm^2 \dots v\acute{e}rifi\acute{e}e$$

b. Vérification à l'effort tranchant

On doit vérifier que: $\tau_u \leq \overline{\tau}_u$

Avec:

 $\bar{\tau}_u = Min (0.1 f_{c28}; 4MPa) = 2.5MPa$ (Fissuration préjudiciable).

$$\tau_u = \frac{T_u^{max}}{hd} = \frac{17,02.10^3}{1000 \times 125} = 0,126 MPa < \bar{\tau}_u = 2,5 MPa \dots vérifée$$

c. Vérification des contraintes

On considère que la fissuration est préjudiciable.

• Position de l'axe neutre "y"

$$\frac{b}{2}y^2 + nA_s'(y - c') - nA_s(d - y) = 0$$

• Moment d'inertie "I"

$$I = \frac{b}{3}y^{3} + nA'_{s}(y - c')^{2} + nA_{s}(d - y)^{2}$$

Avec: n=15; $\eta=1,6(H.A)$; c'=2,5cm; d=12,5cm; b=100cm; $A'_s=0$

On doit vérifier que:

$$\begin{cases} \sigma_{bc} = \frac{M_{ser}}{I} y \leq \bar{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa \\ \sigma_{s} = n \frac{M_{ser}}{I} (d - y) \leq \bar{\sigma}_{s} = Min\left(\frac{2}{3} fe; max(0.5 fe; 110\sqrt{\eta f_{t28}}\right) = 250 MPa \end{cases}$$

Avec: $\eta = 1.6$ (H.A)

Tableau 3.3 : Vérification des contraintes

M _{ser} (kNm)	A _s (cm ²)	Y (cm)	I (cm³)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma}_{bc}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma}_s$
9.25	3,93	3,44	7322.87	4.34	vérifiée	188.71	vérifiée

• Vérification de la flèche

Si les deux conditions suivantes sont vérifiées simultanément, on pourra se dispenser de la vérification de la flèche.

$$\frac{h}{L} \ge \frac{1}{16} \Leftrightarrow \frac{15}{120} = 0,125 > 0,0625....v\acute{e}rifi\acute{e}e$$

$$\frac{A_s}{bd} < \frac{4,2}{fe} \Leftrightarrow \frac{3.93}{100 \times 12,5} = 0,00314 < 0,0084...v\acute{e}rifi\acute{e}e$$

Donc la vérification de la flèche n'est pas nécessaire.

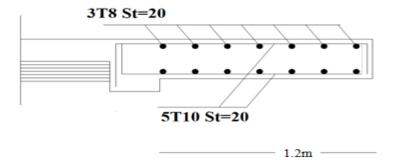


Figure 3.11: Schéma de ferraillage des balcons.

3.4 Etude des planchers

3.4.1 Introduction

Les planchers sont des éléments horizontaux qui s'appuient sur les éléments porteurs (poutres, murs porteurs, ...). Ils sont considérés comme des éléments infiniment rigides horizontalement. Ils jouent plusieurs rôles dans la construction, à savoir :

- Résistance aux charges permanentes et aux charges d'exploitation.

- Reprise des efforts horizontaux dus au vent, séisme ou à la poussée des terres sur les murs voiles périphériques et répartition de ces efforts aux éléments porteurs.
- Séparation entre les différents niveaux et isolations thermique et acoustique.
- Protection des personnes contre les risques d'incendie.

3.4.2 Plancher à corps creux

Les planchers à corps creux sont composés de deux éléments fondamentaux :

- L'élément résistant (porteur) : poutrelle en T comportant des aciers de liaison avec la dalle de compression.
- L'élément de remplissage (de coffrage) : les entrevous en béton sur lesquels est coulée une dalle de compression en béton, armé d'un treillis soudé, qui garantit une meilleure répartition des charges.

3.4.2.1 Ferraillage des poutrelles

La section résistante prise en compte dans les calculs se présente comme une succession de sections en « T » dont l'hourdis constitue la partie supérieure.

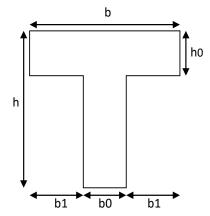


Figure3.13 : Schéma de poutrelle.

$$b_0 = (0.4 \text{ à } 0.6) * h_t$$

Avec : h_t : Hauteur du plancher.

 $h_0\,$: Hauteur de la dalle de compression.

$$b_1 \le \min\left(\frac{L_X}{2}; \frac{L_Y}{10}\right)$$

Tel que:

 L_x : Distance entre nus d'appuis des poutrelles.

 L_v : Distance entre nus d'appuis des poutres secondaires.

$$b = 2*b1 + b_0$$

 $b_0 = (0.4; 0.6) *h = (8; 12)$ cm. On adopte $b_0 = 12$ cm.

Soit: $b_0 = 12cm$.

$$b_1 = \frac{b - b_0}{2} \le \min(\frac{l_x}{2}, \frac{l_y}{10}) \Rightarrow b \le 2.\min(\frac{l_x}{2}, \frac{l_y}{10}) + b_0$$

$$L_x = 65 - 12 = 53$$
cm.

$$L_v = 445 - 30 = 415$$
cm.

$$b_1 = min\left(\frac{53}{2}; \frac{415}{10}\right) = 26,5cm. \implies b = 2 \times 26.5 + 12 = 65cm.$$

Soit :
$$\mathbf{b} = 65$$
cm.

• Dimensions des poutrelles

$$\frac{1}{25} \le \frac{h}{L} \le \frac{1}{20} \to \frac{415}{25} \le h \le \frac{415}{20}$$
 [2]

$$\rightarrow 16.6cm \le h \le 20.75cm$$

3.4.2.1.1 Evaluation des charges et surcharges revenants aux poutrelles

- A l'ELU :
$$q_u = 1.35 \times G + 1.5 \times Q$$
 et $p_u = 0.65 \times q_u$

- A l'ELS:
$$q_s = G + Q$$
 et $p_s = 0.65 \times q_s$

Tableau 3.4: Charges et surcharges d'exploitation sur les poutrelles

			ELU		ELS	
Désignation	G	Q	q_{u}	Pu	q_s	P_{s}
	(KN/m²)	(KN/m²)	(KN/m^2)	(KN/ml)	(KN/m^2)	(KN/ml)
Terrasse inaccessible	6,38	1,00	10,11	6,57	7,38	4,79
Etages d'habitation	5,39	1,50	9,52	6,19	6,89	4,47

Conclusion : Le plancher terrasse est le plus sollicité.

3.4.2.1.2 Les Différents types de poutrelles

• **Type 1**: 6 travées.

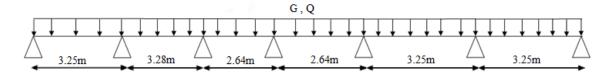


Figure 3.14 : Schéma statique de la poutrelle à 6 travées.

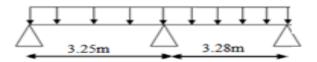


Figure 3.15: Schéma statique de la poutrelle à 2 travées.

3.4.2.1.3 Méthode de calcul

Il existe trois méthodes pour calculer les moments : la méthode forfaitaire, la méthode de Caquot et la méthode de la RDM ou bien en utilisant le logiciel **SAP2000** qui se base sur les théories des **Eléments finies.**

Puisque les poutrelles étudiées sont considérées comme des poutres continues sur plusieurs appuis, l'études se fera selon l'une des méthodes suivantes :

• Méthode forfaitaire [2]

> Condition d'application

- 1- Il faut que le plancher soit à surcharge modérée : $Q \le MAX \left\{ 2G, 5 \ KN/m^2 \right\}$
- 2- Les moments d'inerties des sections transversales sont les même dans les différentes travées en continuité.
- 3- Les portées successives sont dans un rapport compris entre 0,8 et 1,25

$$0.8 \le \frac{L_i}{L_{I+1}} < 1.25$$

4- La fissuration est non préjudiciable.

Dans le cas où l'une de ces conditions n'est pas vérifiée on applique la méthode de Caquot.

• Méthode de CAQUOT [2]

Cette méthode est appliquée lorsque l'une des conditions de la méthode forfaitaire n'est pas vérifiée.

Cette méthode est basée sur la méthode des poutres continues.

> Exposé de la méthode

• Moment sur appuis

$$M_a = -\frac{q_w l_w^{1/3} + q_e l_e^{1/3}}{8.5(l_w + l_e)}$$
.....Appuis intermédiaire

• Moment en travée

$$(M_t) = (M_0) + \frac{(M_w + M_e)}{2} + \frac{(M_w - M_e)^2}{16(M_0)}$$

Avec:

$$M_0 = \frac{ql^2}{8}$$

M₀: la valeur maximale du moment fléchissant dans chaque travée (moment isostatique).

 $(M_w; M_e)$: les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.

qw: charge répartie à gauche de l'appuis considérée.

q_e: charge répartie à droite de l'appuis considérée.

On calcul, de chaque côté de l'appui, les longueurs de travées fictives "l'w" à gauche et "l'e" à droite, avec :

l'=1....pour une travée de rive

1'=0,81.....pour une travée intermédiaire

Où "1" représente la portée de la travée libre

• Effort tranchant

$$\begin{cases} T_{w} = \frac{ql}{2} + \frac{\left(M_{e} - M_{w}\right)}{l} \\ T_{e} = -\frac{ql}{2} + \frac{\left(M_{e} - M_{w}\right)}{l} \end{cases}$$

Avec:

Tw: effort tranchant à gauche de l'appui considéré,

T_e: effort tranchant à droite de l'appui considéré.

3.4.2.1.4 Calcul des poutrelles

Le calcul des poutrelles se fait en deux étapes :

- ❖ Avant le coulage de la dalle de compression.
- Après le coulage de la table de compression
- o 1 ere étape de calcul : avant le coulage du béton :

Avant le coulage de la table de compression, la poutrelle est considérée comme une poutre simplement appuyée et elle supporte :

- Son poids propre
- ❖ Le corps creux
- ❖ La charge d'exploitation due à l'ouvrier qui travaille Q=1KN/m².
- Evaluation des charges et surcharges
 - > Charges permanentes

G=1,576kN/ml.

> Charges d'exploitation

$$Q=1\times0,65=0,65$$
kN/ml

Combinaison des charges

E.L.U:
$$q_u=1,35G+1,5Q=3,10$$
kN/ml

E.L.S :
$$q_{ser} = G + Q = 2,226 \text{kN/ml}$$

• Calcul des moments

$$M_u = \frac{q_u l^2}{8} = \frac{3,10x(4,45)^2}{8} = 7,67kNm$$

$$M_{ser} = \frac{q_{ser} l^2}{8} = \frac{2,226x(4,45)^2}{8} = 5,510kNm$$

• Ferraillage

La poutre est sollicitée à la flexion simple à l'E.L.U

 $M_u=7,67.kNm$; b=12cm; h=5cm; d=3,6cm; $\sigma_{bc}=14,17Mpa$

D'après l'organigramme de la flexion simple ; on a :

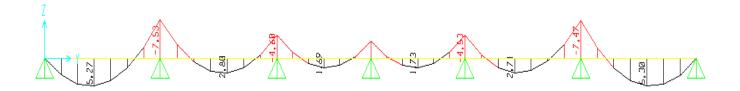
$$\mu = \frac{M_u}{bd^2\sigma_{hc}} = 3.48 > \mu_R = 0.372 \Rightarrow A_s' \neq 0$$

Donc, les armatures de compression sont nécessaires, mais il est impossible de les placer du point de vue pratique car la section du béton est trop faible.

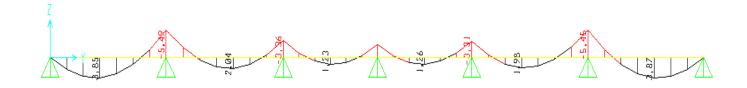
On prévoit donc des étaiements pour aider la poutrelle à supporter les charges qui lui reviennent avant et lors du coulage sans qu'elle fléchisse.

o 2ème étape : Après le coulage de la table de compression :

Après le coulage et le durcissement du béton de la dalle de compression, la poutrelle travaillera comme un élément en « Té »

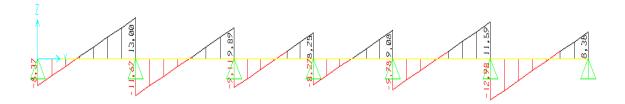

- Plancher terrasse :
 - Calcul des efforts internes

Poutrelle à (06) travées :


(3,25m; 3,28m; 2,64m; 2,64m; 3,25m; 3,25m).

> Diagrammes des Moments

ELU:



ELS:

> Diagrammes des efforts tranchants

ELU:

ELS:

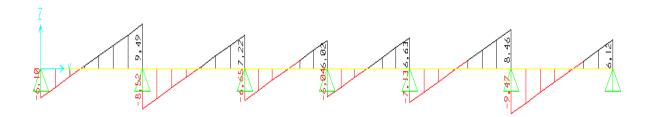


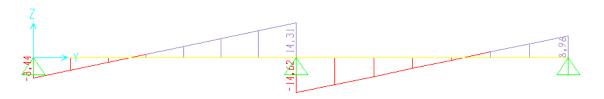
Figure 3.15 : Moment fléchissant, Effort tranchant de la poutrelle à 06 travées.

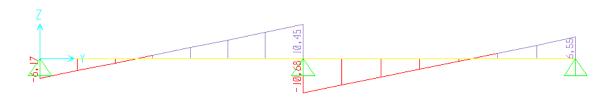

> Calcul des efforts internes

Poutrelle à (02) travées :

(3,25m; 3,28m).

> Diagrammes des Moments


ELU:


ELS:

- **>** Diagrammes des efforts tranchants
- > ELU:

ELS:

Le tableau suivant récapitulatif les résultats trouvés :

		Mu (KN.m)	Mser (KN.m)	Tu (KN)	Tser (KN)	
6 travées	Travée	5.30	3.87	13	9.49	
	Appui	7.53	5.46			
2 travées	Travée	5.70	4.16	14.62	10.68	
	Appui	9.62	7.03			

On prend les valeurs maximales pour le ferraillage :

E.L.U:
$$M_{tu}^{max} = 5.70 \text{kNm}$$
.

$$M_{au}^{max} = -9.62 \text{kNm}.$$

$$T_u^{max} = 14.62 \text{ kN}.$$

E.L.S
$$\underline{:}$$
 $M_{tser}^{max} = 4.16 kNm$.

$$M_{aser}^{max} = -7.03 kNm$$

Calcul du ferraillage

Le calcul se fait à l'ELU en flexion simple. Ce type sera un exemple de calcul détaillé.

Les efforts maximaux sur appuis et en travée sont :

E.L.U:
$$M_{tu}^{max} = 5.70 \text{kNm}$$
.

$$M_{au}^{max} = -9.62 \text{kNm}.$$

$$T_u^{max} = 14.62 \text{ kN}.$$

E.L.S
$$\underline{:}$$
 $M_{tser}^{max} = 4.16 kNm$.

$$M_{aser}^{max} = -7.03 kNm$$
.

$$T_{ser}^{max} = 10.68 \text{ kN}.$$

a. Ferraillage en travée

Le calcul des sections en forme de " $T\acute{e}$ " s'effectue différemment selon que l'axe neutre est dans la table ou dans la nervure.

- Si $M_u < M_{tab}$: l'axe neutre est dans la table de compression.
- Si $M_u > M_{tab}$: l'axe neutre est dans la table ou dans la nervure.

$$M_{tab} = bh_0 \sigma_{bc} \left(d - \frac{h_0}{2} \right) = 58.94kNm$$

On a : $M_{tu} < M_{tab}$

Alors : l'axe neutre est dans la table de compression.

Comme le béton tendu n'intervient pas dans les calculs de résistance, on conduit le calcul comme si la section était rectangulaire de largeur constante égale à la largeur de la table « *b* ».

Donc, la section étudiée est assimilée à une section rectangulaire $(b \times h)$ en flexion simple.

D'après l'organigramme donnant le ferraillage d'une section soumise à la flexion, on aura :

Tableau 3.5 : Tableau récapitulatif du calcul des sections d'armatures en travée.

M _{tu} (kNm)	μ	μ<μ _R	A _s ' (cm ²)	α	Z (cm)	μ<0,186	ζs	σ _s (MPa)	A _s (cm ²)
5,70	0,0191	Oui	0	0,0241	17,826	Oui	10‰	435	0,735

Condition de non fragilité [2]

$$A_s^{min} \ge 0.23bd \frac{f_{t28}}{f_e} = 1.13cm^2$$

 $A_s=Max \{0.735cm^2;1.13cm^2\}=1.13cm^2$

On adopte : **3T10** $A_s = 2,36 \text{cm}^2$

b. Ferraillage sur appuis

On a: $M_{au}^{max} = 9.62 \text{kNm} < M_{tab} = 58.94 \text{kNm}$

 \Rightarrow L'axe neutre est dans la table de compression, et la section étudiée est assimilée à une section rectangulaire ($b \times h$) en flexion simple.

Tableau 3.6: Tableau récapitulatif du calcul des sections d'armatures sur appuis.

M _{au} (kNm)	μ	μ<μ _R	A _s ' (cm ²)	α	Z (cm)	μ<0,186	$\zeta_{\rm s}$	σ _s (MPa)	A _s (cm ²)
9.62	0,032	Oui	0	0,0409	17,70	Oui	10‰	435	1.24

Condition de non fragilité [2]

$$A_s^{min} \ge 0.23bd \frac{f_{t28}}{f_e} = 1.13cm^2$$

 $A_s=Max \{1,24cm^2; 1,13cm^2\}=1,24cm^2$

Le choix : **2T12** ($A_s=2,26cm^2$).

c. Vérifications

> Effort tranchant

Pour l'effort tranchant, la vérification du cisaillement se fera dans le cas le plus défavorable c'est-à-dire : $T_u^{max} = 14.62 \text{KN}$.

On doit vérifier que : $\tau_u \leq \overline{\tau}_u$

Tel que:

$$\bar{\tau}_u = Min\left\{0,2\frac{f_{cj}}{\gamma_b};5MPa\right\} = 3,33MPa....Fissuration peu nuisible$$

$$\tau_u = \frac{T_u^{max}}{b_0\bar{d}_u} = 0,676 < \bar{\tau}_u = 3,33MPa.....V\acute{e}rifi\acute{e}e$$

> Au voisinage des appuis

1. Appuis de rives

- Vérification de la compression du béton :

$$\sigma_b = \frac{T_u}{0.9b_0 d} \le 0.4 \frac{f_{c28}}{\gamma_b}$$

Avec: T_u=8,69kN (appuis de rive)

$$\sigma_b = \frac{8,69 \times 10^3}{0,9 \times 120 \times 180} = 0,460 MPa < 0,4 \frac{f_{c28}}{\gamma_b} = 6,67 MPa....V\acute{e}rifi\acute{e}e$$

- Vérification des armatures longitudinales

$$A_s = 2,26cm^2 \ge \frac{T_u^{max} - \frac{M_{ua}}{0,9d}}{\sigma_s} = 0,336 cm^2 \dots vérifiée$$

2. Appuis intermédiaires

- Vérification de la contrainte de compression :

$$\sigma_b = \frac{T_u^{max}}{0.9b_0d} = \frac{14.62 \times 10^3}{0.9 \times 120 \times 180} = 0.752 MPa < 0.4 \\ \frac{f_{c28}}{\gamma_b} = 6,67 \ MPa \ldots \ldots v\acute{e}rifi\acute{e}e$$

- Vérification des armatures longitudinales :

$$A_{s}=2,26cm^{2}\geq\frac{T_{u}^{max}-\frac{M_{ua}}{0,9d}}{\sigma_{s}}=-1.02cm^{2}\ldots\ldots v\acute{e}rifi\acute{e}e$$

Vérification des contraintes

Vérification des contraintes des armatures

La fissuration étant peu nuisible, donc pas de vérification à faire à l'état de l'ouverture des fissures, et elle se limite à celle concernant l'état de compression du béton.

Vérification des contraintes du béton

Soit "y" la distance du centre de gravité de la section homogène (par lequel passe, l'axe neutre) à la fibre la plus comprimé.

La section étant soumise à un moment M_{ser}, la contrainte à une distance « y » de l'axe neutre :

$$\sigma_{bc} = \frac{M_{ser}}{I} y$$

D'après l'organigramme de la vérification d'une section rectangulaire à l'ELS, on doit vérifier

que:
$$\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28} = 15MPa$$

• Détermination de l'axe neutre

On suppose que l'axe neutre se trouve dans la table de compression :

$$\frac{b}{2}y^{2} + nA'_{s}(y - c') - nA_{s}(d - y) = 0$$

Avec:
$$n = \frac{E_s}{E_b} = 15$$
; b=65cm; b₀=12cm; c=c'=2cm.

y : est la solution de l'équation du deuxième degré suivante, puis on calcule le moment d'inertie :

$$\begin{cases} by^2 + 30(A_s + A_s')y - 30(dA_s + c'A_s') = 0\\ I = \frac{b}{3}y^3 + 15A_s(d - y)^2 + 15A_s'(y - c')^2 \end{cases}$$

- Si $y < h_0 \Rightarrow$ l'hypothèse est vérifiée
- Si $y > h_0 \Rightarrow$ la distance "y" et le moment d'inertie "I" se Calculent par les formules qui suivent :

$$\begin{cases}
b_0 y^2 + [2(b - b_0)h_0 + 30(A_s - A_s')]y - [(b - b_0)h_0^2 + 30(dA_s + c'A_s')] = 0 \\
I = \frac{b_0}{3} y^3 + \frac{(b - b_0)h_0^3}{12} + (b - b_0)h_0 \left(y - \frac{h_0}{2}\right)^2 + 15[A_s(d - y)^2 + A_s'(y - d')^2]
\end{cases}$$

Tableau 3.7: Vérification de la contrainte de béton.

	M _{ser} (kNm)	A_s (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	Vérification
Travée	4,16	2,36	3,91	8323,05	1,95	vérifiée
Appuis	7.03	2,26	3,84	8023,97	3,36	vérifiée

Vérification de la flèche

La vérification de la flèche n'est pas nécessaire si les conditions suivantes sont vérifiées : Les conditions à vérifier :

•
$$\frac{h}{L} \ge \frac{1}{16}$$
 $\frac{h}{L} = 0.0338 < 0.062 \dots non \ vérifée$
• $\frac{A_S}{b_0 d} \le \frac{4.2}{fe}$ $\frac{A_S}{b_0 d} = 0.0109 > 0.0084 \dots non \ vérifée$
• $\frac{h}{L} \ge \frac{M_t}{10M_0}$ $\frac{h}{L} = 0.0338 < 0.0568 \dots non \ vérifiée$

Avec:

h = 20cm; $b_0 = 12cm$; d = 18cm; L = 3,28 m; $M_{tser} = 3,87 kNm$; $M_0 = 6.81kNm$;

 $A_s = 2.36 \text{ cm}^2$; $F_e = 500 \text{MPa}$.

Puisque les trois conditions ne sont pas vérifiées, il est nécessaire de calculer la flèche.

Flèche totale :
$$\Delta f_T = f_v - f_i \le \bar{f}$$
 [2]

Tel que :
$$\bar{f} = 0.5 + \frac{L}{1000}$$
 Si $L \ge 5.00 \text{ m}$ $\bar{f} = \frac{L}{500}$ Si $L < 5.00 \text{ m}$

Donc:
$$\bar{f} = \frac{L}{500} = 0,656 \ cm$$

Position de l'axe neutre "y₁":

$$y_1 = \frac{bh_0 \frac{h_0}{2} + (h - h_0)b_0 \left(\frac{h - h_0}{2} + h_0\right) + 15A_s d}{bh_0 + (h - h_0)b_0 + 15A_s}$$

• Moment d'inertie de la section totale homogène « I₀ »:

$$I_0 = \frac{b}{3}y_1^3 + \frac{b_0}{3}(h - y_1)^3 - \frac{(b - b_0)}{3}(y_1 - h_0)^3 + 15A_s(d - y_1)^2$$

• Calcul des moments d'inerties fictifs :

$$I_{fi} = \frac{1.1I_0}{1 + \lambda_i \mu}$$
 ; $I_{fv} = \frac{I_0}{1 + \lambda_u \mu}$

Avec:

$$\lambda_i = \frac{0.05 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}.....$$
 Pour la déformation instantanée.

$$\lambda_{v} = \frac{0.02 f_{t28}}{\delta \left(2 + 3 \frac{b_0}{b}\right)}$$
...... Pour la déformation différée.

$$\delta = \frac{A_s}{b_0 d}$$
: Pourcentage des armatures.

$$\mu = 1 - \frac{1,75 f_{t28}}{4\delta \sigma_s + f_{t28}}$$

 σ_s : Contrainte de traction dans l'armature correspondant au cas de charge étudiée.

$$\sigma_s = \frac{M_{ser}}{A_s d}$$

Les résultats sont récapitulés dans ce tableau 3.8 :

Tableau 3.8: Calcul de la flèche.

M _{ser} (kNm)	A _s (cm ²)	Y ₁ (cm)	δ	σ _s (MPa)	λ_{i}	$\lambda_{ m v}$	μ	I ₀ (cm ⁴)	I _{fi} (cm ⁴)	I _{fv} (cm ⁴)
4,16	2,36	7,16	0,0109	97,92	3,77	1,50	0,423	20022,946	8487,13	12224,88

Calcul des modules de déformation :

$$E_i = 11000 (f_{c28})^{\frac{1}{3}} = 32164,20 MPa$$

 $E_v = 3700 (f_{c28})^{\frac{1}{3}} = 10818,87 MPa$

Calcul de la flèche due aux déformations instantanées :

$$f_i = \frac{M_{ser}l^2}{10E_iI_{fi}} = 0,163cm$$

Calcul de la flèche due aux déformations différées :

$$f_v = \frac{M_{ser}l^2}{10E_v I_{fv}} = 0.338cm$$

$$\Delta f_T = f_v - f_i = 0.175 cm \prec \bar{f} = 0.656 cm \dots vérifiée$$

> Calcul des armatures transversales et l'espacement

L'acier choisi pour les armatures transversales est de type rond lisse de nuance FeE240 (fe=235MPa)

 $\begin{cases} \bullet \frac{A_{t}}{b_{0}S_{t}} \geq \frac{\tau_{u} - 0.3f_{tj}K}{0.9fe} & K = 1 \ Art \ A \ 5.1.2.3 \\ \bullet S_{t} \leq Min(0.9d;40cm) & Art \ A \ 5.1.2.2 \\ \bullet \frac{A_{t}fe}{b_{0}S_{t}} \geq Max \left(\frac{\tau_{u}}{2};0.4MPa\right) & Art \ A \ 5.1.2.2 \end{cases}$ - Selon le C.B.A 93 :

Avec:

$$\phi_t \leq Min\left(\frac{h}{35};\phi_t;\frac{b_0}{10}\right)$$

 Q_l : Diamètre minimum des armatures longitudinales.

 $\emptyset_{t} \leq \text{Min} (0,60\text{cm}; 1\text{cm}; 1,2\text{cm})$

On adopte : \emptyset_t =6mm

Donc:

Selon le C.B.A 93:
$$\begin{cases} \bullet \frac{A_t}{S_t} \ge -0.0017cm \\ \bullet S_t \le 16.2cm \\ \bullet \frac{A_t}{S_t} \ge 0.0204cm \end{cases}$$

Selon le RPA99 version 2003
$*$
:
$$\begin{cases} \bullet \frac{A_t}{S_t} \geq 0.036 & cm \\ \bullet S_t \leq 5cm.....Zone \ nodale \\ \bullet S_t \leq 10cm.....Zone \ courante \end{cases}$$

• Choix des armatures :

$$A_t = 2.\pi . \varphi_t^2 / 4 = 0,56 \text{ cm}^2$$

On adopte : $A_t = 2\emptyset 6 = 0,57 \text{cm}^2$

• Choix des espacements :

$$\frac{A_{t}}{S_{t}} \ge 0.036 \Rightarrow S_{t} \le 15.83cm$$

$$Donc: \begin{cases} S_{t} = 5cm...................Zone nodale \\ S_{t} = 10cm...............Zone courante \end{cases}$$

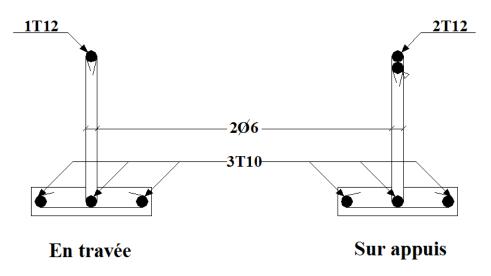


Figure 3.16 : Schéma de ferraillage des poutrelles.

3.4.2.2 Ferraillage de la table de compression

Le ferraillage de la dalle de compression doit se faire par un quadrillage dont les dimensions des mailles ne doivent pas dépasser :

20 cm : dans le sens parallèle aux poutrelles.

30 cm : dans le sens perpendiculaire aux poutrelles.

Si:
$$\begin{cases} 50 \le L \le 80cm \Rightarrow A_1 = \frac{4L}{fe} \\ L \le 50cm \Rightarrow A_2 = \frac{200}{fe} \end{cases}$$
 [4]

Avec:

L: distance entre axes des poutrelles

A₁: armatures perpendiculaires aux poutrelles

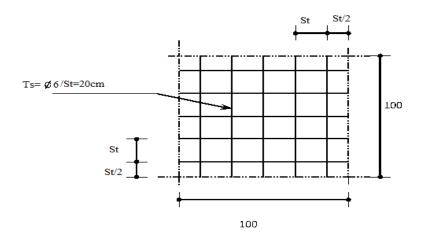
A₂: armatures parallèles aux poutrelles

Tel que:

L=65cm; Fe=235MPa (acier rond lisse)

Donc on obtient : $A_1 = 0.5 \text{cm} 2/\text{ml}$.

On prend : **5T6=1,41cm²**


$$S_t = \frac{100}{5} = 20cm$$
.

- Armatures de répartition :

$$A_2 = \frac{A_1}{2} = 0,705cm^2$$

Soit: **5T6=1,41cm²** St=20cm.

Pour le ferraillage de la dalle de compression, on adopte un treillis soudé dont la dimension des mailles est égale à 20cm suivant les deux sens.

Figure 3.17 : Ferraillage de la dalle de compression.

3.4.3 Plancher en dalle pleine

Les dalles pleines sont des éléments d'épaisseur faible par rapport aux autres dimensions, chargée perpendiculairement à leur plan moyen reposant sur deux, trois ou quatre appuis.

Dans notre structure, on a :

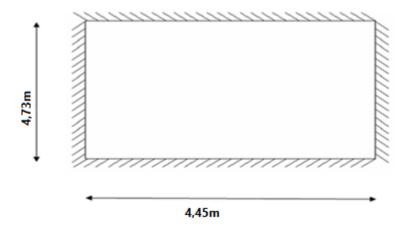


Figure 3.18: Dimensions d'une dalle pleine rectangulaire.

a. Evaluation des charges

$$G=5,35N/m^2$$
, $Q=2,5 kN/m^2$.

ELU:

$$q_u=1,35G+1,5Q=10.97 \text{ kN/m}^2$$

ELS:

$$q_{ser} = G + Q = 7.85 \text{ kN/m}^2$$

 $\rho = \frac{L_x}{L_y} = \frac{4,45}{4,73} = 0$, 94 > 0, 4 \Rightarrow La dalle travaille dans les deux sens.

b. Calcul des moments

- Dans le sens de la petite portée : $M_x = \mu_x q_u L_x^2$
- Dans le sens de la grande portée : $M_y = \mu_y M_x$

Les coefficients μ_x et μ_y sont en fonction de $\rho = \frac{L_x}{L_y}$ et de ν .

v: Coefficient de poisson
$$\begin{cases} 0 & \grave{a} \, l' \, ELU \\ 0,2 & \grave{a} \, l' \, ELS \end{cases}$$

 μ_x et μ_y sont donnés par l'abaque de calcul des dalles rectangulaires "BAEL91 modifié 99"

$$\rho = 0.94 \Rightarrow \begin{cases} \mu_x = 0.0419 \\ \mu_y = 0.8661 \end{cases}$$

$$M_x = \mu_x q_u L_x^2 = 9.10 kNm$$

$$M_y=\mu_y M_x=7,\!88kNm$$

- Moments en travées :

$$M_{tx}=0.85M_x=7.735 \text{ kNm}$$

$$M_{ty}=0.85M_y=6.70 \text{ kNm}$$

- Moments sur appuis :

$$M_{ax}=M_{ay}=0,5M_x=4,55 \text{ kNm}$$

c. Ferraillage de la dalle

 $b = 100 cm \; ; \; h = 15 cm \; ; \; d = 13,5 cm \; ; \; f_e = 500 MPa \; ; \; f_{c28} = 25 MPa \; ; \; f_{t28} = 2,1 MPa \; ; \quad \sigma_s = 434.78 MPa.$

Les résultats sont récapitulés dans le tableau suivant :

Tableau 3.9 : Ferraillage de la dalle pleine rectangulaire

	Sens	M _u (kNm)	μ	A_s ' (cm^2)	α	Z(cm)	A_s^{cal} (cm^2)	Choix	A_s^{adp} (cm^2)	Esp (cm)
Travée	<i>x-x</i>	7.735	0,0299	0	0,038	13,29	1,16	4T10	3,14	25
	у-у	6,70	0,0259	0	0,0328	13,32	1,15	<i>4T8</i>	2,01	25
Appuis	х-х	4,55	0,0176	0	0,0222	13,38	0,78	4T8	2,01	25
Appuis	у-у						,		Í	

d. Espacement:

- Travée:

Sens x-x:
$$esp = \frac{100}{4} = 25cm < Min(3h;33cm) = 33cm....Vérifiée$$

Sens y-y:
$$esp = \frac{100}{4} = 25cm < Min(4h; 45cm) = 45cm.....Vérifiée$$

- Appuis:

Sens x-x:
$$esp = \frac{100}{4} = 25cm < Min(3h;33cm) = 33cm....Vérifiée$$

Sens y-y:
$$esp = \frac{100}{4} = 25cm < Min(4h; 45cm) = 45cm......Vérifiée$$

e. Condition de non fragilité [1]

On doit vérifier que : $As \ge As^{min} = 0.6 \% bh = 0.6 \% \times 100 \times 15 = 0.9cm^2$

- Travée:

- Sens x-x : $A_s = 3.14cm^2 > A_s^{min^2} = 0.9 cm^2 \dots vérifiée$.
- Sens y-y: $A_s = 2.01cm^2 > A_s^{min^2} = 0.9cm^2 \dots vérifiée$.
- Appuis:
- Sens x-x : $A_s = 2.01cm^2 > A_s^{min^2} = 0.9cm^2 \dots vérifiée$.
- Sens y-y : $A_s = 2,01cm^2 > A_s^{min^2} = 0,9cm^2 \dots v$ érifiée.

f. Calcul des armatures transversales

Les armatures transversales ne sont pas nécessaires si la condition ci-dessous est vérifiée :

$$\begin{split} \tau_u &= \frac{T_u^{\max}}{bd} < \bar{\tau}_u = 0.07 \frac{f_{c28}}{\gamma_b} = 1.17 MPa \\ T_x &= \frac{q_u L_x L_y}{2L_x + L_y} = \frac{10.97 * 4.45 * 4.73}{2 * 4.45 + 4.73} = 16.94 kN \\ T_y &= \frac{q_u L_x}{3} = \frac{10.97 * 4.45}{3} = 16.27 kN \\ T_u^{\max(T_x; T_y)} &= 16.94 kN \\ \tau_u &= \frac{16.94 \times 10^3}{1000 \times 180} = 0.0941 MPa < \bar{\tau}_u = 1.17 MPa. Vérifiée \end{split}$$

g. Vérification à l'ELS

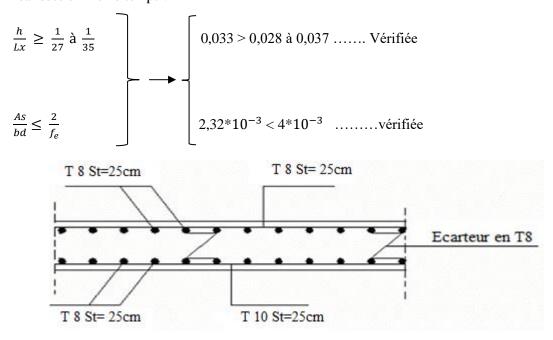
g.1 Evaluation des sollicitations à l'ELS

$$\begin{split} \frac{L_x}{L_y} &= 0.94 \Rightarrow \begin{cases} \mu_x = 0.0491 \\ \mu_y = 0.9087 \end{cases} \\ \begin{cases} M_x &= \mu_x q_{ser} L_x^2 = 7.63kNm \\ M_y &= \mu_y M_x = 6.935kNm \end{cases} \\ \begin{cases} M_{tx} &= 0.85M_x = 6.48kNm \\ M_{ty} &= 0.85M_y = 5.89kNm \end{cases} \\ \begin{cases} M_{ax} &= M_{ay} = 0.5M_x = 3.815kNm \end{cases} \end{split}$$

g.2 Vérification des contraintes

D'après le "BAEL91 modifié 99 " [1] on doit vérifier que :

$$\begin{cases} \sigma_{bc} = \frac{M_{ser}}{I} y \le \bar{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa \\ \sigma_{s} = n \frac{M_{ser}}{I} (d - y) \le \bar{\sigma}_{s} = Min \left(\frac{2}{3} fe; max(0.5 fe; 110 \sqrt{\eta f_{t28}} \right) = 250 MPa \end{cases}$$


Le tableau suivant récapitule les résultats trouvés :

	Sens	M _{ser} (KNm)	A_s (Cm^2)	(Cm)	I(cm ⁴)	σ _{bc} (MPA)	$\sigma_{bc} \leq \overline{\sigma}_{bc}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma}_s$
Travée	х-х	6,48	3,14	3,12	6087,138	3,32	Vérifié	165,74	Vérifié
Travec	у-у	5,89	2,01	2,56	4167,695	3,61	_ verijie	231,91	Vérifié
Appuis	х-х	3,815	2,01	2,56	4167,695	2,34	Vérifié	150,21	Vérifié
Appuis	у-у		2,01	2,00	7107,020	_,-,-	, e. g.e	,	J. J. J.

Tableau 3.10 : Vérification des contraintes à l'ELS

3 Vérification de la flèche :

Dans le cas des dalles de bâtiments courants dont le rapport des portées est compris entre 0,4 et 2,5 ; on peut se dispenser du calcul des flèches si les conditions suivantes sont réalisées en même temps :

Figure 3.19 : Ferraillage de la dalle pleine rectangulaire.

3.5 Escalier

3.5.1 Introduction

Les escaliers sont des éléments constitués d'une succession de gradins, ils permettent le passage à pied entre différents niveaux du bâtiment.

Notre bâtiment comporte deux types d'escaliers.

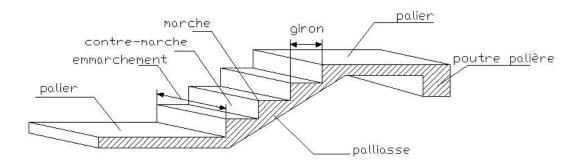


Figure 3.20 : schéma de l'escalier.

3.5.2. DEFINITION DES ÉLÉMENTS D'UN ESCALIER

- On appelle « marche » la partie horizontale (M) des gradins constituant l'escalier, et « contre marche » la partie verticale (C.M) de ces gradins.
 - *h* : Hauteur de la marche.
 - g : Largeur de la marche.
 - L: Longueur horizontale de la paillasse.
 - *H* : Hauteur verticale de la paillasse.

Pour une réalisation idéale et confortable on doit avoir 2h+g=64

On obtient, le nombre des marches et leur dimension par les relations suivantes :

-
$$2h+g=64$$
(1)

$$n \times h = H \qquad (2)$$

-
$$(n-1)g=L$$
(3)

Avec:

- n: Le nombre des contre marches
- (n-1): Le nombre des marches

En remplaçant (2) et (3) dans (1), on obtient :

$$64n^2-n(64+2H+L)+2H=0$$

Avec:

- *n* : La racine de l'équation

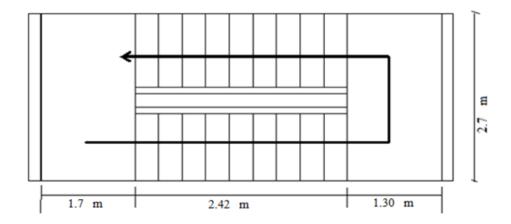


Figure 3.21: vue en plan de l'escalier

Les valeurs de H et L

H=153cm; L=242cm

 $64n^2-606n+700=0$

Solution:

- n_1 =0,53.....refusée.
- $n_2=9.03$

Donc on prend:

- le nombre de contre marche n=9
- le nombre des marchesn-1=8

Alors:

h =
$$\frac{H}{n}$$
 = $\frac{1.53}{9}$ = 0.17m = 17cm.
g = $\frac{L}{n-1}$ = $\frac{2.42}{8}$ = 0.30m = 30cm.

Vérification de l'équation de «BLONDEL»

$$\begin{cases} (59 \le (g+2h) \le 66)cm \\ (16 \le h \le 18)cm \\ (22 \le g \le 33)cm \end{cases} \Rightarrow \begin{cases} 2h+g=64cm \\ h=17cm \\ g=30cm \end{cases}$$
 Vérifiée

On prend h=17cm.

a. Détermination de l'épaisseur de la paillasse :

$$\frac{l}{30} \le e \le \frac{l}{20}$$

Avec:
$$l = \sqrt{L^2 + H^2} + 1.70 + 1.30 = \sqrt{(2,42)^2 + (1,53)^2} + 1.70 + 1.30 = 5.86m$$

Donc: $19.54cm \le e \le 29.3cm$

On prend donc l'épaisseur e=20 cm

N.B: Le palier aura la même épaisseur que la paillasse.

Cette épaisseur sera prise en considération une fois que toutes les vérifications soient satisfaites.

b. Angle d'inclinaison de la paillasse :

$$tg\alpha = \frac{H}{L} = \frac{153}{242} = 0,619 \Rightarrow \alpha = 32.30^{\circ}.$$

3.5.2.1 Evaluation des charges et surcharges

Palier

1. Charges permanentes:

	$G_1=6.8KN/m^2$
Enduit en ciment (e=2cm)	0.36KN/m²
Dalle pleine (e=20cm)	5,0KN/m²
Lit de sable (e=3cm)	0,54KN/m²
Mortier de pose (e=2cm)	0,40KN/m²
Carrelage (e=2cm)	0,50KN/m ²

2. Charge d'exploitation

$Q_1=2,50KN/m^2$

Paillasse

1. Charges permanentes:

	$G_2=10.61KN/m^2$
Enduit en ciment (e=2cm)	0,36KN/m²
Garde-corps	1,00KN/m²
2	
Poids propre de la marche $\frac{25\times0,17}{2}$ =	2 12KN/m²
Mortier de pose (e=2cm)	0,40KN/m²
Carrelage (e=2cm)	0,50KN/m²
Poids propre de la paillasse $\left(\frac{25 \times 0,2}{\cos 32,30}\right) = \dots$	5,91KN/m²

2. Charge d'exploitation

 $Q_2=2,50KN/m^2$

3.5.3. SCHÉMA STATIQUE

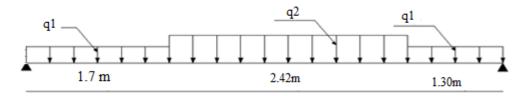


Figure 3.22 : schéma statique de l'escalier.

3.5.3.1 Calcul des sollicitations

Tableau 3.11 : Calcul des sollicitations.

Combinaison	La volée (KN /m²)	Le palier (KN /m²)		
ELU	18.07	12.93		
ELS	13.11	9.3		

3.5.3.2 DIAGRAMME DES EFFORTS INTERNES

Moment fléchissant :

E.L.U:

E.L.S:

Effort tranchant:

E.L.U:

E.L.S:

3.5.3.3 Ferraillage

• Le calcul se fait pour une section rectangulaire de dimension (b x h)

Tel que : b=100cm ; h=20cm

• Le ferraillage se fait en flexion simple pour une bande de 1m de largeur (organigramme I, voir annexe)

$$f_{c28} = 25MPa$$
 ; $f_{bc} = 14,17MPa$; $f_{t28} = 2,10MPa$; $\gamma_b = 1,5$; d=0,9h=18cm

$$\sigma_s = 434.78\,MP\alpha;\; \gamma_s = 1{,}15\,;\, \rm f_{e}\!\!=\!\!500MPa$$

> ELU

En appuis : $Ma = 0.5 \times Mu = 0.5 \times 71.43 = 35.71 \text{KN.m}$

En Travée: Mt = $0.85 \times Mu = 0.85 \times 71.43 = 51.73$ KN.m

Tableau 3.12: Ferraillage de l'escalier.

	$\mathbf{M}_{\mathbf{u}}$	μ	$\mu < \mu_R$	$A_{s}^{'}$	α	Z	A_s^{cal} / ml	Choix	A_s^{adp} / ml
	(KNm)			(cm²)		(cm)	(cm²)		(cm²)
Appui	35.71	0,077	Oui	0	0,101	17.2	4.77	5T12	5.65
Travée	60.71	0,132	Oui	0	0,177	16.72	8.34	5T14	9.23

Espacement

Armatures principales

En travée:
$$esp \le \frac{100}{5} = 20cm$$

On prend:
$$esp=20cm$$

Sur appui :
$$esp \le \frac{100}{5} = 20cm$$

On prend:
$$esp=20cm$$

Armature de répartition

En travée:
$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \implies 1.41 cm^2/ml \le A_r \le 2.82 cm^2/ml$$

Le choix est de 4T10=3.14cm² avec S_t=25cm.

Sur appui:
$$\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \implies 2.30 cm^2/ml \le A_r \le 4.61 cm^2/ml$$

Le choix est de 4T10=3.14cm² avec $S_t=25$ cm.

3.5.3.4 Vérification

a. Condition de non fragilité

$$A_s \ge A_s^{min} = 0.23bd \frac{f_{t28}}{fe}$$

- **En travée** :
$$A_s = 9.23cm^2 \ge A_s^{min^2} = 1.7.3cm^2$$

- **Sur appui :**
$$A_s = 5.65 cm^2 \ge A_s^{min^2} = 1.73 cm^2$$
 vérifier

b. Effort tranchant

On doit vérifier que : $\tau_u \leq \overline{\tau_u}$

$$\bar{\tau} = Min \left(0.2 \frac{f_{c28}}{\gamma_b}; 5MPa \right) = 3.33MPa \dots$$
 (Fissuration peu nuisible)

$$\tau = \frac{T_u^{max}}{bd} = \frac{45.74*10^3}{1000*180} = 0.254 \, MPa \leq \overline{\tau_u} = 3.33 MPa \dots vérifier$$

• Influence de l'effort tranchant au voisinage des appuis (vérification de l'ancrage)

Les armatures longitudinales tendues inférieures doivent être ancrées au-delà de l'appui, pour équilibrer l'effort de traction.

- Si :
$$T_u - \frac{M_u}{0.9d}$$
 $\langle 0 \Rightarrow$ les armatures ne sont soumises à aucun effort de traction.

- Si :
$$T_u - \frac{M_u}{0.9d}$$
 \rangle 0 \Rightarrow il faut satisfaire la condition suivante : $A_s \ge \left[\frac{T_u - \frac{M_u}{0.9d}}{\sigma_s}\right]$

$$T_u - \frac{M_u}{0.9d} = 45.74 \times 10^3 - \frac{71.43 \times 10^6}{0.9 \times 180} = -395.18KN$$

Les armatures ne sont soumises à aucun effort de traction

Vérification des armatures transversales

$$au=rac{T_u^{max}}{bd}=0.254~MPa~\leq 0.05 f_{c28}=1.25 MPa.....$$
vérifier

Donc les armatures transversales ne sont pas nécessaires

c. Vérification à l'ELS:

La fissuration est considérée comme peu nuisible, donc il n'est pas nécessaire de vérifier la contrainte des armatures tendues.

c.1 Vérification des contraintes du béton

Position de l'axe neutre

$$\frac{b}{2}y^2 + nA_s'(y - c') - nA_s(d - y) = 0$$

• Moment d'inertie

$$I = \frac{b}{3}y^3 + nA_s'(y - c')^2 + nA_s(d - y)^2$$

Avec:

$$n=15$$
; c'=2cm; d=18 cm; b=100cm; $A_s=0$

On doit vérifier que:

$$\sigma_{bc} = \frac{M_{ser}}{I} y \le \frac{-}{\sigma_{bc}} = 0.6 f_{c28} = 15MPa$$

En appuis : Ma = $0.5 \times M_{ser}$ = 0.5*51.73 = 25.86 KN.m

En travée : Mt = $0.85 \times M_{ser}$ = 0.85×51.73 =43.97 KN.m

La vérification à faire est : $\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 \ \textit{MPa}$

Tous les résultats sont récapitulés dans le tableau ci-dessous :

Tableau 3.13 : Vérification de compression du béton.

	M _{ser} (kNm)	$A_s(cm^2)$	Y(cm)	I(cm ⁴)	$\sigma_{bc}(MPa)$	Vérification
Appui	25.86	9.23	5.80	27110.269	5.54	Vérifiée
Travée	43.97	5.65	4.74	18451.26	11.29	Vérifiée

c.2 Vérification de la flèche

Il n'est pas nécessaire de calculer la flèche si les inégalités suivantes sont satisfaites :

$$\begin{cases} \frac{h}{L} \ge \frac{1}{16} \\ \frac{A_s}{bd} \le \frac{4,2}{fe} \\ \frac{h}{L} \ge \frac{M_t}{10M_0} \end{cases} \rightarrow \begin{cases} \frac{20}{586} = 0.0341 \ge 0.0625 & v\'{e}rifier \\ \frac{5.65}{1000*180} = 0.0313 \le 0.0084 & v\'{e}rifier \\ 0.0341 \le 0.085 & non v\'{e}rifier \end{cases}$$

Deux conditions ne sont pas vérifiées, donc il est nécessaire de calculer la flèche

Flèche totale : $\Delta f_T = f_v - f_i \le \bar{f}$ [1].

Avec:
$$\begin{cases} f_{i} = \frac{M_{ser}L^{2}}{10E_{i}I_{fi}} \\ f_{v} = \frac{M_{ser}L^{2}}{10E_{v}I_{fv}} \\ \bar{f} = \frac{L}{500} \end{cases}$$
 L=5,86 >5m.

• Moment d'inertie de la section homogène I₀ :

$$I_0 = \frac{bh^3}{12} + 15A_s \left(\frac{h}{2} - d\right)^2 + 15A_s' \left(\frac{h}{2} - d'\right)^2$$

$$I_{fi} = \frac{1,1I_0}{1+\lambda_i \mu}$$
 ; $I_{fv} = \frac{I_0}{1+\lambda_v \mu}$ Moment d'inertie fictive.

$$\operatorname{Avec}: \begin{cases} \lambda_{i} = \frac{0.05 f_{t28}}{\delta \left(2 + \frac{3b}{b}\right)} \\ \lambda_{v} = \frac{0.02 f_{t28}}{\delta \left(2 + \frac{3b}{b}\right)} \end{cases} ; \begin{cases} \delta = \frac{A_{s}}{b_{0}d} \\ \mu = 1 - \frac{1.75 f_{t28}}{4 \delta \sigma_{s} + f_{t28}} \\ \sigma_{s} = \frac{M_{ser}}{A_{s}d} \end{cases}$$

 $E_i=32164,20MPa$; $E_v=10818,87MPa$

Les résultats sont récapitulés dans tableau 3.14 :

Tableau 3.14 : Vérification de la flèche de l'escalier.

M _{ser} (KNm)	$\mathbf{A}_{\mathbf{s}}$	δ	$\sigma_{\rm s}$	λ_{i}	λ_{v}	μ	\mathbf{I}_0	\mathbf{I}_{fi}	$\mathbf{I}_{\mathbf{fv}}$
	(cm ²)		(MPa)				(cm ⁴)	(cm ⁴)	(cm ⁴)
43.97	5.65	0,00313	432.35	6.70	2.68	0.510	72090.666	17953.30	30459.12

Donc:

$$\begin{split} f_i &= 0,261cm \\ f_v &= 0,458cm \\ \end{split} \Rightarrow \Delta f_T = f_v - f_i = 0,197cm \\ \bar{f} &= \frac{L}{500} + 0.5 = \frac{586}{1000} + 0.5 = 1.08cm \\ &\Rightarrow \Delta f_T = 0,197cm \quad < \bar{f} = 1,08cm.... \quad v\'erifi\'ee. \end{split}$$

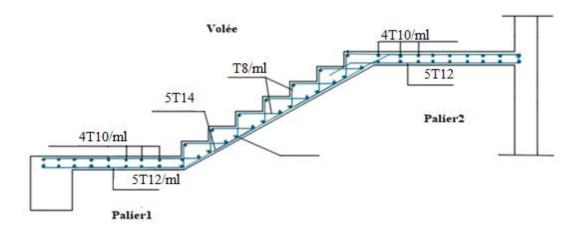


Figure 3.24: Schéma de ferraillage de volé.

4.1 Introduction

Vu que l'activité sismique peut se produire à tout moment, provoquant d'importants dégâts humains et matériels, les structures doivent être conçues et construites de manière adéquate afin de résister à ces secousses sismiques, toute en respectant les recommandations des règlements parasismiques.

Le but de ce chapitre est de définir un modèle de structure vérifiant les conditions et critères de sécurité imposée par les règles parasismiques Algériennes **RPA99/version 2003.**

La modélisation de notre structure a été effectuée à l'aide du logiciel **ETABS.17.0.1** qui est un logiciel de calcul automatique des structures.

4.2 Etude sismique

L'analyse dynamique nécessite toujours de créer initialement un modèle de calcul représentant la structure. Ce modèle introduit en suite dans un programme de calcul dynamique permet la détermination de ses modes propres de vibrations et des efforts engendrés par l'action sismique.

4.2.1 Modélisation de rigidité

La modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit :

- Chaque poutre et chaque poteau de la structure a été modélisé par un élément linéaire type poutre (frame) à deux nœuds, chaque nœud possède 6 degré de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- Chaque voile est modélisé par un élément surfacique type Shell à quatre nœud.
- A tous les planchers nous avons attribués une contrainte de type diaphragme, ce qui correspond à des planchers infiniment rigides dans leur plan.
- Tous les nœuds de la base du bâtiment sont encastrés (6DDL bloqués).

4.2.2 Modélisation de la masse

- La charge des planchers est supposée uniformément répartie sur toute la surface du plancher. La masse est calculée par l'équation (G+βQ) imposée par le RPA99 version
 2003 avec (β=0,2) pour un bâtiment à usage d'habitation.
- La masse volumique attribuée aux matériaux constituant les poteaux et les poutres est prise égale à celle du béton à savoir $2.5t/m^3$.
- La charge de l'acrotère et des murs extérieurs (maçonnerie) a été répartie aux niveaux des poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).

4.3 Choix de la méthode de calcul

Le choix des méthodes de calcul et la modélisation de la structure ont comme objectif de prévoir aux mieux le comportement réel de l'ouvrage.

Les règles parasismiques Algériennes (**RPA99/version2003**) propose trois méthodes de calcul des sollicitations.

- 1- La méthode statique équivalente.
- 2- La méthode d'analyse modale spectrale.
- 3- La méthode d'analyse dynamique par accélérogramme.

4.3.1 La méthode statique équivalente

a. Principe

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique. Le mouvement du sol peut se faire dans une direction quelconque dans le plan horizontal.

Les forces sismiques horizontales équivalentes seront considérées appliquées successivement suivant deux directions orthogonales caractéristiques choisies par le projecteur. Dans le cas général, ces deux directions sont les axes principaux du plan horizontal de la structure

b. Conditions d'applications

Les conditions d'applications de la méthode statique équivalente sont :

Le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus égale à 65m en zones I et II et à 30m en zones III.

La méthode statique équivalente n'est pas applicable dans le cas de notre bâtiment car la structure est en zone III, de groupe d'usage 2 et sa hauteur dépasse les 17m.

4.3.2 La méthode modale spectrale

La méthode d'analyse modale spectrale peut être utilisée dans tous les cas et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

Dans notre projet, une étude dynamique de la structure s'impose du fait que les conditions de régularité ne sont pas satisfaites.

a. Principe

Il est recherché pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques, représentées par un spectre de calcul, ces effets sont par suite combinés pour obtenir la réponse de la structure.

Cette méthode est basée sur les hypothèses suivantes :

- Concentration des masses au niveau des planchers.
- Seuls les déplacements horizontaux des nœuds sont pris en compte.

- Le nombre de modes à prendre en compte est tel que la somme des coefficients massiques de ces modes soit aux moins égales 90%.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la repense totale de la structure.
- Le minimum de modes à retenir est de trois (3) dans chaque direction considérée.

Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (K) à retenir doit être tel que :

$$K \ge 3\sqrt{N}$$
 et $T_K \le 0.20 \text{sec}$ (4-14) [1]

Où : N est le nombre de niveaux au-dessus de sol et T_K la période du mode K.

b. Analyse spectrale

> Utilisation des spectres de réponse

La pratique actuelle la plus répondue consiste à définir le chargement sismique par un spectre de réponse. Toute structure est assimilable à un oscillateur multiple, la réponse d'une structure à une accélération dynamique est fonction de l'amortissement (ζ) et de la pulsation naturelle (ω).

Donc pour des accélérogrammes données, si on évalue les réponses maximales en fonction de la période (T), on obtient plusieurs points sur un graphe qui est nommé spectre de réponse et qui aide à faire une lecture directe des déplacements maximaux d'une structure.

L'action sismique est représentée par un spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases}
1,25A \left(1 + \frac{T}{T_1} \left(2,5\eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\
2,5\eta \left(1,25A\right) \frac{Q}{R} & T_1 \le T \le T_2 \\
2,5\eta \left(1,25A\right) \frac{Q}{R} \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3,0s \\
2,5\eta \left(1,25A\right) \frac{Q}{R} \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 3,0s
\end{cases}$$
(4-13) [1]

Représentation graphique du spectre de réponse Sa/g

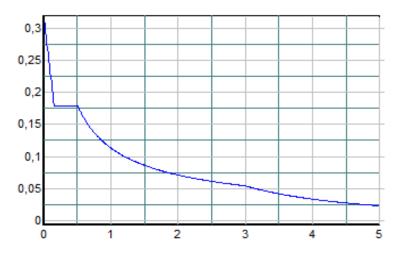


Figure 4.1 : Spectre de réponse.

Avec:

g : accélération de la pesanteur.

A : coefficient d'accélération de zone.

 η : facteur de correction d'amortissement.

R : Coefficient de comportement de la structure. Il est fonction du système de contreventement.

T₁, T₂: Périodes caractéristiques associées à la catégorie de site.

Q : Facteur de qualité.

> Résultante des forces sismiques de calcul

L'une des premières vérifications préconisées par le «RPA99 version 2003 » est relative à la résultante des forces sismiques.

En effet la résultante des forces sismiques à la base V_t obtenue par combinaison des valeurs modales ne doit pas être inférieur à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

Si $V_t < 0.8V$, il faut augmenter tous les paramètres de la réponse (forces, déplacements, moments ,.....) dans le rapport : $\frac{0.8V}{V}$.

Calcul de la force sismique par la méthode statique équivalente

La force sismique totale V appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A \times D \times Q}{R} \times W$$
 [1]

Avec

A: coefficient d'accélération de zone.

* groupe d'usage : 2

*zone sismique : III

A=0.25

D: facteur d'amplification dynamique moyen

Ce facteur est fonction de la catégorie du site, du facteur de correction d'amortissement (η)

et de la période fondamentale de la structure (T).

D=
$$\begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3.0s \end{cases}$$
 [1]
$$2.5\eta \left(\frac{T_2}{3.0}\right)^{2/3} \left(\frac{3.0}{T}\right)^{5/3} & T \ge 3.0s .$$

T1, T2: périodes caractéristiques associées à la catégorie du site:

Catégorie S_3 \longrightarrow site meuble $\begin{cases} T1 = 0.15 \text{ sec.} \\ T2 = 0.50 \text{ sec.} \end{cases}$

•
$$\eta = \sqrt{7/(2+\xi)} \ge 0.7$$

 $avec \ \xi = 7\% \rightarrow \eta = 0.8819$

Estimation de la période fondamentale de la structure (T)

La valeur de la période fondamentale (T) de la structure peut être estimée à partir de formules empiriques ou calculées par des méthodes analytiques ou numériques.

• Les formules empiriques à utiliser selon le RPA99/version 2003 sont :

T= min (
$$T = C_T \times h_N^{3/4}$$
 , $T = 0.09 \frac{h_N}{\sqrt{D}}$)
$$C_T = 0.05$$

 h_N : Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau.

 $h_N = 30 \text{m}$

D : Est la dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.

$$\left\{ \begin{array}{l} D_X = 27 \ m \\ D_Y = 22.85 m \end{array} \right.$$

• $T=C_T \times hn^{3/4}=0.05 \times 30^{3/4}=0.64s$; dans les deux directions.

• Suivant la direction (x - x) $Tx = 0.09 \times \frac{30}{\sqrt{27}} = 0.51s$

• Suivant la direction (y - y) $Ty = 0.09 \times \frac{30}{\sqrt{22.85}} = 0.566s$

Sens (**x-x**): $T_x = min(0.51, 0.64) = 0.51 sec$

Sens (y-y): $T_y = \min(0.566, 0.64) = 0.566 \text{ sec}$

Calcul de D:
$$\int Dx = 2.5 \eta \left(\frac{T^2}{Tx}\right)^{\frac{2}{3}} = 2.5 \times 0.8819 \left(\frac{0.5}{0.51}\right)^{\frac{2}{3}} = 2.17$$
$$Dy = 2.5 \eta \left(\frac{T^2}{Ty}\right)^{\frac{2}{3}} = 2.5 \times 0.8819 \left(\frac{0.5}{0.566}\right)^{\frac{2}{3}} = 2.05$$

R: Coefficient de comportement

L'objet de la classification des systèmes structuraux se traduit, dans les règles et les méthodes de calcul, par l'attribution pour chacune des catégories de cette classification, d'un coefficient de comportement R qui est un paramètre qui reflète la ductilité de la structure ; il dépend du système de contreventement.

Le coefficient de comportement global de la structure, sa valeur unique est donnée par le tableau (4.3) **de RPA 99 v2003** en fonction du système de contreventement.

R=5 (contreventement mixte par des voiles et des portiques)

Q : Facteur de qualité

Le facteur de qualité **de** la structure est fonction de :

- La redondance et de la géométrie des éléments qui la constituent
- La régularité en plan et en élévation
- La qualité de contrôle de la construction

La valeur de **Q** déterminée par la formule :

$$Q = 1 + \sum_{1}^{6} P_{q}$$
 [1]

 P_q : Est la pénalité à retenir selon que le critère de qualité ${f q}$ "est satisfait ou non ".

Sa valeur est donnée par le tableau 4.4 (RPA 99/version 2003).

Critère q	Observée (o/n)	Pq // xx	Observée (o/n)	Pq // yy
Conditions minimales sur les files	non	0.05	non	0.05
de contreventement				
Redondance en plan	non	0.05	non	0.05
Régularité en plan	non	0.05	oui	0.05
Régularité en élévation	oui	0	oui	0
Contrôle de la qualité des matériaux	non	0.05	non	0.05
Contrôle de la qualité de l'exécution	oui	0	oui	0

Tableau 4.1 : Facteur de qualité.

Q//xx=1+(0.05+0.05+0.05+0+0.05)=**1.20**

$$Q//yy=1+(0.05+0.05+0.05+0+0.05)=$$
1.20

Donc:
$$\begin{cases} Vx = \frac{A \times Dx \times Q}{R} = \frac{0.25 \times 2.17 \times 1.20}{5}.W = 0.130W \\ Vy = \frac{A \times Dy \times Q}{R} = \frac{0.25 \times 2.05 \times 1.20}{5}.W = 0.123W \end{cases}$$

4.4 Résultats de l'analyse sismique

1. Modèle initial

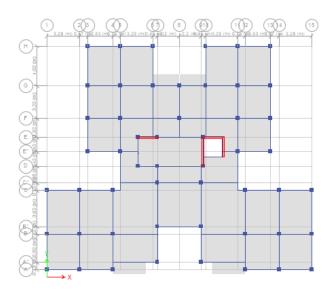


Figure 4.2 : Vue en plan du modèle initial

a. Caractéristiques dynamiques propres du modèle initial :

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T= 1.464 s
- La participation massique dépasse le seuil des 90% à partir du 10ème mode.

Modes	Période	UX	UY	UZ	SumUX	SumUY	SumUZ
1	1,464	0,1618	0,0655	0	0,1618	0,0655	0
2	1,143	0,0012	0,6534	0	0,163	0,7189	0
3	1,121	0,5909	0,026	0	0,7538	0,7448	0
4	0,501	0,0179	0,0075	0	0,7717	0,7524	0
5	0,333	0,042	0,0638	0	0,8137	0,8162	0
6	0,332	0,0726	0,0685	0	0,8863	0,8847	0
7	0,278	0,0082	0,002	0	0,8945	0,8867	0
8	0,202	0,0019	0,0017	0	0,8964	0,8884	0
9	0,165	0,0395	0,0079	0	0,9359	0,8964	0
10	0,16	0,0048	0,041	0	0,9408	0,9373	0

Tableau 4.2 : Participation massique du modèle initial

- Le 1^{er} mode est un mode de rotation
- Le ^{2ème} mode est un mode de translation parallèlement à y-y
- Le 3^{ème} mode est un mode de translation parallèlement à x-x

On doit assurer la translation dans les deux premiers modes, pour cela on rajoutera des voiles dans la structure.

1er Modèle

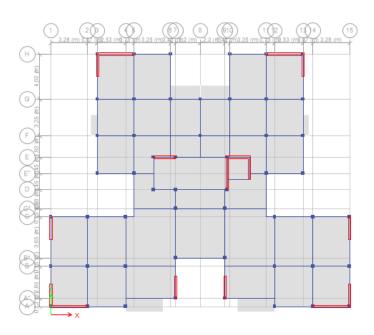


Figure 4.3 : Vue en plan du1^{er} modèle

a. Caractéristiques dynamiques propres du 1er Modèle

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =0.83 sec.
- Une participation massique dépassant le seuil des 90% à partir du 8ème mode.

Modes	Période	UX	UY	UZ	SumUX	SumUY	SumUZ
1	0,836	0,4737	0,2168	0	0,4737	0,2168	0
2	0,803	0,2156	0,4799	0	0,6893	0,6967	0
3	0,616	0,0056	0,0006	0	0,6949	0,6973	0
4	0,234	0,0567	0,1027	0	0,7516	0,8	0
5	0,223	0,116	0,0541	0	0,8676	0,854	0
6	0,164	0,0024	0,0003	0	0,87	0,8543	0
7	0,117	0,0496	0,0066	0	0,9196	0,8609	0
8	0,107	0,0068	0,0559	0	0,9264	0,9168	0

Tableau 4.3 : Participation massique du 1^{er} modèle.

- Le 1^{er} mode est un mode de translation couplé.
- Le 2^{ème} mode est un mode de translation couplé.
- Le 3^{ème} mode est un mode est rotation.

b. Vérification de la période

Nous avons trouvé une période fondamentale : T =0, 836 > T_{empirique},

On considèrera alors une période fondamentale avec une valeur T=1,3T_{empirique}

Sens (x-x):
$$1.3T_x=1.3\times(0.51)=0.663$$
sec

Sens (y-y):
$$1.3T_y=1.3\times(0.566)=0.735$$
sec

Calcul de D:

$$\int Dx = 2.5\eta \left(\frac{T^2}{Tx}\right)^{\frac{2}{3}} = 2.5 \times 0.8819 \left(\frac{0.5}{0.663}\right)^{\frac{2}{3}} = 1.82$$

$$Dx = 2.5\eta \left(\frac{T^2}{Tx}\right)^{\frac{2}{3}} = 2.5 \times 0.8819 \left(\frac{0.5}{0.735}\right)^{\frac{2}{3}} = 1.70$$

Les forces sismiques :

$$\begin{cases} Vx = \frac{A \times Dx \times Q}{R} = \frac{0.25 \times 1.82 \times 1.20}{5}.W = 0.109W \\ Vy = \frac{A \times Dy \times Q}{R} = \frac{0.25 \times 1.70 \times 1.20}{5}.W = 0.102W \end{cases}$$

Résultantes des forces sismiques

D'après le fichier des résultats de ETABS on a :

• W=57722.1044KN

$$V_{x}^{i}=6291.7093 \text{ KN} \rightarrow 0.8 V_{x}^{i}=5033.3675 \text{KN}$$

$$V_{y}^{i}=58887.6546 \text{KN} \rightarrow 0.8 V_{x}^{i}=4710.1237 \text{KN}$$

$$v_{y}^{i}=2690,8259 \text{kN}$$

$$V_X = 2690,8259kN$$

$$V_{v}=2727 3397kN$$

$$\begin{cases} 0.8 \ V_x^i = 5033.3675 \text{KN} > V_X = 2690,8259 \text{kN} \\ 0.8 \ V_x^i = 4710.1237 \text{KN} > V_Y = 2727,3397 \text{kN} \end{cases}$$
 Le rapport :
$$\begin{cases} 0.8 \ V_x^i = 4710.1237 \text{KN} > V_Y = 2727,3397 \text{kN} \\ V_Y = 2727,3397 \text{kN} \end{cases}$$
 Le rapport :
$$\begin{cases} 0.8 \ V_{xi} = 1.87 \\ V_{xi} = 1.87 \end{cases}$$
 Le rapport
$$\begin{cases} 0.8 \ V_{xi} = 1.72 \\ V_{xi} = 1.72 \end{cases}$$

c. Vérification des déplacements inter étage :

Tableau 4.4 : Vérification des déplacements inter étages du 2^{éme} modèle.

étages	d_{eK}^{x} (cm)	$d_{eK}^{y}(cm)$	$d_{K}^{x}(cm)$	$d_{K}^{y}(cm)$	$D^{x}_{K}(cm)$	$D^{y}_{K}(cm)$	Déplacement admissible	Observation
9éme	5,700508	4,833716	28,50254	24,16858	2,916265	2,3822	3	Vérifié
8éme	5,117255	4,357276	25,586275	21,78638	3,198635	2,58	3	Non vérifié
7eme	4,477528	3,841276	22,38764	19,20638	3,385635	2,79414	3	Non vérifié
6eme	3,800401	3,282448	19,002005	16,41224	3,52121	2,9326	3	Non vérifié
5eme	3,096159	2,695928	15,480795	13,47964	3,41275	2,95582	3	Non vérifié
4eme	2,413609	2,104764	12,068045	10,52382	3,33234	2,9025	3	Non vérifié
3eme	1,747141	1,524264	8,735705	7,62132	3,069605	2,7262	3	Non vérifié
2eme	1,13322	0,979024	5,6661	4,89512	2,64979	2,365	3	Vérifié
1er	0,603262	0,506024	3,01631	2,53012	1,960695	1,75526	3	Vérifié
RDC	0,211123	0,154972	1,055615	0,77486	1,055615	0,77486	3	Vérifié
Base	0	0	0	0	0	0	3	Vérifié

Les déplacements latéraux inter étage dépassent les valeurs admissibles il faut donc augmenter la rigidité latérale de la structure.

Modèle 2

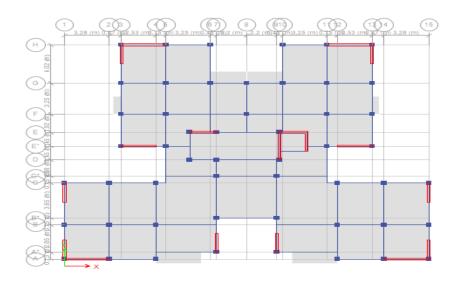


Figure 4.4 : Vue en plan du 2^{éme} modèle

a. Caractéristiques dynamique propres du modèle 2

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =0.83 sec.
- La participation massique dépasse le seuil des 90% à partir du 8ème mode.

Tableau 4.5 : Participation massique du 2^{ème} modèle.

Modes	Période	UX	UY	UZ	SumUX	SumUY	SumUZ
1	0,83	0,0043	0,6943	0	0,0043	0,6943	1
2	0,732	0,6488	0,0052	0	0,6531	0,6995	2
3	0,613	0,0385	0,0004	0	0,6915	0,7	3
4	0,235	0,001	0,1541	0	0,6925	0,854	4
5	0,196	0,1584	0,0015	0	0,8509	0,8555	5
6	0,163	0,0156	0,0002	0	0,8665	0,8557	6
7	0,11	0,0017	0,059	0	0,8682	0,9148	7
8	0,098	0,0518	0,0027	0	0,9201	0,9175	8

- Le 1^{er} mode est un mode de translation parallèlement à y-y.
- Le 2^{ème} mode est un mode de translation parallèlement à x-x.
- Le 3^{ème} mode est un mode est rotation.

b. Vérification de la période

Nous avons trouvé une période fondamentale : T =0, 82>T_{empirique},

On considèrera alors une période fondamentale avec une valeur T=1,3T_{empirique}

Sens (x-x):
$$1.3T_x=1.3\times(0.51)=0.663$$
sec

Sens (y-y):
$$1.3T_v=1.3\times(0.566)=0.735$$
sec

Calcul de D:

$$\begin{cases} Dx = 2.5\eta \left(\frac{\text{T2}}{Tx}\right)^{\frac{2}{3}} = 2.5 \times 0.8819 \left(\frac{0.5}{0.663}\right)^{\frac{2}{3}} = 1.82\\ Dx = 2.5\eta \left(\frac{\text{T2}}{Tx}\right)^{\frac{2}{3}} = 2.5 \times 0.8819 \left(\frac{0.5}{0.735}\right)^{\frac{2}{3}} = 1.70 \end{cases}$$

Donc:

$$\begin{cases} Vx = \frac{A \times Dx \times Q}{R} = \frac{0.25 \times 1.82 \times 1.20}{5}.W = 0.109W \\ Vy = \frac{A \times Dy \times Q}{R} = \frac{0.25 \times 1.70 \times 1.20}{5}.W = 0.102W \end{cases}$$

Résultantes des forces sismiques :

D'après le fichier des résultats de ETABS on a :

• W=57795.1044KN
$$\rightarrow$$
 $V_{X}=2944,6289kN$ $V_{Y}=2861,3615kN$

$$\begin{cases} V_x{}^i{=}6299.6636 \ KN \rightarrow & 0.8 \ V_x{}^i{=}5039.7309 KN \\ V_y{}^i{=}58887.6546 KN \rightarrow & 0.8 \ V_x{}^i{=}4716.0784 KN \end{cases}$$
 Ce qui donne :
$$\begin{cases} 0.8 \ V_x{}^i{=}5039.7309 KN > V_x{=}2944,6289 kN \\ 0.8 \ V_x{}^i{=}4716.0784 KN > V_y{=}2861,33615 kN \end{cases}$$
 Le rapport :
$$\begin{cases} 0.8 \ Vx{}^i{=}1.71 \ ; \quad r_x{=}1.71 \end{cases}$$
 Le rapport
$$\begin{cases} 0.8 \ Vy{}^i{=}1.64 \ ; \quad r_y{=}1.64 \end{cases}$$

d. Vérification des déplacements inter étage

Tableau 4.6 : Vérification des déplacements inter étages du 2^{éme} modèle.

Étages	d_{eK}^{x} (cm)	$d_{eK}^{y}(cm)$	$d_{K}^{x}(cm)$	$d_{K}^{y}(cm)$	$D^{x}_{K}(cm)$	D^{y}_{K} (cm)	Delta admissble	Observation
						(cm)	admissore	
9éme	4,823429	4,853034	24,117145	24,26517	2,5012	2,35467	3	Vérifié
8éme	4,323189	4,3821	21,615945	21,9105	2,725125	2,55231	3	Vérifié
7eme	3,778164	3,871638	18,89082	19,35819	2,86793	2,77101	3	Vérifié
6eme	3,204578	3,317436	16,02289	16,58718	2,980315	2,92248	3	Vérifié
5eme	2,608515	2,73294	13,042575	13,6647	2,904265	2,96379	3	Vérifié
4eme	2,027662	2,140182	10,13831	10,70091	2,831595	2,93058	3	Vérifié
3eme	1,461343	1,554066	7,306715	7,77033	2,59922	2,77101	3	Vérifié
2eme	0,941499	0,999864	4,707495	4,99932	2,218125	2,41299	3	Vérifié
1er	0,497874	0,517266	2,48937	2,58633	1,62071	1,79496	3	Vérifié
RDC	0,173732	0,158274	0,86866	0,79137	0,86866	0,79137	3	Vérifié
Base	0	0	0	0	0	0	3	Vérifié

Les déplacements relatifs inter étages sont inférieurs à la limite imposée par le *RPA99 version 2003 *.

e. Vérification du critère de l'effort normal réduit [1]

$$\bullet \quad \mathbf{v} = \frac{N_d}{B_c \times f_{c28}} \le 0.30$$

 $\label{eq:Avec:Nd:P} Avec: Nd: l'effort normal pour les poteaux ; Nd: G+Q \pm E \quad ; \quad B_c: section de poteau \\ Les résultats sont regroupés dans le tableau suivant :$

Tableau 4.7 : Vérification de l'effort normal pour les poteaux carrés.

Étage	Nd (KN)	BC (Cm²)	ν	Obs	Section Corrigée(cm ²)	ν	Obs
P9	202,09	30*30	0,089	<0,3	40*40	0,050	<0,3
P8	382,39	30*30	0,169	<0,3	40*40	0,095	<0,3
P7	568,66	30*30	0,252	<0,3	45*45	0,112	<0,3
P6	756,86	30*30	0,336	>0,3	45*45	0,149	<0,3

P5	951,98	35*35	0,310	>0,3	50*50	0,152	<0,3
P4	1150,59	35*35	0,375	>0,3	50*50	0,184	<0,3
Р3	1248,30	35*35	0,407	>0,3	55*55	0,165	<0,3
P2	1566,41	40*40	0,391	>0,3	55*55	0,207	<0,3
P1	1641,55	40*40	0,410	>0,3	60*60	0,182	<0,3
R.D.C	2014,77	40*40	0,503	>0,3	60*60	0,223	<0,3

Les efforts normaux réduits dépassent les valeurs admissibles imposées par le **RPA99 version* 2003 »; nous avons alors augmenté les sections des poteaux. Les dimensions sont mentionnées dans le tableau ci-dessus.

a. Caractéristiques dynamiques propres du modèle (après augmentation des sections des poteaux)

L'analyse dynamique de la structure a conduit à :

- Une période fondamentale : T =0,705 sec.
- La participation massique dépasse le seuil des 90% à partir du $\delta^{\rm eme}$ mode.

Modes	Période	UX	UY	UZ	SumUX	SumUY	SumUZ
1	0,705	0,0228	0,6821	0	0,0228	0,6821	0
2	0,667	0,6512	0,0254	0	0,674	0,7076	0
3	0,545	0,0202	0,0006	0	0,6942	0,7081	0
4	0,213	0,0028	0,1445	0	0,697	0,8526	0
5	0,195	0,1575	0,0033	0	0,8544	0,856	0
6	0,159	0,0105	0,0003	0	0,8649	0,8563	0
7	0,107	0,0047	0,0539	0	0,8696	0,9103	0
8	0,101	0,0478	0,0064	0	0,9174	0,9167	0

Tableau 4.8 : Participation massique du 2^{ème} modèle

- Le 1^{er} mode est un mode de translation parallèlement à y-y
- Le 2^{ème} mode est un mode de translation parallèlement à x-x
- Le 3^{ème} mode est un mode est rotation.

b. Vérification de la période

Nous avons trouvé une période fondamentale : T =0,705 > T_{empirique},

Donc on prend T=1,3T_{empirique}

Sens (x-x): $1.3T_x=1.3\times(0.51)=0.663$ sec

Sens (y-y): $1.3T_y=1.3\times(0.566)=0.735$ sec

Calcul de D:
$$\begin{cases} Dx = 2.5\eta (\frac{T^2}{Tx})^{\frac{2}{3}} = 2.5 \times 0.8819 (\frac{0.5}{0.663})^{\frac{2}{3}} = 1.82m \\ Dy = 2.5\eta (\frac{T^2}{Ty})^{\frac{2}{3}} = 2.5 \times 0.8819 (\frac{0.5}{0.735})^{\frac{2}{3}} = 1.70m \end{cases}$$

$$\begin{cases} Vx = \frac{A \times Dx \times Q}{R} = \frac{0.25 \times 1.82 \times 1.20}{5}.W = 0.109W \\ Vy = \frac{A \times Dy \times Q}{R} = \frac{0.25 \times 1.70 \times 1.20}{5}.W = 0.102W \end{cases}$$

Résultantes des forces sismiques

D'après le fichier des résultats d Etabs17, nous avons :

$$W{=}\;60899.0939\;KN \;\;\rightarrow \;\; \begin{matrix} V_{X}{}^{I}{=}\;3433.1389\;KN \\ \\ V_{Y}{}^{I}{=}\;3438.5106KN \end{matrix}$$

$$\begin{cases} V_{X=} 6638.0012 \text{ KN} \rightarrow 0.8 V_{X} = 5310.4009 \text{ KN} \\ V_{Y=} 6211.7075 \text{ KN} \rightarrow 0.8 V_{Y} = 4969.3660 \text{ KN} \end{cases}$$

Ce qui donne :
$$\begin{cases} 0.8V_X = 5310.4009 \text{ KN} > V_X^I = 3433.1389 \text{ KN} \\ 0.8V_Y = 4969.3660 \text{ KN} > V_Y^I = 3438.5106 \text{KN} \end{cases}$$
 Le rapport
$$\begin{cases} \frac{0.8VXI}{VX} = 1.51 \text{ ; } r_x = 1.51 \text{ Le rapport } \frac{0.8VYI}{VY} = 1.42 \text{ ; } r_y = 1.42 \end{cases}$$

c. Vérification des déplacements inter étage

Tableau 4.9: Vérification des déplacements inter étages du 2^{éme} modèle.

Étages	d_{eK}^{x} (cm)	$d_{eK}^{y}(cm)$	d_{K}^{x} (cm)	$d_{K}^{y}(cm)$	$D^{x}_{K}(cm)$	$D^{y}_{K}(cm)$	Delta admissble	Observation
9éme	3,687606	3,416688	18,43803	17,08344	1,74726	1,44144	<3	Vérifié
8éme	3,338154	3,1284	16,69077	15,642	2,012715	1,62504	<3	Vérifié
7eme	2,935611	2,803392	14,678055	14,01696	2,110635	1,81512	<3	Vérifié
6eme	2,513484	2,440368	12,56742	12,20184	2,2491	1,98576	<3	Vérifié
5eme	2,063664	2,043216	10,31832	10,21608	2,23686	2,0844	<3	Vérifié
4eme	1,616292	1,626336	8,08146	8,13168	2,21238	2,12688	<3	Vérifié
3eme	1,173816	1,20096	5,86908	6,0048	2,032605	2,06496	<3	Vérifié
2eme	0,767295	0,787968	3,836475	3,93984	1,7748	1,85328	<3	Vérifié
1er	0,412335	0,417312	2,061675	2,08656	1,356345	1,42056	<3	Vérifié
RDC	0,141066	0,1332	0,70533	0,666	0,70533	0,666	<3	Vérifié
Base	0	0	0	0	0	0	<3	Vérifié

e. Vérification des conditions du facteur de comportement R

e. 1 Justification des voiles sous charges verticales

L'effort normal total à la base de la structure P_{Tot} = 61067.8439 kN.

L'effort normal à la base repris par les voiles P_{voiles}=11075.9185 KN.

 $P_{voiles}/P_{Tot}=18,137\%$

Les voiles de contreventement reprennent moins de 20% des sollicitations dues aux charges verticales.

f. Justification des portiques sous charges horizontales

Tableau 4.10 : Vérification des portiques sous 25% de l'effort tranchant d'étage.

NIV	Vx _{tot} (KN)	Vxportique	V_{port}	Vy _{tot} (KN)	Vyportique	V _{port} %	Condition	Obs
		(KN)	%		(KN)		25%	
9	641,4508	402,35	62,7249978	650,7229	409,9929	63,0057587	25	Vérifié
8	1234,003	609,6449	49,4038426	1219,8505	659,2806	54,0460163	25	Vérifié
7	1716,51	822,1682	47,8976644	1698,2475	989,2454	58,2509558	25	Vérifié
6	2126,58	804,9599	37,8523216	2114,5065	1024,4761	48,4498913	25	Vérifié
5	2480,6381	972,0452	39,1852887	2475,4993	1332,8602	53,8420754	25	Vérifié
4	2781,2323	919,3594	33,0558292	2788,09	1336,8003	47,9468131	25	Vérifié
3	3026,2421	958,9868	31,6890311	3033,7395	1399,1815	46,120687	25	Vérifié
2	3216,63	832,37	25,8770825	3225,299	1275,42	39,5442407	25	Vérifié
1	3341,77	841,2	25,1722889	3363,007	1363,93	40,5568588	25	Vérifié
RDC	3433,31	1346,8	39,2274511	3438,0851	1242,125	36,128396	25	Vérifié

h. Justification vis-à-vis de l'effet $P-\Delta$ (les effets du second ordre)

C'est le moment additionnel dû au produit de l'effort normal dans un poteau au niveau d'un nœud de la structure par le déplacement horizontal du nœud considéré.

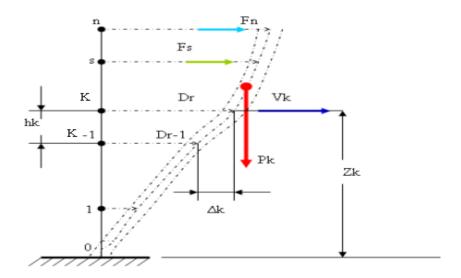


Figure 4.5: Evaluation des effets du second ordre.

Les effets du 2° ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux :

$$\theta = \frac{P_K \Delta_K}{V_K h_K} \le 0.10 \text{ "RPA99 version 2003" [1]}$$

Avec:

 p_k : Poids total de la structure et des charges d'exploitations associées au-dessus du niveau K:

$$P_K = \sum_{i=k}^n (W_{Gi} + \beta W_{Qi})$$

 V_{κ} : Effort tranchant d'étage au niveau 'K'

 Δ_k : Déplacement relatif du niveau 'K' par rapport au niveau 'K-1'.

 h_k : Hauteur d'étage 'k' comme indique-la figure.

Tableau 4.11 : Justification vis-à- vis de l'effet $P-\Delta$ du modèle final.

NIV	Vx (KN)	Vy (KN)	P _k (KN)	Δx (cm)	Δy (cm)	h _k (m)	θх	Θу	Observation
9eme	641,4508	650,7229	6350,7793	1,7266	1,4242	3	0,05698	0,04700	<0,1
8eme	1234,003	1219,8505	12050,8236	1,9939	1,6038	3	0,06490	0,05222	<0,1
7eme	1716,51	1698,2475	17905,5929	2,0996	1,7906	3	0,07300	0,06226	<0,1
6eme	2126,58	2114,5065	23734,6852	2,2468	1,9574	3	0,08359	0,07282	<0,1
5eme	2480,6381	2475,4993	29753,2887	2,2438	2,0547	3	0,08971	0,08214	<0,1
4eme	2781,2323	2788,09	35756,9061	2,2317	2,0966	3	0,09564	0,08985	<0,1
3eme	3026,2421	3033,7395	41852,8484	2,0649	2,0362	3	0,09519	0,09387	<0,1
2eme	3216,63	3225,299	47979,4657	1,8218	1,8296	3	0,09058	0,09099	<0,1
1er	3341,77	3363,007	54444,183	1,4110	1,4058	3	0,07663	0,07634	<0,1
RDC	3433,31	3438,0851	60899,0939	0,7436	0,6617	3	0,04397	0,03912	<0,1

Les justifications vis-à- vis de l'effet P- Δ du modèle sont vérifiés ; les effets du 2° ordre (ou effet P- Δ) peuvent alors être négligés.

Conclusion:

Etant donné que :

- Les voiles de contreventement reprennent moins de 20% des sollicitations dues aux charges verticales.
- Les portiques reprennent outre les sollicitations dues aux charges verticales, plus de 25% de l'effort tranchant dans chaque étage.

Alors, le choix du coefficient de comportement global de la structure (R=5) est justifié.

5.1 Introduction

Le ferraillage des éléments résistant doit être conforme aux règlements en vigueur, en l'occurrence le CBA 93 et le RPA99 version 2003.

Notre structure est composée essentiellement de trois éléments structuraux à savoir :

- 1. Poteaux
- 2. Poutres
- 3. Voiles

5.2 Ferraillage des poteaux

5.2.1 Introduction

Les poteaux sont des éléments structuraux verticaux, ils constituent des points d'appuis pour les poutres et jouent un rôle très important dans la transmission des efforts vers les fondations. Les sections des poteaux sont soumises à la flexion composée (M, N), compression "N", et à un moment fléchissant "M".

Une section soumise à la flexion composée peut être l'un des trois cas suivants :

- Section entièrement tendue SET.
- Section entièrement comprimée SEC.
- Section partiellement comprimée SPC.

Les armatures sont obtenues à l'état limite ultime (E.L.U) sous l'effet des sollicitations les plus défavorables et dans les situations suivantes :

Tableau 5.1 : Caractéristiques du béton et de l'acier.

Situation	Béton			Acier			
	$\gamma_{\rm b}$	f _{c28} (MPa)	σ _{bc} (MPa)	$\gamma_{\rm s}$	fe (MPa)	σ _s (MPa)	
Durable	1,5	25	14,17	1,15	500	434.78	
Accidentelle	1,15	25	18,48	1	500	500	

5.2.2 Combinaison d'action

En fonction du type de sollicitations, nous distinguons les différentes combinaisons suivantes :

a. Selon CBA 93:

Situation durable ELU: 1,35G+1,5Q

ELS: G+Q

b. Selon RPA 99:

Situation accidentelle: G+Q+E

 $0.8G\pm E$

A partir de ces combinaisons, on distingue les cas suivants :

- 1- Effort normal maximal et le moment correspondant (N^{max}, M^{corr})
- 2- Le moment maximum et l'effort correspondant (M^{max,} N^{corr})
- 3- Effort normal minimal et le moment correspondant (N^{min}, M^{corr})

5.2.3 Recommandation selon RPA99 version 2003

D'après le RPA99 version 2003, pour une zone sismique III, les armatures longitudinales doivent être à haute adhérence, droites et sans crochet.

• Leur pourcentage est limité par :

$$0.9\% < \frac{As}{B} < 3\%$$
 Zone courante (Z.C)

0.9%
$$< \frac{As}{B} < 6\%$$
 Zone de recouvrement (Z.R)

Avec:

A_s: La section d'acier.

B: Section du béton [cm²].

- Le diamètre minimal est de 12mm.
- La longueur minimale de 50Ø en zone de recouvrement.
- La distance entre les barres verticales dans une face du poteau ne doit pas dépasser 20cm.
- Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales.

Les tableaux suivants regroupent tous les résultats des efforts ainsi que la section d'armature calculée en utilisant les différentes combinaisons.

N.B: On utilise Le logiciel de SOCOTEC pour le ferraillage des sections.

1. Situation durable

• Combinaison: 1,35G+1,5Q

Poteaux carrés

a.
$$(N^{max}, M^{corr})$$
:

Tableau 5.2 : Ferraillages des poteaux carrées situation durable (N^{max}, M^{corr}).

Niveaux	Section	N max	M corr	Sollicitation	A_s	A_s	$A_{s \min}$
	$[cm^2]$	[kn]	[kn.m]		$[cm^2]$	[cm ²]	RPA
RDC et 1ere	60x60	-26155,107	12,59	SEC	0	0	32.4
2ème et 3ème	55x55			SEC	0	0	27.23
		-2023,21	24,23				
4ème et5ème	50x50	-1486.41	24,29	SEC	0	0	22.5
6ème et 7ème	45x45	-982,26	21,35	SEC	0	0	18.23
8 ^{ème} et 9 ^{ème}	40x40	-500,49	-19,23	SEC	0	0	14.4

b. (M^{max}, N^{corr}) :

Tableau 5.3 : Ferraillages des poteaux carrées situation durable (M^{max,} N^{corr}).

Niveaux	Section	M max	N^{corr}	Sollicitation	A_{s}	A_s	$A_{s \min}$
	$[cm^2]$	[kn.m]	[kn]		$[cm^2]$	[cm ²]	RPA
RDC 1 ère	60x60	43,03	-1749,41	SEC	0	0	32.4
2 ^{ème} et 3 ^{ème}	55x55	48,24	-1229,07	SEC	0	0	27.23
4 ^{ème} et 5 ^{ème}	50x50	58,9	-834,34	SEC	0	0	22.5
6ème et 7ème	45x45	62,22	-482,94	SEC	0	0	18.23
8 ^{ème} et 9 ^{ème}	40x40	63,61	-182.38	SPC	0,47	0	14.4

c. (N^{min}, M^{corr}):

Tableau 5.4 : Ferraillages des poteaux carrées situation durable (N^{min}, M^{corr}).

Niveaux	Section [cm ²]	N^{\min} $[kn]$	M corr	Sollicitation	A_s $[cm^2]$	A_s $[cm^2]$	A _{s min} RPA
	[]	[KN]	[kn.m]		[6]		10.71
RDC et 1 ère	60x60	-814,35	-17,10	SEC	0	0	32.4
2ème et 3ème	55x55	-613,84	-26,73	SEC	0	0	27.23
4 ^{ème} et5 ^{ème}	50x50	-410,17	-30,85	SEC	0	0	22.5
6ème et 7ème	45x45	-226	-32,56	SEC	0	0	18.23
8 ^{ème} et 9 ^{ème}	40x40	-67,90	-43,03	SPC	0,96	0	14.4

2. Situation accidentelle

• Combinaison : **G**+**Q**+**E**

a. (N^{max}, M^{corr}) :

Tableau 5.5 : Ferraillages des poteaux carrées situation accidentelle (N^{max}, M^{corr}).

Niveaux	Section	N max	M corr	Sollicitation	A_s	A_s	$A_{s \min}$
	$[cm^2]$	[kn]	[kn.m]		$[cm^2]$	$[cm^2]$	RPA
RDC et 1 ère	60x60	-2014,77	-60,72	SEC	0	0	32.4
2 ^{ème} et 3 ^{ème}	55x55	-1566,41	-22,02	SEC	0	0	27.23
4 ^{ème} et 5 ^{ème}	50x50	-1150,59	-23,62	SEC	0	0	22.5
6ème et 7ème	45x45	-756,86	-21,09	SEC	0	0	18.23
8 ^{ème} et 9 ^{ème}	40x40	-382,39	-18,14	SEC	0	0	14.4

b. (M^{max}, N^{corr}) :

Tableau 5.6 : Ferraillages des poteaux carrées situation accidentelle (M^{max,} N^{corr}).

Niveaux	Section	M max	N corr	Sollicitation	A_{s}	A_s	$A_{s \min}$
	$[cm^2]$	[kn.m]	[kn]		$[cm^2]$	[cm ²]	RPA
RDC et1 ère	60x60	112,58	-743,38	SEC	0	0	32.4
2 ^{ème} et 3 ^{ème}	55x55	112,26	569,32	SEC	0	0	27.23
4 ^{ème} et 5 ^{ème}	50x50	125,12	-442,10	SPC	0,01	0	22.5
6ème et 7ème	45x45	106,09	-289,18	SPC	0,85	0	18.23
8 ^{ème} et 9 ^{ème}	40x40	87,27	-123,23	SPC	1,86	0	14.4

c. (N^{min}, M^{corr}) :

Tableau5.7 : Ferraillages des poteaux carrées situation accidentelle (N^{min}, M^{corr}) .

Niveaux	Section [cm²]	N^{\min} $[kn]$	M corr [kn.m]	Sollicitation	$\begin{bmatrix} A_s \\ [cm^2] \end{bmatrix}$	A_s $[cm^2]$	$A_{s \min}$ RPA
RDC et1 ère	60x60	-118,07	18,25	SEC	0	0	32.4
2ème et 3ème	55x55	-171,09	32,60	SEC	0	0	27.23
4ème et 5ème	50x50	-142,26	35,45	SEC	0	0	22.5
6ème et 7ème	45x45	-74,63	40,06	SPC	0,65	0	18.23
8ème et 9ème	40x40	-4,18	23,58	SPC	0,8	0	14.4

• Combinaison : **0,8G+E**:

a. (N^{max}, M^{corr}) :

Tableau 5.8 : Ferraillages des poteaux carrées situation accidentelle (N^{max}, M^{corr}) .

Niveaux	Section	N max	M corr	Sollicitation	A_s	A_s	$A_{s \min}$
	$[cm^2]$	[kn]	[kn.m]		$[cm^2]$	[cm ²]	RPA
RDC et1 ère	60x60	-1577,20	-70,12	SEC	0	0	32.4
2 ^{ème} et 3 ^{ème}	55x55	-1178,96	-55,32	SEC	0	0	27.23
4 ^{ème} et 5 ^{ème}	50x50	-835,031	-27,73	SEC	0	0	22.5
6ème et 7ème	45x45	-550,14	-23,11	SEC	0	0	18.23
8ème et 9ème	40x40	-280,51	-16,33	SEC	0	0	14.4

b. (M^{max}, N^{corr}) :

Tableau 5.9 : Ferraillages des poteaux carrées situation accidentelle (M^{max,} N^{corr}).

Niveaux	Section	M max	N corr	Sollicitation	A_{s}	A_s	$A_{s \min}$
	$[cm^2]$	[kn.m]	[kn]		$[cm^2]$	[cm ²]	RPA
RDC et1 ère	60x60	-110,59	-784,20	SEC	0	0	32.4
2 ^{ème} et 3 ^{ème}	55x55	-115,78	-533,16	SEC	0	0	27.23
4 ^{ème} et 5 ^{ème}	50x50	112.03	-270,65	SPC	1,26	0	22.5
6ème et 7ème	45x45	-78,18	-157,71	SPC	1,17	0	18.23
8 ^{ème} et 9 ^{ème}	40x40	73,58	-90.78	SPC	1,7	0	14.4

c. (N^{min}, M^{corr}) :

Tableau 5.10 : Ferraillages des poteaux carrées situation accidentelle (N^{min}, M^{corr})

Niveaux	Section [cm²]	N^{\min} $[kn]$	M corr [kn.m]	Sollicitation	$\begin{bmatrix} A_s \\ [cm^2] \end{bmatrix}$	A_s $[cm^2]$	$A_{s \min}$ RPA
RDC et1 ère	60x60	72,077	16,60	SPC	1,36	0	32.4
2ème et 3ème	55x55	-45,76	27,16	SPC	0.49	0	27.23
4 ^{ème} et 5 ^{ème}	50x50	-57,019	30,93	SPC	0.5	0	22.5
6 ^{ème} et 7 ^{ème}	45x45	-27,40	44,04	SPC	1,29	0	18.23
8 ^{ème} et 9 ^{ème}	40x40	11,24	27,20	SEC	1.09	0	14.4

5.2.4. Choix des armatures

Poteaux carrés

Tableau 5.11 : Choix des armatures des poteaux carrées.

Niveaux	Sections (cm ²)	A _s ^{cal} (cm ²)/ Par face	$A_s^{\min} (cm^2)$	(Z.R) (cm ²)	(Z.C) (cm ²)	Choix des armatures	A_s^{adp} (cm^2)
RDC et1 ère	60x60	1,36	32.4	216	108	12T20	37,7
2 ^{ème} et 3 ^{ème}	55x55	0.49	27.23	181.5	90.75	4T20+8T16	28,65
4 ^{ème} et 5 ^{ème}	50x50	1.28	22.5	150	75	4T20 +8T14	24 ,88
6ème et 7ème	45x45	1.29	18.23	121.5	60.75	4T16 +8T14	20,36
8ème et 9ème	40x40	1.86	14.4	96	48	12T14	18,46

5.2.5. Vérification vis-à-vis de l'état limite de service

Les contraintes sont calculées à l'état limite de service sous (M_{ser}, N_{ser}) (annexe, organigramme), puis elles sont comparées aux contraintes admissible données par :

• **Béton** :
$$\sigma_{bc} = 0.6 f_{c28} = 15 MPa$$

•Acier : Fissuration peu nuisible......Pas de vérification.

Fissuration préjudiciable.....
$$\overline{\sigma}_s = \zeta_s = Min\left(\frac{2}{3}f_e, \max\left(0.5f_e; 110\sqrt{\eta f_{ij}}\right)\right)$$

Fissuration très préjudiciable......
$$\overline{\sigma}_s = 0.8\zeta_s$$

Avec: $\eta=1,6$ pour les aciers H.A

Dans notre cas la fissuration est considérée préjudiciable, donc σ_s =250MPa.

Les résultats sont récapitulés dans les tableaux suivants :

Poteaux carrés:

a. (N^{max}, M^{corr}) :

Tableau 5.12 : Vérifications des contraintes pour les poteaux carrés.

Niveaux	Sections (cm ²)	N _{ser} ^{max} (kN)	M _{ser} corr (kN.m)	Section	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	σ _{bc} (MPa) sup	$ar{\sigma}_{bc}$ (MPa)	Vérification
RDC et1	60x60			37,7	74,8	250	5,02	15	OK
ère		-1912,95	9,18	,	,		,		
2ème et 3ème	55x55	-1480,16	17,66	28,65	62.1	250	4.2	15	OK
4 ^{ème} et 5 ^{ème}	50x50	-1087,42	17,70	24 ,88	47.5	250	3.22	15	OK
6ème et 7ème	45x45	-718,85	15,55	20,36	33.2	250	2.27	15	OK
8 ^{ème} et 9 ^{ème}	40x40	-366,73	14,10	15.2	19.1	250	1.32	15	OK

b.
$$(M^{max}, N^{corr})$$
:

Tableau 5.13 : Vérification des contraintes pour les poteaux carrés.

Niveaux	Sections (cm ²)	M _{ser} ^{max} (kN)	N _{ser} ^{corr} (kN.m)	Section	σ _s (MPa)	$ar{\sigma}_s$ (MPa)	σ _{bc} (MPa) sup	$ar{\sigma}_{bc}$ (MPa)	Vérification
RDC et1 ère	60x60	31,41	- 1280,75	37,7	57.5	250	3.93	15	ОК
2ème et 3ème	55x55	35,21	-900,06	28,65	45.2	250	3.12	15	ОК
4 ^{ème} et 5 ^{ème}	50x50	43	-611,20	24 ,88	36.8	250	2.59	15	ОК
6ème et 7ème	45x45	45,44	-354,10	20,36	28.6	250	2.06	15	OK
8 ^{ème} et 9 ^{ème}	40x40	46,51	-134,32	15.2	51.9	250	2.25	15	OK

5.2.6 Vérification de L'effort Tranchant

a. Vérification de la contrainte de cisaillement

Le calcul de la contrainte de cisaillement se fait au niveau de l'axe neutre. La contrainte de cisaillement est exprimée en fonction de l'effort tranchant à l'état limite ultime par :

Il faut vérifier que :
$$\tau_u = \frac{T_u}{hd} \le \bar{\tau}_u$$
.....Poteaux carré

Où τ_u : contrainte de cisaillement

Tu : effort tranchant à l'état limite ultime de la section étudiée

b: la largeur de la section étudiée

d: la hauteur utile

La contrainte de cisaillement est limitée par une contrainte admissible $\overline{\tau_u}$ égale à :

$$\overline{\tau}_u = Min \ (0.13 f_{c28}, 5MPa) \dots$$
 Fissuration peu nuisible.

$$\bar{\tau}_u = Min \ \left(0.10 f_{c28}, 4MPa\right)...$$
Fissuration préjudiciable et très préjudiciable.

$$\overline{\tau}_u = \rho_d f_{c28}$$

$$\rho_d = 0.075....$$
si l'élancement $\lambda \ge 5$

$$\rho_d = 0.040...$$
si l'élancement $\lambda < 5$

Avec:

λ: L'élancement du poteau

i: Rayon de giration.

I : Moment d'inertie de la section du poteau dans la direction considérée.

B: Section du poteau.

L_f: Longueur de flambement.

Les résultats sont regroupés dans les tableaux suivants :

Poteaux carrés:

Tableau 5.14 : Vérification de la contrainte de cisaillement pour les poteaux carrés

Niveaux	Sections (cm ²)	T _u (kN)	τ _u (MPa)	λ	ρ _d	$\overline{ au}_{u}^{RPA}$ (MPa)	$\overline{\tau}_{u}^{CBA 93}$ (MPa)	Vérification
RDC et1 ère	60x60	29.82	0.088	12.12	0,075	1.875	2,50	OK
2ème et 3ème	55x55	32,86	0.117	13.23	0,075	1.875	2,50	OK
4 ^{ème} et 5 ^{ème}	50x50	40,950	0.178	14.55	0,075	1.875	2,50	OK
6ème et 7ème	45x45	43,41	0.235	16.16	0,075	1.875	2,50	OK
8ème et 9ème	40x40	45,98	0.319	18.18	0,075	1.875	2,50	OK

5.2.7 Ferraillage transversal des poteaux

Les armatures transversales sont déterminées à partir des formules du **CBA 93** et celles du **RPA99 version 2003**, elles sont données comme suit :

- Selon CBA 93 [4]

$$\begin{cases} S_{t} \leq Min(0.9d;40cm) \\ \varphi_{t} \leq Min\left(\frac{h}{35};\frac{b}{10};\varphi_{t}\right) \\ \frac{A_{t}f_{e}}{bS_{t}} \geq Max\left(\frac{\tau_{u}}{2};0.4MPa\right) \end{cases}$$

At: Section d'armatures transversales.

b: Largeur de la section droite.

h: Hauteur de la section droite.

S_t: Espacement des armatures transversales.

Øt: Diamètre des armatures transversales.

Ø₁: Diamètre des armatures longitudinales.

- Selon le RPA99 version 2003 [1]

$$\frac{A_t}{S_t} = \frac{\rho_a T_u}{h f_a}$$

Avec:

A_t: Section d'armatures transversales.

S_t: Espacement des armatures transversales.

T_u: Effort tranchant à l'ELU.

f_e: Contrainte limite élastique de l'acier d'armatures transversales.

h: Hauteur totale de la section brute.

ρ_a: Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant.

$$\rho_a\!\!=\!\!2,\!5.....si\;\lambda_g\!\!\ge\!\!5$$

$$\rho_a$$
=3,75.....si λ_g <5

λ_g: Espacement géométrique.

• L'espacement des armatures transversales est déterminé comme suit :

$$S_t \leq 10 \text{ cm}$$
....Zone nodale (zone III).

$$S_t \leq \text{Min}(h/2,b/2,10_{\varphi})...$$
Zone courante (zone III).

 \emptyset_1 : Diamètre minimal des armatures longitudinales du poteau.

• La quantité d'armatures transversales minimale $\frac{A_t}{Sh}$ en (%) est donnée comme suite :

$$\begin{cases} 0,3\%.....si\,\lambda_{\rm g} \geq 5 \\ 0,8\%.....si\,\lambda_{\rm g} \leq 3 \\ \text{Interpolation entre les valeurs } \ \text{limites précédentes si}\,3 \leq \lambda_{\rm g} \leq 5 \end{cases}$$

$$\lambda_{\rm g}$$
 : L'élancement géométrique du poteau $\left(\lambda_{\rm g} = \frac{L_{\rm f}}{a}\right)$

a : Dimension de la section droite du poteau.

L_f: Longueur du flambement du poteau.

Pour les armatures transversales f_e=500MPa (FeE500).

Le tableau suivant rassemble les résultats des espacements maximums des poteaux :

Tableau 5.15: Espacement maximales selon RPA99 des poteaux carrés.

				S _t (cm)	
Niveaux	Section	Barres	\mathcal{O}_{l} (mm)	Zone nodale	Zone courante
	(cm ²)				
RDC et1 ère	60x60	12T20	20	10	20
2ème et 3ème	55x55	4T20+8T16	20 et 16	10	15
4ème et 5ème	50x50	4T20 +8T14	20 et 14	10	15
6ème et 7ème	45x45	4T16 +8T14	16 et 14	10	15
8ème et 9ème	40x40	4T14 +8T12	14 et 12	10	15

Le choix des armatures transversales est regroupé dans le tableau suivant :

Poteaux carrés:

Tableau 5.16 : Choix des armatures transversales pour les poteaux carrés.

Niveaux	Section	$L_{\rm f}$	λ_{g}	ρ_a	$T_u^{\ max}$	Zone	St	$\mathbf{A_t^{cal}}$	Choix	$\mathbf{A_s}^{\mathrm{adp}}$
	(cm ²)	(m)	(%)		(kN)		(cm)	(cm ²)		(cm ²)
RDC et1	60x60	2.1	3.5	3,75	29,82	N	10	0,372	6T8	3.02
ère						С	20	0,745	6T8	3.02
2 ^{ème} et	55x55	2,1	3,81	3,75	32,86	N	10	0,448	6T8	3.02
3 ^{ème}						С	15	0,672	6T8	3.02
4 ^{ème} et 5 ^{ème}	50x50	2,1	4,2	3,75	40,95	N	10	0,614	6T8	3.02
						С	15	0,921	6T8	3.02
6 ^{ème} et	45x45	2,1	4,66	3,75	43,41	N	10	0,723	6T8	3.02
,						С	15	1,08	6T8	3.02
8 ^{ème} et	40x40	2,14	5,25	2,5	45,98	N	10	0,574	6T8	3.02
						С	15	0,862	6T8	3.02

5.2.8 Longueur de recouvrement

La longueur minimale de recouvrement est de : L_r=50Ø₁ en zone III.

Pour:

- Ø=25mm.....L_r=125cm
- \emptyset =20mm.....L_r=100cm
- Ø=16mm.....L_r=80cm
- Ø=14mm.....L_r=70cm
- Ø=12mm.....L_r=60cm

5.2.9 Ferraillage des poteaux de sous-sol

Les poteaux de l'infrastructure sont supposés travailler à la compression simple, la section d'armature longitudinale sera donnée par :

$$A_{s} \ge \left[\frac{N_{u}}{\alpha} - \frac{B_{T}.f_{c28}}{0.9\gamma_{b}}\right] \cdot \frac{\gamma_{s}}{f_{e}} \dots (*) [2]$$

Avec:

- N_u: Effort normal de compression simple pondéré.

- γ_b : Coefficient de sécurité du béton tel que $\Rightarrow \gamma_b = 1.5$ situation durable ou transitoire
- γ_s : Coefficient de sécurité de l'acier tel que $\Rightarrow \gamma_s =$ 1,15 situation durable ou transitoire
- α : Coefficient de réduction en fonction de λ

$$\begin{cases} \alpha = \frac{0.85}{1 + 0.2 \left(\frac{\lambda}{35}\right)^2} & \text{Pour} \quad \lambda < 50 \\ \alpha = 0.6 \left(\frac{50}{\lambda}\right)^2 & \text{Pour} \quad 50 \le \lambda \le 70 \end{cases}$$

- Poteau carré $\lambda = \frac{L_f}{i}$
- L_f : longueur de flambement, on prend $L_f = 0.7L_0$
- i: rayon de giration de la section du béton seul avec : $i = \sqrt{\frac{I}{B}}$
- f_{c28} : contrainte de compression du béton à 28 jours f_{C28} = 25 MPa
- f_e : contrainte limite élastique des aciers $f_e = 500 \text{ MPa}$
- B_r: la section réduite d'un poteau obtenue en déduisant de la section réelle 1cm
 d'épaisseur sur tout sa périphérie tel que :
- Poteau carré...... $B_r = (a-0.02)^2 [m^2]$.

Poteau carré

a. Calcul de l'effort normal pondéré

Prenons le poteau le plus sollicité dont l'effort normal.

 $N_u(RDC) = 2615,1076KN$

- Poids du plancher......5.39x15.66=84.40KN
- Poids du poteau..... $(0,6)^{2*}(4-0.40)*25=32.4KN$
- Poids de la poutre principale.....(25)*(0.3*0.4)*(3.925) = 11.77KN
- Poids de la poutre secondaire.....(25)*(0.3*0.4)*(3.99)=11,97 KN.

G=140,54KN

Surcharge d'exploitation : Q=1.5x15.66=23.49KN

$$N_{u1}=1,35G+1,5Q=224,96KN$$

Donc l'effort normal total revenant aux poteaux de l'entre-sol :

$$N_{u (ss)} = N_{u(RDC)} + N_{u1} = 2840.07 KN$$

b. Calcul du ferraillage

Le sous-sol est de section carré B= 65x65 cm²

$$i = \frac{a}{\sqrt{12}} = 18,76cm$$

$$\lambda = \frac{0.7 \times 2.6 \times 10^2}{18.76} = 9,7$$

$$\alpha = \frac{0.85}{1 + 0.2\left(\frac{\lambda}{35}\right)^2} = 0.83$$

$$br = (65 - 2)^2 = 3969cm^2$$

As
$$\leq \left(\frac{2840.07 \times 10^3}{0.83} - \frac{3969 \times 10^2}{0.9} \times \frac{25}{1.5}\right) \frac{1.15}{500} = -90.34 cm^2$$

D'où:

Le calcul en compression simple du poteau le plus sollicité au niveau du entre sol sous un effort normal à la base égal à 2840.07kN a donné une section inférieure à celle exigée par l'RPA99 v03 (As_{min}=32.4 cm²); notre choix est la même section d'armature des poteaux du RDC, soit :

c. Calcul de l'effort normal pondéré

Prenons le poteau le plus sollicité dont l'effort normal.

 N_u (entre sol)= 2840,07KN

- Poids du plancher......6.29x15.66=98,5KN
- Poids du poteau.....(0,6)²*(4 -0.40)*25=32.4KN
- Poids de la poutre principale.....(25)*(0.3*0.4)*(3.925) =11.77KN
- Poids de la poutre secondaire.....(25)*(0.3*0.4)*(3.99)=11,97 KN.

G=154,64KN

Surcharge d'exploitation : Q=1.5x15.66=23.49KN

$$N_{u1}=1,35G+1,5Q=244KN$$

Donc l'effort normal total revenant aux poteaux de l'entre sol :

$$N_{u (ss)} = N_{u (sous-sol)} + N_{u1} = 3084.07KN$$

d. Calcul du ferraillage

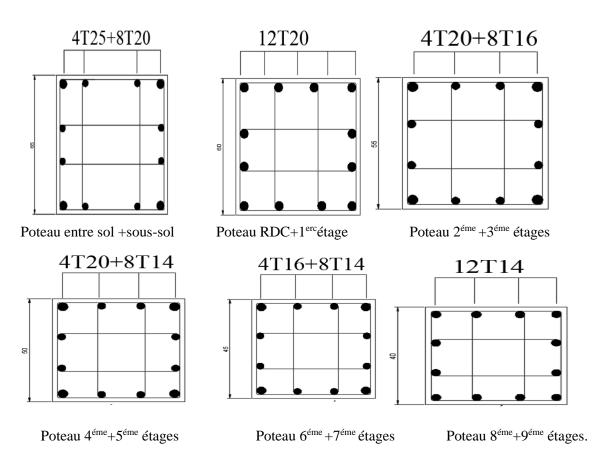
e. Le sous-sol est de section carré B= 65x65 cm²

f.
$$i = \frac{a}{\sqrt{12}} = 18,76cm$$

g.
$$\lambda = \frac{0.7 \times 2.6 \times 10^2}{18.76} = 9,7$$

h.
$$\alpha = \frac{0.85}{1+0.2\left(\frac{\lambda}{35}\right)^2} = 0.83$$

i.
$$br = (65 - 2)^2 = 3969cm^2$$


j.
$$As \le \left(\frac{3243.66 \times 10^3}{0.837} - \frac{3969 \times 10^2}{0.9} \times \frac{25}{1.5}\right) \frac{1.15}{500} = -79.9167 m^2$$

$$\mathrm{As} \leq \left(\frac{3084,07 \times 10^3}{0.83} - \frac{3969 \times 10^2}{0.9} \times \frac{25}{1.5}\right) \frac{1.15}{500} = -83.58 cm^2$$

D'où:

Le calcul en compression simple du poteau le plus sollicité au niveau du sous-sol sous un effort normal à la base égal à 3084.07 kN a donné une section inférieure à celle exigée par l'RPA99 v03 (As_{min} =38.02 cm²); notre choix est la même section d'armature des poteaux du RDC, soit :

As= 4T25+8T20=44,75 cm

5.1 Schéma de ferraillage des poteaux

5.3 Ferraillage des poutres

5.3.1 Introduction

Les poutres sont des éléments structuraux horizontaux qui permettent de transférer les charges aux poteaux, elles sont sollicitées par des moments de flexion et des efforts tranchants.

Le ferraillage des poutres est donné par l'organigramme de la flexion simple (voir annexe). On fait le calcul pour les situations suivantes :

a. Selon CBA 93

Situation durable

- E.L.U: 1.35 G + 1.5 Q
- E.L.S: G + Q

b. Selon RPA 99

Situation accidentelle

- $0.8 \text{ G} \pm \text{E}$
- $G + Q \pm E$

5.3.2 Recommandations selon RPA99 version 2003

- 1- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section.
- 2-Le pourcentage total maximum des aciers longitudinaux est de :
 - 4% en zone courante.
 - 6% en zone de recouvrement.
- 3-La longueur minimale de recouvrement est de 50Ø en zone III.
- 4-L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90°.

5.3.3 Calcul de ferraillage

Pour le calcul des armatures nécessaires dans les poutres, nous avons considéré les portiques suivants les deux sens :

- Sens porteur (poutre porteuse).
- Sens non porteur (poutre secondaire).

Les résultats sont regroupés dans les tableaux suivants :

1. Sens porteur 30x40

a) Situation durable: 1.35G+1.5Q

Tableau 5.17 : Ferraillage des poutres porteuses 30x40 (situation durable).

Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)	A _s ' (cm ²)
RDC+Etage	30x40	Travée	67,34	4.61	0
courant		Appui	-83,80	0	5.85
Terrasse	30x40	Travée	74.40	5,14	0
		Appui	-73.50	0	5.07

b) Situation accidentelle : G+Q+E

Tableau 5.18 : Ferraillage des poutres porteuses 30x40 (situation accidentelle)

Niveaux	Section	Position	M ^{max}	As	As'
	(cm ²)		(kNm)	(cm ²)	(cm ²)
RDC+Etage	30x40	Travée	109,71	6.57	0
courant					
		Appui	-98,12	0	5,82
Terrasse	30x40	Travée	71,41	4,16	0
		Appui	-85.65	0	5.04

c) Situation accidentelle: 0.8 G + E

Tableau 5.19 : Ferraillage des poutres porteuses 30x40 (situation accidentelle).

Niveaux	Section	Position	M ^{max}	A _s (cm ²)	A _s ' (cm ²)
	(cm ²)		(kNm)	(*****)	(4.11)
RDC+Etage	30x40	Travée	106,87	6,38	0
courant		Appui	-92,97	0	5,5
Terrasse	30x40	Travée	69,04	4,01	0
		Appui	-73.6	0	4,29

2.Sens non porteur 30x40

a. Situation durable: 1.35G+1.5Q

Tableau 5.20 : Ferraillage des poutres non porteuses (situation durable)

Niveaux	Section	Position	M ^{max}	A_s	As'
	(cm ²)		(kNm)	(cm ²)	(cm ²)
RDC+Etage	30x40	Travée	36.73	2.43	0
courant		Appui	-69,53	0	4,78
Terrasse	30x40	Travée	39.41	2.62	0
		Appui	-71,92	0	4.94

b. Situation accidentelle : G+Q+E

Tableau 5.21 : Ferraillage des poutres non porteuses (situation accidentelle).

Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)	A _s ' (cm ²)
RDC+Etage courant	30x40	Travée	100,54	5,98	0
Courant		Appui	-113,50	0	6,81
Terrasse	30x40	Travée	35,55	2,02	0
		Appui	-82	0	4.81

c. Situation accidentelle: 0.8 G + E

Tableau 5.22 : Ferraillage des poutres non porteuses (situation accidentelle)

Niveaux	Section (cm ²)	Position	M ^{max} (kNm)	A _s (cm ²)	A _s ' (cm ²)
RDC+Etage courant	30x40	Travée	102,46	6,1	0
		Appui	-98,09	0	5,82
Terrasse	30x40	Travée	37,50	2,13	0
		Appui	-67.27	0	3.9

5.3.4 Choix des armatures

Le ferraillage final adopté est donné par le tableau suivant :

1. Sens porteur 30x40

Tableau 5.23 : Choix des armatures pour les poutres porteuses 30x40.

Niveaux	Section (cm ²)	Position	M ^{max} (KNm)	$A_s^{\rm max}$ (ZC) (cm ²)	A_s^{max} (ZR) (cm ²)	A_{sRPA}^{\min} (cm ²)	A_s^{cal} (cm ²)	Choix des armatures	A_s^{adp} (cm ²)
RDC+Etage	30x40	Travée	109,71	48	72	6.48	6.57	6T14	9.23
courant		Appui	-98,12		, 2	0.10	6.82	6T14	9.23
Terrasse	30x40	Travée	74.40	10	72	6.48	5,14	6T14	9.23
10114550		Appui	-85,65	48	12	0.10	5.04	6T14	9.23

2. Sens non porteur 30x40

Tableau 5.24 : Choix des armatures pour les poutres non porteuses 30x40.

Niveaux	Section (cm ²)	Position	M ^{max} (KNm)	$A_s^{\rm max}$ (ZC) (cm ²)	$A_s^{\rm max}$ (ZR) (cm ²)	$A_{sRPA}^{ m min}$ (cm ²)	A_s^{cal} (cm ²)	Choix des armatures	A_s^{adp} (cm ²)
RDC+Etage	30x40	Travée	102,46	48	72	6	6,1	6T14	9.23
courant	30110	Appui	-113,50		12	O	6,81	6T14	9.23
Terrasse	30x40	Travée	37,50	48	72	6	2.13	3T14	4.62
10114350	20110	Appui	-82		12		4.81	6T14	9.23

5.3.5 Condition de non fragilité

$$A_s \ge A_s^{\min} = 0,23bd \frac{f_{t28}}{f_e}$$
 [2]

Avec:

 f_{t28} =2.1MPa; f_e =500Mpa

Tableau 5.25 : Vérification de la condition de non fragilité

Section (cm2)	$A_{s(\min)}^{choisi}$ (cm2)	A_s^{\min} (cm2)	Vérification
30x40	9.23	1.04	Vérifiée
30x40	4.62	1.04	Vérifiée

5.3.6 Vérification vis à vis de l'ELS

1. Sens porteur 30x40

Tableau 5.26 : Vérification des poutres porteuse 30x40 à l'ELS.

Niveaux	Positio n	M _{ser} (KN.m)	σ _{bc} (MPa	$\overline{\sigma}_{bc}$ (MPa	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérificatio n
RDC+Etage	Travée	49.13	6.36		167.8	250	
courant	Appui	-61.19	7.92	15	209		OK
Terrasse	Travée	54,56	7.06	15	186.3	250	OK
10114350	Appui	-51.03	6,6		174,3		

2. Sens non porteur 30x40

Tableau 5.27: Vérification des poutres non porteuse 30x45 à l'ELS

Niveaux	Position	M _{ser} (KN.m)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérification
RDC+Etage	Travée	28.90	3.74	15	98.7	250	OK
courant	Appui	-52.69	6.82		180		
Terrasse	Travée	26,87	4,44	15	91,8	250	OK
	Appui	-50,78	6.58	13	173,7		OK

5.3.7 Vérification de l'effort tranchant

a. Vérification de la contrainte de cisaillement

Il faut vérifier que :
$$\tau_u = \frac{T_u}{hd} \le \overline{\tau}_u$$
.

Avec:

T_u: l'effort tranchant maximum.

b: Largeur de la section de la poutre.

d: Hauteur utile.

 $\overline{\tau}_u = Min \ (0.10f_{c28}; 4MPa) = 2.5MPa$ (Fissuration préjudiciable). **Selon le BAEL91 modifié 99**

1.Sens porteur 30x40

Tableau 5.28 : Vérification de la contrainte de cisaillement dans le sens porteur 30x40

Niveaux	Section (cm ²)	$T_{u}^{max}(kN)$	$\tau_u(MPa)$	$\overline{\tau}_{\mathrm{u}}$ (MPa)	Vérification
RDC+Etage courant	30x40	105, 86	0,98	2.5	OK
Terrasse	30x40	99,72	0,92	2.5	OK

1. Sens non porteur 30x40

Tableau 5.29 : Vérification de la contrainte de cisaillement dans le sens porteur non 30x45.

Niveaux	Section (cm ²)	T _u ^{max} (kN)	τ _u (MPa)	τ̄ _u (MPa)	Vérification
RDC+Etage courant	30x40	91,25	0,844	2.5	ОК
Terrasse	30x40	72,22	0,668	2.5	OK

5.3.8 Calcul des armatures transversales

L'acier choisi pour les armatures transversales est de type haute adhérence et nuance FeE50 ($f_e=500MPa$).

Selon le BAEL 91 modifié 99
$$\rightarrow$$

$$\begin{cases} S_t = Min(0.9d;40cm) \\ \frac{A_t}{bS_t} \ge \frac{\tau_u - 0.3f_{t28}K}{0.8f_e} & K = 1 \\ \frac{A_tf_e}{bS_t} \ge Max\left(\frac{\tau_u}{2};0.4MPa\right) \end{cases}$$

• Selon le RPA 99 version 2003 →

$$\begin{cases} A_{t} = 0.003S_{t}b \\ S_{t} \leq Min\left(\frac{h}{4};12\phi_{t}\right) & Zone nodale \\ S_{t} \leq \frac{h}{2} & Zone courante \end{cases}$$

Avec :
$$\varphi_t \leq Min\left(\frac{h}{35}; \varphi_l; \frac{b}{10}\right) = 1,14cm$$
.

Les résultats de calcul sont résumés dans Tableau 5.30 :

Tableau 5.30: Calcul des armatures transversales.

Sens	Section	T _u (kN)	τ _u (MPa)	BAEL91	RPA99		$\mathbf{S}_{\mathbf{t}}^{\mathbf{a}}$	ıdp	$\mathbf{A}_{\mathbf{t}}$	Choix
	(cm ²)						(cı	m)	(cm ²)	
				S _t (cm)	S _t (cm)ZC	S _t (cm)ZN	ZN	ZC		
Porteur	30x40	105,86	0,98	32.4	20	10	10	20	1.8	4T8
Non	30x40	91,25	0,884	32.4	20	10	10	20	1.80	4T8
Porteur										

5.3.9 Recouvrement des armatures longitudinales

 L_r =50Ø (zone III). L_r : Longueur de recouvrement.

On a:

c.
$$\emptyset=14$$
mm.....L_r=70cm

5.3.10 Arrêt des barres :

Armatures inférieures : $h \le \frac{L}{10}$

Avec : L=Max (L gauche ; L droite)

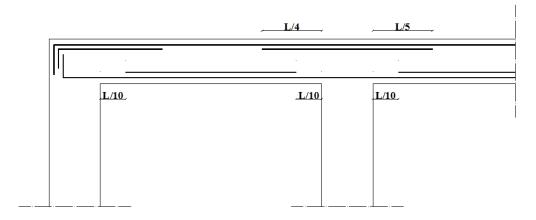


Figure 5.2 : Arrêt des barres.

5.3.11 Vérification de la flèche

Flèche totale : $\Delta f_T = f_v - f_i \le f_{adm}$.

Tel que:

Poutre porteuse (30x40): $f_{adm} = f_{adm} = \frac{445}{500} = 0.89cm$

Poutre non porteuse (30x40): $f_{adm} = f_{adm} = \frac{440}{500} = 0.89cm$

f_i: La flèche due aux charges instantanées.

f_v: La flèche due aux charges de longues durée.

- Calcul de la flèche due aux déformations différées

$$f_v = \frac{M_{ser}l^2}{10E_v I_{fv}}$$

- Calcul de la flèche due aux déformations instantanées

$$f_i = \frac{M_{ser}l^2}{10E_i I_{fi}}$$

Les résultats sont récapitulés dans tableau 5.31 :

Tableau 5.31 : Calcul de la flèche des poutres.

Cas	Section (cm ²)	M _{ser} (kNm)	A _s (cm ²)	Y ₁ (cm)	Δ	σ_s (Mpa)	λ_{i}	$\lambda_{ m v}$	μ	I ₀ (cm ⁴)
Poutre Porteuse	30x40	61.19	9.23	21.65	0,00854	184.09	2.44	0.98	0,56	191776000
Poutre non Porteuse	30x40	52.69	9.23	21.65	0,00854	158.57	2.44	0.98	0,51	191776000

I _{fi} (cm ⁴)	I _{fv} (cm ⁴)	$f_i(mm)$	$f_v(mm)$	$\Delta f(mm)$	$f_{adm}(mm)$	Vérification
89053.54	123744.015	4.22	9.04	4.82	8.9	OK
93889.017	127784.218. 51	3.37	7.37	4	8.8	ОК

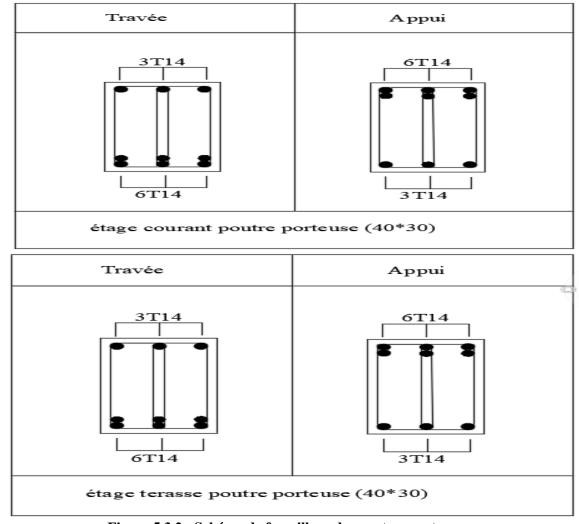
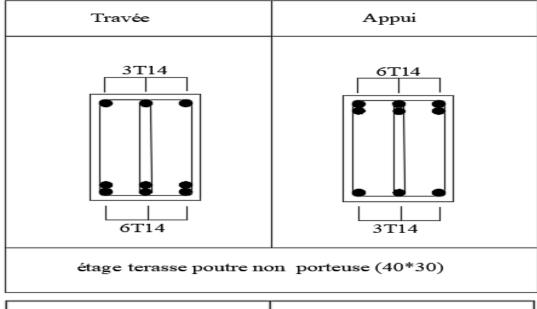



Figure 5.3.2 : Schéma de ferraillage des poutres porteuses.

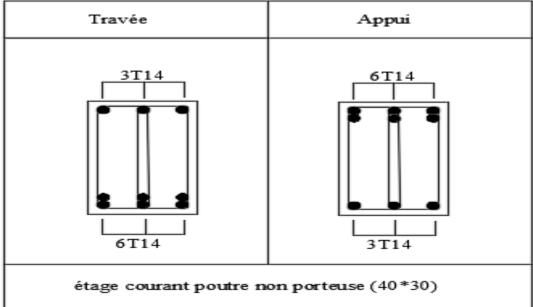


Figure 5.3.3 : Schéma de ferraillage des poutres non porteuses.

5.4 Ferraillage des voiles

5.4.1 Généralités

Les voiles sont des éléments ayant deux dimensions grandes par rapport à la troisième appelée épaisseur, généralement verticaux et chargés dans leur plan.

Ces éléments peuvent être :

- En maçonnerie non armée ou armée. Auxquels on réservera le nom de murs.
- En béton armé ou non armé. et appelés voiles.

On utilise aussi l'expression murs en béton banché pour désigner les voiles en béton non armé. Une banche est un outil de coffrage de grande surface.

Le calcul des voiles se fera par la méthode des contraintes :

Pour le ferraillage des trumeaux, le calcul et la disposition des aciers verticaux et les aciers horizontaux est conformément aux règlements B.A.E.L 91 et RPA 99. Version 2003.

5.4.2 Ferraillage des voiles

Le ferraillage de ces voiles est déterminé par la méthode des contraintes.

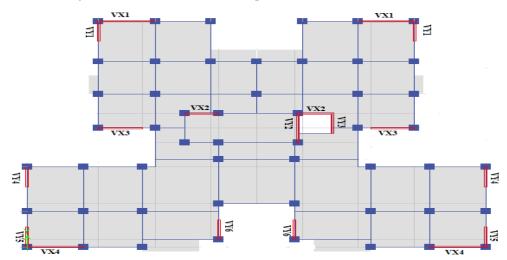


Figure 5.4 : Disposition des voiles dans la structure

Procédure de ferraillage des trumeaux

• Introduction

Le modèle représentatif le plus simple d'un voile est celui d'une console parfaitement encastrée à la base. La figure suivante montre l'exemple d'un élément de section rectangulaire, soumis à une charge verticale N et une charge horizontale V en tête.

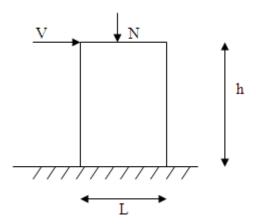
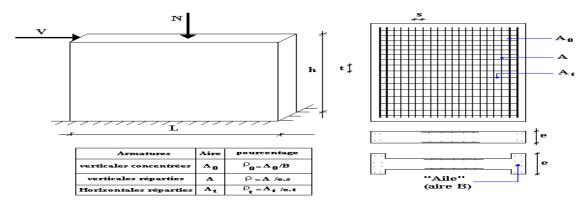


Figure 5.5 : Section rectangulaire, soumise à la flexion composée.


Le voile est donc sollicité par un effort normal N et un effort tranchant V constant sur toute la hauteur, et un moment fléchissant qui est maximal dans la section d'encastrement.

Le ferraillage classique du voile en béton armé est composé :

- 1- D'armatures verticales concentrées aux deux extremités du voile (de pourcentage ρ_{V0}) et d'armatures verticales uniformément reparies (de pourcentage ρ_{V})
- 2- D'armatures horizontales, parallèles aux faces des murs, elles aussi uniformément réparties et de pourcentage ρ_H
- 3- les armatures transversales (epingles) (perpendiculaires aux parement du voile).

Les armatures verticales extrêmes sont soumises à d'importantes forces de traction et de compression, créant ainsi un couple capable d'équilibrer le moment appliqué. À la base du voile, sur une hauteur critique des cadres sont disposés autour de ces armatures afin d'organiser la ductilité de ces zones.

En fin, les armatures de l'âme horizontales et verticales ont le rôle d'assurer la résistante à l'effort tranchant.

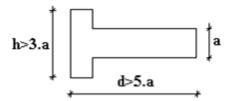
Figure 5.6 : Schéma d'un voile et disposition du ferraillage.

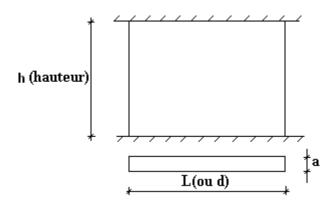
Préconisation du BAEL91

• Justifications sous sollicitations normales

a. Conditions d'application

- La longueur d du mur : $d \ge 5a$
- L'épaisseur a du mur :
 - a ≥ 10cm Pour les murs intérieurs.
 - $a \ge 12$ cm Pour les murs exterieurs comportant une protection.
 - a ≥ 15cm Pour les murs exterieurs dont la résistance à la pénétration de l'eau peut être affectée par la fissuration du béton.
- L'élancement mécanique λ : $\lambda \leq 80$
- Le raidisseur d'extêmité r: $r \ge 3a$




Figure 5.7: Définition de l'élément mur

b. Longueur de flambement: (murs non raidi latéralement)

Soit:

1: La hauteur libre du mur;

l_f: La longueur libre de flambement d'un mur non raidi.

Fgure 5.8: Mur encastré

Lorsqu'un mur n'est pas raidi latéralement par des murs en retour, la longueur libre de flambement de l_f déduit de la hauteur libre du mur l, en fonction de ses liaisons avec le plancher.

Les valeurs du rapport $\left(\frac{l_f}{l}\right)$ sont données par le tableau **5.33**:

Tableau 5.33 : Valeurs de (l_f/l)

Liaisons du mur		Mur armé verticalement	Mur non armé verticalement
Mur encastré en tête	Il existe un plancher de part et d'autre	0,80	0,85
et en pied	Il existe un plancher d'un seul côté	0,85	0,90
Mur articulé en tête et	en pied	1,00	1,00

L'élancement mécanique λ se déduit de la longueur libre de flambement par la relation :

$$\lambda = \frac{l_f \sqrt{12}}{a}$$

Effort de compression en ELU:

Soient:

l_f: longueur de flambement calculée en (b)

a: épaisseur du voile

d: longueur du voile

f_{c28}: résistance caractéristique du béton à 28 jours

f_e: limite élastique de l'acier

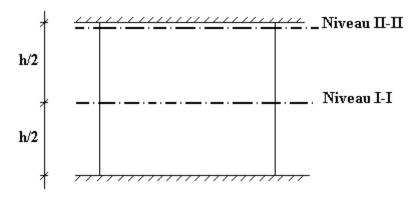
 $\gamma_b = 1.5$ (sauf combinaison accidentelles pour lesquelles $\gamma_b = 1.15$)

 $\gamma_s = 1,15$ (sauf pour combinaison accidentelles pour lesquelles $\gamma_s = 1$)

Nota:

Les valeurs de α données par le tableau ci dessous sont valables dans le cas ou plus de la moitié des charges est appliquée après 90 jours.

	Notation	Unités	Voiles armées	Voile non armé
			verticalement	verticalement
Elancement	λ		$\frac{l_f \sqrt{12}}{a}$	
Section réduite	Br	M^2	d(a-0,02)	
Pour $\lambda \le 50$ Pour $50 \le \lambda \le 80$	α	/	$\frac{0,85}{1+0,2\left(\frac{\lambda}{35}\right)^2}$ $0,6\left(\frac{50}{\lambda}\right)^2$	$\frac{0,65}{1+0,2\left(\frac{\lambda}{30}\right)^2}$
Effort limite ELU	$N_{u \; lim}$	kN	$\alpha \left[\frac{B_r f_{c28}}{0.9 \gamma_b} + \frac{A_s f_e}{\gamma_s} \right]$	$\alpha \left[\frac{B_r f_{c28}}{0.9 \gamma_b} \right]$
Contraintes limites	σ	kPa	$\sigma_{ba} = \frac{N_{u \text{lim}}}{ad}$	$\sigma_{bna} = \frac{N_{u \text{lim}}}{ad}$


Tableau 5.34 : Calcul de $\sigma_{u lim}$

Remarque:

La contrainte limite vaut $\sigma_{u \, \text{lim}} = \frac{N_{u \, \text{lim}}}{a \, d}$ que nous appellerons σ_{bna} ou σ_{ba} suivant que le béton

est non armé ou armé.

c. Niveaux de vérification

On vérifie le voile à deux niveaux différents :

- Niveau **I-I** à mi-hauteur d'étage : $\sigma_u \le \sigma_{u \text{ lim}}$
- Niveau **II-II** sous le plancher haut : $\sigma_u \leq \frac{\sigma_{u \text{ lim}}}{\alpha}$

En cas de traction, on négligera le béton tendu.

d. Aciers minimaux

Si $\sigma_u^c < \sigma_{bna}$ on n'a pas besoin d'armatures comprimées, on prendra alors les valeurs minimales données par le tableau suivant : (σ_u^c est la contrainte de compression ultime calculée).

L'épaisseur du voile est désignée par la lettre a

Aciers verticaux, aciers horizontaux

Tableau 5.35: Aciers verticaux et horizontaux.

	Aciers verticaux	Aciers horizontaux
Espacement		
maximal	$S_t \leq \min(0.33m; 2a)$	S _t ≤ 0,33m
entre axes		
Acier	$A_{sv} \geq \rho_v da$	
minimal	$\rho_{v} = Max \left[0,001; 0,0015 \frac{400\theta}{f_{e}} \left(\frac{3\sigma_{u}}{\sigma_{u \text{lim}}} - 1 \right) \right]$	$\rho_H = \frac{A_H}{100a} \ge Max \left[\frac{2\rho_{vMax}}{3}; 0,001 \right]$
	par moitié sur chaque face	ρ _{νMax} = le pourcentage vertical de la
Pourcentag	Avec : $\theta = 1.4$ pour un voile de rive	bande la plus armée
e minimal	$\theta = 1$ pour un voile intermédiaire	•

- La section d'armatures correspondant au pourcentage ρ_v doit être répartie par moitié sur chacune des faces de la bande de mur considérée.
- La section des armatures horizontales parallèles aux faces du mur doit être répartie par moitié sur chacune des faces d'une façon uniforme sur la totalité de la longueur du mur ou de l'élément de mur limité par des ouvertures.

1. Aciers transversaux : (perpendiculaire aux parements)

Seuls les aciers verticaux (de diamètre \emptyset_l) pris en compte dans le calcul de $N_{u \text{ lim}}$ sont à maintenir par des armatures transversales (de diamètre \emptyset_t).

Tableau 5.36: Aciers transversaux

	Nombres d'armatures transversales	Diamètre ϕ_t
$\phi_l \le 12$ mm	4 épingles par m ² de voile	10mm
$12 \text{ mm} < \phi_l \le 20 \text{mm}$	Reprendre toutes les barres verticales	10mm
20 mm $< \phi_l$	Espacement $\leq 15 \phi_l$	8mm

e. Cisaillement

Aucune vérification à l'effort tranchant ultime n'est exigée en compression si le cisaillement est inférieur à $0.05f_{c28}$ (il faudra donc vérifier que $S_{12} \le 0.05f_{c28}$)

• méthode simplifiée basée sur les contraintes : (calcul des aciers verticaux)

Comme déjà dit, les voiles du Bâtiment sont sollicitées en flexion composée.

Les contraintes normales engendrées (σ) peuvent être soit des contraintes de compression ou de traction.

1 - Zone comprimée

Si $\sigma < 0 \rightarrow$ compression

2 - Zone tendue

Si $\sigma > 0 \rightarrow \text{traction}$

Lorsqu' une partie (zone) du voile est tendue, la contrainte de traction (moyenne) σ_m vaut :

$$\sigma_{\scriptscriptstyle m} = \frac{F_{\scriptscriptstyle T}}{(e \times l_{\scriptscriptstyle m})}$$

Avec : F_T : force de traction.

e : épaisseur du voile.

l_m: longueur de la section considérée (ici maille).

Cette contrainte entraı̂ne une section d'acier A_s tel que : $A_s = \frac{F_t}{\sigma_s}$

Cette quantité d'acier sera répartie en deux nappes (une sur chaque face du voile).

Rappelons que les voiles ont été modélisés par des éléments Shell à 4 nœuds.

Un maillage horizontal et vertical (voir figure ci-après) de chaque voile est nécessaire pour approcher les valeurs réelles des contraintes.

Le rapport (a/b) des dimensions de la maille est choisi proche de l'unité

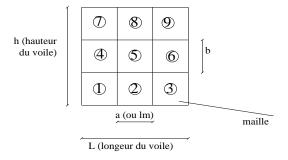


Figure 5.9 : Discrétisation d'un voile en élément (maille) coque.

La lecture des contraintes moyennes (de traction ou de compression) se fait directement au milieu de chaque maille dont le ferraillage est calculé par l'équation (1) dans le cas de la traction.

• Aciers horizontaux

$$A_{h1} = \frac{2}{3} A_{v},$$
 (A_v = A_s précédemment définie)
$$A_{h2} = \frac{\bar{\tau}_{u} b_{0} S_{t}}{0.8(0.8 f_{e})} = \frac{1.4 \tau_{u} a S_{t}}{0.8 f_{e}} 1,25,$$

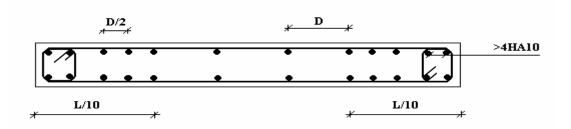
 $\tau_u = S_{12}$ Est donnée par les résultats du logiciel **ETABS**,

 S_t : Espacement maximal trouvé pour A_v ,

b₀ = a (épaisseur du trumeau),

$$A_h \geq Max(A_{h1}, A_{h2}).$$

- Aciers supplémentaires et dispositions constructives
- Aciers de peau : pour limiter les effets hygrothermiques (voir le tableau ci-dessous)


Tableau 5.37 : Aciers supplémentaires.

Aciers de peau	Unité	Aciers verticaux	Aciers horizontaux
Section minimale	cm ²	$0.6\frac{400}{f_e}$	$1.2\frac{400}{f_e}$
Espacement maximal	m	0,5	0,33

• Préconisation du règlement parasismique algérien (RPA 99/VER2003)

Aciers verticaux

- Lorsqu'une partie du voile est tendue sous l'action des forces verticales et horizontales,
 l'effort de traction doit être pris en totalité par les armatures, le pourcentage minimum des armatures verticales sur toute la zone tendue est de 0.2%.
- Il est possible de concentrer des armatures de traction à l'extrémité du voile ou du trumeau, la section totale d'armatures verticales de la zone tendue devant rester au moins égale à 0.20% de la section horizontale du béton tendu.
- Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile.
- Si les efforts importants de compressions agissent sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux.
- Les barres verticales du dernier niveau doivent être munies de crochets (jonction par recouvrement).
- A chaque extrémité du voile (trumeau) l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile. Cet espacement d'extrémité doit être au plus égal à 15cm.

Figure 5.10 : Disposition des armatures verticales dans les voiles.

a. Aciers horizontaux

Les barres horizontales doivent être munies de crochets à 135° ayant une longueur de 10φ. Dans le cas où il existerait des talons de rigidité, les barres horizontales devront être ancrées sans crochets si les dimensions des talons permettent la réalisation d'un ancrage droit.

b. Règles communes

- Le pourcentage minimum d'armatures verticales et horizontales des trumeaux, est donné comme suit :
 - Globalement dans la section du voile 0.15%
 - En zone courante 0.10%
- L'espacement des barres horizontales et verticales doit être inférieur à la plus petite des deux valeurs suivantes : $S \le \begin{cases} 1,5a \\ 30cm \end{cases}$
- Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré.
- Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur.
- Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.
- Les longueurs de recouvrement doivent être égales à :
- 40φ pour les barres situées dans les zones où le renversement du signe des efforts est possible.
- -20φ pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles de charges.
- Le long des joints de reprise de coulage, l'effort tranchant doit être pris par les aciers de couture dont la section doit être calculée avec la formule : $A = 1,1 \frac{\overline{V}}{f_e}$

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction dus aux moments de renversement.

5.4.3 Exemple de calcul (V_1)

Soit le voile de longueur

L = 2m

a = 0.15 m (épaisseur)

 $h_e = 3m$ (hauteur de RDC)

• Contraintes limites

Pour une hauteur d'étage d 3m d'où la hauteur libre est égale à :

• $h_e=3-0,4=2,6m$ (0.4m : hauteur de la poutre).

Tableau 5.38 : Calcul de σ_{ba} et σ_{bna} pour l'exemple (V1).

	Unité	Béton non armé	Béton armé
Longueur de	m	0,85x2,6=2,21	0.80x2.6=2,08
flambement lf			
Elancement λ		$\frac{lf\sqrt{12}}{0.15} = 51,03$	$\frac{lf\sqrt{12}}{0.15} = 48.03$
Coefficient α		0.41	0.576
Section réduite			
B_r (par ml)	M^2	(a-0.02)1=(0.15-0.02)1=0.13	0,13
Avec d = 1m			
Contraintes limites		σ_{bna}	$\sigma_{hg} = \frac{0,576}{(0,13 \times 25 + A_c \frac{400}{1000})}$
$\sigma = \frac{N_{u \lim}}{a d}$	MPa		$\sigma_{ba} = \frac{0,576}{0,15 \times 1} \left(\frac{0,13 \times 25}{0,9 \times 1,15} + A_s \frac{400}{1} \right)$ $\sigma_{ba} = 12.23MPa$
Avec d = 1m		$\sigma_{bna} = 8.58MPa$	

Remarque:

$$B_{et} = (0.15) (1) m^2 \label{eq:Bet}$$

$$A_s = 1.5.10^{-4} m^2 \label{eq:As}$$

• Armatures de traction :

Tableau 5.39 : Calcul des armatures verticales de l'exemple (Vy1).

Maille	1	2
	1	2
L _i =1 m		
Dimensions (m ²)	0,15	0,15
$(\mathbf{a}^*\mathbf{l}^{\mathbf{i}}) = \mathbf{S}_{\mathbf{j}}$	-,	, -
Contrainte moyenne par	5.9	3.62
maille σ _j (MPa)		
Force de traction	0.885	0.543
$F_t(MN) = \sigma_i S_i$	0.000	0.5 15
Section d'acier (cm²)	17.7	10.86
$A_s = \frac{F_t}{\sigma_s}$		
σ_s		
(situation accidentelle γ_s = 1)		
Aciers minimaux (cm²)	1.5	1.5
1. Selon BAEL:		
0,1% S _{béton}	3	3
2. Selon RPA99:		
0,2 % S _{béton}		

choix	2x2T16	2T16+	2x2T1	6 2T16+
		2x3T14		2x3T14
A _{v adopté}	18,21 18,21			
S _i :espacement (cm)	10	20	10	20

• Armatures de joint de bétonnage (aciers de couture) : "RPA99 version 2003"

$$A_{vj} = 1.1 \frac{\overline{V}}{f_a}$$
 ; $\overline{V} = 1.4 V_u^{cal}$; $V_u^{cal} = S_{12}.a.1$

• Aciers horizontaux

$$A_{h1} = \frac{\bar{\tau}_{u}.a.S_{t}}{(0.8f_{e})0.8}$$

$$S_{t min} = 300 mm.$$

$$\bar{\tau}_{u} = 1.4\tau_{u} = 1.4S_{12}$$

$$A_{h1=} \ \frac{_{1.4(0.83)(150)(300)}}{_{(0.8)(500)(0.8)}} \!\!=\!\! 1.634 \ cm^2$$

$$A_{h2} = \frac{2}{3} A_V$$
; $A_V = \{\text{Section d'acier vertical de la bande la plus armé}\}$

$$Ah_2 = \frac{2}{3}(18.21) = 12.14$$
cm²

$$A_{h \min} = (0.15\%) a.l = \frac{0.15}{100} (0.15)(1) = 2.25 \text{ cm}^2$$

D'où:

 $A_H=Max (A_h min; A_{h1}; A_{H2})=12.14 cm^2$

Soit: $2x6HA12 = 13.56cm^2$

Avec : $St = \frac{100}{5} = 20 \text{cm}^2$

Les résultats de ferraillage des voiles sont regroupés dans les tableaux suivants :

- Voile V1Y

e=0.15m; L=2 m.

Tableau 5.40 : Calcul des armatures du voile (V1Y).

Hauteur (m)	maille	Li	Si	$\sigma_{\rm j}$	$\mathbf{F_t}$	$\mathbf{A}_{\mathbf{v}}$	Le	Avadopté	St
		(m)	(m ²)	(MPa)	(MN)	(cm ²)	choix	(cm ²)	(cm)
RDC	1	1	0.15	5,9	0,885	17,7	2x2T16	18 ,21	10
1 ére							2T16+		20
							2x2T14		
	2	1	0.15	3,62	0,543	10,86	2T16+	18 ,21	10
							2x2T14		

							2x2T16		20
2 ^{ème}	1	1	0.15	3,78	0,567	11,34	2x2T14	15 ,39	10
-							2x3T14		20
3 ^{ème}	2	1	0.15	2,27	0,3405	6,81	2x3T14	15 ,39	10
							2x2T14		20
4 ème	1	1	0.15	2,41	0,3615	7,23	2x2T12	11.3	20
-							2x3T12		
5 ^{ème}	2	1	0.15	2,05	0,3075	6,15	2x3T12	11.3	20
							2x2T12		
6 ème		1	0.15	1,68	0,252	5,04	2x2T12	11.3	20
-	1						2x3T12		
7 ^{ème}	2	1	0.15	1,62	0,243	4,86	2x3T12	11.3	20
							2x2T12		
a)ma		1	0.15				2 25712	11.0	20
8ème	1	1	0.15	1,18	0,177	3,54	2x2T12	11.3	20
- 9ème							2x3T12		
9 9 9	2	1	0.15	1,08	0,162	3,24	2x3T12	11.3	20
							2x2T12		

- Voile V2Y:

e=0.15m; L=2 m.

Tableau 5.41 : Calcul des armatures du voile (y2).

Etage	maille	Li	Si	$\sigma_{\rm j}$	$\mathbf{F}_{\mathbf{t}}$	$\mathbf{A}_{\mathbf{v}}$	Le	Avadopté	S_t
		(m)	(m ²)	(MPa)	(MN)	(cm ²)	choix	(cm ²)	(cm)
RDC	1	1	0.15	4,48	0,672	13,44	2x2T14	15.39	10
1 ^{ére}							2x3T14		20
	2	1	0.15	4,48	0,672	13,44	2x3T14	15.39	10
							2x2T14		20
2 ^{ème}	1	1	0.15	4,14	0,621	12,42	2x2T14	15.39	10
-							2x3T14		20
3 ^{ème}	2	1	0.15	4,14	0,62	12,42	2x3T14	15.39	10
							2x2T14		20
4 ème	1	1	0.15	2,55	0,38	7,65	2x2T12	11.3	10
-							2x3T12		20

5 ^{ème}	2	1	0.15	2,55	0,38	7,65	2x3T12	11.3	10
							2x2T12		20
6 ème	1	1	0.15	1,8	0,27	5,4	2x2T12	11.3	10
-							2x3T12		20
7 ^{ème}	2	1	0.15	1,8	0,27	5,4	2x2T12	11.3	10
							2x3T12		20
8 ^{ème}	1	1	0.15	1,11	0,167	3,33	2x2T12	11.3	10
-9 ^{ème}							2x3T12		20
	2	1	0.15	1,11	0,167	3,33	2x2T12	11.3	10
							2x3T12		20

- Voile V3Y:

e=15cm; L=2.9m.

Tableau 5.42 : Calcul des armatures du voile (V3Y).

Etage	maille	Li	Si	$\sigma_{\rm j}$	Ft	$\mathbf{A}_{\mathbf{v}}$	Le	Avadopté	S_t
		(m)	(m ²)	(MPa)	(MN)	(cm ²)	choix	(cm ²)	(cm)
RDC	1	0.96	0,145	5,84	0,8468	16,936	2x2T16	18,21	10
-				- , -		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2xT16+	,	20
1 ^{ére}							2x2T14		20
	2	0.96	0,145	5,17	0,74965	14,993	2x5T14	15,39	20
	3	0.96	0,145	5,65	0,81925	16,385	2x2T16	18,21	10
							2xT16+		20
							2x2T14		
2 ^{ème}	1	0.96	0,145	5,12	0,7424	14,848	2x2T14	15,39	10
-							2x3T14		20
3 ème	2	0.96	0,145	4,42	0,6409	12,818	2x5T14	15,39	20
	3	0.96	0,145	4,89	0,70905	14,181	2x2T14	15,39	10
							2x3T14		20
4 ème	1	0.96	0,145	4,57	0,66265	13,253	2x2T14	15,39	10
-							2x3T14		20
5 ^{ème}	2	0.96	0,145	3,98	0,5771	11,542	2x5T14	15,39	20
	3	0.96	0,145	4,36	0,6322	12,644	2x2T14	15,39	10
							2x3T14		20
6 ème	1	0.96	0,145	3,61	0,52345	10,469	2x2T12	11,13	10
-							2x3T12		20
7 ^{ème}	2	0.96	0,145	2,9	0,4205	8,41	2x5T12	11,13	20

	3	0.96	0,145	3,32	0,4814	9,628	2x2T12	11,13	10
							2x3T12		20
8 ème	1	0.96	0,145	2,39	0,34655	6,931	2x2T12	11,13	10
-							2x3T12		20
9 ^{ème}	2	0.96	0,145	1,82	0,2639	5,278	2x5T12	11,13	20
	3	0.96	0,145	2,02	0,2929	5,858	2x2T12	11,13	10
							2x3T12		20

- **Voile V4Y –V5Y-V6Y:**

e=0.15m; L=2m.

Tableau 5.43 : Calcul des armatures du voile (V4Y –V5Y-V6Y).

Hauteur	maille	$\mathbf{L}_{\mathbf{i}}$	Si	$\sigma_{\rm j}$	F _t	A _v	Le	A _{Vadopté}	S_{t}
(m)		(m)	(m ²)	(MPa)	(MN)	(cm ²)	choix	(cm ²)	(cm)
RDC	1	1	0.15	5,9	0,885	17,7	2x2T16	18.46	10
1 ^{ére}							2xT16		20
							2x2T14		
	2	1	0.15	3,62	0,543	10,86	2x2T16	18.46	10
							2xT16		20
							2x2T14		
2 ^{ème}	1	1	0.15	3,19	0,4785	9,57	2x2T12	11.3	10
-							2x3T12		20
3 ^{ème}	2	1	0.15	2,27	0,3405	6,81	2x3T12	11.3	10
							2x2T12		20
4 ème	1	1	0.15	2,41	0,3615	7,23	2x2T12	11.3	10
-							2x3T12		20
5 ^{ème}	2	1	0.15	2,05	0,3075	6,15	2x3T12	11.3	10
							2x2T12		20
6 ème		1	0.15	1,68	0,252	5,04	2x2T12	11.3	10
-	1						2x3T12		20
$7^{\rm ème}$	2	1	0.15	1,62	0,243	4,86	2x3T12	11.3	10
							2x2T12		20
8 ^{ème}	1	1	0.15	1,18	0,177	3,54	2x2T12	11.3	10
-							2x3T12	1	20
9 ^{ème}	2	1	0.15	1,08	0,162	3,24	2x3T12	11.3	10
							2x2T12		20

- Voile VX 3:

e=0.15m; L=2.5m.

Tableau 5.44 : Calcul des armatures du voile (VX3).

Etage	maille	Li	Si	$\sigma_{\rm j}$	\mathbf{F}_{t}	$\mathbf{A}_{\mathbf{v}}$	Le	Avadopté	S_t
		(m)	(m^2)	(MPa)	(MN)	(cm ²)	choix	(cm ²)	(cm)
RDC	1	0.83	0,125	4,27	0,53375	10,675	2x2T14	12.31	10
1 ére	_						2x2T14		20
	2	0.83	0,125	2,91	0,36375	7,275	2x4T12	9.04	20
	3	0.83	0,125	4,65	0,58125	11,625	2x2T14	12.31	10
							2x2T14		20
2 ^{ème}	1	0.83	0,125	3,25	0,40625	8,125	2x2T12	9.04	10
-							2x2T12		20
3 ème	2	0.83	0,125	2,19	0,27375	5,475	2x4T12	9.04	20
	3	0.83	0,125	3,02	0,3775	7,55	2x2T12	9.04	10
							2x2T12		20
4 ème	1	0.83	0,125	2,26	0,2825	5,65	2x2T12	9.04	10
-							2x2T12		20
5 ^{ème}	2	0.83	0,125	1,81	0,22625	4,525	2x4T12	9.04	20
	3	0.83	0,125	2,25	0,28125	5,625	2x2T12	9.04	10
							2x2T12		20
6 ème	1	0.83	0,125	1,39	0,17375	3,475	2x2T12	9.04	10
_							2x2T12		20
7 ^{ème}	2	0.83	0,125	1,18	0,1475	2,95	2x4T12	9.04	20
	3	0.83	0,125	0,72	0,09	1,8	2x2T12	9.04	10
							2x2T12		20
8 ème	1	0.83	0,125	0,38	0,0475	0,95	2x2T12	9.04	10
_							2x2T12		20
9 ^{ème}	2	0.83	0,125	0,08	0,01	0,2	2x4T14	9.04	20
	3	0.83	0,125	0,5	0,0625	1,25	2x2T12	9.04	10
							2x2T12		20

- voile V2X :

e= 15 cm; L=2m.

Tableau 5.45 : Calcul des armatures du voile (VX2).

	maille	Li	Si	$\sigma_{\rm j}$	Ft	A _v	Le choix	Avadopté	S_t
Hauteur (m)		(m)	(m ²)	(MPa)	(MN)	(cm ²)		(cm ²)	(cm)
RDC	1	1	0.15	3.98	0,597	11,94	2x2T14	15.39	10
1 ére							2x3T14		20
	2	1	0.15	3.9	0,585	11,7	2x2T14	15.39	10
							2x3T14		20
2 ^{ème}	1	1	0.15	2.83	0,4245	8,49	2x2T12	11.3	10
-							2x3T12		20
3 ème	2	1	0.15	2.92	0,438	8,76	2x2T12	11.3	10
							2x3T12		20
4 ème	1	1	0.15	2.02	0,303	6,06	2x2T12	11.3	10
-							2x3T12		20
5 ^{ème}	2	1	0.15	2.01	0,3015	6,03	2x2T12	11.3	10
							2x3T12		20
6 ème	1	1	0.15	1.53	0,2295	4,59	2x2T12	11.3	10
-							2x3T12		20
7 ^{ème}	2	1	0.15	1.32	0,198	3,96	2x2T12	11.3	10
							2x3T12		20
8 ème	1	1	0.15	0.73	0,1095	2,19	2x2T12	11.3	10
							2x3T12		20
9 ^{ème}	2	1	0.15	0.53	0,0795	1,59	2x2T12	11.3	10
							2x3T12		20

Tableau 5.46 : Calcul des armatures du voile (V1X)

Hauteur	maille	Li	Si	$\sigma_{\rm j}$	$\mathbf{F_t}$	A _v	Le	Avadopté	St
(m)		(m)	(m ²)	(MPa)	(MN)	(cm ²)	choix	(cm ²)	(cm)
RDC	1	0.99	0.1485	3.98	0.589	11.78	2x2T14	15.39	10
1 ^{ére}							2x3T14		20
	2	0.65	0.097	0.7	0.049	0.98	2x2T12	9.04	20
							2x2T12		20
	3	0.65	0.097	0.72	0.069	1.39	2x2T12	9.04	20
							2x2T12		20
	4	0.99	0.1485	4.67	0.691	13.82	2x3T14	15.39	20
2 ^{ème}	1	0.99	0.1485	3.53	0.522	10.44	2x2T14 2x2T12	11.30	10
_		0.77	0.1 103	3.33	0.522	10.44	2x3T12	-	20
3 ème	2	0.65	0.097	0.43	0.0417	0.834	2x2T12	9.04	20
3	2	0.03	0.097	0.43	0.0417	0.654	2x2T12	9.04	20
	3	0.65	0.007	0.66	0.064	1 20		0.04	
	3	0.65	0.097	0.66	0.064	1.28	2x2T12	9.04	20
			0.1.10.7				2x2T12	11.500	20
	4	0.99	0.1485	3.96	0.586	11.72	2x3T12	11.300	20
							2x2T12		10
4 ème	1	0.99	0.1485	2.51	0.371	7.42	2x2T12	9.04	10
-							2x2T12		20
5 ^{ème}	2	0.65	0.097	0.39	0.037	0.75	2x2T10	6.28	20
	3	0.65	0.097	0.36	0.0349	0.69	2x2T10 2x2T10	6.28	20
							2x2T10		20
	4	0.99	0.1485	3.96	0.375	7.51	2x2T12 2x2T12	9.04	20 10
6 ème	1	0.99	0.1485	1.61	0.238	4.76	2x2T12 2x2T10	6.28	10
-							2x2T10		20
$7^{\rm ème}$	2	0.65	0.097	0.57	0.0552	1.10	2x2T10	6.28	20
		0.17					2x2T10		20
	3	0.65	0.097	0.94	0.091	1.82	2x2T10	6.28	20
							2x2T10		20
	4	0.99	0.1485	1.56	0.230	4.61	2x2T10	6.28	10
8 ème	1	0.99	0.1485	1.11	0.164	3.28	2x2T10	6.28	10
							2x2T10	1	20
9 ^{ème}	2	0.65	0.097	0.79	0.0766	1.532	2x2T10	6.28	20

						2x2T10		20
3	0.65	0.097	0.72	0.0698	1.39	2x2T10	6.28	20
						2x2T10		20
4	0.99	0.1485	0.71	0.105	2.10	2x2T10	6.28	20
						2x2T10		10

Tableau 5.47 : Calcul des armatures du voile (V4X)

Hauteur (m)	maille	Li	Si	σ _j	$\mathbf{F_t}$	A _v	Le choix	Avadopté	St
		(m)	(m ²)	(MPa)	(MN)	(cm ²)		(cm ²)	(cm)
RDC	1	0.99	0.1485	4.26	0.630	12.60	2x2T16	20.10	10
- 1 ^{ére}							2x3T16	-	20
1	2	0.65	0.097	0.94	0.091	1.82	2x2T12	9.04	20
							2x2T12	-	
	3	0.65	0.097	0.7	0.0679	1.35	2x2T12	9.04	20
							2x2T12	-	20
	4	0.99	0.1485	5.99	0.886	17.7	2x3T16	20.10	20
							2x2T16		10
2 ^{ème}	1	0.99	0.1485	3.96	0.586	11.72	2x2T14	15.39	10
-							2x3T14		20
3 ème	2	0.65	0.097	0.73	0.0708	1.41	2x2T12	9.04	20
							2x2T12		20
	3	0.65	0.097	0.89	0.086	1.72	2x2T12	9.04	20
							2x2T12		20
	4	0.99	0.1485	5.13	0.759	15.18	2x3T14	15.39	20
							2x2T14		10
4 ème	1	0.99	0.1485	2.87	0.424	8.49	2x2T12	9.04	10
-							2x2T12	•	20
5 ^{ème}	2	0.65	0.097	0.45	0.043	0.873	2x2T10	6.28	20
							2x2T10		20
	3	0.65	0.097	0.33	0.032	0.64	2x2T10	6.28	20
							2x2T10		20
	4	0.99	0.1485	3.19	0.472	9.44	2x2T12	9.04	20
							2x2T12	1	10
6 ème	1	0.99	0.1485	1.85	0.273	5.47	2x2T10	6.28	10
-							2x2T10		20
$7^{\text{ème}}$	2	0.65	0.097	0.45	0.043	0.87	2x2T10	6.28	20
							2x2T10		20
	3	0.65	0.097	1.12	0.108	2.17	2x2T10	6.28	20
							2x2T10		20

	4	0.99	0.1485	1.99	0.294	5.89	2x2T10	6.28	10
							2x2T10		10
8 ème	1	0.99	0.1485	0.95	0.140	2.81	2x2T10	6.28	10
							2x2T10		20
9 ^{ème}	2	0.65	0.097	0.83	0.080	1.61	2x2T10	6.28	20
							2x2T10		20
	3	0.65	0.097	1	0.097	1.94	2x2T10	6.28	20
							2x2T10		20
	4	0.99	0.1485	1.01	0.149	2.98	2x2T10	6.28	20
							2x2T10		10

Armature de joint de bétonnage (acier de couture)

Tableau 5.48 : Calcul des aciers de couture des voiles.

Voile	Etages	τ _u (Mpa)	A _{vj} ^{cal} (cm ²)	Le choix	A _{adopté} (cm ²)	S_{T}
V1y L _i =1	2 ^{ème} - 3 ^{ème}	0,71	3,2802	2x5T12	11,13	10
m	4 ème - 5 ème	0,58	2,6796	2x5T12	11,13	10
	6 ème - 7ème	0,5	2,31	2x5T12	11,13	10
	8 ^{ème} - 9 ^{ème}	0,36	1,6632	2x5T12	11,13	10
V2Y	RDC-1 ^{ére}	1,15	5,313	2x5T12	11,13	10
$L_i=1$ m	2 ^{ème} - 3 ^{ème}	0,97	4,4814	2x5T12	11,13	10
	4 ème - 5ème	0,78	3,6036	2x5T12	11,13	10
	6 ème - 7ème	0,57	2,6334	2x5T12	11,13	10
	8 ^{ème} - 9 ^{ème}	0,32	1,232	2x5T12	11,13	10
V3Y	RDC-1 ^{ére}	1,21	5,40386	2x5T12	11,13	10
L _i =0.996m	2 ^{ème} - 3 ^{ème}	1,27	5,67182	2x5T12	11,13	10
	4 ème - 5ème	0,86	3,84076	2x5T12	11,13	10
	6 ème - 7ème	0,61	2,72426	2x5T12	11,13	10
	8 ^{ème} - 9 ^{ème}	0,38	1,69708	2x5T12	11,13	10
V4Y	RDC-1 ^{ére}	0,88	4,0656	2x5T12	11,13	10
V5Y V6Y	2 ^{ème} - 3 ^{ème}	0,95	4,389	2x5T12	11,13	10
L _i =1 m	4 ème - 5 ème	0,69	3,1878	2x5T12	11,13	10
	6 ème - 7ème	0,58	2,6796	2x5T12	11,13	10
	8ème - 9 ème	0,28	1,2936	2x5T12	11,13	10
V2X	RDC-1 ^{ére}	0,89	4,1118	2x5T12	11,13	10
L _i =1m	2ème - 3 ème	0,55	2,541	2x5T12	11,13	10
	4 ème - 5ème	0,47	2,1714	2x5T12	11,13	10
	6 ème - 7ème	0,43	1,9866	2x5T12	11,13	10

	8 ^{ème} - 9 ^{ème}	0,42	1,9404	2x5T12	11,13	10
Way	RDC-1 ^{ére}	1,1	4,21806	2x5T12	9.04	10
V3X						
L _i =0.8	2 ^{ème} - 3 ^{ème}	0,87	3,336102	2x2T12	9.04	10
	4 ème - 5ème	0,73	2,799258	2x5T12	9.04	10
	6 ème - 7 ème	0,64	2,454144	2x5T12	9.04	10
	8 ^{ème} - 9 ^{ème}	0,42	1,610532	2x5T12	9.04	10

Tableau 5.49: Calcul des aciers de couture des voiles

Voile	Etages	$ au_{\mathrm{u}}$	Avj ^{cal}	Le choix	A _{adopté} (cm ²)	S_{T}
		(Mpa)	(cm ²)			
Vx1	RDC-1 ^{ére}	1.44	6.58	2x4T12	9.04	10
L _i =0.99m	2 ^{ème} - 3 ^{ème}	1.33	6.08	2x2T12	9.04	10
	4 ème - 5ème	1.02	4.66	2x2T12	9.04	10
	6 ème - 7ème	0.43	1.96	2x2T12	9.04	10
	8 ^{ème} - 9 ^{ème}	0.41	1.87	2x2T12	9.04	10

Tableau 5.50 : Calcul des aciers de couture des voiles

Voile	Etages	τ _u (Mpa)	A _{vj} ^{cal} (cm ²)	Le choix	A _{adopté} (cm ²)	\mathbf{S}_{T}
Vx4	RDC-1 ^{ére}	1.94	8.87	2x2T12	9.04	10
L _i =0.99m	2 ^{ème} - 3 ^{ème}	1.91	8.73	2x2T12	9.04	10
	4 ème - 5 ème	0.98	4.48	2x2T12	9.04	10
	6 ème - 7 ème	0.87	3.97	2x2T12	9.04	10
	8 ^{ème} - 9 ^{ème}	0.51	2.33	2x2T12	9.04	10

- Aciers horizontaux

Tableau 5.51: Calcul des aciers horizontaux des voiles

Voile	Niveaux	$ au_{\mathrm{u}}$	A_{h1}	$\mathbf{A}_{\mathbf{h}2}$	$\mathbf{A_h}^{ ext{min}}$	$\mathbf{A_h}$	choix	$\mathbf{A_h}^{\mathrm{adopt\acute{e}}}$	S_{t}
		(Mpa)	(cm ²)	(cm ²)	(cm ²)	(cm ²)		(cm ²)	(cm)
V1y	RDC- 1 ^{ére}	0,83	1,63	12,14	2,25	12,14	2x8T12	18.09	15
	2 ^{ème} – 3 ème	0,71	1,4	10,26	2,25	10,26	2x8T12	18.09	15
	4 ème - 5ème	0,58	1,14	7,42	2,25	7,42	2x7T12	15.83	20
	6 ème - 7ème	0,5	0,98	7,42	2,25	7,42	2x8T10	12.56	20
	8 ^{ème} - 9	0,36	0,71	7,42	2,25	7,42	2x8T10	12.56	20
V2Y	RDC- 1 ^{ére}	1,15	2,26	10,26	2,25	10,26	2x8T12	18.09	15
	2 ^{ème} - 3 ème	0,97	1,91	10,26	2,25	10,26	2x8T12	18.09	15
	4 ème - 5ème	0,78	1,54	7,42	2,25	7,42	2x8T10	12.56	20
	6 ème - 7ème	0,57	1,12	7,42	2,25	7,42	2x8T10	12.56	20
	8 ^{ème} - 9 ème	0,32	0,63	7,42	2,25	7,42	2x8T10	12.56	20
V3Y	RDC- 1 ^{ére}	1,21	2,30	12,14	2,241	12,14	2x8T12	18.09	15
	2 ^{ème} - 3 ème	1,27	2,42	10,26	2,241	10,26	2x8T12	18.09	15
	4 ème - 5ème	0,86	1,64	10,26	2,241	10,26	2x8T10	12.56	15
	6 ^{ème} - 7 ^{ème}	0,61	1,16	7,42	2,241	7,42	2x8T10	12.56	20
	8 ^{ème} - 9 ème	0,38	0,72	7,42	2,241	7,42	2x8T10	12.56	20
V4Y V5Y V6Y	RDC- 1 ^{ére}	0,88	1,7325	12,14	2,25	12,14	2x8T12	18.09	15
L _i =	2 ^{ème} – 3 ^{ème}	0,95	1,87031 25	7,42	2,25	7,42	2x8T12	18.09	15
	4 ème - 5ème	0,69	1,35843 75	7,42	2,25	7,42	2x8T10	12.56	20
	6 ème - 7ème	0,58	1,14187 5	7,42	2,25	7,42	2x8T10	12.56	20

	8 ^{ème} – 9 ^{ème}	0,28	0,55125	7,42	2,25	7,42	2x8T10	12.56	20
VX2	RDC- 1 ^{ére}	0,89	1,75	10,26	2,25	10.26	2x8T12	18.09	15
	2 ^{ème} – 3 ^{ème}	0,55	1,08	7,42	2,25	7,54	2x8T12	18.09	15
	4 ème - 5ème	0,47	0,93	7,42	2,25	7,54	2x8T10	12.56	20
	6 ^{ème} - 7 ^{ème}	0,43	0,85	7,42	2,25	7,54	2x8T10	12.56	20
	8 ^{ème} – 9 ^{ème}	0,42	0,83	7,42	2,25	7,54	2x8T10	12.56	20
VX3	RDC- 1 ^{ére}	1,1	2,16	8,21	1,8675	8,21	2x8T12	18.09	15
L _i =0.83	2 ^{ème} – 3 ème	0,87	1,19	6,026	1,8675	6,026	2x8T10	12.56	20
m	4 ème - 5ème	0,73	1,017	6,026	1,8675	6,026	2x8T10	12.56	20
	6 ^{ème} - 7 ^{ème}	0,64	0,91	6,026	1,8675	6,026	2x8T10	12.56	20
	8 ^{ème} – 9 ^{ème}	0,42	0,93	6,026	1,8675	6,026	2x8T10	12.56	20

- Aciers horizontaux

Tableau 5.52 : Calcul des aciers horizontaux des voiles.

Voile	Niveaux	$ au_{\mathrm{u}}$	A _{h1}	A _{h2}	$\mathbf{A_h}^{\mathrm{min}}$	A _h	choix	A _h ^{adopté}	S_t
		(Mpa)	(cm ²)	(cm ²)	(cm ²)	(cm ²)		(cm ²)	(cm)
Vx1	RDC- 1 ^{ére}	1.44	2.83	10.26	2.22	10.26	2x8T10	12.56	20
	2 ^{ème} – 3 ^{ème}	1.33	2.61	7.45	2.2	7.45	2x8T10	12.56	20
	4 ème - 5ème	1.02	2	6.024	2.2	6.026	2x8T10	12.56	20
	6 ème - 7ème	0.43	0.84	4.18	2.2	4.18	2x8T10	12.56	20
	8 ^{ème} - 9 ème	0.41	0.80	4.18	2.2	4.18	2x8T10	12.56	20

- Aciers horizontaux

Tableau 5.53 : Calcul des aciers horizontaux des voiles

Voile	Niveaux	$ au_{\mathrm{u}}$	A _{h1}	A _{h2}	$\mathbf{A_h}^{\mathrm{min}}$	A _h	choix	A _h ^{adopté}	S_t
		(Mpa)	(cm ²)	(cm ²)	(cm ²)	(cm ²)		(cm ²)	(cm)
Vx4	RDC- 1 ^{ére}	1.94	3.81	13.38	2.2	13.38	2x8T12	18.09	15
	2 ^{ème} – 3 ^{ème}	1.91	3.76	10.15	2.2	10.15	2x8T10	12.56	20
	4 ème - 5ème	0.98	1.92	6.026	2.2	6.026	2x8T10	12.56	20
	6 ème - 7ème	0.87	1.71	4.18	2.2	4.18	2x8T10	12.56	20
	8 ^{ème} - 9 ème	0.51	1	4.18	2.2	4.18	2x8T10	12.56	20

-Voile avec ouverture VX1 et VX4

e=0.15m L=3.28 m

Ferraillage Linteaux

Les linteaux sont des éléments considérés comme des poutres courtes de faible raideur, bi encastrés dans les trumeaux.

Sous l'effet d'un chargement horizontal et vertical, le linteau sera sollicité par un moment M et un effort tranchant V. les linteaux se comporte selon le cas, soit en flexion simple soit en diagonal par formation des bielles de traction/compression.

La méthode de ferraillage décrite ci-dessus est proposée dans le RPA99 version 2003.

Le **RPA99 version 2003** limite les contraintes de cisaillement (dans les linteaux (et les trumeaux))

Dans le béton : $\tau b \le \tau b = 0.06 f_{c28}$

$$\tau_{b=\frac{V}{b0 d}}$$
 avec V= 1,4V_{u cal}

b0 : Épaisseur du linteau ou du voile.

d: Hauteur utile = 0.9h.

h: Hauteur totale de la section brute

.1 Premier Cas: $\tau_b \le 0.06 f_{c28}$

Dans ce cas les linteaux sont calculés en flexion simple (avec les efforts M et V) On devra disposer :

- Des aciers longitudinaux de flexion A₁
- Des aciers transversaux A_t
- Des aciers en partie courante. Également appelés aciers de peau (Ac)

a- Acier longitudinale:

Les aciers longitudinaux inférieurs ou supérieurs sont calculés par la formule :

$$A_1 = \frac{M}{z Fe}$$

Avec:
$$Z = h - 2d$$

Où:

h: Est la hauteur totale du linteau.

d' : Est la distance d'enrobage.

M : Moment dû à l'effort tranchant

b-Aciers Transversaux

Deux cas se présentent :

Premier sous cas: linteaux longs ($g = \frac{l}{h} \ge 1$)

on:
$$s = \frac{A f Z}{V}$$

ou:

S : Représente l'espacement des cours d'armatures transversales.

•At : Représente la section d'une cour d'armatures transversales.

• Z = h - 2 d

• V : Représente l'effort tranchant dans la section considérée (V= 1,4V_{ucal})

• l : Représente la portée du linteau

Deuxième Sous Cas : Linteaux Courts \(\lambda _{g} \leq 1 \)

On doit avoir:

$$S = \frac{At \ fe \ L}{V + At \ fe}$$

Avec:

V = Min(V1;V2)

$$V2=2 V_u^{cal}$$

$$V1 = \frac{Mci + Mcj}{lij}$$

Avec : Mci et Mcj moments « résistants ultimes » des sections d'about à droite et à gauche du linteau de portée lij (voir figure suivante) et calculés par : $M_c=A_t$ fe Z

$$O\dot{u}: Z = h - 2 d'$$

2-Deuxième Cas : $\tau_{b} > 0.06 f_{c28}$

Dans ce cas il y a lieu de disposer les ferraillages longitudinaux (supérieurs et inférieurs), transversaux et en zone courante (armature de peau) suivant les minimums réglementaires. Les efforts (M. V) sont repris suivant des bielles diagonales (compression et traction) suivant l'axe moyen des armatures diagonales AD à disposer obligatoirement.

Le calcul de A_D se fait suivant la formule :

Avec:
$$tg\alpha = \frac{h-2d}{l}$$

$$A_{\rm D} = \frac{V}{2 f e \sin \alpha}$$

Et: $V=V_u^{cal}$ (sans majoration)

V.4.5.3 Ferraillage Minimal:

- b : Epaisseur du linteau
- h : Hauteur totale du linteau
- S : Espacement des armatures transversales

a-Armatures Longitudinales Al et A'l

 $(A_1.A'_1) \ge 0.0015b \ h \ (0.15\%)$ (avec A_1 lit inférieur et A'_1 lit supérieur)

b-Armatures Transversales At:

- $\sin \tau_b \le 0.025 f_{c28} \implies A_{t=0.0015} \text{ b S}$
- si $\tau_b \ge 0.025 f_{c28} \implies A_{t=0.0025 \ b \ S}$

c-Armatures de Peau (ou en section courante) Ac

Les armatures longitudinales intermédiaires ou de peau Ac (2 nappes) doivent être au total d'un minimum égale à 0.2%

C'est à dire : $Ac \ge 0,002$ bh (en deux nappes).

D-Armatures Diagonales AD

- si τ b \leq 0,06 $f_{c28} \Longrightarrow A_D = 0$
- $\sin b \ge 0.06 f_{c28} \implies A_D \ge 0.0015 b h$

Linteau de type :

$$h = 0.85m$$

$$1 = 1.30m$$

$$b = 0.15m$$

On lit sur le **ETABS** : $S_{12} = \tau_u^{cal} = 1.93MPa$

Les calculs:

- $\tau_b = 1.93MPa$
- $\overline{\tau_h} = 0.2 f_{c28} = 5MPa \Rightarrow \overline{\tau}_h > \tau_h$
- $0.06 f_{c28} = \tau'_{b} = 1.5 MPa$

$$\tau_b > 0.06 f_{c28}$$
 \Rightarrow On est dans le cas N°2

Dans ce cas il y a lieu de disposer le ferraillage longitudinal (supérieur et inférieur), transversal et en zone courante suivant les minimums réglementaires suivants :

a-Armatures Longitudinales Al et A'l

 $(A_1.A_1) \ge 0.0015 (0.15) (1.3) (0.15\%) = 2.92 \text{cm}^2$.

> Choix (2T14)=3.08cm²

b-Armatures Transversales At

$$ho$$
 0,025 $f_{c28} = 0,625 MPa \Rightarrow \tau_b > 0,025 f_{c28}$ Donc :

$$\rightarrow$$
 A_t \geq 0,0025bS= (0,0025) (0.20) (0.21)10⁴=0.78cm² car $S_t^{max} = \frac{h}{4} = 21.25cm$

$$ightharpoonup$$
 Soit : A_t= 5HA8=2,51cm²

$$S_t = \frac{85}{5} = 17cm$$
 $S_t = 15 \text{ cm} < S_t^{\text{max}}$

c-Armatures de Peau (ou en section courante) Ac

$$Arr$$
 Ac $\geq 0,002 (0.15) (1.3) = 3.9 \text{cm}^2$

Soit:
$$A_c = 4HA14=6.16 \text{ cm}^2$$
 (répartie en deux nappes) (soit 3 barres /nappe)

D-Armatures Diagonales AD

$$\blacktriangleright$$
 • si τ b \leq 0,06 $f_{c28} \Longrightarrow A_D = 0$

$$\triangleright$$
 • siτ b ≥ 0,06 f_{c28} \Rightarrow A_D ≥ 0,0015b h

$$A_D = \frac{(\tau_u \ b \ h)}{2f_e \ \sin \alpha}$$

Avec:
$$tg \ \alpha = \frac{h - 2d'}{l} = \frac{85 - 2(2)}{130} = 0,623 \Rightarrow \alpha = 31.92^{\circ}$$

$$A_D = \frac{(1.93) \ (0.15) \ (1.30)}{(2) \ (500) \ sin \ (31.92)} = 7.12cm^2$$
Avec: $tg \ \alpha = \frac{h - 2d'}{l} = \frac{96 - 2(2)}{120} = 0,766 \Rightarrow \alpha = 37.45^{\circ}$

$$A_D = \frac{(1.93) \ (0.15) \ (1.30)}{(2) \ (500) \ sin \ (31.92)} = 7.12cm$$

Soit : $A_D = 2x 4HA14 = 12.31 \text{ cm}^2$

- $A_D \ge 0,0015 \text{ b h} = 2.92 \text{ cm}^2$ c'est vérifié
- Longueur d'ancrage : $L_a \ge \frac{h}{4} + 50\varphi = \frac{85}{4} + 50(1.4) = 91.25$ cm

Disposition des Armatures dans le Linteau

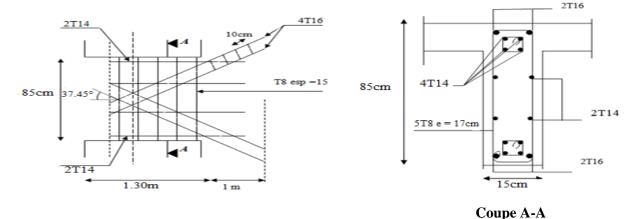


Figure 5.11 : Ferraillage des linteaux.

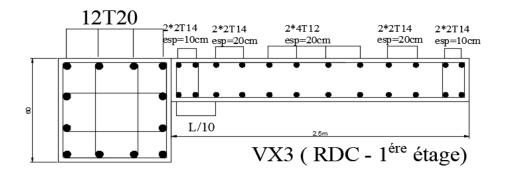


Figure 5.12: Ferraillage Voile 3.

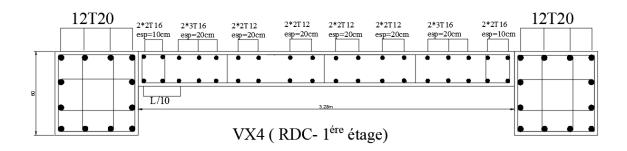
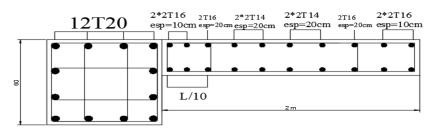



Figure 5.13: Ferraillage Voile 4.

VY1 (RDC - 1^{ére} étage)

Figure 5.14: Ferraillage Voile 1.

VY4 (RDC - 1^{ére} étage)

Figure 5.15: Ferraillage Voile 4.

Chapitre 6 Etude des fondations

6.1 Introduction

Les fondations sont les éléments qui assurent la transmission des déférentes charges de la superstructure vers le sol, donc elles constituent la partie essentielle de la structure.

6.2 Fonctions assurées par les fondations

Dans le cas le plus général, un élément déterminé de la structure peut transmettre à sa fondation :

- Un effort normal : charge verticale centrée dont il convient de connaître les valeurs extrêmes.
- Une force horizontale dûe à l'action du vent ou du séisme, qui peut être variable en grandeur et en direction.
- Un moment qui peut être de grandeur variable et s'exercer dans des plans différents.

Compte tenu de ces sollicitations, la conception générale des fondations doit assurer la cohérence du projet vis-à-vis du site, du sol, de l'ouvrage et interaction sol structure.

6.3 Classification des fondations

Fondé un ouvrage consiste essentiellement à répartir les charges qu'ils supportent sur le sol ou dans le sol suivant l'importance des charges et la résistance du terrain.

- Lorsque les couches de terrain capable de supportée l'ouvrage sont à une faible profondeur on réalise les fondations superficielles (semelles isolées, filantes ou radier général).
- Lorsque les couches de terrain capable de supportée l'ouvrage sont à une grande profondeur on réalise les fondations profondes et semi profondes (puits ou pieux).

6.4 Choix de type de fondation

Le choix de type de fondation se fait suivent ces paramètres :

- La nature et le poids de la superstructure.
- La qualité et la quantité des charges appliquées sur la construction.
- La qualité du sol de fondation.
- La raison économique.
- La facilité de réalisation.

La contrainte moyenne admissible du site du projet est estimée à 2 bars.

Pour le choix du type de fondations, nous avons en premier temps opté pour des semelles isolées comme solution.

6.5 Calcul des fondations

On suppose que l'effort normal provenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations.

On doit vérifier la condition suivante : $\frac{N_{ser}}{S_{n\acute{e}c}} \le \sigma_{sol} \Rightarrow S_{n\acute{e}c} \ge \frac{N_{ser}}{\sigma_{sol}}$

Avec:

 σ_{sol} : Contrainte du sol σ_{sol} =2 bar

 $S_{n\acute{e}c}$: Surface de la fondation.

N_{ser}: Effort normal appliqué sur la fondation.

6.6 Choix de type de semelle

6.6.1 Semelles isolées :

On adoptera une semelle homothétique, c'est-à-dire le rapport de A sur B est égal au a A

rapport a sur b :
$$\frac{a}{b} = \frac{A}{B}$$

Pour les poteaux carrés : a=b donc $A=B \implies S=A^2$

A est déterminée par :
$$S \ge \frac{N}{\sigma_{sol}}$$
 d'où $S = \left[\frac{N}{\sigma_{sol}}\right]$

Avec:
$$A = \sqrt{S}$$
; $\sigma_{sol} = 2$ bars

Les résultats des sections des semelles isolées sont résumés dans le tableau suivant :

Tableau 6.1 : Sections des semelles isolées.

N° Poteaux	N (kN)	S (m ²)	A(m)	A ^{choisie} (m)
C15	2164.8328	10.824	3.289	3.30
C60	2156.9756	10.78	3.283	3.30
C14	1768	8.84	2.97	3
C3	1762.97	8.814	2.968	3
C23	1687.9921	8.439	2.90	2.9
C22	1663.8978	8.319	2.85	2.85
C31	1656.4297	8.28	2.87	2.90
C39	1643.7514	8.21	2.86	2.90
C35	1550.228	7.75	2.78	2.80
C26	1543.3427	7.71	2.77	2.80
C45	1526.5827	7.63	2.76	2.80
C40	1397.0922	6.98	2.64	2.65
C48	1218.6988	6.09	2.45	2.45
C52	1217.6151	6.08	2.46	2.50
C51	1201.5899	6	2.45	2.45
C50	1190.5509	5.95	2.44	2.45
C17	1183.8471	5.91	2.43	2.45
C37	1168.1961	5.84	2.41	2.45

			T	
C32	1165.0417	5.82	2.41	2.45
C49	1155.3746	5.77	2.40	2.40
C16	1133.9972	5.66	2.37	2.40
C20	1060.0161	5.30	2.30	2.30
C21	1051.1268	5.25	2.29	2.30
C9	957.7451	4.78	2.18	2.20
C38	957.0702	4.78	2.18	2.20
C7	953.7003	4.76	2.18	2.20
C6	885.4027	4.42	2.10	2.10
C10	878.6295	4.39	2.09	2.10
C18	877.1521	4.38	2.09	2.10
C8	869.6954	4.34	2.08	2.10
C27	765.6455	3.82	1.95	1.95
C46	763.9176	3.81	1.95	1.95
C44	757.4407	3.78	1.94	1.95
C42	756.7012	3.78	1.91	1.95
C12	748.216	3.74	1.93	1.95
C1	744.5375	3.72	1.92	1.95
C29	736.0925	3.68	1.91	1.95
C24	734.0405	3.67	1.91	1.95
C47	723.3003	3.61	1.9	1.9
C25	708.5877	3.54	1.88	1.9
C30	706.0654	3.53	1.87	1.9
C43	699.4576	3.49	1.86	1.9
C28	698.7509	3.49	1.86	1.9
C57	687.5273	3.437	1.85	1.85
C2	682.48	3.41	1.84	1.85
C11	682.1186	3.41	1.84	1.855
C5	660.9455	3.30	1.81	1.85
C19	652.0322	3.26	1.80	1.80
C13	629.3159	3.14	1.77	1.80
C4	623.8602	3.11	1.76	1.80
C41	579.2953	2.89	1.7	1.7
C33	575.6388	2.87	1.69	1.7

Vérification de l'interférence entre deux semelles

Il faut vérifier que : $L_{\min} \ge 1,50 \times A$

Tel que : $L_{\mbox{\scriptsize min}}$ est l'entre axe minimum entre deux poteaux.

Chapitre 6 Etude des fondations

A: Largeur maximum de la semelle (A=3,30 m).

On a
$$L_{min} = 3,25 < 1,50 \text{ x A} = 4.95....$$
 non vérifié

Conclusion:

D'après ces résultats, on remarque qu'il y a chevauchement des semelles, on passe alors a l'étude des semelles filantes.

6.6.2 Semelles filantes

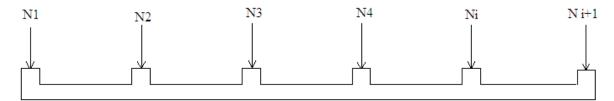


Figure 6.1: Semelle filante.

L'effort normal supporté par la semelle filante est la somme des efforts normaux de tous les poteaux qui se trouve dans la même ligne.

On doit vérifier que : $\sigma_{sol} \geq \frac{N}{S}$

Tel que:

 $N=\sum N_i$ de chaque fil de poteaux.

 $S=B \times L$

B: Largeur de la semelle.

L: Longueur du fil considéré.

$$\Rightarrow B \ge \frac{N}{L\sigma_{sol}}$$

Les résultats sont résumés dans le tableau qui suit :

Tableau 6.2: Sections des semelles filantes.

Files	N (kN)	S (m ²)	L(m)	B(m)	B ^{choisie} (m)
1	9633,1118	49,57	18,36	2,62	2,70
2	9113,303	45.9	27	1,687	1,70
3	6143,239	31,21	18,36	1,672	1,70
4	4620,5072	23,10	27	0,85	0,85
5	4614,425	23,43	10,65	2,16	2,20
6	4581,161	22,89	10,65	2,15	2,15
7	4041,3205	20,19	18,36	1,10	1,10
8	2977,517	14,91	10,65	1,39	1,40
9	2919,985	14,91	10,65	1,37	1,40

Chapitre 6 Etude des fondations

Vérification:

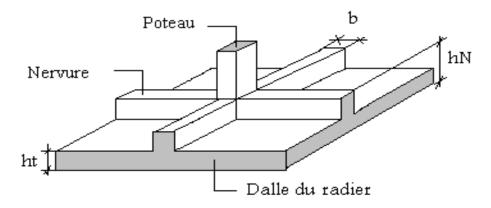
Il faut vérifier que : $\frac{S_{\text{n\'ec}}}{S_{\text{BAT}}} \le 50 \%$

Le rapport entre la surface du bâtiment et la surface totale des semelles vaut :

$$\frac{S_{n\acute{e}c}}{S_{BAT}} = \frac{246,11}{430,17} = 57,21 > 50\%$$

La surface totale de la semelle dépasse 50% de la surface d'emprise du bâtiment, ce qui induit au chevauchement de ces semelles. Pour cela on a opté pour un radier général comme type de fondation pour fonder l'ouvrage. Ce type de fondation présente plusieurs avantages, à savoir :

- L'augmentation de la surface de la semelle qui minimise la forte pression apportée par la structure.
- La réduction des tassements différentiels.
- La facilité de l'exécution.


6.6.3 Radier général

6.6.3.1 Introduction

Un radier est une dalle pleine réalisée sous toute la surface de la construction.

Cette dalle peut être massive (de forte épaisseur) ou nervurée, dans ce cas la dalle est mince mais elle est raidie par des nervures croisées de grande hauteur.

Dans notre cas, on optera pour un radier nervuré (plus économique que pratique) renversé. L'effort normal supporté par le radier est la somme des efforts normaux de tous les poteaux.

Figure 6.2 : Disposition des nervures par rapport au radier et aux poteaux.

6.6.3.2 Surface nécessaire

Pour déterminer la surface du radier in faut que : $\sigma_{\max} \le \sigma_{sol}$

$$\sigma_{\max} = \frac{N}{S_{nec}} \le \sigma_{sol} \Rightarrow S_{nec} \ge \frac{N}{\sigma_{sol}}$$

L'effort normal supporté par le radier est la somme des efforts normaux de superstructure et de sous-sol, tirés à partir du fichier du logiciel **ETABS 17.**

Pour :
$$\begin{cases} N = 81952,0922 \ kN \\ \sigma_{sol} = 2 \ bars \end{cases}$$

On trouve: $S_{nec} \ge 396,77 \text{ m}^2$

La surface du bâtiment S_{bat}=409,761 m²

$$S_{nec} = 409,761 \text{ m}^2 < S_{bat} = 430,37 \text{ m}^2$$

a. Calcul du D (débordement)

Choix : L_d = 50 cm
$$\rightarrow$$
 $S_{d\acute{e}bord}$ = L_d x P_{bat}
 \rightarrow $S_{D\acute{e}bord}$ = 0,5×129,601 = 64,80 m^2

$$\Rightarrow$$
 S_{Rad} = S_{bat} + S_{débord} = 430,37 + 64,80 = **495,17 m²**

Donc la surface totale du radier est 495,17 m²

6.6.3.3 Pré dimensionnement de radier

1. Dalle

L'épaisseur de la dalle du radier doit satisfaire aux conditions suivantes :

a. Condition forfaitaire

$$h_1 \ge \frac{L_{\text{max}}}{20}$$
 Avec:

L_{max}: La longueur maximale entre les axes des poteaux.

$$L_{max} = 4,45 m$$
$$\Rightarrow h_1 \ge 22,25 cm$$

b. Condition de cisaillement [2]

On doit vérifier que :
$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u = Min(0.1f_{c28};3MPa) = 2.5MPa$$

Avec:
$$T_u = \frac{qL}{2}$$
 ; $q = \frac{N_u 1ml}{S_{rad}}$

N_u=111849,2343 kN

L=4,45m b=1m

$$\tau_{u} = \frac{qL}{2bd} = \frac{N_{u}L. \, 1ml}{2S_{rad}. \, b. \, d} = \frac{N_{u}L}{2S_{rad}. \, b. \, (0.9h)} \le \bar{\tau}$$

$$h \ge \frac{N_{u}L. \, 1ml}{2S_{rad}b(0.9\bar{\tau})} = 22.33cm$$

$$\Rightarrow h_2 \ge 22,33cm$$

Conclusion: $h \ge Max(h_1; h_2) = 30cm$.

Pour des raisons constructives on adopte h = 50 cm.

2. Nervures

a. Condition de coffrage

$$b \ge \frac{L_{\text{max}}}{10}$$
 donc on opte b= 65cm.

b. La hauteur de nervure

1. Condition de la flèche

La hauteur des nervures se calcule par la formule de la flèche :

$$h_N \leq \frac{L_{\max}}{10}$$

On a : L_{max} = 4,45 m $\Rightarrow h_N \le$ 44,5 cm

On prend: h_{n1} = 40cm.

2. Condition de la raideur

Pour étudier la raideur de la dalle du radier, on utilise la notion de la largeur définie par

l'expression suivante : $L_{\text{max}} \leq \frac{\pi}{2} L_e$

Avec:
$$L_e = \sqrt[4]{\frac{4EI}{bK}}$$

Avec:

b : La largeur de contact avec le sol

E: Module de Young (E=20000 MPa).

K : Coefficient de raideur du sol $(0.5 \text{kg/m}^3 \le \text{K} \le 12 \text{kg/cm}^3)$.

a=0,65 : Largeur de poteau.

I : Inertie de la section transversale du radier $\left(I = \frac{bh^3}{12}\right)$

Pour un sol de densité moyenne on a K=4Kg/cm³.

Tableau 6.3: Choix de hauteur des nervures.

H nervures (m)	1	1,10
I (m ⁴)	0,0541	0,072
$L_e = \sqrt[4]{\frac{4EI}{bK}}$	2,28	2,45
$\frac{\pi}{2}L_e + a$	4,23	4,49

On opte : $h_{n2} = 110 \text{ cm}$.

Conclusion

 $H \ge Max (h_1; h_2) = 110cm$

On pend: h=110cm.

Le choix final

- Epaisseur de la dalle du radier h=50 cm

Les dimensions de la nervure : $\begin{cases} h_N = 110cm \\ b_N = 65cm \end{cases}$

6.6.3.4 Caractéristiques géométriques du radier

a. Position du centre de gravité

$$\left\{ \begin{array}{l} X_G = 13,50 \text{ m} \\ \\ Y_G = 10,43 \text{ m} \end{array} \right.$$

b. Moments d'inertie

$$\left\{ \begin{array}{l} I_{xx}\!\!=\!\!64948,\!9330~m^4 \\ I_{yy}\!\!=\!\!98494,\!7305~m^4 \end{array} \right.$$

6.6.3.5 Vérifications Nécessaires

6.6.3.5.1 Vérification de la Stabilité du Radier

Selon RPA99/version 2003(Art.10.1.5) [1], quel que soit le type de fondation (superficielle ou profonde) nous devons vérifier que l'excentrement des forces verticales gravitaires et des forces sismiques reste à l'intérieur de la moitié de la centrale de la base des éléments de fondation résistant au reversement.

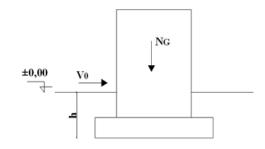
$$e_0 = \frac{M_R}{N_r} \le \frac{B}{4}$$

Avec:

e₀: La plus grande valeur de l'excentricité due aux charges sismiques.

M_R: Moment de renversement dû aux forces sismique.

$$M_R = \sum M_0 + V_0 h$$


 N_r : effort normal de la structure.

M₀: moment à la base de la structure

 V_0 : effort tranchant à la base de la structure

B: la largeur du radier.

M₀, V₀ sont tirés à partir du fichier ETABS V17.0.1

Suivant les sens

XX

Figure 6.3 : Schéma statique du bâtiment.

$$B_X=27m$$
 $\Longrightarrow \frac{B_X}{4} = 6,75m$

• Suivant le sens yy

$$B_Y = 22.85 \text{ m} \implies \frac{B_Y}{4} = 5,71 m$$

h = Ancrage de l'ouvrage.

 $h = h_{SOUS-SOL} + h_{ENTRE-SOL} + h_{Nervure}$

 $= 8.10 \mathrm{m}.$

Sens x-x

 $M_0=12664,8073 \text{ kNm}$; $V_0=3639,8457\text{kN}$; h=8,10m

Done: M_R=42147,557 kNm

On a : $N_{ser} = N_{ser}$ (structure) + poids propre de radier nervuré.

Donc: $N_{ser} = 85665,86 \text{ kN}$

$$e_0 = \frac{M_R}{Nr} = \frac{42147,557}{85665,86} = 0,49 \le \frac{B}{4} = 6,75....v\acute{e}rifi\acute{e}e$$

Sens y-y

 $M_0=12797,8651 \text{ kNm}$; $V_0=3651,6601 \text{ kN}$; h=8,10m

Donc: M_R=42376,31 kNm

$$e_0 = \frac{M_R}{Nr} = \frac{42376,31}{85665,86} = 0,494 \le \frac{B}{4} = 5,71....v\acute{e}rifi\acute{e}e$$

Conclusion

La condition est vérifiée donc le bâtiment est stable.

6.6.3.5.2 Vérification des Contraintes Sous le Radier

Le rapport du sol nous offre la contrainte de sol, déterminée par les différents essais insitu et au laboratoire : σ_{sol} =2 bars.

Les contraintes du sol sont données par :

a. Sollicitation du premier genre

On doit vérifier que :
$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} \le \frac{-}{\sigma_{sol}}$$

$$\sigma_{ser} = \frac{N_{ser}}{S_{rad}} = \frac{85665,86}{495,17} = 173kN/m^2$$

$$\sigma_{ser}=173kN/m^2 \leq \overline{\sigma}_{sol}=200kN/m^2$$
 Condition vérifiée

b. Sollicitation du second genre

On doit vérifier les contraintes sous le radier (σ_1 ; σ_2)

$$\sigma_1 = \frac{N}{S_{rad}} + \frac{M}{I}V$$
 Avec:
$$\sigma_2 = \frac{N}{S_{rad}} - \frac{M}{I}V$$

On vérifie que :

 σ_1 : Ne doit pas dépasser 1,5 σ_{sol}

 σ_2 : Reste toujours positif pour éviter des tractions sous le radier.

$$\sigma\left(\frac{L}{4}\right) = \frac{3\sigma_1 + \sigma_2}{4}$$
 Reste toujours inférieur à 1,33 σ_{sol}

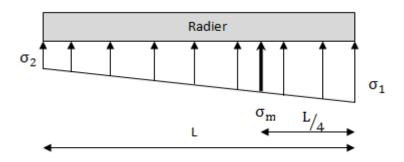


Figure 6.4 : Contraintes sous le radier.

> ELU

 $N_u = Nu$ (structure) +1,35 × poids propre de radier nervuré.

$$N_u = 116862,830 \text{ kN}$$

M: le moment de renversement.

 $M_x=12664,8073 \text{ kNm}$

 $M_y = 12797,8651 \text{ kNm}$

 $S_{rad} = 495,17m^2$

 I_{xx} =64948,9330 m⁴

 $I_{yy} = 98494,7305 \text{ m}^4$

V : centre de gravité

 $V_x = 13,50 \text{ m}$

 $V_v = 10,43 \text{ m}$

 $\sigma sol = 200 \text{ kN/m}^2$

Tableau 6.4 : Contraintes sous le radier à l'ELU.

	$\sigma_1(kN/m^2)$	$\sigma_2 (kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right) (\mathbf{kN/m^2})$
Sens x-x	238,63	233,36	237,31
Sens y-y	237,35	234,64	236 ,67
Vérification	$\sigma_1^{\text{max}} < 1,5 \sigma_{\text{sol}} = 300$	σ ₂ ^{min} >0	$\sigma\left(\frac{L}{4}\right) < 1.33 \sigma_{sol} = 266$

Conclusion

Les contraintes sont vérifiées suivant les deux sens, donc pas de risque de soulèvement.

> ELS

 $N_{ser} = 85665,86 \text{ kN}$

 $-\sigma sol = 200 \text{ kN/m}$

Tableau 6.5 : Contraintes sous le radier à l'ELS.

	$\sigma_1 \left(kN/m^2 \right)$	$\sigma_2 (kN/m^2)$	$\sigma_m \left(\frac{L}{4}\right) (\mathbf{kN/m^2})$
Sens x-x	175,63	170,37	130,41
Sens y-y	174,35	171,64	173,67
Vérification	$\sigma_1^{\text{max}} < 1,5 \ \sigma_{\text{sol}} = 300$	$\sigma_2^{\min}>0$	$\sigma\left(\frac{L}{4}\right) < 1,33 \sigma_{sol} = 266$

Conclusion

Les contraintes sont vérifiées suivant les deux sens, donc pas de risque de soulèvement.

Chapitre 6 Etude des fondations

c. Détermination des sollicitations les plus défavorables

Le radier se calcule sous l'effet des sollicitations suivantes :

ELU:
$$\sigma_u = \sigma\left(\frac{L}{4}\right) = 237.31kN/m^2$$

ELS:
$$\sigma_{ser} = \sigma\left(\frac{L}{4}\right) = 173,67kN/m^2$$

6.3.6 Ferraillage du radier

Le radier fonctionne comme un plancher renversé dont les appuis sont constitués par les poteaux et les poutres qui sont soumises à une pression uniforme provenant du poids propre de l'ouvrage et des surcharges.

La fissuration est considérée préjudiciable.

6.6.3.6.1 Ferraillage de la dalle du radier

a) Valeur de la pression sous radier

ELU:
$$q_u = \sigma_m^u . 1m = 237,31kN/m$$

ELS:
$$q_{ser} = \sigma_m^{ser}$$
. $1m = 173,67kN/m$

a. Calcul des efforts

Le calcul des efforts de la dalle se fait selon la méthode de calcul des dalles reposant sur 04 cotés.

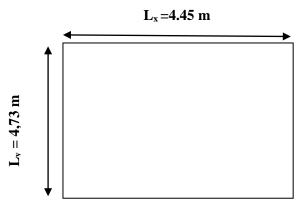


Figure 6.5 : Panneau de la dalle du radier.

b. Calcul des moments

- Dans le sens de la petite portée : $M_x = \mu_x q_u L_x^2$
- Dans le sens de la grande portée : $M_y = \mu_y M_x$

Les coefficients μ_x et μ_y sont en fonction de $\rho = \frac{L_x}{L_y}$ et de v.

v : Coefficient de poisson
$$\begin{cases} 0 & a l' ELU \\ 0,2 & a l' ELS \end{cases}$$

μ_x et μ_y sont donnés par l'abaque de calcul des dalles rectangulaires "BAEL91 modifié 99"

$$\rho = 0.94 \Rightarrow \begin{cases} \mu_x = 0.0419 \\ \mu_y = 0.8661 \end{cases}$$

$$M_x = \mu_x q_u L_x^2 = 196,90 kNm$$

$$M_{y} = \mu_{y}M_{x} = 170,53kNm$$

- Moments en travées

 $M_{tx}=0.85M_x=167,365 \text{ kNm}$

$$M_{ty}=0.85M_y=144.95 \text{ kNm}$$

- Moments sur appuis

$$M_{ax} = M_{ay} = 0.5 M_x = 98.45 \text{ kNm}$$

c. Ferraillage de la dalle

 $b = \! 100cm \; ; \; h \! = \! 50cm \; ; \; d \! = \! 45cm \; ; \; f_e \! = \! 500MPa \; ; \; f_{c28} \! = \! 25MPa \; ; \; f_{t28} \! = \! 2,1MPa \; ; \quad \sigma_s \! = \! 435MPa \; ; \; \sigma_s$

Les résultats sont récapitulés dans le tableau suivant :

Tableau 6.6 : Ferraillage des panneaux du radier.

	Sens	M _u (kNm)	μ	As' (cm ²)	α	Z (cm)	A _s ^{cal} (cm ²)	Choix	A _s ^{adp} (cm ²)	Esp (cm)
Travée	X-X	167,365	0,0583	0	0,075	43.64	8.82	6T14	9.24	16
	у-у	144,95	0,0505	0	0,0648	43.83	7.60	6T14	9.24	16
Appuis	X-X	98,45	0,0343	0	0,0436	44.21	5,12	5T14	7.70	20
	у-у	,	-				-			

d. Vérifications nécessaires

1. Espacement

$$Esp \le Min(3h; 33cm) \Rightarrow S_t \le Min(150cm; 33cm) = 33cm$$

Sens x-x:
$$S_t = \frac{100}{6} = 16.66cm < 33cm$$

On opte S_t=16 cm

Sens y-y:
$$S_t = \frac{100}{5} = 20cm < 33cm$$

On prend S_t =20cm

Chapitre 6 Etude des fondations

2. Condition de non fragilit

$$A_s^{min} \ge 0.23bd \frac{f_{t28}}{f_e} = 4.34cm^2$$

$$A_{s \text{ min}} = 4.34 \text{ cm}^2 < A_{s \text{ adopt\'e}} = 9.24 \text{cm}^2$$

Donc la condition est vérifiée.

3. Vérification des contraintes à l'ELS

Tableau 6.7 : Vérification des contraintes.

	Sens	M _{ser} (kNm)	A _s (cm ²)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérif
Travée	X-X	143,48	9.24	6.96	15	372.37	250	NON
Travec	у-у	130,38	9.24	6.32	15	338.37	250	NON
Appui	X-X	84,4	7.70	3.82	15	226.07	250	OUI
Appui	у-у	2 1, 1			13	,	230	001

Remarque : La contrainte d'acier n'est pas vérifiée ni en travée ni en appuis donc on augmente la section de l'acier.

Tableau 6.8 : Vérification des contraintes (correction).

	Sens	M _{ser} (kNm)	Choix	A _s (cm ²)	Esp (cm)	σ _{bc} (MPa)	$ar{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Vérif
Travée	х-х	143,48	7T16	14.07	14	5.90	15	248.37	250	Oui
Travec	у-у	130,38	7T16	14.07	14	5.36	15	225.7	250	Oui
Appui	х-х	84,4	5T14	7.70	20	3.82	15	226.07	250	Oui
FF	у-у									- 4.2

4. Vérification de la contrainte tangentielle du béton

On doit vérifier que : $\tau_u \prec \overline{\tau}_u = Min(0.1f_{c28};4MPa) = 2.5MPa$

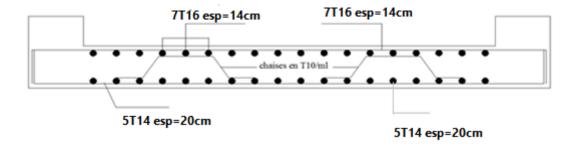


Figure 6.6 : Schéma de ferraillage du radier.

6.6.3.7 Ferraillage des nervures

a. Calcul des efforts

Pour le calcul des efforts, on utilise la méthode forfaitaire « BAEL91 modifier 99» 2]

On a:
$$M_0 = \frac{qL^2}{8}$$

En travée : M_t =0,85 M_0

Sur appuis: M_a=0,50M₀

b. Calcul des armatures

b = 65 cm; h = 110 cm; d = 99 cm

• **Sens Y**: L=4,73 m; q= 237,31 kN/ml

Tableau 6.9 : Ferraillage des nervures (sens porteur).

	M _u (kNm)	μ	α	Z (cm)	A _s ^{cal} (cm ²)	Choix	A _s ^{adp} (cm ²)
Travée	564,11	0,0624	0,0807	95,80	13,54	14T16	28.15
Appuis	331,83	0,0367	0,0468	97,145	7,85	8T16	16.08

• **Sens X :** L=4,45 m ; q=237,31 kN/ml

Tableau 6.10 : Ferraillage des nervures (sens non porteur).

	M _u (kNm)	μ	α	Z (cm)	A _s ^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
Travée	499,30	0,0554	0,071	96,18	11,94	8T16	16.08
Appuis	293,70	0,0325	0,0413	97,36	6,94	8T16	16.08

Chapitre 6 Etude des fondations

c. Vérifications nécessaires

1. Condition de non fragilité

$$A_s^{min} \ge 0.23bd \frac{f_{t28}}{f_e} = 6.21cm^2$$

Tableau 6.11 : Vérification de la condition de non fragilité.

Sens	position	A_s^{adp} (cm ²)	$A_s^{ m min}$	Vérification
Y	Travée	28.15	6,9	Oui
	Appuis	16.08	6,9	Oui
X	Travée	16.08	6,9	Oui
	Appuis	16.08	6,9	Oui

1. Vérification des contraintes à l'ELS

Tableau 6.12 : Vérification des contraintes à l'ELS.

Sens	Position	M_{ser}	$\mathbf{A_s}$	σ_{bc}	$\overline{\sigma}_{\scriptscriptstyle bc}$	$\sigma_{\rm s}$	$\overline{\sigma}_{\scriptscriptstyle s}$	Vérification
		(kNm)	(cm ²)	(MPa)	(MPa)	(MPa)	(MPa)	Vermeation
Y	Travée	412,83	28.15	4,76	15	164,76	250	Oui
	Appuis	242,84	16.08	3,46	15	165,74	250	Oui
X	Travée	365,40	16.08	5,21	15	249,39	250	Oui
	Appuis	241,94	16.08	3,069	15	146 ,70	250	Oui

2. Vérification de la contrainte tangentielle du béton [2]

On doit vérifier que : $\tau_u \prec \overline{\tau}_u = Min(0.1f_{c28};4MPa) = 2.5MPa$

Avec:

$$\begin{split} \tau_u &= \frac{T_u}{bd} \\ T_u &= \frac{q_u L}{2} = \frac{q_u L}{2} = \frac{237,31 \times 4,73}{2} = 561,24kN \\ \tau_u &= \frac{561,31 \times 10^3}{650 \times 990} = 0,872MPa < \bar{\tau}_u = 2,5MPa.V\acute{e}rifier \end{split}$$

d. Armatures transversales

• BAEL 91 modifié 99 [2]

$$*\frac{A_{t}}{b_{0}S_{t}} \ge \frac{\tau_{u} - 0.3f_{tj}K}{0.8f_{e}}$$
 (K = 1pasde reprisede bétonnage)

$$*S_t \le Min(0.9d;40cm) = 40cm$$

*
$$\frac{A_t f_e}{b_0 S_t} \ge Max \left(\frac{\tau_u}{2}; 0,4MPa\right) = 0,40MPa$$

• RPA99 version 2003 [1]

$$*\frac{A_t}{S_t} \ge 0.003b_0$$
 $*S_t \le Min\left(\frac{h}{4}; 12\varphi_l\right) = 19.2cm....Zone nodale$
 $*S_t \le \frac{h}{2} = 55cm...Zone courante$

Avec:

$$\varphi_t \leq Min\left(\frac{h}{35}; \varphi_l; \frac{b}{10}\right) = 1,6cm$$

 $f_e\!=\!\!500MPa$; $\tau_u\!\!=\!\!0,\!872$ MPa ; $f_{t28}\!\!=\!\!2,\!1MPa$; $b\!\!=\!\!65cm$; $d\!\!=\!\!99cm$

On trouve:

S_t=15cm.....Zone nodale.

 S_t =30cm....Zone courante.

Tableau 6.13: choix des armatures transversales.

	Section Zone S_t Φ_t		A _t calculée	Choix des	At		
			(cm)	(cm)	(cm ²)	armatures	(cm²)
Nervures	65×110	courante	30	1.2	5,85	8T12	9,05
1,01,41,65	00/110	nodale	15	1,2	2,925	8T12	9,05

2. Armatures de peau :

Les armatures dénommées « armatures de peau » sont réparties sur les parements des poutres de grande hauteur, leur section est au moins 3 cm²/ml par mètre de longueur de paroi mesuré perpendiculairement à leur direction.

h=110 cm

$$A_P = 3 \times 2 = 6cm^2$$

On a choisi: A_P= 4T14cm²

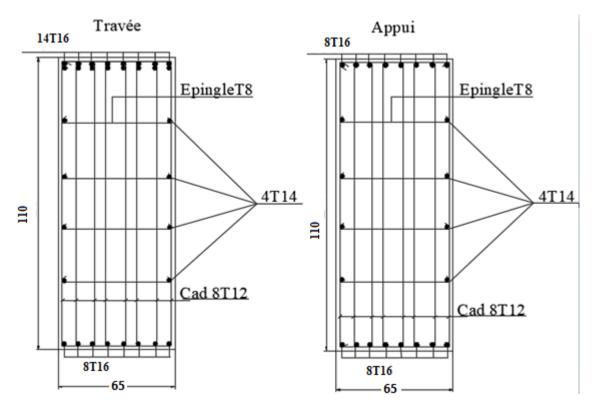


Figure 6.7 : Schéma de ferraillage des nervures (sens Y).

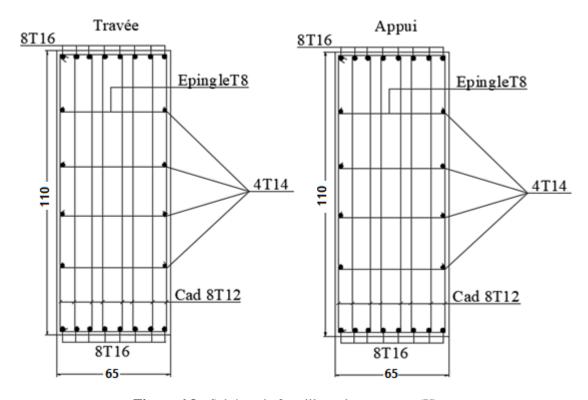


Figure 6.8 : Schéma de ferraillage des nervures (X).

6.6.3.8 Ferraillage des débords

Le débord du radier est assimilé à une console de longueur L=0,50m, le calcul du ferraillage sera fait pour une bande de 1m à l'ELU.

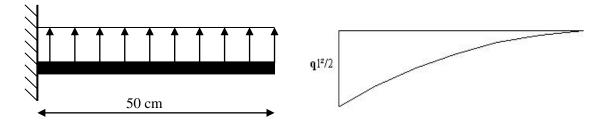


Figure 6.9 : Schéma statique du débord.

Figure 6.10: Diagramme des Moments.

c.1. Calcul de ferraillage :

 q_u = 237,31 kN/ml, b=100cm, h=30cm, f_{c28} =25MPa, σ_{bc} =14,17MPa.

$$M_{u} = \frac{q_{u}l^{2}}{2} = 29,66kNm \qquad ; \quad \sigma_{s} = 435MPa$$

$$\mu = \frac{M_{u}}{bd^{2}\sigma_{bc}} = 0,0287$$

$$\alpha = 1,25 \quad (1 - \sqrt{1 - 2\mu}) = 0,0364$$

$$Z = d \quad (1 - 0,4 \quad \alpha) = 26,60cm$$

$$A_{s} = \frac{M_{u}}{Z\sigma_{s}} = 2,60cm^{2}$$

$$A_s^{min} \ge 0.23bd \frac{f_{t28}}{f_e} = 2.60cm^2$$

On adopte: 4T14=4,62cm $S_t=25cm$

Remarque

Le ferraillage de débord sera la continuité du ferraillage du radier.

6.6.4 Voile périphérique

6.6.4.1 Introduction

Notre structure comporte un voile périphérique de soutènement qui s'élève du niveau de fondation jusqu'au niveau du plancher de RDC.

Il forme par sa grande rigidité qu'il crée à la base un caisson rigide et indéformable avec les planchers du RDC et les fondations.

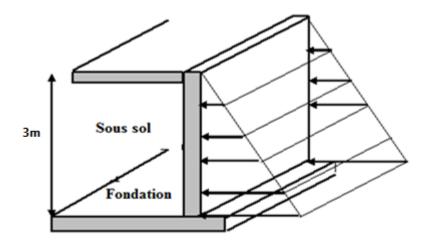


Figure 6.11: Evaluation des charges.

6.6.4.2 Pré dimensionnement

Pour le pré dimensionnement du voile périphérique, on se réfère aux prescriptions du **RPA99 version 2003**, qui stipule d'après l'article 10.1.2.

6.6.4.3 Evaluation des charges

On considère le voile comme une dalle pleine reposant sur quatre appuis, et qui supporte les charges horizontales dues aux poussées des terres. On considère le tronçon le plus défavorable.

Les charges et surcharges prise uniformément répartie sur une bande de 1m se situe à la base du voile (cas le plus défavorable).

 $L_x=3m$; $L_y=4,73m$; e=15 cm.

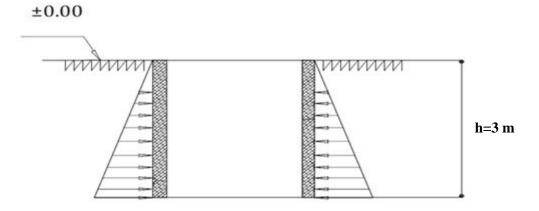


Figure 6.12 : Poussées des terres.

La charge de poussées des terres est donnée par :

$$Q=A\times \gamma \times h$$

Avec:

Q : Contrainte sur une bande de 1m.

 γ : Poids spécifique des terres ($\gamma = 20.5 \text{ kN/m}^3$).

h: Hauteur du voile.

A : coefficient numérique en fonction de l'angle de frottement interne.

$$\varphi = 26,69^{\circ} \Rightarrow A = f(\varphi) = tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) = 0,380$$

$$Q=A.\gamma.H=23{,}37kN/ml\Rightarrow Qu=1{,}35\times23{,}37=31{,}55kN/ml$$

6.6.4.4 Effort dans le voile périphérique

 $\rho = \frac{L_x}{L_y} = \frac{3}{4.73} = 0,634 > 0,4 \Rightarrow$ La dalle travaille dans les deux sens.

- Dans le sens de la petite portée : $M_x = \mu_x q_u L_x^2$
- Dans le sens de la grande portée : $M_y = \mu_y M_x$

Les coefficients μ_x et μ_y sont fonction de $\rho = \frac{L_x}{L_y}$ et de ν .

$$v$$
 : Coefficient de poisson
$$\begin{cases} 0 & \text{\hat{a} l' ELU$} \\ 0,2 & \text{$\hat{a}$ l' ELS$} \end{cases}$$

 μ_x et μ_y sont donnés par l'abaque de calcul des dalles rectangulaire

$$\rho = 0.634 \Rightarrow \begin{cases} \mu_x = 0.0779 \\ \mu_y = 0.3338 \end{cases}$$

$$M_x = \mu_x q_u L_x^2 = 22,12kNm$$

$$M_y = \mu_y M_x = 97,383kNm$$

• Moments en travées :

$$M_{tx}=0.85M_x=18.80 \text{ kNm}.$$

$$M_{ty}=0.85M_y=6.28 \text{ kNm}.$$

• Moments sur appuis :

$$M_{ax}=M_{ay}=0.5M_x=11.06 \text{ kNm}.$$

6.6.5.5 Ferraillage du voile périphérique

 $b=100cm\;;\;h=15cm\;;\;d=0,9h=13,5cm\;;\;f_{e}=500MPa\;;\;f_{c28}=25MPa\;;\;f_{t28}=2,1MPa\;;\;\sigma_{s}=435MPa\;;\\ F_{bc}=14,17MPa$

Les résultats sont récapitulés dans le tableau suivant :

Tableau 6.14 : Ferraillage du voile périphérique.

	Sens	M _u (kNm)	μ	α	Z (cm)	A _s ^{cal} (cm ²)	Choix	A _s ^{adp} (cm ²)	Esp (cm)
Travée	X-X	18,80	0,0727	0,0945	12,99	3,33	6T10	2×4,71	15
	у-у	6,28	0,0243	0,0308	13,33	1,08	6T10	2×4,71	15
Appuis	X-X	11,06	0,0428	0,0548	13,20	1,92	6T10	2×4,71	15
	у-у								

6.6.4.6 Condition exigée par les RPA99/version 2003

Le RPA préconise un pourcentage minimum de 0,1% de la section dans les deux sens disposé en deux nappes.

$$A_L \ge 0.1 \times 15 \times 100 = 1.5 cm^2 \dots Vérifiée$$

$$A_T \ge 0.1 \times 15 \times 100 = 1.5 cm^2 \dots Vérifiée$$

6.5.7 Condition de non fragilité

Pour les voiles travaillant dans les deux sens et dont l'épaisseur est compté entre 12 et 30cm. D'après le « BAEL91 modifié 99 » [2].

On a:
$$12cm \le e \le 30cm$$

h = e = 15 cm; b = 100 cm.

$$\begin{cases} A_x \ge A_x^{\min}; & A_x^{\min} = \rho_0 \left[3 - \frac{L_x}{L_y} \right] \frac{bh}{2} \\ A_y \ge A_y^{\min}; & A_y^{\min} = \rho_0 bh \end{cases}$$

 ρ_0 =0,0006 pour les barres de FeE500

$$A_x^{min} = 0.0006 \left(3 - \frac{3}{4,73} \right) \frac{100 * 15}{2} = 1.06cm^2$$

$$A_y^{min} = 0.0006 * 100 * 15 = 0.9cm.$$

> En travée :

$$\begin{cases} A_x = 4,71 \ cm^2 \rangle A_x^{min} = 1.06 cm^2 \\ A_y = 4,71 \ cm^2 \rangle A_y^{min} = 0.9 cm^2 \end{cases}$$
.....Vérifiée

> Sur appuis :
$$\begin{cases} A_x = 4,71 \ cm^2 \rangle A_x^{min} = 1.06 cm^2 \\ A_y = 4,71 \ cm^2 \rangle A_y^{min} = 0.9 \ cm^2 \end{cases}$$
.....Vérifiée

6.4.8 Vérification de l'effort tranchant

6.6.4.9 Vérification à L'ELS

a. Evaluation des sollicitations à l'ELS

$$Q_{ser} = Q1 = 23,37 \text{ kN/m}$$

$$\frac{L_x}{L_y} = 0.634 \Rightarrow \begin{cases} \mu_x = 0.0831 \\ \mu_y = 0.5004 \end{cases}$$

$$\begin{cases} M_x = \mu_x q_{ser} L_x^2 = 17,48kNm \\ M_y = \mu_y M_x = 8,75Nm \end{cases}$$

$$\begin{cases} M_{tx} = 0.85M_x = 14.81kNm \\ M_{ty} = 0.85M_y = 7.43kNm \\ M_a = 0.5M_x = 8.71kNm \end{cases}$$

b. Vérification des contraintes :

Il faut vérifier que :
$$\sigma_{bc} \leq \overline{\sigma}_{bc} = 0.6 f_{c28} = 15 MPa$$

Le tableau suivant récapitule les résultats trouvés :

Tableau 6.15 : Vérifications des contraintes.

	Sens	M_{ser}	$\mathbf{A_s}$	σ_{bc}	$\overline{\sigma}_{bc}$	$\sigma_{\rm s}$	$\overline{\sigma}_{\scriptscriptstyle s}$	
	SCIIS	(kNm)	(cm ²)	(MPa)	(MPa)	(MPa)	(MPa)	Vérification
Travée	X-X	14,81	4,71	6,48	15	256,66	250	Non

	у-у	7,43	4,71	3,25	15	128,76	250	OK
Appuis	X-X	8,71	4,71	1 ,02	15	150,95	250	OK
Тършз	у-у	0,71	7,71		13	150,75	230	

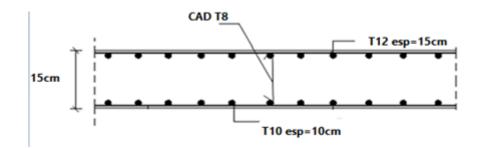

* Redimensionnement de la section d'armature

Tableau 6.16: Choix des Armatures.

	Sens	Choix	A_s^{adp} (cm ²)	S _t (cm)
Travée	X-X	6T12	6,79	15
	у-у	6T10	4,71	15
Appuis	X-X	6T10	4,71	15
	у-у		·	

Tableau 6.17 : Vérifications des contraintes.

	Coma	M_{ser}	$\mathbf{A_s}$	σ_{bc}	$ar{\sigma}_{bc}$	$\sigma_{\rm s}$	$ar{\sigma}_{\scriptscriptstyle s}$	
	Sens	(kNm)	(cm ²)	(MPa)	(MPa)	(MPa)	(MPa)	Vérification
Travée	X-X	14,81	6 ,79	4 ,87	15	180,84	250	OK
	у-у	7,43	4,71	3,25	15	128,76	250	OK
Appuis	X-X	8,71	4 ?71	1 ,02	15	150,95	250	OK
	у-у	,, -	, -					

Figure 6.13 : Ferraillage du Voile Périphérique sens x-x.

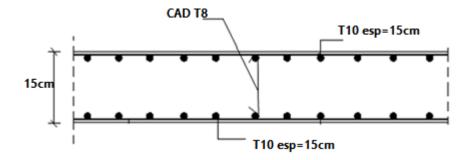


Figure 6.14 : Ferraillage du Voile Périphérique sens y-y.

7.1 Introduction

L'Algérie a été soumise à des actions sismiques violentes qui ont fait de nombreuses victimes et beaucoup de dégâts avec des destructions massives qui ont touchés plusieurs régions du pays tel que Chlef en 1980 qui restera gravé à jamais dans la mémoire des Algérien, Alger en 1996 avec un rayon s'étalant sur 140 km touchant ainsi Ain Bénian, Chéraga, et Staouali, Ain Temouchent en 1999 sur une surface macrosismique de 260km de rayon, et celui de Boumerdes qui vient rappeler que le nord Algérien très peuplé n'est pas à l'abri des catastrophes naturelles, augmentant ainsi la notion de risque qui n'est que le produit de l'aléa sismique par la vulnérabilité, et qu'il faudrait prendre sérieusement en considération étant donné que nous sommes dans une zone reconnue sismique [6].

Avec la prise de conscience des pouvoir publiques et des Algériens face à ce phénomène qui a ébranlé le pays ces dernières années, certaines décisions ont été prise en matière de protection sismique à savoir l'exigence de l'étude de Génie civil pour toutes les constructions privées et ce depuis 2003, les études de sols qui sont devenues obligatoires aussi pour tous les ouvrages dépassant le R+2 ou avec des surfaces de plancher supérieures à 400m² quel que soit le nombre d'étage.

La réglementation parasismique qui est entrée en vigueur depuis 1983, révisée en 1988, en 1999 et en 2003 reste toujours insuffisante au vu des constations faites durant tous les séismes qui nous ont frappés et marqués. Ces derniers sont révélateurs d'insuffisance en matière de conception et de réalisation d'ouvrages capable de résister aux effondrements, les diagnostiques établis culpabilise toujours la nature mais jamais nos carences en matière de réglementation de conception et de réalisation.

Lors du tremblement de terre de Boumerdes (Algérie) du 21/05/2003 nous avons constaté qu'une grande partie d'ouvrages n'a pas subi beaucoup de dégâts alors que d'autres similaires du point de vue architectural, conception et nature de sol se sont effondrés, ce qui ne peut être expliqué par la puissance du séisme mais qui pouvait être évité si certains principes élémentaires du génie parasismique avaient été respectés.

Dans ce chapitre, nous allons en premier lieu s'intéresser au séisme du 23 mai 2003 ainsi qu'à son contexte, à savoir la willaya de Boumerdés. Après une modeste présentation de la wilaya, nous donnerons les principales caractéristiques du séisme ainsi que les différents dégâts recensés.

En deuxième partie nous allons appliquer une analyse sismique temporelle linéaire sur les éléments de la structure précédente, pour le cas de cette étude, nous utilisons un ensemble d'accélérogrammes naturels du séisme du Boumerdés enregistrés par trois stations à savoir ; Kaddara, Hussein Dey et Dar El Beida.

7.2 Présentation de la wilaya de Boumerdés

Boumerdès est située à 45 km à l'est de la capitale Alger. C'est une ville côtière du centre d'Algérie, avec 100 km de profil littoral, allant du cap de Boudouaou El Bahri à l'ouest, à la limite orientale de la Daira de Dellys. Sa superficie est de 1 456,16 km2. Selon le recensement général de la population et de l'habitat (RGPH 2008), la population est estimée à 647389 habitants.

7.3 Caractéristiques sismique de la région

La tectonique active en Algérie est située dans la partie nord du pays, principalement dans le système Tell. Dans cette région, située à la frontière Afrique-Eurasie, l'activité tectonique exprime la convergence entre les deux plaques principales. La tectonique côtière génère le soulèvement côtier tel qu'il a été montré lors du dernier tremblement de terre de Boumerdes du 21 mai 2003, où un soulèvement moyen de 0,50 m a été mesuré. La sismicité du nord de l'Algérie est engendrée par des failles actives, dont quelques-unes ont été décrites sur terre et d'autres récemment décrites en mer après l'évènement sismique de 2003. Nous citerons dans ce qui suit les principales structures actives [7]:

- La faille du Sahel
- Les failles de la bordure Sud-Ouest du bassin de la Metidja
- Les failles de la bordure Sud-Est du bassin de la Metidja
- La faille de Thénia
- Les structures en mer

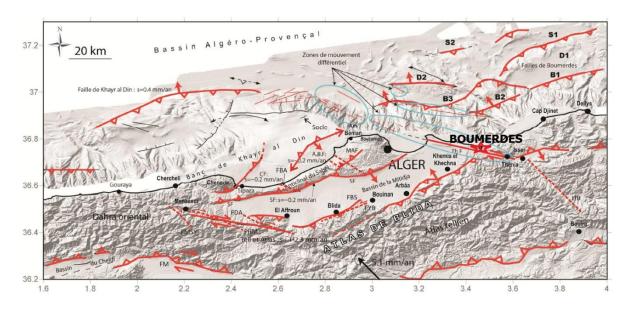


Figure 7.1 : Carte des structures actives de la région du nord (centre) d'Algérie montrant les principales failles [7].

7.4 Séisme de Boumerdès 21 mai 2003

7.4.1 Caractéristique du séisme

Il causa selon le bilan officiel 2278 morts, plus de 10'000 blessés et environ 180'000 sinistrés. La région à l'Est d'Alger (Boumerdès, Zemmouri, Réghaïa, Rouiba, Thénia, Dellys...) fut la plus durement éprouvée où l'intensité maximale y a atteint X sur l'échelle EMS. Ce séisme a par ailleurs été ressenti dans toutes les wilayas du centre du pays sur un rayon de 150 km (Alger, Boumerdès, Tizi-Ouzou, Bouira, Blida), voire au-delà, jusqu'à Guelma à l'Est, Mostaganem à l'Ouest, Biskra au Sud et les îles Baléares au Nord, où quelques embarcations furent par ailleurs coulées ou endommagées par le tsunami ayant suivi le choc principal (deux morts). Celui-ci eut lieu à 18h44min et sa magnitude Mw fut arrêtée à 6.8 (CSEM, USGS). Il fut différemment localisé, bien que sa position en mer faisait quasiment unanimité : 36.89°N -03.78°E (IISEE), 36.90°N - 03.71°E (USGS), 37.02°N - 03.77°E (CSEM), 36.81°N - 03.53°E (CGS) et 36.91°N - 03.58°E (CRAAG). Les déformations cosismiques se sont notamment manifestées par un soulèvement de la côte accompagné du retrait de la mer, de nombreuses fissures et des phénomènes de liquéfaction. En mer, des avalanches sous-marines ont sectionné des câbles de télécommunication sous-marins. Plus de 2500 répliques ont été enregistrées, dont certaines de forte magnitude (> 5). Elles ont fait l'objet de nombreuses études sismologiques, qui ont permis de mieux connaître la nature et les mécanismes de la rupture à l'origine du séisme [8].

La faille qui est à l'origine du séisme était jusqu'à présent inconnue puisque se situant le long de la marge algérienne. De direction NE-SW (N60°), celle-ci s 'étend entre Dellys et Ain Taya sur une longueur de près de 50 Km.

Figure 7.2 : la faille de Boumerdès [8].

7.4.2 Estimation des dommages

Pour les dommages, à la date du 28 juin, environ 190 000 unités d'habitation (dont à peu près 160000 logements) ont été expertisées sur l'ensemble des wilayat (préfectures) touchées, et principalement celle d'Alger et de Boumerdès. Cela correspond à la quasi-totalité du parc de constructions et constitue la phase A de l'évaluation des dommages.

Pour cette phase A, les spécialistes ont eu recours à l'utilisation de degrés de dommages semblables à ceux définis dans les EMS 98 (European Macroseismic Scale), à savoir [9]:

Degrés 1 et 2 : couleur verte

Degrés 3 et 4 : couleur orange

Degré 5 : couleur rouge

La répartition des dommages s'établit selon le tableau suivant, ces chiffres correspondent aux évaluations du CTC, organisme officiel de contrôle des constructions en Algérie :

Tableau 7.1: Les endommages des logements dans la wilaya d'Alger et de Boumerdés

Degré de	Nombre de logements endommagés			
dommage				
	Alger	Boumerdès	Total	Pourcentage
Degrés 1 et 2	40147	33195	73342	50 %
Degrés 3 et 4	42452	16731	59183	40 %
Degré 5	7497	6475	13972	10 %
Total	90096	56401	146497	100 %

Le bilan officiel des victimes est le suivant :

Tableau 7.2 : Nombre des victimes et blessés.

Villes	Personnes décédées	Personnes blessées
Boumerdès	1381	3442
Alger	883	6787
Tizi-Ouzou	7	261
Bouira	2	127
Bejaia	2	3
Blida	2	709
Médea	0	121
Total	2277	11450

Le tremblement de terre de Boumerdés a causé des pertes humaines inestimables et des dégâts extrêmement importants estimé à près de 5 Milliard de dollars. Nous allons dans ce qui suit nous intéresser aux caractéristiques des différents dégâts recensés dans les structures après le séisme de Boumerdés.

7.4.3 Les principaux dégâts causés par le séisme de Boumerdés sur les structures

Dans chaque ville de la région touchée par le séisme, certains quartiers ont été fortement touchés tandis que d'autres ont été pratiquement épargnés (effet de site, Figure 7.3), et dans ces quartiers touchés, certaines constructions se sont bien comportés tandis que d'autres de même type

se sont effondrés en mille-feuilles. Dans allons dans ce qui suit identifier quelques dommages répertoriés par les experts dans la zone sinistrée.

Figure 7.3 : Effet de site sur le comportement sismique des constructions.

La majorité des bâtiments qui ont été expertisés présentent 3 typologies :

- Constructions anciennes en maçonnerie non armée et non chaînée.
- Portiques en béton armé avec murs de remplissage en maçonnerie généralement de briques qui représentent 80% des constructions.
- Voiles en béton armé.

1. Constructions en maçonnerie

Les constructions en maçonnerie ne conviennent pas en zone sismique, elles ont engendré beaucoup de victimes. Elles ne présentent pas un niveau d'intégrité suffisant pour résister à des secousses sismiques. Ce système constructif est particulièrement fragile et ne devrait pas être destiné à des logements d'habitation dans une zone de séismicité 2 ou 3.

Figure 7.4 Maison de la casbah de Dellys (11^{éme} siècle)

Figure 7.5 Construction en maçonnerie à Zemmouri (début du 20^{éme} siècle)

2.Bâtiments d'habitation (ossature poteaux-poutres)

Le système porteur à base de portique pourrait convenir pour des zones de séismicité faible ou moyenne mais comme la secousse du 21 mai 2003 a été forte, les dommages ont été importants.

Les bâtiments destinés aux logements sont généralement symétriques et n'ont donc pas présenté de mode de ruine en torsion. Par contre ils ont souvent péri par plastification due à la flexion des nœuds en tête et (ou) pied de poteaux. Ce mode de ruine conduit à un effondrement en planchers mille-feuilles (Figure,6).

Figure 7.6 Effondrement des bâtiments en mille-feuilles.

La section des poteaux étant souvent équivalente à celle des poutres, la plastification des nœuds s'est produite en tête ou en pied de poteau (photo7).



Figure 7.7 Plastification des nœuds

Figure 7.8 : Cisaillement du poteau

Le ferraillage des poteaux est généralement réalisé par 8 armatures filantes en diamètre 14 mm avec des cadres espacés tous les 15 cm en partie courante et 10 cm dans la zone nodale conformément au RPA 99. (Photo 8) sauf parfois où l'espacement est constant (photo 9). Néanmoins les cadres sont souvent absents au cœur du nœud (photo10) à l'intersection poteau-poutre.

Figure 7.9 : Espacement constantdes des cadres

Figure 7.10 : Absence des cadres dans les nœuds

Les constructions dépassant 5 niveaux se sont généralement mieux comportées du fait de leur souplesse et des sections plus importantes de poteaux.

Les immeubles les plus touchés présentent un caractère commun : R+3 ou R+4 dont le rez de chaussée étaient destinés à des commerces ou à des parkings et donc ne possédait pas de contreventement. La rupture s'est produite généralement dans la zone critique des poteaux de section insuffisante ou à cause du non-respect de dispositions constructives.

Les poteaux courts dus au vide sanitaire ont servi de fusibles et ont évité ainsi une destruction totale du bâtiment (photo 11) sauvant ainsi leurs occupants. Pour éviter l'écrasement de ces poteaux le vide sanitaire devraient être ceinturés par des voiles périphérique comme c'est exigé dans le RPA 99.

Figure 7.11 : Cisaillement des poteaux court du vide sanitaire.

2. Voiles en béton armé

Les constructions en voile en béton armé conviennent bien aux zones sismiques, elles se sont bien comportées.

Par rapport à d'autres systèmes constructifs tels que les portiques, les structures à voiles en béton armé présentent, particulièrement en zone sismique, plusieurs avantages :

- Leur présence limite les déformations latérales,
- Leur rigidité permet de protéger les éléments non-structuraux et quelques poteaux existants,
- Leur présence permet de s'affranchir du difficile problème de pose par la réalisation du ferraillage des nœuds des portiques.

7.5 Application de la méthode dynamique temporelle

7.5.1 Dimensions des éléments

a. Les poteaux

Tableau 7.3: Les dimensions des poteaux

Niveaux	Sections carrées (axb) cm ²
9 ^{ème}	40x40
8ème	
7 ^{ème}	45x45
6 ^{ème}	

5 ^{ème}	50x50
4 ^{ème}	
3 ^{ème}	55x55
2 ^{ème}	
1 ^{er}	60x60
RDC	
Sous- Sol 1	65x65
Sous- Sol 2	

b. Les Poutres

Tableau 7.4: Les dimensions des poutres

Poutre	Section (cm²)
Poutre porteuse	30x40
Poutre non porteuse	30x40

c. Dimensions des Voiles : (RPA99/version 2003)

Epaisseur: e=15 cm

7.5.2 Ferraillage:

a. Poteaux

Tableau 7.5 : Ferraillage des poteaux

Etage	Ferraillage
8 ^{éme} et 9 ^{éme} étage	12T14
6 ^{éme} et 7 ^{éme} étage	4T16+8T14
4 ^{éme} et 5 ^{éme} étage	4T20+8T14

2 ^{éme} et 3 ^{éme} étage	4T20+8T16
RDC et 1 ^{er} étage	12T20
Entre sol et Sous-sol	4T25+8T20

b. Poutres

Tableau 7.6 : Ferraillage des poutres.

Poutre	Section cm ²	Etage		Ferraillage
Poutre porteus	se	Terrasse	Appui	6T14
20-40			Travée	6T14
30x40		RDC+étage courant	Appui	6T14
			Travée	6T14
Poutre non porteuse		Terrasse	Appui	6T14
	30x40		Travée	3T14
		RDC+étage courant	Appui	6T14
			Travée	6T14

7.6 Chargement Sismique

Pour déterminer la charge sismique temporelle, l'action sismique peut être décrite par un ensemble d'accélérogrammes réels (naturels) et artificiels.

Cet ensemble doit contenir un nombre assez important d'accélérogrammes pour obtenir une estimation fiable des efforts de l'action sismique. Généralement, un groupe de 7 accélérogrammes permet d'obtenir des forces sismiques moins élevées et plus réalistes, car on y permet d'utiliser la réponse structurale moyenne. Les groupes de 3 accélérogrammes donnent dans certains cas des donnés des réponses sismiques pas assez conservatrices et dans d'autres cas, trop conservatrices.

La détermination du chargement sismique a été effectuée suivant l'Eurocode 8. Pour la présente étude, il est proposé d'utiliser 3 pairs ((Est-ouest) et (Nord-sud)) d'accélérogrammes réels.

7.7 Élaboration du Spectre de Réponse Elastique Normalisé Pour Le Bâtiment

L'élaboration du spectre de réponse du bâtiment est basée sur les conditions de l'RPA99V2003 ; il doit être adapté aux paramètres suivants :

- Le bâtiment est situé dans la commune d'Alger, classée comme une zone de sismicité forte (zone III).
- Le site de cette zone est supposé comme un site meuble S3.
- La valeur normalisée du coefficient d'amortissement 5%
- Facteur de qualité : Q = 1.2
- L'ouvrage est de moyenne importance donc il appartient au groupe d'usage 2.
- Coefficient de comportement : R=1 (le spectre élastique).

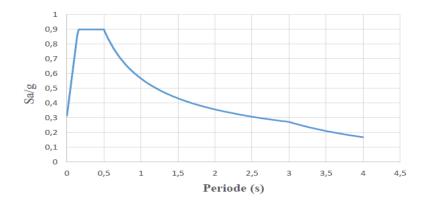


Figure 7.12 : Spectre De Réponse Elastique De L'RPA99v2003.

Lors de l'analyse temporelle linéaire des structures, il est nécessaire d'utiliser :

- -Des accélérogrammes (naturels, simulés ou artificiels), appliqués dans les deux directions principales du bâtiment. Toutefois, leur utilisation nécessite une sélection et un ajustement adéquat afin d'obtenir des secousses sismiques compatibles avec le spectre cible du code. Pour cette étude, on utilisera troix accélérogrammes réels en vue de couvrir par un spectre de réponse moyen le spectre élastique du site :
 - Trois accélérogrammes réels de la direction E-W et trois de la direction N-S correspondant à l'enregistrement du séisme de Boumerdès du 21 Mai 2003 au niveau de 3 stations :
 - Kedara E-W.
 - Kedara N-S.

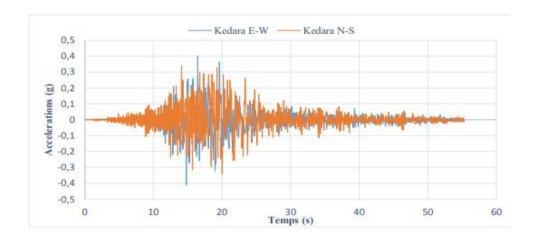


Figure 7.13 : Accélérogrammes Kedara correspondant au séisme de Boumerdès.

- Dar el beida direction E-W.
- Dar el beida direction N-S.

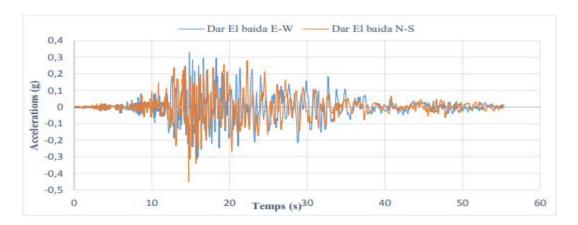


Figure 7.14 : Accélérogrammes Dar el beida correspondant au séisme de Boumerdès.

- Hussein dey direction E-W.
- Hussein dey direction N-S.

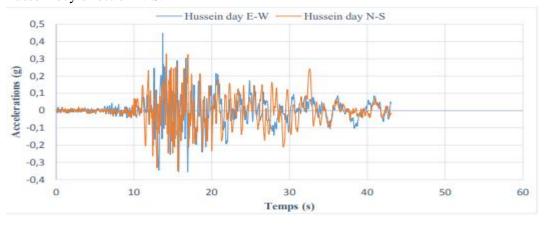
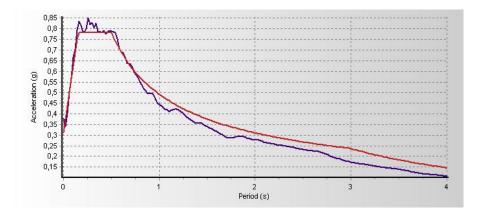



Figure 7.15 : Accélérogrammes hussein dey correspondant au séisme de Boumerdès.

Les 3 accélérogrammes définis précédemment ont donc été regroupés pour le calcul du spectre moyen élastique avec 5% d'amortissement à l'aide du logiciel SismoMatch. Le calcul de

ce dernier doit être compatible avec le spectre élastique normalisé (spectre d'RPA) avec 5% d'amortissement, comme indiqué dans la figure suivante :

Figure 7.16: Spectre de réponse moyen calculé pour tous les accélérogrammes regroupés en correspondance avec le spectre élastique du site cible à 5% d'amortissement.

7.8. Vérification Des Spectres Elastiques Selon Les Conditions et Les Recommandations De L'Eurocode 8

- 1- Les accélérogrammes doivent être établis de manière à correspondre au spectre de réponse élastique pour un amortissement visqueux de 5%.
- 2- La durée des accélérogrammes doit être compatible avec la magnitude et les autres caractéristiques propres à l'événement sismique servant à la définition de $a_{\rm g}$
- **3-** Lorsqu'on ne dispose pas de données spécifiques, il convient que la durée minimale T(s) de la partie stationnaire des accélérogrammes soit égale à 10s.
- 4- Il convient que la suite d'accélérogrammes artificiels respecte les règles suivantes :
- a) Il convient d'utiliser au minimum 3 accélérogrammes.
- **b**) Il convient que la moyenne des valeurs d'accélération spectrale à période nulle (calculée à partir des accélérogrammes) ne soit pas inférieure à la valeur de a_g pour le site en question.
- c) Dans le domaine des périodes comprises entre 0.2T1 et 2T1, où T1 est la période fondamentale de la structure dans la direction suivant laquelle l'accélérogramme va être appliqué, il convient qu'aucune valeur du spectre de réponse élastique moyen avec 5% d'amortissement, calculé à partir de tous les accélérogrammes, ne soit inférieure à 90 % de la valeur correspondante du spectre de réponse élastique avec 5% d'amortissement.

7.8.1 Vérification De La Condition (b)

Tableau 7.7: Vérification Des Accélérations Spectrale à Période nulle.

Période (s)	Accélération du spectre	Accélération du spectre	Observation
	moyen Sa1(g)	élastique d'RPA Sa2(g)	
0	0.37	0,313	Vérifiée

7.8.2 Vérification De La Condition (c)

- 0.2T1= 0.141 s 2T1=1,41s T1= 0.705s (T1 période fondamentale). Pour 0.17 < T(s) < 1.7 on doit vérifier que Sa1(g) > 0.9 Sa2(g)
- Sa1(g) : accélération du spectre de réponse moyen élastique (calculé à partir des accélérogrammes).
- Sa2 (g) : accélération du spectre de réponse élastique (Spectre d'RPA).

Tableau 7.8 : Vérification Des Accélérations Des Deux Spectres Avec La Condition (c) d'EC8.

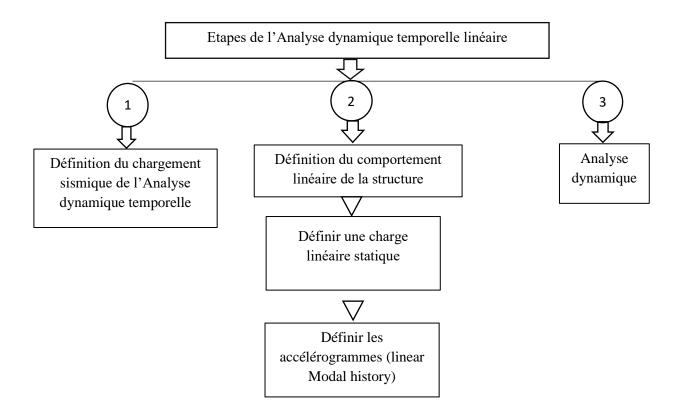
T(sec)	Sa1 (g)	Sa2 (g)	0,9Sa2 (g)	observation
0	0,3771	0,313	-	-
0,02	0,33937	0,375	-	_
0,04	0,40348	0,438	_	-
0,06	0,50317	0,5	_	_
0,08	0,56637	0,563	_	_
0,1	0,66404	0,625	-	-
0,12	0,70225	0,688	_	_
0,14	0,79589	0,75	0,675	ok
0,16	0,83625	0,781	0,7029	ok
0,18	0,81819	0,781	0,7029	ok
0,2	0,78296	0,781	0,7029	ok
0,22	0,78928	0,781	0,7029	ok
0,24	0,80077	0,781	0,7029	ok
0,26	0,85145	0,781	0,7029	ok
0,28	0,82019	0,781	0,7029	ok
0,3	0,8301	0,781	0,7029	ok
0,32	0,80441	0,781	0,7029	ok
0,34	0,82764	0,781	0,7029	ok
0,36	0,78402	0,781	0,7029	ok
0,38	0,78913	0,781	0,7029	ok
0,4	0,78157	0,781	0,7029	ok
0,42	0,79217	0,781	0,7029	ok
0,44	0,77603	0,781	0,7029	ok
0,46	0,78571	0,781	0,7029	ok
0,48	0,79032	0,781	0,7029	ok
0,5	0,7889	0,781	0,7029	ok
0,52	0,78439	0,761	0,6849	ok
0,54	0,78219	0,742	0,6678	ok
0,56	0,75346	0,724	0,6516	ok
0,58	0,70778	0,708	0,6372	ok
0,6	0,69189	0,692	0,6228	ok
0,62	0,6859	0,677	0,6093	ok
0,64	0,668	0,663	0,5967	ok
0,66	0,63805	0,649	0,5841	ok
0,68	0,63743	0,636	0,5724	ok
0,7	0,63417	0,624	0,5616	ok
0,72	0,61993	0,613	0,5517	ok
0,74	0,59698	0,602	0,5418	ok

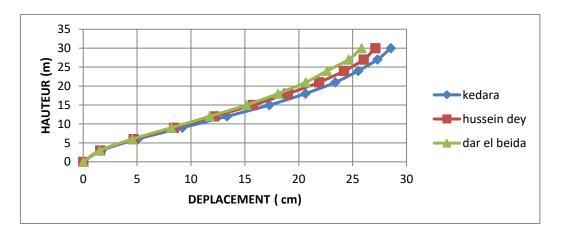
Chapitre 7 : Application de la méthode d'analyse dynamique temporelle en considérant le séisme de Boumerdès

0,76	0,58219	0,591	0,5319	ok
0,78	0,56942	0,581	0,5229	ok
0,8	0,54942	0,571	0,5139	ok
0,82	0,53746	0,562	0,5058	ok
0,84	0,51774	0,553	0,4977	ok
0,86	0,50871	0,544	0,4896	ok
0,88	0,49588	0,536	0,4824	ok
0,88	0,49353	0,528	0,4752	ok
0,92	0,49948	0,52	0,468	ok
0,94	0,48796	0,513	0,4617	ok
0,96	0,46673	0,506	0,4554	ok
0,98	0,45134	0,499	0,4491	ok
1	0,44494	0,492	0,4428	ok
1,02	0,43957	0,486	0,4374	ok
1,04	0,43937	0,480	0,4311	ok
1,04	0,43707	0,473	0,4311	ok
1,08	0,42824	0,473	0,4237	ok
1,08	0,42214	0,462	0,4212	ok
	1		,	
1,12	0,41569	0,456	0,4104	ok
1,14	0,42037	0,451	0,4059	ok
1,16	0,42147	0,446	0,4014	ok
1,18	0,42195	0,441	0,3969	ok
1,2	0,41819	0,436	0,3924	ok
1,22	0,41219	0,431	0,3879	ok
1,24	0,40568	0,426	0,3834	ok
1,26	0,39658	0,422	0,3798	ok
1,28	0,38755	0,417	0,3753	ok
1,3	0,38004	0,413	0,3717	ok
1,32	0,37354	0,409	0,3681	ok
1,34	0,36813	0,405	0,3645	ok
1,36	0,36193	0,401	0,3609	ok
1,38	0,35607	0,397	0,3553	ok
1,4	0,35646	0,393	0,3537	ok

7.8.3. Etapes De L'analyse Dynamique Temporelle

Les étapes de l'analyse dynamique temporelle sont récapitulés dans la Figure 7.25 et sont détaillées dans l'Annexe D.




Figure 7.17 : Etapes de l'Analyse Dynamique Temporelle Linéaire.

7.9. Résultats

7.9.1. Modèle sans voile

1. Variation des déplacements du bâtiment

Les déplacements du bâtiment sont donnés ci-dessous sous forme de graphes pour chaque cas d'accélérogramme (**Figures 7.18** / **7.19**) selon les deux directions. La variation des déplacements du bâtiment est déterminée à partir des différents points situés le long de la hauteur (à chaque niveau).

Figure 7.18: Variation des déplacements pour chaque cas d'accélérogramme selon x-x.

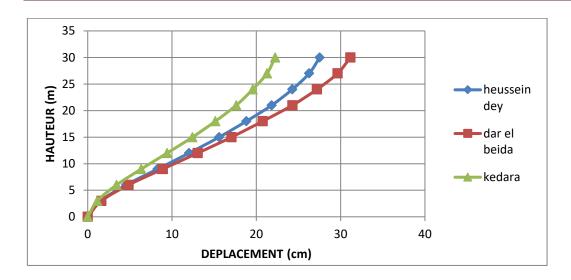


Figure 7.19 : Variation des déplacements pour chaque cas d'accélérogramme selon y-y.

Constations:

Les figures ci-dessus représentent la variation des déplacements pour chaque cas d'accélérogramme selon les deux directions. On remarque que :

L'accélérogramme Kedara a donné des déplacements maximaux suivant le sens (x-x), alors que dans le sens (y-y) c'est l'accélérogramme de Dar el Beida qui a donné les déplacements maximaux.

Tableau 7.9 : Les déplacements maximaux pour chaque accélérogramme (x-x).

Accélérogramme	PGA (g)	Déplacement
		maximal (cm)
Kedara	-0.410	28.52
Dar el Beida	0.330	25.81
Hussein Dey	0.428	27.09

Tableau 7.10 : Les déplacements maximaux pour chaque accélérogramme (y-y).

Accélérogramme	PGA (g)	Déplacement maximal (cm)
Kedara	-0.341	22.25
Dar el Beida	-0.450	31.2
Hussein Dey	-0.348	27.53

2. Déplacements inter-étages

Les déplacements relatifs entre étages adjacents obtenus pour tous les accélérogrammes sont récapitulées dans les tableaux ci-après dans lesquels :

δ : représente le déplacement de l'étage.

 Δ_i : représente le déplacement inter étage c'est à dire $\delta^{\;i+1}$ - $\delta^{\;i}$.

Tableau 7.11 : Déplacements inter étages sous l'accélérogramme de Kedara.

Niveaux	Sens X-X			Sens Y-Y		
	δ ^x (m)	Δ_{i}^{X} (cm)	Δ^{ADMIS} (cm)	δ^{y} (m)	Δ_{i}^{y} (cm)	$\Delta^{\text{ADMIS}}(\text{cm})$
9eme	0,285286	1,2437	< 3	0,222548	1,0535	< 3
8ème	0,272849	1,7887	< 3	0,212013	1,6023	< 3
7ème	0,254962	2,0958	< 3	0,19599	1,9633	< 3
6ème	0,234004	2,7972	< 3	0,176357	2,4773	< 3
5ème	0,206032	<mark>3,3254</mark>	>3	0,151584	2,718	< 3
4ème	0,172778	<mark>3,9345</mark>	>3	0,124404	3,0095	>3
3ème	0,133433	<mark>4,1492</mark>	>3	0,094309	3,0646	>3
2ème	0,091941	<mark>4,1289</mark>	>3	0,063663	2,9346	>3
1er	0,050652	<mark>3,3746</mark>	< 3	0,034317	2,2896	< 3
Rdc	0,016906	1,6906	< 3	0,011421	1,1421	< 3

Tableau 7.12: Déplacements inter étages sous l'accélérogramme de Dar el Beida.

Niveaux	Sens X-X			Sens Y-Y		
	δ ^x (m)	Δ_{i}^{X} (cm)	Δ^{ADMIS} (cm)	δ ^y (m)	Δi ^y (cm)	Δ^{ADMIS} (cm)
9eme	0,258192	1,2094	< 3	0,312076	1,5274	<3
8ème	0,246098	1,992	< 3	0,296802	2,4476	<3
7ème	0,226178	1,9738	< 3	0,272326	2,9158	<3
6ème	0,20644	2,5699	< 3	0,243168	3,5257	>3
5ème	0,180741	2,9309	< 3	0,207911	3,7117	>3
4ème	0,151432	3,4002	>3	0,170794	<mark>4,0234</mark>	>3
3ème	0,11743	3,5773	>3	0,13056	<mark>4,1421</mark>	>3
2ème	0,081657	3,6142	>3	0,089139	4,0629	>3
1er	0,045515	3,0163	>3	0,04851	3,2278	>3
Rdc	0,015352	1,5352	<3	0,016232	1,6232	< 3

Tableau 7.13 : Déplacements inter étages sous l'accélérogramme de Husseiny Dey.

Niveaux	Sens X-X			Sens Y-Y		
	δ ^x (m)	Δ_{i}^{x} (cm)	Δ^{ADMIS}	δ ^y (m)	Δ_{i}^{y} (cm)	Δ^{ADMIS}
9eme	0.2700	1.0076	(cm) < 3	0.2752	1 2410	(cm) < 3
	0,2709	1,0876		0,2753	1,2419	
8ème	0,2600	1,8139	< 3	0,2629	2,0031	< 3
7ème	0,2419	2,288	< 3	0,2429	2,4518	< 3
6ème	0,2190	2,9211	>3	0,2184	3,0118	>3
5ème	0,1898	3,2141	>3	0,1883	3,2316	>3
4ème	0,1576	3,6138	>3	0,1559	3,5667	>3
3ème	0,1215	3,7325	>3	0,1203	3,7369	>3
2ème	0,0842	3,7339	>3	0,0829	3,7349	>3
1er	0,0468	3,1081	>3	0,0456	3,0202	>3
Rdc	0,0157	1,5793	< 3	0,0154	1,5406	<3

Tableau 7.14: Déplacements inter étages moyens pour tous les accélérogrammes.

Niveaux	Sens X-X			Sens Y-Y		
	δ ^x (m)	Δ_{i}^{X} (cm)	$\Delta^{ m ADMIS}$	δ ^y (m)	Δ_{i}^{y} (cm)	$\Delta^{ m ADMIS}$
			(cm)			(cm)
9eme	0,2714	1,1802	< 3	0,2700	1,2742	< 3
8ème	0,2596	1,8648	< 3	0,2572	2,0176	< 3
7ème	0,2410	2,1192	< 3	0,2370	2,4436	< 3
6ème	0,2198	2,7627	< 3	0,2126	3,0049	>3
5ème	0,1921	3,1568	>3	0,1826	3,2204	>3
4ème	0,1606	3,6495	>3	0,1503	3,5332	>3
3ème	0,1241	3,8196	>3	0,1150	3,6478	>3
2ème	0,0859	3,8256	>3	0,0785	3,5774	>3
1er	0,0476	3,1663	>3	0,0428	2,8458	< 3
Rdc	0,0160	1,6017	< 3	0,0143	1,4353	< 3

3. Efforts tranchants à la base de la structure

Les résultats obtenus en termes d'efforts tranchant à la base de la structure pour chaque accélérogramme sont récapitules dans le tableau suivant :

Tableau 7.15 : Effort tranchant maximum à la base de la structure pour chaque cas d'accélérogramme.

Les accélérogrammes	FX (kN)	FY(kN)
Kedara	20621,3842	14347,301
Dar el beida	15731,9363	15509,5937
Hussein dey	17963,8855	16600,8186

D'après les résultats obtenus, pour chaque accélérogramme considéré, on constate que l'accélérogramme de Kedara provoque l'effort tranchant maximum selon (x-x) Vx = 20621.3842kN, alors que selon (y-y) c'est l'accélérogramme Hussein dey qui provoque l'effort tranchant maximal Vy = 16600.8186 kN.

7.9.2 Modèle avec voiles

1. Variation Des Déplacements Du Bâtiment

Les déplacements du bâtiment sont donnés ci-dessous sous forme de graphes pour chaque cas d'accélérogramme (Figures VI.4/VI.5) selon les deux directions. La variation des

déplacements du bâtiment est déterminée à partir des différents points situés le long de la hauteur (à chaque niveau).

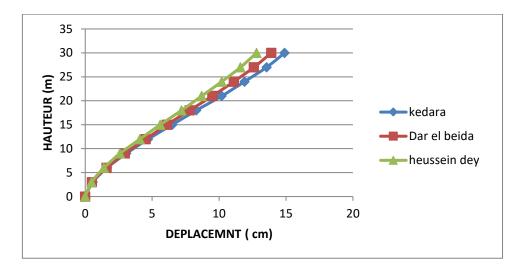


Figure 7.18 : Variation des Déplacements Pour Chaque Cas D'accélérogramme Selon X-X.

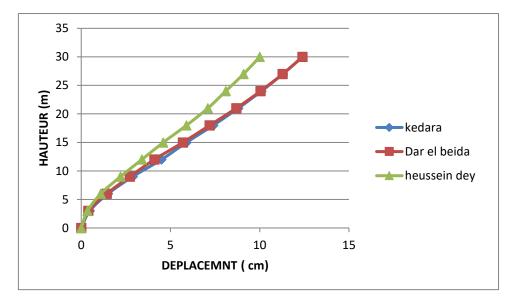


Figure 7.19 : Variation des Déplacements Pour Chaque Cas D'accélérogramme Selon Y-Y

Constatations:

Les figures ci-dessus représentent la variation des déplacements pour chaque cas d'accélérogramme selon les deux directions. On remarque que :

L'accélérogramme Kedara a donné les déplacements max suivant le sens (x-x) et dans le sens (y-y).

Tableau 7.16 : Les déplacements maximaux pour chaque accélérogramme (x-x).

Accélérogramme	PGA (g)	Déplacement
		maximal (cm)
kedara	-0.410	14.97
Dar el beida	0.330	13.91
Hussein dey	0.428	12.84

Tableau 7.17: Les déplacements maximaux pour chaque accélérogramme (y-y).

Accélérogramme	PGA (g)	Déplacement maximal (cm)
kedara	-0.341	12.428
Dar el beida	-0.450	12.420
Hussein dey	-0.348	10.04

2. Déplacements inter-étages

Les déplacements relatifs entre étages adjacents obtenus pour tous les accélérogrammes sont récapitulées dans les tableaux ci-après dans les quels ;

 δ : représente le déplacement de l'étage.

 Δi : représente le déplacement inter étage c'est à dire δ^{i+1} - δ^i .

Tableau 7.18 : Déplacements inter étages sous l'accélérogramme de Kedara.

Niveaux	Sens X-X			Sens Y-Y		
	δ ^x (m)	Δ_{i}^{X} (cm)	$\Delta^{\text{ADMIS}}(\text{cm})$	δ^{y} (m)	Δ_{i}^{y} (cm)	$\Delta^{\text{ADMIS}}(\text{cm})$
9eme	0,149745	1,4185	< 3	0,124283	1,0583	< 3
8ème	0,13556	1,6222	< 3	0,1137	1,1756	< 3
7ème	0,119338	1,7158	< 3	0,101944	1,3088	< 3
6ème	0,10218	1,8308	< 3	0,088856	1,4309	< 3
5ème	0,083872	1,8348	< 3	0,074547	1,5094	< 3
4ème	0,065524	1,8136	< 3	0,059453	1,5445	< 3
3ème	0,047388	1,6649	< 3	0,044008	1,5064	< 3
2ème	0,030739	1,4406	< 3	0,028944	1,3602	< 3
1er	0,016333	1,0873	< 3	0,015342	1,051	< 3
Rdc	0,00546	0,546	< 3	0,004832	0,4832	< 3

Tableau 7.19: Déplacements inter étages sous l'accélérogramme de Dar el Beida.

Niveaux	Sens X-X			Sens Y-Y	Sens Y-Y		
	δ ^x (m)	Δi^{X} (cm)	$\Delta^{ m ADMIS}$	δ ^y (m)	Δi^{y} (cm)	$\Delta^{ m ADMIS}$	
			(cm)			(cm)	
9eme	0,139188	1,308	<3	0,124204	1,128	<3	
8ème	0,126108	1,4919	<3	0,112924	1,2383	<3	
7ème	0,111189	1,5725	<3	0,100541	1,3586	<3	
6ème	0,095464	1,6742	<3	0,086955	1,4618	<3	
5ème	0,078722	1,6801	<3	0,072337	1,5184	<3	
4ème	0,061921	1,671	<3	0,057153	1,527	<3	
3ème	0,045211	1,5528	<3	0,041883	1,4623	<3	
2ème	0,029683	1,3675	<3	0,02726	1,2962	<3	
1er	0,016008	1,0564	<3	0,014298	0,9852	<3	
Rdc	0,005444	0,5444	<3	0,004446	0,4446	<3	

Tableau 7.20 : Déplacements inter étages sous l'accélérogramme de husseiny dey.

Niveaux	Sens X-X			Sens Y-Y	Sens Y-Y		
	δ ^x (m)	Δ_{i}^{X} (cm)	Δ ^{ADMIS}	δ ^y (m)	Δi ^y (cm)	Δ ^{ADMIS}	
0		1	(cm)			(cm)	
9eme	0,128421	1,2181	<3	0,100424	0,8766	<3	
8ème	0,11624	1,3942	<3	0,091658	0,9734	<3	
7ème	0,102298	1,4642	<3	0,081924	1,0816	<3	
6ème	0,087656	1,5617	<3	0,071108	1,1804	<3	
5ème	0,072039	1,5617	<3	0,059304	1,2409	<3	
4ème	0,056422	1,548	<3	0,046895	1,2592	<3	
3ème	0,040942	1,4242	<3	0,034303	1,2093	<3	
2ème	0,0267	1,241	<3	0,02221	1,066	<3	
1er	0,01429	0,9435	<3	0,01155	0,7985	<3	
Rdc	0,004855	0,4855	<3	0,003565	0,3565	<3	

Tableau 7.21: Déplacements inter étages moyens pour tous les accélérogrammes.

Niveaux	Sens X-X			Sens Y-Y	Sens Y-Y		
	δ ^x (m)	Δ_{i}^{X} (cm)	$\Delta^{ ext{ADMIS}}$	δ ^y (m)	Δi^{y} (cm)	$\Delta^{ ext{ADMIS}}$	
			(cm)			(cm)	
9eme	0,13911	1,3148	< 3	0,11630	1,0209	< 3	
8ème	0,12596	1,5027	< 3	0,10609	1,1291	< 3	
7ème	0,11094	1,5841	< 3	0,09480	1,2496	< 3	
6ème	0,0951	1,6889	< 3	0,08230	1,3577	< 3	
5ème	0,07821	1,6922	< 3	0,06872	1,4229	< 3	
4ème	0,06128	1,6775	< 3	0,05450	1,4435	< 3	
3ème	0,04451	1,5473	< 3	0,04006	1,3926	< 3	
2ème	0,02904	1,3497	< 3	0,02613	1,2408	< 3	
1er	0,01554	1,0290	< 3	0,01373	0,9449	< 3	
Rdc	0,00525	0,5253	< 3	0,00428	0,4281	< 3	

3.Efforts tranchants à la base de la structure

Les résultats obtenus en termes d'efforts tranchant à la base de la structure pour chaque accélérogramme sont récapitules dans le tableau suivant :

Tableau 7.22 : Effort tranchant maximum à la base de la structure pour chaque cas d'accélérogramme.

Les accélérogrammes	FX (KN)	FY(KN)
kedara	18377,8901	22349,2264
Dar el beida	18436,3736	14286,3081
Hussein dey	19803,7559	19631,5003

D'après les résultats obtenus, pour chaque accélérogramme considéré, on constate que l'accélérogramme de Hussein dey provoque l'effort tranchant maximal selon (x-x), Vx =19803,7559kN, alors que selon (y-y) c'est l'accélérogramme Kedara qui provoque l'effort tranchant maximal Vy = 22349,2264 kN

7.9. Comparaison

Nous allons dans ce qui suit résumer les résultats en termes de déplacements inter-étages moyens pour les accélérogrammes considérés.

Tableau 7.23: Déplacements inter étages moyens pour tous les accélérogrammes sens X-X.

Niveaux	Modèle sans voile			Modèle sans voile		
	δ ^x (m)	Δ_{i}^{X} (cm)	$\Delta^{ ext{ADMIS}}$	δ ^y (m)	Δ_{i}^{y} (cm)	$\Delta^{ ext{ADMIS}}$
			(cm)			(cm)
9eme	0,2714	1,1802	< 3	0,13911	1,3148	< 3
8ème	0,2596	1,8648	< 3	0,12596	1,5027	< 3
7ème	0,2410	2,1192	< 3	0,11094	1,5841	< 3
6ème	0,2198	2,7627	< 3	0,0951	1,6889	< 3
5ème	0,1921	3,1568	>3	0,07821	1,6922	< 3
4ème	0,1606	3,6495	>3	0,06128	1,6775	< 3
3ème	0,1241	<mark>3,8196</mark>	>3	0,04451	1,5473	< 3
2ème	0,0859	3,8256	>3	0,02904	1,3497	< 3
1er	0,0476	<mark>3,1663</mark>	>3	0,01554	1,0290	< 3
Rdc	0,0160	1,6017	< 3	0,00525	0,5253	< 3

Tableau 7.24: Déplacements inter étages moyens pour tous les accélérogrammes sens Y-Y.

Niveaux	Modèle sans voile			Modèle avec voile		
	δ ^y (m)	Δ_{i}^{y} (cm)	Δ^{ADMIS} (cm)	δ ^y (m)	Δ_{i}^{y} (cm)	Δ^{ADMIS} (cm)
9eme	0,2700	1,2742	< 3	0,11630	1,0209	< 3
8ème	0,2572	2,0176	< 3	0,10609	1,1291	< 3
7ème	0,2370	2,4436	< 3	0,09480	1,2496	< 3
6ème	0,2126	3,0049	>3	0,08230	1,3577	< 3
5ème	0,1826	3,2204	>3	0,06872	1,4229	< 3
4ème	0,1503	<mark>3,5332</mark>	>3	0,05450	1,4435	< 3
3ème	0,1150	<mark>3,6478</mark>	>3	0,04006	1,3926	< 3
2ème	0,0785	<mark>3,5774</mark>	>3	0,02613	1,2408	< 3
1er	0,0428	2,8458	< 3	0,01373	0,9449	< 3
Rdc	0,0143	1,4353	< 3	0,00428	0,4281	< 3

Conclusion:

- Tout d'abord et en comparant les résultats donnés par les deux méthodes du modèle contreventé par les voiles et les portiques, nous remarquons que les déplacements enregistrés dans l'analyse temporelle sont relativement inférieurs à ceux donnés par l'analyse modale spectrale.
- D'un autre côté, les deux tableaux ci-dessus nous permettent de faire une comparaison entre les résultats des deux modèles (avec et sans voiles), nous remarquons que l'application des règlements parasismiques préconisés par le RPA99v03 fait réduire les déplacements des étages de presque le double. Le déplacement inter étage maximal du modèle sans voiles de contreventement est de 4,14 cm, il dépasse de loin la valeur admissible.
- Par ailleurs, nous constatons que les déplacements dans certains étages, à savoir du 2 au 6^{ème} étage, sont plus importants que ceux du rez-de-chaussée et des étages supérieurs.

CONCLUSION GENERALE

Dans notre projet de fin d'étude intitulé « « Etude d'un bâtiment 2SS+RDC+9 en BA, Application de la méthode dynamique temporelle en considérant le séisme de Boumerdès » nous avons en première partie fait l'étude Génie Civil d'une structure en béton armé. Ce modeste travail nous a permis de mettre en pratique toutes les connaissances que nous avons acquises durant notre cycle de formation de master, de les approfondir en nous basant sur les documents techniques et réglementaires en vigueurs. Nous avons aussi mis en application quelques logiciels de calcul récents qui rentrent dans le domaine du calcul des bâtiments.

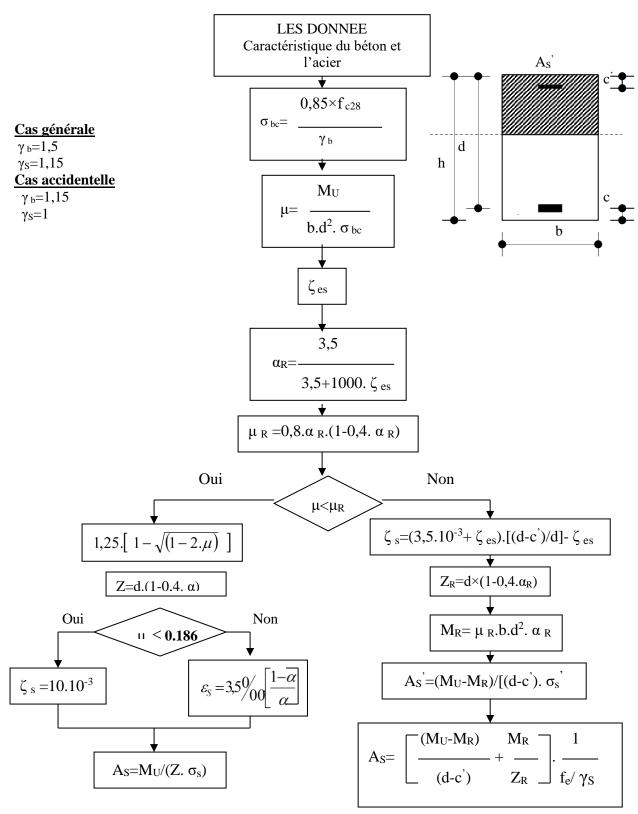
Après la présentation de notre projet ainsi que les caractéristiques des différents matériaux utilisés, nous sommes passés au pré dimensionnement des différents éléments qui était une étape nécessaire pour la suite des calculs.

Le troisième chapitre est consacré au ferraillage des éléments secondaires suivie de l'étude dynamique de la structure.

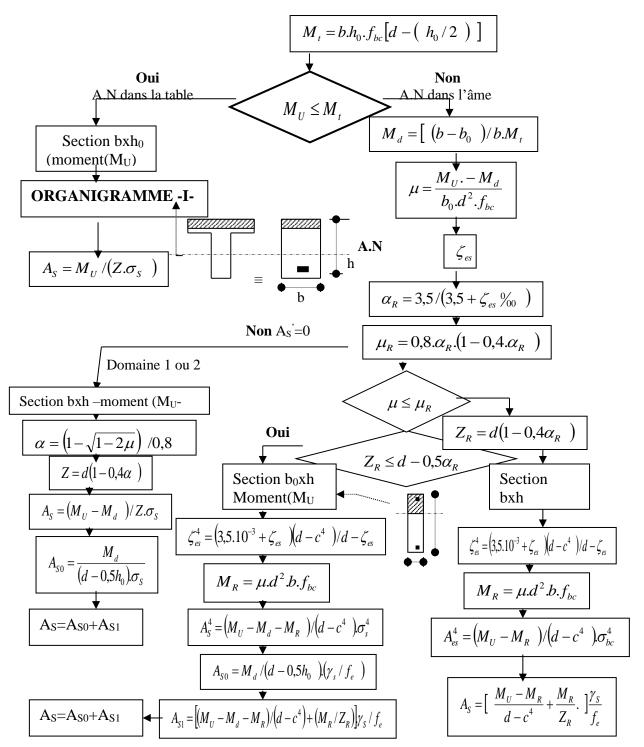
Le ferraillage des éléments résistants ; à savoir les poteaux et les poutres a été fait respectivement en flexion composée et en flexion simple en utilisant le logiciel SOCOTEC, ceci nous a permis de diminuer les erreurs de calcul manuel et le temps. Le ferraillage des voiles a été réalisé par une méthode simplifiée basée sur les contraintes. Pour l'infrastructure, le radier nervuré est le type de fondation le plus adéquat pour notre structure.

Après la finalisation de l'étude de la structure, nous avons donné un modeste résumé bibliographique sur le séisme de Boumerdès qui a eu lieu le 23 mai 2003. Les caractéristiques de ce tremblement de terre représentés par des accélérogrammes enregistrés par différentes stations ont été utilisés à travers la méthode d'analyse dynamique temporelle pour faire l'étude sismique de notre structure. Nous avons en premier lieu appliqué la méthode pour une structure contreventée par portique et voiles en béton armé (dernier modèle), ceci nous a permis de comparer entre l'analyse des deux méthodes, à savoir l'analyse dynamique modale spectrale et la méthode dynamique temporelle. Les résultats ; déplacements et efforts tranchants, donnés par les deux méthodes sont pratiquement comparables.

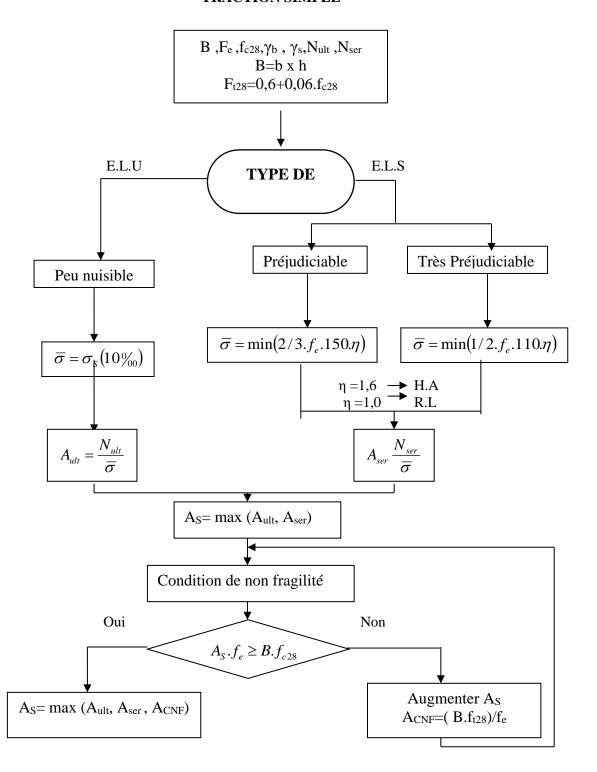
Dans la deuxième partie, l'application de l'analyse dynamique temporelle à notre structure sans voiles, nous a permet de simuler le séisme de Boumerdès et de comparer la réponse donnée à celle d'une structure contreventée par portiques et voiles en béton armé.

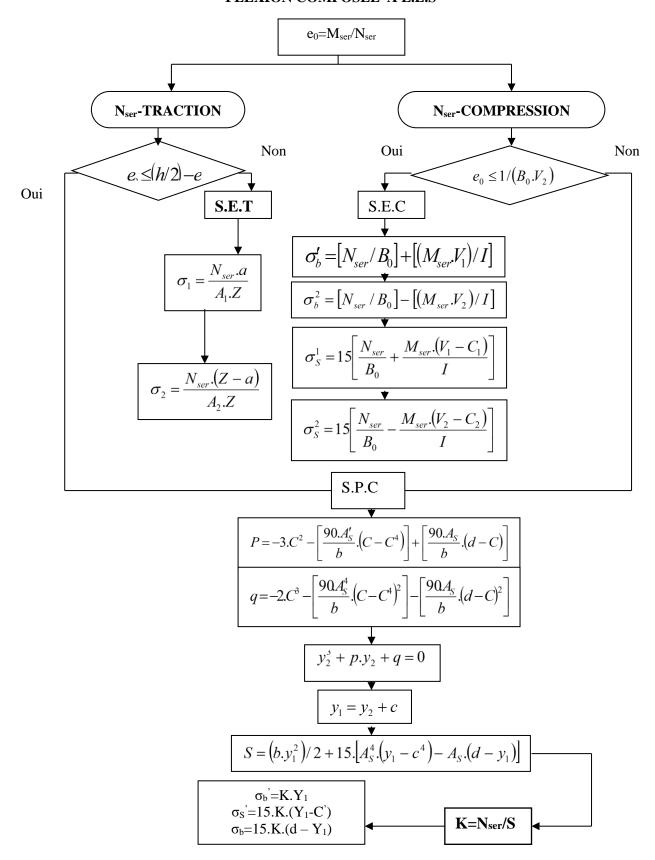

En effet, nous remarquons que l'application des règlements parasismiques préconisés par le RPA99v03 fait réduire les déplacements des étages de presque le double. Le déplacement inter étage maximal du modèle sans voiles de contreventement est de 4,14 cm, il dépasse de loin la valeur admissible.

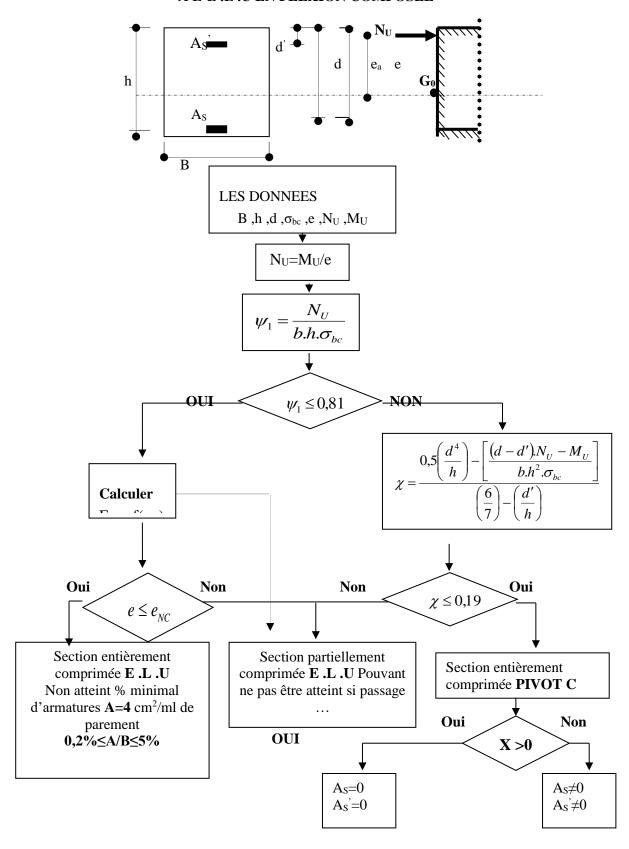
Par ailleurs, nous constatons que les déplacements dans certains étages, à savoir du 2 au 6ème étage, sont plus importants que ceux du rez-de-chaussée et des étages supérieurs ; ceci est peut-être dû à l'irrégularité de notre structure.


REFERENCES

- [1] D.T.R B.C. 2.48, "Règles Parasismiques Algériennes 99 version 2003", C.G.S.
- [2] DTU Règles BAEL 91 révisées 99 règles de calcul DTU P 18-702. février 2000.
- [3] Charges Permanentes et Charges d'Exploitation, DTR B C 2.2.
- [4] Règles de Conception et de Calcul des Structures en Béton Armé. CBA93, Ministère de l'Habitat.
- [5] M.BELAZOUGUI," calcul des ouvrages en béton armée ".
- [6] B. Kebaili, B. Redjel, Analyse du séisme de Boumerdes et règles parasismiques Algériennes, 1st International Conference on Sustainable Built Environment Infrastructures in Developing countries ENSET, Oran (Algeria) October 12-14, 2009
- [7] Mehdi Amine Guemache ; Evolution géodynamique des bassins Sismogènes de l'Algérois (Algérie) : Approche Pluridisciplinaire (Méthodes Géologiques Et Géophysiques). Thèse de doctorat, Université des Sciences et de la Technologie Houari Boumediène (USTHB), 2010.
- [8] Hamoud Beldjoudi, Etude De La Sismicite Du Nord Algérien, Thèse De Doctorat Université Abou Bekr Belkaid-Tlemcen, 2011.
- [9] Le Séisme Du 21 Mai 2003 En Algérie, Rapport Préliminaire De La Mission AFPS (Association Françaises Du Génie Parasismique), Juillet 2003.
- [10] Eurocode 8, « calcul des structures pour leur resistance aux seismes ». Partie1: regles generales, actions sismiques et regles pour les batiments ». ENV 1998, Decembre


ORGANIGRAMME -A-SECTION RECTANGULAIRE A L'E.L.U EN FLEXION SIMPLE


ORGANIGRAMME -B-CALCUL D'UNE SECTION EN -TE- A L'E.L.U EN FLEXION SIMPLE


ORGANIGRAMME -C-TRACTION SIMPLE

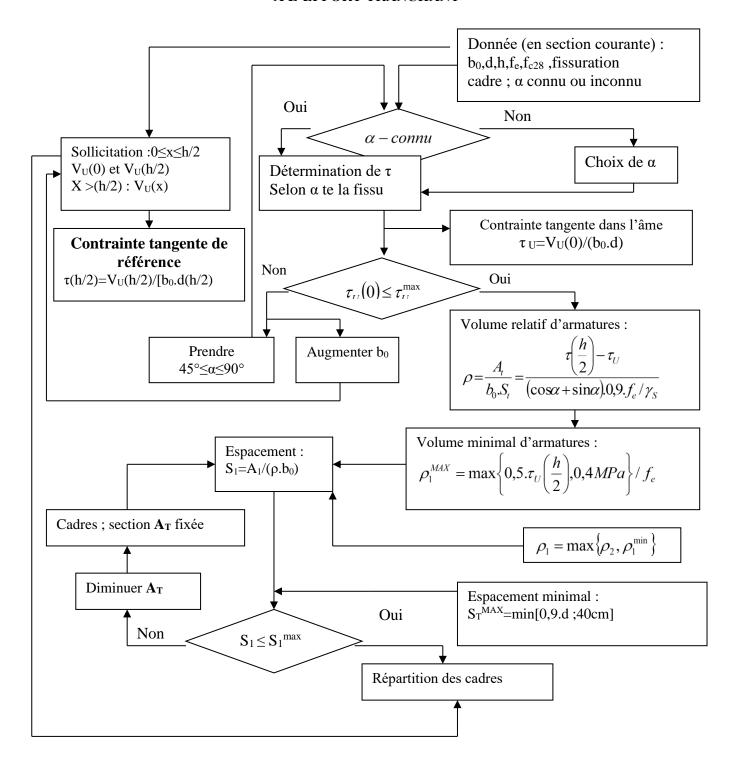
ORGANIGRAMME-D-FLEXION COMPOSEE A E.L.S

ORGANIGRAMME -E-CALCUL D'UNE SECTION RECTANGULAIRE A L'E .L .U EN FLEXION COMPOSEE

ORGANIGRAMME -F-VERIFICATION D'UNE SECTION RECTANGULAIRE A –L'E .L .U-

$$\overline{\sigma}_{s} = \zeta_{s} = Min\left(\frac{2}{3}f_{e}, \max(0.5f_{e}; 110\sqrt{nf_{ij}})\right) \longrightarrow fissu-prej$$

$$\overline{\sigma}_{s} = 0.8\zeta_{s} = 0.8 \times Min\left(\frac{2}{3}f_{e}, \max(0.5f_{e}; 110\sqrt{nf_{ij}})\right) \longrightarrow fissu-prej$$


$$\overline{\sigma}_{s} = 0.8\zeta_{s} = 0.8 \times Min\left(\frac{2}{3}f_{e}, \max(0.5f_{e}; 110\sqrt{nf_{ij}})\right) \longrightarrow fissu-tresprej$$

$$\overline{\sigma}_{l} = \min\left(\frac{2}{3}f_{e}, \frac{150}{3}\right) \longrightarrow fissu-prej$$

$$\overline{\sigma}_{l} = 0.6f_{e}$$

$$\overline{\sigma}_$$

ORGANIGRAMME -G-CALCUL DES ARMATURES D' UNE POUTRE SOUMISE A L'EFFORT TRANCHANT

