UNIVERSITE SAAD DAHLEB DE BLIDA

Faculté de Technologie Département de Génie Civil

MÉMOIRE DE MASTER EN GÉNIE CIVIL Spécialité : Structures

ETUDE D'UN BATIMENT R+15+SS AVEC UNE ANALYSE MODALE SPECTRALE ET STATIQUE NON-LINEAIRE

Réalisé par

MECHEHED Zakaria

Promoteur :

Mr. TEBAA Abdelaziz

Co-Promoteur :

Dr. DERBAL Ismail

Blida, septembre 2020

ملخص.

الهدف من هذا العمل هو دراسة المقاومة اللاخطية لبناية مكونة من طابق أرضي، 15 طابقا بالإضافة الى طابق تحت أرضي من الخرسانة المسلحة على مستوى ولاية الجزائر العاصمة، التي تعتبر منطقة ذات نشاط زلزالي مرتفع. لذا، تم القيام بدراسة كاملة للبناية باستعمال البرنامج SAP2000، نتائج التسليح المتحصل عليها من خلال التحليل الديناميكي لأنماط الاهتزاز باستعمال طيف الاستجابة حسب القوانين المستعملة في الجزائر أي "BAEL 91 modif 2003" و "PPA 99 modif 2003" استعملت في التصميم اللاخطي للمنشأ باستعمال نفس البرنامج المذكور سابقا. كما تع استخدام التحليل الستاتيكي اللاخطي أو ما يعرف بالتحليل بالدفع المتتالي Pushover Analysis لدراسة المقاومة اللاخطية المنشأ.

الكلمات المفتاحية: بناية بالخرسانة المسلحة، بلاطة مضلعة، Pushover analysis، وSAP2000، Pushover analysis.

Résumé.

Ce travail a pour but d'étudier la résistance et performance non-linéaire globale d'un bâtiment administratif en R+15+SS en béton armé situé à la wilaya d'Alger, qui est considérée comme une zone à forte activité sismique. Pour se faire, une étude complète a été faite à l'aide du logiciel SAP2000, le ferraillage des éléments résistants obtenu de l'analyse modale spectrale dynamique selon les règlements utilisés en Algérie à savoir les « RPA 99 modif 2003 » et le « BAEL 91 modif 99 » a été utilisé et inséré dans un modèle non-linéaire en utilisant le même logiciel mentionné précédemment. Une analyse statique non-linéaire par poussée progressive aussi connue sous le nom « PUSHOVER » a été utilisée afin d'étudier la performance de la structure dans le domaine non-lineaire.

Mots clés : Structure en béton armé, Plancher nervuré, Analyse Pushover, SAP2000.

Abstract.

This work aims to study the nonlinear overall strength and performance of a reinforced concrete office building made of a ground floor, 15 storeys, and a basement located in the wilaya of Algiers, which is considered as a strong seismic activity area. To do so, a complete structural design was done using SAP2000, the reinforcement results obtained from the linear dynamic response-spectrum modal analysis in accordance with the codes and regulations used in Algeria namely the "RPA 99 modif 2003" and "BAEL 91 modif 99" were inputted in a nonlinear model using the same software mentioned earlier. A static nonlinear PUSHOVER analysis was used in order to study the nonlinear structural performance of the structure.

Keywords: Reinforced concrete structure, Ribbed slab, Pushover analysis, SAP2000.

Remerciements.

Avant tout, nous sommes reconnaissants envers Allah pour la volonté et la force qu'il nous a conféré pour la réalisation de ce travail.

Je souhaite remercier mon promoteur Mr. A.TEBAA pour son soutien, sa disponibilité, son aide et ses précieux conseils au cours de l'élaboration de ce projet. Mais aussi un grand merci à mon co-promoteur Dr. I.DERBAL pour son aide et ses orientations.

Je remercie aussi les membres du jury qui prendront le temps de lire et évaluer ce travail.

Pour finir, je tiens à exprimer ma reconnaissance envers les enseignants du département de génie civil de l'université de SAAD DAHLEB qui ont contribués à ma formation.

Dédicaces.

Je dédie ce travail à :

Mes parents, en particulier à ma très chère mère qui a fait tant de sacrifices pour que j'arrive où j'en suis aujourd'hui, qui a toujours été là pour me réconforter et m'accorder son soutien moral, que ce soit dans mes études ou en dehors. Ainsi qu'à mon frère.

Mes amis Foued, Abdellatif, Racim et Yousra. Mais aussi mes camarades Mohamed, Imad, Redouane et Chaima pour avoir été une source de motivation durant l'élaboration de ce travail.

Pour finir je souhaite aussi remercier tous ceux qui m'ont aidé de près ou de loin dans mon parcours éducatif et universitaire en particulier.

MERCI !

Liste des figures.

- Figure I.1 : Site de l'ouvrage avec Google MAPS.
- Figure I.2 : Vue en 3D de la structure.
- Figure I.3 : Vue en plan de la structure.
- Figure I.4 : Contraintes-déformations du béton.
- Figure I.5 : Diagramme contrainte-déformation de l'acier à L'ELU.
- Figure II.1 : Coupe transversale du plancher nervuré (cm).
- Figure II.2 : Schéma du poteau central le plus sollicité (mm).
- Figure II.3 : Schéma du poteau d'angle le plus sollicité (mm).
- Figure II.4 : Schéma du poteau de rive le plus sollicité (mm).
- Figure III.1 : Acrotère (cm).
- Figure III.2 : Sollicitations de l'acrotère.
- Figure III.3 : Efforts internes de l'acrotère.
- Figure III.4 : Coupe horizontale de l'acrotère.
- Figure III.5 : Position de l'axe neutre.
- Figure III.6 : Ferraillage de l'acrotère.
- Figure III.7 : Dimensions de la dalle triangulaire (m).
- Figure III.8 : Ferraillage de la dalle triangulaire par ml (cm).
- Figure III.9 : Schéma du panneau le plus sollicité (m).
- Figure III.10 : Plan du plancher nervuré.
- Figure III.11 : Ferraillage des nervures sur appui (cm).
- Figure III.12 : Ferraillage des nervures en travée (cm).
- Figure III.13 : Panneau du plancher nervuré (m).
- Figure III.14 : Ferraillage des dalles du plancher nervuré par ml (cm).
- Figure III.15 : Schéma de l'escalier.
- Figure III.16 : Ferraillage du palier par ml (cm).
- Figure III.17 : Ferraillage des marches (cm).
- Figure IV.1 : Spectre de réponse.
- Figure IV.2 : Modèle initial.
- Figure IV.3 : Modèle final.

- Figure V.1 : Ferraillage du poteau SS+RDC (cm).
- **Figure V.2 :** Ferraillage du poteau $1^{er}+2^{eme}$ (cm).
- **Figure V.3 :** Ferraillage du poteau $3^{\text{ème}}+4^{\text{ème}}$ (cm).
- **Figure V.4 :** Ferraillage du poteau $5^{\text{ème}}+6^{\text{ème}}$ (cm).
- **Figure V.5 :** Ferraillage du poteau $7^{\text{ème}}+8^{\text{ème}}$ (cm).
- **Figure V.6 :** Ferraillage du poteau $9^{\text{ème}}+10^{\text{ème}}$ (cm).
- **Figure V.7 :** Ferraillage du poteau $11^{\text{ème}} + 12^{\text{ème}}$ (cm).
- **Figure V.8 :** Ferraillage du poteau 13^{ème}+14^{ème} (cm).
- **Figure V.9 :** Ferraillage du poteau 15^{ème} (cm).
- Figure V.10 : Schéma des arrêts de barres.
- Figure V.11 : Ferraillage des poutres en travée (cm).
- Figure V.12 : Ferraillage des poutres sur appui (cm).
- Figure V.13 : Elément soumis à la flexion composée.
- Figure V.14 : Dimensions en plan d'un mur.
- Figure V.15 : Dimensions en élévation d'un mur.
- Figure V.16 : Niveaux à vérifier.
- Figure V.17 : Maillage d'un voile.
- Figure V.18 : Disposition des armatures verticales dans un voile.
- Figure V.19 : Disposition des voiles.
- Figure V.20 : Ferraillage du voile VX1 selon la méthode des contraintes.
- Figure V.21 : Excentricité de l'effort normal.
- Figure V.20 : Excentricité de l'effort normal.
- Figure V.23 : Coupe horizontale d'âme de voile.
- Figure V.22 : Coupe verticale d'âme de voile.
- Figure V.24 : Schéma d'un mur en béton armé.
- Figure V.25 : Hauteur de la zone critique.
- Figure V.26 : Position de l'axe neutre en fonction des déformations.
- Figure V.27 : Exemples de ferraillage d'éléments de rive en zone critique.
- Figure V.28 : Ferraillage du voile VX1 selon la méthode ACI–318.
- Figure VI.1 : Schéma du radier nervuré.
- Figure VI.2 : Ferraillage de la dalle du radier sur appui par ml (cm).
- Figure VI.3 : Ferraillage de la dalle du radier en travée par ml (cm).
- Figure VI.4 : Ferraillage des nervures sur appui A–A (cm).
- Figure VI.5 : Ferraillage des nervures en travée B–B (cm).
- Figure VI.6 : Coupe longitudinale et arrêts de barres des nervures (cm).

Figure VI.7 : Ferraillage du voile périphérique dans le sens x-x par ml (cm).

Figure VI.8 : Ferraillage du voile périphérique dans le sens y-y par ml (cm).

Figure VII.1 : Types de chargement et courbe pushover.

Figure VII.2 : Courbe pushover et niveaux de performance.

Figure VII.3 : Courbe pushover normalisée.

Figure VII.4 : Définition des poteaux.

Figure VII.5 : Définition des rotules des poutres.

Figure VII.6 : Définition des distances relatives des rotules des poutres.

Figure VII.7 : Définition des rotules des poteaux.

Figure VII.8 : Définition des distances relatives des rotules des poteaux.

Figure VII.9 : Définition des voiles.

Figure VII.10 : Définition des charges gravitaires non linéaires.

Figure VII.11 : Définition de la charge pushover dans le sens x-x.

Figure VII.12 : Définition de la charge pushover dans le sens y-y.

Figure VII.13 : Courbe de capacité dans le sens x-x.

Figure VII.14 : Courbe de capacité dans le sens y-y.

Figure VII.15 : Point de performance dans le sens x-x.

Figure VII.16 : Point de performance dans le sens y-y.

Figure VII.17 : Développement des rotules sous « pushover x-x ».

Figure VII.18 : Développement des rotules sous « pushover y-y ».

Figure VII.19 : index des couleurs de rotules dans SAP2000.

Figure VII.20 : Développement des rotules à chaque pas de l'analyse « pushover x-x » de SAP2000.

Figure VII.21 : Développement des rotules à chaque pas de l'analyse « pushover y–y » de SAP2000.

Figure VII.22 : Champ de contraintes verticales développées au niveau des armatures par le chargement « pushover x-x ».

Figure VII.23 : Champ de contraintes verticales développées au niveau des armatures par le chargement « pushover y–y ».

Figure VII.24 : Dérivation d'énergie dissipée par amortissement.

Figure VII.25 : Résultats de l'analyse pushover dans le sens x-x.

Figure VII.26 : Résultats de l'analyse pushover dans le sens y-y.

Figure B.1 : Ferraillage des linteaux LX1 (cm).

Figure B.2 : Coupe C–C (cm).

Figure B.3 : Ferraillage des linteaux LX2–3 (cm).

Figure B.4 : Coupe D–D (cm).

Figure B.5 : Ferraillage des linteaux LY1–2 (cm).

Figure B.6 : Coupe E–E (cm).

Figure B.7 : Plan de fondation (m).

Figure B.8 : Plan de coffrage RDC -5^{eme} (m).

Figure B.9 : Plan de coffrage 6^{eme} -terrasse (m).

Liste des tableaux.

- **Tableau II.1 :** Choix des sections des poutres.
- **Tableau II.2 :** Dimensionnement des poteaux centraux.
- Tableau II.3 : Dimensionnement des poteaux d'angle.
- **Tableau II.4 :** Dimensionnement des poteaux de rive.
- **Tableau II.5 :** Choix final des sections des poteaux.
- **Tableau III.1 :** Ferraillage de la dalle triangulaire.
- Tableau III.2 : Vérification des contraintes de la dalle triangulaire.
- **Tableau III.3 :** Calcul des moments de la dalle rectangulaire.
- **Tableau III.4**: Ferraillage de la dalle rectangulaire.
- **Tableau III.5 :** Vérification des contraintes de la dalle rectangulaire.
- **Tableau III.6 :** Récapitulatif du calcul de flèche de la dalle rectangulaire.
- Tableau III.7 : Ferraillage des nervures.
- Tableau III.8 : Vérification des contraintes des nervures.
- Tableau III.9 : Récapitulatif du calcul de flèche des nervures.
- Tableau III.10 : Calcul des moments de la dalle du plancher nervuré.
- Tableau III.11 : Ferraillage de la dalle du plancher nervuré.
- Tableau III.12 : Vérification des contraintes des dalles du plancher nervuré.
- Tableau III.13 : Ferraillage des marches.
- Tableau III.14 : Vérification des contraintes des marches.
- Tableau III.15 : Ferraillage du pallier.
- Tableau III.16 : Vérification des contraintes du pallier.
- Tableau IV.1 : Facteur de qualité « Q ».
- Tableau IV.2 : Périodes et facteurs de participation massique du modèle initial.
- Tableau IV.3 : Vérifications des déplacements inter-étages du modèle initial.
- Tableau IV.4 : Vérifications de l'effort normal réduit des poteaux rectangulaires.
- **Tableau IV.5 :** Vérifications de l'effort normal réduit des poteaux carrés.
- **Tableau IV.6 :** Périodes et facteurs de participation massique du modèle 2.
- **Tableau IV.7 :** Vérification des déplacements inter étages du modèle 2.

Tableau IV.8 : Périodes et facteurs de participation massique du modèle final.

Tableau IV.9 : Vérification des déplacements inter-étages du modèle final.

Tableau IV.10 : Vérification de l'effet $P-\Delta$ selon x-x du modèle final.

Tableau IV.11 : Vérification de l'effet $P-\Delta$ selon y-y du modèle final.

Tableau V.1 : contraintes du béton et de l'acier.

Tableau V.2 : Calcul du ferraillage des poteaux rectangulaires.

Tableau V.3 : Suite du calcul du ferraillage des poteaux rectangulaires.

Tableau V.4 : Pourcentage d'armatures minimal.

Tableau V.5 : Choix d'armatures verticales des poteaux rectangulaires.

Tableau V.6 : Vérification des contraintes des poteaux rectangulaires (Nmax, Mcorr).

Tableau V.7 : Vérification des contraintes des poteaux rectangulaires (M_{max}, N_{corr}).

Tableau V.8 : Vérification des contraintes de cisaillement des poteaux rectangulaires.

Tableau V.9 : Espacement des cadres des poteaux rectangulaires.

Tableau V.10 : Choix d'armatures transversales des poteaux rectangulaires.

Tableau V.11 : Vérifications des contraintes des poteaux rectangulaires du sous-sol.

Tableau V.12 : Ferraillage des poutres principales et secondaires.

Tableau V.13: Choix d'armatures longitudinales des poutres principales et secondaires.

 Tableau V.14 : Contrainte tangentielle et ferraillage transversal des poutres principales et secondaires.

Tableau V.15 : Vérification des poutres principales et secondaires à l'ELS.

Tableau V.16 : Récapitulatif du calcul de flèche des poutres principales et secondaires.

Tableau V.17 : Valeurs du coefficient « K ».

Tableau V.18 : Calcul de σ_{ba} et σ_{bna} .

Tableau V.19 : Sections minimales des aciers verticaux et horizontaux.

Tableau V.20 : Sections minimales des aciers transversaux.

Tableau V.21 : Calcul de σ_{ba} et σ_{bna} pour VX1.

Tableau V.22 : Calcul des armatures verticales pour VX1.

Tableau V.23 : Valeurs du coefficient « K ».

Tableau V.24 : Pourcentage minimal des armatures en zone comprimée.

Tableau V.25 : Vérification vis-à-vis de l'effort tranchant.

 Tableau V.26 : Calcul du ferraillage des linteaux.

Tableau VI.1 : Contraintes dans le sol sous le radier.

Tableau VI.2 : Moments maximaux de la dalle.

 Tableau VI.3 : Calcul du ferraillage de la dalle.

- Tableau VI.5 : Calcul du ferraillage des nervures.
- Tableau VI.6 : Vérification des contraintes des nervures.
- Tableau VI.7 : Contrainte tangentielle et ferraillage transversal des nervures.
- Tableau VI.8 : Moments maximaux du voile périphérique.
- Tableau VI.9 : Calcul du ferraillage des voiles périphériques.
- Tableau VI.10 : Vérification des contraintes du voile périphérique.
- **Tableau A.1 :** Calcul des armatures verticales du voile VX1.
- Tableau A.2 : Calcul des armatures verticales du voile VX2.
- Tableau A.3 : Calcul des armatures verticales du voile VX3.
- Tableau A.4 : Calcul des armatures verticales du voile VX4.
- Tableau A.5 : Calcul des armatures verticales du voile VX5.
- Tableau A.6 : Calcul des armatures verticales du voile VX6 et VX7.
- **Tableau A.7 :** Calcul des armatures verticales du voile VX8 et VX9.
- Tableau A.8 : Calcul des armatures verticales du voile VY1.
- Tableau A.9 : Calcul des armatures verticales du voile VY2.
- **Tableau A.10 :** Calcul des armatures verticales du voile VY3.
- **Tableau A.11 :** Calcul des armatures verticales du voile VY4.
- Tableau A.12 : Calcul des armatures verticales du voile VY5.
- Tableau A.13 : Calcul des armatures verticales du voile VY6.
- Tableau A.14 : Calcul des armatures verticales du voile VY7 et VY8.
- **Tableau A.15 :** Aciers de couture du voile VX1.
- Tableau A.16 : Aciers de couture du voile VX2.
- Tableau A.17 : Aciers de couture du voile VX3.
- Tableau A.18 : Aciers de couture du voile VX4.
- Tableau A.19 : Aciers de couture du voile VX5.
- Tableau A.20 : Aciers de couture du voile VX6 et VX7.
- Tableau A.21 : Aciers de couture du voile VX8 et VX9.
- Tableau A.22 : Aciers de couture du voile VY1.
- Tableau A.23 : Aciers de couture du voile VY2.
- Tableau A.24 : Aciers de couture du voile VY3.
- Tableau A.25 : Aciers de couture du voile VY4.
- Tableau A.26 : Aciers de couture du voile VY5.
- Tableau A.27 : Aciers de couture du voile VY6.

Tableau A.28 : Aciers de couture du voile VY7 et VY8.

- Tableau A.29 : Aciers horizontaux des voiles dans le sens X-X.
- Tableau A.30 : Aciers horizontaux des voiles dans le sens Y-Y.
- Tableau A.31 : Calcul du ferraillage du voile VX1.
- Tableau A.32 : Calcul du ferraillage du voile VX2.
- Tableau A.33 : Calcul du ferraillage du voile VX3.
- **Tableau A.34 :** Calcul du ferraillage du voile VX4.
- Tableau A.35 : Calcul du ferraillage du voile VX5.
- **Tableau A.36 :** Calcul du ferraillage du voile VX6 et VX7.
- **Tableau A.37 :** Calcul du ferraillage du voile VX8 et VX9.
- Tableau A.38 : Calcul du ferraillage du voile VY1.
- **Tableau A.39 :** Calcul du ferraillage du voile VY2.
- Tableau A.40 : Calcul du ferraillage du voile VY3.
- Tableau A.41 : Calcul du ferraillage du voile VY4 et VY5.
- **Tableau A.42 :** Calcul du ferraillage du voile VY6.
- **Tableau A.43 :** Calcul du ferraillage du voile VY7 et VY8.

Liste des notations.

Lettre latines en majuscule :

- A : Coefficient d'accélération de la zone et le groupe d'usage appropriés.
- Ac: Armatures de peau.
- A_D: Armatures diagonales des linteaux.
- Ag: Section transversale brute du voile.
- Ar: Armatures de répartition.
- A_s: Section d'acier.
- A_x : Section d'armatures dans le sens x-x.
- A_y: Section d'armatures dans le sens y-y.
- B : Aire totale de la section de béton.
- B_r: Section de béton réduite.
- C_p: Facteur de force horizontale.
- E : Emmarchement des escaliers.
- E_{ij}: Module d'élasticité longitudinale instantané du béton.
- Es : Module d'élasticité longitudinale de l'acier.
- E_{vj}: Module d'élasticité longitudinale différé du béton.
- F_p: Force horizontale.
- G: Poids propre.
- I: Moment d'inertie.
- *I*₀: Moment d'inertie de la section rectangulaire homogène du béton.
- *I_{fi}*: Moment d'inertie fictif instantané.
- *I*_{*fv*}: Moment d'inertie fictif différé.
- K : Coefficient de flambement.
- L_f: Longueur de flambement.
- L_x : Longueur libre du panneau dans le sens x-x.
- L_y: Longueur libre du panneau dans le sens y-y.
- M₀: Moment isostatique.
- M_a: Moment sur appui.

M_f: Moment fictif.

M_i: Moment sur appui intermédiaire.

M_R: Moment de renversement.

M_S: Moment stabilisateur.

Mser: Moment fléchissant de service.

M_t: Moment en travée.

M_u: Moment fléchissant ultime.

 M_x : Moment de la dalle dans le sens x-x.

My: Moment de la dalle dans le sens y-y.

Nser: Effort normal de service.

N_u: Effort normal ultime.

P_n: Effort nominal limite de la section transversale du voile.

Q : Surcharge d'exploitation.

R : Facteur de comportement.

S_t: Espacement des armatures transversales.

T_{bz}: Largeur des éléments de rives des voiles.

T_{ser}: Effort tranchant de service.

 \overline{V} : Effort tranchant admissible.

W_p: Poids de l'acrotère.

Lettres latines en minuscule :

c, c' : Enrobage.

cg: Diamètre du plus gros granulat.

d : Bras de levier des armatures.

 f_{c28} , f'_c : Résistance du béton à la compression à 28 jours.

 f_{cj} : Résistance du béton à la compression à « j » jours.

 f_{t28} : Résistance du béton à la traction à 28 jours.

 f_e, f_v : Contrainte limite élastique de l'acier.

 f_{tj} : Résistance du béton à la traction à « j » jours.

 f_{bc} : Contrainte du béton.

g : Largeur du giron des escaliers.

h_{cr}: Hauteur critique du voile.

h_e: Hauteur libre d'étage.

h_w: Hauteur totale du voile mesurée à partir de la base jusqu'au sommet de la structure.

i : Rayon de giration.

j : Jours.

 l_R : Longueur de recouvrement.

l_w: Longueur du voile en plan.

Lettres grecques en majuscule :

 Δf_t : Flèche totale.

 ΔL : Déformation absolu.

 Δ_k : Déplacement plastique relatif entre étages.

 Δ_{ek} : Déplacement élastique relatif entre étages.

 Φ : Facteur de réduction.

 $Ø_1$: Diamètre d'armatures longitudinales.

 $Ø_t$: Diamètre d'armatures transversales.

Lettres grecques en minuscule :

 α : Coefficient de réduction.

 δ_k : Déplacement plastique d'étage.

 δ_{ek} : Déplacement élastique d'étage.

ε_{bc}: Déformation (raccourcissement) relative du béton.

 ϵ_{es} : L'abscisse limite de la droite d'élasticité de l'acier.

 ϵ_s : Déformation (allongement) relative de l'acier.

 η : Coefficient d'équivalence.

 λ, λ_g : Elancement de l'élément.

 μ : Moment réduit.

 θ : Coefficient qui tient compte la durée de l'application des charges.

 γ_b : Coefficient de sécurité du béton.

 γ_s : Coefficient de sécurité de l'acier.

 $\rho_{\rm b}$: Poids volumique du béton.

 σ_{bc} : Contrainte du béton.

 $\overline{\sigma_{bc}}$: Contrainte limite de service du béton.

 σ_{ba} : Contrainte de compression du béton armé des voiles.

 σ_{bna} : Contrainte de compression du béton non armé des voiles.

 σ_s : Contrainte de l'acier.

 σ_{ser} : Contrainte de compression du béton à l'ELS.

 $\overline{\sigma_{sol}}$: Contrainte admissible du sol.

 σ_u : Contrainte de compression du béton à l'ELU.

- τ_u : Contrainte tangentielle du béton.
- $\overline{\tau_u}$: Contrainte tangentielle admissible du béton.
- *v* : Coefficient de Poisson.

Sommaire.

Introduction.	1
Chapitre I : Présentation de l'ouvrage et caractéristiques des matériaux	2
I.1. Introduction	2
I.2. Présentation de l'ouvrage	2
I.2.1. Caractéristiques géométriques	2
I.2.2. Classification du bâtiment selon l'RPA 99 version 2003	2
I.2.3. Plancher	3
I.2.4. Escalier	
I.2.5. Maçonnerie	3
I.2.6. Ossature	3
I.3. Caractéristiques mécaniques des matériaux	3
I.3.1. Béton	3
I.3.1.1. Composition du béton	3
I.3.1.2. Résistance du béton	3
I.3.1.2.1. Résistance du béton à la compression	3
I.3.1.2.2. Résistance du béton à la traction	4
I.3.1.3. Module d'élasticité longitudinale	4
I.3.1.3.1. Module d'élasticité instantané « E _{ij} »	4
I.3.1.3.2. Module d'élasticité différé «E _{vj} »	4
I.3.1.4. Coefficient de poisson	4
I.3.1.5. Poids volumique	4
I.3.1.6. Les contraintes limites de calcul	4
I.3.1.6.1. Contraintes limites à l'état limite ultime (E.L.U)	4
I.3.1.6.2. Contraintes limites à l'état limite de service (E.L.S)	5
I.3.2. Aciers	5
I.3.2.1. Les limites élastiques	5
I.3.2.2. Module d'élasticité des aciers	5
I.3.2.3. Les contraintes limites de calcul	6
I.3.2.3.1. Contraintes limites à l'état limite ultime (E.L.U)	6
I.3.2.3.2. Contraintes limites à l'état limite de service (E.L.S)	6
I.3.2.4. Le coefficient d'équivalence	7
I.4. Hypothèses de calcul	7

Chapitre II : Pré-dimensionnement des éléments Et évaluation des charges	9
II.1. Introduction	9
II.2. Pré-dimensionnement Des Planchers	9
II.2.1. Planchers en dalle pleine	9
II.2.2. Planchers nervurés :	9
II.3. Evaluation Des Charges	10
II.3.1. Charges Permanentes	10
II.3.1.1. Plancher Terrasse Inaccessible	10
II.3.1.2. Plancher Etage Courant	10
II.3.2. Surcharge D'exploitation	10
II.3.3. Maçonnerie	10
II.3.4. Acrotère	10
II.4. Pré-dimensionnement des poutres et des poteaux	11
II.4.1. Pré-dimensionnement des poutres	11
II.4.1.1. Poutre principale (sens longitudinal)	11
II.4.1.2. Poutre secondaire (sens transversal)	11
II.4.1.3. Poutre de chaînage (noyau)	11
II.4.2. Pré-dimensionnement des poteaux	12
II.4.2.1. Poteau central	14
II.4.2.2. Poteau d'angle	15
II.4.2.3. Poteau de rive	17
Chapitre III : Calcul des éléments secondaires.	19
III.1. Acrotère	19
III.1.1. Introduction	19
III.1.2. Evaluation des charges	19
III.1.2.1. Charges verticales	19
III.1.2.2. Charges horizontales	19
III.1.3. Calcul des efforts	20
III.1.4. Ferraillage de l'acrotère	20
III.1.5. Vérifications	21
III.1.5.1. Armatures de répartition	21
III.1.5.2. Contraintes	21
III.1.5.2.1. Contrainte du béton	22
III.1.5.2.2. Contrainte de l'acier	22
III.1.5.3. Effort tranchant	22
III.2. Planchers	23
III.2.1. Planchers dalle pleine	23
III.2.1.1. Dalle triangulaire	23
III.2.1.1.1. Principe de la méthode des lignes de rupture ^[20]	23

III.2.1.1.2. Hypothèses de calcul	23
III.2.1.1.3. Évaluation des charges	24
III.2.1.1.4. Combinaison des charges	24
III.2.1.1.5. Calcul des efforts internes	24
III.2.1.1.5.a. Travail extérieur	24
III.2.1.1.5.b. Travail intérieur	24
III.2.1.1.6. Ferraillage de la dalle triangulaire	25
III.2.1.1.7. Vérifications	25
III.2.1.1.7.a. Condition de non fragilité	25
III.2.1.1.7.b. Espacement	25
III.2.1.1.7.c. Effort tranchant	25
III.2.1.1.7.d. Contraintes	26
III.2.1.2. Dalle rectangulaire	26
III.2.1.2.1. Évaluation des charges	26
III.2.1.2.2. Combinaison des charges	26
III.2.1.2.3. Calcul des efforts internes	26
III.2.1.2.4. Ferraillage de la dalle rectangulaire	27
III.2.1.2.5. Vérifications	27
III.2.1.2.5.a. Condition de non fragilité	27
III.2.1.2.5.b. Espacement	27
III.2.1.2.5.c. Effort tranchant	
III.2.1.2.5.d. Contraintes	
III.2.1.2.5.e. Flèche	
III.2.2. Planchers nervurés	29
III.2.2.1. Hypothèses de calcul	29
III.2.2.2. Evaluation des charges	29
III.2.2.2.1. Charges permanentes	29
III.2.2.2.2. Surcharges d'exploitation	30
III.2.2.3. Etude des nervures	
III.2.2.3.1. Calcul des efforts	30
III.2.2.3.2. Ferraillage des nervures	30
III.2.2.3.3. Vérifications	30
III.2.2.3.3.a. Condition de non fragilité	30
III.2.2.3.3.b. Espacement	31
III.2.2.3.3.c. Effort tranchant	31
III.2.2.3.3.d. Contraintes	31
III.2.2.3.3.e. Flèche	31
III.2.2.4. Etude des dalles	33
III.2.2.4.1. Évaluation des charges	

III.2.2.4.2. Combinaison des charges	
III.2.2.4.3. Calcul des efforts internes	
III.2.2.4.4. Ferraillage de la dalle rectangulaire	
III.2.2.4.5. Vérifications	
III.2.2.4.5.a. Condition de non fragilité	
III.2.2.4.5.b. Espacement	
III.2.2.4.5.c. Effort tranchant	
III.2.2.4.5.d. Contraintes	
III.2.2.4.5.e. Flèche	
III.3. les escaliers	
III.3.1. Relation de Blondel	
III.3.2. Calcul des escaliers	
III.3.3. Evaluation des charges	
III.3.3.1. Charges permanentes	
III.3.3.2. Surcharges d'exploitation	
III.3.4. Combinaison de charges	
III.3.5. Calcul des marches	
III.3.5.1. Calcul des efforts internes	
III.3.5.2. Ferraillage des marches	
III.3.5.3. Vérifications	
III.3.5.3.1. Condition de non fragilité	
III.3.5.3.2. Effort tranchant	
III.3.5.3.3. Contraintes	
III.3.5.3.4. Flèche	
III.3.6. Calcul du palier	
III.3.6.1. Calcul des efforts internes	
III.3.6.2. Ferraillage du pallier	
III.3.6.3. Vérifications	
III.3.6.3.1. Condition de non fragilité	
III.3.6.3.2. Espacement	
III.3.6.3.3. Effort tranchant	
III.3.6.3.4. Contraintes	
III.3.6.3.5. Flèche	
Chapitre IV : Etude sismique	40
IV.1. Introduction	40
IV.2. Caractéristique dynamiques propres	40
IV.3. Modélisation de la structure	41
IV.3.1. Introduction	41
IV.3.2. Modélisation de la rigidité	41

IV.3.2.1. Les éléments de portique	41
IV.3.2.2. Les voiles	41
IV.3.2.3. Le Diaphragme	41
IV.3.2.4. Conception du contreventement vertical	41
IV.3.2.5. Connectivité Sol/Structure	41
IV.3.3. Modélisation de la masse	41
IV.4. Etude sismique	42
IV.4.1. Introduction	42
IV.4.2. Choix de la méthode de calcul	42
IV.4.2.1. La méthode statique équivalente	42
IV.4.2.1.1. Principe	42
IV.4.2.1.2. Conditions d'applications	42
IV.4.2.2. La méthode modale spectrale	43
IV.4.2.2.1. Principe	43
IV.4.2.2.2. Analyse spectrale	43
IV.4.3. Effort tranchant à la base	44
IV.4.3.1. Calcul de l'effort tranchant à la base par la méthode statique équivalente	44
IV.4.4. Estimation de la période fondamentale de la structure « T »	44
IV.4.5. Vérification des déplacements inter étage	45
IV.5. Résultats de l'analyse dynamique du modèle initial	46
IV.5.1. Modèle initial	46
IV.5.1.1. Caractéristiques dynamique propres du modèle initial	46
IV.5.1.2. Constatations	47
IV.5.1.3. Résultantes des forces sismiques	47
IV.5.1.4. Vérification des déplacements inter étage	47
IV.5.1.5. Vérification spécifique aux sollicitations normales	47
IV.5.1.5.1. Poteaux rectangulaires	48
IV.5.1.5.2. Poteaux carrés	48
IV.5.2. Model initial avec la vérification de l'effort normal réduit	49
IV.5.2.1. Caractéristiques dynamique propres du modèle avec la vérification de l'effort normal réduit.	49
IV.5.2.2. Constatations	49
IV.5.2.3. Résultantes des forces sismiques	49
IV.5.2.4. Vérification des déplacements inter étage :	50
IV.5.3. Modèle final	50
IV.5.3.1. Caractéristiques dynamique propres du modèle final	51
IV.5.3.2. Constatations	51
IV.5.3.3. Résultantes des forces sismiques	51
IV.5.3.4. Vérification des déplacements inter étage	52
IV.6. Justification vis-à-vis de l'effet P Δ (les effets du second ordre)	52

IV.7. Justification du choix du coefficient de comportement	53
IV.7.1. Pourcentage de l'effort horizontal repris par le noyau	54
IV.7.2. Pourcentage des efforts repris par les voiles	54
IV.8. Conclusion	54
Chapitre V : Ferraillage des éléments principaux	55
V.1. Introduction	55
V.2. Ferraillage des poteaux	55
V.2.1. Introduction	55
V.2.2. Combinaisons d'actions	55
V.2.3. Recommandations du « BAEL91 modif 99 »	56
V.2.4. Recommandations des « RPA 99 modif 2003 »	56
V.2.5. Méthode de calcul	56
V.2.6. Choix des armatures	59
V.2.7. Vérification vis-à-vis de l'état limite de service	60
V.2.8. Vérification de la contrainte de cisaillement	61
V.2.9. Ferraillage transversal des poteaux	62
V.2.10. Longueur de recouvrement	64
V.2.11. Ferraillage des poteaux du sous-sol	64
V.2.11.1 Calcul du ferraillage	64
V.2.11.2.Ferraillage transversal	65
V.3. Ferraillage des poutres	66
V.3.1. Introduction	66
V.3.2. Les combinaisons d'actions	66
V.3.3. Recommandations des règlements	66
V.3.4. Calcul du ferraillage	67
V.3.5. Vérifications	67
V.3.5.1. Condition de non-fragilité	67
V.3.5.2. Espacement	67
V.3.5.3. Effort tranchant	68
V.3.5.4. Contraintes à l'E.L.S	68
V.3.5.5. Flèche	68
V.3.6. Arrêt des barres	69
V.3.7. Armatures de peau	70
V.4. Ferraillage des voiles	70
V.4.1. Introduction	70
V.4.2. Ferraillage des voiles par la méthode des contraintes	71
V.4.2.1. Introduction	71
V.4.2.2. Justifications sous sollicitations normales	71
V.4.2.2.1 Conditions d'application	71

V.4.2.2.2. Longueur de flambement (murs non raidi latéralement)	72
V.4.2.2.3. Efforts de compression en ELU	72
V.4.2.2.4. Sections à vérifier	73
V.4.2.2.5. Aciers minimaux	73
V.4.2.2.6. Cisaillement	74
V.4.2.3. ferraillage des trumeaux	74
V.4.2.3.1. Introduction	74
V.4.2.3.2. Méthode simplifiée basée sur les contraintes (aciers verticaux)	74
V.4.2.3.2.a. Aciers verticaux.	74
V.4.2.3.2.b. Aciers horizontaux	75
V.4.2.3.3. Exigences des RPA99 modif 2003	76
V.4.2.3.3.a. Aciers verticaux	76
V.4.2.3.3.b. Aciers horizontaux	76
V.4.2.3.3.c. Règles communes	76
V.4.2.4. Exemple de calcul (voile VX1) par la méthode des contraintes	77
V.4.2.4.1. Contraintes limites	77
V.4.2.4.2. Armatures de traction	78
V.4.2.4.3. Armatures de joint de bétonnage (aciers de couture)	78
V.4.2.4.4. Aciers horizontaux	78
V.4.3. Ferraillage des voiles par la Méthode réglementaire ACI 318	79
V.4.3.1. Introduction	79
V.4.3.2. Justification de la stabilité et la résistance à la compression (flambement).	79
V.4.3.3. Justification de la résistance vis-à-vis de l'effort normal	80
V.4.3.4. Justification de la résistance vis-à-vis de l'effort tranchant	80
V.4.3.5. Calcul des armatures de tractions dans le voile ou trumeau	81
V.4.3.6. Disposition constructives pour la ductilité local des murs élancés	82
V.4.3.7. Dimensionnement des éléments de rives d'un voile	83
V.4.3.7.1. Disposition constructives et pourcentage minimal dans les éléments de	e rives 84
V.4.3.7.2. Armatures transversales dans la zone de confinement	84
V.4.3.8. Exemple de calcul détaillé pour le Voile "VX1"	85
V.4.3.8.1. Vérification de la stabilité du voile au flambement	85
V.4.3.8.2. Vérification de la résistance vis-à-vis de l'effort tranchant	85
V.4.3.8.2.a. Armatures d'âme nécessaires	86
V.4.3.8.2.b. Vérification Selon les « RPA 99 modif 2003 »	86
V.4.3.8.3. Calcul des armatures nécessaires à la flexion composée	86
V.4.3.8.3.a. Limitation de l'effort normal de compression de calcul	87
V.4.3.8.3.b. Armature de résistance à la flexion composée	87
V.4.3.8.4. Dimensionnement des éléments de rives ou de bord	87
V.4.3.8.4.a. Armatures transversales dans la zone de confinement	

V.4.4. Ferraillage des voiles du sous-sol	88
V.4.5. Ferraillage des linteaux	
V.4.5.1. Premier cas	
V.4.5.1.1. Aciers Longitudinaux	
V.4.5.1.2. Aciers Transversaux	88
V.4.5.1.2.a. linteaux longs	89
V.4.5.1.2.b. Linteaux courts	89
V.4.5.2. Deuxième cas	
V.4.5.3. Ferraillage minimal	
V.4.5.3.1. Armatures longitudinales A ₁ et A ₁ '	
V.4.5.3.2. Armatures transversales A _t	
V.4.5.3.3. Armatures de peau A _c	
V.4.5.3.4. Armatures diagonales A _D	
V.4.5.4. Exemple de calcul du linteau LX1	90
V.4.5.5. Ferraillage des linteaux restants	
Chapitre VI : Etude des fondations.	
VI.1. Introduction	91
VI.2. Caractéristiques du sol	91
VI.3. Choix des fondations	91
VI.4. Dimensionnement du radier	
VI.4.1. Epaisseur de la dalle	
VI.4.2. Hauteur de la nervure	
VI.4.2.1. Condition forfaitaire	92
VI.4.2.2. Condition de rigidité	
VI.4.2.3. Condition de flèche	
VI.4.2.4. Conclusion	
VI.4.3. Caractéristiques géométriques du radier	
VI.5. Vérifications du radier	
VI.5.1. Stabilité	
VI.5.1.1. Méthode forfaitaire	
VI.5.1.2. Méthode des « RPA 99 modif 2003 »	
VI.5.2. Contraintes	94
VI.5.2.1. Sollicitations du premier genre	
VI.5.2.2. Sollicitations du second genre	
VI.6. Ferraillage du radier	
VI.6.1. Ferraillage de la dalle	95
VI 6.1.1 Evaluation des charges	95
VI 6.1.2. Calcul des efforts internes	۰۰۰۰۰۶ ۵۲
. Horright current des errorts internets inter	

VI.6.1.3. Calcul du ferraillage de la dalle	95
VI.6.1.4. Vérifications	96
VI.6.1.4.1. Condition de non fragilité	96
VI.6.1.4.2. Espacement	96
VI.6.1.4.3. Effort tranchant	96
VI.6.1.4.4. Contraintes	96
VI.6.2. Ferraillage des nervures	97
VI.6.2.1. Calcul des efforts internes	97
VI.6.2.2. Calcul du ferraillage des nervures	
VI.6.2.3. Vérifications	
VI.6.2.3.1. Condition de non fragilité	
VI.6.2.3.2. Espacement	
VI.6.2.3.3. Effort tranchant	
VI.6.2.3.4. Contraintes	
VI.6.2.4. Armatures transversales	
VI.6.2.5. Armatures de peau	
VI.7. Voile périphérique	
VI.7.1. Introduction	
VI.7.2. Dimensions et exigences	
VI.7.3. Evaluation des charges	
VI.7.4. Calcul des efforts internes	100
VI.7.5. Calcul du ferraillage des voiles périphériques	101
VI.7.6. Vérifications	101
VI.7.6.1. Condition de non-fragilité	101
VI.7.6.2. Espacement	101
VI.7.6.3. Effort tranchant	102
VI.7.6.4. Contraintes	102
Chapitre VII : Analyse statique non linéaire (Pushover)	103
VII.1. Définition de la méthode	
VII.2. Etapes de la méthode pushover	
VII.3. But de l'analyse Pushover	
VII.4. Procédure de la méthode du spectre de capacité	
VII.4.1. Courbe de capacité	
VII.4.2. Courbe de demande (déplacement)	105
VII.4.3. Conversion de la courbe de capacité en spectre de capacité	105
VII.4.4. Point de performance	105
VII.5. Niveaux de performance	

VII.6. Définition des paramètres non linéaires de la structure	
VII.6.1. Eléments poteaux et poutres	
VII.6.2. Eléments voiles	
VII.6.3. Charge de poussée progressive « Pushover »	110
VII.6.3.1. Charge gravitaire non linéaire	110
VII.6.3.2. Charges horizontales « pushover »	111
VII.7. Résultats de l'analyse non linéaire	112
VII.7.1. Amortissement de la structure	116
VII.8. Conclusion	
Conclusion générale.	119
Annexe A : Calcul du ferraillage des voiles.	
Annexe B : Plans du projet.	
Annexe B : Plans du projet.	

Introduction.

Le calcul de structures ne cesse d'évoluer depuis toujours, le rythme d'évolution durant les dernières décennies voir siècles ne fait qu'accélérer, l'objectif étant de construire des ouvrages résistants et durables, et avec l'abondance de ces derniers l'économie joue alors un rôle capital dans la conception. Les ingénieurs s'intéresse donc beaucoup à la résistance des structures et leur sécurité, c'est pour cela qu'il est plus fréquent que les études soient limitées au domaine élastique seulement, cependant, une partie non négligeable de la résistance globale de la structure dans le domaine post-élastique ou plastique n'est pas prise en considération. Etudier les structures dans ce domaine-là permet non seulement d'avoir une meilleure idée sur leur comportement et leur performance mais aussi de construire des structures plus économiques.

Dans cette étude, nous allons faire la conception d'un bâtiment R+15+SS à usage administratif implanté à El Hamma, Alger, classé en zone III selon les règles parasismiques algériennes (RPA 99 modif 2003), mais aussi étudier son comportement et sa performance en domaine post-élastique en utilisant la méthode statique non-linéaire par poussée progressive aussi connue sous le nom « Pushover ».

Le 1^{er} chapitre sera consacré à la description globale de l'ouvrage ainsi que des matériaux utilisés. Un pré-dimensionnement préliminaire des éléments constituant le bâtiment sera fait dans le $2^{\text{ème}}$ chapitre.

Le 4^{ème} chapitre est dédié à l'analyse sismique avec la méthode modale spectrale afin de déterminer les principaux modes de vibration qui dominent la structure.

L'étude des éléments secondaires de la structure (planchers, escaliers, acrotère) sera détaillée dans le 3^{ème} chapitre, et dans le 5^{ème} chapitre pour les éléments principaux (poutres, poteaux, voiles).

Le 6^{ème} chapitre quant à lui sera consacré à l'étude des fondations de structure. Et pour finir, on étudiera le comportement de la structure dans le domaine post-élastique non-linéaire dans le dernier chapitre avec la méthode « Pushover ».

Chapitre I : Présentation de l'ouvrage et caractéristiques des matériaux.

I.1. Introduction

L'ouvrage étudié est un bâtiment à usage administratif (RDC+15+1SS) implanté à El Hamma wilaya d'Alger, cette région est classée comme une zone de forte sismicité (III) selon les règles parasismiques Algériennes (RPA 99 modif 2003).

Figure I.1 : Site de l'ouvrage avec Google MAPS.

I.2. Présentation de l'ouvrage

Le bâtiment se compose d'un RDC+15 étages à usage administratif et d'un sous-sol à usage de stockage et de parking.

I.2.1. Caractéristiques géométriques

Dimensions en élévation :

-	Hauteur totale du bâtiment :	63 m
-	Hauteur du rez-de-chaussée :	3.6 m
-	Hauteur de l'étage :	3.6 m
-	Hauteur du sous-sol :	4.2 m
Dime	nsions en plan :	
-	Longueur totale en plan :	33,6 m
-	Largeur totale en plan :	28.55 m

I.2.2. Classification du bâtiment selon les RPA 99 modif 2003

Le bâtiment est un ouvrage **de grande importance** classé dans le groupe **1.b**.

Car c'est un bâtiment administratif de plus de 48 m de hauteur et qui reçoit du public pouvant accueillir simultanément plus de 300 personnes.

Figure I.2 : Vue en 3D de la structure.

Figure I.3 : Vue en plan de la structure.

I.2.3. Plancher

Les panneaux des planchers sont relativement grands, on opte donc pour un plancher nervuré dans deux sens pour les panneaux larges plus ou moins réguliers, et un plancher en dalle pleine pour les panneaux irréguliers.

I.2.4. Escalier

La structure comporte seulement des escaliers à double quart tournant.

I.2.5. Maçonnerie

La maçonnerie du bâtiment est réalisée en brique creuse.

Les murs extérieurs sont constitués d'une double paroi en brique creuse de 10 cm d'épaisseur séparée par une lame d'air de 10 cm d'épaisseur.

I.2.6. Ossature

Le bâtiment est constitué de portiques et d'un noyau en béton armé, d'après les « **RPA 99 modif 2003** », le système de contreventement du bâtiment est un système de « contreventement par noyau en béton armé » (**type 3**).

I.3. Caractéristiques mécaniques des matériaux

Les caractéristiques des matériaux utilisés dans la construction du bâtiment doivent être conformes aux règles techniques de construction et de calcul des ouvrages en béton armé « BAEL 91 modifié 99 » et tous les règlements applicables en Algérie « RPA 99 modif 2003 » et « CBA93 ».

I.3.1. Béton

I.3.1.1. Composition du béton

Pour sa mise en œuvre, le béton doit être maniable et il doit présenter certaines qualités à savoir :

- Une résistance mécanique élevée.
- Un retrait minimum.
- Une bonne tenue dans le temps.

I.3.1.2. Résistance du béton

I.3.1.2.1. Résistance du béton à la compression

D'un point de vue technique un béton est défini par la valeur caractéristique requise (ou spécifiée) de sa résistance à la compression à 28 jours d'âge, notée f_{c28} . Cette valeur est déterminée par des essais sur des éprouvettes cylindriques de 16cm de diamètre et de 32 cm de hauteur ^[5]. -Pour des résistances $f_{c28} \leq 40$ MPa ^[3]:

Four des resistances $J_{c28} \ge 40$ MPa⁻⁺:

 $\begin{cases} f_{cj} = \frac{j}{4,76+0,83 \times j} \times f_{c28} & \text{si } 28 \text{ jour } < j < 60 \text{ jours} \\ f_{cj} = 1,1 \times f_{c28} & \text{si } j > 60 \text{ jours} \end{cases}$

Pour notre étude on a : $f_{c28} = 35 \text{ MPa}$

I.3.1.2.2. Résistance du béton à la traction

La résistance caractéristique à la traction d'un béton à j jours, notée f_{tj} , est définie par ^[3]: $f_{tj} = 0.6 + 0.06 \times f_{cj}$ si $f_{cj} < 60$ MPa Pour $f_{c28} = 35$ MPa on trouve : $f_{t28} = 2,7$ MPa.

I.3.1.3. Module d'élasticité longitudinale

Aussi connu sous le nom de module de « Young » ou module de « déformation longitudinal », il est défini sous l'action des contraintes normales d'une longue durée ou de courte durée d'application.

I.3.1.3.1. Module d'élasticité instantané « E_{ii} »

Il est mesuré à partir de la courbe $(\sigma - \varepsilon)$ d'un test de courte durée, il représente le module d'élasticité sous chargement temporaire ou de courte durée (inférieur à 24h)^[3].

 $E_{ij} = 11000 (f_{c28})^{1/3}$

I.3.1.3.2. Module d'élasticité différé «Evi»

Il est mesuré à partir de la courbe contrainte- déformation $(\sigma - \varepsilon)$ d'un test de longue durée, il représente le module d'élasticité sous chargement durable ou transitoire ^[3].

 $E_{vi} = 3700 (f_{c28})^{1/3}$

Pour notre cas :
$$f_{cj} = f_{c28} = 35 \text{ MPa} \rightarrow \text{E} = \begin{cases} \text{E}_{i28} = 35981.73 \text{ MPa} \\ \text{E}_{\nu 28} = 12102,94 \text{ MPa} \end{cases}$$

I.3.1.4. Coefficient de Poisson

Le coefficient de poisson représente la variation relative de dimension transversale d'une pièce soumise à une variation relative de dimension longitudinale^[12].

- v = 0.0 calcul des sollicitations • E.L.U :
- v = 0.2 calcul des déformations E.L.S : •

I.3.1.5. Poids volumique

On adopte la valeur $\gamma_b = 25 \text{ kN/m}^3$

I.3.1.6. Les contraintes limites de calcul

I.3.1.6.1. Contraintes limites à l'état limite ultime (E.L.U)

L'état limite ultime est défini généralement par la limite de résistance mécanique au-delà du quelle il y a ruine de l'ouvrage^[4].

 $f_{bc} = \frac{0.85 \times f_{c28}}{\theta \times \gamma_b}$

Avec :

 γ_b : Coefficient de sécurité.

Tel que :

$\gamma_b = 1,5$ cas des situations durables ou transitoires	$f_{bc} = 19,83 \text{ MPa}$
$\gamma_{\rm b} = 1.15$ cas des situations accidentelles	$f_{bc} = 30,43 \text{ MPa}$

 $\gamma_b = 1,15$ cas des situations accidentelles

 θ : Coefficient qui tient compte la durée de l'application des charges:

si la durée > 24h $\theta = 1$

 $\theta = 0.9$ si la durée > 1h et < 24h

 $\theta = 0.85$ pour les chargements de courte durée.

Figure I.4 : Contraintes-déformations du béton^[3].

I.3.1.6.2. Contraintes limites à l'état limite de service (E.L.S)

L'état limite de service correspond aux critères dont le non respect empêche les éléments d'être exploités dans des conditions satisfaisantes ou compromet leur durabilité. On distingue ^[4]:

- L'état limite de service vis à vis de la compression de béton.

- L'état limite de service d'ouverture des fissures.

- L'état limite de service de déformation.

La contrainte limite de service est donnée par : $\overline{\sigma_{bc}} = 0.6 \times f_{c28}$

 $f_{c28} = 35$ MPa on trouve : $\overline{\sigma_{bc}} = 21$ MPa

I.3.2. Aciers

L'acier est un alliage de Fer et de Carbone en faible pourcentage, il est caractérisé par une bonne résistance aussi bien en traction qu'en compression. Ce qui en fait la solution idéale pour compenser la faible résistance du béton à la traction, son rôle est donc de reprendre les efforts de traction, de cisaillement et de torsion.

Les aciers utilisés pour constituer les pièces en béton armé sont :

- Ronds lisses (R.L) : FeE24
- Barres à haute adhérences (HA) : FeE50

I.3.2.1. Les limites élastiques

- Les ronds lisses (R.L) : FeE24 ($f_e = 235$ MPa)
- Barres à haute adhérence (HA) : $f_e = 500$ MPa.

I.3.2.2. Module d'élasticité des aciers

Les aciers sont aussi caractérisés par le module d'élasticité longitudinale. Il sera pris égal à : $E_s = 2.10^5 \text{ MPa}$

I.3.2.3. Les contraintes limites de calcul

I.3.2.3.1. Contraintes limites à l'état limite ultime (E.L.U)

On adopte le diagramme contrainte-déformation suivant :

Figure I.5 : Diagramme contrainte-déformation de l'acier à L'ELU^[3].

$$\begin{split} f_e: \text{Contrainte limite élastique. Avec}: & \sigma_{\text{S}} = \frac{f_e}{\gamma_s} \\ \varepsilon_{\text{S}}: \text{Déformation (allongement) relative}: & \varepsilon_{\text{S}} = \frac{\Delta L}{L} \\ \text{L'abscisse limite de la droite d'élasticité vaut}: & \varepsilon_{\text{es}} = \frac{f_e}{E_s \times \gamma_s} \\ \text{Pour les aciers FeE500 on a}: & \varepsilon_{\text{es}} = \frac{500}{1,15 \times 200000} = 2,174 \% \\ \gamma_s: \text{Coefficient de sécurité de l'acier.} \\ \gamma_s = \begin{cases} 1,15 & \text{situations durables ou transitoires} \\ 1,00 & \text{situations accidentelles} \end{cases} \\ \sigma_{\text{S}}: \text{Contrainte de l'acier.}: & -\varepsilon_{\text{S}} \le \varepsilon_{\text{es}} & \rightarrow \sigma_{\text{S}} = E_{\text{S}} \times \varepsilon_{\text{S}} \\ -\varepsilon_{\text{es}} \le \varepsilon_{\text{S}} \le 10\% & \rightarrow \sigma_{\text{S}} = \frac{f_e}{\gamma_s} \end{split}$$

I.3.2.3.2. Contraintes limites à l'état limite de service (E.L.S)

C'est l'état où on fait les vérifications des contraintes par rapport aux cas appropriées ^[1]:

Fissuration peu nuisible : Pas de vérification.

Fissuration préjudiciable :

 $\sigma_{\rm s} = \xi = {\rm Min} \left\{ \frac{2}{3} f_e ; {\rm Max} (0.5 f_e ; 110 \sqrt{\eta \times f_{t28}} \right\}$

Fissuration très préjudiciable : $\sigma_s = 0.8 \times \xi$

 η : Coefficient de fissuration qui dépend de type d'acier

- $\eta = 1,00$ pour les aciers ronds lisse.
- $\eta = 1,60$ pour les aciers à haute adhérence.
- $\eta = 1,30$ pour les aciers à haute adhérence < 6 mm.

I.3.2.4. Le coefficient d'équivalence

Le coefficient d'équivalence noté « η » est le rapport de : $\frac{E_s}{E_p} = 15$

 η : Coefficient d'équivalence.

 E_S : Module de déformation de l'acier.

 $E_{\mbox{\scriptsize b}}$: Module de déformation du béton.

La contrainte de calcul, notée « σ_s » et qui est définie par la relation :

 $\sigma_{s} = \frac{f_{e}}{\gamma_{s}}$

I.4. Hypothèses de calcul

Le calcul en béton armé est basé sur les hypothèses suivantes :

- Les sections droites restent planes après déformation.
- Il n'y a pas de glissement entre les armatures d'acier et le béton.
- Le béton tendu est négligé dans le calcul de la résistance à cause de sa faible résistance à la traction.
- Le digramme contrainte-déformation du béton est celui défini en § I.3.1.6.1.
- Le digramme contrainte-déformation de l'acier est celui défini en § I.3.2.3.1.
- Les positions que peut prendre le diagramme des déformations d'une section droite passent au moins par l'un des trois pivots.

Chapitre II : Pré-dimensionnement des éléments Et évaluation des charges.

II.1. Introduction

L'évaluation des différentes sections des éléments de notre structure : poutres, poteaux et autres, passe par un dimensionnement préliminaire, appelé pré-dimensionnement.

Pour cela nous devrons évaluer les charges revenantes à chaque élément porteur, à tous les niveaux jusqu'à la fondation.

II.2. Pré-dimensionnement Des Planchers

Les planchers sont des plaques minces dont l'épaisseur est faible par rapport à leurs dimensions en plan.

Dans notre structure nous avons deux types de planchers

- Planchers en dalle pleine.
- Planchers nervurés.

II.2.1. Planchers en dalle pleine

Planchers en dalle pleine :

Les planchers sont constitués de dalles en béton armé. Pour le Pré-dimensionnement de la hauteur de cette dernière on utilise la formule empirique suivante : $\frac{L_x}{50} < h < \frac{L_x}{30}$

Avec :

h : Epaisseur de la dalle.

L_x : La petite portée dans le sens x-x du plus grand panneau.

 $On a: L_x = 600 cm \qquad alors \qquad 12 cm < h < 20 cm$

On adopte donc une épaisseur de **17 cm** pour les dalles du noyau ainsi que les dalles triangulaires.

II.2.2. Planchers nervurés :

Pour les planchers nervurés, nous avons optés pour un espacement entre nervures de 2m avec les dimensions suivantes :

- Epaisseur de la dalle $e = 13$	3 cm.
----------------------------------	-------

-	Hauteur de la nervure	h = 50 cm.

- Largeur de la nervure b = 20 cm.

NB : Afin de faciliter les calculs, et du moment que la dalle et les nervures sont constitués du même matériau, le poids propre du système dalle + nervures est équivalent à une dalle en béton armé de 17 cm d'épaisseur.

Figure II.1 : Coupe transversale du plancher nervuré (cm).

II.3. Evaluation Des Charges

Cette étape consiste à évaluer les charges qui influent directement sur la résistance et la stabilité de notre ouvrage.

II.3.1. Charges Permanentes

II.3.1.1. Plancher Terrasse Inaccessible

-	Gravillon de protection (e = 5 cm ; $\rho = 17 \text{ kN/m}^3$)	$0,85 \text{ kN/m}^2$
-	Etanchéité multicouches (e = 2 cm ; ρ = 6 kN/m ³)	$0,12 \text{ kN/m}^2$
-	Forme de pente ($e_{moy} = 15 \text{ cm}$; $\rho = 22 \text{ kN/m}^3$)	3,30 kN/m ²
-	Isolation thermique (e = 4 cm ; $\rho = 4 \text{ kN/m}^3$)	0,16 kN/m ²
-	Dalle pleine ($ep = 17 \text{ cm}$)	4,25 kN/m ²
-	Enduit en plâtre (e = 2 cm ; $\rho = 10 \text{ kN/m}^3$)	<u>0,20 kN/m²</u>
		$G = 8,88 \text{ kN/m}^2$
II.3.1.	2. Plancher Etage Courant	
-	Carrelage (e = 2 cm; $\rho = 0.2 \text{ kN/m}^2$)	$0,40 \text{ kN/m}^2$
-	Mortier de pose (e = 2 cm ; ρ = 20 kN/m ³)	$0,40 \text{ kN/m}^2$
-	Lit de sable (e = 3 cm ; $\rho = 19 \text{ kN/m}^3$)	0,57 kN/m ²
-	Plancher dalle pleine ($ep = 17 \text{ cm}$)	4,25 kN/m ²
-	Enduit en plâtre (e = 2 cm ; $\rho = 10 \text{ kN/m}^3$)	<u>0,20 kN/m²</u>
		$G = 5,82 \text{ kN/m}^2$
II.3.2.	Surcharge D'exploitation	
	Acrotère :	$Q = 1 \text{ kN/m}^2$
	Plancher terrasse inaccessible :	$Q = 1.5 \text{ kN/m}^2$
	Plancher étage courant :	$Q = 2,5 \text{ kN/m}^2$
II.3.3.	Maçonnerie	
Murs e	extérieurs	
-	Enduit en ciment (e = 2cm ; $\rho = 18 \text{ kN/m}^3$)	0,36 kN/m ²
-	Brique creuse ($e = 10 \text{ cm}$)	0,90 kN/m ²
-	Lame d'air ($e = 10$ cm)	0,00 kN/m ²
-	Brique creuse ($e = 10$ cm)	0,90 kN/m ²
-	Enduit au plâtre (e = 2 cm ; $\rho = 10 \text{ kN/m}^3$)	<u>0,20 kN/m²</u>
		$G = 2,36 \text{ kN/m}^2$

II.3.4. Acrotère

Le poids propre de l'acrotère pour 1ml est de : $G = \rho \ge S$ S : La surface transversale totale de l'acrotère. ρ : Le poids volumique tel que $\rho = 25 \text{ kN/m}^3$. S = $(0,10\times0,60)+(0,08\times0,10)+0,10\times\frac{0,02}{2} = 0,069 \text{ m}^2$ G_{acr} = $25 \times 0,069 = 1,725 \text{ kN/ml}$
II.4. Pré-dimensionnement des poutres et des poteaux

II.4.1. Pré-dimensionnement des poutres

Les poutres sont des éléments porteurs horizontaux en béton armé, leurs prédimensionnement sont basé sur les trois étapes suivantes :

- Détermination des dimensions (h,b) à partir de formules empiriques.
- Vérification des conditions imposées sur (h,b) selon le « RPA 99 modif 2003 ».
- Vérification de la rigidité.

Selon les formules empiriques :

La hauteur h de la poutre doit être : $\frac{L}{15} \le h \le \frac{L}{10}$

La largeur b de la poutre doit être : 0,3×h \leq b \leq 0,7×h

Avec : L : Portée de la poutre

- h : Hauteur de la poutre
- b : Largeur de la poutre

Selon RPA 99 modif 2003 :

On doit respecter les conditions suivantes :

- La hauteur h de la poutre doit être : $h \ge 30 \text{ cm}$
- La largeur b de la poutre doit être : $b \ge 20$ cm
- Le rapport hauteur largeur doit être : $\frac{h}{h} \le 4$

II.4.1.1. Poutre principale (sens longitudinal)

Selon les formules empiriques :

 $\frac{800}{15} \le h \le \frac{800}{10} \longrightarrow \text{ on prend } h = 80 \text{ cm}$ $0,3 \times 80 \le b \le 0,7 \times 80 \longrightarrow \text{ on prend } b = 40 \text{ cm}$

Vérification selon « RPA 99 modif 2003 » :

h > 30 cm	Vérifiée.
b > 20 cm	Vérifiée.
$\frac{h}{b} = 2 \le 4$	Vérifiée.

II.4.1.2. Poutre secondaire (sens transversal)

Selon les formules empiriques :

$\frac{800}{15} \le h \le \frac{800}{10}$	\rightarrow on prend h = 80 cm			
$0.3 \times 80 \le b \le 0.7 \times 80$	\rightarrow on prend b = 40 cm			
Vérification selon « RPA 99 modif 2003 » :				
h > 30 cm	Vérifiée.			
b > 20 cm	Vérifiée.			

Vérifiée.

II.4.1.3. Poutre de chaînage (noyau)

 $\frac{h}{h} = 2 \le 4$

Selon les formules empiriques :	$\frac{450}{15} \le h \le \frac{450}{10}$	\rightarrow on prend h = 45 cm	
	$0,3 \times 45 \le b \le 0,7 \times 45$	\rightarrow on prend b = 30 cm	

Vérification selon « RPA 99 modif 2003 » :

h > 30 cm	Vérifiée.
b > 20 cm	Vérifiée.
$\frac{h}{b} = 2 \le 4$	Vérifiée.

Choix final des poutres :

Tableau II.1 : Choix des sections des poutres.

Type de poutre	Dimensions (cm ²)
Poutre principale	40 imes 80
Poutre secondaire	40 imes 80
Poutre de chaînage	30 imes 45

II.4.2. Pré-dimensionnement des poteaux

Principe

Les poteaux sont pré-dimensionnés en compression simple en choisissant les poteaux les plus sollicités. Pour se faire, on calculera les surfaces de plancher reprises par chaque poteau, le poteau reprenant la plus grande surface donnera les charges les plus importantes.

Procédure de pré-dimensionnement

- Calcul de la surface reprise par chaque poteau.
- Evaluation de l'effort normal ultime de la compression à chaque niveau.
- Les poteaux sont calculés aux états limites ultimes (ELU) en compression simple.
- la section obtenue doit vérifier les conditions minimales imposées par « RPA 99 modif 2003 ».
- Vérification des sections à l'ELS selon le « BAEL 91 modif 99 ».

Dimensionnement des poteaux

Poteaux rectangulaires ou carrés

Le pré-dimensionnement est déterminé en supposant que les poteaux sont soumis à la

compression selon la formule suivante ^[1]: $N_u \le \alpha \times \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A_s \times f_e}{\gamma_s}\right]$

Avec :

 γ_b : Coefficient de sécurité du béton, tel que : $\gamma_b = 1,5$ situation durable ou transitoire. $\gamma_b = 1,15$ situation accidentelle. γ_s : Coefficient de sécurité de l'acier, tel que : $\gamma_b = 1,15$ situation durable ou transitoire $\gamma_b = 1,15$ situation durable ou transitoire $\gamma_b = 1$ situation accidentelle.

 $N_u = 1,35 \text{ G} + 1,5 \text{ Q}$

G : Poids propre des éléments qui sollicitent le poteau considéré.

Q : Surcharge d'exploitation qui sollicite le poteau.

 α : Coefficient de réduction destiné à tenir compte à la fois des efforts du second ordre et de l'excentricité additionnelle

Si plus de la moitié des charges sont appliquaient après 90 jours, le coefficient α prend les valeurs suivantes :

Soit :

$$\begin{cases}
\alpha = \frac{0.85}{1+0.2 \times \left(\frac{\lambda}{35}\right)^2} = \frac{0.85}{\beta} & \text{Pour} \quad \lambda < 50 \\
\beta = 1 + 0.2 \times \left(\frac{\lambda}{35}\right)^2 \\
\beta = 0.6 \times \left(\frac{50}{\lambda}\right)^2 = \frac{0.85}{\beta} & \text{Pour} \quad 50 \le \lambda \le 70 \\
\beta = \frac{0.85}{1500} \times \lambda^2
\end{cases}$$

-12-

 λ : L'élancement du poteau considéré $\lambda = \frac{L_f}{i}$, on prend $L_f = 0,7 \times L_0 = 0,7 \times h_e$ (poteau est à ses extrémités, soit encastrer dans un massif de fondation, soit lié à des poutres de plancher).

Remarque : Il est préférable de prendre $\lambda \le 35$

a : Dimension de la section du béton du poteau.

L_f: Longueur de flambement.

i : Rayon de giration de la section du béton seul, avec :
$$i_{min} = \sqrt{\frac{I}{B}}$$

I : Moment d'inertie de la section du béton par rapport à son centre de gravité et perpendiculairement au plan de flambement.

A_S: Section d'acier minimale.

f_{c28} : Contrainte de compression du béton à 28 jours :	$f_{c28} = 35 \text{ MPa}$
---	----------------------------

 f_e : Contrainte limite élastique des aciers :

B : Aire totale de la section du poteau (B = $a \times b$)

B_r: Section réduite d'un poteau obtenue en déduisant de la section réelle 1cm d'épaisseur sur toute sa périphérie tel que :

	$B_r = (a - 2 \text{ cm}) \times (b - 2 \text{ cm})$
Avec :	$\mathbf{B} = \mathbf{a} \times \mathbf{b} \ (\mathbf{cm}^2)$
Poteaux rectangulaires :	$b = 3 \times a$
Poteaux carrés :	$\mathbf{b} = \mathbf{a}$

a,b : dimension de la section du béton du poteau

Il faut s'assurer que : $0,2\% \le \frac{A_s}{B} \le 5\%$

On cherche à dimensionner le poteau de telle sorte que : $\frac{A_s}{B} = 1\%$

On tire de l'équation de Nu la valeur de Br telle que : $B_r \ge \frac{N_u}{\alpha \times \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A_s \times f_e}{\gamma_s}\right]} \rightarrow \mathbf{B_r} \ge \mathbf{0.047.N_u}$

Le minimum requis par le « RPA99 modif 2003 »

D'après l'article 7.4.1, pour une zone sismique III, on doit avoir au minimum :

Poteau rectangulaire ou carrée

- Min $(b, h) \ge 30$ cm
- Min $(b, h) \ge \frac{h_e}{20}$
- $-\frac{1}{4} < \frac{b}{h} < 4$

Vérification de la section trouvée à l'ELS

On doit vérifier que :

$$\sigma_{\rm ser} = \frac{N_{\rm ser}}{1,15 \times B} \le \overline{\sigma_{\rm ser}} = 0.6 \times f_{c28}$$

Avec :

 N_{ser} : Effort normal à l'ELS tel que $N_{ser} = G + Q$

G : Poids propre des éléments qui sollicitent le poteau étudié, son poids propre non compris.

Q : Surcharge d'exploitation.

B : Section de béton du poteau.

 A_s : Section des armatures ($A_s = 1\% B$).

 η : Coefficient d'équivalence $\eta = \frac{E_s}{E_b} = 15$

$$\sigma_{ser}$$
: Contrainte de compression à l'ELS.

En remplaçant dans l'équation ci-dessus les différents termes par leurs valeurs on obtient :

 $\sigma_{ser} = \frac{N_{ser}}{1,15 \times B} \le \overline{\sigma_{ser}} = 0,6 \times 35 = 21 \text{ MPa}$

 $f_{c28} = 35$ MPa $f_e = 500$ MPa

Remarque :

D'après l'article 7.4.1 dans le « RPA 99 modif 2003 » :

- Les poteaux de rives et d'angle doivent avoir des sections comparables à celles des poteaux centraux, pour leur conférer une meilleure résistance aux sollicitations sismique.
- Pour tenir compte du poids de poteau on va majorer de 10% les charges permanentes venant du plancher, poutres et chaînages.

II.4.2.1. Poteau central

Soit S_{PC} la surface reprise par le poteau central le plus sollicité :

 $S_{PC} = 81,93 \text{ m}^2$

Figure II.2 : Schéma du poteau central le plus sollicité (mm).

Détermination des charges

Charge permanente

Poids revenant à la terrasse :

Plancher nervuré :

- Poids des planchers terrasse :
- Poids des poutres longitudinales sens (x x):
- Poids des poutres transversales sens (y y):

Poids revenant au 15^{ème} étage :

Plancher nervuré :

- Poids des planchers courants :
- Poids des poutres longitudinales sens (x x):
- Poids des poutres transversales sens (y y):

Charge d'exploitation

Surcharge d'exploitation revenante au plancher terrasse :

$$\begin{split} Q_{T} &= S_{PC} \times Q_{T,ina} = 82 \times 1.5 = 123 \ \text{kN} \\ \text{Surcharge d'exploitation revenante au } 15^{\text{ème}} \ \text{étage}: \\ Q_{15}^{\text{ème}} &= S_{PC} \times Q_{PC} = 82 \times 2,5 = \underline{205 \ \text{kN}} \\ Q_{14}^{\text{ème}} &= S_{PC} \times Q_{PC} = 82 \times 2,5 \times 0,90 = \underline{184,5 \ \text{kN}} \\ Q_{13}^{\text{ème}} &= S_{PC} \times Q_{PC} = 82 \times 2,5 \times 0,80 = \underline{164 \ \text{kN}} \\ Q_{12}^{\text{ème}} &= S_{PC} \times Q_{PC} = 82 \times 2,5 \times 0,70 = \underline{145,6 \ \text{kN}} \\ Q_{11}^{\text{ème}} &= S_{PC} \times Q_{PC} = 82 \times 2,5 \times 0,60 = \underline{123 \ \text{kN}} \\ Q_{10}^{\text{ème}} &= S_{PC} \times Q_{PC} = 82 \times 2,5 \times 0,50 = \underline{102,5 \ \text{kN}} \\ & . \end{split}$$

 $Q_{\text{RDC}} = S_{\text{PC}} \times Q_{\text{PC}} = 82 \times 2,5 \times 0,50 = \underline{102,5 \text{ kN}}$

$$\begin{split} G_{PT} &= 8,88 \times 82 = 728,16 \text{ kN} \\ G_{PP} &= 0,4 \times 0,63 \times 25 \times 9,3 = 58,6 \text{ kN} \\ \cdot & \underline{G_{PS} = 0,4 \times 0,63 \times 25 \times 9 = 56,7 \text{ kN}} \\ \mathbf{G_{T1} = 803,46 \text{ kN}} \end{split}$$

$$\begin{split} G_{PC} &= 5,82 \times 82 = 477,24 \text{ kN} \\ G_{PP} &= 0,4 \times 0,63 \times 25 \times 8 = 58,6 \text{ kN} \\ \underline{G}_{PS} &= 0,4 \times 0,63 \times 25 \times 8 = 56,7 \text{ kN} \\ \mathbf{G}_{15}^{\text{ème}} &= \mathbf{592,54 \ \text{kN}} \end{split}$$

Niv	G (kN)	Q (kN)	Nu (kN)	Br (cm ²)	A (cm)	Min RPA (cm ²)	a×b (cm ²)	N _{ser} (kN)	σ _{ser} (MPa)	σ _{bc} (MPa)	obs
15	883,81	123	1377,6	647,49	27,4	30×30	55×55	1006,8	2,89	21	Vér
14	1535,6	328	2565,2	1205,6	36,7	30×30	60×60	1863,6	4,50	21	Vér
13	2187,4	512,5	3721,7	1749,2	43,8	30×30	60×60	2699,9	6,52	21	Vér
12	2839,2	676,5	4847,8	2278,4	49,7	30×30	65×65	3515,7	7,24	21	Vér
11	3491	820	5942,8	2793,1	54,9	30×30	65×65	4311	8,87	21	Vér
10	4142,8	943	7007,3	3293,4	59,4	30×30	70×70	5085,8	9,03	21	Vér
9	4794,6	1045,5	8040,9	3779,2	63,5	30×30	70×70	5840,1	10,36	21	Vér
8	5446,4	1148	9074,6	4265,1	67,3	30×30	75×75	6594,4	10,19	21	Vér
7	6098,2	1250,5	10108,3	4750,9	70,9	30×30	75×75	7348,7	11,36	21	Vér
6	6750	1353	11141,9	5236,7	74,4	30×30	80×80	8103	11,00	21	Vér
5	7401,7	1455,5	12175,6	5722,5	77,6	30×30	80×80	8857,3	12,03	21	Vér
4	8053,5	1558	13209,3	6208,4	80,8	30×30	85×85	9611,5	11,568	21	Vér
3	8705,3	1660,5	14243	6694,2	83,8	30×30	85×85	10365,8	12,48	21	Vér
2	9357,1	1763	15276,6	7180,0	86,7	30×30	90×90	11120,1	11,94	21	Vér
1	10009	1865,5	16310,3	7665,8	89,6	30×30	90×90	11874,4	12,75	21	Vér
RDC	10661	1968	17344	8151,7	92,3	30×30	95×95	12628,7	12,17	21	Vér
SS	11313	2070,5	18377,6	8637,5	94,9	30×30	95×95	13383	12,89	21	Vér

Tableau II.2 : Dimensionnement des poteaux centraux.

II.4.2.2. Poteau d'angle

Soit S_{PA} la surface reprise par le poteau d'angle le plus sollicité : $S_{PA} = 21,07 \text{ m}^2$

Figure II.3 : Schéma du poteau d'angle le plus sollicité (mm).

Détermination des charges

Charge permanente

Poids de l'acrotère :

 $G_{acrotère} = 1,725 \times (2,35+3,95) = 10,87 \text{ kN}$

Poids revenant à la terrasse :

Plancher nervuré :

- Poids des planchers terrasse : $G_{PT} = 8,88 \times 21,07 = 187,1 \text{ kN}$ _
- _
- Poids des poutres transversales sens (y y): _
- Poids des poutres longitudinales sens (x x): $G_{PP} = 0.4 \times 0.63 \times 25 \times 3.95 = 24.88$ kN $G_{PS} = 0,4 \times 0,63 \times 25 \times 2,35 = 14,81 \text{ kN}$ $G_{T1} = 226,79 \text{ kN}$

Poids revenant au 15^{ème} étage :

Plancher nervuré :

- Poids des planchers courants :
- Poids des poutres longitudinales sens (x x): $G_{PP} = 0,4 \times 0,63 \times 25 \times 3,95 = 24,88 \text{ kN}$
- Poids des poutres transversales sens (y y):

Charge d'exploitation

Surcharge d'exploitation revenante au plancher terrasse :

 $Q_{T} = S_{PA} \times Q_{T.ina} = 21,07 \times 1.5 = 31,61 \text{ kN}$

Surcharge d'exploitation revenante au 15^{ème} étage :

 $\begin{array}{l} Q_{15}{}^{\grave{e}me} = S_{PA} \times Q_{PC} = 21,07 \times 2,5 = \textbf{52,68 kN} \\ Q_{14}{}^{\grave{e}me} = S_{PA} \times Q_{PC} = 21,07 \times 2,5 \times 0,90 = \textbf{47,41 kN} \\ Q_{13}{}^{\grave{e}me} = S_{PA} \times Q_{PC} = 21,07 \times 2,5 \times 0,80 = \textbf{42,14 kN} \\ Q_{12}{}^{\grave{e}me} = S_{PA} \times Q_{PC} = 21,07 \times 2,5 \times 0,70 = \textbf{36,88 kN} \\ Q_{11}{}^{\grave{e}me} = S_{PA} \times Q_{PC} = 21,07 \times 2,5 \times 0,60 = \textbf{31,61 kN} \\ Q_{10}{}^{\grave{e}me} = S_{PA} \times Q_{PC} = 21,07 \times 2,5 \times 0,50 = \textbf{26,34 kN} \end{array}$

. $Q_{RDC} = S_{PA} \times Q_{PC} = 21,07 \times 2,5 \times 0,50 = 26,34 \text{ kN}$

Tableau II.3 : Dimensionnement des poteaux d'angle.

Niv	G (kN)	Q (kN)	Nu (kN)	Br (cm ²)	A (cm)	Min RPA (cm ²)	a×b (cm²)	Nser (kN)	σ _{ser} (MPa)	σ _{bc} (MPa)	obs
15	261,43	37,90	409,8	196,7	10,1	30×30	30×90	299,3	0,96	21	Vér
14	439,99	90,58	729,9	350,3	12,8	30×30	30×90	530,6	1,71	21	Vér
13	618,55	138	1042	500,2	14,9	30×30	30×90	756,6	2,44	21	Vér
12	797,12	180,1	1346,3	646,2	16,7	30×30	30×90	977,3	3,15	21	Vér
11	975,68	217,0	1642,7	788,5	18,2	30×30	30×90	1192,7	3,84	21	Vér
10	1154,2	248,6	1931,2	927	19,6	30×30	30×90	1402,9	4,52	21	Vér
9	1332,8	275	2211,7	1061,6	20,8	30×30	30×90	1607,8	5,18	21	Vér
8	1511,4	301,3	2492,3	1196,3	22	30×30	30×90	1812,7	5,84	21	Vér
7	1689,9	327,6	2772,9	1331	23,1	30×30	30×90	2017,6	6,50	21	Vér
6	1868,5	354	3053,4	1465,6	24,1	30×30	30×90	2222,5	7,16	21	Vér
5	2047,1	380,3	3334	1600,3	25,1	30×30	30×90	2427,4	7,82	21	Vér
4	2225,6	406,7	3614,6	1735	26	30×30	30×90	2632,3	8,48	21	Vér
3	2404,2	433,0	3895,2	1869,7	27	30×30	30×90	2837,2	9,14	21	Vér
2	2582,7	459,3	4175,7	2004,3	27,8	30×30	30×90	3042,1	9,80	21	Vér
1	2761,3	485,7	4456,3	2139,0	28,7	30×30	30×90	3247	10,46	21	Vér
RDC	2939,9	512,0	4736,8	2273,7	29,5	30×30	30×90	3451,9	11,12	21	Vér
SS	3118.4	538.4	5017.4	2408.4	30.3	30×30	30×90	3656.8	11.78	21	Vér

- $$\begin{split} G_{PC} &= 5,82 \times 21,07 = 122,63 \text{ kN} \\ G_{PP} &= 0,4 \times 0,63 \times 25 \times 3,95 = 24,88 \text{ kN} \\ \underline{G_{PS}} &= 0,4 \times 0,63 \times 25 \times 2,35 = 14,81 \text{ kN} \end{split}$$
- $G_{15}^{eme} = 162,32 \text{ kN}$

II.4.2.3. Poteau de rive

Soit $S_{\mbox{\scriptsize PR}}$ la surface reprise par le poteau de rive le plus sollicité :

Détermination des charges

Charge permanente

Poids de l'acrotère :

 $G_{acrotère} = 1,725 \times (4,5+3,4) = 13,63 \text{ kN}$

Poids revenant à la terrasse :

Plancher nervuré :

- Poids des planchers terrasse :
- Poids des poutres longitudinales sens (x x): $G_{PP} = 0,4 \times 0,63 \times 25 \times 4,6 = 28,98$ kN
- Poids des poutres transversales sens (y y):

 $G_{PT} = 8,88 \times 39,38 = 349,69 \text{ kN}$ $G_{PP} = 0,4 \times 0,63 \times 25 \times 4,6 = 28,98 \text{ kN}$ $\underline{G_{PS}} = 0,4 \times 0,63 \times 25 \times 7,9 = 49,77 \text{ kN}$ $\overline{G_{T1}} = 428,44 \text{ kN}$

Poids revenant au 15^{ème} étage :

Plancher nervuré :

- Poids des planchers courants :
- Poids des poutres longitudinales sens (x x): $G_{PP} = 0.4 \times 0.63 \times 25 \times 4.6 = 28,98$ kN
- Poids des poutres transversales sens (y y):

Charge d'exploitation

Surcharge d'exploitation de l'acrotère : $Q_{acrotère} = 1 \times 7,9 = 7,9 \text{ kN}$ $Q_T = S_{PR} \times Q_{T.ina} = 39,38 \times 1.5 = 59,07 \text{ kN}$ Surcharge d'exploitation revenante au $15^{\text{ème}}$ étage :

 $\begin{array}{l} Q_{15}{}^{\grave{e}me} = S_{PR} \times Q_{PC} = 39,38 \times 2,5 = \textbf{98,45 kN} \\ Q_{14}{}^{\grave{e}me} = S_{PR} \times Q_{PC} = 39,38 \times 2,5 \times 0,90 = \textbf{88,61 kN} \\ Q_{13}{}^{\grave{e}me} = S_{PR} \times Q_{PC} = 39,38 \times 2,5 \times 0,80 = \textbf{78,76 kN} \\ Q_{12}{}^{\grave{e}me} = S_{PR} \times Q_{PC} = 39,38 \times 2,5 \times 0,70 = \textbf{68,92 kN} \\ Q_{11}{}^{\grave{e}me} = S_{PR} \times Q_{PC} = 39,38 \times 2,5 \times 0,60 = \textbf{59,07 kN} \\ Q_{10}{}^{\grave{e}me} = S_{PR} \times Q_{PC} = 39,38 \times 2,5 \times 0,50 = \textbf{49,23 kN} \end{array}$

 $Q_{RDC} = S_{PR} \times Q_{PC} = 39,38 \times 2,5 \times 0,50 = 49,23 \text{ kN}$

 $G_{PC} = 5,82 \times 39,38 = 229,19 \text{ kN}$ $G_{PP} = 0,4 \times 0,63 \times 25 \times 4,6 = 28,98 \text{ kN}$ $G_{PS} = 0,4 \times 0,63 \times 25 \times 7,9 = 49,77 \text{ kN}$ $G_{15}^{\text{eme}} = 307,94 \text{ kN}$

Niv	G (kN)	Q (kN)	Nu (kN)	Br (cm ²)	A (cm)	Min RPA (cm ²)	a×b (cm ²)	N _{ser} (kN)	σ _{ser} (MPa)	σ _{bc} (MPa)	obs
15	484,91	66,97	755,1	362,4	13	30×30	35×95	551,9	1,44	21	Vér
14	823,65	165,42	1360	652,8	16,7	30×30	35×100	989,1	2,46	21	Vér
13	1162,4	254,02	1950,3	936,1	19,7	30×30	35×100	1416,4	3,52	21	Vér
12	1501,1	332,78	2525,7	1212,3	22,1	30×30	35×105	1833,9	4,34	21	Vér
11	1839,9	401,7	3086,4	1481,4	24,2	30×30	35×105	2241,6	5,30	21	Vér
10	2178,6	460,77	3632,2	1743,5	26,1	30×30	35×110	2639,4	5,96	21	Vér
9	2517,3	510	4163,4	1998,4	27,8	30×30	35×110	3027,3	6,84	21	Vér
8	2856,1	559,22	4694,5	2253,4	29,4	30×30	35×115	3415,3	7,38	21	Vér
7	3194,8	608,44	5225,6	2508,3	30,9	30×30	35×115	3803,2	8,22	21	Vér
6	3533,5	657,67	5756,8	2763,2	32,3	30×30	40×120	4191,2	7,59	21	Vér
5	3872,3	706,89	6287,9	3018,2	33,7	30×30	40×120	4579,2	8,3	21	Vér
4	4211	756,12	6819	3273,1	35,3	30×30	40×125	4967,1	8,64	21	Vér
3	4549,7	805,34	7350,1	3528,1	36,3	30×30	40×125	5355,1	9,313	21	Vér
2	4888,5	854,57	7881,3	3783,0	37,5	30×30	40×130	5743	9,60	21	Vér
1	5227,2	903,79	8412,4	4037,9	38,7	30×30	40×130	6131	10,25	21	Vér
RDC	5565,9	953,02	8943,5	4292,9	39,8	30×30	45×135	6518,9	9,33	21	Vér
SS	5904,7	1002,2	9474,7	4547,8	40,9	30×30	45×135	6906,9	9,87	21	Vér

Tableau II.4 : Dimensionnement des poteaux de rive.

Dimensions finales des poteaux :

Tableau II.5 : Choix final des sections des poteaux.

Niveau	Poteaux rectangulaires (cm ²)	Poteaux carrés (cm ²)
15 ^{ème}	35×95	55×55
14 ^{ème}	35×100	60×60
13 ^{ème}	35×100	60×60
12 ^{ème}	35×105	65×65
11 ^{ème}	35×105	65×65
10 ^{ème}	35×110	70×70
9 ^{ème}	35×110	70×70
8 ^{ème}	35×115	75×75
7 ^{ème}	35×115	75×75
6 ^{ème}	40×120	80×80
5 ^{ème}	40×120	80×80
4 ^{ème}	40×125	85×85
3 ^{ème}	40×125	85×85
2 ^{ème}	40×130	90×90
1 ^{er}	40×130	90×90
RDC	45×135	95×95
Sous-sol	45×135	95×95

Chapitre III : Calcul des éléments secondaires.

III.1. Acrotère

III.1.1. Introduction

L'acrotère est un élément secondaire qui a pour rôle d'assurer la sécurité des usagers au niveau de la terrasse, il sera calculé comme une console encastrée au niveau du plancher terrasse, d'après sa disposition, l'acrotère est soumis à une flexion composée due aux charges suivantes :

- Son poids propre sous forme d'un effort normal vertical.
- Une force horizontale due à une main courante Q = 1 kN/ml.

Le calcul se fait pour une bande de 1 ml de largeur dont les dimensions sont les suivantes :

- Largeur : b = 100 cm
- Hauteur : H = 60 cm
- Epaisseur : e = 10 cm

Figure III.1 : Acrotère (cm).

III.1.2.1. Charges verticales

La surface de l'acrotère : $S = 0,069 \text{ m}^2$

- Poids propre de l'acrotére
- Revêtement :

$25 \times 0,069 = 1,725 \text{ kN/ml}$ $\underline{14 \times 0,02 \times (2 \times 0,6 + 0,1) = 0,364 \text{ kN ml}}$ $\mathbf{G} = 2,09 \text{ kN/ml}$

III.1.2.2. Charges horizontales

$$\label{eq:Q} \begin{split} Q &= 1,00 \ kN/ml \\ L'action des forces horizontales : (F_p) \\ L'action des forces horizontales est données par : F_p &= 4 \times A \times C_p \times W_p \end{split}$$

Figure III.2 : Sollicitations de l'acrotère.

Avec : : Coefficient d'accélération de la zone et le groupe d'usage appropriés А groupe 2. [A = 0,3]: Facteur de force horizontale. $[C_p = 0,8].$ C_p W_p : Poids de l'acrotère. $W_p = 2,09 \text{ kN}.$ $F_p = 4 \times 0, 3 \times 0.8 \times 2.09 = 2.006 \text{ kN/ml}$ $Q_{h} = Max (1,5 \times Q; F_{p}) = Max (1,5 \times 1; 2,006) = 2,006 \text{ kN/ml}$ Alors pour une bande de 1m de largeur : G = 2,09 kN $Q_h = 2,006 \text{ kN}$ **III.1.3.** Calcul des efforts Pour une bande de 1m de largeur : **E.L.U**: N_{μ} $= 1.35 \times G = 1.35 \times 2.09 \times 1 = 2.82$ kN Mu = $1.5 \times Q_h \times h = 1.5 \times 2,006 \times 0.6 = 1,805$ kN.m Tu $= 1.5 \times Q_{h} = 3.01 \text{ kN}$ E.L.S: = G = 2,09 kNNser Mser $= Q_h \times h = 2,006 \times 0,6 = 1,204 \text{ kN.m}$ T_{ser} $= Q_h = 2,006 \text{ kN}$ Qh G

T_u(kN)

 $M_{u}(kN.m)$

Figure III.3 : Efforts internes de l'acrotère.

 $N_{u}(kN)$

III.1.4. Ferraillage de l'acrotère

h = 10 cm; b = 100 cm; $f_{c28} = 35 \text{ MPa}$; $\sigma_{bc} = 19,83 \text{ MPa}$; c = c' = 2 cm; $f_e = 500 \text{ MPa}$.

Figure III.4 : Coupe horizontale de l'acrotère.

Calcul de l'excentricité^[4]:

 $e_0 = \frac{M_u}{N_u} = \frac{1,805}{2,82} = 64 \text{ cm}$ $\frac{h}{2} - c' = \frac{10}{2} - 2 = 3 \text{ cm}$ $e_0 > \frac{h}{2} - c' \rightarrow$ Section partiellement comprimée (SPC). Le centre de pression se trouve à l'extérieur de la l'acrotère. Les armatures seront calculées à la flexion simple en équilibrant le moment fictif M_f. Calcul du moment fictif « M_f » ^[4]: $M_{\rm f} = M_{\rm u} + N_{\rm u} \left(\frac{\rm h}{2} - \rm c\right)$ $M_f = 1,805 + 2,85 \times (0,05 - 0,02)$ D'où : $M_f = 1,89 \text{ kN.m}$ $\mu = \frac{M_f}{b \times d^2 \times f_{bu}} = \frac{1,89 \times 10^6}{1000 \times 80^2 \times 19,83} = 0,015$ $\mu = 0.015 < \mu_r = 0.392 \rightarrow \text{As'} = 0$ (Les armatures comprimées ne sont nécessaires) $\alpha = 1,25 \times (1 - \sqrt{1 - 2 \times \mu}) = 1,25 \times (1 - \sqrt{1 - 2 \times 0,015}) \rightarrow \alpha = 0,019$ $Z = d \times (1 - 0.4 \times \alpha) = 8 \times (1 - 0.4 \times 0.019) \rightarrow Z = 7.94$ cm $\mu < 0.186 \rightarrow \epsilon_{s} = 10\%$ d'où $\sigma_{s} = \frac{500}{1.15} = 435$ MPa $A_{S} = \frac{M_{f}}{Z \times \sigma_{s}} = \frac{1,89 \times 10^{6}}{79,4 \times 435} \rightarrow A_{S} = 54,72 \text{ mm}^{2}$ D'où : $A_2 = As - \frac{N_u}{\sigma_s} = 54,72 - \frac{2,85 \times 10^3}{435} = 48,17 \text{ mm}^2$ et On obtient : $A_1 = 0$ $A_2 = 0.48 \text{ cm}^2$

III.1.5. Vérifications

Il faut vérifier A_s avec la section minimale imposée par la règle du millième et par la règle de non fragilité ^[1]:

$$A_{s}^{\min} \ge Max \left\{ \frac{b \times n}{1000} ; 0,23 \times b \times d \times \frac{I_{L28}}{f_{e}} \right\}$$

Avec :
 $f_{t28} = 2,7 MPa ; fe = 500 MPa ; b = 100 cm ; d = 8 cm.$
 $A_{s}^{\min} \ge Max \{1 cm^{2} ; 0,99 cm^{2}\}$
On opte pour un choix de **5T6** avec **As = 1,41** cm² et un espacement e = 20 cm.

III.1.5.1. Armatures de répartition

 $\frac{A_s}{4} \le A_r \le \frac{A_s}{2} \rightarrow 0.352 \le A_r \le 0.705 \text{ cm}^2$ La section choisie est $A_r = 4T6 = 1.13 \text{ cm}^2$ avec un espacement $S_t = 20 \text{ cm}$.

III.1.5.2. Contraintes

La fissuration est préjudiciable. $e_0 = \frac{M_{ser}}{N_{ser}} = \frac{1,204}{2,09} = 57,6 \text{ cm}$ $\frac{h}{2} - c^{\prime} = \frac{10}{2} - 2 = 3 \text{ cm}$ $e_0 = 57,6 \text{ cm} > \frac{h}{2} - c^{\prime} = 3 \text{ cm} \rightarrow \text{Section Partiellement Comprimée (SPC).}$ On doit vérifier le béton et l'acier.

Centre de pression

C : La distance entre le centre de pression et la fibre la plus comprimée.

 $C = e - \frac{h}{2} = 57, 6 - 5 = 52, 6 \text{ cm}$

D'après le « BAEL 91 modif 99 », on doit résoudre l'équation suivant :

 $Y_c^3 + PY_c + q = 0.....(*)$

 Y_c : Distance entre le centre de pression et l'axe neutre. Avec :

D'où :

D'où l'équation (*) devient :

 $Y_c^3 - 8154,\!09 \times Y_c + 282619,\!84 = 0$

Figure III.5 : Position de l'axe neutre.

La solution de l'équation est donnée par le « BAEL 91 modif 99 » :

$$\Delta = q^2 + 4 \times \left(\frac{P}{3}\right)^3 = -4,458 \times 10^8 \text{ cm}^6 < 0$$

D'où :

$$\varphi = \operatorname{Arccos} \left[\frac{q}{2} \left(\frac{-P}{3} \right)^{\frac{-3}{2}} \right] = \operatorname{Arccos} (0,997) = 0,077$$

$$Y_{c} = -2 \sqrt{\frac{-P}{3}} \cos \left[\frac{2\pi}{3} + \frac{\varphi}{3} \right] = 54,34 \text{ cm}$$

$$Y_{1} = Y_{c} - C = 54,34 - 52,6 = 1,74 \text{ cm}$$
Calcul du moment d'inertie :
$$I_{c} = \frac{1}{2} \times h \times h^{3} + h \times (A \times S_{c} + A \times S_{c}) = S \times h^{2} = 0.07714$$

 $I_{GI} = \frac{1}{3} \times \mathbf{b} \times \mathbf{h}^3 + \eta \times (\mathbf{A}_1 \times \mathbf{c}_1 + \mathbf{A}_2 \times \mathbf{d}) - \mathbf{S} \times \mathbf{v}_1^2 = 9771,53 \text{ cm}^4$

III.1.5.2.1. Contrainte du béton

$$\sigma_{bc \max} = \frac{N_{ser} \times Y_1}{\frac{b \times Y_1^2}{2} + 15 \times A_1 \times (Y_1 - c_1) - 15 \times A_1 \times (d - Y_1)} = 2,7 \text{ MPa} < 0,6 \times f_{c28} = 21 \text{ MPa}$$
 Vérifiée.

III.1.5.2.2. Contrainte de l'acier

On a une fissuration préjudiciable ^[4]:

$$\begin{split} \sigma_{\rm s} &\leq \overline{\sigma_{\rm s}} = \xi = {\rm Min} \left\{ \frac{2}{3} f_e \; ; \; {\rm Max} \; (0,5 \; f_e \; ; 110 \; \sqrt{\eta \times f_{t28}} \right\} \\ \eta &= 1,6 \; ({\rm Acier \; HA}) \\ \sigma_{\rm s1} &= 15 \times \sigma_{\rm bc \; max} \; \frac{Y_1 - c_1}{Y_1} = -6,05 \; {\rm MPa} \\ \sigma_{\rm s2} &= 15 \times \sigma_{\rm bc \; max} \; \frac{d - Y_1}{Y_1} = 145,71 \; {\rm MPa} \\ \sigma_{\rm s2} &= 145 \; {\rm MPa} < \overline{\sigma_{\rm s}} = {\rm Min} \left\{ \frac{2}{3} 500 \; ; \; {\rm Max} \; (0,5 \times 500; 110 \; \sqrt{1,6 \times 2,7} \right\} = 250 \; {\rm MPa} \; {\rm Vérifiée.} \end{split}$$

III.1.5.3. Effort tranchant

La contrainte de cisaillement est donnée par la formule suivante ^[1]:

$$\begin{aligned} \tau_{\rm u} &= \frac{T_{\rm u}}{b \times d} \le \overline{\tau_{\rm u}} = \text{Min} \{0, 1 \times f_{c28}; 4 \text{ MPa}\} = 3,5 \text{ MPa} \\ \tau_{\rm u} &= \frac{3,01 \times 10^3}{1000 \times 80} = 0,038 \text{ MPa} < \overline{\tau_{\rm u}} = 3,5 \text{ MPa} \end{aligned} \qquad \text{Vérifiée.} \end{aligned}$$

III.2. Planchers

III.2.1. Planchers dalle pleine

Les dalles pleines sont des éléments plans dont la dimension hors plan (épaisseur) est relativement faible par rapport aux dimensions en plan (longueur, largeur), chargés perpendiculairement à leur plan moyen reposant sur deux ou plusieurs appuis, ou bien sur un seul dans le cas des dalles pleines en porte à faux (console).

Dans notre structure, nous avons deux types de dalles pleines :

- Dalles pleines de forme triangulaire reposant sur trois appuis (méthode des lignes de rupture).
- Dalles pleines de forme rectangulaire reposant sur quatre appuis (méthode forfaitaire).

III.2.1.1. Dalle triangulaire

III.2.1.1.1. Principe de la méthode des lignes de rupture^[20]

Cette méthode consiste à déterminer un ou plusieurs mécanismes de rupture d'un panneau de dalle qui soient cinématiquement admissibles.

La création des mécanismes de rupture se produit par plastification des aciers c'est-à-dire dès que l'allongement de l'acier entraine alors une fissuration du béton et donc une rotule.

Le panneau de dalle est ainsi transformé en un ensemble de plaques supposées indéformables. Ces plaques vont pivoter autour des lignes d'appui sous l'effet de leur chargement.

Il existe a priori plusieurs mécanismes de rupture pour un même schéma de dalle.

On doit rechercher parmi tous les mécanismes possibles, celui qui, pour une charge extérieure donnée p, donne le moment fléchissant le plus fort.

A partir de ce mécanisme de rupture, on peut calculer les armatures de la dalle en utilisant le principe de la conservation de l'énergie.

III.2.1.1.2. Hypothèses de calcul^[20]

Les lignes de rupture, fixées par le calculateur, répondent aux règles suivantes :

Les lignes de rupture délimitent des surfaces planes. Celles-ci restent planes après rupture.

- Les intersections des plaques sont donc droites \rightarrow les lignes de rupture sont des droites.
- Les plaques pivotent autour des lignes d'appui et des lignes de rupture.
- Les lignes de rupture passent par les intersections de 2 lignes d'appui.
- Lorsque 2 lignes d'appui sont parallèles, la ligne de rupture leur est parallèle (on se ramène à la règle précédente étant donné que des lignes parallèles ont leur intersection à l'infini).

III.2.1.1.3. Évaluation des charges

- Charge permanente : $G = 8.9 \text{ kN/m}^2$
- Charge d'exploitation : $Q = 1.50 \text{ KkN/m}^2$

III.2.1.1.4. Combinaison des charges

E.L.U : $P_u = 1,35G + 1,5Q = 14,27 \text{ kN/m}^2$ **E.L.S** : $P_{ser} = G + Q = 10,4 \text{ kN/m}^2$

III.2.1.1.5. Calcul des efforts internes

- x1 = 2,3 m
- $x^2 = 2,25 \text{ m}$
- x3 = 2,25 m

III.2.1.1.5.a. Travail extérieur^[20]

$$\tau_{ext} = \sum P_{u} \times S \times \delta_{G}$$

Avec :

P_u: Charge répartie sur la dalle.

S : Surface de la dalle.

 δ_G : Déplacement du centre de gravité de la surface « S ».

On a :

III.2.1.1.5.b. Travail intérieur^[20]

Pour une partie de dalle le travail des forces internes est égal au produit du moment de plastification par la rotation de la partie de dalle autour de son axe et par la projection de la ligne de rupture (L.R) sur l'axe de rotation.

 $\tau_{int} = \sum m \times \omega \times a + \sum m' \times \omega \times a$ Avec :

a : Projection de la ligne de rupture sur l'axe de rotation.

$$\begin{split} \omega_{1} &= \frac{1}{2,3} = 0,435 \\ \omega_{2} &= \frac{1}{2,25} = 0,444 \\ \omega_{3} &= \frac{1}{2,25} = 0,444 \\ \tau_{int2} &= (m+m') \times 0,435 \times 7,3 = 3,176 \times (m+m') \\ \tau_{int2} &= (m+m') \times 0,444 \times 8,2 = 3,641 \times (m+m') \\ \tau_{int3} &= (m+m') \times 0,444 \times 8,2 = 3,641 \times (m+m') \\ \tau_{int3} &= (m+m') \times 0,444 \times 8,2 = 3,641 \times (m+m') \\ \tau_{int4} &= 10,458 \times (m+m') \end{split}$$

Pour une dalle transformée en mécanisme : $\tau_{int} = \tau_{ext}$ 10,458 × (m+m') = 8,948×P → m+m' = $\frac{8,948P}{10,458}$ → m+m' = 0,856×P

On suppose que : $m' = 0.5 \times m$ On obtient : $m = 0.571 \times P$ À l'ELU on a : $P_u = 14.27 \text{ kN/m^2}$

Figure III.7 : Dimensions de la dalle triangulaire (m).

 $\begin{array}{l} \text{On trouve}: \begin{cases} m = 8,15 \text{ kN. m} \\ m' = 4,07 \text{ kN. m} \end{cases} \\ \text{\AA 1'ELS on a}: \qquad P_{ser} = 10,4 \text{ kN/m}^2 \\ \text{On trouve}: \begin{cases} m = 5,94 \text{ kN. m} \\ m' = 2,97 \text{ kN. m} \end{cases} \end{array}$

III.2.1.1.6. Ferraillage de la dalle triangulaire

Le calcul se fait en flexion simple pour une bande de 1m. $f_{c28} = 35 MPa$; $f_{128} = 2.7 MPa$; $\sigma_{bc} = 19,83 MPa$; b = 100 cm; h = 17 cm; c = c' = 3 cm; d = 14 cm; $f_e = 500 MPa$

Les résultats sont regroupés dans le tableau suivant :

Tableau III.1 : Ferraillage de la dalle triangulaire.

	Mu (kN.m)	μ	μ<μ _R	A's (cm ²)	α	Z (cm)	A _s ^{cal} (cm ²)	A _s ^{min} (cm ²)	Choix
Travée	8,15	0,021	Oui	0	0,021	13,9	1,35	1.74	6T8=3,02
Appuis	5,94	0,015	Oui	0	0,015	13.9	0.98	1.74	6T8=3,02

III.2.1.1.7. Vérifications

III.2.1.1.7.a. Condition de non fragilité

$$\begin{split} A_s &\geq A_s^{\min} = 0,23 \times b \times d \times \frac{f_{t28}}{f_e} = 1,74 \text{ cm}^2 \\ \text{En travée}: A_s &= 3,02 \text{ cm}^2 > A_s^{\min} = 1,74 \text{ cm}^2 \\ \text{Sur appui}: A_s &= 3,02 \text{ cm}^2 > A_s^{\min} = 1,74 \text{ cm}^2 \\ \end{split}$$

III.2.1.1.7.b. Espacement

En Travée :

Sens x-x : $esp = \frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (3h ; 33 cm) = Min (51 cm ; 33 cm) = 33 cm Vérifiée. Sens y-y : $esp = \frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (4h ; 45 cm) = Min (68 cm ; 33 cm) = 33 cm Vérifiée. **Sur Appuis :** Sens x-x & y-y : $esp = \frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (4h ; 45 cm) = Min (68 cm ; 33 cm) = 33 cm Vérifiée.

III.2.1.1.7.c. Effort tranchant

III.2.1.1.7.d. Contraintes

 $\sigma_{bc \max} = \frac{M_{ser}}{I} \times y < \overline{\sigma_{bc}} = 0, 6 \times f_{c28} = 21 \text{ MPa}$ $\sigma_{s} = \eta \times \frac{M_{ser}}{I} \times (d - y) \le \overline{\sigma_{s}} = \xi = \text{Min} \left\{ \frac{2}{3} f_{e} \text{ ; Max } (0,5 f_{e} \text{ ; } 110 \sqrt{\eta \times f_{t28}} \right\}$ « y » étant la solution de l'équation suivante : $b \times y^{2} + 30 \times (A_{s} + A'_{s}) \times y - 30 \times (d \times A_{s} + d' \times A'_{s}) = 0$ Moment d'inertie : $I = \frac{b}{3} \times y^{3} + 15 \times A_{s} \times (d - y)^{2} + 15 \times A'_{s} \times (y - c')^{2}$

Les résultats sont résumés dans le tableau ci-dessous :

Tableau III.2 : Vérification des contraintes de la dalle triangulaire.

	M _{ser} (kN.m)	$\begin{array}{c} \mathbf{A_s} \\ (\mathbf{cm}^2) \end{array}$	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
Travée	5,94	3,02	4,93	6375,4	2,91	Vérifiée	152,03	Vérifiée
Appuis	2,97	3,02	4,93	6375,4	1,45	Vérifiée	76,01	Vérifiée

Figure III.8 : Ferraillage de la dalle triangulaire par ml (cm).

III.2.1.2. Dalle rectangulaire

III.2.1.2.1. Évaluation des charges

- Charge permanente : $G = 8,9 \text{ kN/m}^2$ - Charge d'exploitation : $Q = 1.50 \text{ kN/m}^2$

- Charge d'exploitation : Q = 1.50 km/l

III.2.1.2.2. Combinaison des charges

E.L.U : $P_u = 1,35G + 1,5Q = 14,27 \text{ kN/m}^2$ **E.L.S** : $P_{ser} = G + Q = 10,4 \text{ kN/m}^2$

III.2.1.2.3. Calcul des efforts internes

$$\begin{split} & L_x = 6,3 \text{ m} \\ & L_y = 8 \text{ m} \\ & \alpha = \frac{L_x}{L_y} = \frac{6,3}{8} = 0,79 \\ & \hat{\textbf{A}} \text{ I'ELU :} \\ & M_x = \mu_x \times P_u \times L_x^2 \\ & M_x = 0,0573 \times 14,27 \times 6,3^2 = 32,45 \text{ kN.m/ml} \\ & M_y = \mu_y \times M_x \\ & M_y = 0,5786 \times 32,45 = 18,77 \text{ kN.m/ml} \\ & \hat{\textbf{A}} \text{ I'ELS :} \\ & M_x = \mu_x \times P_{ser} \times L_x^2 \\ & M_x = 0,0639 \times 10,4 \times 6,3^2 = 26,38 \text{ kN.m/ml} \\ & M_y = \mu_y \times M_x \\ & M_y = 0,6978 \times 26,38 = 18,41 \text{ kN.m/ml} \end{split}$$

Pour les moments sur appui et en travée on a :

-	Travée de rive :	Appui de rive Appui intermédiaire	$\rightarrow M_a = 0.3 \times M_x$ $\rightarrow M_i = 0.5 \times M_x$
		Travée de rive	\rightarrow M = 0.85×M
		Havee de live	$v_{1v_{1}} = 0.00 \times 101$
-	Travée intermédiaire :	Appui d'extrémité	$\rightarrow M_i = 0,5 \times M_x$
		Travée intermédiaire	$\rightarrow M_t = 0,75 \times M$
-	Travée unique :	Travée	$\rightarrow M_t = 0.95 \times M_t$
	-	Appui	\rightarrow M _a = 0,3×M

Tableau III.3 : Calcul des moments de la dalle rectangulaire.

	EI	LU	ELS			
	M _t (kN.m)	M _a (kN.m)	M _t (kN.m)	M _a (kN.m)		
Sens x-x	30,83	9,74	25,06	7,91		
Sens y-y	15,95	16,22	15,65	13,19		

III.2.1.2.4. Ferraillage de la dalle rectangulaire

b = 100 cm; h = 17 cm; d = 14 cm; $f_e = 500 \text{ MPa}$; $f_{c28} = 35 \text{ MPa}$; $f_{f28} = 2,7 \text{ MPa}$; $f_e = 500 \text{ MPa}$. Les résultats sont récapitulés dans le tableau suivant :

	Sens	Mu (kN.m)	μ	μ<μ _R	A _s ' (cm ²)	α	Z (cm)	A _s ^{cal} (cm ²)	A _s ^{min} (cm ²)	Choix
Travée	х—х	30,83	0,079	Oui	0	0,103	13,4	5,29	1,74	8T12
	у—у	15,95	0,041	Oui	0	0,052	13,7	2,68	1,74	7T10
Appuis	х—х	9,74	0,025	Oui	0	0,032	13,8	1,62	1,74	6T10
	у—у	16,22	0,042	Oui	0	0,054	13,7	2,72	1,74	6T10

Tableau III.4 : Ferraillage de la dalle rectangulaire.

III.2.1.2.5. Vérifications

III.2.1.2.5.a. Condition de non fragilité

$$\begin{split} A_{s} &\geq A_{s}^{\min} = 0,23 \times b \times d \times \frac{f_{t28}}{f_{e}} = 1,74 \text{ cm}^{2} \\ \text{En travée : Min } (A_{x} \text{ ; } A_{y}) &= A_{y} = 5,50 \text{ cm}^{2} > A_{s}^{\min} = 1,74 \text{ cm}^{2} \\ \text{Sur appui : } & A_{x} = 4,71 \text{ cm}^{2} > A_{s}^{\min} = 1,74 \text{ cm}^{2} \\ \end{split}$$

III.2.1.2.5.b. Espacement

En Travée :

Sens x-x : $esp = \frac{100}{8} = 12,5 \text{ cm}$ On prend esp = 15 cm < Min (3h ; 33 cm) = Min (51 cm ; 33 cm) = 33 cm Vérifiée. Sens y-y : $esp = \frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (4h ; 45 cm) = Min (68 cm ; 33 cm) = 33 cm Vérifiée. Sur Appuis : Sens x-x & y-y : $esp = \frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (4h ; 45 cm) = Min (68 cm ; 33 cm) = 33 cm Vérifiée.

III.2.1.2.5.c. Effort tranchant

$$\begin{aligned} \tau_{\rm u} &= \frac{T_{\rm u}^{\rm max}}{d} \le \overline{\tau_{\rm u}} = 0,047 \times f_{c28} = 1,75 \text{ MPa} \\ T_{\rm x} &= \frac{P_{\rm u} \times L_{\rm x} \times L_{\rm y}}{2L_{\rm x} + L_{\rm y}} = \frac{14,27 \times 6,3 \times 8}{2 \times 6,3 + 8} = 34,91 \text{ kN/ml} \\ T_{\rm y} &= \frac{P_{\rm u} \times L_{\rm x}}{3} = \frac{14,27 \times 6,3}{3} = 29,97 \text{ kN/ml} \\ T_{\rm u}^{\rm max} &= \text{Max} \{T_{\rm x}; T_{\rm y}\} = T_{\rm x} = 34,91 \text{ kN/ml} \\ \tau_{\rm u} &= \frac{34,91}{140} = 0,249 \text{ MPa} < 1,75 \text{ MPa} \quad \text{Vérifiée} \rightarrow \text{ferraillage d'âme non nécessaire.} \end{aligned}$$

III.2.1.2.5.d. Contraintes

$$\begin{split} \sigma_{bc \max} &= \frac{M_{ser}}{I} \times y < \overline{\sigma_{bc}} = 0, 6 \times f_{c28} = 21 \text{ MPa} \\ \sigma_s &= \eta \times \frac{M_{ser}}{I} \times (d-y) \leq \overline{\sigma_s} = \xi = \text{Min} \left\{ \frac{2}{3} f_e \text{ ; Max } (0,5 f_e \text{ ; } 110 \sqrt{\eta \times f_{t28}} \right\} \\ &\ll y \text{ w étant la solution de l'équation suivante :} \\ b \times y^2 + 30 \times (A_s + A_s) \times y - 30 \times (d \times A_s + d' \times A_s) = 0 \\ \text{Moment d'inertie : } I &= \frac{b}{3} \times y^3 + 15 \times A_s \times (d-y)^2 + 15 \times A_s \times (y-c')^2 \end{split}$$

Les résultats sont résumés dans le tableau ci-dessous :

Tableau III.5 : Vérification des contraintes de la dalle rectangulaire.

	Sens	M _{ser} (kN.m)	A _s (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
Trovác	х—х	25,06	9,05	4,76	15404	7,74	Vérifiée	225,59	Vérifiée
Iravee	у—у	15,65	5,50	3,92	10450	5,87	Vérifiée	226,50	Vérifiée
Annuia	х—х	7,91	4,71	3,13	9232,1	3,12	Vérifiée	133,04	Vérifiée
Appuis	у—у	13,19	4,71	3.69	9218.2	3.16	Vérifiée	132.73	Vérifiée

III.2.1.2.5.e. Flèche

Il n'est pas nécessaire de faire la vérification de la flèche, si les deux conditions citées cidessous sont vérifiées simultanément^[1]:

$$\frac{h}{L_x} = \frac{17}{630} = 0,027 \ge \frac{M_t}{20 \times M_x} = \frac{25,06}{20 \times 26,38} = 0,047$$
Non vérifiée.

$$\frac{A}{b \times d} = \frac{6,79}{100 \times 14} = 0,00485 \le \frac{2}{f_e} = \frac{2}{500} = 0,004$$
Non vérifiée.

Les deux conditions ne sont pas vérifiées, donc le calcul de la flèche est nécessaire. Flèche totale : $\Delta f_t = f_{g_v} - f_{j_i} + f_{p_i} - f_{g_i} \le \bar{f}$ ^[1]

 f_{g_v} : Flèche de longue durée due à l'ensemble des charges permanentes.

 f_{g_i} : Flèche instantanée due à l'ensemble des charges permanentes.

 f_{j_i} : Flèche instantanée due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons (nulle).

-28-

 f_{p_i} : Flèche instantanée due à l'ensemble des charges (G+Q).

Remarque :

La flèche est calculée sur la petite portée (L_x)

-Moment d'inerte de la section rectangulaire homogène I₀:

$$I_0 = \frac{b \times h^3}{3} + 15 \times [A_s \times (d - y)^2 + A'_s \times (y - d')^2]$$

-Calcul des moments d'inerte fictifs :
$$I_{fi} = \frac{1.1 \times I_0}{1 + \lambda_i \times \mu}$$

$$\begin{split} I_{fv} &= \frac{1,1 \times I_0}{1 + \lambda_v \times \mu} \\ \text{Avec} : \\ \boldsymbol{\lambda}_i &= \frac{0,05 \times f_{t28}}{\rho \times \left(2 + 3 \times \frac{b_0}{b}\right)} \\ \boldsymbol{\lambda}_v &= \frac{0,02 \times f_{t28}}{\rho \times \left(2 + 3 \times \frac{b_0}{b}\right)} \\ \boldsymbol{\lambda}_v &= \frac{0,02 \times f_{t28}}{\rho \times \left(2 + 3 \times \frac{b_0}{b}\right)} \\ \text{: Coefficient pour la déformation différée} \\ \boldsymbol{\rho} &= \frac{A}{b \times d} \\ \text{: Pourcentage des armateurs} \\ \boldsymbol{\mu} &= 1 - \frac{1,75 \times f_{t28}}{4 \times \rho \times \sigma_s + f_{t28}} \end{split}$$

 σ_s : Contrainte de traction effective de l'armature correspondant au cas de charge considéré σ_s Les résultats sont récapitulés dans le tableau ci-dessous :

Tableau III.6 : Récapitulatif du calcul de flèche de la dalle rectangulaire.

M _{ser} (kN.m)	A _s (cm ²)	ρ	σ _s (MPa)	λ_i	$\lambda_{\rm v}$	μ	I_{θ} (cm ⁴)	I_{fi} (cm ⁴)	I_{fv} (cm ⁴)
25,06	13,76	8,09×10 ⁻³	225,59	3,37	1,33	0,53	175575,52	69320,22	113281,2

Calcul de la flèche instantanée due à l'ensemble des charges (G+Q). $f_{p_i} = \frac{M \times L_x^2}{10 \times E_{ij} \times I_{fi}} = \frac{25,06 \times 10^6 \times 6300^2}{10 \times 35981,7 \times 69320,22 \times 10^4} = 3,99 \text{ mm}$

Calcul de la flèche instantanée due à l'ensemble des charges permanentes.

 $f_{g_i} = \frac{M \times L_x^2}{10 \times E_{ij} \times I_{fi}} = \frac{21,44 \times 10^6 \times 6300^2}{10 \times 35981,7 \times 69320,22 \times 10^4} = 3,41 \text{ mm}$

Calcul de la flèche de longue durée due à l'ensemble des charges permanentes.

$$f_{gv} = \frac{M \times L_{x}^{2}}{10 \times E_{iv} \times I_{fv}} = \frac{21,44 \times 10^{6} \times 6300^{2}}{10 \times 11994 \times 113281,2 \times 10^{4}} = 6,26 \text{ mm}$$

 $\Delta f_t = f_{g_v} + f_{p_i} - f_{g_i} = 6,26 + 3,99 - 3,41 = 3,43 \text{ mm} < \overline{f} = 5 + \frac{L_x}{1000} = 11,3 \text{ mm}$

D'où la flèche est vérifiée.

III.2.2. Planchers nervurés

Les dimensions des panneaux de la structure sont assez grandes, un plancher en dalle pleine serait synonyme de grande épaisseur et de ferraillage important, c'est pour cela que les planchers nervurés représentent une bonne solution pour les planchers de grandes travées.

III.2.2.1. Hypothèses de calcul

- -On suppose que les nervures travaillent comme des poutres continues appuyées sur les poutres principales et secondaires.
- Les panneaux délimités par les nervures travaillent comme des dalles pleines continues appuyées sur les nervures.

III.2.2.2. Evaluation des charges

III.2.2.2.1. Charges permanentes

Les dimensions sont les suivantes :

Epaisseur de la dalle :	e = 13 cm
Hauteur de la nervure :	$h_{ner} = 50 \ cm$
Largeur de la nervure :	$b_{ner} = 20 \ cm$

 $0,85 \text{ kN/m}^2$

 $0,12 \text{ kN/m}^2$

 $3,30 \text{ kN/m}^2$

 0.16 kN/m^2

 $3,25 \text{ kN/m}^2$

 $\frac{0,20 \text{ kN/m}^2}{\text{G} = 7,88 \text{ kN/m}^2}$

Dalle (terrasse)

- Gravillon de protection (e = 5 cm ; $\rho = 17 \text{ kN/m}^3$)
- Etanchéité multicouches (e = 2 cm ; $\rho = 6 \text{ kN/m}^3$)
- Forme de pente ($e_{moy} = 15 \text{ cm}$; $\rho = 22 \text{ kN/m}^3$)
- Isolation thermique (e = 4 cm ; ρ = 4 kN/m³)
- Dalle pleine (ep = 13 cm)
- Enduit en plâtre (e = 2 cm ; $\rho = 10 \text{ kN/m}^3$)

III.2.2.2.2. Surcharges d'exploitation

Charge d'exploitation : $Q = 1.50 \text{ kN/m}^2$

III.2.2.3. Etude des nervures

III.2.2.3.1. Calcul des efforts

Vu la complexité du chargement et du nombre de travées important le calcul des efforts internes sera fait numériquement à l'aide du logiciel de calcul de structures **SAP2000**.

En travée :		
E.L.U :	$M_{u} = 110 \text{ kN.m}$	ſ
E.L.S :	$M_{ser} = 80,4 \text{ kN.m}$	-
Sur appui :		
E.L.U :	$M_{u} = 105 \text{ kN.m}$	
E.L.S :	$M_{ser} = 76,5 \text{ kN.m}$	-
Effort tranchant :		Į
ELU:	$T_u = 97,9 \text{ kN}$	-
E.L.S :	$T_{ser} = 71.5 \text{ kN}$	

III.2.2.3.2. Ferraillage des nervures

Figure III.10 : Plan du plancher nervuré.

b = 20 cm; h = 50 cm; d = 45 cm; $f_e = 500 \text{ MPa}$; $f_{c28} = 35 \text{ MPa}$; $f_{t28} = 2,7 \text{ MPa}$; $f_e = 500 \text{ MPa}$. Les résultats sont récapitulés dans le tableau suivant :

	Mu (kN.m)	μ	μ<μ _R	As' (cm ²)	α	Z (cm)	As ^{cal} (cm ²)	A _s ^{min} (cm ²)	Choix
Travée	110	0,137	Oui	0	0,185	41,7	9,24	1,12	6T14
Appuis	105	0,131	Oui	0	0,176	41,8	6,16	1,12	6T14

 Tableau III.7 : Ferraillage des nervures.

III.2.2.3.3. Vérifications

III.2.2.3.3.a. Condition de non fragilité

$A_s \ge A_s^{\min} = 0,23 \times b \times d$	$1 \times \frac{f_{t28}}{f_e} =$	1,12 cm ²	
En travée :	A travée	$= 9,24 \text{ cm}^2 > A_s^{min} \equiv 1,12 \text{ cm}^2$	Vérifiée.
Sur appui :	A_{appui}	$= 9,24 \text{ cm}^2 > A_s^{min} = 1,12 \text{ cm}^2$	Vérifiée.

III.2.2.3.3.b. Espacement

En Travée : $e_h = \frac{20 - 2 \times 4 - 2 \times 1, 4}{1} = 9,2 \text{ cm}$ Horizontalement : On prend : $e_h = 9 \text{ cm} > \text{Max} (\emptyset; 1,5 \times c_g) = \text{Max} (1,4 \text{ cm}; 3,75 \text{ cm}) = 3,75 \text{ cm} \text{ Vérifiée.}$ Verticalement : $e_v > Max (\emptyset; c_g) = Max (1,4 \text{ cm}; 2,5 \text{ cm}) = 2,5 \text{ cm}$ On prend : $e_{y} = 4 \text{ cm} > 2,5 \text{ cm}$ Vérifiée. Sur Appuis : $e_{\rm h} = \frac{20 - 2 \times 4 - 2 \times 1, 4}{1} = 9,2 {\rm ~cm}$ Horizontalement : On prend : $e_h = 9 \text{ cm} > \text{Max} (\emptyset; 1,5 \times c_g) = \text{Max} (1,4 \text{ cm}; 3,75 \text{ cm}) = 3,75 \text{ cm} \text{ Vérifiée.}$ Verticalement : $e_y > Max (\emptyset; c_g) = Max (1,4 \text{ cm}; 2,5 \text{ cm}) = 2,5 \text{ cm}$ On prend : $e_v = 4 \text{ cm} > 2,5 \text{ cm}$ Vérifiée.

III.2.2.3.3.c. Effort tranchant

III.2.2.3.3.d. Contraintes

$$\begin{split} \sigma_{bc \max} &= \frac{M_{ser}}{l} \times y < \overline{\sigma_{bc}} = 0, 6 \times f_{c28} = 21 \text{ MPa} \\ \sigma_{s} &= \eta \times \frac{M_{ser}}{l} \times (d-y) \leq \overline{\sigma_{s}} = \xi = \text{Min} \left\{ \frac{2}{3} f_{e} \text{ ; Max} (0,5 f_{e} \text{ ; } 110 \sqrt{\eta \times f_{t28}} \right\} \\ &\quad \text{ where } y \text{ with a solution de l'équation suivante :} \\ &\quad b \times y^{2} + 30 \times (A_{s} + A'_{s}) \times y - 30 \times (d \times A_{s} + d' \times A'_{s}) = 0 \\ &\quad \text{Moment d'inertie : } I = \frac{b}{3} \times y^{3} + 15 \times A_{s} \times (d-y)^{2} + 15 \times A'_{s} \times (y-c')^{2} \\ &\quad \text{ Les résultats sont résumés dans le tableau ci-dessous :} \end{split}$$

 Tableau III.8 : Vérification des contraintes des nervures.

	M _{ser} (KN.m)	$\begin{array}{c} \mathbf{A_s} \\ (\mathbf{cm}^2) \end{array}$	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
Travée	80,4	9,24	16,22	130214,4	10,01	Vérifiée	238,8	Vérifiée
Appuis	76,5	9,24	16,22	130214,4	9,52	Vérifiée	227,22	Vérifiée

III.2.2.3.3.e. Flèche

Flèche totale : $\Delta f_t = f_{g_v} - f_{j_i} + f_{p_i} - f_{g_i} \le \bar{f}$

 f_{q_n} : Flèche de longue durée due à l'ensemble des charges permanentes.

 f_{g_i} : Flèche instantanée due à l'ensemble des charges permanentes.

 f_{j_i} : Flèche instantanée due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons (nulle).

 f_{p_i} : Flèche instantanée due à l'ensemble des charges (G+Q).

Remarque :

La flèche est calculée sur la petite portée (L_x).

-Moment d'inerte de la section rectangulaire homogène I₀:

$$I_0 = \frac{b \times h^3}{3} + 15 \times [A_s \times (d - y)^2 + A'_s \times (y - d')^2]$$

-Calcul des moments d'inerte fictifs

$$\begin{split} I_{fi} &= \frac{1,1 \times I_0}{1 + \lambda_i \times \mu} \\ I_{fv} &= \frac{1,1 \times I_0}{1 + \lambda_v \times \mu} \\ \text{Avec}: \\ \boldsymbol{\lambda}_i &= \frac{0,05 \times f_{t28}}{\rho \times \left(2 + 3 \times \frac{b_0}{b}\right)} : \text{Coefficient pour la déformation instantanée.} \\ \boldsymbol{\lambda}_v &= \frac{0,02 \times f_{t28}}{\rho \times \left(2 + 3 \times \frac{b_0}{b}\right)} : \text{Coefficient pour la déformation différée.} \\ \boldsymbol{\rho} &= \frac{A}{b \times d} : \text{Pourcentage des armatures.} \end{split}$$

$$\mu = 1 - \frac{1}{4 \times \rho \times \sigma_s + f_{t28}}$$

 σ_S : Contrainte de traction effective de l'armature correspondant au cas de charge considéré.

Tableau III.9 : Récapitulatif du calcul de flèche des nervures.

M _{ser} (kN.m)	As (cm ²)	ρ	σs (MPa)	λι	λ_v	μ	I_{θ} (cm ⁴)	I_{fi} (cm ⁴)	I_{fv} (cm ⁴)
80,4	9,24	0,011	238,8	2,45	0,98	0,64	935119,01	399249,7	630843,63

Calcul de la flèche instantanée due à l'ensemble des charges (G+Q). $f_{p_i} = \frac{M \times L_x^2}{10 \times E_{ij} \times I_{fi}} = \frac{80,4 \times 10^6 \times 9000^2}{10 \times 35981,7 \times 399249,7 \times 10^4} = 4,53 \text{ mm}$

Calcul de la flèche instantanée due à l'ensemble des charges permanentes.

 $f_{g_i} = \frac{M \times L_x^2}{10 \times E_{ij} \times I_{fi}} = \frac{70,3 \times 10^6 \times 9000^2}{10 \times 35981,7 \times 399249,7 \times 10^4} = 3,96 \text{ mm}$

Calcul de la flèche de longue durée due à l'ensemble des charges permanentes.

$$f_{gv} = \frac{M \times L_x^2}{10 \times E_{iv} \times I_{fv}} = \frac{70,3 \times 10^6 \times 9000^2}{10 \times 11994 \times 630843,63 \times 10^4} = 7,53 \text{ mm}$$

 $\Delta f_t = f_{g_v} - f_{j_i} + f_{p_i} - f_{g_i} = 6, 7 - 3, 27 + 3, 74 - 3, 27 = 3, 43 \text{ mm} < \overline{f} = 5 + \frac{L}{1000} = 14 \text{ mm}$

Par conséquent la flèche est vérifiée.

Figure III.12 : Ferraillage des nervures en travée (cm).

III.2.2.4. Etude des dalles

Les dalles sont calculées comme une succession de panneaux carrés de 2 m de coté.

III.2.2.4.1. Évaluation des charges

- Charge permanente : $G = 7,9 \text{ kN/m}^2$

- Charge d'exploitation : $Q = 1.50 \text{ kN/m}^2$

III.2.2.4.2. Combinaison des charges

E.L.U : $P_u = 1,35G + 1,5Q = 12,92 \text{ kN/m}^2$ **E.L.S** : $P_{ser} = G + Q = 9,4 \text{ kN/m}^2$

III.2.2.4.3. Calcul des efforts internes

$$\begin{split} & L_x = 2 \ m \\ & L_y = 2 \ m \\ & \alpha = \frac{L_x}{L_y} = \frac{2}{2} = 1 \\ & \hat{\textbf{A}} \ \textbf{I'ELU}: \\ & M_x = \mu_x \times P_u \times L_x^2 \\ & M_x = 0,036 \times 12,92 \times 2^2 = 1,86 \ kN.m/ml \\ & M_y = \mu_y \times M_x \\ & M_y = 1 \times 1,86 = 1,86 \ kN.m/ml \\ & \hat{\textbf{A}} \ \textbf{I'ELS}: \\ & M_x = \mu_x \times P_{ser} \times L_x^2 \\ & M_x = 0,044 \times 9,4 \times 2^2 = 1,65 \ kN.m/ml \\ & M_y = \mu_y \times M_x \\ & M_y = 1 \times 1,65 = 1,65 \ kN.m/ml \\ & Pour \ les moments sur appui \ et \ en \ travée \ on \ a : \end{split}$$

Figure III.13 : Panneau du plancher nervuré (m).

-	Travée de rive :	Appui de rive	\rightarrow M _a = 0,3×M _x
		Appui intermédiaire	$\rightarrow M_i = 0,5 \times M_x$
		Travée de rive	$\rightarrow M_t = 0.85 \times M$
-	Travée intermédiaire :	Appui d'extrémité	$\rightarrow M_i = 0,5 \times M_x$
		Travée intermédiaire	$\rightarrow M_t = 0,75 \times M$
-	Travée unique :	Travée	\rightarrow M _t = 0,95×M
		Appui	\rightarrow M _a = 0,3×M

Tableau III.10 : Calcul des moments de la dalle du plancher nervuré.

	EI	LU	ELS			
	M _t (kN.m)	M _a (kN.m)	M _t (kN.m)	M _a (kN.m)		
Sens x-x	1,77	0,93	1,57	0,83		
Sens y-y	1,77	0,93	1,57	0,83		

III.2.2.4.4. Ferraillage de la dalle rectangulaire

b = 100 cm; h = 13 cm; d = 10 cm; $f_e = 500 \text{ MPa}$; $f_{c28} = 35 \text{ MPa}$; $f_{f28} = 2,7 \text{ MPa}$; $f_e = 500 \text{ MPa}$. Les résultats sont récapitulés dans le tableau suivant :

	Sens	M _u (kN.m)	μ	μ<μ _R	A _s ' (cm ²)	α	Z (cm)	$\frac{A_s^{cal}}{(cm^2)}$	A _s ^{min} (cm ²)	Choix	Esp
Trovéo	х—х	1,77	0,009	Oui	0	0,011	9,96	0,4	1,24	TS Ø ₆	15cm
Havee	у—у	1,77	0,009	Oui	0	0,011	9,96	0,4	1,24	TS Ø ₆	15cm
Annuis	х—х	0,93	0,005	Oui	0	0,006	9,98	0,21	1,24	TS Ø ₆	15cm
Appuis	у-у	0,93	0,005	Oui	0	0,006	9,98	0,21	1,24	TS Ø ₆	15cm

Tableau III.11 : Ferraillage de la dalle du plancher nervur
--

III.2.2.4.5. Vérifications

III.2.2.4.5.a. Condition de non fragilité

$A_s \ge A_s^{min} = 0,23 \times b \times$	$d \times \frac{f_{t28}}{f_e} = 1,24 \text{ cm}^2$	
En travée :	$A_y = 1,7 \text{ cm}^2 > A_s^{min} = 1,24 \text{ cm}^2$	Vérifiée.
Sur appui :	$A_x = 1.7 \text{ cm}^2 > A_s^{min} = 1.24 \text{ cm}^2$	Vérifiée.

III.2.2.4.5.b. Espacement

En Travée :

Sens x-x : $esp = \frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (3h ; 33 cm) = Min (39 cm ; 33 cm) = 33 cm Vérifiée. Sens y-y : $esp = \frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (4h ; 45 cm) = Min (52 cm ; 33 cm) = 33 cm Vérifiée. **Sur Appuis :** Sens x-x. & y-y : $esp = \frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (3h ; 33 cm) = Min (52 cm ; 33 cm) = 33 cm Vérifiée.

III.2.2.4.5.c. Effort tranchant

$$\begin{aligned} \tau_{\rm u} &= \frac{T_{\rm u}^{\rm max}}{d} \le \overline{\tau_{\rm u}} = 0,047 \times f_{c28} = 1,75 \text{ MPa} \\ T_{\rm x} &= \frac{P_{\rm u} \times L_{\rm x} \times L_{\rm y}}{2L_{\rm x} + L_{\rm y}} = \frac{12,92 \times 2 \times 2}{2 \times 2 + 2} = 8,61 \text{ kN/ml} \\ T_{\rm y} &= \frac{P_{\rm u} \times L_{\rm x}}{3} = \frac{12,92 \times 2}{3} = 8,61 \text{ kN/ml} \\ T_{\rm u}^{\rm max} &= \text{Max} \{T_{\rm x}; T_{\rm y}\} = T_{\rm x} = 8,61 \text{ kN/ml} \\ \tau_{\rm u} &= \frac{8,61}{100} = 0,086 \text{ MPa} < 1,75 \text{ MPa} \end{aligned}$$

III.2.2.4.5.d. Contraintes

$$\begin{split} &\sigma_{bc \max} = \frac{M_{ser}}{I} \times y < \overline{\sigma_{bc}} = 0, 6 \times f_{c28} = 21 \text{ MPa} \\ &\sigma_{s} = \eta \times \frac{M_{ser}}{I} \times (d-y) \leq \overline{\sigma_{s}} = \xi = \text{Min} \left\{ \frac{2}{3} f_{e} \text{ ; Max} (0,5 f_{e} \text{ ; } 110 \sqrt{\eta \times f_{t28}} \right\} \\ &\ll y \text{ w étant la solution de l'équation suivante :} \\ &b \times y^{2} + 30 \times (A_{s} + A'_{s}) \times y - 30 \times (d \times A_{s} + d' \times A'_{s}) = 0 \\ &\text{Moment d'inertie : } I = \frac{b}{3} \times y^{3} + 15 \times A_{s} \times (d-y)^{2} + 15 \times A'_{s} \times (y-c')^{2} \\ &\text{Les résultats sont résumés dans le tableau suivant :} \end{split}$$

	Sens	M _{ser} (kN.m)	A _s (cm2)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
Trováo	х—х	1,57	1,7	2,11	1920,7	1,73	Vérifiée	96,68	Vérifiée
Tlavee	у—у	1,57	1,7	2,11	1920,7	1,73	Vérifiée	96,68	Vérifiée
Annuia	х—х	0,83	1,7	2,11	1920,7	0,91	Vérifiée	51,11	Vérifiée
Appuis	у—у	0,83	1,7	2,11	1920,7	0,91	Vérifiée	51,11	Vérifiée

 Tableau III.12 : Vérification des contraintes des dalles du plancher nervuré.

III.2.2.4.5.e. Flèche

Il n'est pas nécessaire de faire la vérification de la flèche, si les deux conditions citées cidessous sont vérifiées simultanément^[1]:

$$\frac{h}{L_x} = \frac{13}{200} = 0,065 \ge \frac{M_t}{20 \times M_x} = \frac{1,77}{20 \times 1,86} = 0,047$$
 Vérifiée.
$$\frac{A}{b \times d} = \frac{1,7}{100 \times 10} = 0,0017 \le \frac{2}{f_e} = \frac{2}{500} = 0,004$$
 Vérifiée.

Les deux conditions sont vérifiées, il n'est donc pas nécessaire de vérifier la flèche.

Figure III.14 : Ferraillage des dalles du plancher nervuré par ml (cm).

III.3. les escaliers

Les escaliers sont des éléments constitués d'une succession de marches. Ils permettent l'accès aux différents niveaux d'un bâtiment.

Un escalier est déterminé par :

- La montée (hauteur à gravir) H;
- L'emmarchement (largeur utile) E ;
- Son giron g;
- Sa hauteur de marche h;

Hauteur de marche (valeur moyenne) : 13 cm \leq h \leq 17 cm ; Alors on prend **h** = **16 cm**,

III.3.1. Relation de Blondel

Un escalier se montera sans fatigue s'il respecte la relation de Blondel :

2h + g = 59 à 66 cm.On prend : g = 30 cmh = 16 cm. $30+16\times 2 = 62 cm$ Vérifiée.

III.3.2. Calcul des escaliers

Figure III.15 : Schéma de l'escalier.

L'escalier travaille à la flexion simple en considérant la dalle comme une poutre console uniformément chargée encastrée dans les voiles.

Tous les étages du bâtiment ont la même hauteur. Un calcul commun suffit.

Hauteur d'étage : $h_e = 360$ cm.

-	Hauteur de gravir :	H1 = H2 = 180 cm
-	Hauteur des marches :	h = 16 cm
-	Nombre de contre marches :	$n = \frac{H}{h} = 11$ marches.
-	Giron : $\mathbf{g} = 30 \ \mathbf{cm} \rightarrow$	$\mathbf{L} = \mathbf{g} \times (\mathbf{n} - 1) = 30 \times (11 - 1) \rightarrow \mathbf{L} = 300 \text{ cm}$
-	Inclinaison :	tg $\alpha = \frac{H}{h} = \frac{176}{300} \rightarrow \alpha = 30,4^{\circ}$

III.3.3. Evaluation des charges

III.3.3.1. Charges permanentes

Palier

-	Carrelage (e = 2 cm; $\rho = 0.2 \text{ kN/m}^2$)	0,40 kN/m ²
-	Mortier de pose (e = 2 cm ; ρ = 20 kN/m ³)	0,40 kN/m ²
-	Lit de sable (e = 3 cm ; $\rho = 19 \text{ kN/m}^3$)	0,57 kN/m ²
-	Poids propre du pallier ($ep = 16 cm$)	$4,00 \text{ kN/m}^2$
-	Enduit en plâtre (e = 2 cm ; $\rho = 10 \text{ kN/m}^3$)	0.20 kN/m^2
		$G = 5,57 \text{ kN/m}^2$
Paill	asse	
-	Carrelage (e = 2 cm; $\rho = 0.2 \text{ kN/m}^2$)	$0,40 \text{ kN/m}^2$
-	Mortier de pose (e = 2 cm ; $\rho = 20 \text{ kN/m}^3$)	$0,40 \text{ kN/m}^2$
-	Lit de sable (e = 3 cm ; $\rho = 19 \text{ kN/m}^3$)	0,57 kN/m ²
-	Poids propre de la marche ($ep = 16 \text{ cm}$)	4,00 kN/m ²
-	Enduit en plâtre (e = 2 cm ; $\rho = 10 \text{ kN/m}^3$)	$0,20 \text{ kN/m}^2$
		$G = 5.57 \text{ kN/m}^2$
		• • • • • • • • • • • • • • • • • • •

III.3.3.2. Surcharges d'exploitation

Pallier + marches :

 $Q_1 = 2,50 \text{ kN/m}^2$

III.3.4. Combinaison de charges

Pallier : E.L.U : $P_u = 1,35G + 1,5Q = 11,27 \text{ kN/m}^2$ E.L.S : $P_{ser} = G + Q = 8,07 \text{ kN/m}^2$ Paillasse : E.L.U : $P_u = 1,35G + 1,5Q = 11,27 \text{ KN/m}^2$ E.L.S : $P_{ser} = G + Q = 8,07 \text{ KN/m}^2$

III.3.5. Calcul des marches

Les marches seront calculées comme des poutres de 30 cm de largeur et 16 cm de hauteur travaillant en console encastrée dans les voiles.

III.3.5.1. Calcul des efforts internes

L = 1,6 m À l'ELU : $M_u = \frac{P_u \times b \times L^2}{2} = \frac{11,27 \times 0,3 \times 1,6^2}{2} = 4,33 \text{ kN.m}$ À l'ELS : $M_{ser} = \frac{P_{ser} \times b \times L^2}{2} = \frac{8,07 \times 0,3 \times 1,6^2}{2} = 3,1 \text{ kN.m}$

III.3.5.2. Ferraillage des marches

b = 30 cm; h = 16 cm; d = 13 cm; $f_e = 500 \text{ MPa}$; $f_{c28} = 35 \text{ MPa}$; $f_{t28} = 2,7 \text{ MPa}$; $f_e = 500 \text{ MPa}$. Les résultats sont récapitulés dans le tableau suivant :

Tableau III.13 : Ferraillage des marches.

Mu (kN.m)	μ	μ<μ _R	A _s ' (cm ²)	α	Z(cm)	A _s ^{cal} (cm ²)	A _s ^{min} (cm ²)	Choix	At
4,33	0,043	Oui	0	0,055	127	0,78	0,48	3T8	3T8

III.3.5.3. Vérifications

III.3.5.3.1. Condition de non fragilité

$$\begin{aligned} \mathbf{A}_{\mathrm{s}} &\geq \mathbf{A}_{\mathrm{s}}^{\mathrm{min}} = 0,23 \times \mathbf{b} \times \mathbf{d} \times \frac{f_{t28}}{f_e} = 0,48 \ \mathrm{cm^2} \\ \mathbf{A}_{\mathrm{s}} &= 1,51 \ \mathrm{cm^2} > \mathbf{A}_{\mathrm{s}}^{\mathrm{min}} = 0,48 \ \mathrm{cm^2} \end{aligned}$$

III.3.5.3.2. Effort tranchant

$$\begin{aligned} \tau_{\rm u} &= \frac{T_{\rm u}^{\rm max}}{b \times d} \le \overline{\tau_{\rm u}} = \text{Min} \{0, 1 \times f_{c28}; 4 \text{ MPa}\} = 3,5 \text{ MPa} \\ T_{\rm u} &= P_{\rm u} \times b \times L = 14,27 \times 0,3 \times 1,6 = 6,85 \text{ kN} \\ \tau_{\rm u} &= \frac{6,85 \times 10^3}{300 \times 130} = 0,176 \text{ MPa} < 3,5 \text{ MPa} \end{aligned}$$

III.3.5.3.3. Contraintes

$$\sigma_{bc \max} = \frac{M_{ser}}{I} \times y < \overline{\sigma_{bc}} = 0, 6 \times f_{c28} = 21 \text{ MPa}$$

$$\sigma_{s} = \eta \times \frac{M_{ser}}{I} \times (d - y) \le \overline{\sigma_{s}} = \xi = \text{Min} \left\{ \frac{2}{3} f_{e} ; \text{Max} (0,5 f_{e} ; 110 \sqrt{\eta \times f_{t28}} \right\}$$

$$\ll y \text{ we fant la solution de l'équation suivante :}$$

$$b \times y^{2} + 30 \times (A_{s} + A'_{s}) \times y - 30 \times (d \times A_{s} + d' \times A'_{s}) = 0$$
Moment d'inertie : I = $\frac{b}{3} \times y^{3} + 15 \times A_{s} \times (d - y)^{2} + 15 \times A'_{s} \times (y - c')^{2}$
Les résultats sont résumés dans le tableau ci-dessous :

Tableau III.14 : Vérification des contraintes des marches.

M _{ser} (kN.m)	$\begin{array}{c} \mathbf{A_s} \\ (\mathbf{cm}^2) \end{array}$	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
3,1	1,51	2,28	3009,7	2,34	Vérifiée	165,67	Vérifiée

III.3.5.3.4. Flèche

$$f = \frac{P_{ser} \times 0.3 \times L^4}{8 \times E_{vj} \times I} = \frac{8.07 \times 0.3 \times 1600^4}{8 \times 11994 \times \frac{300 \times 160^3}{12}} = 1,61 \text{ mm} \le \bar{f} = \frac{L}{250} = \frac{1600}{250} = 6,4 \text{ mm}$$

La flèche est donc vérifiée.

III.3.6. Calcul du palier

Les paliers seront calculés comme des poutres de bandes égales à 1 m de largeur et 16 cm de hauteur travaillant en console encastrée dans les voiles et poutres de chaînage.

Vérifiée.

Vérifiée.

III.3.6.1. Calcul des efforts internes

L = 1,6 m À l'ELU : $M_{u} = \frac{P_{u} \times L^{2}}{2} = \frac{11,27 \times 1,6^{2}}{2} = 14,43 \text{ kN.m}$ À l'ELS : $M_{ser} = \frac{P_{ser} \times L^{2}}{2} = \frac{8,07 \times 1,6^{2}}{2} = 10,33 \text{ kN.m}$

III.3.6.2. Ferraillage du pallier

b = 100 cm; h = 16 cm; d = 13 cm; $f_e = 500 \text{ MPa}$; $f_{c28} = 35 \text{ MPa}$; $f_{f28} = 2,7 \text{ MPa}$; $f_e = 500 \text{ MPa}$. Les résultats sont récapitulés dans le tableau suivant :

Mu (kN.m)	μ	μ<μ _R	As' (cm ²)	α	Z (cm)	As ^{cal} (cm ²)	A_s^{min} (cm ²)	Choix
14.43	0.043	Oui	0	0.055	12.7	2.61	1.61	6T8

Tableau III.15 : Ferraillage du pallier.

III.3.6.3. Vérifications

III.3.6.3.1. Condition de non fragilité

 $A_{s} \ge A_{s}^{\min} = 0,23 \times b \times d \times \frac{f_{t_{28}}}{f_{e}} = 1,61 \text{ cm}^{2}$ $A_{s} = 3,02 \text{ cm}^{2} > A_{s}^{\min} = 1,61 \text{ cm}^{2}$ Vérifiée.
III.3.6.3.2. Espacement
Sens x-x : esp = $\frac{100}{6} = 16,67 \text{ cm}$

On prend esp = 15 cm < Min (3h; 33 cm) = Min (39 cm; 33 cm) = 33 cm Vérifiée. Sens y-y : esp = $\frac{100}{6} = 16,67 \text{ cm}$ On prend esp = 15 cm < Min (4h; 45 cm) = Min (52 cm; 33 cm) = 33 cm Vérifiée.

III.3.6.3.3. Effort tranchant

III.3.6.3.4. Contraintes

$$\begin{split} \sigma_{bc \max} &= \frac{M_{ser}}{I} \times y < \overline{\sigma_{bc}} = 0, 6 \times f_{c28} = 21 \text{ MPa} \\ \sigma_{s} &= \eta \times \frac{M_{ser}}{I} \times (d-y) \leq \overline{\sigma_{s}} = \xi = \text{Min} \left\{ \frac{2}{3} f_{e} \text{ ; Max} \left(0, 5 f_{e} \text{ ; } 110 \sqrt{\eta \times f_{t28}} \right\} \right. \\ &\quad (y \text{ w etant la solution de l'équation suivante :} \\ &\quad b \times y^{2} + 30 \times (A_{s} + A'_{s}) \times y - 30 \times (d \times A_{s} + d' \times A'_{s}) = 0 \\ &\quad \text{Moment d'inertie : I} = \frac{b}{3} \times y^{3} + 15 \times A_{s} \times (d-y)^{2} + 15 \times A'_{s} \times (y-c') \end{split}$$

Les résultats sont résumés dans le tableau ci-dessous : **Tableau III.16 :** Vérification des contraintes du pallier.

M _{ser} (kN.m)	$\begin{array}{c} \mathbf{A_s} \\ (\mathbf{cm}^2) \end{array}$	Y (cm ²)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
10,33	4,71	3,54	7821,9	4,68	vérifié	187,26	vérifié

III.3.6.3.5. Flèche

$$f = \frac{P_{\text{ser}} \times L^3}{8 \times E_{vj} \times I} = \frac{8,07 \times 1600^4}{8 \times 11994 \times \frac{1000 \times 160^3}{12}} = 1,61 \text{ mm} \le \bar{f} = \frac{L}{250} = \frac{1600}{250} = 6,4 \text{ mm}$$

La flèche est donc vérifiée.

Figure III.16 : Ferraillage du palier par ml (cm).

Figure III.17 : Ferraillage des marches (cm).

Chapitre IV : Etude sismique.

IV.1. Introduction

Le séisme est l'un des risques naturels majeurs les plus dangereux et qui causent le plus de dégâts, ce phénomène se produit à cause du mouvement des plaques tectoniques.

Du moment que ce phénomène est imprévisible, la rigueur lors des analyses sismiques est cruciale pour assure la sécurité et la longévité des structures, afin d'éviter la ruine en cas de séisme.

IV.2. Caractéristique dynamiques propres

Une structure idéale est dépourvue de tout amortissement de sorte qu'elle puisse vibrer indéfiniment tant qu'il soit nécessaire de lui fournir de l'énergie. Ce comportement est purement théorique en raison de l'existence inévitable des frottements qui amortissent le mouvement.

Les caractéristiques propres de la structure sont obtenues à partir du système non amorti et non forcé, l'équation d'un tel système est donnée par ^[20]:

 $[M]{\ddot{x}(t)} + [K]{x(t)} = {0}$ (1)

Avec :

[M] : Matrice de masse de la structure.

[K] : Matrice de rigidité de la structure.

 $\{\ddot{x}\}$: Vecteur des accélérations.

 $\{x\}$: Vecteur des déplacements.

L'analyse d'un système à plusieurs degrés de liberté nous fournit les propriétés dynamiques les plus importantes de ce système, qui sont les fréquences propres et modes propres.

$$\{x(t)\} = \{A\} \sin(\omega t + \varphi)$$
 (2)

Avec :

 $\{A\}$: Vecteur des amplitudes.

 ω : Fréquence de vibration.

 φ : Angle de déphasage.

Les accélérations en vibration libre non amortie sont données par :

 $\{x(t)\} = -\omega^2 \{A\} \sin(\omega t + \varphi)$

(3)En substituant les équations (2) et (3) dans l'équation (1) ; on aura :

$$([K] - \omega^2 [M]) \{A\} \sin (\omega t + \varphi) = 0 \qquad ...(4)$$

Cette équation doit être vérifiée quel que soit le temps (t), ce qui donne :

 $([K] - \omega^2 [M]) \{A\}$ (5)

Ce système d'équation est un système à (n) inconnus « Ai ». Ce système ne peut admettre une solution non nulle que si le déterminant de la matrice s'annule c'est à dire :

 $\Delta_{\omega} = |[\mathbf{K}] - \omega^2 [\mathbf{M}]| =$ (6)

L'expression ci-dessus est appelée «Equation caractéristique ».

En développant l'équation caractéristique, on obtient une équation polynomiale de degré (\mathbf{n}) en (ω^2). Les (**n**) solutions (ω_1^2 ; ω_2^2 ; ...; ω_n^2) sont les carrés des pulsations propres des (**n**) modes de vibrations possibles. Le $\mathbf{1}^{er}$ mode vibratoire correspond à ω_1 et il est appelé mode fondamental ($\omega_1 < \omega_2 < \omega_1$ $\omega_2 < \ldots < \omega_n$

A chaque pulsation propre, correspond une forme d'oscillation appelée mode propre $\{A\}_i$ ou forme modale (modal shape).

IV.3. Modélisation de la structure

IV.3.1. Introduction

Vu la complexité de l'analyse, il est nécessaire d'établir un modèle numérique représentant la structure, ce dernier est introduit dans un logiciel de calcul dynamique afin de déterminer les modes propre de vibration ainsi que les efforts sismique. Parmi les méthodes de modélisation existantes il y a la méthode des éléments finis qui est utilisé par la majorité des logiciels de calcul. Pour cette étude, on utilisera le logiciel SAP2000.

La modélisation revient à représenter un problème physique possédant un nombre de degré de liberté (DDL) infini, par un modèle ayant un nombre de DDL fini qui décrit le phénomène étudier d'une manière aussi fiable que possible, ce modèle doit refléter avec une bonne précision le comportement et les paramètres du système d'origine (la masse, la rigidité et l'amortissement).

IV.3.2. Modélisation de la rigidité

On suppose que la structure a « p » nœuds et total n DDL numérotés de 1 à n, on considère six DDL par nœud, on aura donc : $n = 6 \times p$.

IV.3.2.1. Les éléments de portique

Les poteaux et poutres de la structure ont étés modélisés par des éléments barre (frame éléments) à deux nœuds possédant chacun 6 degré de liberté (trois translations, trois rotations).

- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).

IV.3.2.2. Les voiles

Les voiles ont été modélisés par des éléments plaque (Shell éléments) à 04 nœuds.

IV.3.2.3. Le Diaphragme

Les surfaces planes telles que les planchers sont assumés infiniment rigides dans leurs plans et ne peuvent se déformer qu'hors plan.

IV.3.2.4. Conception du contreventement vertical

Pour une bonne conception parasismique il faudra :

- Disposer les éléments de contreventement d'une manière symétrique dans chaque direction afin de limiter la torsion d'ensemble.
- Eloigner les éléments verticaux parallèles afin de disposer d'un grand bras de levier du couple résistant à la torsion.
- Maximiser la largeur des éléments verticaux afin de diminuer la déformabilité horizontale.
- Superposer les éléments verticaux, afin de créer des consoles verticales de section constante ou élargies vers le bas.

IV.3.2.5. Connectivité Sol/Structure

Tous les nœuds de la base du bâtiment sont encastrés (6 DDL bloqués).

IV.3.3. Modélisation de la masse

- La masse est calculée par l'équation $(G+\beta \times Q)^{[2]}$.
- La masse volumique attribuée aux matériaux constituant les poteaux et les poutres avec les dalles pleine est prise égale à celle du béton armé.
- La masse des planchers a été répartie pour chaque poutre porteuse.

- La masse de l'acrotère et des murs extérieurs (maçonnerie) a été répartie sur les poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).
- En choisissant l'option (Mass source / From loads), le SAP2000 calcule automatiquement les masses des planchers et la masse totale de la structure à partir des charges permanentes et d'exploitation sollicitant la structure.
- Tel que : $\beta = 0,2$ (bâtiment d'habitation, service).

IV.4. Etude sismique

IV.4.1. Introduction

Toute structure implantée en zone sismique est susceptible de subir durant sa durée de vie une excitation dynamique de nature sismique. De ce fait la détermination de la réponse sismique de la structure est incontournable lors de l'analyse et de la conception parasismique de cette dernière. Ainsi le calcul d'un bâtiment vis-à-vis du séisme vise à évaluer les charges susceptibles d'être engendrées dans le système structural lors du séisme.

IV.4.2. Choix de la méthode de calcul

En Algérie, la conception parasismique est régularisée par les « **RPA 99 modif 2003** ». Ce dernier propose trois méthodes de calcul de la réponse sismique :

- 1. La méthode statique équivalente.
- 2. La méthode d'analyse modale spectrale.
- 3. La méthode d'analyse dynamique par accélérogramme.

Le choix de la méthode de calcul et la maîtrise de la modélisation de la structure doivent donc avoir pour objectif une approche aussi fidèle que possible du comportement réel de l'ouvrage considéré, compte tenu non seulement du type d'ossature, mais aussi des caractéristiques du matériau constitutif.

IV.4.2.1. La méthode statique équivalente

IV.4.2.1.1. Principe

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique. Le mouvement du sol peut se faire dans une direction quelconque dans le plan horizontal.

Les forces sismiques horizontales équivalentes seront considérées appliquées successivement suivant deux directions orthogonales caractéristiques choisies par le projecteur. Dans le cas général, ces deux directions sont les axes principaux du plan horizontal de la structure.

IV.4.2.1.2. Conditions d'applications

Les conditions d'applications de la méthode statique équivalente sont ^[2]:

- Le bâtiment ou bloc étudié, satisfaisait les conditions de régularité en plan et en élévation avec une hauteur au plus égale à 65 m en zones 'II et 'II' et à 30m en zones 'III'.
- Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant, outres les conditions de hauteur énoncées en haut.

La méthode statique équivalente n'est pas applicable dans le cas du bâtiment étudié (car la structure **est irrégulière en plan** avec une hauteur supérieure à **10 m**), nous utiliserons la méthode d'analyse modale spectrale pour l'analyse sismique.

IV.4.2.2. La méthode modale spectrale

La méthode d'analyse modale spectrale peut être utilisée dans tous les cas et en particulier, dans le cas où la méthode statique équivalente n'est pas applicable. Tel que le nôtre.

IV.4.2.2.1. Principe

Les maximums des efforts engendrés par les forces sismiques dans chaque mode sont représentés par un spectre de calcul, puis sont combiné afin d'obtenir la réponse de la structure.

- Cette méthode est basée sur les hypothèses suivantes :
- Concentration des masses au niveau des planchers.
- Seuls les déplacements horizontaux des nœuds sont pris en compte.
- Le nombre de modes à prendre en compte est tel que la somme des coefficients massiques de ces modes soit aux moins égale à **90%**.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.
 Le minimum de modes à retenir est de trois (3) dans chaque direction considérée.

Dans le cas où les conditions décrites ci-dessus ne peuvent pas être satisfaites à cause de l'influence importante des modes de torsion, le nombre minimal de modes (**K**) à retenir doit être tel que : $K > 3 \times \sqrt{N} = 12$ et $T_k < 0.20$ sec ... (4–14)^[2]

Où : N est le nombre de niveaux au-dessus du sol et T_k la période du mode K.

IV.4.2.2.2. Analyse spectrale

La pratique actuelle la plus répandue consiste à définir le chargement sismique par un spectre de réponse. Toute structure est assimilable à un oscillateur multiple, la réponse d'une structure à une accélération dynamique est fonction de l'amortissement (ζ) et de la pulsation (ω).

Donc pour des accélérogrammes données si on évalue les réponses maximales en fonction de la période (T), on obtient plusieurs points sur un graphe qui est appelé spectre de réponse et qui aide à faire une lecture directe des déplacements maximaux d'une structure.

L'action sismique est représentée par un spectre de calcul suivant ^[2] :

$$\frac{S_{a}}{g} = \begin{cases} 1,25A\left(1 + \frac{T}{T_{i}}\left(2,5\eta\frac{Q}{R} - 1\right)\right) & 0 \le T \le T_{i} \\ 2,5\eta(1,25A)\frac{Q}{R} & T_{1} \le T \le T_{2} \\ 2,5\eta(1,25A)\frac{Q}{R}\left(\frac{T_{2}}{T}\right)^{\frac{2}{3}} & T_{2} \le T \le 3,0s \\ 2,5\eta(1,25A)\frac{Q}{R}\left(\frac{T_{2}}{R}\right)^{\frac{2}{3}}\left(\frac{3}{T}\right)^{\frac{5}{3}} & T \ge 3,0s \end{cases}$$

Représentation graphique du spectre de réponse. Avec :

- g : Accélération de la pesanteur.
- A : Coefficient d'accélération de zone.
- η : Facteur de correction d'amortissement.
- R : Coefficient de comportement de la structure. Il est fonction du système de contreventement.
- T1, T2 : Périodes caractéristiques associées à la catégorie de site.
- Q : Facteur de qualité.

Figure IV.1 : Spectre de réponse.

IV.4.3. Effort tranchant à la base

La résultante des forces sismiques à la base (l'effort tranchant à la base) « $E_{x/y}$ » ne doit pas être inférieure à **80%** de la résultante des forces sismiques déterminée par la méthode statique équivalente « $V_{x/y}$ » pour une valeur de la période fondamentale donnée par la formule empirique appropriée ^[2].

Si $V_t < 0.8V$, il faudra augmenter tous les paramètres de la réponse (forces, déplacements, moments,....) en les multipliant fois le rapport : $\frac{0.8V}{V_t}$.

IV.4.3.1. Calcul de l'effort tranchant à la base par la méthode statique équivalente

La force sismique totale « V » appliquée à la base de la structure, doit être calculée dans deux directions horizontales orthogonales selon la formule :

$$V = \frac{A \times D \times Q}{R} \times W$$
^[2]

Avec :

A : Coefficient d'accélération de zone : 0,30 pour : - Groupe d'usage : 1.b. - Zone sismique : III.

D : Facteur d'amplification dynamique moyen. Ce facteur est fonction de la catégorie du site, du facteur de correction d'amortissement « η » et de la période fondamentale de la structure « T ».

$$D = \begin{cases} 2,5\eta & 0 \le T \le T_2 \\ 2,5\eta \left(\frac{T_2}{T}\right)^{\frac{2}{3}} & T_2 \le T \le 3,0s \\ 2,5\eta \frac{Q}{R} \left(\frac{T_2}{R}\right)^{\frac{2}{3}} \left(\frac{3}{T}\right)^{\frac{5}{3}} & T \ge 3,0s \end{cases}$$

T1, T2 : Période caractéristique associée à la catégorie du site (**tableau 4.7**^[2]). Catégorie **S3** site meuble.

$$T_1 = 0.15$$

$$T_2 = 0.50$$

$$\eta = \sqrt{7/(2 + \xi)} \ge 0.7$$

Pour $\xi = 7\% \rightarrow \eta = 0.8819$

IV.4.4. Estimation de la période fondamentale de la structure « T »

La valeur de la période fondamentale (**T**) de la structure peut être estimée à partir de formules empiriques ou calculées par des méthodes analytiques ou numériques.

- Les formules empiriques à utiliser ^[2]:

$$T=(T=C_T\times {h_N}^{3/4},\,T=0,09\times \frac{h_N}{\sqrt{D}})$$

20 55

 C_T : Coefficient en fonction du système de contreventement du type de remplissage h_N : Hauteur mesurée en mètre à partir de la base de la structure jusqu'au dernier niveau

$$C_{T} = 0.05$$

 $h_N = 57,6 \text{ m}$

D : Est la dimension du bâtiment mesurée à sa base dans la direction de calcul considéré :

-
$$D_x = 28,55$$
 m.
- $D_y = 33,6$ m.
T = $C_T \times h_N^{3/4} = 0,05 \times (57,6)^{0.75} = 1,045$ sec dans les deux directions.
- Suivant la direction $(x - x)$ $T_x = 0,09 \times \frac{57,6}{\sqrt{28,55}} = 0,97$ sec
- Suivant la direction $(y - y)$ $T_y = 0,09 \times \frac{57,6}{\sqrt{33,6}} = 0,89$ sec

Sens (x-x): $T_x = (1,05; 0,97) = 0,97$ sec Sens (y-y): $T_y = (1,05; 0,89) = 0,89$ sec

Calcul de D :

$$D_x = 2,5\eta \left(\frac{T_2}{T_x}\right)^{\frac{2}{3}} = 2,5 \times 0,8819 \times \left(\frac{0,5}{0,97}\right)^{\frac{2}{3}} = 1,41 \text{ sec}$$
$$D_y = 2,5\eta \left(\frac{T_2}{T_y}\right)^{\frac{2}{3}} = 2,5 \times 0,8819 \times \left(\frac{0,5}{0,89}\right)^{\frac{2}{3}} = 1,50 \text{ sec}$$

R : Coefficient de comportement.

Les systèmes structuraux sont classifiés en attribuant à chacun un facteur appelé « coefficient de comportement R » selon le système de contreventement. Ce coefficient reflète la ductilité des structures.

R = 3,5 (Structure contreventée par un noyau) (tableau 4.3^[2]).

Q : Facteur de qualité.

Le facteur de qualité de la structure est fonction de :

- La redondance et de la géométrie des éléments qui la constituent.
- La régularité en plan et en élévation.
- La qualité de contrôle de la construction.

La valeur de Q déterminée par la formule : $Q = 1 + \sum_{1}^{6} P_{q}$

 P_q : Est la pénalité à retenir selon que le critère de qualité **q** "est satisfait ou non ".

Sa valeur est donnée par le tableau 4.4^[2].

```
Tableau IV.1 : Facteur de qualité « Q ».
```

	suivant x		suivant y	
Critère q	Observé	Pénalité	Observé	Pénalité
1-Condition minimale sur les files de	non	0.05	non	0.05
contreventement	non	0,05	поп	0,05
2-Redondances en plan	non	0,05	non	0,05
3-Régularité en plan	non	0,05	non	0,05
4-Régularité en élévation	oui	0	oui	0
5-Contrôle de la qualité des matériaux	oui	0	oui	0
6-Contrôle de la qualité de l'exécution	oui	0	oui	0
Total	0,15		0,15	

Facteur de qualité Q = 1 + $\sum_{1}^{6} P_q = 1,15$ $V_x = \frac{A \times D \times Q}{R} \times W = \frac{0,3 \times 1,41 \times 1,15}{3,5} \times W = 0,139 \times W$ $V_y = \frac{A \times D \times Q}{R} \times W = \frac{0,3 \times 1,50 \times 1,15}{3.5} \times W = 0,147 \times W$

К 5,5

IV.4.5. Vérification des déplacements inter étage

L'une des principales vérifications concerne les déplacements latéraux entre étages, Par conséquent, l'inégalité ci-dessous doit être vérifiée (l'article $5.10^{[2]}$):

 $\Delta^x_k \leq \overline{\Delta} \qquad \quad \text{et} \qquad \Delta^y_k \leq \overline{\Delta}$

Avec : $\overline{\Delta} = 0,01 \times h_e$ Où : h_e représente la hauteur de l'étage.

Avec :

 $\begin{array}{ll} \delta^x_k = Rr_x \!\!\times\!\! \delta^x_{ek} & \mbox{et} & \mbox{\delta}^y_k = Rr_y \!\!\times\!\! \delta^y_{ek} \\ \Delta^x_k = \delta^x_k - \delta^x_{k-1} & \mbox{et} & \mbox{\Delta}^y_k = \delta^y_k - \delta^y_{k-1} \end{array}$

 Δ_k^x : Correspond au déplacement plastique relatif au niveau « k » par rapport au niveau « k-1 » dans le sens x-x (pareil dans le sens y-y, Δ_k^y).

 δ_{ek}^{x} : Correspond au déplacement élastique horizontal dû aux forces sismiques au niveau « k » dans le sens x–x (pareil dans le sens y–y, δ_{ek}^{y}).

IV.5. Résultats de l'analyse dynamique du modèle initial

IV.5.1. Modèle initial

La structure comporte uniquement les voiles du noyau dont l'épaisseur est égale à 20 cm.

Figure IV.2 : Modèle initial.

IV.5.1.1. Caractéristiques dynamique propres du modèle initial

Tableau IV.2 : Périodes et facteurs de participation massique du modèle initial.

Modes	Périodes (s)	Ux	Uy	Uz	ΣUx	Σ Uy	ΣUz
Mode 1	1,19597	0,608	0,001007	6,5E–09	0,608	0,0010	6,5E–09
Mode 2	0,808667	0,0007528	0,659	0,001042	0,609	0,66	0,00104
Mode 3	0,464415	0,036	0,00000248	6,138E–07	0,644	0,66	0,00104
Mode 4	0,351929	0,182	0,00008518	7,187E–10	0,826	0,66	0,00104
Mode 5	0,213234	0,0000808	0,11	0,101	0,826	0,771	0,102
Mode 6	0,203674	0,0000395	0,093	0,057	0,826	0,864	0,159
Mode 7	0,19286	0,025	0,0002213	0,0000503	0,851	0,864	0,159
Mode 8	0,169643	0,0003945	0,0003181	0,029	0,852	0,864	0,188
Mode 9	0,140681	0,053	0,0001053	0,005851	0,904	0,865	0,194
Mode 10	0,138869	0,002429	7,542E–08	0,094	0,907	0,865	0,288
Mode 11	0,128995	0,0005268	0,00000130	0,118	0,907	0,865	0,406
Mode 12	0,126714	0,015	0,00002945	0,006796	0,922	0,865	0,413
Mode 13	0,124219	0,0003315	5,614E-07	0,009817	0,922	0,865	0,423
Mode 14	0,121596	0,0001019	0,00000349	0,00001223	0,922	0,865	0,423
Mode 15	0,105433	6,597E–07	0,0002431	0,041	0,922	0,865	0,464
(4–14)^[2]

IV.5.1.2. Constatations

L'analyse dynamique de la structure donne les résultats suivants :

- Une période fondamentale : T = 1,19597 s.
- $K > 3 \times \sqrt{16} = 12$ et $T_{12} = 0.1267$ sec < 0.20 sec
- Le 1^{er} mode est un mode de translation parallèlement à x-x.
- Le 2^{ime} mode est un mode de translation parallèlement à y-y.
- Le 3^{eme} mode est un mode de rotation.

IV.5.1.3. Résultantes des forces sismiques

W = 152809.295	kN
----------------	----

On aura donc :

$V^{x} = 0.139 \times 152809.295 = 21240.5 \text{ kN}$	$\rightarrow 0.8 \times V_x = 0.8 \times 21240.5 = 16992.4 \text{ kN}$

 $V^{y} = 0.147 \times 152809.295 = 22463 \text{ kN} \rightarrow 0.8 \times V_{x} = 0.8 \times 22463 = 17970.4 \text{ kN}$

Les résultantes des forces horizontales à la base de la structure sous sollicitations sismiques :

 $F_1 = V_t^x = 16593,486 \text{ kN}$

$$\rightarrow$$
 r_x = 1,02

 $F_2 = V_t^{y} = 21476,019 \text{ kN} \qquad \longrightarrow r_y = 1$

Afin de vérifier le critère de l'article 4.3.6 ^[2], on multiplie le spectre de réponse pour le sens x-x par le coefficient $r_x = 1,02$.

IV.5.1.4. Vérification des déplacements inter étage

Tableau IV.3 : Vérifications des déplacements inter-étages du modèle initial.

	U1 (cm)	U2 (cm)	δ_k^x (cm)	δ_{k}^{y} (cm)	$\Delta_{\mathbf{k}}^{\mathbf{x}}$ (cm)	$\Delta_{\mathbf{k}}^{\mathbf{y}}$ (cm)	$\overline{\Delta}$ (cm)	Obser	vation
RDC	0,34	0,14	1,21	0,48	1,21	0,48	3,60	Vérifiée	Vérifiée
1	0,92	0,35	3,22	1,23	2,01	0,75	3,60	Vérifiée	Vérifiée
2	1,59	0,59	5,56	2,06	2,34	0,84	3,60	Vérifiée	Vérifiée
3	2,32	0,84	8,12	2,95	2,56	0,89	3,60	Vérifiée	Vérifiée
4	3,08	1,10	10,79	3,86	2,67	0,91	3,60	Vérifiée	Vérifiée
5	3,87	1,37	13,54	4,81	2,76	0,94	3,60	Vérifiée	Vérifiée
6	4,66	1,66	16,31	5,80	2,77	0,99	3,60	Vérifiée	Vérifiée
7	5,46	1,97	19,11	6,88	2,80	1,08	3,60	Vérifiée	Vérifiée
8	6,24	2,30	21,84	8,04	2,73	1,16	3,60	Vérifiée	Vérifiée
9	7,00	2,67	24,49	9,33	2,65	1,29	3,60	Vérifiée	Vérifiée
10	7,72	3,04	27,01	10,65	2,52	1,31	3,60	Vérifiée	Vérifiée
11	8,40	3,42	29,40	11,96	2,39	1,32	3,60	Vérifiée	Vérifiée
12	9,03	3,79	31,62	13,27	2,22	1,31	3,60	Vérifiée	Vérifiée
13	9,62	4,16	33,67	14,57	2,04	1,29	3,60	Vérifiée	Vérifiée
14	10,15	4,53	35,51	15,84	1,84	1,27	3,60	Vérifiée	Vérifiée
15	10,62	4,88	37,16	17,08	1,65	1,24	3,60	Vérifiée	Vérifiée

Les déplacements latéraux inter-étages sont vérifiés.

IV.5.1.5. Vérification spécifique aux sollicitations normales

Afin d'éviter la rupture sous sollicitations dues au séisme, les RPA exigent que l'effort normal de compression sous combinaison sismique soit limite comme suit ^[2]:

$$v = \frac{N_d}{B_c \cdot f_{c28}} \le 0,30$$

Etude sismique.

Avec :

- N_d : L'effort normal de calcul s'exerçant sur une section de béton sous sollicitation sismique (G+Q+E).
- B_c : L'aire (section brute) de cette dernière
- f_{c28} : La résistance caractéristique du béton à 28 jours (35 MPa).

IV.5.1.5.1. Poteaux rectangulaires

Tableau IV.4 : Vérifications de l'effort normal réduit des poteaux rectangulaires.

Nimonu	Nd	h	b		Oha	h	b		Oha
Iniveaux	(KN)	(mm)	(mm)		Obs	(cm)	(cm)		Obs
N15	536,437	1050	350	0,04	ok	950	450	0,04	ok
N14	999,395	1050	400	0,07	ok	1000	500	0,06	ok
N13	1482,99	1050	400	0,10	ok	1000	500	0,08	ok
N12	1976,37	1100	400	0,13	ok	1050	500	0,11	ok
N11	2490,02	1100	400	0,16	ok	1050	500	0,14	ok
N10	3019,7	1150	400	0,19	ok	1100	550	0,14	ok
N9	3556,95	1150	400	0,22	ok	1100	550	0,17	ok
N8	4104,56	1200	400	0,24	ok	1150	550	0,19	ok
N7	4658,3	1200	400	0,28	ok	1150	550	0,21	ok
N6	5223,08	1200	450	0,28	ok	1200	600	0,21	ok
N5	5790,11	1200	450	0,31	non acceptable	1200	600	0,23	ok
N4	6360,37	1250	450	0,32	non acceptable	1250	600	0,24	ok
N3	6929,53	1250	450	0,35	non acceptable	1250	600	0,26	ok
N2	7501,67	1300	450	0,37	non acceptable	1300	650	0,25	ok
N1	8095,77	1300	450	0,40	non acceptable	1300	650	0,27	ok
R,D,C	9181,26	1350	450	0,43	non acceptable	1350	650	0,30	ok

IV.5.1.5.2. Poteaux carrés

Tableau IV.5 : Vérifications de l'effort normal réduit des poteaux carrés.

Nimoone	N _d	h	b		Oha	h	b		Oha
niveaux	(KN)	(mm)	(mm)		Obs	(cm)	(cm)		Obs
N15	1185	550	550	0,11	ok	1000	1000	0,03	ok
N14	2611,5	600	600	0,21	ok	1050	1050	0,07	ok
N13	3827,12	600	600	0,30	non acceptable	1050	1050	0,10	ok
N12	5056,15	650	650	0,34	non acceptable	1100	1100	0,12	ok
N11	6291,3	650	650	0,43	non acceptable	1100	1100	0,15	ok
N10	7539,38	700	700	0,44	non acceptable	1150	1150	0,16	ok
N9	8792,51	700	700	0,51	non acceptable	1150	1150	0,19	ok
N8	10057,8	750	750	0,51	non acceptable	1200	1200	0,20	ok
N7	11326,2	750	750	0,58	non acceptable	1200	1200	0,22	ok
N6	12604,4	800	800	0,56	non acceptable	1250	1250	0,23	ok
N5	13883,2	800	800	0,62	non acceptable	1250	1250	0,25	ok
N4	15169,2	850	850	0,60	non acceptable	1300	1300	0,26	ok
N3	16452,8	850	850	0,65	non acceptable	1300	1300	0,28	ok
N2	17740,8	900	900	0,63	non acceptable	1350	1350	0,28	ok
N1	19023,7	900	900	0,67	non acceptable	1350	1350	0,30	ok
R,D,C	20327,9	950	950	0,64	non acceptable	1400	1400	0,30	ok

IV.5.2. Model initial avec la vérification de l'effort normal réduit

IV.5.2.1. Caractéristiques dynamique propres du modèle avec la vérification de l'effort normal réduit

Modes	Périodes (s)	Ux	Uy	Uz	Σ Ux	ΣUy	ΣUz
Mode 1	1,1883	0,61	0,000789	1,249E–08	0,61	0,00079	1,25E-08
Mode 2	0,760072	0,0005623	0,67	0,000404	0,61	0,67	0,000404
Mode 3	0,457446	0,03404	0,00000147	4,616E–09	0,65	0,67	0,000404
Mode 4	0,347917	0,18	0,00004909	1,877E–07	0,83	0,67	0,000404
Mode 5	0,200435	0,00000506	0,2	0,004187	0,83	0,87	0,004591
Mode 6	0,189798	0,02538	0,0009259	0,00000483	0,85	0,87	0,004596
Mode 7	0,151734	0,0002372	0,0003623	0,19	0,85	0,87	0,19
Mode 8	0,139614	0,04907	0,0000553	0,00000522	0,9	0,87	0,19
Mode 9	0,13821	0,003195	0,00000441	0,06726	0,9	0,87	0,26
Mode 10	0,132395	0,0003697	0,00007985	0,14	0,9	0,87	0,4
Mode 11	0,126604	0,0002176	0,00001197	0,02063	0,9	0,87	0,42
Mode 12	0,124446	0,01086	0,00003931	0,006833	0,92	0,87	0,43
Mode 13	0,123466	0,004667	0,00000117	0,005061	0,92	0,87	0,43
Mode 14	0,120239	0,0001949	0,00001074	0,00000705	0,92	0,87	0,43
Mode 15	0,105056	2,134E-07	0,00001629	0,02345	0,92	0,87	0,45

Tableau IV.6 : Périodes et facteurs de participation massique du modèle 2.

IV.5.2.2. Constatations

L'analyse dynamique de la structure donne les résultats suivants :

- Une période fondamentale : T = 1,1883 s.
- $K > 3 \times \sqrt{16} = 12$ et $T_{12} = 0.1244$ sec < 0.20 sec (4-14)^[2]
- Le 1^{er} mode est un mode de translation parallèlement à x-x.
- Le 2^{ime} mode est un mode de translation parallèlement à y-y.
- Le 3^{eme} mode est un mode de rotation.

IV.5.2.3. Résultantes des forces sismiques

 $V^{x} = 0.139 \times 157863.695 = 21943 \text{ kN}$

W = 157863,695 kN

On aura donc :

$\rightarrow 0.8 \times V_x = 0.8 \times 21943 = 17554.4 \text{ kN}$

 $V^{y} = 0.147 \times 157863,695 = 23207 \text{ kN} \rightarrow 0.8 \times V_{x} = 0.8 \times 23207 = 18565,6 \text{ kN}$

Les résultantes des forces horizontales à la base de la structure sous sollicitations sismiques :

$F_1 = V_t^x = 17489,964 \text{ kN}$	\rightarrow r _x = 1,004
$F_2 = V_t^y = 23622,977 \text{ kN}$	\rightarrow r _y = 1

On multiplie le spectre dans le sens x-x fois 1,004.

	rubeau 1									
	U1 (cm)	U2 (cm)	δ_k^x (cm)	δ_{k}^{y} (cm)	$\Delta_{\mathbf{k}}^{\mathbf{x}}$ (cm)	$\Delta_{\mathbf{k}}^{\mathbf{y}}$ (cm)	$\overline{\Delta}$ (cm)	Obser	vation	
RDC	0,29	0,11	1,00	0,39	1,00	0,39	3,60	Vérifiée	Vérifiée	
1 ^{er}	0,81	0,31	2,84	1,07	1,84	0,68	3,60	Vérifiée	Vérifiée	
2 ^{ème}	1,44	0,53	5,05	1,85	2,21	0,78	3,60	Vérifiée	Vérifiée	
3 ^{ème}	2,14	0,77	7,50	2,69	2,45	0,84	3,60	Vérifiée	Vérifiée	
4 ^{ème}	2,87	1,02	10,06	3,56	2,56	0,87	3,60	Vérifiée	Vérifiée	
5 ^{ème}	3,63	1,28	12,70	4,46	2,64	0,90	3,60	Vérifiée	Vérifiée	
6 ^{ème}	4,38	1,54	15,34	5,40	2,64	0,94	3,60	Vérifiée	Vérifiée	
7 ^{ème}	5,14	1,83	17,99	6,42	2,65	1,01	3,60	Vérifiée	Vérifiée	
8 ^{ème}	5,88	2,15	20,57	7,51	2,58	1,10	3,60	Vérifiée	Vérifiée	
9 ^{ème}	6,59	2,48	23,07	8,69	2,50	1,18	3,60	Vérifiée	Vérifiée	
10 ^{ème}	7,27	2,82	25,44	9,87	2,37	1,18	3,60	Vérifiée	Vérifiée	
11 ^{ème}	7,92	3,16	27,71	11,06	2,27	1,19	3,60	Vérifiée	Vérifiée	
12 ^{ème}	8,51	3,49	29,80	12,23	2,09	1,17	3,60	Vérifiée	Vérifiée	
13 ^{ème}	9,06	3,82	31,71	13,38	1,92	1,15	3,60	Vérifiée	Vérifiée	
14 ^{ème}	9,55	4,14	33,43	14,51	1,71	1,12	3,60	Vérifiée	Vérifiée	
15 ^{ème}	9,98	4,46	34,93	15,60	1,50	1,09	3,60	Vérifiée	Vérifiée	

IV.5.2.4. Vérification des déplacements inter étage :

Tableau IV.7 : Vérification des déplacements inter étages du modèle 2.

IV.5.3. Modèle final

La structure comporte le voile périphérique plus les voiles de contreventement (e = 20 cm).

Figure IV.3 : Modèle final.

IV.5.3.1. Caractéristiques dynamique propres du modèle final

Modes	Périodes (s)	Ux	Uy	Uz	ΣUx	Σ Uy	ΣUz
Mode 1	1,20208	0,6699	0,0010	0,000076	0,6699	0,0010	0,000008
Mode 2	0,977581	0,00088	0,66993	0,00026	0,67078	0,671	0,00026
Mode 3	0,871953	0,0072	0,00017	7,033E07	0,67798	0,6711	0,00026
Mode 4	0,331436	0,16762	0,00023	0,00003789	0,84559	0,6714	0,0003
Mode 5	0,273539	0,00339	0,00329	0,00004084	0,84899	0,6747	0,00034
Mode 6	0,262662	0,0000471	0,17856	0,0018	0,84903	0,8532	0,00214
Mode 7	0,159422	0,0599	0,0000906	0,00119	0,90893	0,8533	0,00333
Mode 8	0,146176	0,00038	0,00023	0,3834	0,90931	0,8535	0,38673
Mode 9	0,143876	0,00326	0,00017	0,00134	0,91257	0,8537	0,38807
Mode 10	0,14108	0,00014	0,0000076	0,02116	0,91271	0,8537	0,40923
Mode 11	0,129388	0,00019	0,0000864	0,10062	0,9129	0,8538	0,50985
Mode 12	0,126271	5,999E09	0,0000222	0,03008	0,9129	0,8538	0,53992
Mode 13	0,125151	0,0000853	0,05954	0,00261	0,91299	0,9134	0,54253
Mode 14	0,124675	0,0000172	0,0000788	0,0292	0,91301	0,9134	0,57173
Mode 15	0,121809	0,0000936	0,000029	0,0009	0,9131	0,9135	0,57263

Tableau IV.8 : Périodes et facteurs de participation massique du modèle final.

IV.5.3.2. Constatations

L'analyse dynamique de la structure donne les résultats suivants :

- Une période fondamentale : T = 1,20208 s.
- $\Sigma \text{ Ux} > 0.90 \text{ et } \Sigma \text{ Uy} > 0.90 \rightarrow 13^{\text{ème}} \text{ mode.}$
- Le 1^{er} mode est un mode de translation parallèlement à x-x.
- Le $2^{e^{me}}$ mode est un mode de translation parallèlement à y-y.
- Le 3^{eme} mode est un mode de rotation.

IV.5.3.3. Résultantes des forces sismiques

W = 150649,169 kN	
On aura donc :	
$V^x = 0,139 \times 150649,169 = 20940,2 \text{ kN}$	$\rightarrow 0.8 \times V_x = 0.8 \times 20940.2 = 16752.16 \text{ kN}$
$V^{y} = 0,147 \times 150649,169 = 22145,4 \text{ kN}$	$\rightarrow 0.8 \times V_x = 0.8 \times 22145, 4 = 17716, 32 \text{ kN}$
Les résultantes des forces horizontales à la base	e de la structure sous sollicitations sismiques :
$F_1 = V_t^x = 17056,855 \text{ kN}$	\rightarrow r _x = 1
$F_2 = V_t^y = 19217,618 \text{ kN}$	\rightarrow r _y = 1

	U1 (cm)	U2 (cm)	δ_{k}^{x} (cm)	δ_{k}^{y} (cm)	$\Delta_{\mathbf{k}}^{\mathbf{x}}$ (cm)	$\Delta_{\mathbf{k}}^{\mathbf{y}}$ (cm)	$\overline{\Delta}$ (cm)	Obser	vation
RDC	0,17	0,11	0,58	0,39	0,58	0,39	3,60	Vérifiée	Vérifiée
1 ^{er}	0,46	0,32	1,63	1,13	1,04	0,73	3,60	Vérifiée	Vérifiée
2 ^{ème}	0,85	0,59	2,98	2,08	1,35	0,95	3,60	Vérifiée	Vérifiée
3 ^{ème}	1,32	0,92	4,61	3,21	1,63	1,13	3,60	Vérifiée	Vérifiée
4 ^{ème}	1,84	1,28	6,45	4,47	1,84	1,26	3,60	Vérifiée	Vérifiée
5 ^{ème}	2,42	1,67	8,47	5,84	2,02	1,37	3,60	Vérifiée	Vérifiée
6 ème	3,03	2,08	10,61	7,28	2,13	1,44	3,60	Vérifiée	Vérifiée
7 ^{ème}	3,67	2,51	12,85	8,78	2,25	1,50	3,60	Vérifiée	Vérifiée
8 ème	4,33	2,96	15,14	10,36	2,29	1,58	3,60	Vérifiée	Vérifiée
9 ^{ème}	4,99	3,42	17,46	11,97	2,32	1,61	3,60	Vérifiée	Vérifiée
10 ^{ème}	5,65	3,88	19,76	13,59	2,30	1,61	3,60	Vérifiée	Vérifiée
11 ^{ème}	6,30	4,34	22,05	15,19	2,29	1,60	3,60	Vérifiée	Vérifiée
12 ^{ème}	6,94	4,79	24,28	16,76	2,23	1,57	3,60	Vérifiée	Vérifiée
13 ^{ème}	7,56	5,23	26,45	18,29	2,16	1,53	3,60	Vérifiée	Vérifiée
14 ^{ème}	8,15	5,65	28,52	19,78	2,08	1,49	3,60	Vérifiée	Vérifiée
15 ^{ème}	8,72	6,07	30,52	21,23	2,00	1,45	3,60	Vérifiée	Vérifiée

IV.5.3.4. Vérification des déplacements inter étage

Tableau IV.9 : Vérification des déplacements inter-étages du modèle final.

IV.6. Justification vis-à-vis de l'effet $P-\Delta$ (les effets du second ordre)

L'effet du second ordre représente le moment additionnel dû au produit de l'effort normal dans un poteau au niveau d'un nœud de la structure par le déplacement horizontal du nœud considéré.

Les effets du 2^{e} ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux ^[2]:

$$\theta = \frac{P_k \Delta_k}{V_k h_k} \le 0,10$$

Avec :

Pk : Poids total de la structure et des charges d'exploitations associées au-dessus du niveau K :

 $\mathbf{P}_{\mathbf{k}} = \mathbf{Q} = 1 + \sum_{i=k}^{n} (W_{Gi} + \beta W_{Qi}).$

 V_k : Effort tranchant d'étage au niveau K.

 Δ_k : Déplacement relatif du niveau K par rapport au niveau K-1.

H_k : Hauteur d'étage K.

Etages	$\mathbf{h}_{\mathbf{k}}\left(\mathbf{m}\right)$	Δ_{k}^{x} (cm)	V _k x–x (kN)	$\mathbf{P}_{\mathbf{k}}\left(\mathbf{kN}\right)$	$\boldsymbol{ heta}_{\mathbf{k}}$ x—x	Obs
RDC	3,6	0,58	17057	150649	0,014	Vérifiée
1 ^{er}	3,6	1,04	16924	140699	0,024	Vérifiée
2 ^{ème}	3,6	1,35	16584	130820	0,030	Vérifiée
3 ^{ème}	3,6	1,63	16050	120940	0,034	Vérifiée
4 ^{ème}	3,6	1,84	15380	111204	0,037	Vérifiée
5 ^{ème}	3,6	2,02	14634	101467	0,039	Vérifiée
6 ^{ème}	3,6	2,13	13876	92230	0,039	Vérifiée
7 ^{ème}	3,6	2,25	13085	82993	0,040	Vérifiée
8 ^{ème}	3,6	2,29	12250	73878	0,038	Vérifiée
9 ^{ème}	3,6	2,32	11361	64763	0,037	Vérifiée
10 ^{ème}	3,6	2,30	10414	55704	0,034	Vérifiée
11 ^{ème}	3,6	2,29	9394	46644	0,032	Vérifiée
12 ^{ème}	3,6	2,23	8247	37696	0,028	Vérifiée
13 ^{ème}	3,6	2,16	6877	28748	0,025	Vérifiée
14 ^{ème}	3,6	2,08	5175	19849	0,022	Vérifiée
15 ^{ème}	3,6	2,00	3061	10950	0,020	Vérifiée

Tableau IV.10 : Vérification de l'effet $P-\Delta$ selon x-x du modèle final.

Tableau IV.11 : Vérification de l'effet $P-\Delta$ selon y-y du modèle final.

			T 7			
Etages	$\mathbf{h}_{\mathbf{k}}\left(\mathbf{m}\right)$	Δ_k^y (cm)	V _k y–y (kN)	$\mathbf{P}_{\mathbf{k}}\left(\mathbf{kN}\right)$	$heta_k$ y-y	Obs
RDC	3,6	0,39	19218	150649	0,009	Vérifiée
1 ^{er}	3,6	0,73	19075	140699	0,015	Vérifiée
2 ^{ème}	3,6	0,95	18718	130820	0,019	Vérifiée
3 ^{ème}	3,6	1,13	18160	120940	0,021	Vérifiée
4 ^{ème}	3,6	1,26	17453	111204	0,022	Vérifiée
5 ^{ème}	3,6	1,37	16654	101467	0,023	Vérifiée
6 ^{ème}	3,6	1,44	15824	92230	0,023	Vérifiée
7 ^{ème}	3,6	1,50	14936	82993	0,023	Vérifiée
8 ^{ème}	3,6	1,58	13980	73878	0,023	Vérifiée
9 ^{ème}	3,6	1,61	12945	64763	0,022	Vérifiée
10 ^{ème}	3,6	1,61	11825	55704	0,021	Vérifiée
11 ^{ème}	3,6	1,60	10604	46644	0,020	Vérifiée
12 ^{ème}	3,6	1,57	9234	37696	0,018	Vérifiée
13 ^{ème}	3,6	1,53	7627	28748	0,016	Vérifiée
14 ^{ème}	3,6	1,49	5686	19849	0,014	Vérifiée
15 ^{ème}	3,6	1,45	3336	10950	0,013	Vérifiée

Les résultats obtenus vérifient les conditions $\theta_x < 0,1$ et $\theta_y < 0,1$, par conséquent les effets du **2**° ordre (ou effet **P**- Δ) peuvent être négligés.

IV.7. Justification du choix du coefficient de comportement

Le système de la structure est celui des « structures contreventées entièrement par un noyau en béton armé » (système 3). Il faudrait donc que le noyau de la structure reprenne près de 100% de l'effort horizontal ^[2].

IV.7.1. Pourcentage de l'effort horizontal repris par le noyau

Sens $x-x$:	V_x (total) = 17056,855 kN
	V_x (noyau) = 6084,817 kN
$\frac{V_x(noyau)}{V_x(total)} = \frac{6084,817}{17056,855}$	= 35,67 %
Sens y-y :	V _y (total) = 19217,618 kN
	V _y (noyau) = 16497,73 kN
$\frac{V_y(noyau)}{V_y(total)} = \frac{16497,73}{19217,618}$	= 85,85 %

Ainsi la condition du système 3 n'est pas vérifiée.

La structure bascule dans le système 2 avec R = 3,5.

L'intégralité des calculs restent inchangé du moment que le coefficient de comportement est le même pour les deux systèmes.

IV.7.2. Pourcentage des efforts repris par les voiles

 V_x (total) = 17056,855 kN Sens x-x: V_x (voiles) = 14148,876 kN $\frac{V_x(noyau)}{V_x(total)} = \frac{14148,876}{17056,855} = 82,95 \%$ V_{y} (total) = 19217,618 kN Sens y-y: V_v (voiles) = 16853,369 kN $\frac{V_y(noyau)}{V_y(total)} = \frac{16853,369}{19217,618} = 87,7 \%$ Les voiles reprennent plus de 80% des efforts horizontaux dans les deux directions. Charge verticale : P (total) = 150649,169 kNP (voiles) = 92238,951 kN P(voiles) _

 $=\frac{92238,951}{150649,169}=61,23\ \%>20\ \%$ P(total)

Vérifiée.

IV.8. Conclusion

- Le modèle final vérifie les conditions imposées par « RPA 99 modif 2003 ».
- Relâcher le noyau de la structure en créant des ouvertures et ajouter des voiles dans la partie opposée de la structure a engendré une baisse des efforts internes dans les poteaux situés dans cette partie.
- Les effets du second ordre sont négligeables.
- Le système de contreventement dont la structure vérifie les conditions est le système 2 (structure contreventée par des voiles porteurs en béton armé).
- L'excentricité du noyau engendre des efforts importants dans les poteaux de la partie opposée, d'où la nécessité de l'ajout de voiles cette dernière.

Chapitre V : Ferraillage des éléments principaux.

V.1. Introduction

Le ferraillage des éléments principaux sera fait conformément aux « BAEL 91 modif 99 » et « RPA 99 modif 2003 ».

Les éléments principaux calculés dans ce chapitre sont :

- Poteaux.
- Poutres.
- Voiles.

V.2. Ferraillage des poteaux

V.2.1. Introduction

Les poteaux sont des éléments verticaux assurant la continuité et la transmission des charges des planchers/poutres jusqu'aux fondations.

Les poteaux sont soumis à une flexion composée due à un effort normal « N » (chargements verticaux), qui génère un moment à cause de son excentricité, ajouté à cela un moment fléchissant « M » dans les deux plans longitudinaux (forces horizontales).

Une section soumise à la flexion composée peut être à la fois soit :

- Section entièrement comprimée (SEC).
- Section entièrement tendue (SET).
- Section partiellement comprimée (SPC).

Les sections d'armatures sont obtenues aux états limites de résistance sous les sollicitations les plus défavorables selon les situations suivantes :

Situation		Béton		Acier				
	γь	f_{c28} (MPa)	σ _{bc} (MPa)	γs	f_e (MPa)	σ _s (MPa)		
Durable	1,5	35	19,83	1,15	500	434,78		
Accidentelle	1,15		30,43	1	500	500		

Tableau V.1 : contraintes du béton et de l'acier.

V.2.2. Combinaisons d'actions

En fonction du type de sollicitations, nous distinguons les différentes combinaisons suivantes:

Situation durable^[1]:

- ELU 1.35G+1.5Q

- ELS G+Q

Situation accidentelle^[2]:

- Combinaison 1 G+Q±E
- Combinaison 2 0.8G±E

Avec : G : Charges permanentes.

- Q : Surcharge d'exploitation.
- E : Action du séisme.

A partir de ces combinaisons, on distingue les cas suivants :

- N_{max} compression, M correspondant.
- _
- _
- M_{max} , $N^{correspondant}$

V.2.3. Recommandations du « BAEL91 modif 99 »

La section A_s des armatures longitudinales doit respecter les conditions suivantes :

$$A_s = Max \begin{cases} A_s = 4 \times U (U: perimètre en mètre avec A_s en cm^2) \end{cases}$$

$$A_{\rm s} = Max \left(0,2\% \le \frac{A_{\rm s}}{B} \le 5\%\right)$$

B : Section brute du béton.

V.2.4. Recommandations des « RPA 99 modif 2003 »

Pour les poteaux d'une structure en zone sismique III :

- Les armatures longitudinales doivent être à haute adhérence (H.A), droites et sans crochet. _
- Le pourcentage d'armature dans chaque section :

$$0.9 \le \frac{A_s}{B} \le 4\%$$
 Zone courante (Z.C).
 $0.9 \le \frac{A_s}{B} \le 6\%$ Zone de recouvrement (Z.R)
Avec : A : La section d'acier

Avec : A_s : La section d'acier.

B : La section brute du béton.

- Le diamètre minimal est de $Ø_1 = 12$ mm.
- Une longueur de recouvrement minimale de $l_R = 50 \times Ø_l$.
- L'espacement entre barres longitudinales dans une face des poteaux ne doit pas dépasser 20 cm et ne doit pas être inférieur à 3,75 cm.
- Les jonctions par recouvrement doivent être faites si possible, à l'intérieur des zones nodales.
- Pour la zone nodale dans les poteaux, les longueurs « h'» à prendre en compte pour chaque barre est définie comme suit :

$$h' = Max \left(\frac{h_e}{6}; b_1; h_1; 60 \text{ cm}\right)$$

- he : La hauteur d'étage.
- b_1 et h_1 : Dimensions du poteau.

V.2.5. Méthode de calcul

- On divise les poteaux de notre bâtiment en chaque section afin qu'on puisse vérifier si on aura un gain d'armature ou on généralise le ferraillage si la différence d'armature est petite.
- On fait le calcul pour le poteau le plus sollicité avec la combinaison la plus défavorable et on généralise le ferraillage pour les sections similaires seulement si la différence d'armature n'est pas trop élevée.
- Le calcul du ferraillage est obtenu par le logiciel SOCOTEC. _

		(Coté (b)		(Coté (h)	
Niveau	Car	Efforts	Citration	As	Efforts	Situation	As
(b×h) cm ²	Cas	(kN, kN.m)	Situation	(cm ²)	(kN, kN.m)	Situation	(cm ²)
	N _{max} ⁻	10293,524	SDT	0	10293,524	SDT	0
	M ^{corr}	36,0736	5.0.1	0	47,0606	5.0.1	0
	N_{min}	69,064 ⁽⁺⁾	SΔ	19 14	69,064	SΔ	11 12
RDC	M ^{corr}	1106,328	0.71	17,14	297,3033	5.71	11,12
(65×135)	${ m N_{max}}^+$	430,271	SΔ	21 31	486,411	SΔ	12 21
	M ^{corr}	1008,86	5.71	21,51	196,4719	5.74	12,21
	\mathbf{M}_{max}	1393,725	SΔ	0	532,4498	SΔ	23.4
	N ^{corr}	4310,13 ⁽⁻⁾	0.11	0	430,251 ⁽⁺⁾	0.11	23,4
	N_{max}^{-}	9576,596	SDT	0	9576,596	SDT	0
	M ^{corr}	35,5987	5.0.1	0	107,7546	5.0.1	U
	\mathbf{N}_{\min}	135,579(+)	S A	10 45	135,579(+)	S A	8 67
$1^{er}+2^{eme}$	M ^{corr}	524,3349	0.11	10,45	206,4378	0.11	0,07
(65×130)	N_{max}^{+}	301,298	S A	6 94	301,298	S A	14 5
	M ^{corr}	214,3782	0.11	0,74	319,696	0.11	17,5
	M _{max}	534,7624	S A	7 63	427,0566	S A	17 75
	N ^{corr}	141,591 ⁽⁻⁾	5.74	7,05	253,978 ⁽⁺⁾	5.74	17,75
	N_{max}^{-}	8201,33	SDT	0	8201,33	SDT	0
	M ^{corr}	33,0959	D.D.1	0	84,203	5.0.1	U
	N_{min}	0,554	S A	4.6	0,554	S A	56
$3^{eme}+4^{eme}$	M ^{corr}	270,8681	0.11	-,0	147,4214	0.11	2,0
(60×125)	N_{max}^{+}	167,761	S A	3 22	167,761	S A	5 75
	M ^{corr}	86,34	0.11	3,22	102	0.11	5,75
	M_{max}	499,3861	SΔ	0	612,1112	SΔ	1 43
	N ^{corr}	2615,83(-)	5 .A	0	2132,58 ⁽⁻⁾	5.A	1,43
	N_{max}^{-}	6876,381	SDT	0	6876,381	SDT	0
	M ^{corr}	31,3935	5.0.1	0	83,8587	5.0.1	U
	\mathbf{N}_{\min}	249,941 ⁽⁻⁾	SΔ	0	249,941 ⁽⁻⁾	SΔ	3 4 1
$5^{eme}+6^{eme}$	M ^{corr}	82,7874	0.11	0	162,5392	0.11	5,71
(60×120)	N_{max}^{+}	N/A	N/A	N/A	N/A	N/A	N/A
	M ^{corr}	N/A	1 1/ 2 1	10/11	N/A	14/21	14/18
	M_{max}	485,3528	SΔ	0	730,6797	SΔ	9.01
	N ^{corr}	$2707,85^{(-)}$	0.11	0	1893,36 ⁽⁻⁾	0.11	,01
	N_{max}^{-}	5584,889	SDT	0	5584,889	SDT	0
	M ^{corr}	30,2576	5.0.1	0	75,7771	5.0.1	U
	\mathbf{N}_{\min}	183,995 ⁽⁻⁾	SΔ	0.8	183,995 ⁽⁻⁾	SΔ	471
$7^{eme}+8^{eme}$	M	146,8582	5.7	0,0	161,0353	5.7	т, / 1
(55×115)	N_{max}^{+}	N/A	N/A	N/A	N/A	N/A	N/A
	M ^{corr}	N/A	1 1/ / 1	11/11	N/A	1 1/ / 1	N/A
	M _{max}	588,9424	S A	0	735,8565	S A	16 24
	N ^{corr}	$1968, 17^{(-)}$	5.71	0	$1549, 15^{(-)}$	5.71	10,44

Tableau V.2 : Calcul du ferraillage des poteaux rectangulaires.

Tableau V.3 : Suite du calcul du ferraillage des poteaux rectangulaires.

		(Coté (b)			Coté (h)			
Niveau	Cas	Efforts	Situation	As	Efforts	Situation	As		
(b×h) cm ²	Cas	(kN, kN.m)	Situation	(cm ²)	(kN, kN.m)	Situation	(cm ²)		
	N_{max}^{-}	4332,445	срт	0	4332,445	срт	0		
	M ^{corr}	28,953	5.D.1	0	76,6174	S.D.1	0		
	N_{min}	156,587 ⁽⁻⁾	S /	1 56	156,587 ⁽⁻⁾	S A	5 53		
9 ^{ème} +10 ^{ème}	M ^{corr}	165,4334	5.A	1,50	172,925	5. A	5,55		
(55×110)	N_{max}^{+}	N/A	N/Δ	N/Δ	N/A	N/Δ	N/A		
	M ^{corr}	N/A	11/17	11/17	N/A		11/17		
	M _{max}	601,3148	S A	0	726,3576	S A	18 73		
	N ^{corr}	1500,27 ⁽⁻⁾ S.A 0		0	1278,56 ⁽⁻⁾	5. A	10,75		
	N_{max}^{-}	3104,127	104,127 S.D.T 0		3104,127	S.D.T	0		
	M ^{corr}	25,7503	03		68,0853		0		
	N_{min}	127,283(-)	SΔ	1 01	127,283(-)	SΔ	5 53		
$11^{eme} + 12^{eme}$	M ^{corr}	158,676	5.A	1,91	147,7307	5. A	5,55		
(50×105)	N_{max}^{+}	N/A	N/Λ	N/A	N/A	N/A	N/A		
	M ^{corr}	N/A	11/71	11/74	N/A	11/7	1 N /A		
	M _{max}	545,2746	SΔ	0.84	605,702	SΔ	20.13		
	N ^{corr}	1033,51(-)	5.A	0,04	936,281 ⁽⁻⁾	5. A	-0,10		
	N_{max}^{-}	1900,63	SDT	0	1900,63	SDT	0		
	M ^{corr}	23,1947	5.0.1	0	70,9627	5.D.1	0		
	N_{min}	81,879 ⁽⁻⁾	SΔ	1 98	81,879 ⁽⁻⁾	SΔ	5 52		
$13^{eme}+14^{eme}$	M ^{corr}	131,9468	5.74	1,70	137,0082	0.71	5,52		
(50×100)	N_{max}^{+}	N/A	N/A	N/A	N/A	N/A	N/A		
	M ^{corr}	N/A	14/21	14/21	N/A	14/21	14/14		
	M_{max}	506,2562	SΔ	2.96	562,6026	SΔ	19 92		
	N ^{corr}	797,474 ⁽⁻⁾	0.11	2,90	743,07 ⁽⁻⁾	0.11	17,72		
	N_{max}^{-}	712,171	SDT	0	712,171	SDT	0		
	M ^{corr}	19,8088	D.D. 1	0	83,238	D.D.1	0		
	\mathbf{N}_{min}	26,012 ⁽⁻⁾ S A		5 76	26,012 ⁽⁻⁾	S A	11 28		
15 ^{ème}	M ^{corr}	262,0265	0.11	5,70	213,5539	0.11	11,20		
(45×95)	N_{max}^{+}	37,91	S A	53	37,91	S A	12.84		
	M ^{corr} 213,4598		5.23	5,5	229,3879	0.21	12,04		
	M _{max}	653,13	S A	0.29	450,543	S A	11 89		
	N ^{corr}	306,057 ⁽⁻⁾	5.11	0,27	307,905 ⁽⁻⁾	5.71	11,07		

NB : Le signe (+) signifie que l'effort est un effort de traction. Le signe (-) signifie que l'effort est un effort de compression.

	A _{s min} BAEL (cm ²)		A _{s min} RPA (cm ²)	$A_{s \max}$			
Niveau	4×U 0,2%		0,9%B	Z.C = 4%B	Z.R = 6%B		
(0×11) Cli RDC (65×135)	16	17,55	78,98	351	526,5		
1 ^{er} +2 ^{ème} (65×130)	15,6	16,9	76,05	338	507		
3 ^{ème} +4 ^{ème} (60×125)	14,8	15	67,5	300	450		
5 ^{ème} +6 ^{ème} (60×120)	14,4	14,4	64,8	288	432		
7 ^{ème} +8 ^{ème} (55×115)	13,6	12,65	56,93	253	379,5		
9 ^{ème} +10 ^{ème} (55×110)	13,2	12,1	54,45	242	363		
11 ^{ème} +12 ^{ème} (50×105)	12,4	10,5	47,25	210	315		
13 ^{ème} +14 ^{ème} (50×100)	12	10	45	200	300		
15 ^{ème} (45×95)	11,2	8,55	38,48	171	256,5		

 Tableau V.4 : Pourcentage d'armatures minimal.

V.2.6. Choix des armatures

Tableau V.5 : Choix d'armatures verticales des poteaux rectangulaires.

Niveau	As	cal S	A _{s min}	Ch d'arm	oix atures	$\mathbf{A}^{\mathrm{adp}}$	(cm ²)	Choix	As ^{tot}	
(b×h) cm ²	(cr	n ²)	(cm ²)	Coté (b)	Coté (h)	Coté (b)	Coté (h)	total	(cm ²)	
RDC (65×135)	21,3	23,4	78,98	8T20	10T20	25,1	31,4	28T20	87,92	
1 ^{er} +2 ^{ème} (65×130)	10,5	17,8	76,05	8T20	10T20	25,1	31,4	28T20	87,92	
3 ^{ème} +4 ^{ème} (60×125)	4,6	5,75	67,5	5T20	9T20	15,7	28,3	24T20	75,36	
5 ^{ème} +6 ^{ème} (60×120)	0	9,01	64,8	5T20	9T20	15,7	28,3	24T20	75,36	
7 ^{ème} +8 ^{ème} (55×115)	0,8	16,2	56,93	5T20	2T20+ 7T16	15,7	20,4	10T20+14 T16	59,57	
9 ^{ème} +10 ^{ème} (55×110)	1,56	18,7	54,45	5T20	2T20+ 7T16	15,7	20,4	10T20+14 T16	59,57	
11 ^{ème} +12 ^{ème} (50×105)	1,91	20,1	47,25	4T20	2T20+ 7T16	12,6	20,4	8T20+ 14T16	53,28	
13 ^{ème} +14 ^{ème} (50×100)	2,96	19,9	45	4T20	2T20+ 7T16	12,6	20,4	8T20+ 14T16	53,28	
15 ^{ème} (45×95)	5,76	12,8	38,48	4T16	9T16	8,04	18,1	20T16	40,21	

V.2.7. Vérification vis-à-vis de l'état limite de service

Les contraintes sont calculées à l'état limite de service sous (M_{ser} , N_{ser}), puis elles sont comparées aux contraintes admissible données par :

Béton : $\overline{\sigma_{bc}} = 0.6 \times f_{c28}$

Acier :

- Fissuration peu nuisible : Pas de vérification.

- Fissuration préjudiciable : $\overline{\sigma_s} = \xi = Min \left\{ \frac{2}{3} f_e ; Max (0,5 f_e; 110 \sqrt{\eta \times f_{t28}} \right\}$

- Fissuration très préjudiciable : $\overline{\sigma_s}=0.8{\times}\xi$

Avec : $\eta = 1,6$ pour les aciers H.A.

Dans notre cas la fissuration est considérée préjudiciable, donc $\sigma_s = 250$ MPa.

Les résultats sont récapitulés dans les tableaux suivants :

Tableau V.6 : Vérification des contraintes des poteaux rectangulaires (N_{max}, M_{corr}).

		С	oté (b)										
Niveau (b×h) cm ²	Efforts internes (kN,kN,m)		Cas	σs	σ _{bc}	Efforts internes (kN,kN,m)		Cas	σs	σ_{bc}	$\overline{\sigma_s}$	$\overline{\sigma_{bc}}$	obs
RDC	N _{max}	7478	SEC	122	8.1	N _{max}	7478	SEC	119	8	250	21	Ok
(65×135)	M _{corr}	26,06	220		0,1	M _{corr}	34	220		Ũ	-00		011
$1^{\text{er}}+2^{\text{ème}}$	N _{max}	6957	SEC	117	78	N _{max}	6957	SEC	110	81	250	21	Ok
(65×130)	M _{corr}	25,68	SEC	11/	7,0	M _{corr}	77,8	SEC	119	0,1	230	21	UK
3 ^{ème} +4 ^{ème}	N _{max}	5958	SEC	114	76	N _{max}	5958	SEC	115	7 0	250	21	Ol
(60×125)	M _{corr}	23,88	SEC	114	7,0	M _{corr}	60,8	SEC	115	7,0	230	21	UK
5 ^{ème} +6 ^{ème}	N _{max}	4996	SEC	100	67	N _{max}	4996	SEC	101	6.0	250	21	Ol
(60×120)	M _{corr}	22,65	SEC	100	0,7	M _{corr}	60,5	SEC	101	0,9	230	21	OK
7 ^{ème} +8 ^{ème}	N _{max}	4058	SEC	02	61	N _{max}	4058	SEC	07	67	250	21	Ol
(55×115)	M _{corr}	21,84	SEC	92	0,1	M _{corr}	54,6	SEC	91	0,7	230	21	ŬK.
9 ^{ème} +10 ^{ème}	N _{max}	3149	SEC	75	5	N _{max}	3149	SEC	80	5.6	250	21	Ok
(55×110)	M _{corr}	20,9	SEC	15	5	M _{corr}	55,2	SEC	80	5,0	230	21	UK
$11^{\text{ème}} + 12^{\text{ème}}$	N _{max}	2257	SEC	62	4.2	N _{max}	2257	SEC	68	18	250	21	Ok
(50×105)	M _{corr}	18,6	SEC	02	4,2	M _{corr}	49	SEC	08	4,0	230	21	UK
13 ^{ème} +14 ^{ème}	N _{max}	1384	SEC	41	20	N _{max}	1384	SEC	19	25	250	21	Ol
(50×100)	M _{corr}	16,7	SEC	41	2,0	M _{corr}	51,1	SEC	40	3,5	250	21	UK
15 ^{ème}	N _{max}	522	SEC	20	12	N _{max}	522	SEC	24	20	250	21	Ol
(45×95)	M _{corr}	14,3	SEC	20	1,5	M _{corr}	60,3	SEC	54	2,0	250	21	UK

NB : les valeurs des contraintes sont en MPa.

		С	oté (b)			Coté (h)							
Niveau (b×h) cm ²	Eff (kN	orts J,m)	Cas	σs	σ_{bc}	Eff	orts	Cas	σs	σ_{bc}	$\overline{\sigma_s}$	$\overline{\sigma_{bc}}$	obs
RDC	M _{max}	72	SEC	111	74	M _{max}	37,7	SEC	90	61	250	21	Ok
(65×135)	N _{corr}	6650	SLC	111	7,4	N _{corr}	5479	SLC	70	0,1	230	21	OK
$1^{\text{er}}+2^{\text{ème}}$	M _{max}	87,1	SEC	101	6.8	M _{max}	86,2	SEC	104	71	250	21	Ok
(65×130)	N _{corr}	5761	SEC	101	0,8	N _{corr}	5820	SEC	104	7,1	230	21	
3 ^{ème} +4 ^{ème}	M _{max}	50,9	SEC	06	64	M _{max}	108	SEC	103	71	250	21	Ok
(60×125)	N _{corr}	4898	SEC	90	0,4	N _{corr}	4950	SEC	105	7,1	230	21	
5 ^{ème} +6 ^{ème}	M _{max}	95,18	SEC	87	5.0	M _{max}	132	SEC	0/	6.6	250	21	Ok
(60×120)	N _{corr}	4053	SEC	07	5,9	N _{corr}	4103	SEC	24	0,0	230	21	
7 ^{ème} +8 ^{ème}	M _{max}	95,22	SEC	80	5 /	M _{max}	141	SEC	04	6.8	250	21	Ok
(55×115)	N _{corr}	3229	SEC	80	5,4	N _{corr}	3273	SEC	24	0,8	230	21	
9 ^{ème} +10 ^{ème}	M _{max}	104,2	SEC	56	3.8	M _{max}	158	SEC	83	61	250	21	Ok
(55×110)	N _{corr}	1964	SEC	50	5,0	N _{corr}	2460	SEC	05	0,1	230	21	
11 ^{ème} +12 ^{ème}	M _{max}	106	SEC	18	33	M _{max}	152	SEC	74	5.8	250	21	Ok
(50×105)	N _{corr}	1313	SLC	40	5,5	N _{corr}	1658	SLC	/4	5,0	230	21	
$13^{eme}+14^{eme}$	M _{max}	106,6	SEC	12	20	M _{max}	157	SPC	62	5 /	250	21	Ok
(50×100)	N _{corr}	991,6	SEC	42	2,9	N _{corr}	867	SIC	02	5,4	230	21	
15 ^{ème}	M_{max}	227,7	SPC	115	57	M_{max}	145	SPC	117	6.8	250	21	Ok
(45×95)	N _{corr}	443,4	SIC	113	5,1	N _{corr}	473	SIC	11/	0,0	250	21	

Tableau V.7 : Vérification des contraintes des poteaux rectangulaires (M_{max}, N_{corr}).

V.2.8. Vérification de la contrainte de cisaillement

Il faut vérifier que :

 $\tau_{u} = \frac{T_{u}}{b \times d} \le \overline{\tau_{u}} = Min \{0, 1 \times f_{c28}; 4 \text{ MPa}\} = 3,5 \text{ MPa}$ Avec :

- T_u : L'effort tranchant pour l'état limite ultime.
- b : Largeur de la section du poteau.
- d : Hauteur utile de la section du poteau.
- τ_u : Contrainte de cisaillement.
- $\overline{\tau_u}$: Contrainte limite de cisaillement du béton.

La valeur de la contrainte $\overline{\tau_u}$ doit être limitée aux valeurs suivantes :

Selon le « BAEL91 modif 99 » :

$\overline{\tau_{\mathbf{u}}} = \operatorname{Min} \{0, 13 \times f_{c28}; 5 \text{ MPa}\}\$	Fissuration peu nuisible.
$\overline{\tau_{u}} = \text{Min} \{0, 1 \times f_{c28}; 4 \text{ MPa}\}$	Fissuration préjudiciable et très préjudiciable

Selon le « RPA99 modif 2003 » :

 $\tau_{u} = \rho_{d} \times f_{c28}$ $\rho_{d} = 0,075$ si l'élancement $\lambda_{g} \ge 5$ $\rho_{d} = 0,040$ si l'élancement $\lambda_{g} < 5$

Avec :

- λ_g : L'élancement du poteau $\lambda_g = \frac{L_f}{a}$
- L_f : Longueur de flambement.
- a : Coté du poteau dans le sens de calcul.

	Coté (b)											
Niveau (b×h) cm ²	T _u (kN)	τ _u (MPa)	$\lambda_{ m g}$	ρ _d	$\overline{\tau_u}^{RPA}$	Tu (kN)	τ _u (MPa)	$\lambda_{ m g}$	ρ_d	$\overline{\tau_u}^{RPA}$	$\overline{\tau_u}^{\text{BAEL}}$	Obs
RDC (65×135)	54	0,068	1,867	0,04	1,4	42	0,053	3,877	0,040	1,4	3,5	Ok
$ \begin{array}{c} 1^{\text{er}}+2^{\text{ème}} \\ (65\times130) \end{array} $	96	0,126	1,938	0,04	1,4	84	0,110	3,877	0,040	1,4	3,5	Ok
3 ^{ème} +4 ^{ème} (60×125)	97	0,144	2,016	0,04	1,4	104	0,154	4,200	0,040	1,4	3,5	Ok
5 ^{ème} +6 ^{ème} (60×120)	103	0,159	2,100	0,04	1,4	131	0,202	4,200	0,040	1,4	3,5	Ok
7 ^{ème} +8 ^{ème} (55×115)	105	0,184	2,191	0,04	1,4	138	0,242	4,582	0,040	1,4	3,5	Ok
9 ^{ème} +10 ^{ème} (55×110)	110	0,202	2,291	0,04	1,4	158	0,290	4,582	0,040	1,4	3,5	Ok
11 ^{ème} +12 ^{ème} (50×105)	110	0,233	2,400	0,04	1,4	150	0,317	5,040	0,075	2,625	3,5	Ok
$13^{eme} + 14^{eme}$ (50×100)	107	0,238	2,520	0,04	1,4	156	0,347	5,040	0,075	2,625	3,5	Ok
15 ^{ème} (45×95)	155	0,403	2,653	0,04	1,4	160	0,416	5,600	0,075	2,625	3,5	Ok

Tableau V.8 : Vérification des contraintes de cisaillement des poteaux rectangulaires.

V.2.9. Ferraillage transversal des poteaux

Les armatures transversales sont déterminées à partir des formules suivantes :

$$\begin{cases} S_{t} \leq Min (0,9d ; 40cm) \\ \emptyset_{t} \leq Min \left(\frac{h}{35}; \frac{b}{10}; \theta_{l}\right) \\ \frac{A_{t} \times f_{e}}{b \times S_{t}} \geq Max \left(\frac{\tau_{u}}{2}; 0,4 \text{ MPa}\right) \end{cases}$$

Avec :

- A_t : Section d'armatures transversales.
- b : Largeur de la section droite.
- h : Hauteur de la section droite.
- S_t : Espacement des armatures transversales.
- Ø_t: Diamètre des armatures transversales.
- $Ø_1$: Diamètre des armatures longitudinales.

[2]

 $\frac{A_{t}}{S_{t}} = \frac{\rho_{a} \times T_{u}}{h \times f_{e}}$

Avec :

- T_u : Effort tranchant à l'ELU.
- *f*_e : Contrainte limite élastique de l'acier d'armatures transversales.
- h : Hauteur totale de la section brute.
- ρ_a : Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant.

$$- \rho_a = 2,5 \qquad \qquad \text{si } \lambda_g \geq 5$$

$$- \rho_a = 3,75 \qquad \qquad \text{si } \lambda_g < 5$$

- λ_g : L'élancement géométrique.

L'espacement des armatures transversales est déterminé comme suit :

- $S_t \le 10$ cm Zone nodale (zone III).
- $S_t \leq Min(\frac{b}{2}; \frac{h}{2}; 10\emptyset_l)$

Zone courante (**zone III**).

Le pourcentage d'armatures transversales maximal $\frac{A_t}{S_t \times b}$ est donné par :

0,3% si l'élancement
$$\lambda_g \ge 5$$

0,8% si l'élancement $\lambda_g < 5$

Sinon on procède à une interpolation entre 0,8% et 0,3%.

 Tableau V.9 : Espacement des cadres des poteaux rectangulaires.

Niveau	Ferraillage	(h (mm)	S _t ((cm)
(b×h) cm ²	longitudinal	Øl (IIIII)	Z.N	Z.C
RDC (65×135)	28T20	20	10	15
$1^{er}+2^{em}$ (65×130)	28T20	20	10	15
$3^{\text{ème}} + 4^{\text{ème}} (60 \times 125)$	24T20	20	10	15
$5^{\text{ème}}+6^{\text{ème}}(60\times120)$	24T20	20	10	15
$7^{\text{ème}}$ + $8^{\text{ème}}$ (55×115)	10T20+14T16	20;16	10	15
$9^{eme} + 10^{eme} (55 \times 110)$	10T20+14T16	20;16	10	15
$11^{\text{ème}} + 12^{\text{ème}} (50 \times 105)$	8T20+14T16	20;16	10	15
13 ^{ème} +14 ^{ème} (50×100)	8T20+14T16	20;16	10	15
15 ^{ème} (45×95)	20T16	16	10	15

Tableau V.10 : Choix d'armatures transversales des poteaux rectangulaires.

				Coté (b)					Coté (h)				
Niveau	Zone	St (cm)	Tu ^{max} (kN)	$\lambda_{ m g}$	$\begin{array}{c} \mathbf{A_t^{cal}} \\ (\mathbf{cm^2}) \end{array}$	Choix	At ^{adp} (cm ²)	Tu ^{max} (kN)	$\lambda_{ m g}$	At ^{cal} (cm ²)	Choix	At ^{adp} (cm ²)	
RDC	Z.R	10	51	1 967	0,30	6T10	4,71	40	2 077	0,48	10T10	7,85	
(65×135)	Z.C	15	54	54 1,867	0,45	6T10	4,71	42	3,077	0,73	10T10	7,85	
1 ^{er} +2 ^{ème}	Z.R	10	06	1 0 2 9	0,55	6T10	4,71	94	2 977	0,97	10T10	7,85	
(65×130)	Z.C	15	90	1,938	0,83	6T10	4,71	04	3,077	1,45	10T10	7,85	
3 ^{ème} +4 ^{ème}	Z.R	10	07	2.016	0,58	5T10	3,93	104	4 200	1,30	9T10	7,07	
(60×125)	Z.C	15	71	2,010	0,87	5T10	3,93	104	4,200	1,95	9T10	7,07	
5 ^{ème} +6 ^{ème}	Z.R	10	103	2 100	0,64	5T10	3,93	131	4,200	1,64	9T10	7,07	
(60×120)	Z.C	15	105	2,100	0,97	5T10	3,93			2,46	9T10	7,07	
7 ^{ème} +8 ^{ème}	Z.R	10	105	2 101	0,68	5T10	3,93	138	1 582	1,88	9T10	7,07	
(55×115)	Z.C	15	105	2,191	1,03	5T10	3,93	138	4,362	2,82	9T10	7,07	
9 ^{ème} +10 ^{ème}	Z.R	10	110	2 291	0,75	5T10	3,93	158	1 582	2,15	9T10	7,07	
(55×110)	Z.C	15	110	2,291	1,13	5T10	3,93	150	4,302	3,23	9T10	7,07	
$11^{\text{ème}} + 12^{\text{ème}}$	Z.R	10	110	2 400	0,79	4T10	3,14	150	5 040	1,50	9T10	7,07	
(50×105)	Z.C	15	110	2,400	1,18	4T10	3,14	150	5,040	2,25	9T10	7,07	
$13^{\text{ème}} + 14^{\text{ème}}$	Z.R	10	107	2 520	0,80	4T10	3,14	156	5 040	1,56	9T10	7,07	
(50×100)	Z.C	15	107	2,520	1,20	4T10	3,14	130	5,040	2,34	9T10	7,07	
15 ^{ème}	Z.R	10	155	155 2 (52	1,22	4T10	3,14	160	5 600	1,78	9T10	7,07	
(45×95)	Z.C	15	155	2,055	1,84	4T10	3,14	100	5,000	2,67	9T10	7,07	

V.2.10. Longueur de recouvrement

La longueur minimale de recouvrement est de : $L_r = 50 \times Ø_1$ (zone III)^[2].

T16:
$$L_r = 80 \text{ cm}$$

T20: $L_r = 100 \text{ cm}$

V.2.11. Ferraillage des poteaux du sous-sol

Le calcul des poteaux du sous-sol se fait en statique car ces derniers font partie de la partie enterrée aussi appelée « boite rigide », par conséquent ces éléments travaillent en compression simple, le ferraillage est donné par :

$$\mathbf{A}_{s} \geq \left(\frac{N_{u}}{\alpha} - \frac{B_{r}}{0.9} \cdot \frac{f_{C28}}{\gamma_{h}}\right) \frac{\gamma_{s}}{f_{e}}$$

Br : Section réduite du poteau : [Br = (a - 2) (b - 2)] cm² α : Coefficient dépendant de l'élancement.

$$\lambda = \frac{L_f}{i}$$

$$\alpha = \begin{cases} \frac{0.85}{1 + 2\left(\frac{\lambda}{35}\right)^2} & \text{si } \lambda \le 50\\ \frac{0.6 \times (50)^2}{\lambda} & \text{si } 50 \le \lambda \le 70 \end{cases}$$

L_f : Longueur de flambement.

i : Rayon de giration. $i = \sqrt{\frac{I}{B}}$

I : Moment d'inertie de la section du poteau dans la direction considéré.

B : Section du poteau (B = $a \times b$).

N_u: L'effort normal maximal au niveau des poteaux du sous-sol.

La longueur de flambement $L_f = 0.7 \times l_0$.

V.2.11.1 Calcul du ferraillage

$$\begin{split} &i = \sqrt{\frac{I}{B}} = \sqrt{\frac{1350 \times 650^3}{12 \times 1350 \times 650}} = 18,8 \text{ cm} \\ &\lambda = \frac{L_f}{i} = \frac{0.7 \times 4200}{188} = 15,64 \\ &\alpha = \frac{0.85}{1+2\left(\frac{15,64}{35}\right)^2} = 0,607 \\ &B_r = (1350 - 20) \times (650 - 20) = 8379 \text{ cm}^2 \\ &N_u = 10894 \text{ kN} \\ &A_s \ge \left(\frac{10894 \times 10^3}{0,607} - \frac{8379 \times 10^2}{0,9} \cdot \frac{35}{1,5}\right) \frac{1,15}{500} = -86,85 \text{ cm}^2 < 0 \\ &A_{s \min}^{RPA} = 0,9\% B \\ &A_s = A_{s \min} = 78,98 \text{ cm}^2 \end{split}$$

On prend un choix identique à celui des poteaux du RDC à savoir : 28T20.

Tableau V.11 : Vérifications des contraintes des poteaux rectangulaires du sous-sol.

Section	N _{ser}	σ _s	σ _s	σ _b	σ _{bc}	Obs
(cm ²)	(kN)	(MPa)	(MPa)	(MPa)	(MPa)	
65×135	7914,4	127,1(-)	250	8,47	21	Ok

V.2.11.2.Ferraillage transversal

On garde le même ferraillage que celui des poteaux du RDC.

Figure V.5 : Ferraillage du poteau $7^{\text{ème}}+8^{\text{ème}}$ (cm).

Figure V.2 : Ferraillage du poteau $1^{er}+2^{em}$ (cm).

Figure V.4 : Ferraillage du poteau $5^{eme}+6^{eme}$ (cm).

Figure V.6 : Ferraillage du poteau $9^{\text{ème}}+10^{\text{ème}}$ (cm).

Figure V.9 : Ferraillage du poteau 15^{eme} (cm).

V.3. Ferraillage des poutres

V.3.1. Introduction

Les poutres sont des éléments horizontaux qui ont pour rôle la reprise des charges leurs revenant des dalles et planchers et de les transmettre aux poteaux.

V.3.2. Les combinaisons d'actions

Mêmes combinaisons que celles énoncées en §.V.2.2.

V.3.3. Recommandations des règlements

- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5 % en toute section ^[1].
- Le pourcentage total maximum des aciers longitudinaux des poteaux est de ^[2]:
 4 % en zone courante.
 - 6 % en zone de recouvrement.
- La longueur minimale de recouvrement est de 50 Ø en zone III^[2].

L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90° ^[2].

- La quantité d'armatures transversales " A_t ", est donnée par : $A_t = 0,003 \times S_t \times L$ ^[2].

Avec :

- L : longueur de la poutre.
- S_t : espacement de deux cadres consécutifs, il est donné par :

$$\begin{split} &S_t \leq \text{Min} \left[\frac{n}{4} \, ; \, 12 \emptyset\right] & \text{Z.N.} \\ &S_t \leq \frac{h}{2} & \text{Z.C.} \end{split}$$

h : Hauteur de la poutre.

Ø : Diamètre maximale des barres d'acier longitudinales.

V.3.4. Calcul du ferraillage

La structure ne comporte qu'un seul type de poutres à savoir des poutres 40×80 . Les poutres travaillent en flexion simple.

La structure est à usage unique, un seul type de ferraillage sera suffisant.

On note :

A_s: Section d'armatures inférieures.

As' : Section d'armatures supérieures.

Le calcul du ferraillage a été fait avec le logiciel **SOCOTEC** sous les différentes combinaisons d'action. Les résultats ont été résumés dans le tableau suivant :

		12 • 1 •11411	uge des por	actes princ	ipules et	secondun		
ion	Situation	nosition	M ^{max}	As	As'	$A_{s \min}$	A _{s max}	

Tableau V.12: Ferraillage des poutres principales et secondaires

Section	Situation	position	M ^{max} (kN.m)	A _s (cm ²)	A _s ' (cm ²)	A _{s min} (cm²)	A _{s max} (Z.N)	A _{s max} (Z.C)
	S.D.T	Appui	748	0	26,68	16		100
40×80		Travée	503	17,23	0	16	102	
	S.A	Appui	968	0	29,43	16	192	120
		Travée	760	22,61	0	16	<u> </u>	

Tableau V.13 : Choix d'armatures longitudinales des poutres principales et secondaires.

Section	position	Choix	A_{S}^{adp} (cm ²)
40×80	Appui	4T25+4T20	32,21
	Travée	8T20	25,13

V.3.5. Vérifications

V.3.5.1. Condition de non-fragilité

$A_s \ge A_s^{min} = 0,23 \times b \times dx$	$\frac{f_{t28}}{f_e} = 3,58 \text{ cm}^2$	
En travée :	$A_{travée} = 25,13 \text{ cm}^2 > A_s^{min} = 3,58 \text{ cm}^2$	Vérifiée.
Sur appui :	A _{appui} = $32,21 \text{ cm}^2 > A_s^{\min} = 3,58 \text{ cm}^2$	Vérifiée.

V.3.5.2. Espacement

En Travée :

Horizontalement : $e_h = \frac{40-2\times4-4\times2}{3} = 8 \text{ cm}$ On prend : $e_h = 8 \text{ cm} > \text{Max} (\emptyset; 1,5 \times c_g) = \text{Max} (2 \text{ cm}; 3,75 \text{ cm}) = 3,75 \text{ cm}$ Vérifiée. Sur Appuis :

 $e_h = \frac{40 - 2 \times 4 - 4 \times 2,5}{3} = 7,3$ cm on prend Horizontalement : On prend : $e_h = 7 \text{ cm} > \text{Max} (\emptyset; 1,5 \times c_g) = \text{Max} (2,5 \text{ cm}; 3,75 \text{ cm}) = 3,75 \text{ cm} \text{ Vérifiée.}$

V.3.5.3. Effort tranchant

$$\begin{split} \tau_{u} &= \frac{T_{u}^{max}}{b \times d} \leq \overline{\tau_{u}} = Min \left\{ 0, 1 \times f_{c28} ; 4 \text{ MPa} \right\} = 3,5 \text{ MPa} \\ T_{u} &= 401,5 \text{ kN} \\ \tau_{u} &= \frac{401,5 \times 10^{3}}{400 \times 720} = 1,39 \text{ MPa} < 3,5 \text{ MPa} \\ \text{Selon le BAEL} \\ \begin{cases} S_{t} &\leq Min \left(0,9d ; 40 \text{ cm} \right) \\ \frac{A_{t}}{b \times S_{t}} &\geq \frac{\tau_{u} - 0,3 \times f_{c28} \times K}{0,8 \times f_{e}} \\ \frac{A_{t} \times f_{e}}{b \times S_{t}} &\geq Max \left(\frac{\tau_{u}}{2} ; 0,4 \text{ MPa} \right) \end{cases} \text{ K} = 1 \\ \frac{A_{t} \times f_{e}}{b \times S_{t}} &\geq Max \left(\frac{\tau_{u}}{2} ; 0,4 \text{ MPa} \right) \\ \text{Selon les RPA} \\ \begin{cases} A_{t} &= 0,003 \times S_{t} \times b \\ S_{t} &\leq Min \left(\frac{h}{4} ; 12\emptyset_{l} \right) \\ S_{t} &\leq \frac{h}{2} \\ \end{cases} \text{ Z. N} \end{split}$$

Tableau V.14 : Contrainte tangentielle et ferraillage transversal des poutres principales et secondaires.

Section	T (kN)	σ (MPa)	$\mathbf{S}_{\mathbf{t}}$ (cm)	Λ (cm ²)	Choix	
Section		t _u (1 VII a)	Z.N	Z.C	$\mathbf{A}_{\mathbf{f}}$ (CIII)	CHOIX	
40×80	401,5	1,39	20	20	2,4	4T10	

V.3.5.4. Contraintes à l'E.L.S

Tableau V.15 : Vérification des poutres principales et secondaires à l'ELS.

Section	Position	M _{ser} (kN.m)	σ _s (MPa)	σ _s (MPa)	σ _b (MPa)	σ _{bc} (MPa)	Obs
10~80	Appui	481	238,1	250	10,7	21	Ok
40^00	Travée	372	232,3	230	8,3	21	Ok

V.3.5.5. Flèche

Flèche totale : $\Delta f_t = f_{g_v} - f_{j_i} + f_{p_i} - f_{g_i} \le \bar{f}$

 f_{g_v} : Flèche de longue durée due à l'ensemble des charges permanentes.

 f_{g_i} : Flèche instantanée due à l'ensemble des charges permanentes.

 f_{i_i} : Flèche instantanée due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons (nulle).

 f_{p_i} : Flèche instantanée due à l'ensemble des charges (G+Q).

Z. C

-Moment d'inerte de la section rectangulaire homogène I₀:

$$I_0 = \frac{b \times h^3}{3} + 15 \times [A_s \times (d - y)^2 + A'_s \times (y - d')^2]$$

-Calcul des moments d'inerte fictifs :

$$\begin{split} I_{fi} &= \frac{1,1 \times I_0}{1 + \lambda_i \times \mu} \\ I_{f\nu} &= \frac{1,1 \times I_0}{1 + \lambda_p \times \mu} \\ \text{Avec} : \\ \lambda_i &= \frac{0,05 \times f_{t28}}{\rho \times \left(2 + 3 \times \frac{b_0}{b}\right)} \\ \lambda_\nu &= \frac{0,02 \times f_{t28}}{\rho \times \left(2 + 3 \times \frac{b_0}{b}\right)} \\ \vdots \text{ Coefficient pour la déformation différée.} \\ \rho &= \frac{A}{b \times d} \\ \mu &= 1 - \frac{1,75 \times f_{t28}}{4 \times \rho \times \sigma_s + f_{t28}} \end{split}$$

 σ_s : contrainte de traction effective de l'armature correspondant au cas de charge considéré σ_s .

Les résultats sont récapitulés dans le tableau ci-dessous :

Tableau V.16 : Récapitulatif du calcul de flèche des poutres principales et secondaires.

M _{ser} (kN.m)	A _s (cm ²)	ρ	σ _s (MPa)	λ_i	$\lambda_{\rm v}$	μ	I_{θ} (cm ⁴)	I_{fi} (cm ⁴)	I_{fv} (cm ⁴)
372	25,13	0,008	232,3	3,09	1,24	0,56	7740506,5	3105835,2	5018634,6

Calcul de la flèche instantanée due à l'ensemble des charges (G+Q).

 $f_{p_i} = \frac{M \times L^2}{10 \times E_{ij} \times I_{fi}} = \frac{372 \times 10^6 \times 9000^2}{10 \times 35981,7 \times 3105835,2 \times 10^4} = 2,69 \text{ mm}$

Calcul de la flèche instantanée due à l'ensemble des charges permanentes.

 $f_{g_i} = \frac{M \times L^2}{10 \times E_{ij} \times I_{fi}} = \frac{326 \times 10^6 \times 9000^2}{10 \times 35981,7 \times 3105835,2 \times 10^4} = 2,36 \text{ mm}$

Calcul de la flèche de longue durée due à l'ensemble des charges permanentes.

$$f_{gv} = \frac{M \times L^2}{10 \times E_{iv} \times I_{fv}} = \frac{326 \times 10^6 \times 9000^2}{10 \times 11994 \times 5018634, 6 \times 10^4} = 4,38 \text{ mm}$$

Calcul de la flèche instantanée due aux charges permanentes appliquées au moment de la mise en œuvre des cloisons.

$$f_{j_i} = \frac{M \times L^2}{10 \times E_{ij} \times I_{fi}} = \frac{326 \times 10^6 \times 9000^2}{10 \times 35981,7 \times 3105835,2 \times 10^4} = 2,36 \text{ mm}$$

$$\Delta f_t = f_{g_v} - f_{j_i} + f_{p_i} - f_{g_i} = 4,51 - 2,44 + 2,78 - 2,44 = 3,43 \text{ mm} < \bar{f} = 5 + \frac{L}{1000} = 14 \text{ mm}$$

La flèche est donc vérifiée.

V.3.6. Arrêt des barres

 $\begin{array}{l} \mbox{Armatures inférieures tendues}: X \leq \frac{L}{10} \mbox{ pour } L = Max \ (L_{droite} \ ; L_{gauche}). \\ \mbox{Armatures tendues supérieures}: X \geq \begin{cases} \frac{L^{max}}{4} \ \ pour \ appuis \ de \ travée \ de \ rive. \\ \hline \frac{L^{max}}{5} \ \ pour \ appui \ de \ travée \ intermédiaire. \end{cases}$

Figure V.10 : Schéma des arrêts de barres.

V.3.7. Armatures de peau

Du moment que les poutres sont relativement profondes, nous devront placer des armatures de peau afin d'éviter l'apparition de fissures en dehors des régions suffisamment ferraillées près des fibres extrêmes. Au moins 3 cm² par mètre linéaire de longueur mesurée perpendiculairement à leur section est nécessaire ^[1].

 $A_p = 0.7 \times 3 = 2.1 \text{ cm}^2$ On prend **2T12** $A_p = 2.26 \text{ cm}^2$

Figure V.11 : Ferraillage des poutres en travée (cm).

V.4. Ferraillage des voiles

V.4.1. Introduction

Les voiles sont des écrans rigides ayant deux dimensions en plan (longueur, largeur) plus importantes que la troisième dimension (épaisseur).

Les voiles sont chargés dans leur plan et ont pour principales fonctions :

- De reprendre les charges verticales revenantes des planchers.
- De participer au contreventement de la structure.
- Protection contre les incendies (cages d'escaliers et ascenseurs).
- Isolation acoustique.

Les calculs des voiles en béton armé et non armé sont effectués suivant la norme «NF P 18–210 –DTU 23.1 : murs en béton banché.» pour la méthode des contraintes et suivant « ACI 318–19 », quant aux vérifications, elles seront faite selon les « RPA 99 modif 2003 ».

V.4.2. Ferraillage des voiles par la méthode des contraintes

V.4.2.1. Introduction

Le modèle le plus simple d'un voile est celui d'une console parfaitement encastrée à la base. La figure suivante montre l'exemple d'un élément de section rectangulaire, soumis à une charge verticale N et une charge horizontale V en tête.

Le ferraillage des voiles est constitué :

- D'armatures verticales concentrées aux deux extrémités du voile (de pourcentage ρ) et d'armatures verticales uniformément reparties (de pourcentage ρ_v).
- D'armatures horizontales, parallèles au plan du mur, uniformément réparties et de pourcentage ρ_h .
- D'armatures transversales (épingles) (perpendiculaires aux parements du voile).

Les extrémités des voiles sont soumises à d'importants efforts de traction et de compression, ce couple est repris par les armatures disposées dans ces zones. Des armatures horizontales et verticales distribuées au long de l'âme du voile auront pour rôle de reprendre l'effort tranchant. Les cadres et épingles permettent d'assurer le confinement des armatures verticales.

Figure V.13 : Elément soumis à la flexion composée.

V.4.2.2. Justifications sous sollicitations normales

V.4.2.2.1 Conditions d'application

- La longueur « d » du mur : $d \ge 5a$
- L'épaisseur a du mur :
 - $a \ge 10$ cm pour les murs intérieurs.
 - $a \ge 12$ cm pour les murs extérieurs comportant une protection.

 $a \ge 15$ cm pour les murs extérieurs dont la résistance à la pénétration de l'eau peut être affectée par la fissuration du béton.

- L'élancement mécanique λ : $\lambda \le 80$
- Le raidisseur d'extrémité r : $r \ge 5a$

Figure V.14 : Dimensions en plan d'un mur ^[7]. **V.4.2.2.2. Longueur de flambement (murs non raidi latéralement)**

Soit :

1 : la hauteur libre du mur.

 $l_{\rm f}$: la longueur libre de flambement d'un mur non raidi.

Figure V.15 : Dimensions en élévation d'un mur.

Lorsqu'un mur n'est pas raidi latéralement par des murs en retour, la longueur libre de flambement l_f déduit de la hauteur libre du mur l, en fonction de ses liaisons avec le plancher.

Les valeurs du rapport $\left(\frac{l_f}{l}\right)$ sont données par le tableau suivant :

 Tableau V.17 : Valeurs du coefficient « K » ^[8].

Liais	ons du mur	Mur armé verticalement	Mur non armé verticalement	
Mur encastré	Présence de plancher de part et d'autre	0,80	0,85	
pied	Présence de plancher d'un seul coté	0,85	0,90	
Mur articul	é en tête et en pied	1,00	1,00	

L'élancement mécanique λ se déduit de la longueur libre de flambement par la relation :

$$\lambda = \frac{l_f \sqrt{12}}{a}$$

V.4.2.2.3. Efforts de compression en ELU

Soient :

- l_f : longueur de flambement (§.V.4.2.2.2).
- a : Epaisseur du voile.
- d : Longueur du voile.
- f_{c28} : Résistance caractéristique du béton à 28 jours.

- $f_{\rm e}$: Limite élastique de l'acier.
- $\gamma_b = 1,5$ (sauf combinaison accidentelles pour lesquelles $\gamma_b = 1,15$).
- $\gamma_s = 1,15$ (sauf pour combinaison accidentelles pour lesquelles $\gamma_s = 1$).

NB : Les valeurs de α données par le tableau ci-dessous sont valables dans le cas ou plus de la moitié des charges est appliquée après 90 jours.

	Notation	Unité	Voile armé verticalement	Voile non armé verticalement	
Elancement	λ	/	$\frac{l_f \sqrt{12}}{a}$		
Section réduite	Br	m²	$d \times (a -$	- 0,02)	
$\lambda \le 50$ $50 \le \lambda \le 80$	α	/	$\frac{0,85}{1+0,2\left(\frac{\lambda}{35}\right)^2}$ $\frac{0,6\times(50)^2}{\lambda}$	$\frac{0,65}{1+0,2\left(\frac{\lambda}{30}\right)^2}$	
Effort ultime ELU	N_{ulim}	kN	$\alpha \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} + \frac{A_s \times f_e}{\gamma_s} \right]$	$\alpha \left[\frac{B_r \times f_{c28}}{0.9 \times \gamma_b} \right]$	
Contraintes limites	σ	kPa	$\sigma_{\rm ba} = \frac{N_{ulim}}{a \times b}$	$\sigma_{bna} = \frac{N_{u \ lim}}{a \times b}$	

Tableau V.10 . Calcul de Oba el Obna	`ableau	au V.18	: Calcul	de σ_{ba} et	σ_{bna} [8]
---	---------	---------	----------	---------------------	--------------------

Remarque :

-

Si la contrainte moyenne de compression dépasse la contrainte de béton armé σ_{ba} , on devra augmenter les dimensions du voile.

V.4.2.2.4. Sections à vérifier

- Niveau **I–I** à mi-hauteur d'étage : $\sigma_u \leq \sigma_{u \text{ lim}}$
- Niveau II–II sous le plancher haut : $\sigma_u \leq \frac{\sigma_{u \text{ lim}}}{\alpha}$

En cas de traction, on négligera le béton tendu.

V.4.2.2.5. Aciers minimaux

Si $\sigma_u^c < \sigma_{bna}$ on n'aura pas besoin d'armatures, on prendra alors les valeurs minimales données par le tableau suivant : (σ_u^c est la contrainte de compression ultime calculée).

	Aciers verticaux	Aciers horizontaux
Espacement maximal	$S_t \le Min (0,33 m; 2a)$	$S_t \le 0.33 \text{ m}$
Section minimale	$A_{sv} \ge \rho_v \times d \times a$ $\rho_v = Max \left[0,001; 0,0015 \frac{400 \times \theta}{f_e} \left(\frac{3 \times \sigma_u}{\sigma_u \ lim} - 1 \right) \right]$	$ \rho_h = \frac{A_h}{100a} \ge \operatorname{Max}\left[\frac{2 \times \rho_{v max}}{3}; 0,001\right] $
Pourcentage minimal	Moitié sur chaque face avec : $\theta = 1,4$ pour un voile de rive $\theta = 1$ pour un voile intermédiaire	$\rho_{v max}$: pourcentage d'armatures verticales de la bande la plus armée

Tableau V.19 : Sections minimales des aciers verticaux et horizontaux ^[8].

La section d'armatures correspondante au pourcentage « ρ_v » doit être distribuée en deux nappes, une sur chacune des faces de la bande de mur considérée.

La section d'armatures horizontales parallèles aux faces du mur doit être distribuée en deux nappes, une sur chacune des faces de façon uniforme sur la totalité de la longueur du mur ou de l'élément de mur limité par des ouvertures.

Seuls les aciers verticaux (de diamètre $\hat{\mathcal{Q}}_l$) pris en compte dans le calcul de $N_{u \ lim}$ sont à maintenir par des armatures transversales (de diamètre $\hat{\mathcal{Q}}_l$).

Fableau V	/.20:	Sections	minimales	des	aciers	transversaux.
-----------	-------	----------	-----------	-----	--------	---------------

	Nombre d'armatures transversales	Diamètre Ø _l
	4 épingles par m ² de voile	6 mm
12 mm $\leq \emptyset_1 \leq 20$ mm Reprendre toutes les barres verticales		6 mm
$20 \text{ mm} \le \emptyset_1$	mm $\leq \mathbf{Ø}_{l}$ Espacement $\leq 15 \ \mathbf{Ø}_{l}$	

V.4.2.2.6. Cisaillement

Aucune vérification à l'effort tranchant ultime n'est exigée en compression si le cisaillement est inférieur à $0.05 \times f_{c28}$ (il faudra donc vérifier que $S_{12} \le 0.05 \times f_{c28}$).

V.4.2.3. ferraillage des trumeaux

V.4.2.3.1. Introduction

Pour le ferraillage des trumeaux, on devra calculer et disposer les aciers verticaux et les aciers horizontaux conformément aux règlements « **BAEL91 modif 99** » et « **RPA99 modif 2003** ».

V.4.2.3.2. Méthode simplifiée basée sur les contraintes (aciers verticaux)

V.4.2.3.2.a. Aciers verticaux.

Zone comprimée :

Si $\sigma < 0 \rightarrow$ compression.

Dans ce cas le Voile n'est pas armé à la compression, on prend :

$A_s = Max (Min \ll BAEL \gg; Min \ll RPA \gg).$

- Zone tendue :
- Si $\sigma > 0 \rightarrow$ traction.

Lorsqu'une partie (zone) du voile est tendue, la contrainte de traction (moyenne) σ_m vaut : $\sigma_m = \frac{F_t}{e \times l_m}$ Avec

- F_t : Force de traction.
- e : Epaisseur du voile.

l_m: Longueur de la section considérée (maille).

Section d'acier correspondante à cette contrainte :

$$\frac{A_{s}}{s} = \frac{\sigma_{m}}{f_{e}} \Delta_{s} = A_{v}$$
(1)
Avec :

 $\Delta_{\rm s}: {\rm e} \times {\rm l}_{\rm m}$

 $\frac{A_s}{S}$: Quantité d'acier répartie sur les deux faces d'une surface S du voile.

Dans le modèle numérique, les voiles sont modélisés comme élément « shell » à 4 nœuds, afin d'obtenir des résultats plus fiables, on procède à un maillage en petits éléments « shell » aux dimensions « a » et « b » de façon à ce que le rapport « $\frac{a}{b}$ » soit proche de 1.

Les valeurs des contraintes moyennes σ_m sont lues au milieu des mailles

Figure V.17 : Maillage d'un voile.

V.4.2.3.2.b. Aciers horizontaux

$$\begin{split} A_{h1} &= \frac{2}{3} A_v \\ A_{h2} &= \frac{\overline{\tau_u} \times b_0 \times S_t}{0.8(0.8 \times f_e)} = \frac{1.4 \times \tau_u \times a \times S_t}{0.8 \times f_e}.1,25 \\ \tau_u &: S_{12} \text{ donnée par SAP2000.} \\ S_t &: Espacement maximal. \\ b_0 &: a \text{ (épaisseur du trumeau).} \\ A_h &\geq Max (A_{h1}; A_{h2}) \end{split}$$

V.4.2.3.3. Exigences des RPA99 modif 2003

V.4.2.3.3.a. Aciers verticaux

- Lorsqu'une partie du voile est tendue sous l'action des forces verticales et horizontales, l'effort de traction doit être pris en totalité par les armatures, le pourcentage minimum des armatures verticales sur toute la zone tendue est de 0,2 % ^[2].
- Il est possible de concentrer des armatures de traction à l'extrémité du voile ou du trumeau, la section totale d'armatures verticales de la zone tendue devant rester au moins égale à 0,20 % de la section horizontale du béton tendu ^[2].
- Les barres verticales des zones extrêmes devraient être ligaturées avec des cadres horizontaux dont l'espacement ne doit pas être supérieur à l'épaisseur du voile ^[2].
- Si les efforts importants de compressions agissent sur l'extrémité, les barres verticales doivent respecter les conditions imposées aux poteaux ^[2].
- Les barres verticales du dernier niveau doivent être munies de crochets (jonction par recouvrement)^[2].
- A chaque extrémité du voile (trumeau) l'espacement des barres doit être réduit de moitié sur 1/10 de la largeur du voile. Cet espacement d'extrémité doit être au plus égal à 15 cm^[2].

Figure V.18 : Disposition des armatures verticales dans un voile ^[2].

V.4.2.3.3.b. Aciers horizontaux

Les barres horizontales doivent être munies de crochets à 135° ayant une longueur de $10 \text{ }\emptyset$. Dans le cas où il existerait des talons de rigidité, les barres horizontales devront être ancrées sans crochets si les dimensions des talons permettent la réalisation d'un ancrage droit.

V.4.2.3.3.c. Règles communes

- Le pourcentage minimum d'armatures verticales et horizontales des trumeaux est donné par : Globalement dans la section du voile 0,15%
 En zone courante 0,10%
- L'espacement des barres horizontales et verticales doit être inférieur à la plus petite des deux valeurs suivantes : $S \leq \begin{cases} 1,5a \\ 30 \text{ cm} \end{cases}$
- Les deux nappes d'armatures doivent être reliées avec au moins 4 épingles au mètre carré ^[2].
- Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieur^[2].
- Le diamètre des barres verticales et horizontales des voiles (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.
- Les longueurs de recouvrement doivent être égales à ^[2]:
 40 Ø pour les barres situées en zones où le renversement du signe des efforts est possible.
 20 Ø pour les barres situées en zones comprimées quelques soit l'action ou combinaisons.
- Le long des joints de reprise de coulage, l'effort tranchant doit être pris par les aciers de

couture dont la section doit être calculée avec la formule : A = 1,1. $\frac{\overline{V}}{f_e}$ ^[2].

Cette quantité doit s'ajouter à la section d'aciers tendus nécessaires pour équilibrer les efforts de traction dus aux moments de renversement.

Figure V.19 : Disposition des voiles.

V.4.2.4. Exemple de calcul (voile VX1) par la méthode des contraintes

L = 8,05 m (entre nus); a = 0,20 m (épaisseur); $h_e = 3,6 m (hauteur d'étage)$. Le voile est découpé en mailles horizontales de même longueur $L_i = 1,5 m$ et de section $B_i = L_i \times (a)$.

V.4.2.4.1. Contraintes limites

La hauteur libre est égale à : $h_e=3,60-0,80=2,80 \text{ m} (0,80 \text{ m} \text{ : hauteur de la poutre})$

Tableau V.21 : Calcul de σ_{ba} et σ_{bna} pour VX1.

	Béton armé	Béton non armé	
Longueur de flambement l_f	$0,8 \times 2,8 = 2,24$ m	0,85×2,80 = 2,38 m	
Elancement λ	$\frac{2,24 \times \sqrt{12}}{0,2} = 38,80$	$\frac{2,38 \times \sqrt{12}}{0,2} = 41,22$	
Coefficient	0,617	0,487	
Section réduite B _r	$(0,2-0,02) \times (1,5-0.02) = 0,266 \text{ m}^2$	$(0,2-0,02) \times (1,5-0,02) = 0,266 \text{ m}^2$	
Contraintes limites	$\frac{\substack{0,617\\0,2\times1,5}}{\substack{0,9\times1,15\\0,9\times1,15}} + \frac{A_{s}\times500}{1}}{3}$ $\sigma_{ba} = 18,80 \text{ MPa}$	$\frac{0,487}{0,2\times1,5} \left[\frac{0,266\times35\times10^{6}}{0,9\times1,15} \right] \\ \sigma_{bna} = 14,60 \text{ MPa}$	

Remarque :

 $\sigma_{ba} = 15,933$ MPa correspondant à $A_s = 0,1\%$ B B = (0,20) × (1,5) = 0,3 m² As = 3 cm² Pour cette exemple $\sigma_{max} = 0.69$ MPa $< \sigma_{max}$ donc on n'a pas besoin d'armatures de compressi

Pour cette exemple $\sigma_{comp} = 0,69$ MPa $< \sigma_{bna}$ donc on n'a pas besoin d'armatures de compression.

V.4.2.4.2. Armatures de traction

La contrainte moyenne normale au milieu de chaque maille (à la base de voile) est lue, directement à partir de l'interface graphique ; il s'agit des contraintes S_{22} que nous avons noté dans la suite σ_j (j : pour le numéro de la maille).

La lecture des contraintes tangentielles se fera de la même manière (S₁₂ ou τ).

Tableau V.22 : Calcul des armatures verticales pour VX
--

Maille	1	2	3	4	5	6					
$L_i = 1,5 m$	1	4	5	4	5	U					
$\mathbf{B}_{i} = \mathbf{a} \times \mathbf{L}_{i} \ (\mathbf{m}^{2})$	0,3	0,3	0,3	0,3	0,3	0,3					
Contrainte moyenne	7 33	16	0	0	1 74	7.61					
σ _{mi} (MPa)	7,55	1,0	U	0	1,74	7,01					
Force de traction	2 100	0.48	_ 2 53	- 2.80	0.522	2 283					
$\mathbf{F}_{t} = \boldsymbol{\sigma}_{mi} \times \mathbf{B}_{i} (\mathbf{MN})$	2,199	0,40	- 2,33	- 2,00	0,322	2,203					
Section d'acier (cm ²)											
$\mathbf{A}_{s} = \frac{\mathbf{F}_{t}}{\sigma_{s}}$	43,98	9,6	/	/	10,44	45,66					
S.A $\gamma_s = 1$											
$A_{s \min}$ (cm ²):0,1% $B_i^{[1]}$	3	3	/	/	3	3					
$A_{s \min} (cm^2):0,2\% B_i^{[2]}$	6	6	/	/	6	6					
A ^{adp} (deux faces)	2×11T16	2×7T12	/	/	2×7T12	2×12T16					
(cm ²)	= 44,22	= 15,83	/	/	/	/	/	/	/	= 15,83	= 48,26
S _i (cm)	15	21,4	/	/	21,4	12,5					
$S_i \leq (1,5a ; 30cm)$ $S_i \leq 30cm$	Vérifiée	Vérifiée	/	/	Vérifiée	Vérifiée					

V.4.2.4.3. Armatures de joint de bétonnage (aciers de couture)

$$\begin{split} &V_u^{\ cal} = S_{12} \times a \times L_i = 3,51 \times 200 \times 1500 = 1053 \ kN \\ &\overline{V} = 1,4 \times V^{cal} = 1,4 \times 1053000 \\ &A = 1,1. \ \frac{1053000}{500} = 23,17 \ cm^2 \end{split}$$

V.4.2.4.4. Aciers horizontaux

$$A_{h1} = \frac{1.4 \times \tau_{u} \times a \times S_{t}}{0.8 \times f_{e}} \cdot 1.25 = \frac{1.4 \times 3.51 \times 200 \times 300}{0.8 \times 500} \cdot 1.25 = 9.21 \text{ cm}^{2}$$

$$A_{h2} = \frac{2}{3} \cdot A_{v} = \frac{2}{3} \cdot 44.22 = 29.48 \text{ cm}^{2}$$

$$A_{h \min} = 0.15\% \text{ B} = 0.0015 \times 20 \times 150 = 4.5 \text{ cm}^{2}$$

$$A_{h} = \text{Max} (A_{h1}; A_{h2}; A_{h \min}) = 29.48 \text{ cm}^{2}$$
On prend 2×8T16 = 32.17 cm²
Avec : $S_{t} = \frac{150}{8} = 18.75 \text{ cm}$
On prend $S_{t} = 18 \text{ cm} < 30 \text{ cm}$
Vérifiée.
NB : Pour le calcul du reste des voiles voir l'annexe A.

Figure V.20 : Ferraillage du voile VX1 selon la méthode des contraintes.

V.4.3. Ferraillage des voiles par la Méthode réglementaire ACI 318

V.4.3.1. Introduction

Cette méthode considère les éléments voile-poteau comme un élément de forme (I, U ...) soumis à un effort normal (P), un effort tranchant (V) et un moment fléchissant (M).

Selon le règlement il convient que :

- Les armatures horizontales assurent la résistance à l'effort tranchant (V).
- Les armatures verticales assurent la résistance à l'effort normal (P).
- Les armatures verticales dans les éléments de rive (zone de confinement) aux deux extrémités de la section transversale du voile ou trumeau assurent la résistance à la flexion composée (P.M).

Le voile en béton armée doit faire l'objet des vérifications suivantes :

- Justification de la stabilité de forme (résistance au flambement).
- Résistance à l'effort normale.
- Résistance à l'effort tranchant.
- Résistance en flexion composée.

V.4.3.2. Justification de la stabilité et la résistance à la compression (flambement)

On a : K = $\frac{l_f}{l}$

Avec :

- l_f : Longueur de flambement.
- 1 : Longueur libre du mur.
- K : coefficient de flambement.

Les valeurs du coefficient K sont données par le tableau suivant :

Tableau V.23 : Valeurs du coefficient « K »^[8].

Liais	Valeur de K	
Mur opostré Présence de plancher		0.80
en tête et en pied	de part et d'autre	0,80
	Présence de plancher	0.95
	d'un seul coté	0,85
Mur articul	1,00	

Si l'effort de compression P_u est axial ou excentré de $e \le \frac{a}{6}$,

le voile est stable vis-à-vis du flambement si la condition suivante est vérifiée :

 $P_u \leq \Phi \times P_n$

$$P_n = 0.55 \times f_c' \times A_g \times \left[1 - \left(\frac{K \times h_s}{32 \times a}\right)^2\right]$$

Avec :

- P_u: Effort normal ultime de compression le plus défavorable.
- P_n: Effort nominal limite de la section transversale du voile.
- Φ : Facteur de réduction ($\Phi = 0,70$).
- A_g : Section transversale brute du voile.
- h_s : Hauteur libre de chaque niveau.
- a : Epaisseur du voile.
- f_c ': Contrainte admissible du béton.
- K : Coefficient de flambement.

Figure V.21 : Excentricité de l'effort

V.4.3.3. Justification de la résistance vis-à-vis de l'effort normal

	Tableau V.24 : Pourcentage	minimal des	armatures en	zone comprimée ^[8] .
--	----------------------------	-------------	--------------	---------------------------------

	Armatures horizontales	Armatures verticales
Espacement maximal (entre- axe)	$S_i \le (\frac{l_w}{5}; 3a; 45 \text{ cm})$	$S_i \le (\frac{l_w}{3}; 3a; 45 \text{ cm})$
Armatures minimales	$A_{h \min} \ge \rho_h \times 100 \times a$	$A_{h \min} \ge \rho_{\nu} \times l_{w} \times a$
Pourcentages minimaux	$ ho_h \ge 0,0025$	$ ho_{v} \ge 0,0025 + 0,5 imes (2,5 - rac{\mathrm{h_{w}}}{\mathrm{l_{w}}}) imes (ho_{h} - 0,0025) \ge 0,0025$

- h_w : Hauteur totale du voile mesuré à partir de la base jusqu'au sommet de la structure.

- ρ_v : Pourcentage des armatures verticales dans l'âme du mur.
- ρ_h : Pourcentage des armatures horizontales dans l'âme du mur.

Les sections d'armatures trouvées doivent être distribuées sur les deux faces du voile dans les deux directions (horizontale et verticale).

V.4.3.4. Justification de la résistance vis-à-vis de l'effort tranchant

Pourcentage minimal des armatures en dehors des zones de rive :

Tableau V.25	Vérification	vis-à-vis de	l'effort tranchant [8]	
--------------	--------------	--------------	------------------------	--

Valeur de l'effort tranchant	Pourcentage des armatures (horizontales et verticales)	Vérification
$V_u > 0,17 \times A_{cv} \times \sqrt{f_c}'$ Ou $a \ge 25 \text{ cm}$	$(\rho_v; \rho_h; \rho_n) \ge 0,0025$ Disposées sur chaque face du voile et reliées par des épingles Espacement $S_t \le Min (3a; 45 cm)$	$V_{u} < 0.66 \times A_{cv} \times \sqrt{f_{c}}$ $\Phi V_{n} > V_{u} \text{avec } \Phi = 0.75$ $V_{n} = A_{cv} \times (\alpha_{c} \times 0.083 \times \sqrt{f_{c}'} + \rho_{n} \times f_{y})$ $\alpha_{c} = 0.25 \text{ pour } : \frac{h_{w}}{l_{w}} \le 1.5$ $\alpha_{c} = 0.17 \text{ pour } : \frac{h_{w}}{l_{w}} \ge 2$ Interpolation si $1.5 \le \frac{h_{w}}{l_{w}} \le 2$
$V_u < 0,17 \times A_{cv} \times \sqrt{f_c}'$ a < 25 cm	Armature verticale : $\rho_v \ge 0,0012$ avec des barres HA16 $\rho_v \ge 0,0015$ avec d'autres barres HAArmatures horizontales : $\rho_h \ge 0,002$ avec des barres HA16 $\rho_v \ge 0,0025$ avec d'autres barres HAEspacement : $S_t \le Min (3a ; 45 cm)$	$\Phi V_n > V_u \text{avec } \Phi = 0,75$ $V_n = A_{cv} \times (\alpha_c \times 0,083 \times \sqrt{f_c'} + \rho_n \times f_y)$

- A_{cv} : Section brute du béton par mètre linéaire dans la direction de l'effort tranchant. $A_{cv} = a \times 100$.
- $\Phi = 0.75$: coefficient de sécurité.
- V_u : Effort tranchant obtenu par le calcul de la structure dans la combinaison sismique.
- V_n : Effort tranchant nominale de la section transversale.

- α_c : Coefficient dépendant de l'élancement du mur.
- ρ_v : Pourcentage des armatures verticales dans l'âme du mur.
- ρ_h : Pourcentage des armatures horizontales dans l'âme du mur.
- ρ_n : Pourcentage nominale des armatures dans l'âme du mur.
- h_w: Hauteur totale du voile mesurée à partir de la base jusqu'au sommet de la structure.
- l_w : Longueur du voile en plan.

Figure V.22 : Coupe verticale d'âme de voile ^[8].

V.4.3.5. Calcul des armatures de tractions dans le voile ou trumeau

Le calcul d'un voile ou trumeau est effectué en flexion composée, il convient que les armatures verticales nécessaires pour la vérification de la résistance sous la combinaison sismique la plus défavorable, soient concentrées dans les éléments de rives, aux deux extrémités de la section transversale du voile.

Les résistances à la flexion sont calculées de façon classique, en utilisant la valeur de l'effort normale P_u et le moment fléchissant M_u , résultant de l'analyse dans la situation sismique de calcul elles visent à éviter les modes de ruine par cisaillement.

- P_u, V_u, M_u : Efforts internes respectivement (Effort normal, Effort tranchant et moment fléchissant) ultimes résultants de l'analyse dans la situation sismique de calcul.
- h_{cr} : La hauteur de la zone où se produisent les déformations plastiques, zone de la rotule plastique en pied de mur également appelée zone critique.
- h_w : Hauteur totale du voile mesurée a partir de la base jusqu'au sommet de la structure.
- l_w : Longueur du mur en plan.
- c : Longueur de la zone à confiner mesurée depuis la fibre de compression extrême du mur jusqu'au point où le béton non confiné peut éclater à cause de déformations de compression importantes.
- δ_u : Déplacement du voile au sommet.
- A_g : Section transversale du voile ou trumeau.
- I_g : Moment d'inertie du voile.

Figure V.24 : Schéma d'un mur en béton armé^[8].

V.4.3.6. Disposition constructives pour la ductilité local des murs élancés

Les murs élancés sont ceux dont le rapport entre la hauteur et la longueur $\frac{h_w}{l_w}$ est supérieur à 2. La hauteur h_{cr} , où se produisent les déformations plastiques, ou appelée zone de la « rotule plastique » en pied de mur également appelée zone « critique » comme le montre la figure V.22 est estimée par :

Figure V.25 : Hauteur de la zone critique ^[8].
Des cadres sont disposés d'un espacement constant sur toute la hauteur critique « h_{cr} », autour des armatures verticales concentrés aux éléments de rives.

Ces éléments de rive constituent en quelque sorte des membrures latérales plus résistantes et plus ductiles que le reste du voile. Comme ces zones sont les plus sollicitées, c'est à cet endroit que se produirait en premier lieu l'éclatement du béton.

On empêche donc la ruine en commençant par le renforcement de ces zones. Les armatures de confinement sont des cadres ou des épingles similaires à ceux des poteaux.

On définit les zones confinées de rive de la façon suivante :

En élévation, les armatures de confinement doivent être présentées sur toute la hauteur h_{cr} de la zone critique. En plan, la zone à confiner s'étend horizontalement sur une longueur l_{bz} mesurée depuis la fibre de compression extrême du mur jusqu'au point où le béton non confiné peut éclater à cause de déformations de compression importantes.

V.4.3.7. Dimensionnement des éléments de rives d'un voile

Les murs sismiques principaux doivent être dimensionnés dans le but de limiter le risque de rupture fragile sous sollicitation d'ensemble due au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$\frac{P_u}{P_0} \le 0.35$$

Tel que :

 $P_0 = 0.85 \times f'_c \times (A_g - A_s) + A_s \times f_e \text{ Avec } A_g = a \times l_w$

- P_0 : Etant la charge axiale nominale (limite) de la section du voile.

- A_g : Section transversale brute du voile.

- As: Section d'armature verticale de calcul ou choisit.
- a : Epaisseur du voile.
- f_e : Contrainte élastique de l'acier.
- f'_c : Contrainte admissible du béton.

On peut prendre pour la simplicité des calculs $A_s = 0$ donc $P_0 = 0.85 \times f'_c \times A_g$ ou bien un pourcentage minimum des armatures verticales $A_v \ge \rho_v \times l_w \times a$

Remarque :

Il existe deux (02) approches pour la détermination des dimensions des éléments de rive «Boundary Eléments» dans les voiles ou trumeaux.

Le calcul sera fait suivant l'approche la plus rigoureuse.

L'élément de rive confiné est nécessaire si :
$$c \ge \frac{l_w}{600.(1.5 \times \frac{\delta_u}{h_w})}$$
 et que $\frac{\delta_u}{h_w} \ge 0,005$

Dans le cas :
$$L_{bz} = Max \begin{cases} c - (0, 1 \times l_w) \\ c/2 \end{cases}$$

Avec :

- c : La distance de l'axe neutre par rapport à la fibre la plus comprimée de la section du voile
- h_w : Hauteur totale du voile mesurée a partir de la base jusqu'au sommet de la structure.
- δ_u : Déplacement ultime du voile au sommet.
- l_w : Longueur du mur en plan.
- δ_u : Déplacement ultime du voile au sommet.

Pour le calcul de δ_u on utilise la formule des « **RPA 99 modif 2003** », on considère le déplacement du dernier niveau obtenu par l'analyse dû aux forces sismiques δ_e majoré par le coefficient de comportement de la structure R^[2].

$$\delta_u = \mathbf{R} \times \delta_{ek}$$

- R : coefficient de comportement de la structure (Tableau 4.3^[2])

- δ_e : déplacement dû aux forces sismiques (y compris l'effet de torsion).

Détermination de la position de l'axe neutre :

La position de l'axe neutre c correspondant à la courbure ultime après éclatement du béton situé hors du noyau confiné des éléments de rive.

La distance « c » peut être déterminée on construisant la courbe d'interaction (P–M) correspondant à la section et ferraillage du voile

V.4.3.7.1. Disposition constructives et pourcentage minimal dans les éléments de rives

Le pourcentage des armatures longitudinales dans les éléments de rive doit être supérieur à 0,5%.

 $\rho_v \geq 0.005$ c'est à dire : $A_{sv} \geq 0.005 \; L_{bz} \times T_{bz}$

La distance maximum entre barres longitudinales consécutives maintenues par des armatures de confinement :
 Sens x-x : h_x = 30 cm,

- Sens y-y : Min
$$(h_y = \frac{T_{bz}}{4}; 10 + \left[\frac{(35 - h_x)}{3}\right])$$
 cm

- Le pourcentage minimal est de 0,20 % avec un espacement max de 15 cm^[2].

V.4.3.7.2. Armatures transversales dans la zone de confinement

La section d'armatures transversales est donnée par la formule suivante :

$$A_{h}^{t} \ge 0,09 \times S_{t} \times h_{c} \times \frac{f'c}{f_{e}}$$
 Avec : $h_{c} = T_{bc} - 2 \times c$ (enrobage)

- A^t_h: Section d'armatures transversales totale.
- f_{bc} : Contrainte admissible du béton.
- f_e : Contrainte élastique des armatures transversales.
- h_x : Espacement dans le sens xx entre les barres longitudinales dans la zone confinée.
- St Espacement verticale des cadres.

Figure V.27 : Exemples de ferraillage d'éléments de rive en zone critique [8].

V.4.3.8. Exemple de calcul détaillé pour le Voile "VX1"

V.4.3.8.1. Vérification de la stabilité du voile au flambement

$$\begin{split} &K = 0,8 \text{ ; } a = 20 \text{ cm ; } h_s = 2,80 \text{ m.} \\ &\text{La condition suivante doit être vérifiée :} \\ &P_u \leq \Phi \times P_n \\ &\text{Avec :} \\ &- & P_u = 36346,29 \\ &P_n = 0,55 \times f'_c \times A_g \times \left[1 - \left(\frac{K \times h_s}{32 \times a}\right)^2\right] = 57685,75 \text{ kN} \\ &\Phi \times P_n = 0,7 \times 57685,75 = 40380,03 \text{ kN} > P_u = 36346,29 \end{split}$$

V.4.3.8.2. Vérification de la résistance vis-à-vis de l'effort tranchant

Vérification si 02 nappes d'armatures dans l'âme du voile sont nécessaires pour assurer la résistance à l'effort tranchant.

On a :

- $V_u = 7722,83 \text{ kN}$

- $A_{cv} = 1,99 \text{ m}^2$

 $V_u = 7722,83 \text{ kN} < 0.083 \times A_{cv} \times \sqrt{f'_c} = 977,16 \text{ kN}$

Non vérifiée.

Donc 02 nappes d'armatures verticales et horizontales sont nécessaires et disposées sur chaque face du mur reliées par des épingles

 $V_{u} = 7722,83 \text{ kN} < 0,664 \times A_{cv} \times \sqrt{f'_{c}} = 7817,27 \text{ kN}$ Vérifiée. Par conséquent le voile résiste à l'effort tranchant.

V.4.3.8.2.a. Armatures d'âme nécessaires

 $(\rho_v; \rho_h; \rho_n) \ge 0.0025$ Avec un espacement $S_{max} \le Min (3a; 45 \text{ cm})$ La section d'armatures verticales et horizontales par mètre linéaire : Armatures horizontales : $A_{h \min} = 0.0025 \times 20 \times 100 = 5 \text{ cm}^2/\text{ml}$ On opte pour deux nappes de 5T12/ml avec un espacement de S = 20 cm. $A_{5T12} = 5,65 \times 2 = 11,3 \text{ cm}^2 > 5 \text{ cm}^2$ Armatures verticales : $A_{v \min} = 0.0025 \times 20 \times 100 = 5 \text{ cm}^2/\text{ml}$ On opte pour deux nappes de 5T12/ml avec un espacement de S = 20 cm. $A_{5T12} = 5,65 \times 2 = 11,3 \text{ cm}^2 > 5 \text{ cm}^2$ On doit vérifier que : $\Phi V_n > V_u$ Et : $V_n = A_{cv} \times (\alpha_c \times 0.083 \times \sqrt{f'_c} + \rho_n \times f_v)$ Avec : - $\Phi = 0,75$ $- \alpha_{\rm c} = 0.17 \text{ pour } \frac{{\rm h}_{\rm W}}{{\rm l}_{\rm W}} = \frac{57.6}{9.95} = 5.79 > 2$ $- \rho_n = \frac{{\rm A}_{\rm s}}{100 \times {\rm a}} = \frac{11.3 \times 2}{100 \times 20} = 0.0113.$ $V_n = 11409.62 \text{ kN}$ $\Phi V_n = 0,75 \times 11409,62 = 8557,21 \text{ kN} > V_u = 7722,83 \text{ kN}$ Vérifiée. V.4.3.8.2.b. Vérification Selon les « RPA 99 modif 2003 » $\overline{V} = 1,4 \times V_u$ Le pourcentage d'armatures verticales et horizontales $\rho_{\min} \ge 0,0025$ La vérification dans ces cas est la suivante :

Il faut que : $\tau_u = \frac{\overline{v}}{b_0 \times d} \le \overline{\tau_u} = 0, 2 \times f_{c28}$

Avec

- b₀: Epaisseur du voile.

- d : Hauteur utile $d=0.9 \times h$.

 $\tau_{\rm u} = \frac{1.4 \times 7722.83 \times 10^3}{200 \times 0.9 \times 9950}$ 6,04 MPa $\leq \overline{\tau} = 0.2 \times 35 = 7$ MPa

Vérifiée.

V.4.3.8.3. Calcul des armatures nécessaires à la flexion composée

- $M_u = 184605,67$ kN.m. - $P_u = 36346,29$ kN. - $\delta_{ek} = 0.0851$ m.

V.4.3.8.3.a. Limitation de l'effort normal de compression de calcul

Il faut que : $\frac{P_u}{P_0} \le 0.35$ Avec : $P_0 = 0.85 \times f'_c \times (A_g - A_s) + A_s \times f_e$

On prend un pourcentage minimum pour calcul et A_s soit $\rho = 0,0025$

- $A_g = 3,415 \text{ m}^2$
- $A_s = 0.0025 \times 3,415 = 85,38 \text{ cm}^2$

 $P_0 = [0.85 \times 35 \times (3,415 \times 10^6 - 8538) + (8538 \times 500)] = 105611,24 \text{ kN}$

$\frac{P_u}{P_0} = \frac{36346,29}{105611,24} = 0,344 < 0,35$

Vérifiée.

V.4.3.8.3.b. Armature de résistance à la flexion composée

En utilisant le logiciel **SOCOTEC**, la section d'armatures correspondante à un effort normal $P_u = 36346,29$ kN et un moment $M_u = 184605,67$ kN.m est égale à $A_s = 74,22$ cm²

V.4.3.8.4. Dimensionnement des éléments de rives ou de bord

Calcul de L_{bz} par la **1^{ère} approche** :

Si :
$$\frac{P_u}{A_g} = \frac{36346,290}{3,415}$$
 . $10^{-3} = 10,64 \text{ MPa} > 0,2 \times f_{c28} = 7 \text{ MPa}$ Vérifiée.
Pour $\frac{P_u}{P_0} = 0,35$ on aura $L_{bz} = 0,25 \times l_w = 0,25 \times 9,95 = 2,48 \text{ m}$

Calcul de L_{bz} par **la 2^{ème} approche** :

La distance de l'axe neutre par rapport à la fibre la plus comprimée de la section du voile

$$\begin{array}{ll} - & c = 1,71 \text{ m} \\ - & \delta_u = R \times \delta_e = 3,5 \times 0.0851 = 0.298 \text{ m} \\ - & \frac{\delta_u}{h_w} = \frac{0,298}{57,6} = 0,00517 > 0,007 \end{array}$$
 Non vérifiée.

Par conséquent la première approche suffit pour calculer Lbz.

On prend : $L_{bz} = 2,45 \text{ m}$; $T_{bz} = 0,95 \text{ m}$ $L_{bz} = 2,45 \text{ m} > L_{bz}^{\text{RPA}} = \frac{l_{w}}{10} = \frac{9,95}{10} = 1 \text{ m}$

V.4.3.8.4.a. Armatures transversales dans la zone de confinement

$$\begin{aligned} A^{t}_{h} &\geq 0,09 \times S_{t} \times h_{c} \times \frac{f_{bc}}{f_{e}} \\ A \text{vec} : \\ h_{c} &= T_{bz} - 2 \times (\text{enrobage}) = 95 - 2 \times 4 = 87 \text{ cm} \\ S_{t} &= Min \begin{cases} 0,25 \times T_{bz} = 0,25 \times 95 = 23,75 \\ 6 \times d_{0} \text{ ; } 6 \times 2 = 12 \text{ cm} \\ S_{x} \text{ avec } 10 \text{ cm} &\leq 15 \text{ cm} \end{cases} \end{aligned}$$

On choisit $S_t = 10$ cm sur toute la hauteur de la section critique h_{cr} .

$$\mathbf{A}^{\mathrm{t}}_{\mathrm{h}} \ge 0,09 \times \mathbf{S}_{\mathrm{t}} \times \mathbf{h}_{\mathrm{c}} \times \frac{f_{bc}}{f_{e}} = 5,48 \text{ cm}^2$$

On prend 8T10 $A_s^t = 6,28 \text{ cm}^2$ dans la zone de confinement.

Hauteur de la zone critique :

- $l_w = 9,95 \text{ m}$
- $h_w = 57,6 \text{ m}$
- $V_u = 7722,83 \text{ kN}$
- $M_u = 184605,67 \text{ kN.m}$

 $h_{cr} = Max \ [l_w; \frac{M_u}{4V_u}] = Max \ [9,95 m; 5,98 m] = 9,95 m$

Afin de simplifier la réalisation du voile, on considère les trois premiers niveaux comme zone critique.

NB : Le reste des voiles sont calculés dans l'annexe A.

Figure V.28 : Ferraillage du voile VX1 selon la méthode ACI-318.

V.4.4. Ferraillage des voiles du sous-sol

Les forces sismiques n'ont théoriquement aucun effet sur les voiles du sous-sol car ces derniers sont ancrés dans le sol, ils travaillent donc en compression simple due au poids qu'ils reprennent. Afin de simplifier la réalisation, on prend le même ferraillage des voiles du 1^{er} étage.

V.4.5. Ferraillage des linteaux

Les linteaux sont des poutres courtes bi-encastrées dans les voiles ou trumeaux, sollicités en flexion simple. Le calcul des linteaux sera fait selon « **RPA 99 modif 2003** ».

On doit vérifier la condition suivante :

$$\tau_{u} = \frac{\overline{v}}{b_{0} \times d} \le \overline{\tau_{u}} = 0, 2 \times f_{c28}$$

Avec :
$$\overline{V} = 1, 4 \times V_{u}^{cal}$$

$$V_{u}^{cal} : \text{Effort tranchant de calcul.}$$

b₀ : Epaisseur du linteau.

d : Hauteur utile = $0.9 \times h$.

h : Hauteur totale de la section brute.

V.4.5.1. Premier cas

 $\tau_{\rm u} \leq 0,06 \times f_{c28}$

Les linteaux sont calculés en flexion simple. Les aciers à distribuer dans le béton sont :

- A₁: Aciers longitudinaux de flexion.
- At: Aciers transversaux.
- A_c : Aciers de peau.

V.4.5.1.1. Aciers Longitudinaux

Les aciers longitudinaux sont calculés par la formule :

$$A_l \ge \frac{M}{f_e \times Z}$$

Avec :

Z = h - 2d'

d': L'enrobage.

M : Moment dû à l'effort tranchant.

V.4.5.1.2. Aciers Transversaux

Il y a deux cas de figure. V.4.5.1.2.a. linteaux longs $(\lambda_g = \frac{l}{h} > 1)$ $S \le \frac{A_t \times f_e \times Z}{\overline{V}}$ Avec :

S : Espacement des cours d'armatures transversales.

At: Section d'armatures transversales.

l : Portée du linteau.

V.4.5.1.2.b. Linteaux courts $(\lambda_g = \frac{1}{h} \le 1)$

$$\begin{split} & S \leq & \frac{A_t \times f_e \times l}{V + A_t \times f_e} \\ & A vec : \\ & V = Min \ (V_1, \ V_2) \\ & O \grave{u} : \quad V_2 = 2 \times V_u^{\ cal} \\ & V_1 = \frac{M_{ci} + M_{cj}}{l_{ij}} \end{split}$$

 M_{ci} , M_{cj} : Moment résistants ultimes des sections d'about des extrémités du linteau de portée l_{ij} : $M_c = A_l \times f_e \times Z$

V.4.5.2. Deuxième cas

 $\tau_{\rm b} > 0.06 \times f_{c28}$

Dans ce cas il y a lieu de disposer les ferraillages longitudinaux (supérieurs et inférieurs), transversaux et en zone courante (armature de peau) suivant les minimums réglementaires.

Les efforts (M, V) sont repris suivant des bielles diagonales (compression et traction) suivant l'axe moyen des armatures diagonales A_D à disposer obligatoirement.

Le calcul de A_D se fait suivant la formule :

$$\begin{split} A_{D} &= \frac{V}{2 \times f_{e} \times \sin \alpha} \\ A \text{vec} : \\ \text{tg } \alpha &= \frac{h-2d}{l} \\ V &= V_{u}^{\, cal} \text{ (sans majoration)} \\ \text{Longueur d'ancrage : } L_{s} &= \frac{h}{4} + 50 \times \emptyset \end{split}$$

V.4.5.3. Ferraillage minimal

V.4.5.3.1. Armatures longitudinales A₁ et A₁'

 $(A_1, A_1') \ge 0,0015 \times b \times h$ A_1 : Armatures inférieurs. A_1' : Armatures supérieures.

V.4.5.3.2. Armatures transversales At

Si $\tau_{b} \leq 0,025 \times f_{c28}$	\rightarrow	$A_t \ge 0,0015 \times b \times S_t$
Si $\tau_{b} > 0.025 \times f_{c28}$	\rightarrow	$A_t \ge 0,0025 \times b \times S_t$
Espacement des cadres	:	$S_t \leq \frac{h}{4}$

V.4.5.3.3. Armatures de peau Ac

 $A_c \ge 0,002 \times b \times h$ (en deux nappes)

V.4.5.3.4. Armatures diagonales A_D

Si $\tau_{b} \le 0.06 \times f_{c28}$ A_D = 0 Si $\tau_{b} > 0.06 \times f_{c28}$ A_D ≥ 0.0015×b×h

V.4.5.4. Exemple de calcul du linteau LX1

h = 100 cm; l = 2,75 m; b = 20 cm; V = 698,28 kN. $\rightarrow 2^{\text{ème}} \text{ cas}$ $\tau_{\rm b} = 3,88 \text{ MPa} > 7 \text{ MPa}$ - Armatures longitudinales : $A_1 = A_1' > 0,0015 \times 20 \times 100 = 3 \text{ cm}^2 \text{ on prend } 2T14 \text{ } A_s = 3,08 \text{ cm}^2$ - Armatures de peau : $A_c > 0,002 \times 20 \times 100 = 4 \text{ cm}^2$ on prend $4T12 \text{ A}_s = 4,52 \text{ cm}^2$ en deux nappes. - Armatures transversales :
$$\begin{split} \lambda_g &= 2,75 > 1 & \longrightarrow 1^{er} \mbox{ cas} \\ 100 &\leq & \frac{A_t \times 500 \times 900}{698280} & \longrightarrow A_t > 1,55 \mbox{ cm}^2 \end{split}$$
 $\tau_{b} = 3,88 \text{ MPa} > 0,025 \times f_{c28} = 0,875 \text{ MPa}$ pour $S_t^{max} = \frac{h}{4} = 25 \text{ cm}$ $A_t = 1,55 \text{ cm}^2 > 0,0025 \times 20 \times 25 = 1,25 \text{ cm}^2$ On prend 2T10 $A_s = 1,57 \text{ cm}^2 S_t = 10 \text{ cm}.$ Armatures diagonales : tg $\alpha = \frac{100 - 2 \times 5}{275} = 0,33 \rightarrow \alpha = 18,26^{\circ}$ $A_{\rm D} = \frac{\frac{698280}{698280}}{2 \times 500 \times \sin 18,26} = 22,45 \text{ cm}^2 > 0,0015 \times \text{b} \times \text{h} = 3 \text{ cm}^2$ Vérifiée. On prend $2 \times 6T16 \text{ A}_{s} = 24,13 \text{ cm}^{2}$ Longueur d'ancrage : $L_s > 105$ cm.

V.4.5.5. Ferraillage des linteaux restants

 Tableau V.26 : Calcul du ferraillage des linteaux.

Lintoow	τ _b	Aı	Choix	At	Choix	Ac	Choix	a (°)	AD	Choix	Ls
Linteaux	(MPa)	(cm ²)	Aladb	(cm ²)	Atadp	(cm ²)	Acadp	u ()	(cm ²)	ADadb	(cm)
LX1	3 88	3	2T14	1 55	2T10	4	4T12	18 12	22.45	2×6T16	105
l=2,75m	5,00	5	3,08	1,55	1,57		4,52	10,12	22,43	24,13	105
LX2–3	3 31	3	2T14	1 32	2T10	4	4T12	21.37	16.33	2×6T14	95
l=2,30m	5,51	5	3,08	1,52	1,57	-	4,52	21,37	10,55	18,47	95
LX4	1 00	5 35	4T14	0.76	2T10	4	4T12				
l=1,40m	1,90	5,55	6,16	0,70	1,57	4	4,52				
LY1–2	4.08	3	2T14	1.63	2T12	4	4T12	21.37	20.18	2×6T16	105
l=2,30m	4,08 5	3,08	1,05	2,26	-	4,52	21,37	20,10	24,13	105	
LY3	1.24	5.24	4T14	0.50	2T10	4	4T12				
l=1,95m	1,24	5,24	6,16	0,50	1,57	4	4,52				

Chapitre VI : Etude des fondations.

VI.1. Introduction

Les fondations d'une construction sont constituées des parties de l'ouvrage qui sont en contact avec le sol auquel elles transmettent les charges de la superstructure ; elles constituent donc une partie essentielle de l'ouvrage car leurs rupture est synonyme d'effondrement de la structure ^[4].

La charge d'une structure peut être transmise au sol par les fondations soit directement (semelles, radiers) soit indirectement (pieux)^[4].

VI.2. Caractéristiques du sol

- Contrainte admissible $\overline{\sigma_{sol}}$ est égale à 200 kPa.
- Classification : sol meuble.

VI.3. Choix des fondations

Figure VI.1 : Schéma du radier nervuré.

Etant donné que les charges de la structure sont relativement importantes, l'utilisation des fondations de type « radier » semble plus probable. Il faudra que l'inégalité suivante soit vérifiée :

 $\frac{S_{fondation}}{s_{structure}} \ge 0,50$

Calcul de S_{fondation}:

A

$$\label{eq:structure} \begin{split} \frac{N_{fondation}}{s_{structure}} &\leq \overline{\sigma_{sol}} \\ \text{vec}: \ N_G = 161545,075 \text{ kN} \\ N_Q = 34520,15 \text{ kN} \end{split}$$

 $S_{\text{structure}} = 1431 \text{ m}^2$

Afin de prendre en considération le poids propre des fondations on devra majorer la charge permanente leur revenante de 10%.

$$\begin{split} & \frac{N_{fondation}}{S_{fondation}} \leq \overline{\sigma_{sol}} \rightarrow \frac{1.1 \times N_G + N_Q}{S_{fondation}} \leq \overline{\sigma_{sol}} \rightarrow S_{fondation} \geq \frac{1.1 \times N_G + N_Q}{\overline{\sigma_{sol}}} \\ & S_{fondation} \geq \frac{1.1 \times 161545,075 + 34520,15}{200} = 1061,1 \text{ m}^2 \end{split}$$

 $\frac{N_{fondation}}{S_{structure}} = \frac{1061,1}{1680} = 0,63 > 0,50$

Par conséquent le type de fondation adéquat est « le radier ».

VI.4. Dimensionnement du radier

VI.4.1. Epaisseur de la dalle

L'épaisseur de la dalle d'un radier est généralement supérieure au vingtième de la plus grande portée entre poteaux :

$$h_0 \ge \frac{L_{max}}{20} = \frac{900}{20} = 45 \text{ cm}$$

Avec : h_0 : Epaisseur de la dalle du radier.

L_{max}: Portée libre maximale entre poteaux.

On prend : $h_0 = 50 \text{ cm}$

VI.4.2. Hauteur de la nervure

VI.4.2.1. Condition forfaitaire

$$h_{\rm N} \ge \frac{L_{\rm max}}{10} = \frac{900}{10} = 90 \ {\rm cm}$$

Avec : h_{N1} : Hauteur de la nervure.

VI.4.2.2. Condition de rigidité

Un radier est considéré rigide si la condition suivante est vérifiée : $\frac{\pi}{2} \times L_e \ge L_{max}$

Avec :
$$L_e$$
: Longueur élastique, $L_e \ge \sqrt[4]{\frac{4 \times E \times I}{K \times b_{sf}}}$ (1)

Où : E : Module d'élasticité du béton.

I : Inertie de la section du radier. $I = \frac{b_N \times h_N^3}{12}$

 B_{sf} : Largeur de la surface de contacte de la nervure. $B_{sf} = \frac{L_G + L_D}{2}$

K : Coefficient de réaction du sol.

K = 5 MPa/ml pour un très mauvais sol.
K = 40 MPa/ml pour un sol moyen.
K = 120 MPa/ml pour un très bon sol.

Pour un sol moyen on prendra K = 40 MPa/ml.

(1) Devient :

 $h_N \ge \sqrt[3]{\frac{48 \times K \times b_{sf} \times L_{max}^4}{E \times b_N \times \pi^4}} = \sqrt[3]{\frac{48 \times 40 \times 9 \times 9^4}{12102,95 \times 0.95 \times 3.14^4}} = 4,66 \text{ m}$ On prend : $h_{N2} = 4,70 \text{ m}$

VI.4.2.3. Condition de flèche

$$f_{\text{Nervure}} = \frac{5 \times q_{\text{sol}} \times L^4}{384 \times E \times I} \le \overline{f} = 0.5 + \frac{900}{1000} = 1.4 \text{ cm}$$

Avec : q_{sol} : Charge linéaire du sol. $q_{sol} = \sigma_{sol} \times B_{sf} = 200 \times 9 = 1800 \text{ kN/ml}$

E : Module d'élasticité du béton.

I : Inertie de la section du radier. $I = \frac{b_N \times h_N^3}{12}$

L : Longueur livre de la nervure.

Vérifiée.

Vérifiée.

$$f_{\text{Nervure}} = \frac{5 \times 1800 \times 10^3 \times 9^4}{384 \times 12102,95 \times 10^6 \times \frac{0,95 \times h_N^3}{12}} \le \overline{f} = 1,4 \times 10^{-2} \text{ m}$$

 $h_{\rm N} \ge 2,25 \ {\rm m}$

On prend : $h_{N3} = 2,30 \text{ m}$

VI.4.2.4. Conclusion

Pour des raisons économiques, on considèrera le radier comme souple avec les dimensions suivantes :

- Epaisseur de la dalle du radier : $h_0 = 50$ cm
- Dimensions des nervures : $\begin{cases} b_N = 95 \text{ cm} \\ h_N = 230 \text{ cm} \end{cases}$

VI.4.3. Caractéristiques géométriques du radier

Centre de gravité : $\begin{cases} \overline{X_G} = 18,586 \text{ m} \\ \overline{Y_G} = 22,401 \text{ m} \end{cases}$ Moments d'inertie : $\begin{cases} I_{xx} = 2.7654 \times 10^5 \text{ m}^4 \\ I_{yy} = 1.9409 \times 10^5 \text{ m}^4 \end{cases}$

VI.5. Vérifications du radier

VI.5.1. Stabilité

VI.5.1.1. Méthode forfaitaire

La condition suivante doit être vérifiée : $\frac{M_S}{M_P} > 1,50$

Avec : M_S : Moment stabilisateur dû au poids propre.

 M_R : Moment de renversement dû aux forces sismiques. $M_R = \sum M_0 + V_0 \times h$

 $O\dot{u}$: M_0 : Moment à la base de la structure.

 V_0 : Effort tranchant à la base de la structure.

h : Profondeur du sous-sol de la structure.

Suivant x-x :

```
- M_0 = 1443123,5 \text{ kN.m.}
```

- $V_0 = 18989,826$ kN.
- h = 4,20 m.

 $M_R = 1522880,77 \text{ kN.m}$

Et :

 $N_{G,T} = N_G + N_{G,Radier} = 199612,225 + 21000 = 220612,225 \text{ kN}$

 $M_S = N_{G,T} \times \overline{Y_G} = 220612,225 \times 22,401 = 4941934,452 \ \text{kN}$

 $\frac{M_S}{M_R} = 3,25 > 1,50$

Suivant y–y :

- $M_0 = 748146, 12 \text{ kN.m.}$
- $V_0 = 16699,68$ kN.

- h = 4,20 m.

 $M_R = 818284,78 \text{ kN.m}$

Et :

$$\begin{split} N_{G.T} &= N_G + N_{G.Radier} = 199612,225 + 21000 = 220612,225 \text{ kN} \\ M_S &= N_{G.T} \times \overline{X_G} = 220612,225 \times 18,586 = 4100298,81 \text{ kN} \\ \frac{M_S}{M_R} &= 5,01 > 1,50 \end{split}$$
 Vérifiée.

VI.5.1.2. Méthode des « RPA 99 modif 2003 »

Il convient que l'excentricité des charges soit inférieure au quart de la dimension de la structure dans le sens de calcul :

$$e_{0} = \frac{M_{R}}{N_{R}} \le \frac{B}{4}$$

Suivant x-x :
$$e_{0} = \frac{1522880,77}{220612,225} = 6,90 \text{ m} \le \frac{B}{4} = \frac{44,5}{4} = 11,12 \text{ m}$$

Vérifiée.
Suivant y-y :
$$e_{0} = \frac{818284,78}{220612,225} = 3,71 \text{ m} \le \frac{B}{4} = \frac{38,6}{4} = 9,65 \text{ m}$$

Vérifiée.

Par conséquent, le bâtiment est stable vis-à-vis du renversement.

VI.5.2. Contraintes

VI.5.2.1. Sollicitations du premier genre

$$\sigma_{\text{ser}} = \frac{N_{\text{ser}}}{S_{\text{radier}}} = \frac{220612,225}{1680} = 131,32 \text{ kPa} < \overline{\sigma_{\text{sol}}} = 200 \text{ kPa}$$

VI.5.2.2. Sollicitations du second genre

$$\sigma_{1/2} = \frac{N}{S_{radier}} \pm \frac{M_R}{I} \times V_x$$
$$\sigma_{1/2} = \frac{N}{S_{radier}} \pm \frac{M_R}{I} \times V_y$$

 V_x : Fibre extrême par rapport à $\overline{X_G}$ suivant la direction x–x.

 V_y : Fibre extrême par rapport à $\overline{Y_G}$ suivant la direction y-y.

Les inéquations suivantes doivent être vérifiées :

-
$$\sigma_1 \leq 1,5 \times \overline{\sigma_{sol}} = 300 \text{ kPa.}$$

- $\sigma_2 \ge 0$ (pas de traction).

-
$$\sigma_{\text{moy}} = \frac{3 \times \sigma_1 + \sigma_2}{4} \le \frac{4}{2} \overline{\sigma_{\text{sol}}} = 266 \text{ kPa.}$$

Tableau VI.1 : Contraintes dans le sol sous le radier.

	$\sigma_1 (kPa)$	$\sigma_2 (kPa)$	σ_{m} (kPa)
Suivant x-x	254,68	9,61	193,41
Suivant y-y	209,68	46,94	169
Vérification	$\sigma_1 \leq 300 \text{ kPa}$	$\sigma_2 \ge 0$	$\sigma_{moy} \leq 266 \text{ kPa}$
Observation	Vérifiée	Vérifiée	Vérifiée

VI.6. Ferraillage du radier

Un radier peut être représenté par un plancher renversé constitué d'une dalle en béton armé chargée uniformément par la pression du sol, de nervures qui jouent le rôle des poutres, et de poteaux qui représentent les appuis. Par conséquent, calculer le ferraillage du radier revient à calculer le ferraillage d'un plancher en béton armé (voir chapitre III).

VI.6.1. Ferraillage de la dalle

VI.6.1.1. Evaluation des charges

À l'ELU : $\sigma_u = \frac{1.35 \times P_{radier} + P_u}{S_{radier}} = \frac{1.35 \times 21000 + 274739}{1680} = 180,41 \text{ kPa}$ À l'ELS : $\sigma_u = \frac{P_{radier} + P_{ser}}{S_{radier}} = \frac{21000 + 199612,225}{1680} = 131,32 \text{ kPa}$

VI.6.1.2. Calcul des efforts internes

 $L_x = 9 m.$ $L_{y} = 9 \text{ m}.$ $\alpha = \frac{L_x}{L_y} = \frac{9}{9} = 1 > 0, 4 \rightarrow \text{les panneaux travaillent dans deux sens.}$ À l'ELU : $M_x = \mu_x \times P_u \times L_x^2$ $M_x = 0.036 \times 180.41 \times 9^2 = 526.08 \text{ kN.m/ml}$ $M_y = \mu_y \times M_x$ $M_v = 1 \times 1,86 = 526,08 \text{ kN.m/ml}$ À l'ELS : $M_x = \mu_x \times P_{ser} \times L_x^2$ $M_x = 0.044 \times 131.32 \times 9^2 = 468.02 \text{ kN.m/ml}$ $M_y = \mu_y \times M_x$ $M_v = 1 \times 468,02 = 468,02 \text{ kN.m/ml}$ Pour les moments sur appui et en travée on a : Travée de rive : -Appui de rive \rightarrow M_a = 0.3×M_x

		Appui intermédiaire	\rightarrow M _i = 0,5×M _x
		Travée de rive	\rightarrow M _t = 0,85×M
-	Travée intermédiaire :	Appui d'extrémité Travée intermédiaire	
-	Travée unique :	Travée Appui	

Tableau VI.2 : Moments maximaux de la dalle.

	EI	LU	ELS		
	M _t (kN.m)	M _a (kN.m)	M _t (kN.m)	M _a (kN.m)	
Sens x-x	447,17	263,04	397,82	234,01	
Sens y-y	447,17	263,04	397,82	234,01	

VI.6.1.3. Calcul du ferraillage de la dalle

b = 100 cm; h = 50 cm; d = 45 cm; $f_e = 500 \text{ MPa}$; $f_{c28} = 35 \text{ MPa}$; $f_{t28} = 2,7 \text{ MPa}$; $f_e = 500 \text{ MPa}$. Les résultats sont récapitulés dans le tableau suivant :

	Sens	M _u (kN.m)	μ	μ<μ _R	A _s ' (cm ²)	α	Z (cm)	A_s^{cal} (cm ²)	A _s ^{min} (cm ²)	Choix	A _s ^{adp} (cm ²)
Travée	Х–Х	447,17	0,111	Oui	0	0,147	423,5	24,29	5,59	16T20	50,27
Travee	Y-Y	447,17	0,111	Oui	0	0,147	423,5	24,29	5,59	16T20	50,27
Annuis	Х–Х	263,04	0,066	Oui	0	0,085	434,7	13,92	5,59	16T16	32,17
Appuis	Y-Y	263,04	0,066	Oui	0	0,085	434,7	13,92	5,59	16T16	32,17

Tableau VI.3 : Calcul du ferraillage de la dalle.

VI.6.1.4. Vérifications

VI.6.1.4.1. Condition de non fragilité

$$\begin{split} A_{s} &\geq A_{s}^{\min} = 0,23 \times b \times d \times \frac{f_{t28}}{f_{e}} = 5,59 \text{ cm}^{2} \\ \text{En travée : } A_{s} &= 25,12 \text{ cm}^{2} > A_{s}^{\min} = 5,59 \text{ cm}^{2} \\ \text{Sur appui : } A_{s} &= 14,07 \text{ cm}^{2} > A_{s}^{\min} = 5,59 \text{ cm}^{2} \\ \end{split}$$

VI.6.1.4.2. Espacement

En Travée :

Sens x-x : $e = \frac{100}{8} = 12,5 \text{ cm}$ On prend e = 10 cm < Min (3h ; 33 cm) = Min (150 cm ; 33 cm) = 33 cm Vérifiée. Sens y-y : $e = \frac{100}{8} = 12,5 \text{ cm}$ On prend esp = 10 cm < Min (4h ; 45 cm) = Min (200 cm ; 45 cm) = 33 cm Vérifiée. **Sur Appuis :** Sens x-x : $e = \frac{100}{8} = 12,5 \text{ cm}$ On prend e = 10 cm < Min (3h ; 33 cm) = Min (150 cm ; 33 cm) = 33 cm Vérifiée. Sens y-y : $e = \frac{100}{8} = 12,5 \text{ cm}$

On prend e = 10 cm < Min (4h; 45 cm) = Min (200 cm; 45 cm) = 33 cm Vérifiée.

VI.6.1.4.3. Effort tranchant

$$\begin{aligned} \tau_{\rm u} &= \frac{T_{\rm u}^{\rm max}}{d} \le \overline{\tau_{\rm u}} = 0,047 \times f_{c28} = 1,75 \text{ MPa} \\ T_{\rm x} &= \frac{P_{\rm u} \times L_{\rm x} \times L_{\rm y}}{2L_{\rm x} + L_{\rm y}} = \frac{180,41 \times 9 \times 9}{2 \times 9 + 9} = 541,23 \text{ kN/ml} \\ T_{\rm y} &= \frac{P_{\rm u} \times L_{\rm x}}{3} = \frac{180,41 \times 9}{3} = 541,23 \text{ kN/ml} \\ T_{\rm u}^{\rm max} &= \text{Max} \{T_{\rm x}\,;\,T_{\rm y}\,\} = T_{\rm x} = 541,23 \text{ kN/ml} \\ \tau_{\rm u} &= \frac{541,23}{450} = 1,203 \text{ MPa} < 1,75 \text{ MPa} \end{aligned}$$

Vérifiée \rightarrow ferraillage d'âme non nécessaire.

VI.6.1.4.4. Contraintes

$$\sigma_{bc \max} = \frac{M_{ser}}{I} \times y < \overline{\sigma_{bc}} = 0, 6 \times f_{c28} = 21 \text{ MPa}$$

$$\sigma_{s} = \eta \times \frac{M_{ser}}{I} \times (d - y) \le \overline{\sigma_{s}} = \xi = \text{Min} \left\{ \frac{2}{3} f_{e} \text{ ; Max } (0,5 f_{e} \text{ ; } 110 \sqrt{\eta \times f_{t28}} \right\}$$

« y » étant la solution de l'équation suivante :

$$\begin{split} b\times y^2 + 30 \times (A_s + A'_s) \times y - 30 \times (d\times A_s + d' \times A'_s) &= 0\\ \text{Moment d'inertie}: I = \frac{b}{3} \times y^3 + 15 \times A_s \times (d - y)^2 + 15 \times A'_s \times (y - c')^2\\ \text{Les résultats sont résumés dans le tableau ci-dessous :} \end{split}$$

Tableau VI.4 : Vérification des contraintes de la dalle.

	Sens	M _{ser} (kN.m)	A _s (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
Travée	Х–Х	447,17	50,27	18,4	784492	10,47	Vérifiée	227,74	Vérifiée
Havee	Y-Y	447,17	50,27	18,4	674825	12,35	Vérifiée	242,09	Vérifiée
Annuis	Х–Х	263,04	32,17	14,8	584365	6,65	Vérifiée	204,12	Vérifiée
Appuis	Y-Y	263,04	32,17	14,8	495045	8,37	Vérifiée	217,17	Vérifiée

Figure VI.2 : Ferraillage de la dalle du radier sur appui par ml (cm).

Figure VI.3 : Ferraillage de la dalle du radier en travée par ml (cm).

VI.6.2. Ferraillage des nervures

VI.6.2.1. Calcul des efforts internes

On a ^[1]: $M_0 = \frac{q \times L^2}{8}$ En travée : $M_t = 0.85 \times M_0$ Sur appui : $M_a = 0.50 \times M_0$

Vérifiée.

Vérifiée.

VI.6.2.2. Calcul du ferraillage des nervures

b = 95 cm; h = 230 cm; d = 210 cm; $f_e = 500 \text{ MPa}$; $f_{c28} = 35 \text{ MPa}$; $f_{t28} = 2,7 \text{ MPa}$; $f_e = 500 \text{ MPa}$. **Tableau VI.5 :** Calcul du ferraillage des nervures.

	M ₀ (kN.m)	Mu (kN.m)	μ	μ<μ _R	As' (cm ²)	α	Z (cm)	As ^{cal} (cm ²)	A _s ^{min} (cm ²)	Choix
Travée		4423,4	0,053	Oui	0	0,068	204	49,8	24,78	20T25
Appuis	5204	2601	0,031	Oui	0	0,039	207	28,94	24,78	7T25+ 7T20

VI.6.2.3. Vérifications

VI.6.2.3.1. Condition de non fragilité

 $A_s \ge A_s^{\min} = 0,23 \times b \times d \times \frac{f_{t_{2B}}}{f_e} = 24,78 \text{ cm}^2$ En travée : $A_s = 98,17 \text{ cm}^2 > A_s^{\min} = 24,78 \text{ cm}^2$ Vérifiée. Sur appui : $A_s = 56,35 \text{ cm}^2 > A_s^{\min} = 24,78 \text{ cm}^2$ Vérifiée.

VI.6.2.3.2. Espacement

En Travée :

Horizontalement : $e_h = \frac{95 - 2 \times 4 - 7 \times 2,5}{6} = 11,58 \text{ cm}$ On prend : $e_h = 10 \text{ cm} > \text{Max} (\emptyset \text{ ; } 1,5 \times c_g) = \text{Max} (2,5 \text{ cm} \text{ ; } 3,75 \text{ cm}) = 3,75 \text{ cm} \text{ Vérifiée.}$

Verticalement : $e_v > Max (Ø; c_g) = Max (2,5 \text{ cm}; 2,5 \text{ cm}) = 2,5 \text{ cm}$

On prend : $e_v = 5 \text{ cm} > 2,5 \text{ cm}$

Sur Appuis :

Horizontalement : $e_{h} = \frac{95 - 2 \times 4 - 7 \times 2}{6} = 12,17 \text{ cm}$

On prend : $e_h = 10 \text{ cm} > \text{Max} (\emptyset; 1,5 \times c_g) = \text{Max} (2 \text{ cm}; 3,75 \text{ cm}) = 3,75 \text{ cm}$ Vérifiée.

VI.6.2.3.3. Effort tranchant

$$\begin{aligned} \tau_{\rm u} &= \frac{T_{\rm u}^{\rm max}}{b \times d} \le \overline{\tau_{\rm u}} = \text{Min} \{0, 1 \times f_{c28}; 4 \text{ MPa}\} = 3,5 \text{ MPa} \\ T_{\rm u} &= 2311, 2 \text{ kN} \\ \tau_{\rm u} &= \frac{2311, 2 \times 10^3}{950 \times 2100} = 1,158 \text{ MPa} < 3,5 \text{ MPa} \end{aligned}$$

VI.6.2.3.4. Contraintes

Les résultats sont résumés dans le tableau ci-dessous :

Tableau VI.6 : Vo	érification des	contraintes des	nervures.
-------------------	-----------------	-----------------	-----------

	M _{ser} (kN.m)	$\begin{array}{c} \mathbf{A_s} \\ (\mathbf{cm}^2) \end{array}$	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
Travée	4042,3	98,17	64,75	40324561	6,49	Vérifiée	218,41	Vérifiée
Appuis	2377,8	56,35	50,17	26060420	4,58	Vérifiée	218,75	Vérifiée

VI.6.2.4. Armatures transversales

Avec :

 S_t : Espacement entre cadres.

 $Ø_1$: Diamètre minimal armatures longitudinales.

Øt: Diamètre minimal des armatures transversales.

b = 95 cm; h = 230 cm; d = 210 cm; $f_e = 500 \text{ MPa}$; $\tau_u = 1,158 \text{ MPa}$.

Tableau VI.7 : Contrainte tangentielle et ferraillage transversal des nervures.

Section	Tu	$ au_{\mathrm{u}}$	\mathbf{S}_{t} (cm)	At	Choix	$\mathbf{A_s}^{\mathrm{adp}}$
Section	(k N)	(MPa)	Z.N	Z.C	(cm ²)	CHOIX	(cm ²)
95×230	2311,2	1,158	20	20	5,7	8T10	6,28

VI.6.2.5. Armatures de peau

Dans le cas des âmes de grande hauteur, le risque d'apparition de fissures relativement ouvertes en dehors de la zone efficacement armée par des armatures disposées au voisinage de la fibre extrême est plus important. Des armatures dénommées « armatures de peau » sont réparties et disposées parallèlement à la fibre moyenne de l'âme, leur rôle est de confiner le béton et empêcher les éventuelles fissures dues à l'absence d'armatures dans les parois verticales des poutres. Leur section est d'au moins 3 cm² par mètre de longueur de paroi mesurée perpendiculairement à leur direction ^[1]. A_c = $3 \times 2 = 6$ cm² on prend **6T12** A_c = 6,79 cm².

Figure VI.4 : Ferraillage des nervures sur appui A–A (cm).

Figure VI.5 : Ferraillage des nervures en travée B–B (cm).

VI.7. Voile périphérique

VI.7.1. Introduction

Les ossatures au-dessous du niveau de base, formées de poteaux courts (par exemple les vides sanitaires) doivent comporter un voile périphérique continu entre le niveau des fondations (semelles, radier...) et le niveau de base ^[2]. Dans le cas de notre structure, les voiles périphériques sont disposés sur toute la hauteur et la périphérie du sous-sol.

VI.7.2. Dimensions et exigences

Les voiles périphériques doivent vérifier les conditions suivantes ^[2]:

- Epaisseur $e \ge 15$ cm. On prendra e = 25 cm.
- Les armatures sont constituées de deux nappes.
- Le pourcentage minimum des armatures est de 0,10% dans les deux sens (horizontal et vertical).
- Les ouvertures dans les voiles ne doivent pas réduire leur rigidité de manière importante.

VI.7.3. Evaluation des charges

Les voiles travaillent comme des dalles verticales reposantes sur les poutres, fondations et poteaux du sous-sol soumis à des charges horizontales générées par la poussée des terres.

 $P_G = K \times \gamma \times \frac{L_x^2}{2}$

$$\begin{split} L_x &= 4,20 - 0,80 = 3,40 \text{ m} \\ L_y &= 9,00 - 0,50 = 8,50 \text{ m} \\ \alpha &= \frac{L_x}{L_y} = \frac{4,20}{8,50} = 0,49 > 0,4 \rightarrow \text{les panneaux travaillent dans deux sens.} \\ \text{La pression horizontale à la base du voile : } P_{\text{base}} &= K \times \gamma \times L_x \end{split}$$

La résultante de pression horizontale :

Avec : K = 0,5.

 $\gamma = 20 \text{ kN/m}^3$

 $P_{G} = 57,8 \text{ kN/ml}$ $P_{G.u} = 78 \text{ kN/ml}$

VI.7.4. Calcul des efforts internes À l'ELU : $M_x = \mu_x \times P_{G.u} \times L_x^2$
$$\begin{split} M_x &= 0,098 \times 78 \times 3,40^2 = 88,36 \text{ kN.m/ml} \\ M_y &= \mu_y \times M_x \\ M_y &= 0,25 \times 88,36 = 22,09 \text{ kN.m/ml} \\ \textbf{ \AA I'ELS :} \\ M_x &= \mu_x \times P_G \times L_x^2 \end{split}$$

 $M_x = 0.1013 \times 57.8 \times 3.40^2 = 67.69 \text{ kN.m/ml}$

 $M_y = \mu_y \times M_x$

 $M_y = 0,358 \times 67,69 = 24,23 \text{ kN.m/ml}$

Tableau VI.8 : Moments maximaux du voile périphérique.

	EI	LU	ELS		
	M _t (kN.m)	M _a (kN.m)	M _t (kN.m)	M _a (kN.m)	
Sens x-x	75,11	26,51	57,54	20,31	
Sens y-y	18,78	11,05	20,60	12,12	

VI.7.5. Calcul du ferraillage des voiles périphériques

b = 100 cm; h = 25 cm; d = 21 cm; $f_e = 500 \text{ MPa}$; $f_{c28} = 35 \text{ MPa}$; $f_{128} = 2,7 \text{ MPa}$; $f_e = 500 \text{ MPa}$.

Tableau VI.9 : Calcul du ferraillage des voiles périphériques.

	Sens	M _u (kN.m)	μ	μ<μ _R	A _s ' (cm ²)	α	Z (cm)	$\frac{A_s^{cal}}{(cm^2)}$	A _s ^{min} (cm ²)	Choix	As ^{adp} (cm ²)
Travéa	Х–Х	75,11	0,086	Oui	0	0,113	200,5	8,61	2,51	7T16	14,07
Havee	Y-Y	18,78	0,021	Oui	0	0,027	207,7	2,08	2,00	5T12	5,65
A	Х–Х	26,51	0,030	Oui	0	0,038	206,8	3,67	2,95	7T16	14,07
Appuis	Y–Y	11,05	0,013	Oui	0	0,016	208,7	1,22	2,00	5T12	5,65

VI.7.6. Vérifications

VI.7.6.1. Condition de non-fragilité^[1]

 $L_x = 3,4 \text{ m}$; $L_y = 8,5 \text{ m}$; $\rho_0 = 0,08\%$ (feE 500 HA $\emptyset > 6 \text{ mm}$); $\rho = 0,49$; b = 100 cm; h = 25 cm. $\begin{cases} A_{x} \geq \rho_{0} \times \frac{(3-\rho)}{2} \times b \times h \end{cases}$ $(A_v \ge \rho_0 \times b \times h)$ En travée : Sens x-x: $A_x = 14,07 \text{ cm}^2 > A_s^{\text{min}} = 2,51 \text{ cm}^2$ Vérifiée. Sens y-y : $A_y = 5,65 \text{ cm}^2 > A_s^{\text{min}} = 2 \text{ cm}^2$ Vérifiée. Sur appui : Sens x-x : $A_x = 14,07 \text{ cm}^2 > A_s^{\text{min}} = 2,51 \text{ cm}^2$ Vérifiée. Sens y-y: $A_y = 5,65 \text{ cm}^2 > A_s^{\text{min}} = 2 \text{ cm}^2$ Vérifiée. VI.7.6.2. Espacement Sens x-x : esp = $\frac{100}{7}$ = 14,29 cm On prend esp = 10 cm < Min (3h; 33 cm) = Min (75 cm; 33 cm) = 33 cmVérifiée. Sens y-y : esp = $\frac{100}{5}$ = 20 cm

On prend esp = 20 cm < Min (4h; 45 cm) = Min (100 cm; 45 cm) = 33 cm Vérifiée.

Sur Appuis :

Sens x-x : $esp = \frac{100}{7} = 14,29 \text{ cm}$ On prend esp = 10 cm < Min (3h ; 33 cm) = Min (75 cm ; 33 cm) = 33 cm Vérifiée. Sens y-y : $esp = \frac{100}{5} = 20 \text{ cm}$ On prend esp = 20 cm < Min (4h ; 45 cm) = Min (100 cm ; 45 cm) = 33 cm Vérifiée.

VI.7.6.3. Effort tranchant

$$\begin{aligned} \tau_{\rm u} &= \frac{T_{\rm u}^{\rm max}}{d} \le \overline{\tau_{\rm u}} = 0,047 \times f_{c28} = 1,75 \text{ MPa} \\ T_{\rm x} &= \frac{P_{\rm u} \times L_{\rm x} \times L_{\rm y}}{2L_{\rm x} + L_{\rm y}} = \frac{78 \times 3,4 \times 8,5}{2 \times 3,4 + 8,5} = 147,33 \text{ kN/ml} \\ T_{\rm y} &= \frac{P_{\rm u} \times L_{\rm x}}{3} = \frac{78 \times 3,4}{3} = 88,4 \text{ kN/ml} \\ T_{\rm u}^{\rm max} &= \text{Max} \{T_{\rm x}; T_{\rm y}\} = T_{\rm x} = 147,33 \text{ kN/ml} \\ \tau_{\rm u} &= \frac{147,33}{210} = 0,702 \text{ MPa} < 1,75 \text{ MPa} \end{aligned}$$

Vérifiée \rightarrow ferraillage d'âme non nécessaire.

VI.7.6.4. Contraintes

Les résultats sont résumés dans le tableau ci-dessous :

Tableau VI.10 : Vérification des contraintes du voile périphérique.

	Sens	M _{ser} (kN.m)	A _s (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_{bc} \leq \overline{\sigma_{bc}}$	σ _s (MPa)	$\sigma_s \leq \overline{\sigma_s}$
Travée	Х–Х	57,54	14,07	6,88	54683,8	7,21	vérifiée	221,62	Vérifiée
	Y-Y	20,60	5,65	5,03	23234,7	5,46	vérifiée	199,06	Vérifiée
Annuig	Х–Х	20,31	14,07	6,88	47930,2	2,92	vérifiée	83,36	Vérifiée
Арриіз	Y-Y	12,12	5,65	5,03	23234,7	2,62	vérifiée	117,12	Vérifiée

Figure VI.7 : Ferraillage du voile périphérique dans le sens x-x par ml cm).

Figure VI.8 : Ferraillage du voile périphérique dans le sens y-y par ml (cm).

Chapitre VII : Analyse statique non linéaire (Pushover).

VII.1. Définition de la méthode

L'analyse par poussée progressive (Pushover) est une méthode statique non linéaire où une structure est soumise à un chargement vertical dû aux charges permanentes et à un chargement horizontal monotone, ce dernier peut être soit sous forme de charges uniformes, croissantes, paraboliques ou décroissantes en hauteur appliquées au niveau du centre de masse de chaque niveau, soit sous forme d'un déplacement imposé au sommet de la structure jusqu'à ce qu'un état ou condition ultime soient atteints (Computers & structures, Inc 2016). Cette analyse donne une idée sur les régions vulnérables d'une structure en cas de séisme ^[13].

VII.2. Etapes de la méthode pushover^[14]

- Un modèle élastique est établit contenant les éléments qui contribuent au poids, résistance, rigidité et/ou stabilité de la structure et dont le comportement a une influence sur le niveau de résistance sismique visé.
- La structure est soumise à un chargement horizontal uniforme, parabolique, triangulaire croissant ou décroissant appliqué au niveau des centres de masse de chaque niveau, ou bien à un déplacement horizontal au niveau du sommet de la structure.
- L'intensité des charges est augmentée jusqu'à atteindre un point où l'élément le moins résistant subit une déformation qui en modifie la rigidité significativement. Les propriétés de cet élément dit « plastifié » sont modifiées pour exprimer le comportement post-élastique de ce dernier, et la structure modifiée continue à subir une augmentation des charges ou déplacements horizontaux. Les modifications des propriétés de ces éléments peuvent se faire par l'une des façons suivantes :
 - Placer des rotules où un élément soumis à une flexion atteint sa résistance maximale, elles peuvent se développer aux extrémités des poutres, poteaux ou à la base des voiles.
 - Eliminer la rigidité latérale d'un voile lorsque ce dernier a atteint sa résistance maximale au cisaillement.
 - Eliminer un élément de contreventement (palés triangulés) qui a subi un flambement et dont la résistance post-flambement chute rapidement.
 - Modifier la rigidité d'un élément si ce dernier est capable de résister à des charges plus élevées avec une rigidité réduite.
- La 3^{ème} étape est répétée et de plus en plus d'éléments atteignent leur résistance maximale.
- Les forces et déformations de toutes les étapes précédentes sont accumulées pour obtenir les forces et déplacement totaux (élastiques et plastiques) de tous les éléments et niveaux de chargement.
- Le processus de chargement continue jusqu'à ce qu'un niveau de performance invalide est détecté ou bien que le déplacement au sommet de la structure obtenu est plus important que le déplacement maximal estimé en cas de séisme au niveau du nœud de contrôle de déplacement.

- La courbe de l'effort tranchant à la base de la structure en fonction du déplacement du sommet de la structure est tracée, cette courbe aussi appelée « courbe de capacité » ou « courbe pushover », représente le diagramme de réponse non linéaire de la structure. Cette courbe est utilisée pour estimer le « déplacement cible » correspondant au « point de performance » de la structure.
- Une fois le déplacement cible déterminé, les forces et déformations accumulées correspondantes à ce déplacement au niveau du nœud de contrôle sont utilisées pour évaluer la performance des éléments de la structure.
 - a) Pour les actions dépendantes des déformations (t.q : flèche des poutres), les déformations sont comparées avec les valeurs admissibles des éléments de la structure.
 - b) Pour les actions dépendantes des forces (tq : effort tranchant dans les poutres), les forces obtenues sont comparées avec les résistances maximales des éléments de la structure.
- Si les valeurs obtenues dépassent les limites décrites en (a) et (b), les éléments en question ne répondent pas aux critères de performance.

Figure VII.1 : Types de chargement et courbe pushover^[16].

VII.3. But de l'analyse Pushover

L'analyse statique non linéaire par poussée progressive permet de [15] :

- Identifier les éléments qui auront tendance à atteindre des états critiques durant un séisme.
- Donner une idée sur la ruine progressive des structures.
- Prédire le comportement non linéaire d'une structure soumise à une charge sismique.
- Estimer la résistance ou la performance des structures au-delà du domaine élastique.
- Estimation de la redistribution des forces suite à la formation des rotules plastiques.

VII.4. Procédure de la méthode du spectre de capacité

La méthode du spectre de capacité est une procédure non linéaire qui donne une représentation graphique de la courbe de capacité globale « force déplacement » de la structure, et la compare avec la représentation graphique du spectre de réponse de la demande du séisme (8.3^[11]).

Deux éléments clés entrent en jeu dans cette méthode, la demande et la capacité. La demande est la représentation du mouvement du sol d'un séisme. La capacité est la représentation de la résistance d'une structure à la demande sismique (8.3^[11]).

VII.4.1. Courbe de capacité

La capacité globale d'une structure dépend de la résistance et la capacité de déformation (ductilité) des différents éléments la constituant. La capacité d'une structure est représentée par une courbe dite « courbe de capacité » ou « courbe pushover », qui trace l'effort tranchant à la base de la structure en fonction du déplacement au sommet. (8.3^[11]).

VII.4.2. Courbe de demande (déplacement)

Les mouvements du sol lors d'un séisme génèrent des déplacements horizontaux complexes et aléatoires, tracer et suivre ces derniers avec exactitude est considéré comme impossible. Dans une analyse non linéaire, il est plus simple et direct d'utiliser les déplacements latéraux comme condition ou critère de résistance. Ainsi, la demande ou déplacement représentent une estimation de la réponse maximale d'un bâtiment lors d'un choc sismique. (8.3^[11]).

VII.4.3. Conversion de la courbe de capacité en spectre de capacité (8–12^[11])

Afin de convertir un spectre d'une forme standard « S_a » (spectre d'accélération) en fonction de « T » (période), en spectre de réponse d'accélération et de déplacement (ADRS), on doit déterminer la valeur de S_{d1} (déplacement spectral) de chaque point de la courbe « $S_{a,i}$ - T_i » en utilisant la formule suivante :

$$S_{d,i} = \frac{T^2}{4 \times \pi^2} \!\!\times \!\! S_{a,i}$$

Les spectres de réponse de demande standards contiennent un champ d'accélération spectrale constante « S_a » et un second champ de vitesse spectrale constante « S_v ». Ces paramètres sont donnés par :

$$\mathbf{S}_{\mathrm{a},\mathrm{i}} = \frac{2 \times \pi}{T_{i}} \times \mathbf{S}_{\mathrm{v}} \qquad \qquad \mathbf{S}_{\mathrm{d},\mathrm{i}} = \frac{T_{i}}{2 \times \pi} \times \mathbf{S}_{\mathrm{v}}$$

N'importe quel point « δ_i » (déplacement du sommet), « V_i » (effort tranchant à la base) appartenant à la courbe de capacité (pushover) est converti en ses coordonnées correspondantes ($S_{a,i}$, $S_{d,i}$) sur le spectre de capacité avec les formules suivantes :

$$S_{a,i} = \frac{V_i/W}{\alpha_1}$$
$$S_{d,i} = \frac{\delta_i}{PF_1 \times \emptyset_{1,Root}}$$

Où :

T_i: Période du mode.

 α_1 : Coefficient de masse modale du premier mode de vibration de la structure.

PF₁: Facteur de participation massique du premier mode de vibration de la structure.

 $Ø_{1,Roof}$: Amplitude du premier mode au sommet de la structure.

VII.4.4. Point de performance

L'intersection de la courbe de demande avec la courbe de capacité est appelée point de performance de la structure. Ce point représente le déplacement estimé lors d'un séisme majeur. Or, le point où la demande et la capacité de la structure sont égales.

VII.5. Niveaux de performance

Quand soumise à des forces sismiques, une structure passe par plusieurs points ou niveaux d'endommagement appelés « niveaux de performance » (figure VII.2).

Figure VII.2 : Courbe pushover et niveaux de performance ^[17].

Deformation or deformation ratio

Figure VII.3 : Courbe pushover normalisée ^[10].

La courbe de la figure VII.12 Montre les différents niveaux de performance accompagnés d'illustration du niveau d'endommagement visible sur une structure.

Cette courbe est normalisé selon plusieurs codes et règlements afin d'avoir une meilleure représentation de la performance globale des structures (figure VII.3). Les différents points de cette dernière ou niveaux de performance sont définis selon FEMA–356 comme suit :

- Point A : Début du chargement.
- Domaine A–B : Domaine élastique de la structure.
- Point B : Limite élastique ou palier d'endommagement correspondant au point au-delà duquel les déformations irréversible commencent à se développer.
- Domaine B–IO : Le domaine dans lequel les dommages sont quasiment imperceptibles et facilement réparables.

- IO, Immediate occupancy : Correspond au point où la structure subit peu de dégâts et peut être réutilisable immédiatement après la fin des secousses sismiques.
- Domaine IO-LS : Domaine de contrôle des dégâts, dans lequel les dégâts requièrent des réparations.
- LS, Life safety : Correspond au point où la structure subit des dégâts assez importants et où les réparations sont nécessaires avant sa réutilisation.
- LS-CP : Domaine dans lequel la sécurité des utilisateurs est relativement limitée.
- CP, Collapse prevention : Pallier où la structure assure la résistance à l'effondrement permettant l'évacuation des occupants, mais où il est impossible pour la structure d'être réutilisable sans passer par une réparation ou un renforcement.
- C–D–E : Au-delà du point C arrive la ruine totale de la structure.

VII.6. Définition des paramètres non linéaires de la structure

VII.6.1. Eléments poteaux et poutres

Du moment que les éléments constituants les portiques sont considérés comme ayant un comportement linéaire dans le modèle numérique, l'attribution de rotules (hinges) au niveau des sections où le risque de plastification est plus probable, à savoir près des appuis.

Pour commencer, les éléments poteaux et poutres devront être définis avec le ferraillage obtenu dans le chapitre V, la fonctionnalité « Section designer » permet de le faire comme le montre la figure VII.4.

Define \rightarrow Frame Sections \rightarrow Add New Property \rightarrow Other \rightarrow Section Designer.

Figure VII.4 : Définition des poteaux.

Introduction des rotules des poutres :

- Rotules des moments M3 générées automatiquement par SAP2000 selon FEMA-356 dépendantes des forces latérales (pushover), on sélectionne d'abord les poutres puis :
- Assign → Frames → Hinges → Auto Hinge Assignment Data → Auto Hinge Type : From Tables In FEMA 356 → Select a FEMA356 Table : Table 6–7 (Concrete Beams flexure) Item i → Case/Combo : Pushover x-x → Degree of Freedom : M3 (figure VII.5).
- Dans la fenêtre « Frame Hinge Assignment Data » on attribue les « Relative Distance » de 0,1 et 0,9 pour chaque élément et chaque chargement pushover (figure VII.6).

💢 Auto Hinge Assignment Data	- 0	×
Auto Hinge Type From Tables In FEMA 356		I
Select a FEMA356 Table Table 6-7 (Concrete Beams - Flexure) Item i	•	
Component Type © Primary © Secondary C M2 © M3	VValue From	
Transverse Heinforcing ✓ Transverse Reinforcing is Conforming	From Current Design C User Value	
Deformation Controlled Hinge Load Carrying Capacity Torops Load After Point E Is Extrapolated After Point E		
ОК	Cancel	

Figure VII.5 : Définition des rotules des poutres.

Fram	ne Hinge Assignments									
	Frame Hinge Assignment Data-									
	Hinge Property	Relative Distance								
	Auto 💌	0,1								
	Auto M3 Auto M3	0,9 0,1	[bbA]							
	Auto M3 Auto M3	0,9	Modify							
			Delete							
		,								
	Auto Hinge Assignment Data Type: From Tables In FEMA 356 Table: Table 6-7 (Concrete Beams - Flexure) Item i DOF: M3									
	Modify/Show A	uto Hinge Assignmen	t Data							
	OK Cancel									

Figure VII.6 : Définition des distances relatives des rotules des poutres.

Introduction des rotules des poteaux :

- Rotules d'interaction P-M2-M3 générées de la même façon que pour les poutres :
- Assign → Frames → Hinges → Auto Hinge Assignment Data → Auto Hinge Type : From Tables In FEMA 356 → Select a FEMA356 Table : Table 6–7 (Concrete Beams – flexure) Item i → Case/Combo : Pushover x-x → Degree of Freedom : P–M2–M3 (figure VII.7).
- En plus des rotules générées automatiquement, on attribue les rotules V2 et V3 correspondantes aux efforts tranchants dans les deux sens (figure VII.8)
- Dans la fenêtre « Frame Hinge Assignment Data » on attribue les « Relative Distance » de 0,1 et 0,9 pour chaque élément et chaque chargement pushover (figure VII.8).

💢 Auto Hinge Assignment Data	- 🗆 X
Auto Hinge Type From Tables In FEMA 356 Select a FEMA356 Table Table 6-8 (Concrete Columns - Flexure) Item i	_
Component Type Degree of Freedom Primary Secondary M3 P-M3 M2-M3 P-M2-M3 Transverse Reinforcing Transverse Reinforcing is Conforming	P and V Values From Case/Combo User Value V2 V3 Deformation Controlled Hinge Load Carrying Capacity Chrops Load After Point E Chrops Load After Point E
OK	Cancel

Figure VII.7 : Définition des rotules des poteaux.

rame Hinge Assignment D	lata							
Hinge Property	Relative Distance							
Auto	▼ 0,9							
Auto P-M2-M3 Auto P-M2-M3	0,1	Add						
Auto P-M2-M3	0,9							
Auto P-M2-M3	0,9	Modify						
V2	0,1							
V3 V2	0,1	Delete						
V3	0,9							
Auto Hinge Assignment Data Type: From Tables In FEMA 356 Table: Table 6-8 (Concrete Columns - Flexure) Item i DOF: P-M2-M3								
auto Hinge Assignment Da Type: From Tables In FEI Table: Table 6-8 (Concre DOF: P-M2-M3	ita MA 356 te Columns - Flexure) Item i							

Figure VII.8 : Définition des distances relatives des rotules des poteaux.

VII.6.2. Eléments voiles

Les éléments voiles ont été modélisés comme des éléments « Shell Layered/Nonlinear ». Il faudra définir les matériaux béton et acier constituant les différentes couches des voiles, puis :

Define \rightarrow Section Properties \rightarrow Area Sections \rightarrow Modify/Show Section \rightarrow Shell Layered/Nonlinear (figure VII.9).

Shell Section Data	Concrete Shell Section Quick Start Parameters
Section Name Shear walls	Section Name Rebar Layers Units Shear walls C One Layer Two Layers KN, mm, C
Section Notes Modify/Show Display Color C Shell - Thin C Shell - Thick C Plate - Thin C Plate Thick C Membrane	Material Data And Concrete Thickness In-Plane Element Component Behavior Concrete Material + C35 Rebar Material + FeE500 Concrete Thickness 200 Out-of-Plane Element Component Behavior Concrete Thickness Concrete Thickness 200 Out-of-Plane Element Component Behavior C Same as In-Plane Image: Concrete Thickness Concrete Thickness
Shell - Layered/Nonlinear Modify/Show Layer Definition Material Material Name Material Angle Thistease	Rebar Size, Spacing and Clear Cover Size and Spacing Is the Same For All Rebar Top Bars - Direction 1 + 16d @ 20d @ 20d @ Bottom Bars - Direction 1 16d 16d @ 200 Cover Bottom Bars - Direction 2 20d @ 200 Cover 30, Bottom Bars - Direction 2 20d @ 200 Cover 30,
Interfrees Membrane Bending Concrete Shell Section Design Parameters [ModifierS] Stiffness Modifiers Temp Dependent Properties	Shell Section Plan View Top Top Bottom Show Elevation 1-3 C Show Elevation 2-3
OK Cancel	OK Cancel

Figure VII.9 : Définition des voiles.

VII.6.3. Charge de poussée progressive « Pushover »

Comme défini dans les paragraphes §.VII.1. et §.VII.2. deux types de chargement sont possibles, dans cette étude nous avons opté pour la seconde approche entre autre en utilisant un déplacement imposé au sommet de la structure.

VII.6.3.1. Charge gravitaire non linéaire

La première partie de l'analyse consiste à appliquer une charge verticale, les charges de la combinaison « $G+\beta$.Q » seront convertis en chargement non linéaire vertical comme suit :

Define \rightarrow Load Cases \rightarrow « DEAD » Modify/Show load case \rightarrow Analysis Type : Nonlinear.

Load Case Name		Notes	Load Case Type
DEAD	Set Def Name	Modify/Show	Static
Initial Conditions			Analysis Type
 Zero Initial Condition 	s - Start from Unstressed	State	C Linear
C Continue from State	at End of Nonlinear Cas	e 🔽	 Nonlinear
Important Note: Loa curr	ids from this previous ca rent case	se are included in the	O Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied	Use Modes from Case	MODAL 💌	None
Loado Appliad			C P-Delta
Load Tupe Loa	ad Name – Scale Fac	tor	C P-Delta plus Large Displacements
Load Patterr V G	▼ 1,		
Load Pattern G	1.	bbA	
Load Pattern Q	0,2		
		Modify	
		Delete	
1 1			
Other Parameters			
Other Parameters	Full Load	Modify/Show	[OK]
Other Parameters Load Application	Full Load Final State Only	Modify/Show	Cancel

Figure VII.10 : Définition des charges gravitaires non linéaires.

VII.6.3.2. Charges horizontales « pushover »

Lors de la définition des charges horizontales, on considèrera que le point de démarrage de ces dernières correspond à la fin du chargement gravitaire défini dans le paragraphe précédent.

Load Case Name	Notes	Load Case Type
Pushover x-x Set Def Name	Modify/Show	Static
Initial Conditions C Zero Initial Conditions - Start from Unstressed	State	Analysis Type O Linear
 Continue from State at End of Nonlinear Case Important Note: Loads from this previous carcurrent case 	e DEAD se are included in the	Nonlinear Nonlinear Staged Construction
Modal Load Case		Geometric Nonlinearity Parameters
All Modal Loads Applied Use Modes from Case	MODAL 💌	None
Loade Applied		C P-Delta
Load Type Load Name Scale Fac	tor	C P-Delta plus Large Displacements
Mode 1 -1,	Add Modify Delete	
Other Parameters		
Load Application Displ Control	Modify/Show	
Results Saved Multiple States	Modify/Show	Cancel
Nonlinear Parameters User Defined	Modifu/Show	

Figure VII.11 : Définition de la charge pushover dans le sens x-x.

Luau Case Maille		Notes	Load Case Type	
Pushover y-y	Set Def Name	Modify/Show	Static	▼ Design
Initial Conditions			- Analysis Type	
C Zero Initial Conditions	s - Start from Unstressed	State	C Linear	
Continue from State a	at End of Nonlinear Case	DEAD	Nonlinear	
Important Note: Loa curr	ds from this previous ca ent case	se are included in the	C Nonlinear Staged Const	ruction
Modal Load Case			Geometric Nonlinearity Param	eters
All Modal Loads Applied	Use Modes from Case	MODAL 💌	None	
L			C P-Delta	
Loads Applied	d Nama – Soala Eao	tor	C P-Delta plus Large Displa	cements
Mode 2				
Mode 2	1	Add		
		Modify		
		Delete		
		Delete		
		Delete		
Other Parameters		Delete		
Other Parameters	Displ Control	Delete	[K]	
Other Parameters	Displ Control Multiple States	Delete Modify/Show		

Figure VII.12 : Définition de la charge pushover dans le sens y-y.

VII.7. Résultats de l'analyse non linéaire

Courbe de capacité « pushover » dans le sens x-x :

Figure VII.13 : Courbe de capacité dans le sens x-x.

Courbe de capacité « pushover » dans le sens y-y :

Figure VII.14 : Courbe de capacité dans le sens y-y.

Point de performance dans le sens x-x :

Figure VII.15 : Point de performance dans le sens x-x.

Point de performance dans le sens y-y :

Figure VII.16 : Point de performance dans le sens y-y.

Figure VII.17 : Développement des rotules sous « pushover x-x ».

Figure VII.18 : Développement des rotules sous « pushover y-y ».

Figure VII.19 : index des couleurs de rotules dans SAP2000^[18].

Step	Displacemer	BaseForce	AtoB	BtolO	10toLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	mm	KN									
0	-2,031685	0,000	5328	0	0	0	0	0	0	0	5328
1	17,168315	3919,446	5328	0	0	0	0	0	0	0	5328
2	18,571319	4205,303	5322	6	0	0	0	0	0	0	5328
3	37,920586	8077,685	5274	54	0	0	0	0	0	0	5328
4	57,097792	11822,872	5222	106	0	0	0	0	0	0	5328
5	76,792342	15210,886	5152	176	0	0	0	0	0	0	5328
6	95,997454	17958,217	5054	274	0	0	0	0	0	0	5328
7	115,34049	20404,674	4883	445	0	0	0	0	0	0	5328
8	134,56668	22542,087	4697	630	1	0	0	0	0	0	5328
9	153,80175	24482,618	4565	760	3	0	0	0	0	0	5328
10	173,00902	26300,415	4471	850	7	0	0	0	0	0	5328
11	192,32807	27986,151	4381	936	10	1	0	0	0	0	5328
12	212,69089	29667,875	4275	1033	16	3	1	0	0	0	5328
13	226,30969	30734,749	4178	1117	29	2	1	1	0	0	5328
14	225,81378	30434,575	4160	1131	22	8	1	1	0	5	5328

Figure VII.20 : Développement des rotules à chaque pas de l'analyse « pushover x-x » de SAP2000.

Step	Displacemen	BaseForce	AtoB	Btol0	10toLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
	mm	KN									
0	-5,197693	0,000	5324	4	0	0	0	0	0	0	5328
1	14,002307	5983,451	5324	4	0	0	0	0	0	0	5328
2	15,384698	6408,019	5322	6	0	0	0	0	0	0	5328
3	34,565269	12202,008	5256	72	0	0	0	0	0	0	5328
4	53,997755	17546,768	5126	202	0	0	0	0	0	0	5328
5	73,421866	22018,650	5028	300	0	0	0	0	0	0	5328
6	92,632457	25766,568	4909	418	1	0	0	0	0	0	5328
7	112,65274	29171,173	4739	562	26	1	0	0	0	0	5328
8	129,87497	31721,770	4593	697	24	13	0	1	0	0	5328
9	98,675007	21864,962	4593	697	24	13	0	1	0	0	5328

Figure VII.22 : Champ de contraintes verticales développées au niveau des armatures par le chargement « pushover x–x ».

Figure VII.23 : Champ de contraintes verticales développées au niveau des armatures par le chargement « pushover y–y ».

VII.7.1. Amortissement de la structure

L'amortissement d'une structure poussée jusqu'au domaine inélastique peut être défini comme la combinaison d'amortissement hystérétique et visqueux. L'amortissement hystérétique peut être converti en amortissement visqueux équivalent. La somme devient donc (8–14 ^[11]) :

$$\beta_{\text{eff}} = \beta_0 + 0.05$$
$$\beta_0 = \frac{1}{4 \times \pi} \times \frac{E_D}{E_S}$$

Où :

 β_0 : Représente l'amortissement hystérétique et « 0,05 » représente l'amortissement visqueux de la structure supposé égal à 5%. Avec :

E_D: Energie dissipée par amortissement.

E_{S0}: Energie de déformation maximale.

Figure VII.24 : Dérivation d'énergie dissipée par amortissement (8–14^[11]).

Le logiciel SAP2000 calcule automatiquement l'amortissement effectif équivalent de la structure à chaque pas de l'analyse.

Les tableaux affichés dans les figures VII.25 et VII.26 affichent pour chaque pas d'analyse : la période effective, l'amortissement effectif, les coordonnées spectrales (S_a , S_d) de la courbe de capacité (pushover), les coordonées spectrales (S_a , S_d) de la courbe du spectre de demande modifié, et les facteurs utilisés pour convertir la courbe force-déplacement en format spectre de réponse accélération-déplacement (ADRS), PFPhi (PFø) et alpha (figure 8–5, ATC–40)^[19].

Step	Teff	Beff	SdCapacity	SaCapacity	SdDemand	SaDemand	Alpha	PFPhi
			mm		mm			
0	1,205922	0,050000	0,000	0,000000	119,823	0,331697	1,000000	1,000000
1	1,205922	0,050000	14,508	0,040162	119,823	0,331697	0,630145	1,323398
2	1,206027	0,050070	15,567	0,043087	119,801	0,331579	0,630207	1,323467
3	1,210807	0,051769	30,141	0,082766	119,278	0,327530	0,630180	1,325502
4	1,215596	0,053115	44,439	0,121068	118,980	0,324141	0,630555	1,330567
5	1,229347	0,059218	58,479	0,155773	117,024	0,311721	0,630508	1,347899
6	1,249134	0,067612	71,744	0,185100	114,820	0,296235	0,626446	1,366372
7	1,269775	0,074838	85,296	0,212968	113,534	0,283472	0,618648	1,376056
8	1,292591	0,082345	99,181	0,238970	112,523	0,271118	0,609085	1,377269
9	1,315717	0,089072	113,469	0,263871	111,985	0,260420	0,599092	1,373355
10	1,338569	0,095268	127,616	0,286723	111,708	0,250981	0,592281	1,371622
11	1,360305	0,100353	141,941	0,308798	111,775	0,243171	0,585189	1,369299
12	1,381670	0,104645	157,049	0,331181	112,102	0,236398	0,578427	1,367233
13	1,395718	0,107427	167,143	0,345408	112,338	0,232151	0,574547	1,366144
14	1,400607	0,110163	168,084	0,344931	111,862	0,229555	0,569722	1,355548

Figure VII.25 : Résultats de l'analyse pushover dans le sens x-x.

Step	Teff	Beff	SdCapacity	SaCapacity	SdDemand	SaDemand	Alpha	PFPhi
			mm		mm			
0	0,996527	0,050000	0,000	0,000000	99,017	0,401394	1,000000	1,000000
1	0,996527	0,050000	12,959	0,052534	99,017	0,401394	0,735423	1,481562
2	0,996963	0,050348	13,893	0,056272	98,897	0,400558	0,735291	1,481442
3	1,004333	0,053365	26,904	0,107376	98,186	0,391860	0,733759	1,477940
4	1,023635	0,062657	40,181	0,154372	96,015	0,368884	0,733934	1,473225
5	1,053600	0,076555	53,579	0,194303	93,615	0,339495	0,731710	1,467366
6	1,084969	0,088873	66,717	0,228162	92,405	0,316011	0,729190	1,466336
7	1,118099	0,100194	80,597	0,259536	91,917	0,295989	0,725745	1,462219
8	1,147666	0,109868	92,693	0,283306	91,736	0,280380	0,722986	1,457204

Figure VII.26 : Résultats de l'analyse pushover dans le sens y-y.

VII.8. Conclusion

Contrairement à la méthode traditionnelle modale spectrale, la méthode statique non linéaire « pushover » permet d'avoir une vision plus large sur la résistance ou la performance des structures étant donné que ces dernières sont poussées au-delà de leur domaine élastique.

Cette méthode permet de décrire le comportement post-élastique des structures façon plus proche de la réalité grâce au développement progressif des rotules plastiques et ainsi anticiper les possibles mécanismes de ruine de la structure.

On peut remarquer que la structure présente un bon niveau de performance. En effet, au niveau du pas correspondant au point de performance de cette dernière, on peut voir que les rotules ont atteint le point « IO :Immediate Occupancy » par conséquent, la structure peut être réutilisable après un séisme avec peu, voir quasiment aucuns dégâts considérables.
Conclusion générale.

- Le plancher nervuré apporte une réduction considérable de masse, la structure est par conséquent plus légère mais aussi, plus économique.
- La structure possède un coefficient de comportement R égal à 3,5 ce qui signifie qu'elle est relativement rigide à cause du nombre important de voiles constituant le système de contreventement.
- Etant donné que la majeure partie des poteaux sont de forme rectangulaire, le sens dans lequel ces derniers sont placés contribue à la rigidité globale de la structure.
- Une bonne disposition des poteaux et voiles permet d'avoir une meilleure distribution des efforts internes, et donc un ferraillage plus économique.
- Les fondations de la structure sont considérées « souples » pour des raisons d'économie tout en respectant les critères de résistance, car avoir des fondations plus rigides impliquerait une perte d'importantes quantités de béton mais aussi d'acier de ferraillage.
- La structure présente un bon niveau de performance (Immediate Occupancy).
- La plastification des poteaux est dominée par l'effort tranchant, la flexion quant à elle a une faible influence sur le développement des rotules plastique. Ceci est dû à la forte inertie des poteaux.
- La plastification des poteaux par flexion est plus importante dans les niveaux supérieurs de la structure contrairement à celle due à l'effort tranchant qui est plus importante vers sa base.
- Le comportement non linéaire des voiles modélisés comme « Shell Layered/Nonlinear » peut être étudié à travers les différentes couches les constituants. Dans notre cas nous avons pu remarquer que les armatures de flexion n'ont pas atteintes leur limite plastique, on peut donc déduire que les voiles n'ont pas développés de rotules plastiques.

En plus de nous avoir permis d'appliquer ce qui a été acquis durant notre cursus universitaire, cette étude nous a aussi permis d'élargir nos connaissances et de nous familiariser avec d'autres méthodes d'analyse de structures à savoir l'analyse « Pushover ». En espérant que ce travail puisse être utile pour nos collègues dans le futur.

2×6T12

2×6T12

2×8T12

13,57

13,57

13,57

Annexe A : Calcul du ferraillage des voiles.

A.1. Méthode des contraintes

On a :

- e : Epaisseur du voile. -
- l_m : Longueur de la maille. _
- σ_{moy} : S₂₂ (au milieu de la maille). -
 - $\sigma < 0$: Compression.
 - $\sigma > 0$: Traction.

A.1.1. Armatures verticales de traction

A.1.1.1. Sens X–X

Voile VX1

e = 20 cm; $l_m = 1.5 \text{ m}$; $l_{voile} = 8.05 \text{ m}$; $A_{smin}^{RPA} = 6 \text{ cm}^2$.

e 20 cm, i	Tablea	u A.1 :	Calcul des	s armature	es vertical	es du voil	e VX1.		
Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	F _t (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
	1		7,33	2,199	43,98	0,0147	6	2×12T16	48,24
	2		1,60	0,48	9,6	0,0032	6	2×7T12	15,83
RDC-	3	0.3	-2,53	/	/	/	6	2×6T12	13,57
2 ^{ème}	4	0,5	-2,80	/	/	/	6	2×6T12	13,57
	5		1,74	0,522	10,44	0,0035	6	2×7T12	15,83
	6		7,61	2,283	45,66	0,0152	6	2×12T16	48,24
	1		3,43	1,029	20,58	0,0069	6	2×11T12	24,86
	2		-0,19	/	/	/	6	2×6T12	13,57
3 ^{ème} _6 ^{ème}	3	0.3	-2,98	/	/	/	6	2×6T12	13,57
5 -0	4	0,5	-3,06	/	/	/	6	2×6T12	13,57
	5		-0,25	/	/	/	6	2×6T12	13,57
	6		3,50	1,05	21	0,0070	6	2×11T12	24,86
	1		-0,20	/	/	/	6	2×8T12	13,57
	2		-1,88	/	/	/	6	2×6T12	13,57
7 ^{ème} –	3	03	-2,72	/	/	/	6	2×6T12	13,57
⊿ ≓ème	4	0,5	2 00	/	/	/		A (TT10	10 57

Voile VX2

15^{ème}

4

5

6

e = 20 cm; $l_m = 1.5 \text{ m}$; $l_{voile} = 3.5 \text{ m}$; $A_{smin}^{RPA} = 6 \text{ cm}^2$.

-2,80

-1,92

-0,02

/

/

/

/

/

/

/

/

/

6

6

6

Niveau	Maille	S _i (m²)	σ _{moy} (MPa)	Ft (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
DDC	1		6,12	1,836	36,72	0,0122	6	2×12T14	36,96
ADC- 2ème	2	0,3	3,33	0,999	19,98	0,0067	6	2×7T14	15,83
4	3		4,21	1,263	25,26	0,0084	6	2×12T14	36,96
	1	0,3	0,9	0,27	5,4	0,0018	6	2×10T12	22,62
3 ^{ème} -6 ^{ème}	2		1,23	0,369	7,38	0,0025	6	2×6T12	13,57
	3		1,98	0,594	11,88	0,0040	6	2×10T12	22,62
7 ème	1		-0,24	/	/	/	6	2×10T12	22,62
/ — 15 ^{ème}	2	0,3	0,26	0,078	1,56	0,0005	6	2×6T12	13,57
15	3		0,79	0,237	4,74	0,0016	6	2×10T12	22,62

Tableau A.2 : Calcul des armatures verticales du voile VX2.

Voile VX3

 $e = 20 \ cm$; $l_m = 1,5 \ m$; $l_{voile} = 3,5 \ m$; $A_{s \min}^{RPA} = 6 \ cm^2$.

Tableau A.3 : Calcul des armatures verticales du voile VX3.

Niveau	Maille	Si	σ _{moy}	Ft	As	A/R	A _{smin} ^{RPA}	Choix	As ^{adp}
Niveau	Mame	(m ²)	(MPa)	(MN)	(cm ²)	A_{s}/D	(cm ²)	CHOIX	(cm ²)
PDC	1		9,11	2,733	54,66	0,0182	6	2×14T16	56,28
2 ^{ème}	2	0,3	6,90	2,07	41,4	0,0138	6	2×11T16	44,22
2	3		7,84	2,352	47,04	0,0157	6	2×14T16	56,28
	1	0,3	6,71	2,013	40,26	0,0134	6	2×14T14	43,12
3 ^{ème} -6 ^{ème}	2		3,01	0,903	18,06	0,0060	6	2×9T12	20,36
	3		4,95	1,485	29,7	0,0099	6	2×14T14	43,12
7 ème	1		4,63	1,389	27,78	0,0093	6	2×10T14	30,79
15 ^{ème}	2	0,3	0,48	0,144	2,88	0,0010	6	2×6T12	13,57
13	3		2,42	0,726	14,52	0,0048	6	2×10T14	30,79

Voile VX4

e = 20 cm; $l_m = 1,5 \text{ m}$; $l_{voile} = 3,5 \text{ m}$; $A_{smin}^{RPA} = 6 \text{ cm}^2$.

Tableau A.4 : Calcul des armatures verticales du voile VX4.

Niveau	Maille	Si	σ _{moy}	Ft	As	A/R	A _{smin} ^{RPA}	Choix	$\mathbf{A_s}^{\mathrm{adp}}$
Inveau	Manie	(m ²)	(MPa)	(MN)	(cm ²)	Aş/ D	(cm ²)	CHOIX	(cm ²)
RDC– 2 ^{ème}	1		10,26	3,078	61,56	0,0205	6	2×10T20	62,83
	2	0,3	8,61	2,583	51,66	0,0172	6	2×9T20	56,55
	3		10,48	3,144	62,88	0,0210	6	2×10T20	62,83
	1		5,23	1,569	31,38	0,0105	6	2×11T16	44,22
3 ^{ème} -6 ^{ème}	2	0,3	3,25	0,975	19,5	0,0065	6	2×7T14	21,55
	3		7,25	2,175	43,5	0,0145	6	2×11T16	44,22
7 ème	1		2,18	0,654	13,08	0,0044	6	2×10T14	30,79
7 — 15 ^{ème}	2	0,3	0,53	0,159	3,18	0,0011	6	2×6T12	13,57
15	3		4,81	1,443	28,86	0,0096	6	2×10T14	30,79

Voile VX5

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 2,25 \text{ m}$; $A_{s \min}{}^{RPA} = 4,8 \text{ cm}^2$. **Tableau A.5 :** Calcul des armatures verticales du voile VX5.

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	Ft (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
RDC-	1	0.24	4,02	0,9648	19,296	0,0080	4,8	2×10T14	30,79
2 ^{ème}	2	0,24	5,35	1,284	25,68	0,0107	4,8	2×10T14	30,79
3ème 6ème	1	0.24	0,55	0,132	2,64	0,0011	4,8	2×8T12	18,10
5 -0	2	0,24	0,04	0,0096	0,192	0,0001	4,8	2×8T12	18,10
7 ^{ème} —	1	0.24	-0,54	/	/	/	4,8	2×8T12	18,10
15 ^{ème}	2	0,24	-1,17	/	/	/	4,8	2×8T12	18,10

Voile VX6, VX7

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 1,20 \text{ m}$; $A_{s \min}^{RPA} = 4,8 \text{ cm}^2$.

Tableau A.6 : Calcul des armatures verticales du voile VX6 et VX7.

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	Ft (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
RDC– 2 ^{ème}	1	0,24	10,02	2,4048	48,096	0,0200	4,8	2×9T20	56,55
3 ^{ème} – 6 ^{ème}	1	0,24	7,32	1,7568	35,136	0,0146	4,8	2×9T16	36,19
7 ^{ème} — 15 ^{ème}	1	0,24	5,64	1,3536	27,072	0,0113	4,8	2×9T14	27,71

Voile VX8, VX9

```
e = 20 \text{ cm}; l_m = 1,5 \text{ m}; l_{voile} = 2,75 \text{ m}; A_{s \min}^{RPA} = 4,8 \text{ cm}^2.
Tableau A.7 : Calcul des armatures verticales du voile VX8 et VX9.
```

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	F _t (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
RDC-	1	03	5,23	1,569	31,38	0,0105	6	2×9T16	36,19
2 ^{ème}	2	0,5	4,34	1,302	26,04	0,0087	6	2×9T16	36,19
2ème 6ème	1	0.3	5,46	1,638	32,76	0,0109	6	2×9T16	36,19
3 -0	2	0,5	3,86	1,158	23,16	0,0077	6	2×9T16	36,19
7 ^{ème} —	1	0.3	5,63	1,689	33,78	0,0113	6	2×9T16	36,19
15 ^{ème}	2	0,5	3,52	1,056	21,12	0,0070	6	2×9T16	36,19

A.1.1.2. Sens Y-Y

Voile VY1

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 3,4 \text{ m}$; $A_{s \min}^{RPA} = 6 \text{ cm}^2$.

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	F _t (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	A _s ^{adp} (cm ²)
PDC	1		2,99	0,7176	14,352	0,0060	4,8	2×8T12	18,10
2ème	2	0,24	-0,40	/	/	/	4,8	2×8T12	18,10
4	3		-2,70	/	/	/	4,8	2×8T12	18,10
	1	0,24	1,65	0,396	7,92	0,0033	4,8	2×8T12	18,10
3 ^{ème} —6 ^{ème}	2		0,49	0,1176	2,352	0,0010	4,8	2×8T12	18,10
	3		-0,05	/	/	/	4,8	2×8T12	18,10
7 ème	1		-0,35	/	/	/	4,8	2×8T12	18,10
1 5 ^{ème}	2	0,24	-0,93	/	/	/	4,8	2×8T12	18,10
15	3		-0,38	/	/	/	4,8	2×8T12	18,10

Tableau A.8 : Calcul des armatures verticales du voile VY1.

Voile VY2

$$e = 20 \ cm$$
; $l_m = 1,2 \ m$; $l_{voile} = 3,4 \ m$; $A_{s \min}{}^{RPA} = 6 \ cm^2$.

Tableau A.9 : Calcul des armatures verticales du voile VY	2.
---	----

Niyoou	Mailla	Si	σ _{moy}	Ft	As	A /D	A _{smin} ^{RPA}	Choir	A_s^{adp}
Iniveau	Mame	(m ²)	(MPa)	(MN)	(cm ²)	A_{s}/D	(cm ²)	CHOIX	(cm ²)
RDC_	1		4,77	1,1448	22,896	0,0095	4,8	2×8T14	24,64
2ème	2	0,24	2,05	0,492	9,84	0,0041	4,8	2×8T12	18,10
2	3		-0,20	/	/	/	4,8	2×8T14	24,64
	1		2,48	0,5952	11,904	0,0050	4,8	2×8T12	18,10
$3^{\text{ème}}-6^{\text{ème}}$	2	0,24	0,80	0,192	3,84	0,0016	4,8	2×8T12	18,10
	3		1,27	0,3048	6,096	0,0025	4,8	2×8T12	18,10
7 ^{ème} _	1		-0,18	/	/	/	4,8	2×8T12	18,10
, 1 5 ème	2	0,24	-1,00	/	/	/	4,8	2×8T12	18,10
15	3		0,87	0,2088	4,176	0,0017	4,8	2×8T12	18,10

Voile VY3

```
e = 20 \text{ cm}; l_m = 1,5 \text{ m}; l_{voile} = 6,85 \text{ m}; A_{s \min}^{RPA} = 6 \text{ cm}^2.
Tableau A.10 : Calcul des armatures verticales du voile VY3.
```

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	Ft (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
	1		-1,66	/	/	/	6	2×12T16	48,24
	2		-1,75	/	/	/	6	2×7T12	15,83
RDC–2 ^{ème}	3	0,3	-0,34	/	/	/	6	2×6T12	13,57
	4		2,41	0,723	14,46	0,0048	6	2×7T12	15,83
	5		7,39	2,217	44,34	0,0148	6	2×12T16	48,24
	1		-0,23	/	/	/	6	2×9T12	20,36
	2	0,3	-2,67	/	/	/	6	2×6T12	13,57
3 ^{ème} —6 ^{ème}	3		-1,27	/	/	/	6	2×6T12	13,57
	4		0,92	0,276	5,52	0,0018	6	2×6T12	13,57
	5		3,15	0,945	18,9	0,0063	6	2×9T12	20,36
	1		0,17	/	/	/	6	2×9T12	20,36
	2		-2,39	/	/	/	6	2×6T12	13,57
7 ^{ème} —15 ^{ème}	3	0,3	-1,40	/	/	/	6	2×6T12	13,57
	4		0,05	0,015	0,3	0,0001	6	2×6T12	13,57
	5		1,04	0,312	6,24	0,0021	6	2×9T12	20,36

Voile VY4

e = 20 cm; $l_m = 1,5 \text{ m}$; $l_{voile} = 6,85 \text{ m}$; $A_{s \min}^{RPA} = 6 \text{ cm}^2$.

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	F _t (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
	1		4,51	1,353	27,06	0,0090	6	2×11T16	44,22
PDC	2		3,10	0,93	18,6	0,0062	6	2×9T14	27,71
vème	3	0,3	3,30	0,99	19,8	0,0066	6	2×7T14	21,55
	4		4,29	1,287	25,74	0,0086	6	2×9T14	27,71
	5		7,24	2,172	43,44	0,0145	6	2×11T16	44,22
	1	0,3	-0,03	/	/	/	6	2×11T12	24,86
	2		-0,06	/	/	/	6	2×7T12	15,83
3 ^{ème} -6 ^{ème}	3		1,11	/	/	/	6	2×7T12	15,83
	4		2,45	0,735	14,7	0,0049	6	2×7T12	15,83
	5		4,09	1,227	24,54	0,0082	6	2×11T12	24,86
	1		-1,20	/	/	/	6	2×8T12	18,10
7 ème	2		-1,31	/	/	/	6	2×6T12	13,57
15 ^{ème}	3	0,3	-0,11	/	/	/	6	2×6T12	13,57
	4		1,48	0,444	8,88	0,0030	6	2×6T12	13,57
	5		2,54	0,762	15,24	0,0051	6	2×8T12	18,10

Tableau A.11	:	Calcul	des	armatures	verticales	du	voile	٧Y	Y 4.
--------------	---	--------	-----	-----------	------------	----	-------	----	-------------

Voile VY5

$$e = 20 \text{ cm}$$
; $l_m = 1,5 \text{ m}$; $l_{voile} = 6,85 \text{ m}$; $A_{smin}^{RPA} = 6 \text{ cm}^2$.

 Tableau A.12 : Calcul des armatures verticales du voile VY5.

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	Ft (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
	1		4,54	1,362	27,24	0,0091	6	2×13T16	52,26
PDC	2		2,91	0,873	17,46	0,0058	6	2×9T14	27,71
vème	3	0,3	3,27	0,981	19,62	0,0065	6	2×7T14	21,55
4	4		4,60	1,38	27,6	0,0092	6	2×9T14	27,71
	5		8,55	2,565	51,3	0,0171	6	2×13T16	52,26
	1		0,48	0,144	2,88	0,0010	6	2×12T14	36,96
	2		0,41	0,123	2,46	0,0008	6	2×7T14	21,55
3 ^{ème} -6 ^{ème}	3	0,3	1,25	0,375	7,5	0,0025	6	2×7T12	15,83
	4		3,45	1,035	20,7	0,0069	6	2×7T14	21,55
	5		5,96	1,788	35,76	0,0119	6	2×12T14	36,96
	1		-0,97	/	/	/	6	2×8T12	18,10
7 ème	2		-0,98	/	/	/	6	2×6T12	13,57
/ – 15 ^{ème}	3	0,3	-0,19	/	/	/	6	2×6T12	13,57
15	4	2,48	0,444	8,88	0,0030	6	2×6T12	13,57	
	5		3,93	0,762	15,24	0,0051	6	2×8T12	18,10

Voile VY6

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 4,85 \text{ m}$; $A_{s \min}^{RPA} = 4,8 \text{ cm}^2$. **Tableau A.13 :** Calcul des armatures verticales du voile VY6.

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	Ft (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
	1		2,47	0,5928	11,856	0,0049	4,8	2×11T14	33,88
RDC-	2	0.24	0,65	0,156	3,12	0,0013	4,8	2×6T12	13,57
2 ^{ème}	3	0,24	1,59	0,3816	7,632	0,0032	4,8	2×6T12	13,57
	4		6,86	1,6464	32,928	0,0137	4,8	2×11T14	33,88
	1	0.24	-0,68	/	/	/	4,8	2×11T12	24,86
3 ^{ème} 6 ^{ème}	2		-2,11	/	/	/	4,8	2×6T12	13,57
3 -0	3	0,24	-1,28	/	/	/	4,8	2×6T12	13,57
	4		4,28	1,0272	20,544	0,0086	4,8	2×11T12	24,86
	1		-0,63	/	/	/	4,8	2×10T12	22,62
7 ^{ème} —	2	0.24	-2,29	/	/	/	4,8	2×6T12	13,57
15 ^{ème}	3	0,24	-1,60	/	/	/	4,8	2×6T12	13,57
	4		4,13	0,9912	19,824	0,0083	4,8	2×10T12	22,62

Voile VY7, VY8

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 2,30 \text{ m}$; $A_{s \min}^{RPA} = 4,8 \text{ cm}^2$.

Tableau A.14 : Calcul des armatures verticales du voile VY7 et VY8.

Niveau	Maille	S _i (m ²)	σ _{moy} (MPa)	Ft (MN)	A _s (cm ²)	A _s /B	A _{smin} ^{RPA} (cm ²)	Choix	As ^{adp} (cm ²)
RDC-	1	0.24	5,18	1,2432	24,864	0,0104	4,8	2×10T16	40,21
2 ^{ème}	2	0,24	8,08	1,9392	38,784	0,0162	4,8	2×10T16	40,21
2ème 6ème	1	0.24	4,51	1,0824	21,648	0,0090	4,8	2×10T14	30,79
5 -0	2	0,24	6,40	1,536	30,72	0,0128	4,8	2×10T14	30,79
7 ^{ème} —	1	0.24	3,38	0,8112	16,224	0,0068	4,8	2×8T14	24,63
15 ^{ème}	2	0,24	4,92	1,1808	23,616	0,0098	4,8	2×8T14	24,63

A.1.2. Armatures de joint de bétonnage (aciers de couture)

• Sens X–X

Voile VX1

e = 20 cm; $l_m = 1.5 \text{ m}$; $l_{voile} = 8.05 \text{ m}$; $A_{s \min}^{RPA} = 4.5 \text{ cm}^2$.

Tableau A.15 : Aciers de	couture du	voile VX1.
--------------------------	------------	------------

Niveau	A_v^{cal} (cm ²)	Choix	A_{s}^{adp} (cm ²)
RDC-2 ^{ème}	32,16	2×8T16	32,16
3 ^{ème} -6 ^{ème}	10,55	2×8T10	12,57
7 ^{ème} –15 ^{ème}	9,05	2×8T10	12,57

Voile VX2

e = 20 cm; $l_m = 1.5 \text{ m}$; $l_{voile} = 3.5 \text{ m}$; $A_{s \min}^{RPA} = 4.5 \text{ cm}^2$.

Niveau	A_v^{cal} (cm ²)	Choix	A_{s}^{adp} (cm ²)
RDC-2 ^{ème}	24,64	2×8T14	24,64
3 ^{ème} –6 ^{ème}	15,08	2×8T12	15,83
7 ^{ème} –15 ^{ème}	15,08	2×8T12	15,83

Tableau A.16 : Aciers de couture du voile VX2.

Voile VX3

e = 20 cm; $l_m = 1,5 \text{ m}$; $l_{voile} = 3,5 \text{ m}$; $A_{s \min}^{RPA} = 4,5 \text{ cm}^2$.

Tableau A.17 : Aciers de couture du voile VX3.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
RDC-2 ^{ème}	37,52	2×10T16	40,21
3 ^{ème} -6 ^{ème}	28,75	2×10T14	30,79
7 ^{ème} –15 ^{ème}	20,53	2×10T12	22,62

Voile VX4

e = 20 cm; $l_m = 1.5 \text{ m}$; $l_{voile} = 3.5 \text{ m}$; $A_{s \min}^{RPA} = 4.5 \text{ cm}^2$.

Tableau A.18 : Aciers de couture du voile VX4.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
RDC-2 ^{ème}	41,89	2×11T16	44,24
3 ^{ème} –6 ^{ème}	29,48	2×10T14	30,79
$7^{\text{ème}}$ – $15^{\text{ème}}$	20,53	2×10T12	22,62

• Calcul des trumeaux

Voile VX5

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 2,25 \text{ m}$; $A_{s \min}^{RPA} = 3,6 \text{ cm}^2$.

Tableau A.19 : Aciers de couture du voile VX5.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
RDC-2 ^{ème}	20,53	2×10T12	22,62
3 ^{ème} –6 ^{ème}	12,07	2×10T10	15,71
7 ^{ème} —15 ^{ème}	12,07	2×10T10	15,71

Voile VX6, VX7

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 1,20 \text{ m}$; $A_{s \min}^{RPA} = 3,6 \text{ cm}^2$.

Tableau A.20 : Aciers de couture du voile VX6 et VX7.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
RDC-2 ^{ème}	37,70	2×10T16	40,21
3 ^{ème} –6 ^{ème}	24,13	2×10T14	30,79
7 ^{ème} –15 ^{ème}	18,47	2×10T12	22,62

Voile VX8, VX9

e = 20 cm; $l_m = 1,5 \text{ m}$; $l_{voile} = 2,75 \text{ m}$; $A_{smin}^{RPA} = 4,5 \text{ cm}^2$.

Tableau A.21 : Aciers de couture du voile VX8 et VX9.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
RDC-2 ^{ème}	24,13	2×8T14	24,63
3 ^{ème} -6 ^{ème}	24,13	2×8T14	24,63
7 ^{ème} –15 ^{ème}	24,13	2×8T14	24,63

• Sens Y-Y

Voile VY1

```
e = 20 \text{ cm}; l_m = 1,2 \text{ m}; l_{voile} = 3,4 \text{ m}; A_{s \min}{}^{RPA} = 3,6 \text{ cm}^2.
Tableau A.22 : Aciers de couture du voile VY1.
```

Niveau	A_v^{cal} (cm ²)	Choix	A_{s}^{adp} (cm ²)
RDC-2 ^{ème}	12,07	2×8T10	12,57
3 ^{ème} –6 ^{ème}	12,07	2×8T10	12,57
7 ^{ème} –15 ^{ème}	12,07	2×8T10	12,57

Voile VY2

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 3,4 \text{ m}$; $A_{s \min}^{RPA} = 3,6 \text{ cm}^2$.

Tableau A.23 : Aciers de couture du voile VY2.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
RDC-2 ^{ème}	16,43	2×8T12	18,10
3 ^{ème} –6 ^{ème}	16,43	2×8T10	18,10
7 ^{ème} —15 ^{ème}	12,07	2×8T10	12,57

Voile VY3

e = 20 cm; $l_m = 1.5 \text{ m}$; $l_{voile} = 6.85 \text{ m}$; $A_{smin}^{RPA} = 4.5 \text{ cm}^2$.

Tableau A.24 : Aciers de couture du voile VY3.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)		
RDC-2 ^{ème}	32,16	2×8T16	32,16		
3 ^{ème} –6 ^{ème}	13,57	2×8T12	18,10		
7 ^{ème} –15 ^{ème}	13,57	2×8T12	18,10		

Voile VY4

e = 20 cm; $l_m = 1,5 \text{ m}$; $l_{voile} = 6,85 \text{ m}$; $A_{s \min}{}^{RPA} = 4,5 \text{ cm}^2$. **Tableau A.25 :** Aciers de couture du voile VY4.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)		
RDC-2 ^{ème}	29,48	2×10T14	30,79		
3 ^{ème} –6 ^{ème}	16,57	2×8T12	18,10		
7 ^{ème} –15 ^{ème}	12,07	2×8T12	18,10		

Voile VY5

e = 20 cm; $l_m = 1.5 \text{ m}$; $l_{voile} = 6.85 \text{ m}$; $A_{s \min}^{RPA} = 4.5 \text{ cm}^2$.

Tableau A.26 : Aciers de couture du voile VY5.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
RDC-2 ^{ème}	34,84	2×9T16	36,19
3 ^{ème} –6 ^{ème}	24,64	2×9T14	27,71
7 ^{ème} —15 ^{ème}	12,07	2×9T10	14,14

Voile VY6

$$e = 20 \text{ cm}$$
; $l_m = 1,2 \text{ m}$; $l_{voile} = 4,85 \text{ m}$; $A_{s \min}^{RPA} = 3,6 \text{ cm}^2$.

 Tableau A.27 : Aciers de couture du voile VY6.

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
RDC-2 ^{ème}	22,59	2×10T12	22,62
3 ^{ème} -6 ^{ème}	16,57	2×10T12	22,62
7 ^{ème} –15 ^{ème}	15,08	2×10T10	15,71

Voile VY7, VY8

e = 20 cm; $l_m = 1,2 \text{ m}$; $l_{voile} = 2,30 \text{ m}$; $A_{s \min}^{RPA} = 3,6 \text{ cm}^2$.

Tableau A.28	: Aciers	de couture d	lu voile	VY7 et VY8
--------------	----------	--------------	----------	------------

Niveau	A_v^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)	
RDC-2 ^{ème}	26,81	2×9T14	27,71	
3 ^{ème} –6 ^{ème}	20,53	2×8T12	18,10	
7 ^{ème} –15 ^{ème}	16,42	2×8T12	18,10	

A.1.3. Aciers horizontaux

Tableau A.29 : Aciers horizontaux des voiles dans le sens X	<u>К</u> –Х.
---	--------------

Voile	S _i (m ²)	Niveau	τ_u (MPa)	A_s^{cal} (cm ²)	Choix	A_s^{adp} (cm ²)
		RDC-2 ^{ème}	4,42	40,84	2×14T14	43,12
VX1	0,30	$3^{\text{ème}}-6^{\text{ème}}$	3,88	35,85	2×12T14	36,96
		$7^{\text{ème}} - 15^{\text{ème}}$	τ_u (MPa) A_s^{cal} (cm²)Choix1e4,4240,84 $2 \times 14T14$ 3,8835,85 $2 \times 12T14$ 1e2,5923,93 $2 \times 11T12$ 1e2,6124,12 $2 \times 11T12$ 22,5223,28 $2 \times 11T12$ 1e2,1419,77 $2 \times 10T12$ 1e1,2211,27 $2 \times 10T12$ 1e1,2211,27 $2 \times 10T8$ 21,049,61 $2 \times 10T8$ 1e0,857,85 $2 \times 9T8$ 1e0,857,85 $2 \times 9T12$ 22,0619,03 $2 \times 9T12$ 21,4613,49 $2 \times 9T10$ 1e1,8313,53 $2 \times 10T10$ 21,9514,41 $2 \times 10T10$ 23,0222,32 $2 \times 10T10$ 23,0222,32 $2 \times 10T12$ 1e3,9228,98 $2 \times 10T14$ 1e1,5514,32 $2 \times 9T14$ 1e2,6924,86 $2 \times 9T14$	24,86		
		RDC-2 ^{ème}	2,61	24,12	2×11T12	24,86
VX2	0,30	$3^{\text{ème}}-6^{\text{ème}}$	2,52	23,28	2×11T12	24,86
		$7^{\text{ème}}$ – $15^{\text{ème}}$	u τ_u (MPa) A_s^{cal} (cm²)Cime $4,42$ $40,84$ $2\times$ ime $3,88$ $35,85$ $2\times$ ime $2,59$ $23,93$ $2\times$ ime $2,61$ $24,12$ $2\times$ ime $1,22$ $11,27$ $2\times$ ime $1,04$ $9,61$ $2\times$ ime $2,34$ $21,62$ $2\times$ ime $2,06$ $19,03$ $2\times$ ime $1,46$ $13,49$ $2\times$ ime $1,95$ $14,41$ $2\times$ ime $1,95$ $14,41$ $2\times$ ime $3,02$ $22,32$ $2\times$ ime $3,02$ $22,32$ $2\times$ ime $3,92$ $28,98$ $2\times$ ime $2,48$ $22,92$ $2\times$ ime $2,69$ $24,86$ $2>$	2×10T12	22,62	
		RDC–2 ^{ème}	1,22	11,27	2×12T8	12,00
VX3	0,30	$3^{\text{ème}}-6^{\text{ème}}$	1,04	9,61	2×10T8	10,05
		$7^{\text{ème}} - 15^{\text{ème}}$	0,85	7,85	2×9T8	9,05
		RDC-2 ^{ème}	2,34	21,62	2×10T12	22,62
VX4	0,30	$3^{\text{ème}}-6^{\text{ème}}$	2,06	19,03	2×9T12	20,36
		$7^{\text{ème}}$ – $15^{\text{ème}}$	1,46	13,49	2×9T10	14,14
		RDC–2 ^{ème}	1,83	13,53	2×10T10	15,71
VX5	0,24	$3^{\text{ème}}-6^{\text{ème}}$	1,95	14,41	2×10T10	15,71
		$7^{\text{ème}}$ – $15^{\text{ème}}$	1,83	13,53	2×10T10	15,71
		RDC-2 ^{ème}	2,03	15,01	2×10T10	15,71
VX6–VX7	0,24	$3^{\text{ème}}-6^{\text{ème}}$	3,02	22,32	2×10T12	22,62
		$7^{\text{ème}}$ – $15^{\text{ème}}$	3,92	28,98	2×10T14	30,79
		$RDC-2^{eme}$	1,55	14,32	2×9T12	20,36
VX8–VX9	0,30	$3^{\text{ème}}-6^{\text{ème}}$	2,48	22,92	2×9T14	27,71
		$7^{\text{ème}} - 15^{\text{ème}}$	2,69	24,86	2×9T14	27,71

Vérifiée.

Voile	S _i (m ²)	Niveau	τ _u (MPa)	A _s ^{cal} (cm ²)	Choix	A_{s}^{adp} (cm ²)
		RDC-2 ^{ème}	2,38	17,59	2×12T10	18,96
VY1	0,24	3 ^{ème} -6 ^{ème}	1,97	14,56	2×10T10	15,71
		7 ^{ème} -15 ^{ème}	1,30	9,61	2×10T8	10,05
		RDC-2 ^{ème}	3,33	24,62	2×11T12	24,86
VY2	0,24	3 ^{ème} –6 ^{ème}	3,39	25,06	2×12T12	27,12
		7 ^{ème} -15 ^{ème}	2,72	20,11	2×10T12	22,62
		RDC-2 ^{ème}	2,97	27,44	2×13T12	29,38
VY3	0,30	$3^{\text{ème}}-6^{\text{ème}}$	2,73	25,23	2×12T12	27,12
		$7^{\text{ème}}$ – $15^{\text{ème}}$	2,11	19,50	2×10T12	22,62
VY4		RDC-2 ^{ème}	3,86	35,67	2×12T14	36,96
	0,30	$3^{\text{ème}}-6^{\text{ème}}$	3,99	36,87	2×12T14	36,96
		$7^{\text{ème}}$ – $15^{\text{ème}}$	3,94	36,41	2×12T14	36,96
		RDC-2 ^{ème}	3,04	28,09	2×11T14	33,88
VY5	0,30	$3^{\text{ème}}-6^{\text{ème}}$	3,60	33,26	2×12T14	36,96
		7 ^{ème} -15 ^{ème}	3,65	33,73	2×12T14	36,96
		RDC-2 ^{ème}	2,37	21,90	2×11T12	24,86
VY6	0,24	$3^{\text{ème}}-6^{\text{ème}}$	2,52	23,28	2×11T12	24,86
		$7^{\text{ème}} - 15^{\text{ème}}$	2,48	22,92	2×11T12	24,86
		RDC-2 ^{ème}	1,49	13,77	2×11T10	17,83
VY7–VY8	0,24	$3^{\text{ème}}-6^{\text{ème}}$	2,63	24,30	2×11T12	24,86
		7 ^{ème} -15 ^{ème}	3,19	29,48	2×14T12	31,64

Tableau A.30 : Aciers horizontaux des voiles dans le sens Y-Y.

A.2. Méthode de l'ACI 318–19

• Sens X–X

Voile VX1

Les efforts obtenus selon la combinaison « G+Q+Ex » :

- $P_u = 36346,29$ kN.
- $M_u = 184605,67$ kN.m.
- V_u = 7722,82 kN.
 Vérification vis-à-vis de l'effort tranchant.

$$V_{u} < 0.083 \times A_{cv} \times \sqrt{f'_{c}}$$
(1)

$$V_{u} < A_{cv} \times (\alpha_{c} \times 0.083 \times \sqrt{f'_{c}} + \rho_{n} \times f_{y})$$
(2)

$$\Phi \times V_{n} > V_{u}$$
(3)

$$0.75 \times Pn = 43391 \text{ kN} > 36346.29 \text{ kN}$$

$$\label{eq:Vu} \begin{split} V_u &= 7722,82 \ \text{kN} < 977,16 \ \text{kN} & \text{Non vérifiée.} \\ & \text{Donc deux nappes d'armatures sont nécessaires.} \\ V_u &= 7722,82 \ \text{kN} < 8551,04 \ \text{kN} & \text{Vérifiée.} \\ & \Phi \times V_n &= 8551,04 \ \text{kN} > V_u &= 7722,82 \ \text{kN} \ \text{pour } \rho_h &= 0,01 & \text{Vérifiée.} \\ & \text{On opte pour } 2 \times 5T16 \ \text{A}_s &= 20,11 \ \text{cm}^2, \ \text{espacement} &= 20 \ \text{cm.} \end{split}$$

$$\tau_{u} = \frac{1.4 \times V_{u}}{d \times b_{0}} \le 0.2 \times f_{c28}$$
(4)

$$\frac{P_{u}}{P_{0}} = 0.32 < 0.35$$
(5) Vérifiée
Pour : $\rho_{s} = 0.0025$

Calcul des armatures transversales :

$$\mathbf{A}_{h}^{t} \geq 0,09 \times \mathbf{S}_{t} \times \mathbf{h}_{c} \times \frac{f'_{c}}{f_{e}}$$

(1) (kN)	Ob	DS	(2)	(2) (kN)		$ ho_h$	(3) (kN)	Obs
7722,82 < 1221,4	Deux n nécess	appes aires	7722,82 < 11401,40		Ok	0,007	7722,82< 8551		Ok
(4) (MPa)	Ob	DS	((5)		A _s /ml	d (m)	d' (m)	c (m)
4,35 < 7	O	k	0,29 < 0,35		0,0025	71,38 cm²	1 1		1,71
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	$S_{t}\left(cm ight)$	Choix A ^t h (cr		A ^t _h ^{adp} (cm ²)
RPA : 1 m ACI : 2,45 m	2,4	0,95	5,	5,48		10	81	`10	6,28
h _{cr} (ACI)	h _{cr} fi	nale	Armatures horizontales /ml		Zone co	ourante	Z	one de ri	ve
9,95 m	On pre hauter	end la ur de	A_{h}	$\begin{array}{c} A_{h} \\ A_{h} \\ (cm^{2}) \end{array}$		A _v ^{adp} (cm ²)	A _v	Av	^{adp} (cm ²)
	trois ni	veaux	2×5T16	2×5T16 20,11 2×40T14 123,2 2		24T20)	75,36	

Tableau A.31 : Calcul du ferraillage du voile VX1.

Voile VX2

Les efforts obtenus selon la combinaison « G+Q+Ex » :

- $P_u = 9535,74$ kN.

- $M_u = 5722,92 \text{ kN.m.}$

- $V_u = 1564,72$ kN.

 Tableau A.32 : Calcul du ferraillage du voile VX2.

(1) (kN)	Ot	DS	(2)) (kN)	Obs	$ ho_h$	(3	B) (kN)) Obs
1564,72 < 429,66	Deux n nécess	appes aires	1564,72 <	< 2260,54	Ok	0,005	1564,7	< 1695,	4 Ok
(4) (MPa)	Ot	DS	(5	5)	ρ_{s}	A _s /ml	d (m)	d' (m	l) c (m)
2,50 < 7	O	k	0,349 < 0,35		0,003	6 cm ²	0,5 0,5		SEC
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	Choix		$ \begin{array}{c} \mathbf{A}^{t}\mathbf{h}^{adp} \\ (\mathbf{cm}^{2}) \end{array} $
RPA : 0,35 m ACI : 0,88 m	0,8	0,2	1,0)71	15	10	3	3T8	
h _{cr} (ACI)	h _{cr} fi	nale	Arma horizont	atures tales /ml	Zone co	ourante	Zone de		rive
3,5 m	On pre hauteur	end la r d'un	$A_h \qquad \begin{array}{c} A_s^{adp} \\ (cm^2) \end{array}$		A_{v}	A _v ^{adp} (cm ²)	A _v	I	A_v^{adp} (cm ²)
	nive	au	2×5T12 11,31		2×10T12	22,62	2×5T	12	13,57

Voile VX3

- $P_u = 11291,1 \text{ kN}.$
- $M_u = 4875,03$ kN.m.
- $V_u = 952,92$ kN.

(1) (k N)	Ol	os	(2)) (kN)	Obs	$ ho_h$	(3	3) (kN)	Obs
952,92 < 429,65	Deux n nécess	appes saires	952,92 <	< 1823,04	Ok	0,004	952,92	< 1367,	.3 Ok
(4) (MPa)	Ol	os	(!	5)	ρ_{s}	A _s /ml	d (m)	d' (m) c (m)
1,52 < 7	0	k	0,346 < 0,35		0.016	32 cm ²	0,5 0,5		SEC
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	Choix		$A^{t}{}_{h}{}^{adp}$ (cm ²)
RPA : 0,35 m ACI : 0,88 m	0,8	0,2	1,0)71	15	10	3	T8	1,51
h _{cr} (ACI)	h _{cr} fi	nale	Arma horizon	atures tales /ml	Zone co	ourante	Z	Zone de	rive
3,5 m	On pre hauteu	end la r d'un	$A_h = \begin{bmatrix} A_s^{adp} \\ (cm^2) \end{bmatrix}$		A _v	A _v ^{adp} (cm ²)	Av	I	A_v^{adp} (cm ²)
	nive	eau	2×5T12 11,31		2×12T20	75,36	2×6T20		37,70

 Tableau A.33 : Calcul du ferraillage du voile VX3.

Voile VX4

Les efforts obtenus selon la combinaison « G+Q+Ex » :

- $P_u = 11204,5 \text{ kN}.$
- $M_u = 4565,57$ kN.m.
- $V_u = 1424,32$ kN.

Tableau A.34 : Calcul du ferraillage du voile VX4.

(1) (k N)	Ol	DS	(2)) (kN)	Obs	$ ho_h$	(.	3) (kN)	Obs	
1424,32 < 429,65	Deux n nécess	appes saires	1424,32 <	< 2260,54	Ok	0,0025	1424,3	< 1695,4	Ok	
(4) (MPa)	Ol	DS	(5	(5)		A _s (cm ²) /ml	d (m)	d' (m)	c (m)	
2,28 < 7	0	k	0,347 < 0,35		0.015	30	0,5	0,5	SEC	
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	C	hoix	A ^t _h ^{adp} (cm ²)	
RPA : 0,35 m ACI : 0,88 m	0,8	0,2	1,0)71	15	10	3	ST8	1,51	
h _{cr} (ACI)	h _{cr} fi	nale	Armatures horizontales /ml		Zone co	ourante	Z	Zone de ri	ve	
3,5 m	On pre hauteu	end la r d'un	$A_h \qquad \begin{array}{c} A_s^{adp} \\ (cm^2) \end{array}$		A _v	A _v ^{adp} (cm ²)	A _v	A_v^a	^{dp} (cm ²)	
	nive	eau	2×5T12 11,31		2×10T20	62,83	2×6T	20	37,70	

Voile VX5

- $P_u = 6681,2 \text{ kN}.$
- $M_u = 1551,82$ kN.m.
- $V_u = 541,678$ kN.

(1) (kN)	Ob	s	(2) (k N)	Obs	$ ho_h$	(3	8) (kN)	Obs
541,69 < 276,21	Deux na nécessa	appes aires	541,69 -	< 750,08	Ok	0,0025	541,69	< 562,5	6 Ok
(4) (MPa)	Ob	s	(:	5)	ρ_{s}	A _s /ml	d (m)	d' (m)) c (m)
1,35 < 7	Ok		0,349 < 0,35		0.009	18 cm ²	0,25 0,25		SEC
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	Choix		A ^t h ^{adp} (cm ²)
RPA : 0,23 m ACI : 0,56 m	0,5	0,2	1,0)71	15	10	3	Т8	1,51
h _{cr} (ACI)	h _{cr} fin	ale	Arma horizon	atures tales /ml	Zone co	ourante	Zone de riv		rive
2,25 m	On prei hauteur	nd la d'un	$A_h = \begin{bmatrix} A_s^{adp} \\ (cm^2) \end{bmatrix}$		A _v	A _v ^{adp} (cm ²)	Av	A	A_v^{adp} (cm ²)
	nivea	au	2×5T12 11,31		2×7T16	28,15	2×4T	16	16,08

Tableau A.35 : Calcul du ferraillage du voile VX5.

Voile VX6–7

Les efforts obtenus selon la combinaison « G+Q+Ex » :

- $P_u = 3788,64$ kN.
- $M_u = 351,46$ kN.m.
- $V_u = 191,61 \text{ kN}.$

Tableau A.36 : Calcul du ferraillage du voile VX6 et VX7.

(1) (kN)	Ol	DS	(2)) (kN)	Obs	$ ho_h$	(3	B) (kN)	Obs
191,61 < 117,85	Deux n nécess	appes aires	191,61 -	< 320,03	Ok	0,0025	191,61	< 240,03	B Ok
(4) (MPa)	Oł	DS	(!	5)	ρ_{s}	A _s /ml	d (m)	d' (m)	c (m)
0,89 < 7	O	k	0,348 < 0,35		0.014	33,6 cm ²	0,15 0,1		SEC
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	Choix		A ^t h ^{adp} (cm ²)
RPA : 0,12 m ACI : 0,30 m	0,25	0,2	1,0	071	15	10	3	3T8	
h _{cr} (ACI)	h _{cr} fi	nale	Arma horizon	atures tales /ml	Zone co	ourante	Zone de		ive
1,2 m	On pre hauteur	end la r d'un	$A_h \qquad \begin{array}{c} A_s^{adp} \\ (cm^2) \end{array}$		A _v	A _v ^{adp} (cm ²)	Av	А	v ^{adp} (cm ²)
	nive	au	2×5T12 11,31		2×3T16	12,06	2×3T	16	12,06

Voile VX8–9

- $P_u = 5984, 15 \text{ kN}.$
- $M_u = 2714,54$ kN.m.
- $V_u = 603,23$ kN.

(1) (kN)	Oł	os	(2)) (kN)	Obs	$ ho_h$	(3	B) (kN)	Obs
603,23 < 337,59	Deux n nécess	appes aires	603,23 <	< 916,76	Ok	0,0025	603,23	< 687,57	Ok
(4) (MPa)	Ot	DS	(5	5)	ρ_s	A _s /ml	d (m)	d' (m)	c (m)
1,53 < 7	O	k	0,29 < 0,35		0.0025	5 cm ²	0,30 0,30		SEC
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	C	hoix	A ^t h ^{adp} (cm ²)
RPA : 0,26 m ACI : 0,66 m	0,60	0,2	1,0)71	15	10	3	Т8	1,51
h _{cr} (ACI)	h _{cr} fi	nale	Arma horizont	ntures tales /ml	Zone co	ourante	Z	lone de r	ive
2,75 m	On pre hauteur	end la r d'un	$A_h \qquad \begin{array}{c} A_s^{adp} \\ (cm^2) \end{array}$		A _v	A _v ^{adp} (cm ²)	Av	A	^{adp} (cm ²)
	nive	au	2×5T12 11,31		2×7T12	15,83	$2 \times 4T$	12	9,05

Tableau A.37 : Calcul du ferraillage du voile VX8 et VX9.

• Sens Y–Y

Voile VY1

Les efforts obtenus selon la combinaison « G+Q+Ex » :

- $P_u = 19932,23$ kN.
- $M_u = 17018,77$ kN.m.
- $V_u = 3374,94$ kN.

Tableau A.38 : Calcul du ferraillage du voile VY1.

(1) (kN)	0	bs	(2) (kN)	Obs	$ ho_h$	(3	3) (kN)	Obs
3374,9 < 417,38	Deux néces	nappes saires	3374,9 <	< 4745,95	Ok	0,011	3374,9	< 3559,	5 Ok
(4) (MPa)	0	bs	(!	5)	ρ_{s}	A _s /ml	d (m)	d' (m)) c (m)
5,56 < 7	C	k	0,349 < 0,35		0.011	22 cm ²	0,85	0,85	SEC
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	C	hoix	A ^t h ^{adp} (cm ²)
RPA : 0,68 m ACI : 1,71 m	1,70	0,2	1,0)71	15	10	3T8		1,51
h _{cr} (ACI)	h _{cr} f	inale	Arma horizon	atures tales /ml	Zone co	ourante	Zone de		rive
6,85 m	On pr haute	end la eur de	$A_h = \begin{bmatrix} A_s^{adp} \\ (cm^2) \end{bmatrix}$		A_v (cm ²)	A _v ^{adp} (cm ²)	Av	A	v ^{adp} (cm ²)
	deux n	iveaux	2×6T16 24,13		2×14T16	56,28	2×10T	16	9,05

Voile VY2

- $P_u = 21579,85 \text{ kN}.$
- $M_u = 10927,57$ kN.m.
- $V_u = 1727,95$ kN.

(1) $(l_{\rm L}N)$	OF	NC .	()	$(\mathbf{k}\mathbf{N})$		2	(3	$(l_{\rm r}N)$	Obc
	UL	15	(2)) (KIN)	OUS	ρ_h	(.) (KIN)	Obs
1727,95 < 417,38	Deux n nécess	appes aires	1727,95 <	< 2620,95	Ok	0,007	1727,9	< 1965,7	Ok
(4) (MPa)	Ob	DS	(5	5)	ρ_{s}	A _s /ml	d (m)	d' (m)	c (m)
2,85 < 7	O	k	0,346 < 0,35		0.018	45,88 cm ²	0,5 0,5		3,76
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	Cl	hoix	A ^t h ^{adp} (cm ²)
RPA : 0,34 m ACI : 0,85 m	0,85	0,2	5,4	181	15	10	87	Г10	6,28
h _{cr} (ACI)	h _{cr} fi	nale	Arma horizont	atures tales /ml	Zone courante		Z	Zone de r	ive
3,4 m	On pre hauteur	end la r d'un	$A_h = \begin{bmatrix} A_s^{adp} \\ (cm^2) \end{bmatrix}$		A_{v}	A_v^{adp} (cm ²)	A _v	А	v ^{adp} (cm ²)
	nive	eau	2×5T14 11,31		2×10T20	62,83	$2 \times 8T$	20	50,27

Tableau A.39 : Calcul du ferraillage du voile VY2.

Voile VY3

Les efforts obtenus selon la combinaison « G+Q+Ex » :

- $P_u = 14063,01 \text{ kN}.$
- $M_u = 14950,43$ kN.m.
- $V_u = 3687,56$ kN.

Tableau A.40 : Calcul du ferraillage du voile VY3.

(1) (kN)	Oł	DS	(2) (kN)	Obs	$ ho_h$	(3	B) (kN)) Obs	
3687,56 < 672,72	Deux n nécess	appes saires	3687,56 -	< 5594,36	Ok	0,008	3687,6	< 4195,	8 Ok	
(4) (MPa)	Oł	DS	(:	5)	ρ_{s}	A _s /ml	d (m)	d' (m	l) c (m)	
3,77 < 7	O	k	0,33 < 0,35		0.0025	5 cm ²	0,85 0,		SEC	
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	Choix		$ \begin{array}{c} \mathbf{A}^{t}\mathbf{h}^{adp} \\ (\mathbf{cm}^{2}) \end{array} $	
RPA : 0,68 m ACI : 1,70 m	1,70	0,2	0,7	756	15	10	2T10		1,01	
h _{cr} (ACI)	h _{cr} fi	nale	Arma horizon	atures tales /ml	Zone co	ourante	Zone		rive	
6,85 m	On pre hauter	end la ur de	$\begin{array}{c} A_h \\ (cm^2) \end{array}$		A_v (cm ²)	A _v ^{adp} (cm ²)	Av	1	A_v^{adp} (cm ²)	
	trois ni	veaux	2×4T14 15,39		2×20T12	45,2	2×10T12		22,62	

Voile VY4–5

- $P_u = 18309.93 \text{ kN}.$
- $M_u = 18310,79$ kN.m.
- $V_u = 2869,42$ kN.

(1) (kN)	Ob	DS	(2)) (kN)	Obs	$ ho_h$	(3	B) (kN)	Obs		
2869,42 < 672,72	Deux n sor nécess	appes nt saires	2869,42 <	< 4224,62	Ok	0,006	2869,4	< 3168,	3 Ok		
(4) (MPa)	Ot	DS	(!	(5) 0,349 < 0,35		A _s /ml	d (m)	d' (m) c (m)		
2,93 < 7	O	k	0,349 < 0,35		0.018	36 cm ²	0,85 0,85		SEC		
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²)		h _c (cm)	St (cm)	C	hoix	$\begin{array}{c} \mathbf{A}^{\mathbf{t}_{\mathbf{h}}^{adp}} \\ (\mathbf{cm}^2) \end{array}$		
RPA : 0,68 m ACI : 1,70 m	1,70	0,2	0,7	756	15	10	2'	Г10	1,01		
h _{cr} (ACI)	h _{cr} fi	nale	Armatures horizontales /ml		Zone co	ourante	Z	lone de	rive		
6,85 m	On pre hauter	end la ur de	$A_h = \begin{bmatrix} A_s^{adp} \\ (cm^2) \end{bmatrix}$		A_v (cm ²)	A _v ^{adp} (cm ²)	Av	A	A_v^{adp} (cm ²)		
	trois ni	veaux	2×5T12 11,31		2×20T20	125,6	2×10T20		62,83		

Tableau A.41 : Calcul du ferraillage du voile VY4 et VY5.

Voile VY6

Les efforts obtenus selon la combinaison « G+Q+Ex » :

- $P_u = 18309.93 \text{ kN}.$
- $M_u = 18310,79$ kN.m.
- $V_u = 2869,42$ kN.

Tableau A.42 : Calcul du ferraillage du voile VY6.

(1) (kN	V)	Ob	S	((2) (kN)	Obs	$ ho_h$	(3	3) (kN) Obs
2869,42 < 672	2,72	Deux n sor nécess	appes nt aires	2869,42	2 < 5381,74	Ok	0,004	2869,4	< 3064	,6 Ok
(4) (MH	Pa)	Ob)S	(5) 0,349 < 0,35		ρ_{s}	A _s (cm ²) /ml	d (m)	d' (m	i) c (m)
1,73 < 7		Ol	ς.	0,349 < 0,35		0,349 < 0,35 0.018 36 0,85 0,9		0,85	SEC	
L _{bz} selon le règlements	es s	L _{bz} (m)	T _{bz} (m)	(6) (cm ²) h_c (cm) S_t (cm) Cho		hoix	$ \begin{array}{c} \mathbf{A}^{t_{\mathbf{h}}adp} \\ \mathbf{(cm^{2})} \end{array} $			
RPA : 0,68 ACI : 1,70 r	m n	1,70	0,2	C),756	15	10	2'	Г10	1,01
h _{cr} (ACI)		h _{cr} final	e	Armatures horizontales /ml		Zone co	ourante	Z	Zone de	rive
6,85 m	(ha	On prend uteur de	la trois	$A_h \qquad A_s^{adp} (cm^2)$		A_v (cm ²)	A _v ^{adp} (cm ²)	Av	1	A_v^{adp} (cm ²)
		niveaux	I	2×5T12 11,31		2×20T20	125,6	2×10T20		62,83

Voile VY7–8

- $P_u = 6146, 14 \text{ kN}.$
- $M_u = 1419,40$ kN.m.
- $V_u = 524,75$ kN.

				-					
(1) (kN)	Ot	DS	(2)) (k N)	Obs	$ ho_h$	(3	3) (kN)	Obs
524,75 < 225,86	Deux n soi nécess	appes nt aires	524,75	< 958,4	Ok	0,0025	524,75	< 718,80) Ok
(4) (MPa)	Oł	DS	(5)	ρ_{s}	A _s /ml	d (m)	d' (m)	c (m)
1,60 < 7	O	k	0,349 < 0,35		0.018	36 cm ²	0,85 0,85		SEC
L _{bz} selon les règlements	L _{bz} (m)	T _{bz} (m)	(6) (cm ²) h_c (cm) S_t (cm) Choix		hoix	$\begin{array}{c} \mathbf{A}^{\mathbf{t}_{\mathbf{h}}^{adp}}\\ (\mathbf{cm}^2) \end{array}$			
RPA : 0,23 m ACI : 0,57 m	0,55	0,2	0,7	756	15	10	2'	Т10	1,01
h _{cr} (ACI)	h _{cr} fi	nale	Armatures horizontales /ml		Zone co	ourante	Z	Zone de 1	·ive
2,30 m	On pre hauteur	end la r d'un	$A_h \qquad \begin{array}{c} A_s^{adp} \\ (cm^2) \end{array}$		A_v	$\frac{A_v^{adp}}{(cm^2)}$	A _v (cr	n²) A	v ^{adp} (cm ²)
	nive	au	2×5T12 11,31		2×6T20	37,70	2×4T20		25,13

 Tableau A.43 : Calcul du ferraillage du voile VY7 et VY8.

Figure B.1 : Ferraillage des linteaux LX1 (cm).

Figure B.3 : Ferraillage des linteaux LX2–3 (cm).

Figure B.4 : Coupe D–D (cm).

Figure B.5 : Ferraillage des linteaux LY1–2 (cm).

Figure B.7 : Plan de fondation (m).

Figure B.8 : Plan de coffrage RDC $-5^{\text{ème}}(m)$.

Références bibliographiques.

- 1. Règles BAEL 91 révisées 99.
- 2. REGLES PARASSISMIQUES ALGERIENNES RPA 99 / VERSION 2003.
- 3. CBA 93.
- 4. Béton armé BAEL 91 modifié 99 et DTU associés
- 5. Formulaire du béton armé Volume 1 : Calculs, Victor DAVIDOVICI.
- 6. EUROCODE 2.
- 7. NF P 18–210 DTU 23.1 Murs en béton banché.
- 8. Dimensionnement des voiles en BA, R. Taleb et B.Eldjouzi.
- 9. ACI 318–19.
- 10. FEMA-356.
- 11. ATC-40.
- 12. DICTIONARY OF CIVIL ENGINEERING. JEAN PAUL KURTZ.
- 13. A.Salihovic and N.Ademovic, Nonlinear analysis of reinforced concrete frame under lateral load, Techno-press journal, ISSN : 2234–2184, 2017.
- 14. M.N. ATTAR, Displacement Based Design, (DBD), Nonlinear Static Pushover Analysis To Verify The Proper Collapse Mechanism Of Structures. Arab Dar company.
- 15. R.Leslie, The Pushover Analysis, explained in its Simplicity.
- 16. Bahram Marabi & Abdul Kadir Marsono, A Numerical And Analytical Study On Optimization And Efficiency Of Structural Forms By Two-Outrigger In Tall Buildings, Malaysian Journal of Civil Engineering 28 Special Issue (3):163–179(2016).
- R. Hakim-M. S. Alama-S. A. Ashour, Seismic assessment of RC Building According to ATC 40, FEMA 356 and FEMA 440. Arab J Sci Eng (2014) 39:7691–7699.
- Bindhu K. R.- Nidhi M- Rahul Leslie. 15th World Conference on Earthquake Engineering 2012 Lisbon.
- SAP2000 Integrated Finite Elements Analysis and Design of Structures-GRAPHIC USER INTERFACE MANUAL. Computers and Structures, Inc. Version 7.0. August 1998.
- 20. A.Tebaa et A.Fellah, mémoire de master : Conception D'un Bâtiment A Usage Multiple En (R+9+Entre sol+Sous-sol) Avec La Prise En Compte De La Torsion Accidentelle.