الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي و البحث العلمي

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

جامعة سعد دحلب -البليدة1-

UNIVERSITE SAAD DAHLEB DE BLIDA

كلية التكنولوجيا FACULTE DE TCHENOLOGIE قسم الهندسة المدنية DEPARTEMENT DE GENIE CIVIL

MEMOIRE DE MASTER EN GENIE CIVIL OPTION : Structure

Thème

ETUDE D'UN IMMEUBLE D'HABITATION

EN BETON ARMEE R+5 ETAGES+6 ENTRE SOL (EN 3 BLOC A, B, C)

Réalisé par :

Encadré par :

M^{me}. MOFREDJ KHADIDJA

M^{me.} N.AOUALI

M^{me}. NEGLI HOURIA

Mr. M.ABED

Promotion: 2019/2020

Summary

Building has always been one of the first concerns of man and one of his privileged occupations. The construction of works has always been the subject of many questions centered mainly on the choice of the type of work.

Unfortunately these works and these constructions are always damaged by natural risks, such as: earthquakes, cyclones, volcanoes... etc.

Engineers are therefore called upon to design structures with good rigidity and sufficient strength so as to save human lives and limit material damage due to damage to the structure. So we have to follow the new construction techniques.

Seismic construction is one of these new techniques, and it is undoubtedly the surest means of preventing seismic risk. It requires prior compliance with the normal rules of good construction, but is also based on specific principles, due to the particular nature of seismic loads. These principles and their modes of application are generally combined, with more or less detail, in the earthquake rules. Algerian seismic regulation "RPA99 version 2003", the objective of these regulations is to ensure acceptable protection of human life and buildings.

In this study, we are interested in modeling by SAP200, which is software for calculating and optimizing structures. It uses the finite element analysis method to study planar and spatial structures, and allows for static and dynamic analyzes, as well as linear or nonlinear analyzes. We can thus calculate the structures with an unlimited number of bars and with an unlimited number of nodes. The only limitations arise from the parameters of the computer on which the calculations are performed (RAM and disk space available). The data of the analyzed structure (force, reinforcement, etc...) would thus be estimated inducing a significant reduction in the calculation time.

This document is organized as follows:

Chapter I is a descriptive presentation of the work with dimensions in plan and elevation, structural and non-structural elements and characteristics of the materials used.

For any study of a structure, the pre-sizing of the resistant elements (columns, beams and walls) is the first step in order to star the dynamic study. This is the second chapter.

In the third chapter we are interested in the calculation of non-structural elements (the criterion, the solid slab, the machine slab and the staircase).

In the fourth chapter we are interested in the modeling of the structure and the determination of the modes of vibration, by reinforcing the framework by walls; we thus observe the behavior of the structure until the verification of displacements.

In order for the structure to withstand the various stresses, the reinforcement of its resistant elements must be calculated, from the results obtained by dynamic analysis.

Chapter VI consists in using the results of the soil study in the dimensioning and reinforcement of the foundations (the lower part of a structure resting on a bedrock to which are transmitted all the loads and overloads supported by the work).

So; we end this document with some conclusions and perspective.

The keywords: Algerian seismic regulation, resistant elements, modes of vibration.

الملخص

يقدم هذا المشروع دراسة تفصيلية لبرج غير منتظم الشكل يتكون من ثلاث كتل ذات ارتفاع مختلف مفصولة بفاصل الهبوط

الكتلة الأولى هي (أ) عبارة عن 5 طوابق ما بين الأرض و السطح زائد 5 طوابق علويا ذات الطابع السكني مع موقف للسيارات في الأول والثاني بين الأرض المدعمة بنظام تدعيم ذاتي مقاومة للزلازل بواسطة الجدران و الأعمدة و الروافد المشكلة من الخرسانة المسلحة

الكتلة الثانية هي (ب) عبارة عن 6 طوابق ما بين الأرض و السطح زائد 5 طوابق علويا ذات الطابع السكني مع موقف للسيارات في الأول والثاني بين الأرض المدعمة بنظام تدعيم ذاتي مقاومة للزلازل بواسطة الجدران و الأعمدة و الروافد المشكلة من الخرسانة المسلح

الكتلة الثانية هي (ج) عبارة عن 6 طوابق ما بين الأرض و السطح الطابع فقط ذات السكني المدعمة بنظام تدعيم ذاتي مقاومة للزلازل بواسطة الجدران و الأعمدة و الروافد المشكلة من الخرسانة المسلحة

تقع البناية في ولاية الجزائر و المصنفة ضمن المنطقة الزلزالية رقم- 3- وفقا للقواعد الجزائرية المضادة للزلازل

. (RPA 99 version 2003)

أما بخصوص القياس والتسليح لمختلف العناصر الأساسية والغير الأساسية المشكلة لثلاث كتل فقد تمت بطريقة منفصلة وفقا للقواعد (BAEL91 modifiée 99, RPA99 version 2003)

نوع الأساس المختار هو قاعدة مستمرة بالنسبة لجميع الكتل

الكلمات المفتاحية: الخرسانة المسلحة، نظام التدعيم الذاتي، قاعدة مستمرة.

RESUME

Ce projet présent une étude détaillée d'une tour en béton armé de forme irrégulière composée de trois blocs de hauteur différente, séparé par un joint de rupture.

Le premier bloc (A) est un (R+5+5 E-S) à usage d'habitation avec un parkin en 1er et 2eme entre sol contreventée par un système de contreventement auto stable (poteau+poutre+voile)

Le deuxième bloc (B) est un (R+5+6 E-S) à usage d'habitation avec un parkin en 1er et 2eme entre sol contreventée par un système de contreventement auto stable (poteau+poutre+voile)

Le troisième bloc (C) est un (R+6 E-S) à usage d'habitation entre sol contreventée par un système de contreventement auto stable (poteau+poutre+voile)

La structure est implantée dans la Wilaya de ALGER, classé en Zone III selon le Règlement Parasismique Algérien (RPA 99 version 2003).

Le dimensionnement ainsi que le ferraillage des éléments (secondaire et principale) ont été fait pour chaque bloc de manière séparée, conformément aux règles (BAEL91 modifiée 99, RPA99 version 2003).

Le type de fondation choisi est une semelle filante pour tous les blocs

Les mots clés : béton armé, système de contreventement, semelle filante

Remerciements

Au premier lieu, nous tenons à remercier Dieu qui nous a donné le courage et la volonté pour terminer ce travail.

Nous tenons à remercier vivement tous ceux qui nous ont aidés à élaborer cet ouvrage et en particulier notre promotrice \mathcal{M}^{me} AOUALI NAWEL et notre ce-promoteur professeur ABED MOHAMED pour la disponibilité permanente, pour leurs aides et ces orientations précieuses, tout le long de ce projet.

Nous tenons également à remercier les honorables membres du jury, pour l'honneur qu'ils nous ont accordés en acceptant d'évaluer notre travail.

Nos remerciements vont également à tous les enseignants de L'Université SAAD DAHLEB BLIDA et particulièrement à ceux du département de Génie Civil.

Que tous ceux ou celles qui nous ont apportés leur soutien et qui nous ont aidé de loin ou de prés pour l'achèvement de ce projet trouvent ici l'expression de notre vive et sincère reconnaissance, en particulier nos parents, nos familles et nos amis.

Khadidja

Houria

Dédicace

C'est avec un très grand honneur que je dédie ce modeste travail aux personnes les plus chères au monde mes chères parents, ma source d'affectation de courage et d'inspiration qui ont autant sacrifié pour me voir atteindre ce jour.

A mes chères sœurs:

Meriem et Imen

A mon chère frère:

Mohamed Amine

A mon binôme HOURIA pour laquelle je souhaite une vie plein de joie et de réussite.

 ${\mathcal A}$ tous mes amis sans exception.

A toute la promotion 2019/2020.

KHADIDJA

Dédicace

C'est avec un très grand honneur que je dédie ce modeste travail aux personnes les plus chères au monde mes chères parents, ma source d'affectation de courage et d'inspiration qui ont autant sacrifié pour me voir atteindre ce jour.

A mes chères sœurs et frères

A toute la famille NEGLI petit et grand et à tous ceux que j'aime

A celui qui j'aime trop l'homme de ma vie REBIBI SALAH à celui qui a été toujours près de moi à me renforcer et me donner de l'espoir, que dieu te garde pour moi

A mon binôme KHADIDJA pour laquelle je souhaite une vie plein de joie et de réussite.

 $\ensuremath{\mathcal{A}}$ tous mes amis sans exception.

HOURIA

Liste des tableaux

CHAPITRE I: PRESENTATION DE L'OUVRAGE	
Tableau I.1 : Caractéristiques géométrique	3
Tableau I.2 : Caractéristiques des Aciers	7
CHAPITRE II : PRE DIMENSIONNEMENT BLOC A	
Tableau II.1: Ferraillage dalle pleine	11
Tableau II.2: Choix les dimensions des poutres PP et PS	12
Tableau II.3 : Poids surfacique du plancher terrasse à corps creux	12
Tableau II.4 : Poids surfacique du plancher dalle pleine	13
Tableau II.5 : Poids surfacique de la dalle en corps creux	13
Tableau II.6 : Poids surfacique de balcon	13
Tableau II.7: Poids surfacique de parking	14
Tableau II.8 : Poids surfacique du mur extérieur	14
Tableau II.9: Charge d'exploitation	14
Tableau II.10 : Les poteaux le plus sollicité	15
Tableau II.11: Descente des charges de poteau central	15
BLOC B	
Tableau II.12: Choix les démentions des poutres PP et PS	18
Tableau II.13 : Les poteaux les plus sollicité	18
Tableau II.14 : Descente des charges de poteau central	19
BLOC C	
Tableau II.15: Choix les démentions des poutres PP et PS	20
Tableau II.16 : Les poteaux les plus sollicité	20
Tableau II.17 : Descente des charges de poteau central	20
Tableau II.18 : Choix de l'épaisseur des voiles	22

CHAPITRE III : CALCUL DES ELEMENTS SECONDAIRES

Tableau III.1: Calcule des efforts de l'escalier	23
Tableau III.2: Ferraillage de balcon à ELU	27
Tableau III.3: Vérification de balcon à ELS	27
Tableau III.4: La charge permanent de volée	30
Tableau III.5: La charge permanent de palier	30
Tableau III.6: Combinaison des actions sur l'escalier	30
Tableau III.7: Résultats du calcul du ferraillage des escaliers courants	31
Tableau III.8 : Ferraillage de la poutre palière	33
Tableau III.9 : Vérification de la contraint de service limite pour le béton	34
Tableau III.10 : Ferraillage de poutrelle a ELU	36
Tableau III.11: Les résultats des moments en travées et appuis	39
Tableau III.12 : Ferraillage de poutrelle a ELU BLOC A	
Tableau III.13 : Ferraillage de poutrelle a ELU BLOC B	40
Tableau III.14: Ferraillage de poutrelle a ELU BLOC C	40
Tableau III.15: Les dimensions et les moments des poutrelles	41
Tableau III.16: Vérification a ELS	42
Tableau III.17 : Caractéristiques des câbles	44
Tableau III.18: Tableau récapitulatif des résultats des moments	46
Tableau III.19: Tableau récapitulatif des sollicitations maximales	48
Tableau III.20 : ferraillage de la dalle machine	48
Tableau III.21: vérification a ELS	48
Tableau III.22: Résultat de ferraillage vertical	50
Tableau III.23: Résultat de ferraillage horizontal	50
Chapitre IV : ETUDE DYNAMIQUE ET SISMIQUE BLOC A	
Tableau IV.1: Période et facteur de participation massique	56
Tableau IV.2 : Détermination de la force (V)	57
Tableau IV.3: Vérification des déplacements inter étages	58
Tableau IV.4 : Vérification de l'Effort Normal pour les Poteaux	58
Tableau IV.5 : Justification vis-à- vis de l'Effet P- Δ dans le Sens x	59
Tableau IV.6: Justification vis-à- vis de l'Effet P-Δ dans le Sens y	59
Tableau IV.7: Justification au choix du coefficient de comportement	60

BLOC B

Fableau IV.8: période et facteur de participation massique60
Tableau IV.9 : Détermination de la force (V) 61
Tableau IV.10: Vérification des déplacements inter étages61
Tableau IV.11: Vérification de l'Effort Normal pour les Poteaux61
Fableau IV.12 : Justification vis-à- vis de l'Effet P-Δ dans le Sens x62
Fableau IV.13 : Justification vis-à- vis de l'Effet P-Δ dans le Sens y62
Tableau IV.14: Justification au choix du coefficient de comportement62
BLOC C
Tableau IV.15: période et facteur de participation massique63
Fableau IV.16: Détermination de la force (V)
Fableau IV.17 : Vérification des déplacements inter étages64
Tableau IV.18 : Vérification de l'Effort Normal pour les Poteaux64
Fableau IV.19 : Justification vis-à- vis de l'Effet P-Δ dans le Sens x64
Tableau IV.20 : Justification vis-à- vis de l'Effet P-Δ dans le Sens y65
Fableau IV.21: Justification au choix du coefficient de comportement
Tableau IV.20 : Justification de la largeur des joints sismique entre bloc A et B66
Tableau IV.21: Justification de la largeur des joints sismique entre bloc B et C66
Chapitre V : FERRAILLAGE DES ELEMENTS RESISTANTS BLOC A (Poteaux)
•
BLOC A (Poteaux)
BLOC A (Poteaux) Tableau V.1 : Tableau des Contraintes
BLOC A (Poteaux) Tableau V.1 : Tableau des Contraintes
BLOC A (Poteaux) Tableau V.1: Tableau des Contraintes
BLOC A (Poteaux) Fableau V.1: Tableau des Contraintes
BLOC A (Poteaux) Fableau V.1: Tableau des Contraintes 67 Fableau V.2: Ferraillages des poteaux 69 Fableau V.3: Choix des Armatures des Poteaux 69 Fableau V.4: Vérification des contraintes pour les poteaux (N ^{ser} max; M ^{ser} cor.) 70 Fableau V.5: Vérification des contraintes pour les poteaux (N ^{ser} max; M ^{ser} cor.) 70
BLOC A (Poteaux) Fableau V.1 : Tableau des Contraintes 67 Fableau V.2 : Ferraillages des poteaux 69 Fableau V.3 : Choix des Armatures des Poteaux 69 Fableau V.4 : Vérification des contraintes pour les poteaux (N ^{ser} max; M ^{ser} cor.) 70 Fableau V.5 : Vérification des contraintes pour les poteaux (N ^{ser} max; M ^{ser} cor.) 70 Fableau V.6 : Vérification de la contrainte de cisaillement pour les poteaux 71
BLOC A (Poteaux) Grableau V.1: Tableau des Contraintes 67 Fableau V.2: Ferraillages des poteaux 69 Tableau V.3: Choix des Armatures des Poteaux 69 Fableau V.4: Vérification des contraintes pour les poteaux (N ^{ser} _{max} ; M ^{ser} _{cor.}) 70 Fableau V.5: Vérification des contraintes pour les poteaux (N ^{ser} _{max} ; M ^{ser} _{cor.}) 70 Tableau V.6: Vérification de la contrainte de cisaillement pour les poteaux 71 Fableau V.7: Espacements maximales des armatures transversales des poteaux 72
BLOC A (Poteaux) Grableau V.1: Tableau des Contraintes 67 Tableau V.2: Ferraillages des poteaux 69 Tableau V.3: Choix des Armatures des Poteaux 69 Tableau V.4: Vérification des contraintes pour les poteaux (N ^{ser} max; M ^{ser} cor.) 70 Tableau V.5: Vérification des contraintes pour les poteaux (N ^{ser} max; M ^{ser} cor.) 70 Tableau V.6: Vérification de la contrainte de cisaillement pour les poteaux 71 Tableau V.7: Espacements maximales des armatures transversales des poteaux 72 Tableau V.8: Choix des armatures transversales pour les poteaux 73
BLOC A (Poteaux) Grableau V.1: Tableau des Contraintes 67 Tableau V.2: Ferraillages des poteaux 69 Tableau V.3: Choix des Armatures des Poteaux (N ^{ser} max; M ^{ser} cor.) 70 Tableau V.5: Vérification des contraintes pour les poteaux (N ^{ser} max; M ^{ser} cor.) 70 Tableau V.6: Vérification de la contrainte de cisaillement pour les poteaux 71 Tableau V.7: Espacements maximales des armatures transversales des poteaux 72 Tableau V.8: Choix des armatures transversales pour les poteaux 73 BLOC B (Poteaux)
Fableau V.1: Tableau des Contraintes 67 Fableau V.2: Ferraillages des poteaux 69 Fableau V.3: Choix des Armatures des Poteaux 69 Fableau V.4: Vérification des contraintes pour les poteaux (N ^{ser} _{max} ; M ^{ser} _{cor.}) 70 Fableau V.5: Vérification des contraintes pour les poteaux (N ^{ser} _{max} ; M ^{ser} _{cor.}) 70 Fableau V.6: Vérification de la contrainte de cisaillement pour les poteaux 71 Fableau V.7: Espacements maximales des armatures transversales des poteaux 72 Fableau V.8: Choix des armatures transversales pour les poteaux 73 BLOC B (Poteaux) 74
Fableau V.1 : Tableau des Contraintes 67 Fableau V.2 : Ferraillages des poteaux 69 Fableau V.3 : Choix des Armatures des Poteaux 69 Fableau V.4 : Vérification des contraintes pour les poteaux (Nsermax; Msercor.) 70 Fableau V.5 : Vérification des contraintes pour les poteaux (Nsermax; Msercor.) 70 Fableau V.6 : Vérification de la contrainte de cisaillement pour les poteaux 71 Fableau V.7 : Espacements maximales des armatures transversales des poteaux 72 Fableau V.8 : Choix des armatures transversales pour les poteaux 73 BLOC B (Poteaux) 74 Fableau V.9 : Ferraillages des poteaux 74 Fableau V.10 : Choix des Armatures des Poteaux 74

Tableau V.14 : Espacements maximales des armatures transversales des poteaux75
Tableau V.15 : Choix des armatures transversales pour les poteaux
BLOC C (Poteaux)
Tableau V.16: Ferraillages des poteaux 76
Tableau V.17 : Choix des Armatures des Poteaux 76
Tableau V.18: Vérification des contraintes pour les poteaux (N^{ser}_{max} ; $M^{ser}_{cor.}$)76
Tableau V.19: Vérification des contraintes pour les poteaux $(N^{ser}_{max}; M^{ser}_{cor.})$
Tableau V.20 : Vérification de la contrainte de cisaillement pour les poteaux77
Tableau V.21: Espacements maximales des armatures transversales des poteaux77
Tableau V.22 : Choix des armatures transversales pour les poteaux
BLOC A (Poutre)
Tableau V.23 : Ferraillage des poutres porteuses (35x55) (situation durable)80
Tableau V.24 : Ferraillage des poutres porteuses (35x55) (situation accidentelle)81
Tableau V.25 : Ferraillage des poutres porteuses (35x55) (situation accidentelle)82
Tableau V.26: Choix des armatures pour les poutres porteuses (35 x 55)83
Tableau V.27: Ferraillage des poutres non porteuses (30x45) (situation durable)84
Tableau V.28 : Ferraillage des poutres non porteuses (30x45) (situation accidentelle)85
Tableau V.29 : Ferraillage des poutres non porteuses (30x45) (situation accidentelle)86
Tableau V.30 : Choix des armatures pour les poutres non porteuses (30 x 45)87
Tableau V.31 : Vérification de la condition de non fragilité des poutres
Tableau V.32 : Vérification des poutres principales (35x55) à l'ELS89
Tableau V.33: Vérification des poutres non porteuse (30x45) à l'ELS90
Tableau V.34 : Vérification de la contrainte de cisaillement des poutres90
Tableau V.35 : Calcul des armatures transversales 91
BLOC B (Poutre)
Tableau V.36 : Ferraillage des poutres porteuses (35x55) (situation accidentelle)93
Tableau V.37 : Ferraillage des poutres non porteuses (30x45) (situation accidentelle)94
BLOC C (Poutre)
Tableau V.38 : Ferraillage des poutres porteuses (35x55) (situation accidentelle)95
Tableau V.39 : Ferraillage des poutres non porteuses (30x45) (situation accidentelle)96

BLOC A (Voile)

Tableau V.40: Le ferraillage de voile 1	105
Tableau V.41: Le ferraillage de voile 2	106
Tableau V.42 : Le ferraillage de voile 3	107
Tableau V.43: Le ferraillage de voile 4	108
Tableau V.44: Résultat de ferraillage horizontal	109
BLOC B (Voile)	
Tableau V.45 : Le ferraillage des voiles	110
BLOC C (Voile)	
Tableau V.46: Le ferraillage des voiles	111
Chapitre VI : ETUDE DES FONDATIONS	
BLOC A Tableau VI.1 : Sections des semelles isolées	116
Tableau VI.2: Sections des semelles filantes	
Tableau VI.3: la répartition pour les poteaux centraux	
Tableau VI.4: la répartition pour les poteaux d'angles	
Tableau VI.5 : la répartition pour les poteaux de rive	
Tableau VI.6 : Section des semelles filante sens x-x	
Tableau VI.7: Section des semelles filante sens y-y	
Tableau VI.8 : Vérification au renversement sens x-x et y-y	
Tableau VI.9 : Ferraillage de la semelle sens x-x	
Tableau VI.10: Ferraillage de la semelle sens y-y	121
Tableau VI.11: Ferraillage de nervures	122
BLOC B	
Tableau VI.12 : Vérification au poinçonnement sens x-x et y-y	
Tableau VI.13 : Ferraillage de la semelle sens x-x	
Tableau VI.14 : Ferraillage de la semelle sens x-x	
Tableau VI.15: Ferraillage des nervures	124
BLOC C	
Tableau VI.16: Vérification au renversement sens x-x et y-y	125
Tableau VI.17 : Ferraillage de la semelle sens x-x	125
Tableau VI.18 : Ferraillage de la semelle sens y-y	125
Tableau VI.19: Ferraillage de nervure	125
Tableau VI.20: Ferraillage du voile périphérique	130
Tableau VI.21: Vérification des contraintes à l'ELS	132

Liste des figures

CHAPITRE I : PRESENTATION DE L'OUVRAGE

Figure I.1: Plan de masse	2
Figure I.2: Plan de façade	2
Figure I.3: Diagramme contrainte-déformation du Béton à l'ELU	6
Figure I.4: Diagramme contrainte-déformation du Béton à l'ELS	
Figure I.5 : Diagramme contrainte-déformation de l'acier à l'ELU	
CHAPITRE II : PREDIMENTIONNEMENT	
Figure II.1: Représenter les poteaux les plus sollicité dans les 3 blocs	10
CHAPITRE III : CALCUL DES ELEMENTS SECONDAIRES	
Figure III.1: Schéma représentatif de l'acrotère	23
Figure III.2: La position de l'axe neutre	25
Figure III.3 : Schéma de ferraillage de l'acrotère	25
Figure III.4 : Schéma représente les balcons	26
Figure III.5 : Schéma statique de balcon	26
Figure III.6 : Schéma de ferraillage de balcon	27
Figure III.7 : Cage d'escalier	28
Figure III.8 : Schéma statique de l'escalier	29
Figure III.9 : Schéma de ferraillage de l'escalier	32
Figure III.10 : Schéma de ferraillage de poutre palière	35
Figure III.11 : Schéma statique de poutrelle	36
Figure III.12: Les dimensions des travées de bloc (A)	38
Figure III.13: Les dimensions des travées de bloc (B)	
Figure III.14: Les dimensions des travées de bloc (C)	39
Figure III.15 : Schéma de ferraillage de la poutrelle	41
Figure III.16 : Schéma d'ascenseur	42
Figure III.17: Schéma de la dalle pleine d'ascenseur	45
Figure III.18 : Dimensions de panneau de dalle d'ascenseur	
Figure III.19 : Schéma de ferraillage de l'ascenseur	51

Chapitre IV : ETUDE DYNAMIQUE	
Figure IV.1 : Spectre de réponse	79
Chapitre V : FERRAILLAGE DES ELEMENTS RESISTANTS	
Figure V.1 : Schéma de ferraillage des poteaux	78
Figure V.2: Disposition des Poutres bloc A	79
Figure V.3: Disposition des Poutres bloc B	92
Figure V.4: Disposition des Poutres bloc C	95
Figure V.5 : Schéma de ferraillage des poutres principales	99
Figure V.6 : Schéma de ferraillage des poutres secondaires	101
Figure V.7: Disposition des voiles bloc A	104
Figure V.8 : Disposition des voiles bloc B	109
Figure V.9: Disposition des voiles bloc C	110
Figure V.10 : Schéma de ferraillage des voiles	114
Chapitre VI : ETUDE DES FONDATIONS	
Figure VI.1: Semelle isolée sous poteau	115
Figure VI.2: Schéma de ferraillage semelle filent bloc A et B et C	126
Figure VI.3: Schéma de ferraillage nervure bloc A et B et C	127
Figure VI.4: Coupe verticale du voile périphérique	128

LISTE DES SYMBOLES

La signification des principaux symboles est la suivante :

En maiusculas :

<u> En ma</u>	juscutes .
A	Coefficient d'accélération de zone, Coefficient numérique en fonction de l'angle de frottement.
A_s	Aire d'une section d'acier
A_s	Section d'armatures transversales
B	Aire D'une section de béton
D	Diamètre
E	Module d'élasticité longitudinale
E _b	Module de déformation longitudinale du béton
E _i	Module d'élasticité de l'acier
E_s	Module de déformation instantanée (E _{ij} à l'âge de j jours)
$E_{\rm v}$	Module de déformation différé (E_{vj} à l'âge de j jours)
F	Force ou action en général
G	Action permanente, module d'élasticité transversale
Q	Charges d'exploitations
I	Moment d'inertie
K	Coefficient
L	Longueur ou portée
$L_{\rm f}$	Longueur de flambement
M	Moment fléchissant développé par les charges permanentes
M_{G}	Moment en général, moment de flexion le plus souvent
M_{Q}	Moment fléchissant développé par les charges d'exploitations
M_u	Moment de calcul ultime
M_{ser}	Moment de calcul de service

 M_t Moment en travée

 M_a Moment sur appuis N Effort normal

 S_{t} Espacement des armatures transversales

Τ Effort Tranchant, période V_0 Effort tranchant a la base

 K_t Facteur de terrain Z_0 Paramètre de rugosité Z_{min} Hauteur Minimale $C_{\rm r}$ Coefficient de rugosité

 C_{t} Cohésion

 C_d Coefficient dynamique C_{e} Coefficient d'exposition

Coefficient de pression extérieure Coefficient de pression intérieure Coefficient de pression nette

R Force résultante F_{fr} Force de frottement

 \mathbf{C} Cohésion

Coefficient de sur consolidation C_{c}

 C_s Fiche d'ancrage

Teneur en eau, Poids total de la structure D

Teneur en eau saturé W Limite de liquidité W_{sat} Limite de plasticité W_L

 W_p

 N_a, N_{γ}, N_c Facteurs de portance

 S_{r} Degré de saturation Indice de plasticité I_c Indice de consistance Tassement oedométrique

Tassement total

 $\begin{array}{c} S_c^{\ T} \\ S_c^{\ adm} \end{array}$ Tassement admissible E.L.U Etat limite ultime E.L.S Etat limite service

En minuscules:

une dimension a

b une dimension transversale (largeur ou épaisseur d'une section)

distance du barycentre des armatures tendues à la fibre extrême la plus com d

distance du barycentre des armatures comprimée à la fibre extrême la plus co

épaisseur, Indice des vides e

résistance d'un matériau (avec indice), flèche

limite d'élasticité de l'acier

 f_{ci} résistance caractéristique à la compression du béton âge de j jours

résistance caractéristique à la traction du béton âge de j jours

grandeurs précédentes avec j =28 jours f_{c28}, f_{t28} h hauteur totale d'une section de béton armé

rayon de giration d'une section

nombre de jours coefficient en général k

1 longueur ou portée (on utilise aussi L) coefficient d'équivalence acier-béton n espacement des armatures en générales S

espacement des armatures transversales S_t

En minuscules:

Ø diamètre des armatures, mode propre

coefficient de sécurité dans l'acier $\gamma_{\rm s}$

coefficient de sécurité dans le béton γ_b

déformation relative

raccourcissement relatif du béton comprimé ε_{bc}

allongement relatif de l'acier tendu $\epsilon_{\rm s}$

η	coefficient de fissuration relatif à une armature
ν	coefficient de poisson, coefficient sans dimension
ρ	rapport de deux dimensions en particulière l'aire d'acier à l'aire de béton
σ	contrainte normale en général
λ	Élancement
τ	contrainte tangente (de cisaillement)
σ_{bc}	contrainte de compression,
σ_{ts} et σ_{sc}	contrainte de traction, de compression dans l'acier, également notées σ_s , σ_s
φ	Angle de frottement
$ar{\sigma}_{\scriptscriptstyle s}$	Contrainte de traction admissible de l'acier
$\overline{\sigma}_{bc}$	Contrainte de compression admissible du béton
β	Coefficient de pondération
σ_{sol}	Contrainte du sol

SOMMAIRE

RESUME		
REMERCI	MENT	
DEDICAC	ES	
LISTE DES	S FIGURES	
LISTE DES	STABLEUX	
LISTE DES	S SYMBOLES	
INTRODU	CTION	1
CHAPITR	E I: PRESENTATION DE L'OUVRAGE	
I.1 Pr	ésentation de l'ouvrage	2
I.1.1	Caractéristique géométrique	
I.1.2	Ossature	3
I.1.3	Plancher	3
I.1.4	Escalier	3
I.1.5	Ascenseur	3
I.1.6	Murs	3
I.2 Ca	ractéristiques mécanique des matériaux	4
I.2.1	Béton	4
I.2.2	Acier	7
I.3 Hy	pothèses de calcul	9
CHAPITR	E II: PRE DIMENSIONNEMENT	
II.1 In	troduction	10
II.2 Pr	é-dimensionnement	10
II.2.1	BLOC A	10
	1.1 Pré-dimensionnement des plancher	
	2.1.1.1 Dalle à corps creux	
	2.1.1.2 Dalle pleine (parking)	
	2.1.1.3 Dalle pleine (balcon)	
	1.2 Pré-dimensionnement des poutres	
	1.3 Evaluation des charges	
	2.1.3.1 Charges permanentes	
	2.1.3.2 Charges d'exploitation	
	1.4 Pré-dimensionnement des poteaux	
	2.1.4.1 Poteau le plus sollicité	
II	2.1.4.2 Descente des charges	15

	BLOC B	. 1 /
II.2.2	.1 Pré-dimensionnement des plancher	. 17
II.2	2.2.1.1 Dalle à corps creux	. 17
II.2	2.2.1.2 Dalle pleine (parking)	. 17
II.2.2	.2 Pré-dimensionnement des poutres	. 18
II.2.2	.3 Pré-dimensionnement des poteaux	. 18
II.2	2.2.3.1 Poteau le plus sollicité	. 18
II.2	2.2.3.2 Descente des charges	. 19
II.2.3	BLOC C	. 19
II.2.3	.1 Pré-dimensionnement des dalles	. 19
II.2	2.3.1.1 Dalle à corps creux	. 19
II.2.3	.2 Pré-dimensionnement des poutres	. 20
II.2.3	.3 Pré-dimensionnement des poteaux	. 20
II.2	2.3.3.1 Poteau le plus sollicité	. 20
II.2	2.3.3.2 Descente des charges	. 20
II.2.4	Pré- dimensionnement des voiles	. 21
II.3 Co	nclusion	. 22
III.1 Inti		
111.1 1110	oduction	. 23
	roduction	
	rotère	. 23
III.2 Ac	rotère	. 23
III.2 Ac	Introduction Evaluation des charges	. 23 . 23 . 23
III.2 Ac III.2.1 III.2.2	rotère	. 23 . 23 . 23
III.2 Ac III.2.1 III.2.2 III.2.3	Introduction Evaluation des charges Calcul des efforts	. 23 . 23 . 23 . 23
III.2 Ac III.2.1 III.2.2 III.2.3 III.2.4	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère	. 23 . 23 . 23 . 23 . 24
III.2 Ac III.2.1 III.2.2 III.2.3 III.2.4 III.2.5	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91	. 23 . 23 . 23 . 23 . 24 . 24
III.2 Ac III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6	Introduction	. 23 . 23 . 23 . 24 . 24 . 24
III.2 Ac III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6 III.2.7 III.2.8	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91 Armatures de répartition Vérification de l'effort tranchant	. 23 . 23 . 23 . 24 . 24 . 24 . 24
III.2 Ac III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6 III.2.7 III.2.8	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91 Armatures de répartition Vérification de l'effort tranchant. Vérification à l'ELS	. 23 . 23 . 23 . 24 . 24 . 24 . 25 . 26
III.2 Ac III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6 III.2.7 III.2.8 III.3 Les	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91 Armatures de répartition Vérification de l'effort tranchant. Vérification à l'ELS	. 23 . 23 . 23 . 24 . 24 . 24 . 25 . 26
III.2 Acc III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6 III.2.7 III.2.8 III.3 Les	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91 Armatures de répartition Vérification de l'effort tranchant. Vérification à l'ELS balcons Introduction	. 23 . 23 . 23 . 24 . 24 . 24 . 25 . 26
III.2 Acc III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6 III.2.7 III.2.8 III.3 Les III.3.1 III.3.2 III.3.3 III.3.4	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91 Armatures de répartition Vérification de l'effort tranchant Vérification à l'ELS balcons Introduction La charge permanente (G) de balcon Evolution des charges Calcul du ferraillage a l'E.L.U	. 23 . 23 . 23 . 24 . 24 . 24 . 25 . 26 . 26 . 26
III.2 Acc III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6 III.2.7 III.2.8 III.3 Less III.3.1 III.3.2 III.3.3 III.3.4 III.3.5	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91 Armatures de répartition Vérification de l'effort tranchant Vérification à l'ELS Balcons Introduction La charge permanente (G) de balcon Evolution des charges Calcul du ferraillage a l'E.L.U Vérification a l'E.L.S	. 23 . 23 . 23 . 24 . 24 . 24 . 25 . 26 . 26 . 26 . 27
III.2 Acc III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6 III.2.7 III.2.8 III.3 Less III.3.1 III.3.2 III.3.3 III.3.4 III.3.5 III.4 Less	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91 Armatures de répartition Vérification de l'effort tranchant. Vérification à l'ELS Balcons Introduction La charge permanente (G) de balcon Evolution des charges Calcul du ferraillage a l'E.L.U Vérification a l'E.L.S Bescaliers	. 23 . 23 . 23 . 24 . 24 . 24 . 25 . 26 . 26 . 26 . 27 . 27
III.2 Acc III.2.1 III.2.2 III.2.3 III.2.4 III.2.5 III.2.6 III.2.7 III.2.8 III.3 Less III.3.1 III.3.2 III.3.3 III.3.4 III.3.5	Introduction Evaluation des charges Calcul des efforts Ferraillage de l'acrotère Vérification de la section d'acier selon B.A.E.L91 Armatures de répartition Vérification de l'effort tranchant Vérification à l'ELS Balcons Introduction La charge permanente (G) de balcon Evolution des charges Calcul du ferraillage a l'E.L.U Vérification a l'E.L.S	. 23 . 23 . 23 . 24 . 24 . 24 . 25 . 26 . 26 . 26 . 27 . 27 . 28

III.4.3	Charge permanente	30
III.4.4	Sollicitations de calcul	31
III.4.5	Calcul des armatures	31
III.4.6	Etude de la poutre palière	33
III.4.6.	1 Pré dimensionnement	33
III.4.6.2	2 Vérification selon RPA2003	33
III.4.6	3 Les charges supportées par la poutre	33
III.4.6.	4 Calcul des sollicitations	33
III.4.6.	5 Calcul de ferraillage	33
III.4	.6.5.1 Vérification a ELS	33
III.4	.6.5.2 Vérification des contraint de béton	33
III.4	.6.5.3 Vérification de l'effort tranchant	34
III.4.	.6.5.4 Calcul espacement des armatures transversales	34
III.4.	.6.5.5 Vérification selon RPA2003	34
III.5 Plan	cher à corps creux	35
III.5.1	Poutrelles	35
III.5.2	Calcul des poutrelles	36
III.5.3	Calcul de ferraillage	39
III.5.4	Vérification à ELS	41
III.6 L'as	censeur	42
III.6.1	Etude de l'ascenseur	42
III.6.1.	1 Descente de charges	42
III.6.	.1.1.1 Surcharge d'exploitation	42
III.6.	.1.1.2 Charges permanentes	42
III.6.1.	2 Combinaisons fondamentales	44
III.6.1.	3 Etude du plancher	44
III.6.1.	4 Calcul des moments dus aux charges concentrées	45
III.6.2	Etude de la dalle machine	46
III.6.2.	1 Descente des charges	46
III.6.2.	2 Combinaison fondamentale	47
III.6.2.	3 Calcul des moments dus aux charges réparties	47
III.6.2.	4 Moments total sollicitant la dalle machine	47
III.6.2.:	5 Calcul du ferraillage de la dalle machin	48
III.6.3	Ferraillage des voiles de l'ascenseur	50
III 7 Cond	clusion	52

CHAPITRE IV: ETUDE DYNAMIQUE ET SISMIQUE

IV.1 Introduction	53
IV.2 Etude dynamique	53
IV.2.1.Modélisation de la régidité	53
IV.2.2 Modélisation de la masse	53
IV.3 Choix de la méthode de calcul	54
IV.3.1 La méthode statique équivalent	54
IV.3.2 Introduction de spectre de réponse	54
IV.4 Résultat du SAP 2000	56
IV.4.1 Bloc A	56
IV.4.1.1 Période et participation massique	56
IV.4.1.2 Résultante des forces sismiques	
IV.4.1.3 Vérification des déplacements inter étages	57
IV.4.1.4 Vérification spécifique aux sollicitations normales	
IV.4.1.5 Justification vis-à-vis l'effet P-Δ	58
IV.4.1.6 Justification au choix du coefficient de comportement	60
IV.4.2 Bloc B	60
IV.4.2.1 Période et participation massique	60
IV.4.2.2 Résultant des forces sismiques	61
IV.4.2.3 Vérification des déplacements inter étages	61
IV.4.2.4 Vérification spécifique aux sollicitations normales	61
IV.4.2.5 Justification vis-à-vis l'effet P-Δ	62
IV.4.2.6 Justification au choix du coefficient de comportement	62
IV.4.3 Bloc C	63
IV.4.3.1 Période et participation massique	63
IV.4.3.2 Résultant des forces sismiques	63
IV.4.3.3 Vérification des déplacements inter étages	64
IV.4.3.4 Vérification spécifique aux sollicitations normales	64
IV.4.3.5 Justification vis-à-vis l'effet $P-\Delta$	64
IV.4.3.6 Justification au choix du coefficient de comportement	65
IV.5 Justification de la largeur des joints sismique	66

CHPAPITRE V: FERRAILLAGE DES ELEMENTS RESISTANTS

V.1	Intro	duction	67
V.2	Ferra	illage des poteaux	67
V.2	2.1 I	ntroduction	67
V.2		Combinaison d'action	
V.2		Recommandation du RPA99 version 2003	
V.2		BLOC A	
		Méthode de calcul	
		Choix des armatures	
7	V.2.4.3	Vérification vis-à-vis de l'état limite de service	69
7	V.2.4.4	Vérification de l'effort tranchant	70
	V.2.4	.4.1 Vérification de la contrainte de cisaillement	.70
	V.2.4	.4.2 Ferraillage transversal des poteaux	71
V.2	2.5 I	BLOC B	.73
7	V.2.5.1	Méthode de calcul	74
7	V.2.5.2	Choix des armateurs	.74
7	V.2.5.3	Vérification vis-à-vis de l'état limite de service	.74
7	V.2.5.4	Vérification de l'effort tranchant	.75
	V.2.5	.4.1 Vérification de la contrainte de cisaillement	.75
	V.2.5	.4.2 Ferraillage transversal des poteaux	75
7	V.2.5.5	Longueur de recouvrement	.75
V.2	2.6 I	BLOC C	76
7	V.2.6.1	Méthode de calcul	76
7	V.2.6.2	Choix des armateurs	76
7	V.2.6.3	Vérification vis-à-vis de l'état limite de service	76
7	V.2.6.4	Vérification de l'effort tranchant:	.77
	V.2.6	.4.1 Vérification de la contrainte de cisaillement	.77
	V.2.6	5.4.2 Ferraillage transversal des poteaux	.77
•	V.2.6.5	Longueur de recouvrement	.77
V.2	2.7 F	Ferraillage des poteaux	. 78
V.3		illage des poutres	
V.3	3.1 I	ntroduction	79
V.3	3.2 F	Recommandation du RPA99 version 2003	79
V 3	3.3 F	BLOC A	79

V.3.3.1	Calcul du ferraillage	79
V.3.3.1	1.1 Poutres porteuses (35x55)	80
V.3	3.1.1.1 Choix des armatures	83
V.3.3.1	1.2 Poutres non porteuses (30x45)	83
V.3	3.1.2.1 Choix des armatures	87
V.3.3.2	Condition de non fragilité	87
V.3.3.3	Vérification vis-à-vis de L'ELS	88
V.3.3.4	Vérification de l'effort tranchant	90
V.3.3.5	Recouvrement des armateurs longitudinaux	91
V.3.4 BI	LOC B	92
V.3.4.1	Calcul du ferraillage	92
V.3.4.1	1.1 Poutres porteuses (35x55)	93
V.3.4.1	1.2 Poutres non porteuses (30x45)	94
V.3.5 BI	LOC C	94
V.3.5.1	Calcul du ferraillage	94
V.3.5.1	1.1 Poutres porteuses (35x55)	95
V.3.5.1	1.2 Poutres non porteuses (30x45)	96
V.3.6 Fe	erraillage des poutres	97
V.4 Ferrail	lage des voiles:1	.02
V.4.1 Ge	énéralités1	02
V.4.2 Pr	incipe de calcul1	02
V.4.3 Pr	océdure de ferraillage des trumeaux	02
V.4.4 BI	LOC A1	04
V.4.4.1	Ferraillage vertical1	04
V.4.4.2	Ferraillage horizontal à l'effort tranchant	80
V.4.5 BI	LOC B	09
V.4.5.1	Ferraillage vertical1	10
V.4.6 BI	LOC C	10
V.4.6.1	Ferraillage vertical1	11
V.4.7 Fe	erraillage des voiles	.11
CHADITOE W	I: ETUDE DES FONDATIONS	
	iction1	15
VI.2 Calcul	des fondations	15
VI.2.1 BI	LOC A1	15
VI.2.1.1	Semelles isolées	15

VI.2	1.2 Semelles filantes	116
VI.2	1.3 Semelles filantes croisées	117
VI	.2.1.3.1 Les charges qui reviennent pour chaque fille	118
VI	.2.1.3.2 Pré dimensionnement de la semelle filante croise	119
VI	.2.1.3.3 Vérification au poinçonnement	120
VI	.2.1.3.4 Vérification au renversement	120
VI	.2.1.3.5 Ferraillage des semelles filantes croise	120
VI.2.2		
VI.2	2.1 Pré dimensionnement de la semelle filante croise	122
VI.2	2.2 Vérification au poinçonnement	123
VI.2.	2.3 Vérification au renversement	123
VI.2.	2.4 Ferraillage des semelles filantes croise	123
VI.2.3		
VI.2	3.1 Pré dimensionnement de la semelle filante croise	124
VI.2	3.2 Vérification au poinçonnement	125
VI.2.	3.3 Vérification au renversement	125
VI.2.	3.4 Ferraillage des semelles filantes croise	125
	ude du voile périphérique	
VI.3.1	Introduction	128
VI.3.2	Conditions exigées par le <i>RPA99</i>	128
VI.3.3	Evaluation des charges	128
VI.3.4	Effort dans la dalle	129
VI.3.5	Calcul du ferraillage	130
VI.3.6	Condition de non fragilité	
VI.3.7	Vérification de l'effort tranchant	
VI.3.8	Vérification à l'ELS	131
CONCLUS	ION	134

ANNEXES

BIBLIOGRAPHIE

Introduction générale

Toute étude de projet d'un bâtiment dont la structure est en béton armé, a pour but D'assurer la stabilité et la résistance des bâtiments afin d'assurer la sécurité du bâtiment.

On sait que le développement économique dans les pays industrialisés privilégie la Construction verticale dans un souci d'économie de l'espace.

Cependant, il existe un danger représenté par ce choix, à cause des dégâts qui peuvent Lui occasionner les séismes et le vent. Pour cela, il y a lieu de respecter les normes et les Recommandations parasismiques qui rigidifient convenablement la structure.

Quels que soient les types des bâtiments en béton armé, leurs études rencontrent des Nombreuses difficultés dans le choix du modèle de comportement.

Les règlements parasismiques Algériens définissent des modèles et des approches spécifiques à chaque type de bâtiment.

La stabilité de l'ouvrage est en fonction de la résistance des différents éléments Structuraux (poteaux, poutres, voiles...) aux différentes sollicitations (compression, flexion...) Dont la résistance de ces éléments est en fonction du type des matériaux utilisés et de leurs Dimensions et caractéristiques.

Dans le présent travail nous présenterons l'étude détaillée d'une tour de forme irrégulière composée de trois blocs de hauteur différente.

La particularité de ce projet c'est que les trois blocs sont séparés par un joint de rupture pour éviter tout risque de tassement différentiel.

L'étude de ce projet est structurée en plusieurs chapitre :

Le premier chapitre : c'est la description générale du projet avec une présentation de l'aspect Architectural des éléments du Tour.

Le deuxième chapitre : c'est la descente des charges et le pré dimensionnement de la structure.

Le troisième chapitre : a été consacrée aux éléments secondaires (l'acrotère et balcon, l'escalier, poutrelles et l'ascenseur).

L'étude dynamique du bâtiment fait l'objet du **quatrième chapitre**. L'étude du bâtiment Sera faite par l'analyse du modèle de la structure sur le logiciel de calcul SAP2000.L'étude sismique nous permettra d'aborder le calcul des éléments structuraux (poteaux, Poutres et voiles) après exploitation des résultats donnés par SAP 2000 qui sera l'objectif de **cinquième chapitre**

Enfin, nous terminerons notre étude par l'étude de l'infrastructure (voile périphérique et Fondations)

I.1 Présentation de l'ouvrage

L'ouvrage que l'on va étudier est un IMMEUBLE R+5 + 6 Entre-sol constitué de 3 bloc de forme irrégulière en plan et en élévation. L'immeuble situé à la wilaya d'ALGER commune de HYDRA est classé dans la zone « III » au groupe d'usage 2 (car c'est un bâtiment dont la Hauteur ne dépasse pas 48 m), zone de forte sismicité, selon le règlement parasismique Algérien (RPA99/version 2003).

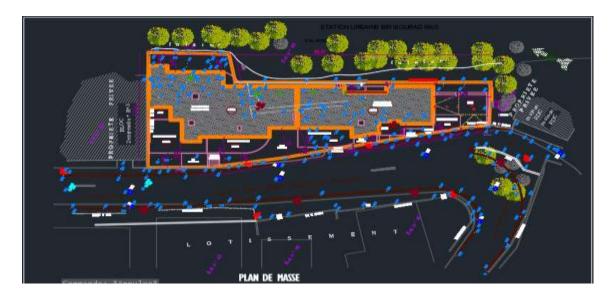


Figure I.1 : Plan de masse.

Figure I.2 : Plan de façade.

I.1.1 Caractéristique géométrique

Tableau I.1 : Caractéristiques géométrique

	BLOC A	BLOC B	BLOC C
Hauteur totale du bâtiment	36.38	39.95	20.57
Largeur du bâtiment	20.9	14.24	10.6
Longueur du bâtiment	29.4	26.9	10.85
Hauteur du 6 ^{éme} entresol	/	3.57	3.57
Hauteur du 5 ^{éme} entresol	4.42	4.42	4.42
Hauteur du 4 ^{éme} et 3 ^{éme} entresol	3.23	3.23	3.23
Hauteur du 2 ^{éme} et 1 ^{er} entresol	3.06	3.06	3.06
Hauteur des étages courants	3.23	3.23	0

I.1.2 Ossature

L'ossature est constituée par des portiques en béton armé et par des voiles pour assurer une bonne tenue vis-à-vis de l'action sismique.

I.1.3 Plancher

Le type du plancher est en fonction de :

- La portée de différentes travées
- Les charges à supporter
- La forme du plancher

Selon ces critères nous avons opté pour un seul type de plancher :

- Plancher dalle pleine
- Plancher en corps creux à base de poutrelles.

I.1.4 Escalier

La structure comporte une cage d'escalier pour chaque bloc. L'escalier est constitué de deux volées et de palier intermédiaire.

I.1.5 Ascenseur

La structure comporte des cages d'ascenseur, fondé au dernier entre-sol, elle s'arrête au dernier étage.

I.1.6 Murs

La maçonnerie du bâtiment est réalisée en briques creuse et de murs rideaux en verre :

 Murs extérieurs constitués d'une double paroi en briques (10 cm d'épaisseur) séparées par une l'âme d'air de 10 cm d'épaisseur;

- Murs intérieurs constitué par une seule paroi de briques de 10 cm d'épaisseur
- Façades en panneaux de verre.

I.2 Caractéristiques mécanique des matériaux

Les caractéristiques des matériaux utilisés dans la construction du bâtiment doivent être conformes aux règles techniques de construction et de calcul des ouvrages en béton armé "BAEL91 mod99" [2] et tous les règlements applicables en Algérie "RPA 99 version2003" [1] et "CBA93" [3]

I.2.1 Béton

I.2.1.1 Composition du béton :

Le béton est un matériau constitué par le mélange dans des proportions convenables, de ciment, de granulats (graviers, sable) et de l'eau.

Pour sa mise en œuvre, le béton doit être maniable et il doit présenter certains critères à s'avoir :

- 1- Une résistance mécanique élevée.
- 2- Un retrait minimum.
- 3- Une bonne tenue dans le temps

I.2.1.2 Résistance du béton :

I.2.1.2.1 Résistance du béton à la compression :

Le béton est caractérisé par sa résistance à la compression «J» jour, généralement à 28 jours.

$$j \le 28 jours \rightarrow f_{cj} = 0,685 f_{c28} \log(j+1)$$

 $j = 28 jours \rightarrow f_{cj} = f_{c28}$
 $j > 28 jours \rightarrow f_{cj} = 1,1 f_{c28}$

Pour notre étude on a : $f_{c28} = 30 \text{ MPa}$

I.2.1.2.2 Résistance du béton à la traction :

La résistance à la traction est déterminée par plusieurs essais; parmi ces essais on peut citer :

- 1- Traction directe sur les cylindres précédents en collant des têtes de traction.
- 2- Traction par fendage en écrasant un cylindre de béton placé horizontalement entre les poteaux d'une presse (essai Brésilien).

3- Traction-flexion : à l'aide d'une éprouvette prismatique de côté " a " et longueur " 4a " reposant sur deux appuis horizontaux et soumise à la flexion.

La résistance à la traction est notée par " f_{tj} ", elle est définie par la relation :

$$f_{tj} = 0.6 + 0.06.f_{cj}$$
 (MPa)

Pour notre étude on a : $f_{ti} = 2.4 MPa$.

I.2.1.3 Module de déformation longitudinale :

Ce module est connu sous le nom de module de "Young ou module déformation longitudinal", il est défini sous l'action des contraintes normales d'une longue durée ou de courte durée d'application.

I.2.1.3.1 Module d'élasticité instantané " E_{ii} ":

Il est mesuré à partir de la courbe $(\sigma - \xi)$ d'un test de courte durée, il représente

le module d'élasticité sous chargement accidentel [3]

$$E_{ij} = 11000 \times \sqrt[3]{f_{cj}} \quad \text{(MPa)}$$

D'où : $E_{i28} = 34179,56$ MPa.

I.2.1.3.2 Module d'élasticité différé " E_{vi} " :

Il est mesuré à partir de la courbe $(\sigma - \xi)$ d'un test de longue durée, il représenté le module d'élasticité sous chargement durable ou transitoire [3]

$$E_{vj} = 3700(f_{cj})^{1/3} \quad (MPa)$$

D'où : $E_{v28} = 11496.76$ MPa.

I.2.1.4 Coefficient de poisson :

Le coefficient de poisson représente la variation relative de dimension transversale d'une pièce soumise à une variation relative de dimension longitudinale.

$$v = \frac{\Delta L_T}{\Delta L_L}$$

E.L.U: v = 0.0 (béton fissuré)

E.L.S: v = 0.2 (béton non fissuré)

I.2.1.5 Poids volumique :

On adopte la valeur $\rho = 25 \text{ KN/m}^3$

I.2.1.6 Les contraintes limites de calcul :

I.2.1.6.1 Contraintes limites à l'état ultime (ELU) :

L'état limite ultime est défini généralement par limite de résistance mécanique au-delà de laquelle il y a ruine de l'ouvrage.

La contrainte ultime de béton en compression σ_{bc} est donnée par la relation suivante :

$$\sigma_{bc} = \frac{0.85 \times f_{c28}}{\gamma_b}.$$

Tel que:

- $f_{\rm c28}$: Résistance caractéristique du béton à la compression à 28 jours.
- 0,85 : Coefficient de minoration qui a pour objet de couvrir l'erreur faite en négligeant le fluage du béton.

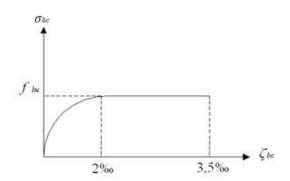


Figure I.3: Diagramme contrainte-déformation du Béton à l'ELU

L'état limite de service est un état de chargement au-delà duquel la construction ne peut plus assurer le confort et la durabilité pour lesquels elle a été conçue; on distingue :

L'état limite de service vis-à-vis de la compression de béton

L'état limite de service d'ouverture des fissures.

L'état limite de service de déformation.

La contrainte limite de service est :

$$\sigma_{bc} = 0.6 \times f_{c28}$$

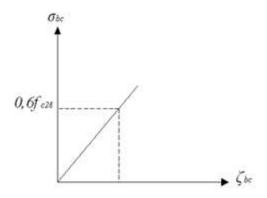


Figure I.4 : Diagramme contrainte-déformation du Béton à l'ELS

I.2.2 Acier

Afin de remédier au problème de faible résistance du béton à la traction, on intègre dans les pièces du béton des armatures d'acier pour reprendre les efforts de traction.

Les armatures pour le béton armé sont constituées d'aciers qui se distinguent par leur nuance et leurs états de surface (barres lisses à haute adhérence).

I.2.2.1 Les limites élastiques :

La caractéristique la plus importante des aciers est la limite d'élasticité (f_e) , cette valeur est donnée selon le * **BAEL91 mod99** * [2] dans le tableau suivant

Tableau I.2 : Caractéristiques des Aciers

Туре	Désignation	Limite élastique (MPa)	Allongement	Contrainte de Rupture (MPa)
Rond Lisse	FeE22	215	22	380 – 390
	FeE24	235	25	410 – 490
Barre à haute adhérence	FeE500	500	12	550
Fils très filés lisse	Ø>6mm	500	14	580

I.2.2.2 Module d'élasticité des aciers :

Les aciers sont aussi caractérisés par le module longitudinal sa valeur est fixée quel que soit la nuance de l'acier. $E_s = 2,4.10^5 \text{ MPa}$

I.2.2.3 Les contraintes limite de calcul :

I.2.2.3.1 Contraintes limites à l'état limite ultime (ELU) :

Le diagramme (Contrainte – Déformation) est conventionnellement défini ci-après :

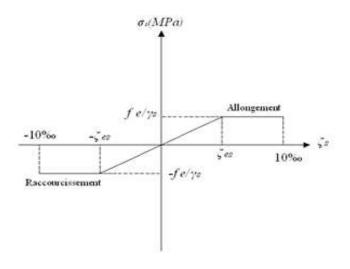


Figure I.5 : Diagramme contrainte-déformation de l'acier à l'ELU

Avec:

La contrainte limite de l'acier adopté est la suivante : $\sigma_{\scriptscriptstyle S} = \frac{f_{\scriptscriptstyle e}}{\gamma_{\scriptscriptstyle S}}$

 $\gamma_s = \begin{cases} 1{,}15 & \textit{Cas des situations durables ou transitoires} \\ 1{,}00 & \textit{Cas des situation accidente lles} \end{cases}$

 ζ_s : Déformation (allongement) relative de l'acier $\zeta_s = \frac{f_e}{E_s \gamma_s}$

I.2.2.3.2 Contraintes limites à l'état limite de service (E.L.S) :

C'est l'état où on fait des vérifications des contraintes par rapport aux cas appropriées :

- Fissuration peu nuisible : pas de vérification.
- Fissuration préjudiciable : $\sigma_s = \left(\frac{2}{3}f_e;150\eta\right)$ (MPa)
- Fissuration très préjudiciable : $\sigma_s = \left(\frac{1}{2}f_e; 110\eta\right)$ (MPa)

 $\eta = 1,00 \ pour$ les aciers ronds lisse. $\eta = 1,60 \ pour$ les aciers à haute adhérence.

I.2.2.4 Le coefficient d'équivalence :

Le coefficient d'équivalence noté « n » est le rapport de :

$$n = \frac{E_s}{E_b} = 15$$

I.3 Hypothèses de calcul

Le calcul en béton armé est basé sur les hypothèses suivantes :

- Les sections droites restent planes après déformation.
- Il n'y a pas de glissement entre les armatures d'acier et le béton.
- Le béton tendu est négligé dans le calcul de la résistance à cause de son faible Résistance à la traction.
- Le raccourcissement unitaire du béton est limité à 3,5‰ en flexion simple ou Composée et à 2‰ dans la compression simple
- L'allongement unitaire dans les aciers est limité à 10‰.
- La contrainte de calcul, notée " σ_s " et qui est définie par la relation : $\sigma_s = \frac{f_e}{\gamma_s}$

II.1 Introduction:

Le pré-dimensionnement des éléments résistants est le point de départ et la base de la justification à la résistance, la stabilité et la durabilité de l'ouvrage. Pour ce faire, nous commençons le pré-dimensionnement du sommet vers la base : Les planches, Les poutres, Les poteaux et les voiles.

Nous dimensionnons dans le présent chapitre les éléments de la structure suivant: BAEL91 [2]

II.2 Pré-dimensionnement :

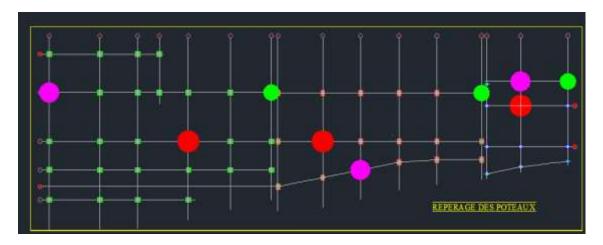


Figure II.1 : Représenter les poteaux les plus sollicité dans les 3 blocs

La couleur			
Position des poteaux	Centre	Angle	Rive

II.2.1 BLOC A:

II.2.1.1 Pré-dimensionnement des plancher :

II.2.1.1.1 Dalle à corps creux :

L : la plus grande portée ; L= 4.4m

e : Hauteur totale de la dalle (épaisseur de la dalle de compression + corps creux)

$$\frac{L}{25} \le e \le \frac{L}{20}$$
 $\frac{440}{25} \le e \le \frac{440}{20}$ $17.5 \le e \le 22$

Donc : e = 21cm

On adopte: Plancher à corps creux (16+5)

II.2.1.1.2 Dalle pleine (parking):

Vérification de poinçonnement ^[7]:

D'après l'article A.5.2.4 du B.A.E.L.91:
$$q_a^u \le \frac{0.045 \times U \times f_{c28} \times h}{\gamma_b}$$
 avec : $U = 2 \times [U+V]$
$$q_a^u = (1.35G+1.5Q)/4 = 2.59 \text{kn} < \frac{0.045 \times 23.4 \times 30 \times 0.15}{1.5} = 3.16 \text{ KN} \dots \text{Condition vérifiée}$$

$$q_a^u = (1.35G + 1.5Q)/4 = 2.59 \text{kn} < \frac{0.045 \times 23.4 \times 30 \times 0.15}{1.5} = 3.16 \text{ KN} \dots \text{Condition vérifiée}$$

Calcul du ferraillage a l'E.L. U:

Tableau II.1: Ferraillage dalle peine

Ferraillage	M(kn.m)	μ	α	Z	A_{S}	A_s^{min} cm^2	Choix d'As ^{min} cm^2
Dalle pleine	10.35	0,033	0,042	132.73	1.79	1.5	3HA10 = 2.36

Condition de la flèche : [BAEL 91 / B.7.5] [2]

$$\begin{cases} \bullet \quad \frac{h_d}{L_x} = 0.15/6.1 = 0.025 > \frac{M_{tx}^{ser}}{20 M_x^{ser}} = 9.16/20*12,154 = 0.038.................CNV \\ \bullet \quad \rho = \frac{A}{b \times d_x} = 236/1000*135 = 0.0018 < \frac{2}{fe} = 2/500 = 0.004............CV \end{cases}$$

C'est l'un des deux conditions n'est pas vérifier Donc on adopte ep = 20 cm

II.2.1.1.3 Dalle pleine (balcon):

Le Calcul de l'épaisseur de la dalle se fait pour une bande de 1m de largeur.

 $P = L_x/L_y = 120/450 = 0.27 \le 0.4 =$ donc la dalle travaille dans un seul sens.

Sécurité et matière d'incendie :

e = 11 cm pour un coupe-feu de deux heure.

Isolation phonique:

Selon les règles du CBA93 [3] en vigueur en Algérie, l'épaisseur de la dalle doit être supérieure ou égale à 13 cm pour avoir une bonne isolation.

Alors on prend : $e_p = 15cm$

II.2.1.2 Pré-dimensionnement des poutres :

Tableau II.2: Choix les dimensions des poutres pp et ps

	Solon BAEL91 (pré-dimensionnements)					
	L= 6.1 m (poutre principal)	L= 5.6 (poutre secondaire)				
l/15 <h<l></h<l> l/10	40.67 <h<61 (cm)<="" td=""><td>37.33<h<56 (cm)<="" td=""></h<56></td></h<61>	37.33 <h<56 (cm)<="" td=""></h<56>				
	h = 55 (cm)	h =45 (cm)				
0.3h <b<0.7h< td=""><td>15<b (cm)<="" <35="" td=""><td>13.5<b<31.5 (cm)<="" td=""></b<31.5></td></td></b<0.7h<>	15 <b (cm)<="" <35="" td=""><td>13.5<b<31.5 (cm)<="" td=""></b<31.5></td>	13.5 <b<31.5 (cm)<="" td=""></b<31.5>				
	b = 35 cm	b = 30 (cm)				
	Solon le rpa99/v2003 (véri	fication)				
h>30 cm	h =55> 30 (cm) ok	h =45>30 (cm) ok				
b>20 cm	b= 35>20 (cm) ok	b = 30 > 20 (cm) ok				
h/b> 4 55/35 =1.57<4 ok		45/30=1.5<4 ok				
La rigidité	h/l= 55/610=0.09>1/16 ok	h/l=45/560=0.08> 1/16 ok				

II.2.1.3 Evaluation des charges :

II.2.1.3.1 Charges permanentes [4]:

A. Plancher terrasse (terrasse inaccessible):

✓ Dalle en corps creux :

Tableau II.3: Poids surfacique du plancher terrasse à corps creux.

	Matériaux	Epaisseur(cm)	Poids volumique (kN/m ³)	$G(kN/m^2)$		
1	Protection mécanique en gravier	5	18	0,9		
2	Etanchéité multicouches	6	2	0,12		
3	Forme de ponte	10	22	2,20		
4	Isolation thermique (liège)	4	6	0,24		
5	Dalle à corps creux	21	/	3.2		
6	Enduit au plâtre	2	20	0,4		
	$\Sigma \mathrm{G}$					

✓ Dalle pleine:

Tableau II.4: Poids surfacique du plancher dalle pleine.

	Matériaux	Epaisseur(cm)	Poids volumique (kN/m ³)	$G(kN/m^2)$
1	Gravillon de protection	5	18	0,85
2	Etanchéité multicouches	/	/	0,11
3	Forme de ponte	10	22	2,20
4	Isolation thermique (liège)	4	4	0,16
5	Dalle pleine	15	25	3.75
6	Enduit au plâtre	2	10	0,20
		Σ G		7.27

B. Plancher courant:

✓ Dalle en corps creux :

Tableau II.5 : Poids surfacique de la dalle en corps creux.

	Matériaux	Epaisseur (cm)	Poids volumique (kN/m ³)	G (kN/m ²)	
1	Carrelage	2	25	0,50	
2	Mortier de pose	2	20	0,40	
3	Lit de sable	3	18	0,54	
4	Dalle pleine	16+5	14	3,20	
5	Enduit au plâtre	2	10	0,20	
6	Cloisons légères	/	/	1,00	
Σ G					

C. Dalle pleine:

✓ Dalle pleine (balcon) :

Tableau II.6 : Poids surfacique de balcon.

	Matériaux	Epaisseur (cm)	Poids volumique (kN/m³)	G (kN/m ²)
1	Carrelage	2	20	0,50
2	Mortier de pose	2	20	0,40
3	Lit de sable	2	18	0,54
4	Dalle pleine	15	20	3,75
5	Enduit au plâtre	2	10	0,20
6	Cloisons légères	/	/	1,00
Σ G				6.39

✓ Dalle pleine (parking) :

Tableau II.7: Poids surfacique de parking.

	Matériaux	Epaisseur (cm)	Poids volumique (kN/m ³)	G (kN/m ²)	
1	Mortier de pose	2	20	0.4	
2	Lit de sable	2	18	0.54	
3	Dalle	20	25	4.2	
4	Enduit au plâtre	2	10	0.2	
Σ G					

D. Maçonnerie:

✓ Mur extérieur à double cloison :

Tableau II.8: Poids surfacique du mur extérieur.

	Matériaux	Epaisseur (cm)	Poids volumique (kN/m ³)	$G(kN/m^2)$	
1	Enduit intérieur au plâtre	2	10	0,20	
2	Briques creuses	10	9	0,90	
3	Lame d'aire	5	/	0	
4	Enduit extérieur au ciment	2	18	0,36	
5	Briques creuses	15	9	1,35	
Σ G					

II.2.1.3.2 Charges d'exploitation [4]:

Tableau II.9: Charge d'exploitation.

Habitation	Q=1,50 kN/m ²
Balcon	Q=3,50 kN/m ²
Terrasse inaccessible + Acrotère +Dalle machine	Q=1,00 kN/m ²
Escalier + Parking	Q=2,50 kN/m ²

II.2.1.4 Pré-dimensionnement des poteaux :

• Condition de B.A.E.L 91^[2]:

Considérons une section rectangulaire de dimensions $a \times b$ avec : $a \le b$.

✓ Pour b:

Dans notre cas on a un poteau encastré dont : $L_f = 0.7 \times L_0$

$$I = \frac{ab^3}{12}$$
 et $B = a \times b$ et $i = \sqrt{\frac{I}{B}} = \frac{a}{\sqrt{12}}$ et $\lambda = \frac{L_f}{i} = \frac{L_f}{\frac{a}{\sqrt{12}}}$

Remarque:

Il est préférable de prendre ; λ =35 (Pour faire participer à la résistance du poteau , tous les barres d'acier de la section). Donc : $a \ge \sqrt{12} \times \frac{L_f}{\lambda}$

Pour les étages et RDC : L0 = 3,23m $\rightarrow L_f = 0,7 \times 3,23 = 2,261m$

A.N:
$$a \ge \sqrt{12} \times \frac{2.261}{35} \rightarrow a \ge 0,224 \text{m} \approx 22,4 \text{cm}$$

On adopte : a = 30cm, et on adopte b = 30cm.

• Selon R.P.A [1]:

Min $(a, b) \ge 30$ cm en zone III. (Vérifiée)

II.2.1.4.1 Poteau le plus sollicité :

Tableau II.10: Les poteaux le plus sollicité.

Poteau	$L_1(m)$	L ₂ (m)	Surface (m ²)
Poteau d'angle (B7)	2.43	2.8	6.8
Poteau de rive (B1)	4.9	3.05	14.95
Poteau de centre (C5)	5,5	4.3	23,65

II.2.1.4.2 Descente des charges :

✓ Poteau central:

Tableau II.11: Descente des charges de poteau central

	N_{G}	Nq	Nu	Br	(a=b)	Le	Nser	σser	Obs
Niveaux	(KN)	(KN)	(KN)	(cm²)	(cm)	choix	(KN)	(KN)	
						(cm)			
Terrasse	205.41	1	278.81	5.58	4.36	60x60	206.41	1.52	Ok
5 ^{ème} étage	314.01	2.5	427.66	8.55	4.92	60x60	316.51	2.34	Ok
4 ^{ème} étage	314.01	3.85	429.69	8.59	4.93	60x60	317.86	2.35	Ok
3 ^{ème} étage	314.01	5.05	431.49	8.63	4.94	65x65	319.06	2.36	Ok
2 ^{ème} étage	314.01	6.1	433.06	8.66	4.95	65x65	320.11	2.37	Ok
1 ^{ème} étage	314.01	7	434.41	8.69	4.96	65x65	321.01	2.38	Ok
RDC	314.01	7.75	436.27	8.73	4.96	70x70	321.76	2.38	Ok
1 ^{ème} E-sol	313.55	9.17	437.05	8.74	4.96	70x70	322.72	2.39	Ok
2 ^{ème} E- sol	313.55	10.62	439.22	8.78	4.97	70x70	324.17	2.4	Ok
3 ^{ème} E-sol	314.01	11.33	440.91	8.82	4.98	70x70	325.34	2.4	Ok
4 ^{ème} E-sol	314.01	12.05	441.99	8.84	4.98	70x70	326.06	2.41	Ok
5 ^{ème} E-sol	317.22	12.77	447.40	8.95	4.99	70x70	329.99	2.44	Ok
6ème E-sol	314.92	13.5	445.39	8.91	4.99	70x70	328.42	2.44	Ok

✓ Méthode de travail :

- Pour le poteau central :
 - Sous terrasse :

Poids du plancher : S x $G_{tes} = 1423.65 \text{ x} \cdot 7.08 = 150.7 \text{ KN}$

Poids de la poutre principale : $b \times h \times 1 \times 25 = 0,35 \times 0,55 \times 6.1 \times 30 = 32.03 \text{KN}$

Poids de la poutre non principale : b x h x 1 x 25=0,3x 0,45x 5.6x 30=22.68KN

Donc:
$$G_t = 150.7 + 32.03 + 22.68 = 205.41 \text{ KN}$$

$$Q_t = 1 \text{ KN/m}^2$$

- Sous 1^{er} étages :

Poids du plancher : S x Gcourant = $23.65 \times 5.84 = 184.11 \text{ KN}$

Poids de la poutre principale : b x h x 1 x 30=0,35x 0,55x 6.1x 30=32.025KN

Poids de la poutre non principale : b x h x 1 x 30=0,3x 0,45x 5.6x 30=22.68KN

Poids du poteau : $h_e (0.3)^2 \times 30 = 8.72 \text{ KN}$

Poids du mur ext : $S.G_{mur} = 23.65 \times 2.81 = 66.47 \text{ KN}$

Donc : $G_{\text{\'etage}} = 184.11 + 32.025 + 22.68 + 8.72 + 66.47 = 314.01 \text{ KN}$

 $Q_{\text{\'etage}} = 1.5 \text{ KN/m}^2$

$$N_u = 1,35 \text{ NG} + 1,5 \text{ NQ} = 1,35 (205.41) + 1,5 (1) = 278.81 \text{ KN}$$

$$N_{ser} = N_G + N_Q = 205.41 + 1 = 206.41 \text{ KN}$$

$$\sigma_{\text{ser}} = \frac{\text{Nser}}{1.5\text{B}} \le 0.6 \text{ fc} = 18\text{MPa}$$

$$\sigma_{\text{ser}} = \frac{206.41.10^3}{1.5(300)^2} = 1.52 \le 18 \text{ MPa ok}$$

Note: l'application de la loi de dégression aux bâtiments du plusieurs étages (selon DTR),

avec: 3+n/2n: coefficient valable pour n > 5.

✓ Vérification de la section du poteau :

$$B_r \ge \frac{\beta \times N_u}{\frac{f_{bc}}{0.9} + 0.85 \times (\frac{A'_s}{B_r}) \times \sigma_{s10}}$$

Avec:

-
$$f_{bc} = 0.85 \times \frac{f_{c28}}{\gamma_b} = 17 \text{ MPa}$$
; $\sigma_{s10} = \frac{f_e}{\gamma_s} = 435 \text{ Mpa}$

-
$$\frac{A_{s}}{B_{r}} = 1\%$$
; $\lambda = 35$; $\beta = 1+0.2(\frac{\lambda}{35})^{2} = 1.2$

A.N:

$$B_r \ge 0.02$$
Nu $B_r \ge 0.02 \times 278.81 \ge 5.58$ $B_r = (a-2)^2$

$$a = \sqrt{Br} + 2$$
 $a = \sqrt{5.58} + 2 = 4.36 \text{ cm}$ donc: $a \ge 4.36 \text{ cm}$

- Selon RPA:

$$\begin{cases} \text{Min } (a, b) \ge 30 \text{ cm en Zone III} \\ \text{Min } (a, b) \ge \text{he}/20 \\ \frac{1}{4} < \frac{a}{b} < 4 \end{cases}$$

Application:

$$\begin{cases} Min(30,30) \ge 30 \text{ cm} \\ Min(30,30) \ge 306/20 = 15,3 \\ \frac{1}{4} < \frac{30}{30} = 1 < 4 \end{cases}$$

Les conditions vérifiée Donc : Les dimensions du poteau sont : **a = 30cm** et **b =30cm**, On aura un poteau carré.

II.2.2 BLOC B

II.2.2.1 Pré-dimensionnement des plancher

II.2.2.1.1 Dalle à corps creux :

L=4.4m 17.5≤e≤21

Donc: e = 21cm

On adopte: Plancher à corps creux (16+5)

II.2.2.1.2 Dalle pleine (parking):

• Vérification de poinçonnement :

D'après l'article A.5.2.4 du B.A.E.L.91 [2]:
$$q_a^u = 2.59 \le \frac{0.045 \times U \times f_{c28} \times h}{\gamma_b} = 2.97.....CNV$$

Donc on adopte ep = 20 cm

II.2.2.2 Pré-dimensionnement des poutres :

Tableau II.12: Choix les démentions des poutres PPet PS.

	Selon BAEL91 (pré-dimensionnements)								
	L= 5.6 m (poutre principal)	L = 5.4 poutre secondaire)							
1/15 <h<1 10<="" td=""><td>h = 55 (cm)</td><td colspan="2">h =45 (cm)</td></h<1>	h = 55 (cm)	h =45 (cm)							
0.3h <b<0.7h< td=""><td>b = 35 cm</td><td colspan="3">B =30 (cm)</td></b<0.7h<>	b = 35 cm	B =30 (cm)							
	Solon le rpa99/v2003 (véri	fication)							
h>30 cm	h = 55 > 30 (cm) ok	h =45>30 (cm) ok							
b>20 cm h/b> 4	b= 35>20 (cm) ok	b = 30>20 (cm) ok							
11/0/4	55/35 =1.57<4 ok	45/30=1.5<4 ok							
La rigidité	h/l= 55/560=0.098>1/16 ok	h/l=45/540=0.08> 1/16 ok							

II.2.2.3 Pré-dimensionnement des poteaux :

II.2.2.3.1 Poteau le plus sollicité :

Tableau II.13: Les poteaux les plus sollicité.

Poteau	$L_1(m)$	$L_2(m)$	Surface (m ²)
Poteau d'angle (A1)	2.8	2.65	7.42
Poteau de rive (C5)	4.9	1.6	7.84
Poteau de centre (B2)	4.75	4.85	23.04

II.2.2.3.2 Descente des charges :

✓ Poteau central:

Tableau II.14 : Descente des charges de poteau central.

	N_{G}	Nq	Nu	Br	(a=b)	Le	Nser	σser	Obs
Niveaux	(KN)	(KN)	(KN)	(cm²)	(cm)	choix	(KN)	(KN)	
						(cm)			
Terrasse	217.33	1	173.39	3.46	3.9	60x60	218.33	1.6	Ok
5 ^{ème} étage	262.22	2.5	357.75	7.16	4.67	60x60	264.72	1.96	Ok
4 ^{ème} étage	262.22	3.85	359.77	7.19	4.68	60x60	266.07	1.97	Ok
3 ^{ème} étage	262.22	5.05	361.57	7.23	4.68	65x65	267.27	1.98	Ok
2 ^{ème} étage	262.22	6.1	363.15	7.26	4.69	65x65	268.32	1.98	Ok
1 ^{ème} étage	262.22	7	363.49	7.27	4.69	65x65	269.97	1.99	Ok
RDC	262.22	7.75	365.62	7.31	4.7	70x70	269.97	1.99	Ok
1 ^{ème} E- sol	261.76	9.17	367.13	7.34	4.7	70x70	270.93	2.00	Ok
2 ^{ème} E- sol	261.76	10.62	369.31	7.39	4.71	70x70	272.38	2.01	Ok
3 ^{ème} E- sol	262.22	11.33	337.99	6.76	4.6	70x70	273.55	2.02	Ok
4 ^{ème} E- sol	262.22	12.05	372.07	7.44	4.72	70x70	274.27	2.03	Ok
5 ^{ème} E- sol	265.43	12.77	377.49	7.55	4.75	70x70	278.2	2.06	Ok
6 ^{ème} E- sol	263.14	13.5	375.49	7.51	4.75	70x70	276.64	2.06	Ok

II.2.3 BLOC C:

II.2.3.1 Pré-dimensionnement des dalles :

II.2.3.1.1 Dalle à corps creux :

L= 3.95m $15.8 \le e \le 20$

Donc : e = 21cm

On adopte Plancher à corps creux (16+5)

II.2.3.2 Pré-dimensionnement des poutres :

Tableau II.15: Choix les démentions des poutres PP et PS.

Solon BAEL91 (pré-dimensionnements)								
	L= 5.75 m	L = 4.9						
1/15 <h<1 10<="" td=""><td>h = 55 (cm)</td><td>h =45 (cm)</td></h<1>	h = 55 (cm)	h =45 (cm)						
0.3h <b<0.7h< td=""><td>b = 35 cm</td><td>B =30 (cm)</td></b<0.7h<>	b = 35 cm	B =30 (cm)						
	Solon le rpa99/v2003 (véri	fication)						
h>30 cm	h =50> 30 (cm) ok	h =45>30 (cm) ok						
b>20 cm h/b> 4	b= 33>20 (cm) ok	b = 30>20 (cm) ok						
11/0/ 4	55/35 =1.57<4 ok	45/30=1.5<4 ok						
La rigidité	h/l=55/575=0.09>1/16 ok	h/l=45/490=0.092> 1/16 ok						

II.2.3.3 Pré-dimensionnement des poteaux :

II.2.3.3.1 Poteau le plus sollicité :

Tableau II.16: Les poteaux les plus sollicité.

Poteau	$L_1(m)$	$L_2(m)$	Surface (m ²)
Poteau d'angle (C1)	2.45	2.88	7.04
Poteau de rive (B1)	4.85	2.45	11.88
Poteau de centre (B2)	4.85	3.55	17.22

II.2.3.3.2 Descente des charges :

✓ Poteau central:

Tableau II.17: Descente des charges de poteau central.

	NG	Nq	Nu	Br	(a=b)	Le	Nser	σser	Obs
Niveau	(KN)	(KN)	(KN)	(cm²)	(cm)	choix	(KN)	(KN)	
						(cm)			
1 ^{er} ES	219.73	1	298.13	5.96	4.44	50x50	220.73	1.63	Ok
2 ^{ème} ES	255.48	1.5	347.15	6.94	4.63	50x50	256.98	1.90	Ok
3 ^{ème} ES	255.48	1.5	347.15	6.94	4.63	50x50	256.98	1.90	Ok
4 ^{ème} ES	258.69	1.5	351.48	7.03	4.65	50x50	260.19	1.93	ok
5 ^{ème} ES	256.4	2.5	349.89	6.99	4.65	50x50	258.9	1.93	ok

II.2.4 Pré-dimensionnement des voiles :

• Les voiles de contreventement :

L'épaisseur du voile doit satisfaire les trois (03) conditions du [RPA99/A.7.7.1] [1]

* Première condition : L≥ 4 a

Avec : L : Largeur du voile correspondant à la portée maximale

* Deuxième condition : $a_{min} \ge 15 \text{ cm}$

Avec : a_{min} : Epaisseur minimal du voile

*Troisième condition : Condition de rigidité aux extrémités :

Dans notre structure on a 3 types de voiles :

Pour le 1er type : voile de la cage d'ascenseur

 $a \ge he/25$

Pour le 2ème type : voile des étages

 $a \ge he/20$

Avec: he: Hauteur libre d'étage. he = $h - h_d$

Avec : h : Hauteur d'étage hd : Hauteur de la dalle.

Pour notre structure:

 h_{max} = 323cm et h_d = 21cm

Donc: he= 302cm

Pour le 3ème type : Voiles d'entresol :

L'épaisseur du voile doit respecter les deux conditions de l'RPA99 v. 2003^[1].

 $a_{min} = 15 \text{ cm}$ [RPA99/10.1.2] [1]

 $a \ge he/25$ [RPA99/7.7.1] [1]

Pour notre structure:

 h_{max} = 306cm et h_d = 21cm

Donc: $h_e = 285 cm$

Les résultats de calcul de tous les types de voiles sont illustrés sur le tableau ci-dessous :

Tableau II.18: Choix de l'épaisseur des voiles.

Type de voile	L (cm)	L/4(cm)	he (cm)	he/25(cm)	he/20(cm)	Epaisseur
						Adoptée (cm)
Type1	150	37.5	302	12.08		15
Type2	150	37.5	302		15.1	20
Type3	150	37.5	285	11.4		15

II.3 Conclusion:

Le pré-dimensionnement que nous avons effectué sur l'élément structural a pour but d'assurer la résistance, la stabilité et l'économie de la structure, tout en satisfaisant les règles du «RPA 99 version2003» [1], «BAEL91 mod99» [2] et «CBA93» [3]

III.1 Introduction:

Les éléments secondaires sont des éléments qui n'ont pas une fonction porteuse ou de contreventement; c'est des éléments en maçonnerie (murs extérieurs, cloison...) ou autres (escaliers, balcon, acrotère...).

III.2 Acrotère:

III.2.1 Introduction

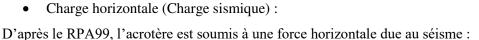
L'acrotère est un élément de sécurité au niveau de la terrasse, elle forme une paroi contre toute chute, elle est considérée comme une console encastrée à la base, soumise à son poids propre et une charge horizontale due à la main courante.

III.2.2 Evaluation des charges :

✓ Surface de l'acrotère :

$$S = \{(0.6 \times 0.1) + (0.1 \times 0.08) + \frac{(0.1 \times 0.02)}{2}\} = 0.069 \text{ m}^2$$

✓ Poids propre de l'acrotère :


$$Gp = 0.069 \times 25 = 1.725 \text{ kN/ml}$$

✓ Revêtement en ciment :

Gr= $18 \times 0.02 \times (60+10) \times 0.02 = 0.504 \text{ kN/ml}$

• Charge permanentes : G = 2.229 kN/ml

• Charge d'exploitation: Q = 1,00 kN/ml

$$Fp = 4 \times A \times Cp \times Wp$$
 RPA99 (article 6.2.3) [1].

Avec : A : Coefficient d'accélération de zone (RPA99-Tableau 4 .1) [1]

Cp : Facteur de force horizontale varie entre 0,3 et 0,8 (RPA99-Tableau 6.1) [1]

WP: poids de l'élément considéré.

Dans notre cas: Le Groupe d'usage 2 et Zone III [5].

(A=0.4; Cp=0.8; WP=1.725KN/ml) Donc: $Fp=4 \times 0.4 \times 0.8 \times 1.725 = 2.208KN$

III.2.3 Calcul des efforts:

Tableau III.1 : Calcul des efforts de l'acrotère.

		ELU		ELS
Effort normal	$N_{\rm u}$	1,35G = 3.01 kN	N _{ser}	G = 2.229 kN
Effort tranchant	$T_{\rm u}$	1,5Q = 1,50 KN	T _{ser}	Q = 1,00 KN
Moment fléchissant	$M_{\rm u}$	$1.5Q \times h = 0.90 \text{ kNm}$	M_{ser}	$Q \times h = 0,60 \text{ kNm}$

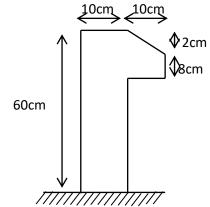


Figure III.1 : Schéma représentatif de l'acrotère

 $Les\ donn\'ees: \quad h=10cm\ ;\ d=0,9h=9cm\ ;\ b=100cm\ ;\ f_{c28}=30MPa\ ;\ f_{bc}=17MPa\ ;$

Fe = 500MPa; σ_{s10} = 435MPa, F_{t28} =2.4 MPa.

III.2.4 Ferraillage de l'acrotère :

$$\mu = \frac{M_u}{b \times d^2 \times f_{bc}} = \frac{0.9 \times 10^6}{1000 \times (90)^2 \times 17} = 0.0065$$

 $\mu < \mu_R = 0.391$ (Armatures tendue seulement).

$$\alpha = 1.25 \times \left(1 - \sqrt{1 - (2\mu)}\right) = 0.008$$

$$Z = d \times (1 - 4\alpha) = 87,12 \text{ mm}$$

$$A_s = \frac{M_f}{Z \times \sigma s10} = \frac{0.9 \times 10^6}{87,12 \times 435} = 23,74 \text{ mm}^2$$

III.2.5 Vérification de la section d'acier selon B.A.E. L91^[2] :

✓ Condition de non fragilité :

$$A_s^{min} \ge \max\left\{\frac{b.h}{1000}; 0,23b.d\frac{f_{t28}}{f_e}\right\} = \left\{\frac{100 \times 10}{1000}; 0,23 \times 100 \times 9 \times \frac{2,4}{500}\right\}$$

$$A_s^{min} \ge 1 \text{cm}^2$$

Donc on opte finalement le choix : $A_s = 4HA8 = 2,01cm^2$

III.2.6 Armatures de répartition [2]:

$$A_r \ge \frac{A_s}{4} = \frac{2,01}{4} = 0,503cm^2$$

On choisit : $A_r = 4\text{HA}6 = 1,13 \text{ cm}^2$

III.2.7 Vérification de l'effort tranchant [6]:

L'acrotère est exposé aux intempéries (fissuration préjudiciable).

Vu=Fp+Q=2,208+1=3,208 et $Tu=Vu/(b\times d)=0.0032/(1\times 0.09)=0.036MPa$

T'u=Min((0.15Fc28/1.5); 4MPa) = 3MPa

Donc: Tu=0.036 MPa < T'u=3MPaconditions vérifiées

✓ Vérification de l'adhérence :

$$\zeta$$
se = Vu / (0,9×d× Σ μ i)

 $\Sigma \mu$ i : la somme des périmètres des barres.

 $\Sigma \mu i = n \times \pi \times \Phi = \Sigma \mu i = 4 \times 3.14 \times 0.8 = \Sigma \mu i = 10.048 \text{ cm}$

 ζ es = 3,208×10-3 / (0.9×0.09×0.10048) = 0.394 Mpa

 $0.6 \times \psi s^2 \times \text{ ft28} = 0.6 \times 1.52 \times 2.4 = 2,18 \text{Mpa}$

Avec : Ys est le coefficient de scellement.

0.394Mpa < 2,18Mpa Pas de risque par rapport à l'adhérence.

III.2.8 Vérification à l'ELS [2]:

La fissuration est considérée comme préjudiciable.

✓ Détermination de la position de l'axe neutre :

$$b/2(y^{2}) + n.A_{s}'(y-d') - n.A_{s} (d-y) = 0$$

$$50y^{2} + (15) (1,13) (y-1) - (15)(2,01)(9-y) = 0$$

$$y^{2} + 0.942y - 5.766 = 0$$

$$\delta = b^{2} - 4ac = 23.95 \quad ; \sqrt{\delta} = 4.89$$

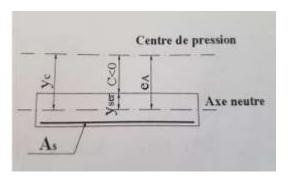


Figure III.2: La position de l'axe neutre.

On aura deux solutions : $y_1 = 1,974$ cm ; $y_2 = (-2,916$ cm)

✓ Moment d'inertie :

$$I = (by^{3}/3) + n.A_{s}' (y-d')^{2} + n.A_{s} (d-y)^{2}$$

$$= (100) (1,974)^{3}/3 + (15) (1,13) (1,974-1)^{2} + (15) (2,01) (9-1,974)^{2}$$

$$I = 1760.82 \text{cm}^{4} = 1,76 .10^{7} \text{mm}^{4}$$

✓ Vérification :

$$\begin{split} &\sigma_{bc} = \frac{N_{ser}}{I} \times y = \frac{1,725 \times 10^6}{1,74 \times 10^7} \times 19,74 = 1,96 MPa \\ &\sigma_{s} = n \times \frac{M_{ser}}{I} \times (d-y) = 15 \times \frac{0,6 \times 10^6}{1,74 \times 10^7} \times (90-19,74) = 36,34 MPa \\ &\overline{\sigma_{bc}} = 0,6 f_{c28} = 18 MPa \\ &\overline{\sigma_{s}} = min \left(\frac{2}{3} f_e, max(240 MPa; 110 \sqrt{\eta f_{t28}})\right) = 333,33 MPa \\ &\sigma_{bc} \leq \overline{\sigma_{bc}} \ Et \quad \sigma_{s} \leq \overline{\sigma_{s}} \quad conditions \ v\acute{e}rifi\acute{e}es. \end{split}$$

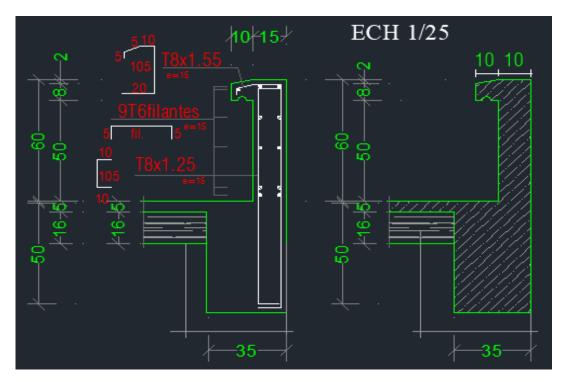


Figure III.3 : Schéma de ferraillage de l'acrotère.

III.3 Les balcons

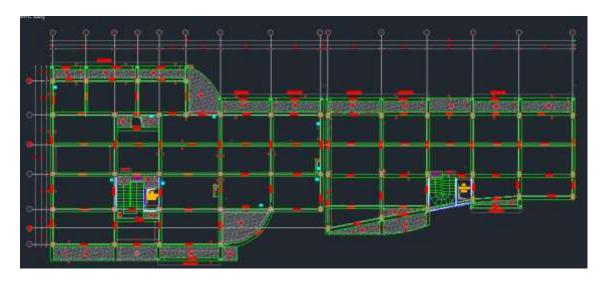


Figure III.4 : Schéma représente les balcons

III.3.1 Introduction:

La structure étudiée comporte plisseur type de balcon, et se calcule comme une console en dalle pleine encastré à une extrémité et libre à l'autre (On a choisi le cas le plus défavorable).

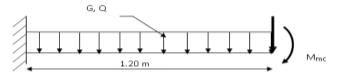


Figure III.5 : Schéma statique de balcon

III.3.2 La charge permanente (G) de balcon ^[4]: G = 6.39 KN/ml.

-Calcul de charge due au poids du mur : $P' = G_m \times h$

Enduit extérieure...... $2\times0.18=0.36 \text{ KN/m}^2$

Brique creuse (e = 10cm)....= 0.9 KN/m²

Bac fleur = 1.15 KN/m^2

 $Gm = 2.78 \text{ KN/m}^2$

-La hauteur du mur : h = 1.2 m donc : $P' = 2.78 \times 1.2 = 3.34 \text{ KN/ml}$

III.3.3 Evolution des charges :

• ELU:

Pu = (1.35G + 1.5Q) 1 = 13.88 KN/ml

 $Mu = (Pu \times L2)/2 + 1.35p' \times L = (13.88 \times (1.2) 2)/2 + 1.35 \times 3.34 \times 1.2 = 15.40KN.m$

• ELS:

Ps = G+Q = 9.89KN.m

 $Ms = (Ps \times L2)/2 + P' \cdot L = (9.89 \times (1.2)2) + 2.78 \times 1.2 = 10.46 \text{ KN.m}$

III.3.4 Calcul du ferraillage a l'E.L.U:

Avec: b = 1m; d = 13.5 cm

Tableau III.2: Ferraillage de balcon à ELU

	= = : = : . : : : : : : : : : : : : : : :								
	Mu	μ	α	Z(m)	A_{s}	$A_s^{min}cm^2$	Choix de	$A_r(cm^2)$	Choix de
	kn.m						$\mathbf{A_s}^{\mathrm{min}}$		Ar
							cm^2		cm2
Balcon	15.4	0.049	0.06	131.8	2.68	1.05	4HA10=3.14	1.34	4HA8=2.02

III.3.5 Vérification a l'E.L.S:

Tableau III.3: Vérification de balcon à ELS

	$\sqrt{\delta}$		I	$\sigma_{ m bc}$	σ_{s}	$\overline{\sigma_{bc}}$	$\overline{\sigma_{\rm s}}$	Vérification
	y1	y2	/	/	/	/	/	/
Balcon	6,98	-3.89	$14.245.10^7$	5.12	71.81	15	617.87	vérifier

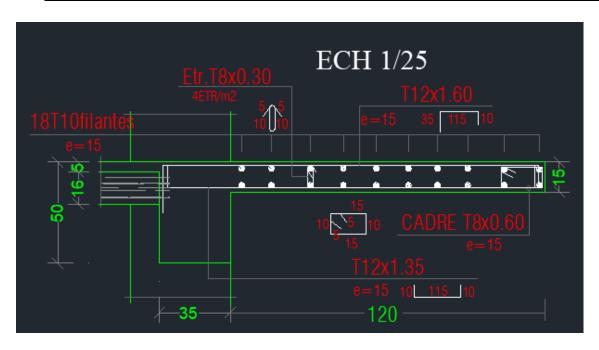


Figure III.6 : Schéma de ferraillage de balcon.

III.4 Les escaliers:

III.4.1 Introduction:

Les escaliers sont des éléments constitués d'une succession de gradins, ils permettent le passage à pied entre différents niveaux du bâtiment.

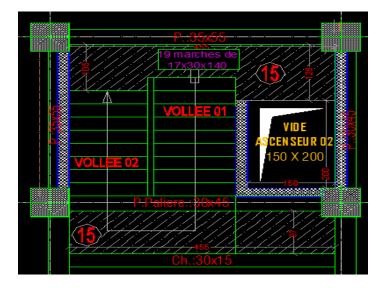


Figure III.7: Cage d'escalier

III.4.2 Escalier des étages :

Hauteur des étages est 3,23 m.

• Volée *n*°01 :

Pour une réalisation idéale et confortable on doit avoir :

 $2 \times h + g = 64 \text{cm} (1)$

 $n \times h = H(2)$

 $(n-1)\times g = L(3)$

Avec:

En remplaçant (2) et (3) dans (1), on obtient :

$$2\left(\frac{H}{n}\right) + \frac{L}{n-1} = 64 \ cm$$

$$\frac{(n-1)(2H) + nL}{n^2 - n} = 64$$

$$\frac{2Hn - 2H + nL}{n^2 - n} = 64$$

 $2Hn-2H+nL = 64(n^2-n)$

$$64n^2$$
-n (64+2H+L) +2H=0

Avec : H = 153 cm ; L = 240 cm

D'où l'équation:

$$64. n^2 - 610.n + 280 = 0$$

$$\begin{cases} n_1 = 9,04. \\ n_2 = 0,48. \end{cases}$$

On prend: n=9 contre marches et n-1= 8 marches

Alors:

$$g = \frac{L}{n-1} = \frac{240}{9-1}$$
 $g = 30 \text{cm}$

$$h = \frac{H}{n} = \frac{153}{9}$$
 \rightarrow $h = 17 \text{cm}$

Pour la détermination de la hauteur de la contre marche et la longueur de la marche ; on utilise la formule de « BLONDEL » :

On a:
$$59 \le 2h + g \le 66 \longrightarrow 59 \le (2 \times 17) + 30 \le 66 \longrightarrow 59 < 64 < 66...$$
 (Vérifiée).

• Largeur de la ligne de volée :

$$L=g \times (n-1) = 30 \times (9-1) = 240 \text{ cm}$$

• Détermination de l'épaisseur de la paillasse :

$$tg\alpha = \frac{H}{L} = \frac{153}{240} = 0,6375 = >\alpha = 32,51^{\circ}.$$

On prend : $\alpha = 33^{\circ}$.

La longueur de volée est : $L' = \frac{1,53}{\sin \alpha}$ \longrightarrow L' = 2,80 m.

La détermination de l'épaisseur de la paillasse se détermine par les conditions de résistance

L = 2,40+1,4+0,7 = 4,5m
$$\frac{L}{30}$$
 < e < $\frac{L}{20}$ => 15cm< e < 22,5 cm.

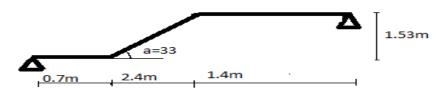


Figure III.8 : schéma statique de l'escalier

On prend : e = 15 cm

N.B:

- ♦ Le palier aura la même épaisseur que la paillasse.
- On a deux volées identiques, donc la 2^{ème} volée soit égale à la 1^{ère}.

III.4.3 Charge permanente:

• volée:

Tableau III.4 : la charge permanente de volée

Matériaux	Epaisseur e[m]	Poids volumique ρ [KN/m³]	G [KN/m²
Revêtement en carrelage	0.02	22	0.69
chappe	0.02	20	0.4
Enduit en ciment	0.02	18	0.36
Poids propre de la marche	/	22	1.87
Volée	$0.25/_{\cos a^{\circ}}$	0.15	4.53
	$\sum G$		7.85

• Palier:

Tableau III.5: la charge permanente de palier

Matériaux	Epaisseur e[m]	Poids volumique ρ [KN/m³]	G [KN/m ²]
Revêtement en carrelage	0.15	22	0.44
Mortier de pose	0.02	20	0.40
Lit de sable	0.02	18	0.36
Palier	0.15	25	4.53
Enduit de plâtre	0.02	14	0.28
	$\sum G$		5.98

• Combinaisons d'actions :

Tableau III.6: Combinaison des actions sur l'escalier

	G KN/m²	Q KN/m²	1,35G+1,5Q KN/m²	G+Q KN/m²	$q_{\scriptscriptstyle eu}$ KN/ml	$q_{\it es}$ KN/ml
Palier	5.98	2.5	11.82	8.48	14.35	10.35
Volée	7.85	2.5	14.35	10.35	14.55	10.55

$$q_{eq} = \frac{\sum q_i l_i}{\sum l_i} \quad q_{eq} = \frac{14.35 \times 2.4 + 11.82 \times 0.7 + 11.81 \times 1.4}{2.4 + 1.4 + 0.7} = 13.17 KN/m^2$$

III.4.4 Sollicitations de calcul:

$$\Rightarrow$$
M₀ =13.17×(4,5)² /8 = 33.34KN .m

$$\Rightarrow$$
 M_t =0.85×33.34= 28.34 KN .m

ightharpoonup Moment sur appui:..... $M_a = 0.3M_0$

$$\Rightarrow$$
 M_a =0.3×33.34 =10.01 KN.m

III.4.5 Calcul des armatures :

Le calcul des armatures se fait essentiellement à la flexion simple pour une bonde de1m avec : b=100cm ; h = 15cm ; σ_s = 435Mpa, Ft28 =2.4 MPa ; f_{c28} =30Mpa ; f_{bc} =17Mpa ; Fe = 500 Mpa .

Donc les résultats de calcul du ferraillage longitudinal sont résumés dans le tableau suivant :

A. Calcul du ferraillage:

Tableau III.7: Résultats du calcul du ferraillage des escaliers courants

	M _u KN.m	d Cm	μ	A	Z(mm)	$A_{s_{calcul}} \ m cm^2$	$A_{s_{\min imale}} \ \mathrm{cm^2}$	$A_{s_{adopt\acute{e}}} \ m cm^2$	S _t cm
Travée	28.34	13.5	0.091	0,119	128.57	5.06	1,49	4T14=6.16	20
Appuis	10.01	13.5	0.032	0.04	132.84	1.73	1,49	3T10=2,36	20

La section d'armatures longitudinales à adopter est (4T14) sur travée et (3T10) sur appuis.

B. Espacement:

Armatures principales

• En travée : $esp \le \frac{100}{4} = 25 \ cm$.

On prend : esp = 20cm < min (3h, 33cm) = 33cm.....vérifie.

• Sur appuis : $esp \le \frac{100}{4} = 25 \text{ cm}.$

On prend: esp = 20cm < min (3h, 33cm) = 33cm....vérifie.

C. Armatures de répartitions :

• En travée : $\frac{A_s}{4} \le A_r \le \frac{A_s}{2}$ \longrightarrow 1.54cm² \le $A_r \le 3.08$ cm². Le choix est de 4T8 = 2,01cm².avec S_t =20cm.

• Sur appuis : $\frac{A_s}{4} \le Ar \le \frac{A_s}{2} \Longrightarrow 0.59 \text{cm}^2 \le A_r \le 1.18 \text{cm}^2$. Le choix est de $4T6 = 1.13 \text{cm}^2$.avec St=20 cm.

D. Vérification de la condition de non fragilité :

$$A_s \ge A_{s \min} = > A_s \ge \frac{0.23bdf_{t28}}{f_e}$$

 $A_{smin} = 0.23 \times 100 \times 13.5 \times 2.4/500) = 1.49 \text{ cm}^2.$

En travée : $A_s = 6.16 \text{ cm}^2 > A_{s \text{ min}} = 1,49 \text{ cm}^2 \dots \text{vérifiée}.$

Sur appuis : As = $2,36 \text{cm}^2 > A_{\text{s min}} = 1,49 \text{cm}^2$ vérifiée

E. Vérification de la flèche [7]:

Suivant BAEL91 [2]:

- As/ $b \times d < 4.2/Fe \Rightarrow 0.005 < 0.0084............CV$
- $h/L \ge Mt/10 \times M0 \Rightarrow 0.033 \ge 0.085............CNV$
- $h/L \ge 1/16 \implies 0.033 \ge 0.0625 \dots CNV.$

Une de ces conditions n'est pas vérifiée donc on va calculer la flèche :

$$Fi = \frac{5 \times P_S \times L^4}{384 \times E \times I}$$

Fi=
$$0.65 < \frac{L}{500} = 0.9$$
CV.

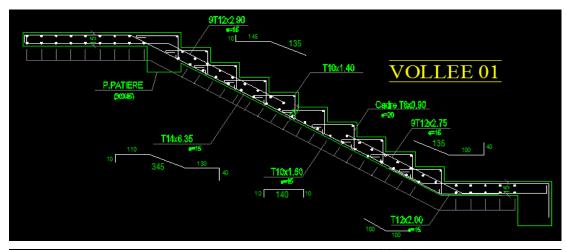


Figure III.9 : Schéma de ferraillage de l'escalier.

III.4.6 Etude de la poutre palière :

III.4.6.1 Pré dimensionnement :

Selon le BAEL91, le critère de rigidité est : avec L= 4.32 m

III.4.6.2 Vérification selon RPA2003:

B=30cm> 20cm....cv h=45cm>30cm....cv

h/b =1.5<4.....cv

III.4.6.3 Les charges supportées par la poutre [8]:

- ✓ Le poids propre de la poutre : $0.3 \times 0.45 \times 25 = 3.38$ kn/ml
- ✓ La réaction du palier :
 - Ru=Qu×1/2 = 25.53kn/ml
 - Rs=Qs×1/2 = 18.32kn/ml
- ✓ A ELU:
 - Pu=1.35G+Ru =30.09kn/ml
- ✓ A ELS:
 - Ps=G+Rs=21.7kn/ml

III.4.6.4 Calcul des sollicitations :

Moment en travée : $Mt = 0.85 \times Pu(L^2)/8 = 59.66 \text{ kn.m}$ Moment en appuis : Ma= $0.4 \times Pu(L^2)/8 = 28.08$ kn.m

III.4.6.5 Calcul de ferraillage :

Tableau III.8: ferraillage de la poutre palière

					<u> </u>	<u>I</u>		
Ferraillage	Mu kn.m	μ	α	Z (m)	A_{s}	$A_s^{min}cm^2$	Choix	$A_s cm^2$
Travée	59.66	0.091	0.117	345.15	4.23	1.19	3HA16	6.03
Appuis	28.08	0.05	0.066	355.22	2.01	1.19	3T14	4.62

III.4.6.5.1 Vérification a ELS:

Mts=0.85Ps (l^2)/8= 16.81kn.m

Mas=0.4Ps $(1^2)/8 = 7.91$ kn.m

III.4.6.5.2 Vérification des contraint de béton :

En travée et en appuis on a vérifié la condition suivante :

$$\alpha \leq \frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$$

Avec:
$$\gamma = \frac{M_{tx}^{u}}{M_{ser}^{ser}}$$

Tableau III.9: Vérification de la contraint de service limite pour le béton

	Mu (KN.m)	Ms (KN.m)	γ	$\frac{\gamma - 1}{2} + \frac{f_{c28}}{100}$	OBS
Travée	58.65	16.81	3.49	1.545	Cv
Appuis	27.6	7.91	3.49	1.545	Cv

III.4.6.5.3 Vérification de l'effort tranchant :

 $T_{max} = Pu*1/2 = 25.53kn$

$$\tau_u = \frac{T_u^{\text{max}}}{b \times d} = \frac{25.53 \times 0.001}{(0.3 \times 40.5)} = 0.236 MPa$$

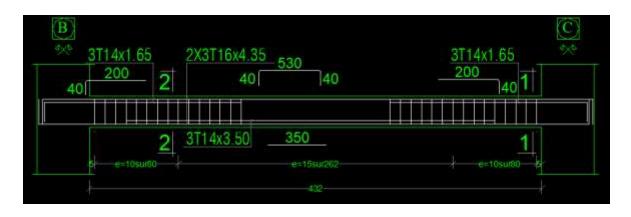
$$\overline{\tau_u} = \min[0.2Fc28/1.5;5mpa] = 5MPa$$

$$\tau_u = 0.236MPa < \overline{\tau_u} = 5MPa$$

III.4.6.5.4 Calcul espacement des armatures transversales :

St < max (0.9d; 4cm) = 32.4cm

III.4.6.5.5 Vérification selon RPA2003 [1]:


• Zone nodal:

 $min (h/4; 12\emptyset) \dots St = 13.68cm$ donc on prender St = 15cm

Avec : $\emptyset = \min(h/35;b/10) = 1.14$

• En d'hors de la zone nodale :

St = h/2 = 20 donc on prendre St = 20 cm

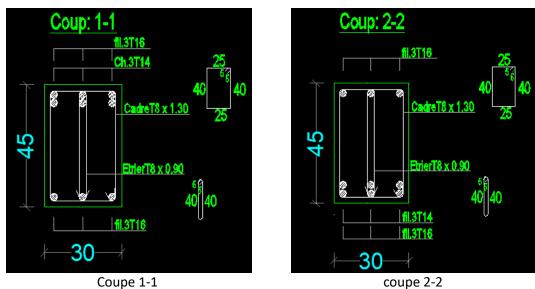


Figure III.10 : Schéma de ferraillage de poutre palière

III.5 Plancher à corps creux :

III.5.1 Poutrelles:

Les poutrelles sont des éléments préfabriqués en béton armé, disposés parallèlement les unes par rapport aux autres, dans le sens de la petite portée et distancées par la largeur d'un corps creux.

Leur calcul est associé à celui d'une poutre continue semi encastrée aux poutres de rives.

$$h_{t} = 21 \, cm \rightarrow \begin{cases} 16 \, cm : Epaisseur du \ corps \ creux. \\ 5 \, cm : Epaisseur de \ la \ dalle \ de \ cmpression \end{cases}$$

On prend la largeur $b_0=12cm$.

• Selon B.A.E.L:

$$\{b_1 \le \frac{L_n - b_0}{2}; b_1 \le \frac{L}{10}; 6h_0 \le b_l \le 8h_0\}$$

Suivant les normes algériennes (BTR.B.C22), la distance L_n est prise généralement égale à 60cm.

Donc pour:

$$\begin{split} L_n &= 60\text{cm et } L = 305\text{cm} \\ \{b_1 \leq \frac{L_n - b_0}{2} = 24 \; ; \; b_1 \leq \frac{L}{10} = 30,5\text{cm} \; ; \; 30 \leq b_1 \leq 40 \} \\ b_1 &= \min \; (24\text{cm} \; ; \; 30,5\text{cm} \; ; \; 40\text{cm}) \quad \text{Donc} \; : \; b_1 = 24\text{cm}. \\ b &= 2b_1 + b_0 = 60\text{cm}. \end{split}$$

Les poutrelles étudiées dans notre structure (tous les blocs) auront les dimensions suivantes :

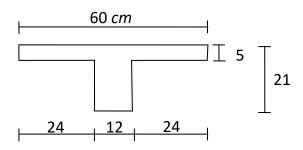


Figure III.11 : Schéma statique de poutrelle

III.5.2 Calcul des poutrelles

1^{ér} étape : Avant le coulage de la table de compression.

Pour b = 1m:

 $G = (0.05 \times 0.12) \times 25 + (0.95 \times 0.65) = 0.72 \text{ KN/ml}$

 $Q = 1 \times 0.65 = 0.65 \text{ kN/ml}$

 $q_u = 1,35G + 1,5Q = (1,35 \times 0,72) + (1,5 \times 0,65) = 1,872 \text{ KN/ml}$

 $M_u = (q \times L^2) / 8 = (1.97 \times (1)^2) / 8 = 0.234 \text{ KN.m}$

h = 50 mm; d = 45 mm

• Calcul du ferraillage a l'E.L.U:

Tableau III.10: Ferraillage de poutrelle a ELU

Ferraillage	μ	α	Z	$A_s cm^2$	Choix de A _s cm ²
Poutrelle	0,0008	0,001	44.98	0.12	négligeable

2^{éme} étape : après le coulage de la table de compression.

Pour le calcul des efforts internes dans les poutrelles sont considérés comme poutres continues sur plusieurs appuis, on utilise l'un des 02 méthodes simplifiées.

- La méthode forfaitaire.
- La méthode de Caquot.

✓ Méthodes forfaitaire:

> Domaine d'application :

 $\mathbf{H_1}: Q \leq Max \{2G ; 5KN/m^2\}$

H₂: Les moments d'inertie des sections transversales sont les mêmes dans les différentes travées en continuité.

H₃: Les portées successives sont dans un rapport compris entre 0,8 et 1,25.

H₄: Fissuration non préjudiciable.

Exposé de la méthode :

$$\begin{split} \bullet & \alpha = \frac{Q}{G+Q} \\ \bullet & M_t \geq Max \{1,05M_o; (1+0,3\alpha)M_o\} - \frac{M_W + M_e}{2} \\ \bullet & M_t \geq \begin{cases} (1+0,3\alpha)\frac{M_o}{2} & ... & ... & ... & ... \\ (1,2+0,3\alpha)\frac{M_o}{2} & ... & ... & ... & ... & ... \\ Travée intermédiare. & ... & ... & ... & ... & ... \\ Travée de rive. & ... & ... & ... & ... & ... \end{aligned}$$

Avec:

 M_0 : La valeur maximale du moment fléchissant dans chaque travée (moment isostatique).

 $(M_W;Me)$:Les valeurs absolues des moments sur appuis de gauche et de droite respectivement dans la travée considérée.

 M_t : Le moment maximale en travée dans la travée considérée.

- Moment sur appuis :
- \star $M=0,2M_0,\ldots$ appuis de rive.
- ❖ $M=0,6M_0...$ pour une poutre à deux travées.
- \bigstar $M=0.5M_0...$ pour les appuis voisins des appuis de rives d'une poutre à plus de deux travées
- \bullet $M=0,4M_0...$ pour les autres appuis intermédiaires d'une poutre à plus de deux travées.

✓ Méthode de CAQUOT :

Cette méthode est appliquée lorsque l'une des conditions de la méthode forfaitaire n'est pas vérifiée.

-Cette méthode est basée sur la méthode des poutres continues.

- Exposé de la méthode :
- ♦ Moment sur appuis :

$$*M_a = 0.5M_0......Appuis de rive.$$

$$Avec: M_0 = \frac{ql^2}{8}$$

$$*M_a = \frac{q_W l_W^{\prime 3} + q_e l_e^{\prime 3}}{8.5(l_W^{\prime} + l_e^{\prime})}.....Appuis intermédiare.$$

♦ Moment en travée :

$$M_{t}(x) = -\frac{qx^{2}}{2} + \left(\frac{ql}{2} + \frac{M_{w} - M_{e}}{l}\right)x + M_{w}$$

Avec:

 M_0 : La valeur maximale du moment fléchissant dans chaque travée (moment isostatique).

 $(M_{\rm W}\,,\,M_{\rm e})$: Les valeurs des moments sur appuis de gauche et de droite respectivement dans la travée considérée.

qw : Charge répartie à gauche de l'appui considéré.

q_e : Charge répartie à droite de l'appui considéré.

On calcule, de chaque côté de l'appui, les longueurs de travées fictives $l^{'}_{W}$ à gauche et l'e à droite, avec :

l'=1....pour une travée de rive.

l'=0,81....pour une travée intermédiaire.

Où : "l" représente la portée de la travée libre.

• Effort tranchant:

$$T_{W} = \frac{ql}{2} + \frac{M_{W} - M_{e}}{l}$$

$$T_{e} = -\frac{ql}{2} + \frac{(M_{W} - M_{e})}{l}$$

Avec:

 T_W : Effort tranchant à gauche de l'appui considéré.

 T_e : Effort tranchant à droite de l'appui considéré.

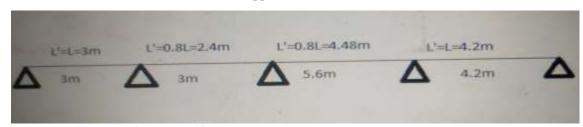


Figure III.12: Les dimensions des travées de BLOC (A)

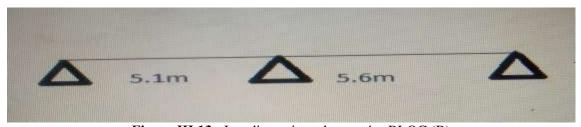


Figure III.13: Les dimensions des travées BLOC (B)

Figure III.14: Les dimensions des travées BLOC (C)

• Les donnée :

Tableau III.11: Les résultats des moments en travées et appuis.

Bloc	Plancher	G	Q	Ml	Mb(-) kn.m			c(-) kn	.m	Mo	d(-) kn	.m	Ma	Mt max
		Kn/m	Kn/m	1	2	3	1	2	3	1	2	3	max (KN.m)	(KN.m)
	Terrasse	4.25	0.6	5.6	5.6	5.4	11.8	10.4	10.4	14.8	13.7	13.7	8.61	14.77
A	habitation	3.5	0.9	5.4	5	4.6	10.8	10.4	8.7	13.5	11.9	11.9	8.13	13.52
	Service	3.83	1.5	7.2	5.9	5.8	13.2	12.6	9.7	16.5	14.2	7.7	12.99	16.99
	Terrasse	4.25	0.6		15.62		0	0	0				19.52	14.26
В	habitation	3.5	0.9		14.29		0	0	0				18.11	14.29
	Service	3.83	1.5		17.45		0	0	0				22.8	17.45
	Terrasse	4.25	0.6	14.3	12.8	13.9							13.53	14.33
С	habitation	3.5	0.9	13.4	10.8	12.5							12.51	13.14
	Service	3.83	1.5	16	12.1	15.1							15.34	16.01

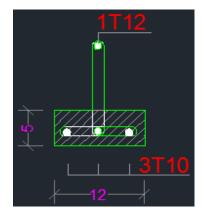
III.5.3 Calcul de ferraillage

A. Ferraillage BLOC A : (On a utilisé la méthode de Caquot).

Tableau III.12 : Ferraillage de poutrelle a ELU BLOC A

	Position	Mmax	μ	a	Z(m)	As cal	As min	Choix
		(kn.m)				(cm2)	(cm2)	
Terrasse	Appuis	8,61	0,024	0.030	186.73	1.05	1.25	As=2T12 (As=2.26cm2)
	Travée	14,77	0.040	0.051	185.14	1.83	1.25	As=3T10 (As=2.36cm2)
Etage	Appuis	8.13	0.022	0.028	186.88	1.00	1.25	2T12 (As=2.26cm2)
Courant	Travée	13.52	0.01	0.013	188.02	1.65	1.25	3T10 (As=2.36cm2)
Etage	Appuis	12.99	0.036	0.046	185.52	1.61	1.25	As=2T12 (As=2.26cm2)
Service	Travée	16.49	0.045	0.012	188.09	2.01	1.25	As=3T10 (As=2.36cm2)

B. Ferraillage BLOC B: (On a utilisé la méthode forfaitaire).


Tableau III.13 : Ferraillage de poutrelle a ELU BLOC B

	Position	Mmax	μ	a	Z(m)	As cal	As min	Choix
		(kn.m)				(cm2)	(cm2)	
Terrasse	Appuis	19,52	0,054	0.069	183.78	2.44	1.25	As=2T14 (As=3.08cm2)
	Travée	14,26	0.039	0.05	185.22	1.77	1.25	As=3T10 (As=2.36cm2)
Etage	Appuis	18,11	0.05	0.064	184.16	2.26	1.25	2T14 (As=3.08cm2)
Courant	Travée	14,29	0.039	0.05	185.22	1.77	1.25	3T10 (As=2.36cm2)
Etage	Appuis	22 ,8	0.063	0.081	182.88	2.87	1.25	As=2T14 (As=3.08cm2)
Service	Travée	17,45	0.048	0.062	184.31	2.18	1.25	As=3T10 (As=2.36cm2)

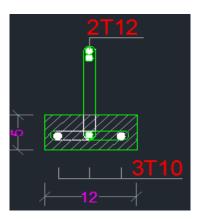
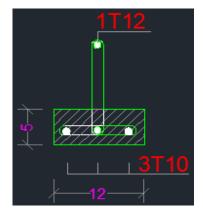
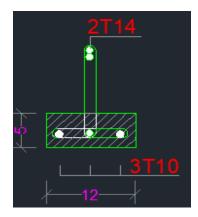

C. Ferraillage BLOC C: (On a utilisé la méthode de Caquot).

Tableau III.14 : Ferraillage de poutrelle a ELU BLOC C


Tubleau IIIII : I chamage de poddene a EEE BEOC C										
	Position	Mmax	μ	a	Z(m)	As cal	As min	Choix		
		(kn.m)				(cm2)	(cm2)			
Terrasse	Appuis	13,53	0,037	0.047	185.45	1.68	1.26	As=2T12 (As=2.26cm2)		
	Travée	14,33	0.039	0.05	185.22	1.78	1.26	As=3T10 (As=2.36cm2)		
Etage	Appuis	12,51	0.034	0.043	185,75	1.55	1.26	As=2T12 (As=2.26cm2)		
Courant	Travée	13.14	0.036	0.077	183.18	1.65	1.26	As=3T10 (As=2.36cm2)		
Etage	Appuis	15,34	0.042	0.054	184.92	1.91	1.26	As=2T12 (As=2.26cm2)		
Service	Travée	16.01	0.044	0.056	184.77	1.99	1.26	As=3T10 (As=2.36cm2)		


Ferraillage poutrelle en travée bloc A et C

Ferraillage poutrelle en appuis bloc A et C

Ferraillage poutrelle en travée bloc B

Ferraillage poutrelle en appuis bloc B

Figure III.15 : Schéma de ferraillage de la poutrelle

III.5.4 Vérification à ELS:

• Contraintes des aciers :

Fissuration par nuisible pas de vérification des aciers.

• Contraintes du béton :

 $\sigma_{bc} \leq \sigma'_{bc}$

17 MPa ≤ 18 MPa condition vérifiée

• Vérification de la flèche :

 $h/L \ge 1/16$ et $As/bod \le 4$, 2/Fe et $h/L \ge M_t/10M_0$

• les données :

Tableau III.15: les dimensions et les moments des poutrelles.

	H (cm)	L (cm)	As(cm2)	Bod(mm)	Fe(MPa)	$M_t(KN.m)$	$M_0(KN.m)$
BLOC A	210	300	1.61	600 x189	500	12.99	8.35
BLOC B	210	510	2.87	600 x189	500	22.8	24.12
BLOC C	210	305	1.91	600 x189	500	15.34	8.62

• Résultat :

Tableau III.16: vérification a ELS

	h/L	As/bod	4,2/Fe	$M_t/10M_0$	Remarque
BLOC A	0.7	0.0014	0.0084	0.16	CV
BLOC B	0.41	0.0025	0.0084	0.09	CV
BLOC C	0.69	0.0017	0.0084	0.18	CV

III.6 L'ascenseur:

III.6.1 Etude de l'ascenseur :

D'après la norme française **NF-P82-209** qui répartit les ascenseurs en cinq classes dont la classe I contient les ascenseurs destinés principalement au transport des personnes, que l'on désignait auparavant sous le terme simple d'ascenseur.

Les dimensions sont :

-Largeur de la cabine : Lc = 1.10m-Profondeur de la cabine : Pc = 1.40m-Largeur de la gaine : $L_G = 1.50m$ -Profondeur de la gaine : $P_G = 1.70 m$ -Hauteur de la cabine : Hc = 2.20m-Largeur du passage libre : Lp = 0.80m-Hauteur du passage libre : Hp = 2.00m-Epaisseur de voile : e = 15cmC = 31.56 m-Hauteur de course :

Remarque:

Figure III.16 : Schéma des voiles de la cage

d'ascenseuı

Les dimensions de l'ascenseur sont prises en assurant la protection contre le feu et le bruit, pour cela on prend l'épaisseur de la dalle machine égale à 15cm; et une gaine d'ascenseur de vitesse supérieure à 1 m/s.

III.6.1.1 Descente de charges :

III.6.1.1.1 Surcharge d'exploitation:

Q = 600 daN (08 personnes)

III.6.1.1.2 Charges permanentes:

- Masse de la cabine : est composé de la somme des masses suivantes :
- Masse des côtés :

$$S_1 = (L_C + 2 \cdot P_C) \cdot H_C = (1.10 + 2 \times 1.40) \times 2.20 = 8.58 m^2$$

 $M_1 = (11.5 + 0.1 \times 11.5) \times 8.58 = 108.54 \text{ daN}$

Masse du plancher :

$$S_2 = L_C \cdot P_C = 1.10 \times 1.40 = 1.54 \text{ m}^2$$

$$M_2 = 70 \times 1.54 = 107.8 \text{ daN}$$

Masse du toit :

$$S_3 = L_C \cdot P_C = 1.10 \times 1.40 = 1.54 \text{ m}^2$$

$$M_3 = 20 \times 1.54 = 30.8 \,\text{daN}$$

Masse de l'arcade :

$$M_4 = 60 + (60 \times 1.10) = 126 daN$$

Masse de La porte de la cabine :

$$M_5 = 80 + (25 \times 0.8 \times 2) = 120 \text{daN}$$

Masse du parachute :

Parachute à prise amortie \Rightarrow M₆ = 100daN

Masse des accessoires :

 $M_7 = 80 \text{daN}$.

Masse des poulies de mouflage :

Deux poulies supplémentaires \Rightarrow M₈ = 30×2 = 60 daN

Donc le poids mort est égal à :

$$P_{_T} = \sum M_{_i} = 108.54 + 107.80 + 30.8 + 126 + 120 + 100 + 80 + 60 = 733.14 daN$$

Masse du contre poids :

$$M_p = P_T + \frac{Q}{2} = 733.14 + \frac{600}{2} = 1033.14 daN$$

Masse du câble :

D'après la norme NF 82-210 o na :

$$\begin{cases} D/d = 40 \implies d = D/40 = 500/40 \implies d = 12.5 \text{mm.} \\ C_s = 13 \end{cases}$$

$$C_s = \frac{C_r}{M} \implies C_r = C_s \cdot M$$

M : égal à la somme de la charge utile Q, poids mort P et la masse des câbles qui est considérée comme négligeable par rapport aux deux autres.

$$C_r = C_s.M \implies Cr = 13 \times (600 + 733.14)$$
 donc: $Cr = 17330.82$ daN

Pour obtenir la charge de rupture minimale nécessaire $C_{\rm m}$, il convient de faire intervenir le coefficient de câblage qui est égal à 0.85 donc:

$$C_m = \frac{C_r}{0.85} \Rightarrow C_m = \frac{17330.82}{0.85} = 20389.20 \text{daN}$$

 $d = 12.5 \,\text{mm} \implies C_r (\text{cable}) = 8152 \,\text{daN} \text{ (voir tableau suivant)}$:

Diamètre	Diamètres des	S4:	Masse linéaire M _L	Charge
des câbles	fils	Section	[daN/m]	admissible totale
[mm]	[mm]	[mm ²]		C _r [daN]
7.87	0.5	21.05	0.203	3223
9.48	0.6	30.26	0.293	4650
11.00	0.7	41.27	0.396	6232
12.6	0.8	53.34	0.515	8152
14.2	0.9	67.98	0.656	10805
15.5	1.0	83.84	0.810	12830

Tableau III.17: Caractéristiques des câbles

$$n = \frac{20389.2}{2 \times 8152}$$
 \Rightarrow $n = 1.25$ On prend : $n = 2$ câbles.

Masse totale des câbles M_c:

$$M_c = M_L.n.C$$

Avec:

d = 12.5mm d'âpres le tableau on a $M_L = 0.515$ daN/ m_L et C = 31.56m.

 $Mc = 0.515 \times 2 \times 31.56 = 32.5 \text{ daN}.$

Masse du treuil :

$$M_{\sigma} = 1200 \, daN$$

III.6.1.2 Combinaisons fondamentales:

Etat limite ultime :

$$q_u = 1.35G + 1.5Q = 1.35 \times 2998.78 + 1.5 \times 600 = 4948.35 \text{ daN}.$$

Etat limite de service :

$$q_{ser} = G + Q = 2998.78 + 600 = 3598.78 \text{ daN}.$$

III.6.1.3 Etude du plancher :

a. Vérification de poinçonnement [8]:

Pour chacun des quatre appuis :

$$q_a^u = \frac{q_u}{4} \Longrightarrow q_u^a = 1236.73 \text{daN}$$

$$q_a^{ser} = \frac{q_{ser}}{4} \Longrightarrow q_{ser}^a = 899.43 daN$$

D'après l'article A.5.2.4 du B.A.E.L.91^[2]:

$$\text{Si}: \ q_{a}^{\,u} \leq \frac{0.045 \times Uc \times f_{c28} \times h}{\gamma_{b}} \Longrightarrow \text{Les armatures transversales ne sont pas nécessaires}$$

La surface impact (a \times b) est de (10 \times 10) cm²

$$U = a + 2$$
. $\frac{h}{2} = 10 + 2 \times \frac{15}{2} \implies U = 25$ cm.

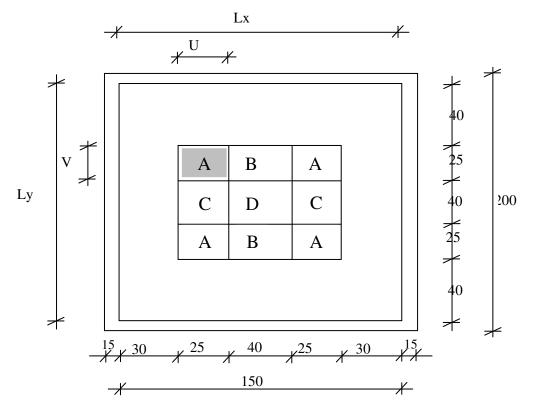
$$V = b + 2$$
. $\frac{h}{2} = 10 + 2x \frac{15}{2} \Rightarrow V = 25$ cm.

Donc:

$$Uc = 2 \times [U+V] \implies Uc = 100cm.$$

$$q_a^u = 12367.3N < \frac{0.045 \times 1000 \times 25 \times 150}{1.5} = 112500N.....$$
Condition vérifiée

• Conclusion: La dalle résiste au poinçonnement.


III.6.1.4 Calcul des moments dus aux charges concentrées

Lorsque la charge n'est pas concentrique, on procède de la façon suivante [9]:

Soit pour **Figure III.17** une dalle de dimension $(L_x \times L_y)$ soumise à une charge concentrique (A) répartie sur un rectangle $(U \times V)$.

On divise la dalle en rectangles fictifs donnant les charges symétriques :

04 rectangles symétriques A ; 02 rectangles symétriques B ; 02 rectangles symétriques C et 0 rectangle au centre D.

Figure III.17 : Schéma de la dalle pleine des voiles de la cage d'ascenseur.

IV Ι II Ш 0.9 0.40 0.40 U en [m] 0.90 $0.9\overline{0}$ V en [m] 0.40 0.90 0.40 S en [m²] 0.16 0.81 0.36 0.36 0.27 0.27 U/L_x 0.60 0.60 0.23 V/L_v 0.53 0.23 0.53 0.099 0.135 0.160 M_1 0.087 M_2 0.071 0.096 0.100 0.140 160280.21 71235.65 71235.65 31660.29 $Q_a^{/u} = Q_a^u \times S \text{ en } [N]$ $Q_a^{/ser} = Q_a^{ser} \times S \text{ en } [N]$ 116566.13 51807.17 51807.17 23025.41 13944.38 7052.33 9616.81 5065.69 $M_{\rm X}^{\rm U}$ en [N.m] 11379.89 6838.62 7123.56 4432.44 M_{v}^{U} en [N.m] 11796.50 M_x en [N.m] 6123.61 8030.11 4328.78 10304.44 5999.27 6579.51 3960.37 M_y en [N.m] M_{XC}^{U} en [N.m] 2340.90 M_{YC} en [N.m] 1850.15 M_{XC} en [N.m] 1971.56 1686.03 M_{yC}^{ser} en [N.m]

Tableau III.18: Tableau récapitulatif des résultats des moments

III.6.2 Etude de la dalle machine :

La dalle d'ascenseur doit avoir une certaine rigidité vu le poids de la machine ; Nous avons deux conditions à vérifier ^[10] :

a). Résistance à la flexion :

$$\frac{L_x}{50} \le e \le \frac{L_x}{40} \qquad \Rightarrow \qquad \frac{150}{50} \le e \le \frac{200}{40}$$

 $3cm \le e \le 5cm$

b).Condition de l'ENA:

On prend : e=25cm

✓ Détermination des charges et surcharges :

- Charges permanentes :
 - Poids de la dalle machine supportée......5000dan/m²
 - Poids propre de la dalle.....25x0,25=625dan/m²

 $G=5625dan/m^2$

• Surcharges d'exploitation : $O=1KN/m^2$

III.6.2.1 Descente des charges :

Dalle machine : $(e_p = 25 \text{cm}) \Rightarrow G = 0.25 \times 2500 = 625 \text{ } daN/m^2$

La dalle n'est pas accessible, alors la surcharge d'exploitation $Q = 100 \text{ daN/m}^2$

III.6.2.2 Combinaison fondamentale:

Etat limite ultime (E.L.U.):

$$q_u = 1.35G + 1.5Q$$

$$q_u = 1.35 \times 375 + 1.5 \times 100 = 943.75 \text{ daN/m}^2$$
.

Pour une bande de 1m de largeur :

$$q_{u} = q_{u} \times 1.00 = 943.75 \text{ daN/m}_{L}$$
.

> Etat limite de service (E.L.S.):

$$q_{ser} = G + Q$$

$$q_{ser} = 625 + 100 = 725 daN/m^2$$
.

Pour une bande de 1m de largeur

$$q_{s} = q_{s} \times 1.00 = 725 \text{ daN/m}_{L}.$$

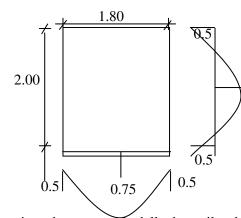


Figure III.18 : Dimensions de panneau de dalle des voiles de la cage d'ascenseur

III.6.2.3 Calcul des moments dus aux charges réparties :

Etat limite ultime (E.L.U.):

$$\rho = \frac{Lx}{Ly} = \frac{1.80}{2.00} = 0.90 \quad \text{tableau} \quad \mu_x^{\ u} = 0.0456 \quad \text{et} \quad \mu_y^{\ u} = 0.7834$$

$$M_x^u = \mu_x^u \times \overline{q}_u \times L_x^2 = 0.0456 \times 943.75 \times 1.80^2 = 139.43 daN.m$$

$$M_{v}^{u} = \mu_{v}^{u} \times M_{x}^{u} = 0.7834 \times 139.43 = 109.65 \, daN.m$$

Etat limite de service :

$$\rho = \frac{Lx}{Ly} = \frac{1.80}{2.00} = 0.90 \text{ tableau} \quad \mu_x^{\text{ser}} = 0.0528 \text{ et } \mu_y^{\text{ser}} = 0.8502$$

$$M_x^{ser} = \mu_x^{\overline{ser}} \times q_{ser} \times L_x^2 = 0.0528 \times 725 \times 1.8^2 = 124.03 \, daN.m$$

$$M_y^{ser} = \mu_y^{ser} \times M_x^{ser} = 124.03 \times 0.8502 = 105.45 \, daN.m$$

• Coefficient de poisson :

 $\begin{cases}
\nu = 0 \implies \text{Etats limites ultimes (béton fissuré)} \\
\nu = 0.2 \implies \text{Etats limites de service (béton non fissuré).}
\end{cases}$

III.6.2.4 Moments total sollicitant la dalle machine :

Ce sont les moments dus aux charges concentrées et les moments dus aux charges réparties :

> Etat limite ultime (E.L.U.):

$$M_{xt}^{u} = (M_{xc}^{u} + M_{x}^{u}) = (2340.90 + 1394.3) \Rightarrow M_{xt}^{u} = 3735.2 N$$

$$M_{yt}^{u} = (M_{yc}^{u} + M_{y}^{u}) = (1850.15 + 1096.5) \Rightarrow M_{yt}^{u} = 2946.65 N$$

Etat limite de service (E.L.S.):

$$M_{xt}^{ser} = (M_{xc}^{ser} + M_{x}^{ser}) = (1971.56 + 1240.3) \Rightarrow M_{xt}^{ser} = 3211.86N$$

 $M_{yt}^{ser} = (M_{yc}^{ser} + M_{y}^{ser}) = (1686.03 + 1054.5) \Rightarrow M_{yt}^{s} = 2740.53N$

• Moment max en travée : $Mt = 0.75 \times M_{xt}$

• Moment max en appuis : $Ma = -0.5 \times M_{xt}$

Tableau III.19: Tableau récapitulatif des sollicitations maximales

moment panneau	M_{tx}^{u} [daN.m]	M ser [daN.m	M _{ax} [daN.m]	M ser ax [daN.m]	M ty [daN.m	M ser ty [daN.m]	M ^u _{ay} [daN.m]	M ser ay [daN.m
(1)	280.14	240.89	-186.76	-160.59	220.99	205.54	-147.33	-137.03

III.6.2.5 Calcul du ferraillage de la dalle machin :

ELU:

Tableau III.20 : ferraillage de la dalle machine

	Position	ELU	Mt ;Ma (daN.m)	μ	A	b	At.; Aa (cm2/ml)	Amin (cm2)	Choix
Sens	Travée	Elu	280.14	0.004	0.005	0.998	0.29	2	4T10 (3.14cm2)
X-X	Appuis	Elu	-186.76	0.003	0.004	0.998	0.19	2	4T10 (3.14cm2)
Sens	Travée	Elu	220.99	0.003	0.004	0.998	0.23	2	4T10 (3.14cm2)
у-у	Appuis	Elu	-147.33	0.002	0.003	0.998	0.15	2	4T10 (3.14cm2)

ELS:

- Flexion simple

- Section rectangulaire

$$- \gamma = \frac{M_{tx}^{u}}{M_{tx}^{ser}}$$

Avec:
$$\alpha \le \frac{\gamma - 1}{2} + \frac{f_{c28}}{100} \Rightarrow \sigma_b \le \overline{\sigma_b} = 0.6 \times f_{c28} = 15 MPa$$

Tableau III.21: vérification a ELS

		$M_{tx;y}^{ser}$ daN.m	γ	σ _b (MPA)	σ' _b (MPA)	Remarque
Sens xx	Appuis	-160.59	1.16	0.33	15	Cv
AA	Travées	240.89	1.16	0.33	15	Cv
Sens	Appuis	-137.03	1.08	0.29	15	Cv
YY	Travées	205.54	1.08	0.29	15	Cv

- Vérification des contraintes de cisaillement :
- Tu max

$$T_x^u = q_a^u + q_u \times \frac{Lx}{2}$$

$$T_x^u = 1236.73 + 656.25 \times \frac{1.80}{2} = 1827.35 \text{ daN}$$

> Calcul τ_u :

$$\tau_{u} = \frac{T_{u}^{\text{max}}}{b \times d} = \frac{1827.35 \times 10}{(100 \times 13.5) \times 100} = 0.13 \text{MPa}$$

$$\overline{\tau_{u}} = 0.05 \times f_{c28} = 1.25 \text{MPa}$$

- $\tau_u = 0.13 \,\mathrm{MPa} < \overline{\tau_u} = 1.25 \,\mathrm{MPa}$
- Les armatures transversales ne sont pas nécessaires donc Il n'y a pas de reprise de bétonnage
 - Vérification de la flèche :

➤ Condition de la flèche : [BAEL 91 / B.7.5] [2]

$$\frac{h_d}{L_x} > \frac{M_{tx}^{ser}}{20 M_x^{ser}}$$

$$\rho = \frac{A}{b \times d_{x}} < \frac{2}{fe}$$

> Vérification si la flèche est nécessaire:

$$\frac{h_d}{L_x} \ge \frac{M_{tx}^{ser}}{20M_{xt}^{ser}} \Rightarrow \frac{h_d}{L_x} = \frac{15}{180} = 0.083 \rangle \frac{208.81}{20 \times 2784.16} = 0.0037 \dots \text{condition vérifiée}$$

$$\rho = \frac{A}{b \times d_x} \le \frac{2}{f_e} \Rightarrow \frac{3.14}{100 \times 13.5} = 0,0023 \langle \frac{2}{500} = 0.004..... \text{ condition vérifiée }; f_e \text{ en(MPa)}$$

• **Conclusion** : les 02 conditions sont vérifiées, alors le calcul de la flèche n'est pas nécessaire.

III.6.3 Ferraillage des voiles de l'ascenseur :

Tableau III.22 : Résultat de ferraillage vertical

N	e	L	M	N	As	As _{RPA}	Asmin	As	
	(m)	(m)	(KN.m)	(KN)	(cm2)	(cm2)	(cm2)	adopté	CHOIX DES
								(cm2)	ARMATURES
-àma	0.15	3.23	-0.7042	0.36	7.6245	7.625	5.12		2x(6HA10)
5 ^{ème}					7.0243			9.42	
4 ^{ème}	0.15	3.23	-0.6323	0.24	6. 5204	6. 520	5.09		
4								9.42	2x(6HA10)
3 ^{éme}	0.15	3.23	-0.6044	0.179	6.4761	6.476	5.08		
3								9.42	2x(6HA10)
2ème	0.15	3.23	-0.5332	0.146	6.3520	6.352	5.06		
<u> </u>								9.42	2x(6HA10)
1 ^{ér}	0.15	3.23	-0.4667	0.136	6.3142	6.314	5.02		
1								9.42	2x(6HA10)
RDC	0.15	3.23	-0.393	0.108	6.3064	6.306	4.97		
								9.42	2x(6HA10)
1 ^{èr}	0.15	3.23	-0.3399	0.084	6.2981	6.298	4.98		
E-S								9.42	2x(6HA10)
2 ^{ème}	0.15	3.23	-0.2589	0.064	6.2436	6.244	4.89		
E-S								9.42	2x(6HA10)
3 ^{eme}	0.15	3.23	-0.294	0.053	6.2216	6.222	4.75		
E-S								9.42	2x(6HA10)
4 ^{ème}	0.15	3.23	-0.263	0.042	6.2157	6.216	4.66		
E-S								9.42	2x(6HA10)
5 ^{ème}	0.15	3.23	-1250.4	1001.3	20.485	9.536	6.61		
E-S								22.6	2x(11HA12)

Tableau III.23 : Résultat de ferraillage horizontal

	L	V max	τu	₹ u	Condition	At (cm2)	Atmin (cm2)	At adopté	St (cm)	Choix des barres
v 3	3.23									
		20.356	0.04	6	vérifier	0.28	8.55	12.43	20	11HA12

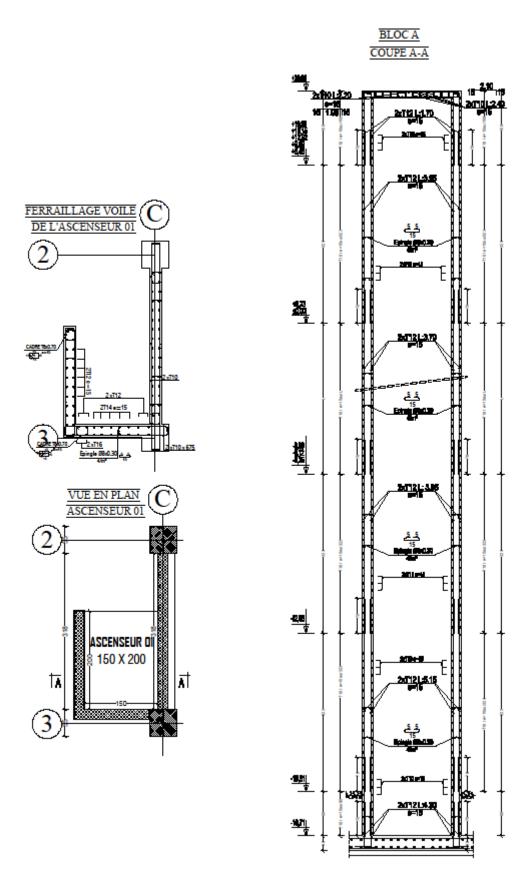


Figure III.19 : Schéma de ferraillage des voiles de la cage d'ascenseur

III.7 Conclusion:

La résistance de la structure dépend de la rigidité de chaque élément qui la constitué.

L'étude des éléments non structuraux ou bien secondaires dans la structure a pour but d'assurer le confort et la sécurité des personnes.

IV.1. Introduction:

Le calcul parasismique a pour but l'estimation des valeurs caractéristiques les plus défavorables de la réponse sismique et le dimensionnement des éléments résistants, afin d'obtenir une sécurité jugée satisfaisante pour l'ensemble de l'ouvrage. Toute structure implantée en zone sismique est susceptible de subir durant sa durée de vie une excitation dynamique de nature sismique. De ce fait la détermination de la réponse sismique de la structure est incontournable lors de l'analyse et de la conception parasismique de cette dernière. Ainsi le calcul d'un bâtiment vis à vis du séisme vise à évaluer les charges susceptibles d'être engendrées dans le système structurel lors du séisme. Dans le cadre de notre projet, la détermination de ces efforts est conduite par le logiciel SAP2000

IV. 2 Étude dynamique :

L'analyse dynamique nécessite toujours initialement de créer un modèle de calcul représentant la structure. Ce modèle introduit en suite dans un programme de calcul dynamique permet la détermination de ses modes propre de vibrations et des efforts engendrés par l'action sismique.

IV.2.1. Modélisation de la rigidité :

La modélisation des éléments constituants le contreventement (rigidité) est effectué comme suit:

- Chaque poutre et chaque poteau de la structure a été modélisé par un élément linéaire type poutre (frame) à deux nœuds, chaque nœud possède 6 degrés de liberté (trois translations et trois rotations).
- Les poutres entre deux nœuds d'un même niveau (niveau i).
- Les poteaux entre deux nœuds de différent niveaux (niveau i et niveau i+1).
- Chaque voile est modélisé par un élément surfacique type Shell à quatre nœuds après on l'a divisé en mailles.
- Chaque plancher est modélisé par un élément surfacique type Shell à quatre nœuds.
- A tous les planchers nous avons attribués une constrainte de type diaphragme ce qui correspond à des planchers infiniment rigide dans leur plan.
- Tous les nœuds de la base du bâtiment sont encastrés (6DDL bloqués).

IV.2.2. Modélisation de la masse :

- La charge des planchers est supposée uniformément répartie sur toute la surface du plancher. La masse est calculée par l'équation (G+ β Q) imposée par le RPA99 version2003 avec (β =0,2) pour un bâtiment à usage d'habitation. (mass source).
- La masse volumique attribuée aux matériaux constituant les poteaux et les poutres est prise égale à celle du béton à savoir 2,5t/m3.

• La charge de l'acrotère et des murs extérieurs (maçonnerie) a été répartie aux niveaux des poutres qui se trouvent sur le périmètre des planchers (uniquement le plancher terrasse pour l'acrotère).

IV.3. Choix de la méthode de calcul:

Le choix des méthodes de calcul et la modélisation de la structure ont comme objectif de prévoir aux mieux le comportement réel de l'ouvrage. Les règles parasismiques Algériennes (RPA99/version2003) propose trois méthodes de calcul des sollicitations.

- 1- La méthode statique équivalente.
- 2- La méthode d'analyse modale spectrale.
- 3-La méthode d'analyse dynamique par accélérogramme.

IV.3.1. La méthode statique équivalente :

a. Principe:

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique. Le mouvement du sol peut se faire dans une direction quelconque dans le plan horizontal.

Les forces sismiques horizontales équivalentes seront considérées appliquées successivement suivant deux directions orthogonales caractéristiques choisies par le projecteur. Dans le cas général, ces deux directions sont les axes principaux du plan horizontal de la structure.

b. Conditions d'applications :

Les conditions d'applications de la méthode statique équivalente sont :

- -Le bâtiment ou bloc étudié, satisfaisait aux conditions de régularité en plan et en élévation avec une hauteur au plus égale à 65m en zones I et II et à 30m en zones III.
- -Le bâtiment ou bloc étudié présente une configuration irrégulière tout en respectant, outres les conditions de hauteur énoncées en haut, et les conditions complémentaires suivantes :

Zone III:

Groupe d'usage 3 et 2, si la hauteur est inférieur ou égale à 5 niveaux ou 17m.

Groupe d'usage 1B, si la hauteur est inférieur ou égale à 3 niveaux ou 10m.

Groupe d'usage 1A, si la hauteur est inférieur ou égale à 2 niveaux ou 8m.

La méthode statique équivalente n'est pas applicable dans le cas de notre bâtiment car la structure est en zone III de groupe d'usage 2 et sa hauteur dépasse les 17m.

IV.3.2.Introduction du spectre de réponse :

La structure est soumise au séisme à travers le spectre de réponse, on peut définir la direction qui coïncidant avec les axes principaux de la structure, introduire les valeurs du coefficient d'amplification en fonction de la période sur le type du sol, le facteur de réduction de la réponse sismique et la valeur du coefficient d'amortissement [9].

L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases}
1,25A \left(1 + \frac{T}{T_1} \left(2,5\eta \frac{Q}{R} - 1\right)\right) & \dots & 0 \le T \le T_1 \\
2,5\eta \left(1,25A\right) \left(\frac{Q}{R}\right) & \dots & T_1 \le T \le T_2 \\
2,5\eta \left(1,25A\right) \left(\frac{Q}{R}\right) \left(\frac{T_2}{T}\right)^{\frac{2}{3}} & \dots & T_2 \le T \le 3,0s \\
2,5\eta \left(1,25A\right) \left(\frac{T_2}{3}\right)^{\frac{2}{3}} \left(\frac{3}{T}\right)^{\frac{5}{3}} \left(\frac{Q}{R}\right) & \dots & T > 3,0s
\end{cases}$$

Figure IV.1 : Spectre de réponse

Avec:

A : Coefficient d'accélération de zone (Zone III)

Pour notre cas:

- * l'ouvrage est de grande importance (groupe 2 : bâtiment d'habitation collective dont la hauteur ne dépasse pas 48m).
 - * L'implantation de cet bâtiment se fera dans la Wilaya d'Alger (**Zone III**).

Donc : (A=0,25)

 η : Facteur de correction d'amortissement (quant l'amortissement est différent de 5%).

$$\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7 \implies =0.882$$

 ξ :Pourcentage d'amortissement critique (ξ =7%).

R : Coefficient de comportement de la structure R=3.5

 T_1 , T_2 : Périodes caractéristiques associées à la catégorie de site (site $2:T_1=0,15s$; $T_2 = 0.50s$).

Q : Facteur de qualité.

$$Q = 1 + \sum_{1}^{6} Pq = 1.2$$

IV.4 Résultats du SAP2000:

IV.4.1 BLOC A

IV.4.1.1 Période et participation massique

Tableau.IV.1: période et facteur de participation massique

Mode	Période (s)		Facteur de parti	icipation massiqu	ue
		Dir (x-x)	Dir (y-y)	Sum (x-x)	Sum (y-y)
1	<mark>0.945718</mark>	0.75627	0.00269	0.75627	0.00269
2	0.911158	0.00639	0.62375	0.76266	0.62644
3	0.726105	0.00564	0.00529	0.7683	0.70173
4	0.301234	0.13003	0.00128	0.89833	0.70301
5	0.258467	0.00364	0.12334	0.90197	0.82635
6	0.208007	0.00103	0.04758	0.903	0.87394
7	0.156616	0.02026	0.00003911	0.92326	0.87398
8	0.155911	0.0214	0.00022	0.94466	0.87419
9	0.121132	0.00076	0.03422	0.94542	0.90842

Constations:

- 1. Les deux premiers modes sont des modes de translation pure suivant (x-x) et (y-y).
- 2. Le $3^{\hat{e}me}$ mode est un mode de rotation.
- 3. La participation massique dépasse 90% au $9^{\acute{e}me}$ mode.

$$T_{RPA99} = Min \begin{cases} C_T h_N^{3/4} = 0.74s \\ \frac{0.09h_N}{\sqrt{D}} = 0.604s...... \text{ (Suivant x-x)} \\ \frac{0.09h_N}{\sqrt{D}} = 0.716s....... \text{ (Suivant y-y)} \end{cases}$$

 h_N : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau (36.38m).

 C_T : Coefficient, il est en fonction du système de contreventement et du type de remplissage $(C_T = 0.05 \text{ portiques auto-stables en béton armé avec remplissage en maçonnerie}).$

D : Dimension du bâtiment mesurée à sa base dans la direction de calcul considérée.

IV.4.1.2 Résultante des forces sismiques:

a). Détermination de la force (V):

$$V = \frac{A.D.Q}{R}W$$

$$T_2 \le T \le 3.0s \Longrightarrow D = 2.5\eta \left(\frac{T_2}{T}\right)^{2/3}$$

W:Poids total de la structure.

D: Facteur d'amplification dynamique moyen, il est en fonction de la catégorie de site, du facteur de correction d'amortissement (η) et de la période fondamentale de la structure (T).

sens	D "dimension de batiment"	Т	T_2	η	D
X-X	29.4	0.604	0.5	0.882	1.944
у-у	20.9	0.716	0.5	0.882	1.736

Tableau.IV.2: Détermination de la force (V)

sens	A	Q	R	W(KN)	V	0.8V(KN)	E (KN)	Obs.
X-X	0.25	1.2	3.5	65056.869	11292.0137	9033.61095	9152.263	OK
у-у	0.25	1.2	3.5	65056.869	10083.8147	8067.05176	9051.554	OK

IV.4.1.3 Vérification des déplacements inter étages :

D'après le $RPA99^{[1]}$, le déplacement horizontal à chaque niveau « K » de la structure est calculé comme suit :

$$\delta_{K} = R\delta_{eK}$$

Avec:

 δ_{eK} : Déplacement dû aux forces sismiques.

R: Coefficient de comportement (R=3.5).

Le déplacement relatif au niveau « K » par rapport au niveau « K-1 » est égal à :

$$\Delta_K = \delta_K - \delta_{K-1}$$

Le RPA99 [1] préconise que les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents ne doit pas dépasser 1% de h_e , où h_e représente la hauteur de l'étage considéré.

Donc il faut vérifier que :

$$\Delta_K \leq \overline{\delta}$$

 $\overline{\delta}$: Déplacement relatif admissible.

$$\bar{\delta} = 0.01 h_a$$

Niveaux Vérification $\delta_{eK}^{x}(cm) \left| \delta_{eK}^{y}(cm) \right|$ $\delta_K^x(cm)$ $\delta_K^{y}(cm)$ $\Delta_K^{x}(cm)$ $\Delta_K^{y}(cm)$ $\overline{\Delta}(cm)$ 5^{eme} E 5.7653 8.3443 20.17855 29.20505 1.1529 2.5228 3.23 vérifier 4^{eme} E 7.6235 2.7244 3.23 5.4359 19.02565 26.68225 1.37375 Vérifier 3^{eme} E 5.0434 6.8451 17.6519 23.95785 1.65165 2.95225 3.23 Vérifier $\overline{2^{eme}}$ E 4.5715 6.0016 16.00025 21.0056 1.8739 3.12445 3.23 Vérifier 1^{eme} E 4.0361 5.1089 14.12635 17.88115 2.0797 3.2277 3.23 Vérifier 4.1867 12.04665 14.65345 **RDC** 3.4419 2.21165 3.20915 3.23 vérifier 1^{er} ES 2.81 3.2698 9.835 11.4443 2.03105 2.82905 3.06 vérifier 2^{eme} ES 2.2297 2.4615 7.80395 8.61525 1.9754 2.55255 3.06 Vérifier 3^{eme} ES 1.7322 1.6653 5.82855 6.0627 2.13325 2.4878 3.23 Vérifier 4eme ES Vérifier 1.0214 3.6953 3.5749 2.0076 2.08425 3.23 1.0558 $\overline{5}^{\text{eme}}$ ES 0.4822 0.4259 1.6877 1.49065 1.6877 1.49065 4.42 Vérifier

Tableau.IV.3: Vérification des déplacements inter étages

Constations:

- 1. On remarque que le déplacement $(\delta_x; \delta_y)$ croit en hauteur jusqu'à atteindre le maximum à la tête de la structure.
- 2. Les déplacements relatifs inter- étages sont inférieurs à la limite imposée par le *RPA99* [1].

IV.4.1.4 Vérification Spécifique Aux Sollicitations Normales:

Outre les vérifications prescrites par le C.B.A ^[3] et dans le but d'éviter ou limiter le risque de rupture fragile sous sollicitations d'ensemble dues au séisme, l'effort normal de compression de calcul est limité par la condition suivante :

$$v = Nd \ Bc \ fc28 \le 0.30$$

Avec:

Nd : l'effort normal de calcul s'exerçant sur une section de béton

Bc: l'aire (section brute) de cette dernière

fc28 : la résistance caractéristique du béton à 28 jours (30 MPA).

Tableau IV.4 : Vérification de l'Effort Normal pour les Poteaux

Nd (KN)	Bc (cm2)	ν	obs
4261.252	70×70	0.29	<0.3
2058.271	65×65	0.18	<0.3
975.833	60×60	0.11	<0.3

IV.4.1.5 Justification vis-à-vis de l'effet P- Δ :

Les effets du 2° ordre (ou effet P- Δ) peuvent être négligés dans le cas des bâtiments si la condition suivante est satisfaite à tous les niveaux:

$$\theta = \frac{P_k \Delta_k}{V_k h_k} \le 0.10 \text{ "RPA99 version 2003"}^{[1]}$$

 P_k : Poids total de la structure et des charges d'exploitation associées au-dessus du niveau "K".

 V_k : Effort tranchant d'étage au niveau "K "

 Δ_k : Déplacement relatif du niveau "K" par rapport à "K-1"

 h_k : Hauteur de l'étage "K ".

Si $0.10 \le \theta_k \le 0.20$, Les effets P- Δ peuvent être pris en compte de manière approximative en amplifiant les effets de l'action sismique calculés au moyen d'une analyse élastique du 1° ordre par le facteur

$$\frac{1}{1-\theta_k}$$

Si $\theta_k > 0.20$, la structure est partiellement instable et doit être redimensionnée.

Tableau IV.5: Justification vis-à- vis de l'Effet P-Δ dans le Sens x

X	$P_{k}(KN)$	$\Delta_{\mathbf{k}}$ (cm)	$V_{k}(KN)$	h_k (cm)	θ	vérification
5 ^{eme} E	4638.069	1.1529	1312.769	323	0.012611	<0.1
4 ^{eme} E	10258.16	1.37375	2763.813	323	0.015786	<0.1
3 ^{eme} E	16256.38	1.65165	4015.489	323	0.020701	<0.1
2 ^{eme} E	22111.66	1.8739	5065.219	323	0.025326	<0.1
1 ^{eme} E	28170.38	2.0797	6003.446	323	0.030213	<0.1
RDC	34480.12	2.21165	6812.816	323	0.034654	<0.1
1 ^{er} ES	40469.31	2.03105	7491.849	306	0.035854	<0.1
2 ^{eme} ES	46129.39	1.9754	8050.822	306	0.036989	<0.1
3 ^{eme} ES	52121.88	2.13325	8535.194	323	0.040332	<0.1
^{4eme} ES	57823.37	2.0076	8933.319	323	0.040231	<0.1
5 ^{eme} ES	65056.87	1.6877	11292.014	442	0.026798	<0.1

Tableau IV.6:Justification vis-à- vis de l'Effet P-∆ dans le Sens y

Y	$P_k(KN)$	$\Delta_{\mathbf{k}}$ (cm)	$V_{k}(KN)$	h_k (cm)	θ	vérification
5 ^{eme} E	4638.069	2.5228	1470.92	323	0.024628	<0.1
4 ^{eme} E	10258.16	2.7244	2998.979	323	0.028851	<0.1
3 ^{eme} E	16256.38	2.95225	4251.809	323	0.034946	<0.1
2 ^{eme} E	22111.66	3.12445	5280.033	323	0.040509	<0.1
1 ^{eme} E	28170.38	3.2277	6192.71	323	0.045457	<0.1
RDC	34480.12	3.20915	6938.764	323	0.049371	<0.1
1 ^{er} ES	40469.31	2.82905	7587.321	306	0.049312	<0.1
2 ^{eme} ES	46129.39	2.55255	8111.636	306	0.047438	<0.1
3 ^{eme} ES	52121.88	2.4878	8555.257	323	0.046925	<0.1
^{4eme} ES	57823.37	2.08425	8886.501	323	0.041987	<0.1
5 ^{eme} ES	65056.87	1.49065	10083.815	442	0.023938	<0.1

IV.4.1.6 Justification au choix du coefficient de comportement

Il faut déterminer le pourcentage de répartition des charges soit verticales ou horizontales entre le portique et les voiles pour choisir la valeur du coefficient de comportement.

Le tableaux ci-dessous représentent la répartition des charge verticale ou horizontal entre les voiles et les portique a la base :

Tableau IV.7: Justification au choix du coefficient de comportement

	w(kn)	w %
Structure	65056.869	100
Voiles	16730.11	25.72

IV.4.2 BLOC B

IV.4.2.1 Période et participation massique

Tableau.IV.8: période et facteur de participation massique

Mode	Période (s)		Facteur de parti	icipation massiq	ue
		Dir (x-x)	Dir (y-y)	Sum (x-x)	Sum (y-y)
1	1.029221	0.00605	0.66233	0.00605	0.66233
2	0.956508	0.60503	0.00149	0.51108	0.66382
3	0.817396	0.01308	0.03728	0.72416	0.7011
4	0.289759	0.00121	0.14101	0.72537	0.84211
5	0.285917	0.08104	0.00072	0.80641	0.84284
6	0.243754	0.0551	0.00851	0.86151	0.85135
7	0.148613	0.00032	0.00115	0.86183	0.8525
8	0.13979	0.00474	0.00597	0.86657	0.85847
9	0.135114	0.01896	0.0015	0.88553	0.85997
10	0.128404	0.00048	0.04456	0.88601	0.90453
11	0.117872	0.02642	0.00166	0.91243	0.90619

Constations:

- 1. Les deux premiers modes sont des modes de translation pure suivant (y-y) puis (x-x).
- 2. Le $3^{\hat{e}me}$ mode est un mode de rotation.
- 3. La participation massique dépasse 90% au 11^{éme} mode.

$$T_{RPA99} = \text{Min} \quad \begin{cases} C_T h_N^{3/4} = 0.794s \\ \frac{0.09h_N}{\sqrt{D}} = 0.693s...... \text{ (Suivant x-x)} \\ \frac{0.09h_N}{\sqrt{D}} = 0.953s...... \text{ (Suivant y-y)} \end{cases}$$

IV.4.2.2 Résultante des forces sismiques:

a).Détermination de la force (V) :

$$V = \frac{A.D.Q}{R}W$$

$$T_2 \le T \le 3.0s \Longrightarrow D = 2.5\eta \left(\frac{T_2}{T}\right)^{2/3}$$

sens	D "dimension de batiment"	Т	T_2	Н	D	
X-X	26.9	0.693	0.5	0.882	1.773	
у-у	14.24	0.794	0.5	0.882	1.619	

Tableau.IV.9: Détermination de la force (V)

sens	A	Q	R	W(KN)	V	0.8V(KN)	E(KN)	Obs.
х-х	0.25	1.2	3.5	53631.563	8490.06796	6792.05437	6810.036	OK
у-у	0.25	1.2	3.5	53631.563	6866.75548	5493.40438	6804.207	OK

IV.4.2.3 Vérification des déplacements inter étages :

Tableau.IV.10: Vérification des déplacements

Niveaux 6	$S_{eK}^{x}(cm)$	$\delta_{eK}^{y}(cm)$	$\delta_K^x(cm)$	$\delta_K^y(cm)$	$\Delta_K^x(cm)$	$\Delta_K^{y}(cm)$	$\overline{\Delta}(cn)$	Vérification
5 ^{eme} E	6.2571	8.571	21.89985	29.9985	1.50675	2.6754	3.23	vérifier
4 ^{eme} E	5.8266	7.8066	20.3931	27.3231	1.65725	2.85705	3.23	Vérifier
3 ^{eme} E	5.3531	6.9903	18.73585	24.46605	1.83225	3.02505	3.23	Vérifier
2 ^{eme} E	4.8296	6.126	16.9036	21.441	1.99535	3.13495	3.23	Vérifier
1 ^{eme} E	4.2595	5.2303	14.90825	18.30605	2.12555	3.16785	3.23	Vérifier
RDC	3.6522	4.3252	12.7827	15.1382	2.1889	3.0604	3.23	vérifier
1 ^{er} ES	3.0268	3.4508	10.5938	12.0778	2.00795	2.5711	3.06	vérifier
2 ^{eme} ES	2.4531	2.7162	8.58585	9.5067	1.96385	2.41885	3.06	Vérifier
3 ^{eme} ES	1.892	2.0251	6.622	7.08785	2.0223	2.3513	3.23	Vérifier
^{4eme} ES	1.3142	1.3533	4.5997	4.73655	1.8725	2.0363	3.23	Vérifier
5 ^{eme} ES	0.7792	0.7715	2.7272	2.70025	2.01915	2.02475	4.42	Vérifier
6 ^{eme} ES	0.2023	0.193	0.70805	0.6755	0.70805	0.6755	3.57	Vérifier

Constations:

- 1. On remarque que le déplacement $(\delta_x; \delta_y)$ croit en hauteur jusqu'à atteindre le maximum à la tête de la structure.
- 2. Les déplacements relatifs inter- étages sont inférieurs à la limite imposée par le RPA99 [1]

IV.4.2.4 Vérification Spécifique Aux Sollicitations Normales:

Tableau IV.11: Vérification de l'Effort Normal pour les Poteaux

Nd (KN)	Bc (cm2)	ν	obs
414.291	70×70	0.28	<0.3
2164.144	65×65	0.17	<0.3
1060.347	60×60	0.09	<0.3

IV.4.2.5 Justification vis-à-vis de l'effet P- Δ :

Tableau IV.12: Justification vis-à- vis de l'Effet P- Δ dans le Sens x

X	$P_{k}(KN)$	Δ_k (cm)	$V_k(KN)$	h_k (cm)	θ	vérification
5 ^{eme} E	3505.997	1.50675	1121.998	323	0.014577	<0.1
4 ^{eme} E	7886.679	1.65725	2247.6	323	0.018004	<0.1
3 ^{eme} E	12518.91	1.83225	3082.292	323	0.02304	<0.1
2 ^{eme} E	16882.75	1.99535	3803.392	323	0.027421	<0.1
1 ^{eme} E	21033.59	2.12555	4394.404	323	0.031498	<0.1
RDC	25626.51	2.1889	4901.299	323	0.035432	<0.1
1 ^{er} ES	30302.64	2.00795	5373.114	306	0.037007	<0.1
2 ^{eme} ES	34360.83	1.96385	5798.682	306	0.03803	<0.1
3 ^{eme} ES	38665.85	2.0223	6154.475	323	0.039335	<0.1
^{4eme} ES	43216.33	1.8725	6475.231	323	0.038691	<0.1
5 ^{eme} ES	48115.53	2.01915	6727.368	442	0.032673	<0.1
6 ^{eme} ES	53631.563	0.70805	8490.068	357	0.015469	<0.1

Tableau IV.13 : Justification vis-à- vis de l'Effet P- Δ dans le Sens y

Y	$P_k(KN)$	Δ_{k} (cm)	$V_{k}(KN)$	h_k (cm)	θ	vérification
5 ^{eme} E	3505.997	2.6754	993.6107	323	0.025882	<0.1
4 ^{eme} E	7886.679	2.85705	2066.5424	323	0.031038	<0.1
3 ^{eme} E	12518.91	3.02505	2980.1028	323	0.038038	<0.1
2 ^{eme} E	16882.75	3.13495	3721.2061	323	0.043082	<0.1
1 ^{eme} E	21033.59	3.16785	4363.1898	323	0.046943	<0.1
RDC	25626.51	3.0604	4932.2475	323	0.04954	<0.1
1 ^{er} ES	30302.64	2.5711	5433.7361	306	0.047386	<0.1
2 ^{eme} ES	34360.83	2.41885	5815.8412	306	0.046841	<0.1
3 ^{eme} ES	38665.85	2.3513	6185.9803	323	0.045734	<0.1
^{4eme} ES	43216.33	2.0363	6498.0064	323	0.042076	<0.1
5 ^{eme} ES	48115.53	2.02475	6736.8814	442	0.032763	<0.1
6 ^{eme} ES	53631.563	0.6755	6866.7555	357	0.014758	<0.1

IV.4.2.6 Justification au choix du coefficient de comportement

Tableau IV.14: Justification au choix du coefficient de comportement

	W (kn)	w %
structure	53532.05	100
voiles	27117.902	50.65

IV.4.3 BLOC C

IV.4.3.1 Période et participation massique

Tableau.IV.15: période et facteur de participation massique

Mode	Période (s)]	Facteur de parti	cipation massiqu	ue
		Dir (x-x)	Dir (y-y)	Sum (x-x)	Sum (y-y)
1	<mark>0.599144</mark>	0.7388	9.288E-07	0.7388	9.29E-07
2	0.521732	0.00153	0.71145	0.74033	0.71145
3	0.430606	0.0303	0.02818	0.77063	0.73963
4	0.159077	0.1123	0.00015	0.88293	0.73978
5	0.129187	0.00004025	0.12599	0.88297	0.86577
6	0.107291	0.00591	0.01705	0.88888	0.88282
7	0.083712	0.00002627	0.00079	0.8889	0.88361
8	0.075109	0.0462	0.00011	0.93511	0.88371
9	0.073016	0.000001095	0.00001153	0.93511	0.88372
10	0.068445	0.000004658	0.00035	0.93511	0.88407
11	0.06497	0.00004446	0.000009337	0.93516	0.88408
12	0.06358	0.00204	0.00004834	0.93719	0.88413
13	0.062228	0.00023	0.01391	0.93742	0.89804
14	0.06205	0.00004442	0.00415	0.93747	0.90219

Constations:

- 1. Les deux premiers modes sont des modes de translation pure suivant (x-x) et (y-y).
- 2. Le $3^{\grave{e}me}$ mode est un mode de rotation.
- 3. La participation massique dépasse 90% au 14^{éme} mode.

$$T_{RPA99} = Min \begin{cases} C_T h_N^{3/4} = 0.483s \\ \frac{0.09h_N}{\sqrt{D}} = 0.569s...... \text{ (Suivant x-x)} \\ \frac{0.09h_N}{\sqrt{D}} = 0.562s...... \text{ (Suivant y-y)} \end{cases}$$

IV.4.3.2 Résultante des forces sismiques de calcul :

a). Détermination de la force (V) :

$$V = \frac{A.D.Q}{R}W$$

$$T_2 \le T \le 3.0s \Longrightarrow D = 2.5\eta \left(\frac{T_2}{T}\right)^{2/3}$$

sens	D "dimension de batiment"	Т	T_2	η	D
X-X	10.6	0.483	0.5	0.882	2.25
у-у	10.85	0.483	0.5	0.882	2.25

Tableau.IV.16: Détermination de la force (V)

sens	A	Q	R	W(KN)	V	0.8V(KN)	E (KN)	Obs.
х-х	0.25	1.2	3.5	9904.083	1714.82123	1371.85698	1656.944	OK
у-у	0.25	1.2	3.5	9904.083	1723.31044	1378.64835	1765.837	OK

IV.4.3.3 Vérification des déplacements inter étage :

Tableau.IV.17: Vérification des déplacements

Niveaux	$\delta_{eK}^{x}(cm)$	$\delta_{eK}^{y}(cm)$	$\delta_K^x(cm)$	$\delta_K^y(cm)$	$\Delta_K^x(cm)$	$\Delta_K^{y}(cm)$	$\overline{\Delta}(cm$	Vérification
1 ^{er} E-S	3.0665	2.5674	10.73275	8.9859	1.26735	1.325	3.06	vérifier
2 ^{eme} E-S	2.7044	2.1934	9.4654	7.6769	1.5456	1.4637	3.06	Vérifier
3 ^{eme} E-S	2.2628	1.7752	7.9198	6.2132	1.9397	1.694	3.23	Vérifier
4 ^{eme} E-S	1.7086	1.2912	5.9801	4.5192	2.12835	1.7297	3.23	Vérifier
5 ^{eme} E-S	1.1005	0.797	3.85175	2.7895	2.7748	2.0475	4.42	Vérifier
6 ^{eme} E-S	0.3077	0.212	1.07695	0.742	1.07695	0.742	3.57	vérifier

Constations:

- 1. On remarque que le déplacement $(\delta_x; \delta_y)$ croit en hauteur jusqu'à atteindre le maximum à la tête de la structure.
- 2. Les déplacements relatifs inter- étages sont inférieurs à la limite imposée par le RPA99 [1].

IV.4.3.4 Vérification Spécifique Aux Sollicitations Normales:

Tableau IV.18: Vérification de l'Effort Normal pour les Poteaux

Nd (KN)	Bc (cm2)	ν	obs
2116.603	50×50	0.282	<0.3

IV.4.3.5 Justification vis-à-vis de l'effet P- Δ :

Tableau IV.19: Justification vis-à- vis de l'Effet P- Δ dans le Sens x

Niveau	$P_{k}(KN)$	$\Delta_{\mathbf{k}}$ (cm)	$V_{k}(KN)$	h_k (cm)	θ	vérification
1ER E-S	1351.598	1.26735	408.9286	306	0.012969	<0.1
2e E-S	2973.815	1.5456	808.739	306	0.018573	<0.1
3e E-S	4608.039	1.9397	1140.808	323	0.021947	<0.1
4e E-S	6259.929	2.12835	1397.016	323	0.029526	<0.1
5e E-S	7965.625	2.7748	1580.401	442	0.031642	<0.1
6e E-S	9904.083	1.07695	1714.821	357	0.017751	<0.1

Tableau IV.20 : Justification vis-à- vis de l'Effet P-Δ dans le Sens y

Niveau	$P_{k}(KN)$	$\Delta_{\mathbf{k}}$ (cm)	$V_{k}(KN)$	h_k (cm)	θ	vérification
1ER E-S	1351.598	1.309	447.1087	306	0.012932	<0.1
2e E-S	2973.815	1.4637	899.2568	306	0.015818	<0.1
3e E-S	4608.039	1.694	1245.328	323	0.019406	<0.1
4e E-S	6259.929	1.7297	1508.333	323	0.022225	<0.1
5e E-S	7965.625	2.0475	1699.295	442	0.021715	<0.1
6e E-S	9904.083	0.742	1723.310	357	0.011465	<0.1

IV.4.3.6 Justification au choix du coefficient de comportement:

Tableau IV.21:Justification au choix du coefficient de comportement

	W (KN)	w %
structure	9904.083	100
voiles	4129.105	41.69

IV.5 Justification de la largeur des joints sismique :

Deux blocs voisins doivent être sépares par des joints sismiques dont la largeur minimale dmin satisfait la condition suivant [1]:

$$d_{\min} = 15_{\min} + (\delta_1 + \delta_2)_{\min} \ge 40_{\min}$$

 $\begin{array}{l} d_{min}\!=\!15_{mm}\!+(\delta_1\!+\!\!\delta_2)_{mm}\!\geq 40_{mm} \\ Avec: \qquad \delta_1\,et\,\delta_2\!:d\acute{e}placements\; maximaux\; des\; deux\; blocs. \end{array}$

✓ Entre les BLOC A et B :

Tableau IV.22: Justification de la largeur des joints sismique entre bloc A et B

	δ_A^x	δ_B^x	δ_A^Y	δ_B^Y
	20.178		29.205	29.998
d _{min} (mm)	57.	077	74.20	03

✓ Entre les BLOC B et C

Tableau IV.23: Justification de la largeur des joints sismique entre bloc B et C

	δ_B^x	δ_c^x	δ_B^Y	δ_c^Y
	10.593	10.732	12.077	8.985
d _{min} (mm)	36.	.32	36.0)5

V.1 Introduction:

Le ferraillage des éléments résistants devra être conforme aux règlements en vigueur en l'occurrence le BAEL 91 ^[2] et le RPA99 version 2003^[1].

V.2 Ferraillage des poteaux:

V.2.1 Introduction:

Les poteaux sont des éléments structuraux verticaux, ils constituent des points d'appuis pour les poutres et jouent un rôle très important dans la transmission des efforts vers les fondations.

Les sections des poteaux sont soumises à la flexion composée (M, N) qui est due à l'excentricité de l'effort normal N par rapport aux axes de symétrie, et à un moment fléchissant M dans le sens longitudinal et transversal (dû à l'action horizontale).

Une section soumise à la flexion composée peut être l'un des trois cas suivants:

- Section entièrement tendue *SET*.
- Section entièrement comprimée SEC.
- Section partiellement comprimée SPC.

Les armatures sont obtenues à l'état limite ultime (E.L.U) sous l'effet des sollicitations les plus défavorables et dans les situations suivantes:

Tableau V.1: Tableau des Contraintes.

	γь	γ_{s}	f _{c28} (MPa)	f _{bu} (MPa)	f _e (MPa)	σ_s (MPa)
Situation durable	1.5	1.15	30	17	500	435
Situation accidentelle	1.15	1	30	22.17	500	500

V.2.2 Combinaison d'action:

En fonction du type de sollicitations, nous distinguons les différentes combinaisons suivantes:

■ Selon BAEL 91:

-E.L.U.: Situation durable: 1,35 G +1,5 Q(1)
-E.L.S.: Situation durable: G +Q(2)

• Selon le R.P.A 99: Situation accidentelle

- G: Charges permanentes.
- Q: Charge d'exploitation.
- E: Action du séisme.

A partir de ces combinaisons, on distingue les cas suivants:

Chacune des trois combinaisons donne une section d'acier. La section finale choisit correspondra au maximum des trois valeurs (cas plus défavorable)

V.2.3 Recommandation du RPA99 version 2003^[1]:

D'après le RPA99/version 2003 (article 7.4.2 page 48) ^[1], les armatures longitudinales doivent être à haute adhérence droites et sans crochet. Leur pourcentage en zone sismique III est limité par :

$$A_{max} = A_s/bh < 3\%$$
 en zone courante.

$$A_{max} = A_s/bh < 6\%$$
 en zone recouvrement.

$$A_{min} = A_s > 0.9$$
 %bh (zone III).

- Le diamètre minimal est de 12 mm.
- La longueur minimale de recouvrement est de 50 Φ_L .
- La distance maximale entre les barres dans une surface de poteau est de 20 cm.
- Les jonctions par recouvrement doivent être faites si possible, à l'extérieur des zones nodales (zone critiques).

V.2.4 BLOC A

Nous avons retenu trois (03) zones pour l'étude du ferraillage des poteaux.

Les sollicitations internes pour chaque élément sont données par le logiciel, à savoir **SAP 2000** :

• $(5^{\text{eme}} \text{entre solRDC})$: poteaux 70×70 .

 $(1^{\text{eme}}, 2^{\text{eme}}, 3^{\text{eme}} \text{ étage})$: poteaux 65x65.

 4^{eme} , 5^{eme} , 6^{eme} étage) : poteaux 60x60.

Section	ELU		EL	A 1	ELA 2		
[cm ²]	N ^{max} M ^{corr}		M ^{max}	N ^{corr}	M ^{max}	N ^{corr}	
	[kN] [kNm]		[kNm]	[kN]	[kN]	[kNm]	
60x60	-1174.22	32.6471	383.4191	-229.96	334.325	-120.93	
65x65	-2370.28	36.9616	-273.118	-854.20	433.0088	-636.33	
70x70	-4482.15	15.1572	782.9292	529.009	581.1662	-336.31	

V.2.4.1 Méthode de calcul:

Le calcul du ferraillage est obtenu par le logiciel SOCOTEC.

Les résultats des efforts et ferraillage des poteaux sont regroupés dans les tableaux :

Tableau V.2: Ferraillages des poteaux

combinaison	sections	70x70	65x65	60x60
ELU	N ^{max}	-4482.158	-2730.282	-1174.228
	M ^{corr}	15.1572	36.9616	32.6471
	A's	0	0	0
	$\mathbf{A_s}$	0	0	0
ELA 1	\mathbf{M}^{\max}	782.9292	-273.1181	-383.4191
	N ^{corr}	529.009	-854.202	-229.961
	A's	0	0	0
	$\mathbf{A_s}$	29.66	0.62	11.81
ELA 2	\mathbf{M}^{\max}	581.1662	433.0088	334.325
	N ^{corr}	-336.316	-636.334	-120.932
	A's	0	0	0
	$\mathbf{A_s}$	14.81	8.39	10.97

V.2.4.2 Choix des armatures:

Tableau V.3: Choix des Armatures des Poteaux.

Sections	$A_S^{\ cal}$	A_S^{min}	A_S^{max}	A_S^{max}	Choix des	A _S adopté
(cm^2)	(cm^2)	(cm^2)	$(Z.C)(cm^2)$	$(\mathbf{Z}.\mathbf{R})(\mathbf{cm}^2)$	armatures	(cm^2)
60x60	11.81	32.4	108	216	4T25+8T16	35.70
65x65	8.39	38.025	126.75	253.5	4T25+8T20	44.75
70x70	29.66	44.1	147	294	6T25	117.76

V.2.4.3 Vérification vis-à-vis de l'état limite de service :

Les contraintes sont calculées à l'état limite de service sous $(M_{\text{ser}}, N_{\text{ser}})$ puis elles sont comparées aux contraintes admissible données par :

a. **Béton**:
$$\sigma_{bc} = 0.6 f_{c28} = 18 \text{ MPa}$$

b. Acier:

Fissuration préjudiciable.
$$\overline{\sigma}_s = \xi = Min\left(\frac{2}{3}f_e, Max(0.5f_e; 110\sqrt{\eta.f_{t28}})\right)$$

Fissuration très préjudiciable..... $\overline{\sigma}_s = \xi = 0.8\xi$

Avec:

 $\eta = 1.6$ pour les aciers H.A

• Dans notre cas la fissuration est considérée préjudiciable, donc $\sigma_s = 250MPa$.

Les résultats sont récapitulés dans les tableaux suivants :

A-
$$(N_{max}^{ser}; M_{cor}^{ser})$$
:

Tableau V.4 : Vérification des contraintes pour les poteaux (N^{ser}_{max}; M^{ser}_{cor.})

Sections (cm ²)	N _{ser} (kN)	M _{ser} (kNm)	Sollicitation	σ _{bc} (MPa)	σ _{bc add} (MPa)	Vérification
60x60	-857.511	23.7323	SEC	2.65	18	Ok
65x65	-1728.974	26.9186	SEC	4.13	18	Ok
70x70	-3261.058	11.0035	SEC	6.21	18	Ok

Tableau V.5 : Vérification des contraintes pour les poteaux (M^{ser}_{max :} N^{ser}_{cor}).

Sections (cm ²)	M _{ser} (kNm)	N _{ser} (kN)	Sollicitation	σ_{bc} (MPa)	σ _{bc add} (MPa)	Vérification
60x60	127.4441	-128.838	SEC	4.31	18	Ok
65x65	69.3188	-388.471	SEC	2.06	18	Ok
70x70	-97.6282	-107.224	SEC	2.23	18	Ok

Remarque:

Si la section est entièrement comprimée, il n'y a à vérifier que la condition de compression du béton. Selon [BAEL 91 modifier 99] [2].

V.2.4.4 Vérification de l'effort tranchant:

V.2.4.4.1 Vérification de la contrainte de cisaillement :

Il faut vérifier que :
$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u$$

Avec:

- T_u : L'effort tranchant pour l'état limite ultime.
- *b*: Largeur de la section du poteau.
- *d*: Hauteur utile de la section du poteau.
- τ_u : Contrainte de cisaillement.
- $\bar{\tau}_u$: Contrainte limite de cisaillement du béton.

La valeur de la contrainte $\bar{\tau}_u$ doit être limitée aux valeurs suivantes :

* Selon le BAEL 91 modifie 99 [2]:

- $\bar{\tau}_u = Min(0.13f_{c28}, 5MPa)$ Fissuration peu nuisible.
- $\bar{\tau}_u = Min(0.10f_{c28}, 4MPa)$ Fissuration préjudiciable et très préjudiciable.

* Selon le RPA 99 version 2003 [1]:

• $\bar{\tau}_u = \rho_d f_{c28}$

• ρ_d =0,075.....si l'élancement $\lambda \ge 5$

• ρ_d =0,040.....si l'élancement λ <5

Avec:

• λ: L'élancement du poteau

• i: Rayon de giration.

• *I* : Moment d'inertie de la section du poteau dans la direction considérée.

• *B* : Section du poteau.

• L_f : Longueur de flambement.

Les résultats sont regroupés dans le tableau suivant :

Tableau V.6 : Vérification de la contrainte de cisaillement pour les poteaux.

Section (cm ²)	T _u (kN)	τ _u (MPa)	λ	$ ho_{ m d}$	τ _{u RPA} (MPa)	τ _{u BAEL} (MPa)	Verification
60x60	88.572	0.27	13.05	0.075	2.25	3	Ok
65x65	56.258	0.15	12.05	0.075	2.25	3	Ok
70x70	57.592	0.13	15.30	0.075	2.25	3	OK

V.2.4.4.2 Ferraillage transversal des poteaux :

Les armatures transversales sont déterminées à partir des formules du **BAEL91 modifié 99**^[2] et celles du **RPA99 version 2003** ^[1]; elles sont données comme suit :

* Selon BAEL91 modifié 99 [1] :
$$\begin{cases} S_{t} \leq Min(0.9d;40cm) \\ \varphi_{t} \leq Min\left(\frac{h}{35};\frac{b}{10};\varphi_{t}\right) \\ \frac{A_{t}f_{e}}{bS_{t}} \geq Max\left(\frac{\tau_{u}}{2};0.4MPa\right) \end{cases}$$

• A_t: Section d'armatures transversales.

• b: Largeur de la section droite.

• h: Hauteur de la section droite.

• S_t : Espacement des armatures transversales.

Ø_t: Diamètre des armatures transversales.

• \emptyset_1 : Diamètre des armatures longitudinales.

* Selon le RPA99 version 2003 $^{[1]}$:

$$\frac{A_t}{S_{\star}} = \frac{\rho_a T_u}{hf_{\star}}$$

Avec:

- A_t: Section d'armatures transversales.
- S_t : Espacement des armatures transversales.
- T_u: Effort tranchant à l'ELU.
- f_e: Contrainte limite élastique de l'acier d'armatures transversales.
- h: Hauteur totale de la section brute.
- ρ_a : Coefficient correcteur qui tient compte du mode fragile de la rupture par l'effort tranchant.
- ρ_a =2,5.....si λ_g ≥5
- ρ_a =3,75.....si λ_g <5
- λ_g: Espacement géométrique.
- L'espacement des armatures transversales est déterminé comme suit :

$$S_t \le 10cm$$
.....Zone nodale (zone III).

$$S_t \le Min\left(\frac{b}{2}; \frac{h}{2}; 10\phi_t\right)$$
.....Zone courante (zone III).

- \emptyset_1 : Diamètre minimal des armatures longitudinales du poteau.
- La quantité d'armatures transversales minimale $\frac{A_t}{S_t b}$ en (%) est donnée comme suite :

$$\begin{cases} 0,3\%.....si\,\lambda_{g} \geq 5\\ 0,8\%.....si\,\lambda_{g} \leq 3\\ Interpolaionentreles valeurs limites précédent & si 3 < \lambda_{g} < 5 \end{cases}$$

- λ_g : L'élancement géométrique du poteau $\left(\lambda_g = \frac{L_f}{a}\right)$
- a : Dimension de la section droite du poteau.
- L_f: Longueur du flambement du poteau.
- Pour les armatures transversales f_e =500MPa (FeE50).

Le tableau suivant rassemble les résultats des espacements maximums des poteaux :

Tableau V.7: Espacements maximales des armatures transversales des poteaux.

			S_t (cm)
Section (cm ²)	Barres	$\mathcal{O}_l(mm)$	Zone nodale	Zone courante
60x60	4T25+8T16	25	10	25
65x65	4T25+8T20	25	10	25
70x70	4T25 +4T20	25	10	25

Le choix des armatures transversales est regroupé dans le tableau suivant :

Tableau V.8: Choix des armatures transversales pour les poteaux.

Section (cm ²)	L_f (m)	λ_g (%)	$ ho_a$	T_u^{max} (kN)	Zone	S_t (cm)	A_t^{cal} (cm^2)	Choix	A_s^{adp} (cm^2)
60x60	2.261	13.05	2.5	88.572	N	10	0.74	4T8	2.01
OOXOO	2.201	13.03	2.3	00.572	С	25	1.84	4T8	2.01
65x65	2.261	12.05	2.5	56.258	N	10	0.43	4T8	2.01
03703	2.201	12.03	2.5	30.230	C	25	1.08	4T8	2.01
70x70	3.094	15.30	2.5	57.592	N	10	0.41	4T8	2.01
70.770	3.074	13.50	2.5	31.372	C	25	1.03	4T8	2.01

V.2.4.5 Longueur de recouvrement :

La longueur minimale de recouvrement est de : L_r =50 \emptyset_1 en zone III.

Pour:

T20.....L_r=100cm

T16.....L_r=80cm

V.2.5 BLOC B:

 \bullet (6^{eme} entre sol RDC) : poteaux 70×70.

 \bullet (1^{eme}, 2^{eme}, 3^{eme} étage): poteaux 65x65.

 4^{eme} , 5^{eme} , 6^{eme} étage) : poteaux 60x60.

Section	ELU		EL	A 1	ELA 2		
[cm ²]	N ^{max} M ^{corr}		N ^{max} M ^{corr} M ^{max} N ^{corr}		N ^{corr}	\mathbf{M}^{max}	N ^{corr}
	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]	
60x60	-1060.21	-88.289	367.8016	-46.454	317.5343	-141.15	
65x65	-2163.77	-173.47	321.5893	-276.46	-313.494	-1345.5	
70x70	-4141.73	-245.12	-501.584	-414.43	284.1852	-1134.4	

V.2.5.1 Méthode de calcul :

Tableau V.9: Ferraillages des poteaux

combinaison	sections	70x70	65x65	60x60
ELU	N ^{max}	-4141.733	-2163.775	-1060.219
	M ^{corr}	-245.1233	-173.4786	-88.2898
	A's	0	0	0
	$\mathbf{A_s}$	0	0	0
ELA 1	M ^{max}	-501.5847	321.5893	367.8016
	N ^{corr}	-414.431	-276.466	-46.454
	A's	0	0	0
	$\mathbf{A_s}$	11.46	7.92	12.97
ELA 2	M ^{max}	284.1852	-313.494	317.5343
	N ^{corr}	-1134.439	-1345.582	-141.153
	A's	0	0	0
	$\mathbf{A}_{\mathbf{s}}$	0	0	10.14

V.2.5.2 Choix des armateurs :

Tableau V.10: Choix des Armatures des Poteaux.

					Choix des	A_S
Sections	$A_S^{\ cal}$	A_S^{min}	$\mathbf{A_S}^{\mathbf{max}}$	A_S^{max}	armatures	adopté
(cm^2)	(cm^2)	(cm^2)	$(Z.C)(cm^2)$	$(Z.R)(cm^2)$		(cm^2)
60x60	12.97	32.4	108	216	4T25+8T16	35.70
65x65	7.92	38.025	126.75	253.5	4T25+8T20	44.75
70x70	11.46	44.1	147	294	4T25 +8T20	44.75

V.2.5.3 Vérification vis-à-vis de l'état limite de service :

Les résultats sont récapitulés dans les tableaux suivants :

A-
$$(N_{max}^{ser}; M_{cor}^{ser})$$
:

Tableau V.11: Vérification des contraintes pour les poteaux (N^{ser}_{max}; M^{ser}_{cor})

Sections(cm ²)	$N_{ser}(kN)$	M _{ser} (kNm)	Sollicitation	$\sigma_{bc}(MPa)$	$\sigma_{bc \ add} \ (MPa)$	Vérification
60x60	-2332.136	7.8083	SEC	5.98	18	Ok
65x65	-1328.463	-67.754	SEC	3.98	18	Ok
70x70	-677.701	35.284	SEC	1.75	18	Ok

 $B-(M_{max}^{ser}; N_{cor}^{ser})$:

Tableau V.12: Vérification des contraintes pour les poteaux (M^{ser}_{max}; N^{ser}_{cor}).

Sections (cm ²)	M _{ser} (kNm)	N _{ser} (kN)	Sollicitation	σ_{bc} (MPa)	σ _{bc add} (MPa)	Vérification
60x60	54.6629	-558.658	SEC	2.58	18	Ok
65x65	69.4946	-806.686	SEC	2.9	18	Ok
70x70	124.1873	-180.527	SEC	2.87	18	Ok

V.2.5.4 Vérification de l'effort tranchant:

V.2.5.4.1 Vérification de la contrainte de cisaillement :

Tableau V.13 : Vérification de la contrainte de cisaillement pour les poteaux.

Section (cm²)	T_u (kN)	$ au_u$ (MPa)	λ	$ ho_d$	$ au_{u RPA} \ (MPa)$	$ au_{u\ BAEL} \ (MPa)$	Vérification
60x60	20.799	0.06	13.05	0.075	2.25	3	Ok
65x65	10.751	0.03	12.05	0.075	2.25	3	Ok
70x70	40.744	0.09	15.30	0.075	2.25	3	Ok

V.2.5.4.2 Ferraillage transversal des poteaux :

Tableau V.14: Espacements maximales des armatures transversales des poteaux.

Section	Barres	Ø ₁ (mm)	S _t (cm)
(cm ²)	Darres	M (IIIII)		
60x60	4T25+8T16	25	10	25
65x65	4T25+8T20	25	10	25
70x70	4T25 +8T20	25	10	25

Tableau V.15: Choix des armatures transversales pour les poteaux.

Section (cm²)	L_f (m)	$\lambda_g \ (\%)$	$ ho_a$	T _u ^{max} (kN)	Zone	S_t (cm)	A_t^{cal} (cm^2)	Choix	A_s^{adp} (cm^2)
60,40	2.261	12.05	2.5	5 20.799	N	10	0.17	4T8	2.01
60x60	2.201	13.05	2.3		С	25	0.43	4T8	2.01
65x65	2.261	12.05	2.5	10.751	N	10	0.08	4T8	2.01
03803	2.201	12.03	2.3	10.731	C	25	0.21	4T8	2.01
70x70	3.094	15.30	2.5	10.711	N	10	0.29	4T8	2.01
/0X/U	3.094	13.30	2.3	40.744	C	25	0.73	4T8	2.01

V.2.5.5 Longueur de recouvrement :

La longueur minimale de recouvrement est de :L_r=50Ø₁ en zone III.

Pour :
T20.....L_r=100cm
T16....L_r=80cm

V.2.6 BLOC C

 \bullet (5^{eme}, 4^{eme}, 3^{eme}, 2^{eme}, 1^{er} entre sol, RDC) : poteaux 50×50.

Section	ELU		EL	A 1	ELA 2		
[cm ²]	N^{max}	M ^{corr}	\mathbf{M}^{\max}	N^{corr}	\mathbf{M}^{max}	N^{corr}	
	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]	
50x50							
	-2116.60	-182.227	169.314	-63.907	-335.151	-1242.36	

V.2.6.1 Méthode de calcul:

Tableau V.16: Ferraillages des poteaux

Section [cm ²]		ELU		EL	A 1	ELA 2	
		N ^{max}	M ^{corr}	M ^{max}	N ^{corr}	M ^{max}	N ^{corr}
		[kN]	[kNm]	[kNm]	[kN]	[kN]	[kNm]
	50x50	-2116.60	-182.227	169.314	-63.907	-335.151	-1242.36
A'_{s}		0		0		0	
A_s		()	6.8		4.71	

V.2.6.2 Choix des armateurs :

Tableau V.17: Choix des Armatures des Poteaux.

Sections	$A_S^{\ \ cal}$	A_S^{min}	A _S max	A_S^{max}	Choix des	$A_S^{adopt\acute{e}}$
(cm^2)	(cm^2)	(cm^2)	$(Z.C)(cm^2)$	$(Z.R)(cm^2)$	armatures	(cm^2)
50x50	6.8	22.5	75	150	4T20+8T16	28.64

V.2.6.3 Vérification vis-à-vis de l'état limite de service :

A- $(N_{max}^{ser}; M_{cor}^{ser})$:

Tableau V.18 : Vérification des contraintes pour les poteaux (N^{ser}_{max}; M^{ser}_{cor.})

Sections (cm ²)	N _{ser} (kN)	M _{ser} (kNm)	Sollicitation	σ _{bc} (MPa)	σ _{bc add} (MPa)	Vérification
50x50	-1229.213	10.2339	SEC	4.76	18	Ok

B- ($M^{\text{ser}}_{\text{max}}$; $N^{\text{ser}}_{\text{cor}}$):

Tableau V.19 : Vérification des contraintes pour les poteaux (M^{ser}_{max :} N^{ser}_{cor}).

Sections (cm ²)	M _{ser} (kNm)	N _{ser} (kN)	Sollicitation	σ _{bc} (MPa)	σ _{bc add} (MPa)	Vérification
50x50	-59.0111	-179.673	SEC	3.57	18	Ok

V.2.6.4 Vérification de l'effort tranchant:

V.2.6.4.1 Vérification de la contrainte de cisaillement :

Tableau V.20 : Vérification de la contrainte de cisaillement pour les poteaux.

Section (cm ²)	T _u (kN)	τ _u (MPa)	λ	$ ho_{ m d}$	τ _{u RPA} (MPa)	τ _{u BAEL} (MPa)	Vérification
50x50	52.372	0.23	21.44	0.075	2.25	2,50	Ok

V.2.6.4.2 Ferraillage transversal des poteaux :

Le tableau suivant rassemble les résultats des espacements maximums des poteaux :

Tableau V.21: Espacements maximales des armatures transversales des poteaux.

Section			S _t (cm)
(cm ²)	Barres	Ø _l (mm)	Zone nodale	Zone
			nouale	courante
50x50	4T20+8T16	20	10	20

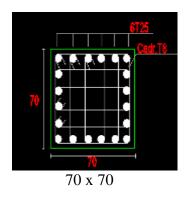
Le choix des armatures transversales est regroupé dans le tableau suivant :

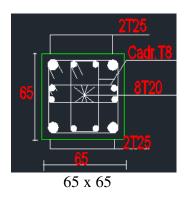
Tableau V.22: Choix des armatures transversales pour les poteaux.

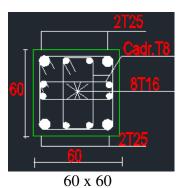
Section (cm²)	L_f (m)	λ_g $(\%)$	$ ho_a$	T_u^{max} (kN)	Zone	S_t (cm)	A_t^{cal} (cm^2)	Choix	A_s^{adp} (cm^2)
50x50	3.094	21.44	2.5	48.347	N	10	0.48	4T8	2.01
JUAJU	3.074	21,77	2.5	40.347	C	20	0.97	4T8	2.01

V.2.6.5 Longueur de recouvrement :

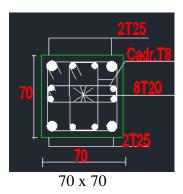
La longueur minimale de recouvrement est de : $L_r=50\emptyset_1$ en zone III.

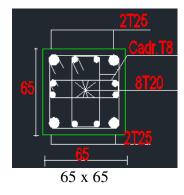

Pour:

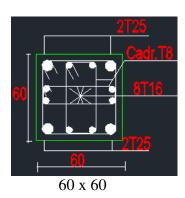

T20.....L_r=100cm


 $T16....L_r$ =80cm

V.2.7 Ferraillage des poteaux :


• Ferraillage bloc A





• Ferraillage bloc B

• Ferraillage bloc C

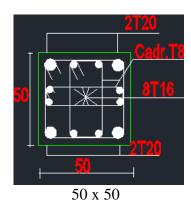


Figure V.1 : Schéma de ferraillage des poteaux

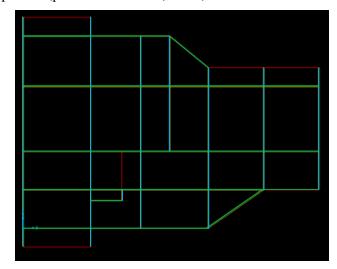
V.3 Ferraillage des poutres :

V.3.1 Introduction:

Les poutres sont des éléments structuraux horizontaux qui permettent de transférer les charges aux poteaux, elles sont sollicitées par des moments de flexion et des efforts tranchants.

Le ferraillage des poutres est donné par l'organigramme de la flexion simple (voir annexe).

V.3.2 Recommandation du RPA99 version 2003 [1]:


- 1- Le pourcentage total minimum des aciers longitudinaux sur toute la longueur de la poutre est de 0.5% en toute section.
- 2- Le pourcentage total maximum des aciers longitudinaux est de :
 - 4% en zone courante.
 - 6% en zone de recouvrement.
- 3- La longueur minimale de recouvrement est de $50\emptyset$ en zone III.
- 4- L'ancrage des armatures longitudinales supérieures et inférieures dans les poteaux de rive et d'angle doit être effectué avec des crochets à 90°

V.3.3 BLOC A

V.3.3.1 Calcul du ferraillage:

Pour le calcul des armatures nécessaires dans les poutres, nous avons considéré les portiques suivants les deux sens :

- Sens porteur (poutre porteuse (35x55)
- Sens non porteur (poutre secondaire (30x45)

Poutre porteuse	
Poutre non porteuse	

Figure V.2: Disposition des Poutres bloc A

V.3.3.1.1 Poutres porteuses (35x55)

a. Situation durable: 1,35G+1,5Q

Tableau V.23 : Ferraillage des poutres porteuses (35x55) (situation durable).

Etage	Section (cm ²)	Position	$M^{ma\ x}$ (kNm)	$A_s(cm^2)$	$A_s'(cm^2)$	A_S^{min} (cm^2)
4	2555	Travée	120.5105	5.55	0	9.625
terrasse	35x55	Appui	-232.2339	11.17	0	
5 ^{ème}		Travée	135.4637	6.28	0	9.625
5	35x55	Appui	-296.9512	14.69	0	
₄ ème		Travée	127.7208	5.9	0	9.625
4	35x55	Appui	-285.4747	14.05	0	
3 ^{éme}		Travée	125.9904	5.82	0	9.625
3	35x55	Appui	-286.4524	14.11	0	
2 ^{ème}		Travée	125.1189	5.78	0	9.625
2	35x55	Appui	-284.243	13.99	0	
1 ^{ér}		Travée	125.4431	5.79	0	9.625
I	35x55	Appui	-278.0954	13.65	0	
RDC		Travée	124.4236	5.74	0	9.625
	35x55	Appui	-274.4895	13.45	0	
1 ^{èr} E-S		Travée	135.0408	6.26	0	9.625
1 E-S	35x55	Appui	-160.3141	7.5	0	
2 ^{ème} E-S		Travée	126.3856	5.84	0	9.625
2 E-S	35x55	Appui	-266.8774	13.03	0	
3 ^{eme} E-S		Travée	123.6122	5.7	0	9.625
3 E-S	35x55	Appui	-255.9979	12.44	0	
4 ^{ème} E-S		Travée	125.2313	5.78	0	9.625
4 E-S	35x55	Appui	-243.1013	11.75	0	

b. Situation accidentelle : G+Q+E

Tableau V.24 : Ferraillage des poutres porteuses (35x55) (situation accidentelle)

E4	Section	D:'4'	M^{max}	A_s	A_s '	A_S^{min}
Etage	(cm^2)	Position	(kNm)	(cm^2)	(cm^2)	(cm^2)
townoggo	35x55	Travée	162.2011	6.46	0	9.625
terrasse	33833	Appui	-267.4245	10.93	0	
5 ^{ème}		Travée	217.5585	8.79	0	9.625
3	35x55	Appui	-350.7721	14.65	0	
4 ^{ème}		Travée	255.6182	10.42	0	9.625
4	35x55	Appui	-363.8052	15.25	0	
3 ^{éme}		Travée	327.351	13.59	0	9.625
3	35x55	Appui	-411.0694	17.46	0	
2 ^{ème}		Travée	385.6428	16.27	0	9.625
2	35x55	Appui	-462.9512	19.96	0	
1 ^{ér}		Travée	421.6721	17.97	0	9.625
1	35x55	Appui	-493.3382	21.47	0	
RDC		Travée	445.4996	19.11	0	9.625
KDC	35x55	Appui	-518.2322	22.73	0	
1 ^{èr} E-S		Travée	417.6775	17.78	0	9.625
1 E-S	35x55	Appui	-474.1876	20.52	0	
2 ^{ème} E-S		Travée	420.141	17.89	0	9.625
2 E-S	35x55	Appui	-477.5525	20.68	0	
3 ^{eme} E-S		Travée	449.2609	19.3	0	9.625
3 E-3	35x55	Appui	-503.5782	21.99	0	
4 ^{ème} E-S		Travée	378.0521	15.91	0	9.625
4 E-3	35x55	Appui	-432.4941	18.48	0	

c. Situation accidentelle: 0.8G±E

Tableau V.25 : Ferraillage des poutres porteuses (35x55) (situation accidentelle).

E4	Section	D:'4'	M^{max}	A_s	A_s '	A_S^{min}
Etages	(cm^2)	Position	(kNm)	(cm^2)	(cm^2)	(cm^2)
tannagga	25,,55	Travée	168.545	6.73	0	9.625
terrasse	35x55	Appui	-231.9973	9.4	0	
5 ^{ème}		Travée	214.2733	8.65	0	9.625
5	35x55	Appui	-276.4488	11.33	0	
4 ^{ème}		Travée	254.2074	10.36	0	9.625
4	35x55	Appui	-323.1122	13.41	0	
3 ^{éme}		Travée	324.403	13.46	0	9.625
3	35x55	Appui	-388.259	16.39	0	
2 ^{ème}		Travée	382.5071	16.12	0	9.625
2	35x55	Appui	-440.7463	18.88	0	
1 ^{ér}		Travée	419.7745	17.88	0	9.625
1	35x55	Appui	-472.509	20.44	0	
DDC		Travée	444.206	19.05	0	9.625
RDC	35x55	Appui	-498.3946	21.73	0	
1èr E-S		Travée	417.5161	17.77	0	9.625
1 E-S	35x55	Appui	-457.5828	19.7	0	
2 ^{ème} E-S		Travée	421.3909	17.95	0	9.625
2 E-S	35x55	Appui	-462.338	19.93	0	
3 ^{eme} E-S		Travée	451.6356	19.41	0	9.625
3 E-S	35x55	Appui	-491.752	21.39	0	
4 ^{ème} E-S		Travée	383.5677	16.17	0	9.625
4 E-S	35x55	Appui	-423.4683	18.05	0	

Remarque:

D'après les résultats obtenus du calcul des sections d'armatures dans les poutres sous les combinaisons d'action considérées, soient les combinaisons $^{\circ}1,35G+1,5Q^{\circ}$ et $^{\circ}G+Q+E^{\circ}$, on constate que le ferraillage maximum est obtenu par la combinaison $^{\circ}G+Q+E^{\circ}$.

V.3.3.1.1.1 Choix des armatures:

Tableau V.26 : Choix des armatures pour les poutres porteuses (35 x 55)

Etage	Section (cm ²)	Position	$ \begin{array}{c} \mathbf{A_{S}} \\ \text{max} \\ (\mathbf{Z.C}) \\ (\mathbf{cm}^2) \end{array} $	A_{S} max $(Z.R)$ (cm^{2})	A_S^{min} (cm^2)	$A_{S cal} (cm^2)$	Choix des armatures	A_S adopter (cm^2)
terrasse	35x55	Travée	77	115.5	9.625	6.46	4T20+2T16	16.58
terrasse	33X33	Appui	, ,			10.93	4T16+2T14	11.12
5 ^{ème}		Travée	77	115.5	9.625	8.79	6T20	18.84
	35x55	Appui	, ,			14.65	6T20	18.84
4 ^{ème}		Travée	77	115.5	9.625	10.42	6T20	18.84
	35x55	Appui	, ,	113.3		15.25	6T20	18.84
3 ^{éme}		Travée	77	115.5	9.625	13.59	6T20	18.84
	35x55	Appui	, ,	113.3		17.46	6T20	18.84
2 ^{ème}		Travée	77	115.5	9.625	16.27	6T20	18.84
2	35x55	Appui	//	113.3		19.96	6T20+2T16	22.86
1 ^{ér}		Travée	77	115.5	9.625	17.97	6T20	18.84
1	35x55	Appui	7 7	113.3		21.47	6T20+2T16	22.86
RDC		Travée	77	115.5	9.625	19.11	4T20+4T16	20.80
KDC	35x55	Appui	7 7	113.3		22.73	8T20	25.12
1èr E-S		Travée	77	115.5	9.625	17.78	6T20	18.84
1 E-S	35x55	Appui	7 7	113.3		20.52	6T20+2T16	22.86
2èmeE-S		Travée	77	115.5	9.625	17.89	6T20	18.84
2 E-S	35x55	Appui	/ /	113.3		20.68	6T20+2T16	22.86
2eme _E C		Travée	77	115.5	9.625	19.3	4T20+4T16	20.6
3 ^{eme} E-S	35x55	Appui] //	113.3		21.99	6T20+2T16	22.86
4 ^{ème} E-S		Travée	77	115.5	9.625	15.91	4T20+2T16	16.58
4 E-S	35x55	Appui				18.48	6T20	18.84

V.3.3.1.2 Poutres non porteuses (30x45):

a- Situation durable: 1,35G+1,5Q

Tableau V.27: Ferraillage des poutres non porteuses (30x45) (situation durable).

Etaaa	Section	Donisi ou	M^{max}	A_s	A_s '	A_S^{min}
Etage	(cm^2)	Position	(kNm)	(cm^2)	(cm^2)	(cm^2)
tannagga	30x45	Travée	53.0232	3	0	6.75
terrasse	30x43	Appui	-150.7454	9.12	0	0.73
5 ^{ème}		Travée	46.5414	2.62	0	6.75
5	30x45	Appui	-77.4224	4.45	0	
4 ^{ème}		Travée	55.0507	3.12	0	6.75
4	30x45	Appui	-83.6583	4.82	0	
3 ^{éme}		Travée	47.5257	2.68	0	6.75
3	30x45	Appui	-83.6575	4.82	0	
2 ^{ème}		Travée	44.4962	2.5	0	6.75
<u> </u>	30x45	Appui	-83.6965	4.83	0	
1 ^{ér}		Travée	38.9275	2.18	0	6.75
1	30x45	Appui	-83.7111	4.83	0	
RDC		Travée	33.9236	1.9	0	6.75
KDC	30x45	Appui	137.41	8.23	0	
1èr E-S		Travée	28.6709	1.6	0	6.75
1 E-S	30x45	Appui	-44.3353	2.49	0	
2 ^{ème} E-S		Travée	23.8874	1.33	0	6.75
2 E-S	30x45	Appui	-45.6755	2.57	0	
3 ^{eme} E-S		Travée	21.1988	1.18	0	6.75
3 E-3	30x45	Appui	-83.8388	4.84	0	
4 ^{ème} E-S		Travée	20.0722	1.11	0	6.75
4 E-S	30x45	Appui	-83.8366	4.84	0	

b. Situation accidentelle: G+Q+E

Tableau V.28 : Ferraillage des poutres non porteuses (30x45) (situation accidentelle).

E.	Section	D ''	M^{max}	A_s	A_s '	A_S^{min}
Etage	(cm^2)	Position	(kNm)	(cm^2)	(cm^2)	(cm^2)
townoggo	30x45	Travée	135.1447	6.8	0	6.75
terrasse	30843	Appui	-196.2807	10.15	0	0.73
5 ^{ème}		Travée	182.2807	9.37	0	6.75
5	30x45	Appui	-230.7511	12.14	0	
4 ^{ème}		Travée	229.8441	12.09	0	6.75
4*****	30x45	Appui	-241.0896	12.75	0	
3 ^{éme}		Travée	239.9027	12.68	0	6.75
3	30x45	Appui	-263.496	14.1	0	
2 ^{ème}		Travée	250.7004	13.33	0	6.75
2	30x45	Appui	-277.0446	14.94	0	
1 ^{ér}		Travée	247.5683	13.14	0	6.75
1	30x45	Appui	-277.9921	15	0	
DDC		Travée	246.9438	13.1	0	6.75
RDC	30x45	Appui	-252.6702	13.45	0	
1èr E-S		Travée	219.2809	11.47	0	6.75
1 E-S	30x45	Appui	-227.9597	11.98	0	
2 ^{ème} E-S		Travée	197.9597	10.25	0	6.75
2 E-S	30x45	Appui	-208.2487	10.83	0	
3 ^{eme} E-S		Travée	175.0522	8.96	0	6.75
3 E-S	30x45	Appui	-182.9446	9.4	0	
4 ^{ème} E-S		Travée	127.8813	6.41	0	6.75
4 E-S	30x45	Appui	-137.5526	6.93	0	

c. Situation accidentelle : 0.8G±E

Tableau V.29 : Ferraillage des poutres non porteuses (30x45) (situation accidentelle).

E4	Section	D:'4'	M^{max}	A_s	A_s '	A_S^{min}
Etage	(cm^2)	Position	(kNm)	(cm^2)	(cm^2)	(cm^2)
townoggo	30x45	Travée	131.2221	6.59	0	6.75
terrasse	30X43	Appui	-181.6077	9.33	0	0.73
5 ^{ème}		Travée	176.7999	9.06	0	6.75
5	30x45	Appui	-212.7966	11.1	0	
4 ^{ème}		Travée	225.0874	11.81	0	6.75
4	30x45	Appui	-231.5175	12.19	0	
3 ^{éme}		Travée	234.4457	12.36	0	6.75
3	30x45	Appui	-246.974	13.1	0	
2 ^{ème}		Travée	245.3535	13.01	0	6.75
2	30x45	Appui	-261.2097	13.96	0	
1 ^{ér}		Travée	243.4916	12.9	0	6.75
1	30x45	Appui	-263.0583	14.08	0	
RDC		Travée	241.4511	12.77	0	6.75
KDC	30x45	Appui	-245.6954	13.03	0	
1 ^{èr} E-S		Travée	215.5498	11.26	0	6.75
1 E-S	30x45	Appui	-216.7763	11.33	0	
2 ^{ème} E-S		Travée	194.6854	10.06	0	6.75
2 E-S	30x45	Appui	-197.6622	10.23	0	
3 ^{eme} E-S		Travée	172.274	8.81	0	6.75
3 E-3	30x45	Appui	-179.274	9.2	0	
4 ^{ème} E-S		Travée	127.1717	6.37	0	6.75
4 E-S	30x45	Appui	-134.9339	6.79	0	

V.3.3.1.2.1 Choix des armatures :

Tableau V.30: Choix des armatures pour les poutres non porteuses (30 x 45
--

Etage	Section (cm ²)	Position	A_{S}^{max} $(Z.C)$ (cm^{2})	A_S^{max} $(Z.R)$ (cm^2)	A_S^{min} (cm^2)	A_S^{cal} (cm^2)	Choix des armatures	A_S adopter (cm^2)
townoggo	30x45	Travée	54	81	6.75	6.8	6T16	12.06
terrasse	30X43	Appui	34	81		10.15	3T16+3T14	10.64
5 ^{ème}		Travée	54	81	6.75	9.37	3T16+3T14	10.64
3	30x45	Appui	34	01		12.14	3T20+3T16	15.45
4 ^{ème}		Travée	54	81	6.75	12.09	3T20+3T16	15.45
4	30x45	Appui	34	01		12.75	3T20+3T16	15.45
3 ^{éme}		Travée	54	81	6.75	12.68	3T20+3T16	15.45
3	30x45	Appui	34	81		14.1	3T20+3T16	15.45
2 ^{ème}		Travée	54	81	6.75	13.33	2T20+4T16	14.32
<u> </u>	30x45	Appui	34	01		14.94	3T20+3T16	15.45
1 ^{ér}		Travée	54	81	6.75	13.14	2T20+4T16	14.32
1	30x45	Appui	34	01		15	3T20+3T16	15.45
RDC		Travée	54	81	6.75	13.1	2T20+4T16	14.32
KDC	30x45	Appui	34	01		13.45	2T20+4T16	14.32
1 ^{èr} E-S		Travée	54	81	6.75	11.47	6T16	12.06
1 E-S	30x45	Appui	34	01		11.98	6T16	12.06
2 ^{ème} E-S		Travée	54	81	6.75	10.25	6T16	12.06
2 E-S	30x45	Appui	34	81		10.83	6T16	12.06
3 ^{eme} E-S		Travée	5.1	01	6.75	8.96	3T16+3T14	10.64
3 E-S	30x45	Appui	54	81		9.4	3T16+3T14	10.64
4 ^{ème} E-S		Travée	54	81	6.75	6.41	6T14	9.23
4 E-S	30x45	Appui				6.93	6T14	9.23

V.3.3.2 Condition de non fragilité:

Dans toute poutre comportant une zone tendue, qu'elle soit soumise à la flexion simple ou composée, les armatures longitudinales de traction doivent présenter une section au moins égale à 0,001 de la section droite de la poutre.

On peut se dispenser de la vérification de la condition de non-fragilité dans les sections doit satisfis la condition suivant :

$$A_s \ge A_s^{\min} = 0.23bd \frac{f_{t28}}{f_e}$$
 Avec: $f_{t28} = 2.4 \text{MPa}$; $f_e = 500 \text{MPa}$

Tableau V.31 : Vérification de la condition de non fragilité des poutres.

Section (cm ²)	$A_{s(\min)}^{choisi}$ (cm ²)	$A_s^{\min}(\mathbf{cm}^2)$	Vérification
35x55	11.12	2.13	Vérifiée
30x45	9.23	1.49	Vérifiée

Les sections choisie sont tous supérieure à A_s^{\min} alors la condition est vérifiée.

V.3.3.3 Vérification vis-à-vis de L'ELS:

Les contraintes sont calculées à l'état limite de service sous $(M_{\text{ser}}$, $N_{\text{ser}})$, puis elles sont comparées aux contraintes admissibles données par :

$$\sigma_{bc} = 0.6 \text{ fc} 28 = 18 \text{MPa}$$

Acier [1]

Peut nuisible : Pas de vérification.

Fissuration préjudiciable :
$$\sigma_s = \min(\frac{2}{3} fe; 110 \times \sqrt{\eta. f_{tj}})$$

Fissuration très préjudiciable :
$$\sigma_s = \min(\frac{1}{2} fe; 90 \times \sqrt{\eta \cdot f_{ij}})$$

Où :
$$\eta = 1,60$$
 pour les aciers à HA.

Dans notre cas la fissuration est considérée préjudiciable.

On doit vérifier que :
$$\sigma_b = \frac{M_{ser}}{l} y + \frac{N}{A} < \overline{\sigma}_{bc}$$
$$\sigma_{s=15} \frac{M_{ser}}{l} (d-y) + \frac{N}{A} \le \overline{\sigma}_{s}$$

A- Poutres porteuses (35x55):

Tableau V.32 : Vérification des poutres principales (35x55) à l'ELS.

Niveaux	Position	M _{ser} (kNm)	σ_{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ_s (MPa)	$\overline{\sigma}_s$ (MPa)	Verifier
terrasse	Travée	88.1571	4.1	18	113.5	250	Oui
terrasse	Appui	-169.603	7.88	10	218.4	230	Oui
5 ^{ème}	Travée	97.6782	3.78	18	109.5	250	Oui
3	Appui	-215.630	8.35	10	241.8	230	Oui
∆ ème	Travée	92.724	3.59	18	104	250	Oui
4	Appui	-207.226	8.03	10	232.3	230	Oui
3 ^{éme}	Travée	91.4613	3.54	18	102.5	250	Oui
3	Appui	-207.939	8.05	10	233.1	230	Oui
2ème	Travée	90.8321	3.29	18	101.2	250	Oui
<u> </u>	Appui	-206.323	7.46	18	229.9	230	Oui
1 ^{ér}	Travée	91.0644	3.29	18	101.5	250	Oui
1	Appui	-201.859	7.3	10	225	230	Oui
RDC	Travée	90.3358	3.07	18	91.2	250	Oui
KDC	Appui	-199.21	6.78	10	201.2	230	Oui
1èr E-S	Travée	90.4168	3.27	18	100.8	250	Oui
1 E-S	Appui	-196.449	7.11	10	218.9	230	Oui
2èmeE-S	Travée	90.5604	3.28	18	100.9	250	Oui
2 E-S	Appui	-191.491	6.93		213.4	230	Oui
3 ^{eme} E-S	Travée	90.9104	3.21	18	93	250	Oui
3 E-S	Appui	-185.797	6.57	10	190	230	Oui
4 ^{ème} E-S	Travée	90.9104	3.64	18	115.3	250	Oui
4 E-S	Appui	-176.469	7.07		223.8	230	

B- Poutres non porteuses (30x45)

Tableau V.33 : Vérification des poutres non porteuse (30x45) à l'ELS.

Niveaux	Position	M _{ser} (kNm)	σ _{bc} (MPa)	$\overline{\sigma}_{bc}$ (MPa)	σ _s (MPa)	$\overline{\sigma}_s$ (MPa)	Verifier
terrasse	Travée	38.7338	2.89	18	84.9	250	Oui
terrasse	Appui	-110.10	8.46	10	241.2	230	Oui
5 ^{ème}	Travée	33.655	2.45	18	82.6	250	Oui
3	Appui	-55.748	4.06	10	136.8	230	Oui
4 ème	Travée	31.1367	2.09	18	57.4	250	Oui
4	Appui	-59.786	4	18	110	230	Oui
3 ^{éme}	Travée	28.7187	1.88	18	52.8	250	Oui
3	Appui	-59.721	3.9	10	109.8	230	Oui
2 ^{ème}	Travée	26.1297	1.71	18	48	250	Oui
Z	Appui	-59.751	3.9	18	109.8	230	Oui
1 ^{ér}	Travée	22.8097	1.49	18	41.9	250	Oui
1	Appui	-59.761	3.9	10	109.9	230	Oui
RDC	Travée	19.6366	1.32	18	36.2	250	Oui
KDC	Appui	-59.762	4	10	110.1	230	Oui
1 ^{èr} E-S	Travée	13.7215	1.02	18	30	250	Oui
1 E-S	Appui	-32.181	2.39	10	70.3	230	Oui
2 ^{ème} E-S	Travée	10.511	0.78	18	23	250	Oui
2 E-S	Appui	-33.23	2.46	10	72.6	230	Oui
3 ^{eme} E-S	Travée	11.2811	0.9	18	27.9	250	Oui
3 E-3	Appui	-59.852	4.77		147.9	230	Oui
4 ^{ème} E-S	Travée	14.4698	1.25	18	41.1	250	Oui
4 E-3	Appui	-60.480	5.22	10	172	230	

V.3.3.4 Vérification de l'effort tranchant :

✓ Vérification de la contrainte de cisaillement :

Il faut vérifier que :
$$\tau_u = \frac{T_u}{bd} \le \overline{\tau}_u$$

Avec:

 T_u : l'effort tranchant maximum.

b: Largeur de la section de la poutre.

d: Hauteur utile.

 $\overline{\tau u}$ = Min (0.10fc28; 4MPa)= 3MPa (Fissuration préjudiciable).

Tableau V.34 : Vérification de la contrainte de cisaillement des poutres.

Niveau	Section (cm ²)	T _{u max} (kN)	τ _u (MPa)	τ _{u BAEL add} (MPa)	Verification
5 ^{ème}	PP 35x55	233.605	1.35	3	ok
étage	PNP 30x45	64.388	0.53	3	ok

✓ Calcul des armatures transversales :

L'acier choisi pour les armatures transversales est de type haute adhérence et nuance FeE50 (f_e =500MPa).

• Selon le BAEL 91 modifié 99 [2]:

$$\begin{cases} S_{t} = Min(0.9d; 40cm) \\ \frac{A_{t}}{bS_{t}} \ge \frac{\tau_{u} - 0.3f_{t28}K}{0.8f_{e}} \\ \frac{A_{t}f_{e}}{bS_{t}} \ge Max \left(\frac{\tau_{u}}{2}; 0.4MPa\right) \end{cases} (K = 1: Pas de reprisede bétonnage)$$

• Selon le RPA 99 version 2003 [1]:

$$\begin{cases} A_{t} = 0.003S_{t}b \\ S_{t} \leq Min\left(\frac{h}{4};12\phi_{t}\right) \dots Zone \, nod \, ale \\ S_{t} \leq \frac{h}{2} \dots Zone \, courante \end{cases}$$

Avec:

$$\phi_t \leq Min\left(\frac{h}{35}; \phi_l; \frac{b}{10}\right) = 1,29cm$$

On prend : $\emptyset_t = 8mm$

Les résultats de calcul sont résumés dans le tableau suivant :

Tableau V.35: Calcul des armatures transversales

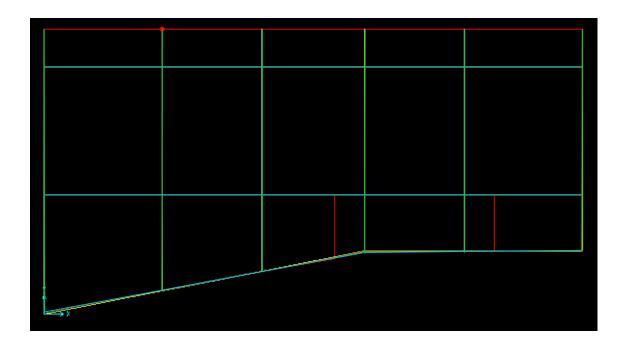
			BAEL91	RPA99		S_t^{adp} (cm)		A_t^{min}	
Poutres	$T_{u}(kN)$	τ _u (MPa)	S _t (cm)	S _t (cm)ZN	S _t (cm)ZC	ZN	ZC	(cm ²)	Choix
35x55	233.605	1.35	40	13.75	27.5	10	20	2.1	6T8
30x45	64.388	0.53	36.45	11.25	22.5	10	15	1.35	4T8

V.3.3.5 Recouvrement des armateurs longitudinaux :

 $L_r=50\emptyset$ (zone III).

L_r: Longueur de recouvrement.

On a:


- Ø=20mm.....L_r=100cm
- Ø=16mm....L_r=80cm

V.3.4 BLOC B

V.3.4.1 Calcul du ferraillage:

Pour le calcul des armatures nécessaires dans les poutres, nous avons considéré les portiques suivants les deux sens :

- Sens porteur (poutre porteuse (35x55):
- Sens non porteur (poutre secondaire (30x45).

Poutre porteuse	
Poutre non porteuse	

Figure V.3: Disposition des Poutres bloc B

Remarque:

D'après les résultats obtenus du calcul des sections d'armatures dans les poutres sous les combinaisons d'action considérées, soient les combinaisons $^{\circ}1,35G+1,5Q^{\circ}$ et $^{\circ}G+Q+E^{\circ}$, on constate que le ferraillage maximum est obtenu par la combinaison $^{\circ}G+Q+E^{\circ}$.

D'après les résultats de ferraillage qu'on a obtenus dans le BLOC B et C se sont presque les mêmes de BLOC A donc on a généralisé le ferraillage de BLOC A pour le deux autre BLOC

V.3.4.1.1 Poutres porteuses (35x55)

a. Situation accidentelle : G+Q+E

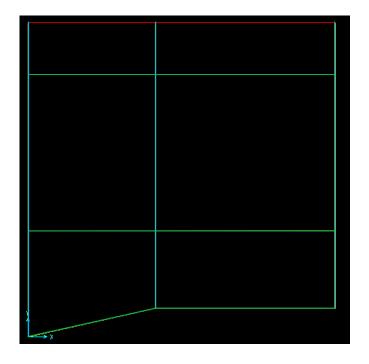
Tableau V.36 : Ferraillage des poutres porteuses (35x55) (situation accidentelle).

Etaco	Section	Donisi ou	M^{max}	A_s	A_s '	A_S^{min}
Etage	(cm^2)	Position	(kNm)	(cm^2)	(cm^2)	(cm^2)
terrasse	35x55	Travée	157.6232	6.28	0	9.625
terrasse	33833	Appui	-424.9661	18.12	0	
5 ^{ème}		Travée	184.5204	7.39	0	9.625
3	35x55	Appui	-458.8996	19.77	0	
₄ ème		Travée	217.8273	8.8	0	9.625
4	35x55	Appui	-466.9594	20.16	0	
3 ^{éme}		Travée	251.0943	10.22	0	9.625
3	35x55	Appui	-493.3142	21.47	0	
2 ^{ème}		Travée	281.1097	11.53	0	9.625
2	35x55	Appui	-511.1565	22.37	0	
1 ^{ér}		Travée	290.5102	11.95	0	9.625
1	35x55	Appui	-514.7381	22.55	0	
RDC		Travée	478.0351	20.71	0	9.625
KDC	35x55	Appui	-502.1515	21.91	0	
1 ^{èr} E-S		Travée	469.5073	20.29	0	9.625
1 E-S	35x55	Appui	-541.5905	23.93	0	
2 ^{ème} E-S		Travée	419.686	17.87	0	9.625
2 E-S	35x55	Appui	-485.217	21.07	0	
3 ^{eme} E-S		Travée	385.8674	16.28	0	9.625
3 E-S	35x55	Appui	-443.6903	19.03	0	
4 ^{ème} E-S		Travée	303.8083	12.54	0	9.625
4 E-S	35x55	Appui	-392.5876	16.59	0	
5 ^{eme} E-S		Travée	183.9813	7.37	0	9.625
3 E-3	35x55	Appui	291.072	11.97	0	

V.3.4.1.2 Poutres non porteuses (30x45)

a. Situation accidentelle: G+Q+E

Tableau V.37: Ferraillage des poutres non porteuses (30x45) (situation accidentelle).


E4	Section	D '4'	M^{max}	A_s	A_s '	A_S^{min}
Etage	(cm^2)	Position	(kNm)	(cm^2)	(cm^2)	(cm^2)
townoggo	30x45	Travée	112.3871	5.6	0	6.75
terrasse	30843	Appui	123.0001	6.15	0	0.73
5 ^{ème}		Travée	145.2422	7.34	0	6.75
3	30x45	Appui	-170.5738	8.72	0	
4 ^{ème}		Travée	44.1937	2.14	0	6.75
4	30x45	Appui	-124.0948	6.21	0	
3 ^{éme}		Travée	118.342	5.91	0	6.75
3	30x45	Appui	-132.2781	6.64	0	
2 ^{ème}		Travée	122.3	6.12	0	6.75
2	30x45	Appui	140.2727	7.07	0	
1 ^{ér}		Travée	125.3002	6.27	0	6.75
1	30x45	Appui	-142.2213	7.18	0	
RDC		Travée	153.3973	7.78	0	6.75
KDC	30x45	Appui	-195.6896	10.12	0	
1 ^{èr} E-S		Travée	147.5663	7.46	0	6.75
1 E-S	30x45	Appui	-190.0595	9.8	0	
2 ^{ème} E-S		Travée	142.5441	7.19	0	6.75
2 E-S	30x45	Appui	-187.6329	9.67	0	
3 ^{eme} E-S		Travée	137.7951	6.94	0	6.75
3 E-S	30x45	Appui	-183.5443	9.44	0	
4 ^{ème} E-S		Travée	111.3457	5.54	0	6.75
4 E-3	30x45	Appui	-170.4323	8.71	0	
5 ^{eme} E-S		Travée	100.02	4.95	0	6.75
3 E-3	30x45	Appui	-112.4952	5.6	0	

V.3.5 BLOC C

V.3.5.1 Calcul du ferraillage:

Pour le calcul des armatures nécessaires dans les poutres, nous avons considéré les portiques suivants les deux sens :

- Sens porteur (poutre porteuse (35x55)
- Sens non porteur (poutre secondaire (30x45).

Poutre porteuse	
Poutre non porteuse	

Figure V.4: Disposition des Poutres bloc C

Les résultats sont regroupés dans les tableaux suivants :

V.3.5.1.1 Poutres porteuses (35x55)

a. Situation accidentelle : G+Q+E

Tableau V.38 : Ferraillage des poutres porteuses (35x55) (situation accidentelle).

Etage	Section (cm²)	Position	M ^{max} (kNm)	A_s (cm^2)	A_s ' (cm^2)	A_S^{min} (cm^2)
DDC		Travée	96.5297	3.79	0	9.625
RDC	35x55	Appui	-147.7582	5.87	0	
1 ^{èr} E-S		Travée	135.3193	5.36	0	9.625
1 E-S	35x55	Appui	-262.5301	10.72	0	
2 ^{ème} E-S		Travée	152.6348	6.07	0	9.625
2 E-S	35x55	Appui	-278.6501	11.41	0	
3 ^{eme} E-S		Travée	171.3288	6.84	0	9.625
3 E-S	35x55	Appui	-292.8106	12.05	0	
4èmeE-S		Travée	161.2854	6.43	0	9.625
4 E-S	35x55	Appui	-281.2555	11.54	0	
5 ^{eme} E-S		Travée	110.7031	4.36	0	9.625
3 E-3	35x55	Appui	-220.199	8.9	0	

V.3.5.1.2 Poutres non porteuses (30x45)

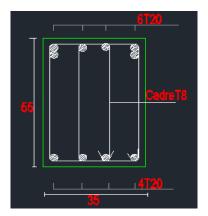
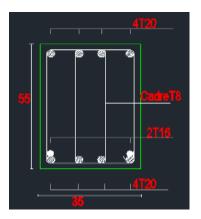
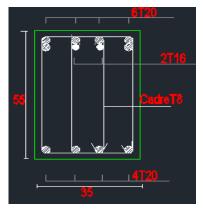

a. Situation accidentelle : G+Q+E

Tableau V.39 : Ferraillage des poutres non porteuses (30x45) (situation accidentelle).

Etage	Section (cm ²)	Position	M ^{max} (kNm)	A_s (cm^2)	A_s , (cm^2)	A_S^{min} (cm^2)
DD C	(cm)	Travée	68.2313	3.34	0	6.75
RDC	30x45	Appui	-180.7391	9.28	0	
1 ^{èr} E-S		Travée	80.0362	3.93	0	6.75
1 E-S	30x45	Appui	-125.6667	6.29	0	
2 ^{ème} E-S		Travée	84.2993	4.15	0	6.75
2 E-S	30x45	Appui	-135.2648	6.8	0	
3 ^{eme} E-S		Travée	89.6043	4.42	0	6.75
3 E-8	30x45	Appui	-148.4598	7.51	0	
4 ^{ème} E-S		Travée	87.4077	4.31	0	6.75
4 L-S	30x45	Appui	-145.3662	7.34	0	
5 ^{eme} E-S		Travée	54.5688	2.65	0	6.75
5 E-S	30x45	Appui	-111.5906	5.56	0	


V.3.6 Ferraillage des poutres :

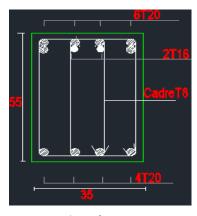
• Ferraillage 4^{éme} Entre-sol:



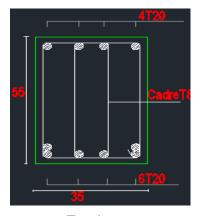
Appui

• Ferraillage 3^{éme} Entre-sol:

Travée

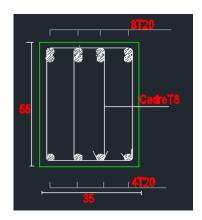


Appui

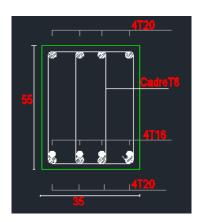

4T20
Cadre T8
4T16
SS

Travée

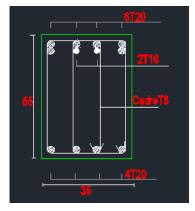
• Ferraillage 1^{ér} et 2 ^{éme} Entre-sol :



Appui


Travée

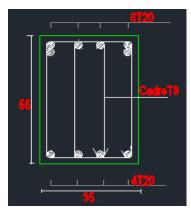
• Ferraillage RDC :



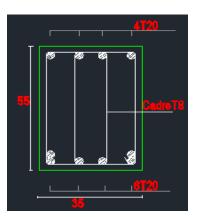
Appui

• Ferraillage 1^{ér} et 2 ^{éme} Etage :

Travée



Appui


555 Cadre 18

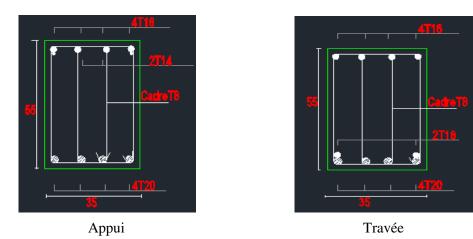
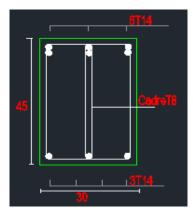
Travée

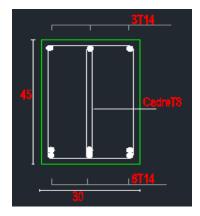
• Ferraillage 3^{éme} '4 ^{éme} et 5 ^{éme} Etage :

Appui

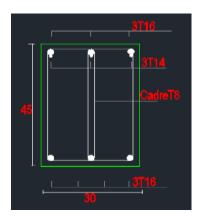
Travée

• Ferraillage terrasse :

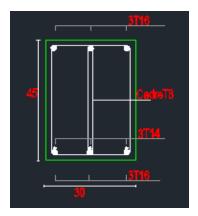




Figure V.5 : Schéma de ferraillage des poutres principales

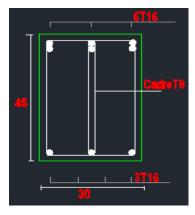
• Ferraillage 4^{éme} Entre-sol:



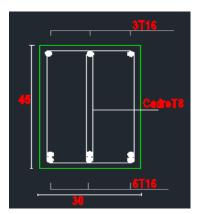
Appui


• Ferraillage 3^{éme} Entre-sol:

Travée

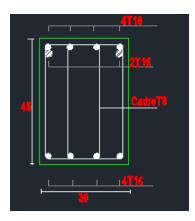


Appui



Travée

• Ferraillage 1^{ér} et 2 ^{éme} Entre-sol :

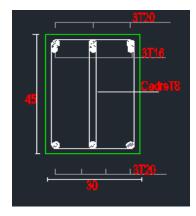


Appui

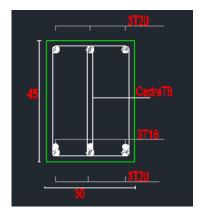


Travée

• Ferraillage RDC et 4 ^{éme} Etage :

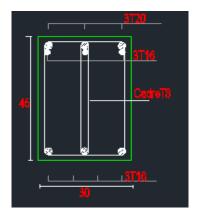


Appui

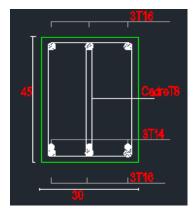


Travée

• Ferraillage $1^{\text{\'er}}$, $2^{\text{\'eme}}$ et $3^{\text{\'eme}}$ Etage :

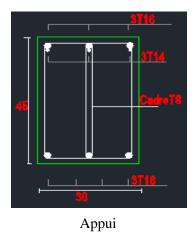


Appui



Travée

• Ferraillage 5^{éme} Etage :



Appui

Travée

• Ferraillage Terrasse :

Cadio T8

6716

30

Travée

Figure V.6 : Schéma de ferraillage des poutres secondaires

V.4 Ferraillage des voiles:

V.4.1 Généralités :

Le voile ou le mur en béton armé est un élément de construction vertical surfacique coulé dans des coffrages à leur emplacement définitif dans la construction. Ces éléments comprennent habituellement des armatures de comportement fixées forfaitairement et des armatures prises en compte dans les calculs. On utilise les voiles dans tous les bâtiments quelle que soit leurs destination (d'habitations, de bureaux, scolaires, hospitaliers, industriels,...)

V.4.2 Principe de calcul:

L'étude des voiles consiste à les considérer comme des consoles sollicitées par un moment fléchissant, un effort normal suivant le cas le plus défavorable.

Le calcul des armatures sera fait à la flexion composée, par la méthode des contraintes et vérifier selon le [1].

V.4.3 Procédure de ferraillage des trumeaux :

On utilise la méthode des contraintes (la formule classique de la R.D.M) :

$$\sigma_{1,2} = \frac{N}{A} \pm \frac{M.V}{I} \le \sigma = \frac{0.85.f_{c28}}{1.15} = 22.17 \text{ MPa}$$

Avec:

N: effort normal appliqué.

M: moment fléchissant appliqué.

A: section du voile.

V : distance entre le centre de gravité du voile et la fibre la plus éloignée.

I: moment d'inertie.

On distingue 3 cas:

1^{er} cas: Si: $(\sigma_1 \text{ et } \sigma_2) > 0 \Rightarrow$ la section du voile est entièrement comprimée " pas de zone tendue ".

La zone courante est armée par le minimum exigé par le [1]est : A min = 0,20.a.L

 2^{eme} cas: Si: $(\sigma 1$ et $\sigma 2)$ < 0 \Rightarrow la section du voile est entièrement tendue " pas de zone comprimée"

On calcule le volume des contraintes de traction

 $A_V = f_t / f_e$; on compare A_V par la section minimale exigée par le [1].

- ✓ Si: $A_V < A_{min} = 0.2 \%$ a.L., on ferraille avec la section minimale.
- ✓ Si : $A_V > A \min = 0.2 \%$ a.L, on ferraille avec A_V

3^{eme} cas: Si : (σ1 et σ2) < 0 sont de signe différent, ⇒ a section du voile est partiellement comprimée, donc on calcule le volume des contraintes pour la zone tendue., d'où la section des armatures vertical.

Règles Communes (selon le RPA) [1]:

✓ L'espacement des barres horizontales et verticales doit être inférieur à la plus petite des deux valeurs suivantes : $S \le 1.5$ e : épaisseur du voile

- ✓ Les deux nappes d'armatures doivent être reliées avec au moins quatre épingles au mètre carré. Dans chaque nappe, les barres horizontales doivent être disposées vers l'extérieure.
- ✓ Le diamètre Φ_t des épingles est : $\Phi_t = 6 \text{mm}$ lorsque $\Phi_V \leq 20 \text{ mm}$.

 $\Phi_t = 8 \text{mm lorsque } \Phi_V > 20 \text{ mm}.$

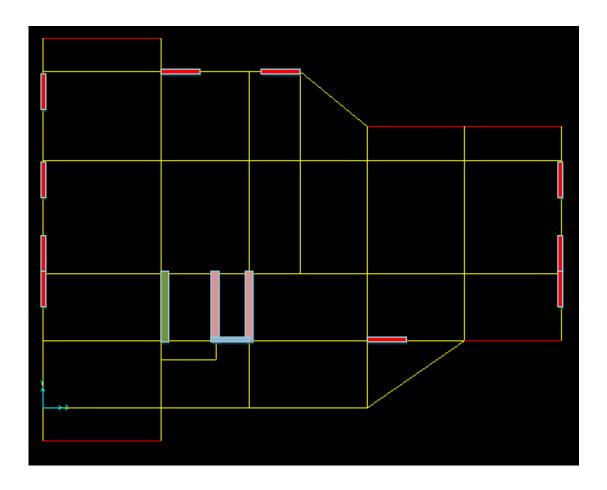
- ✓ Le diamètre des barres verticales et horizontales du voile (à l'exception des zones d'about) ne devrait pas dépasser 1/10 de l'épaisseur du voile.
- ✓ Les longueurs de recouvrement doivent être égales à :
- 40Φ pour les barres situées dans les zones ou le reversement du signe des efforts est possible.
- 20Φ pour les barres situées dans les zones comprimées sous l'action de toutes les combinaisons possibles des charges.

Combinaison:

Selon le règlement parasismique Algérienne ^[1]les combinaisons à considérer dans notre cas (voiles) sont les suivantes :

$$G + Q + E$$
, $0.8G + E$

Sous l'action des forces verticales et horizontales, les voiles sont sollicités en flexion composée et le ferraillage se fait selon les recommandations du règlement [1]


$$\begin{cases} \sigma_{T} = \frac{N}{A} + \frac{Ml_{t}}{I} & (traction) \\ \sigma_{c} = \frac{N}{A} + \frac{Ml_{c}}{I} & (compression) \end{cases}$$

$$A = l. \ a$$
 ; $I = \frac{a \, l^3}{12}$

N: effort normal

M: moment pouvant être dû à un excentrement des charges verticales ou à des forces horizontales (vent ou séisme)

V.4.4 BLOC A

V1	V2	V3	V4

Figure V.7: Disposition des voiles bloc A

V.4.4.1 Ferraillage vertical:

Le calcul se fera pour des bandes verticales dont la largeur d est déterminée à partir de : $d \le min \ [he/2 \ ; (2/3).L']$ Article 7.7.4 [1].

L : est la longueur de la zone comprimée.

Chapitre V:

espacement:

En zone courante : $St \le min(1,5e;30)$

En zone d'about : Sta= St/2

Pour déterminer les armatures verticales, on utilisera la méthode des contraintes.

Pour le ferraillage on a partagé la structure en quatre voile:

Les tableaux suivants représentent les résultats de ferraillage vertical de tous les voiles :

Remarque:

Les calculs sera fait à l'aide du logiciel EXCEL

Tableau V.40 : Le ferraillage de voile 1

N.T		T T	3.4	N T		I .			CHOIN DEC
N	e	L	M	N	As	$\mathbf{A}\mathbf{s}_{\mathbf{RP}}$	Asmi	As	CHOIX DES
	(m)	(m)	(KN.m)	(KN)	(cm2)	A	n	adopt	ARMATURES
						(cm2)	(cm2)	é	
								(cm2)	
5 ^{ème}	0.15	1.88	-87.617	-180	4.637	4.638	3.48	9.42	2x(6HA10)
4 ^{ème}	0,15	1.88	134.41	315.16	6.454	4.892	3.67	9.42	2x(6HA10)
3 ^{éme}	0,15	1.88	247.99	573.15	11.76	4.862	3.65	15.7	2x(10HA10)
2 ^{ème}	0,15	1.88	314.48	722.89	14.85	4.851	3.64	15.7	2x(10HA10)
1 ^{ér}	0,15	1.88	398.68	911.33	18.74	4.840	3.63	27.12	2x(12HA12)
RDC	0,15	1.88	472.53	1077.8	22.17	4.835	3.63	27.12	2x(12HA12)
1 ^{èr} E-S	0,15	1.88	392.08	902.23	18.53	4.853	3.64	27.12	2x(12HA12)
2 ^{ème} E-S	0,15	1.88	0.1125	0.153	4.022	4.022	3.016	9.42	2x(6HA10)
3 ^{eme} E-S	0,15	1.88	595.85	1342.9	27.68	4.811	3.608	30.84	2x(6HA12+12HA10)
4 ^{ème} E-S	0,15	1.88	773.65	1733.1	35.76	4.799	3.60	39.44	2x(4HA14+12HA12)
5 ^{ème} E-S	0,15	1.88	902.70	1496.9	33.27	4.285	3.214	39.44	2x(4HA14+12HA12)

Tableau V.41 : Le ferraillage de voile 2

N	e	L	M	N	As	As _{RPA}	As _{min}	As	CHOIX DES
	(m)	(m	(KN.m)	(KN)	(cm2)	(cm2)	(cm2)	adopté	ARMATURES
								(cm2)	
5 ^{ème}	0.2	3.8	-0.8157	0.174	8.6268	8.627	6.47		2x(6HA10)
<u> </u>								9.42	
₄ ème	0.2	3.8	-0.7849	0.167	8.6241	8.624	6.49		2x(6HA10)
_								9.42	
3 ^{éme}	0.2	3.8	-0.7147	0.156	8.6506	8.651	6.49		
3								9.42	2x(6HA10)
2 ^{ème}	0.2	3.8	-0.6066	0.14	8.7109	8.711	6.53		
								9.42	2x(6HA10)
1 ^{ér}	0.2	3.8	-0.4864	0.122	8.8073	8.807	6.60		
								9.42	2x(6HA10)
RDC	0.2	3.8	-0.3758	0.102	8.9064	8.906	6.68		
								9.42	2x(6HA10)
1 ^{èr}	0.2	3.8	-0.2838	0.077	8.9059	8.906	6.68		
E-S								9.42	2x(6HA10)
2 ^{ème}	0.2	3.8	-0.2913	0.06	8.5914	8.591	6.44		
E-S								9.42	2x(6HA10)
3 ^{eme}	0.2	3.8	-0.3699	0.045	8.1856	8.186	6.14		
E-S								9.42	2x(6HA10)
4 ^{ème}	0.2	3.8	-0.3738	0.029	7.9734	7.973	5.98		
E-S								9.42	2x(6HA10)
5 ^{ème}	0.2	3.8	678.59	-2233.2	3.9537	3.954	2.96		
E-S								9.42	2x(6HA10)

Tableau V.42 : Le ferraillage de voile 3

N	e	L	M	N	As	As _{RPA}	Asmi	As	
	(m)	(m)	(KN.m)	(KN)	(cm2)	(cm2)	n	adopté	CHOIX DES
	, ,		,	,		, ,	(cm2)	(cm2)	ARMATURE
									S
5 ^{ème}	0.15	3.8	-0.6722	0.21	6.8278	6.828	5.12		2x(6HA10)
3								9.42	
4 ^{ème}	0.15	3.8	-0.6404	0.195	6.7992	6.799	5.09		
4								9.42	2x(6HA10)
3 ^{éme}	0.15	3.8	-0.5636	0.168	6.7761	6.776	5.08		
3								9.42	2x(6HA10)
2 ^{ème}	0.15	3.8	-0.4667	0.136	6.7520	6.752	5.06		
								9.42	2x(6HA10)
1 ^{ér}	0.15	3.8	-0.393	0.108	6.6921	6.692	5.02		
1								9.42	2x(6HA10)
RDC	0.15	3.8	-0.3399	0.087	6.6240	6.624	4.97		
								9.42	2x(6HA10)
1 ^{èr}	0.15	3.8	-0.2589	0.066	6.8691	6.869	4.98		
E-S								9.42	2x(6HA10)
2 ^{ème}	0.15	3.8	-0.2333	0.053	6.5201	6.520	4.89		
E-S								9.42	2x(6HA10)
3 ^{eme}	0.15	3.8	-0.2794	0.049	6.3331	6.333	4.75		
E-S								9.42	2x(6HA10)
4 ^{ème}	0.15	3.8	-0.294	0.042	6.2157	6.216	4.66		
E-S								9.42	2x(6HA10)
5 ^{ème}	0.15	3.8	-1051.29	908.9	19.878	8.821	6.61		
E-S								22.6	2x(11HA12)

N	e	L	M	N	As	As _{RPA}	Asmi	As	
	(m)	(m)	(KN.m)	(KN)	(cm2)	(cm2)	n	adopté	CHOIX DES
							(cm2)	(cm2)	ARMATURES
5 ^{ème}	0.2	2	-0.4938	0.766	6.0683	6.068	4.55		2x(6HA10)
3								9.42	
4 ^{ème}	0.2	2	-0.4903	0.722	5.9634	5.963	4.47		
4								9.42	2x(6HA10)
3 ^{éme}	0.2	2	-0.4196	0.554	5.7604	5.760	4.32		
3								9.42	2x(6HA10)
2 ^{ème}	0.2	2	-0.3305	0.417	5.6823	5.682	4.26		
								9.42	2x(6HA10)
1 ^{ér}	0.2	2	-0.2987	0.529	6.3613	6.361	4.77		
1								9.42	2x(6HA10)
RDC	0.2	2	-0.2936	0.654	6.9700	6.970	5.23		
								9.42	2x(6HA10)
1 ^{èr}	0.2	2	-0.2038	0.59	7.8600	7.860	5.895		
E-S								9.42	2x(6HA10)
2 ^{ème}	0.2	2	-0.139	0.503	7.3161	7.316	5.49		
E-S								9.42	2x(6HA10)
3 ^{eme}	0.2	2	-0.1874	0.551	7.8853	7.885	5.91		
E-S								9.42	2x(6HA10)
4 ^{ème}	0.2	2	-0.2448	0.619	7.3701	7.370	5.53		
E-S								9.42	2x(6HA10)
5 ^{ème}	0.2	2	-1306.8	3814.3	76.300	7.892	5.92		
E-S							ĺ	81.83	2x(4HA20+14HA16)

Tableau V.43: Le ferraillage de voile 4

V.4.4.2 Ferraillage horizontal à l'effort tranchant :

a .Vérification des voiles à l'effort tranchant :

La vérification de la résistance des voiles au cisaillement se fait avec la valeur de l'effort tranchant trouvé à la base du voile majoré de 40 %.

-La contrainte de cisaillement est : $\tau u = 1,4 \text{ Vmax/b0d}$

Avec:

Vmax: l'effort tranchant à la base du voile.

La contrainte limite est : \overline{tu} = 0,2fc28. L'article 7.7.2 RPA 99version2003

Il faut vérifier la condition suivante : $\tau u \le u \bar{\tau}$

b. Calcul de l'armature horizontale résistante à l'effort tranchant :

La section At des armatures d'âmes est donnée par la relation suivante :

$$\frac{At}{b_0.S_t} \le \frac{(\tau_u - 0.3 \, ftj \, K)}{0.9.fe} \qquad \qquad C.\,B.\,A93 \, Art \, A.\, 5.1.2.3^{(3)}$$

Dans notre cas, On n'a pas de reprise de bétonnage ; donc on prend k =0.

D'autre part le RPA 99version2003 prévoit un pourcentage minimum de ferraillage qui est de l'ordre de :

✓ 0.15%: globalement dans la section des voiles.

✓ 0.10%: dans les sections courantes.

 $St \le min (1, 5 a, 30cm)$ (Art7.7.4.3 RPA99).

Remarque:

Pour les résultants des ferraillages horizontale (effet de l'effort tranchant) ; on adopte une même section d'armatures horizontale pour tous les niveaux. Ceci facilitera l'exécution de ces derniers.

Les résultats sont récapitulés dans les tableaux suivants:

Tableau V. 44 : Résultat de ferraillage horizontal

	L	V max	τu	$ar{ au}$ u	Condition	At (cm2)	Atmin (cm2)	At adopté	St (cm)	Choix des barres
v 1	1.88									
		75.767	0.17	6	vérifier	1.13	4.23	12.43	20	11HA12
v 2	3.8									
		1.553	0.00273	6	vérifier	0.024	11.4	12.43	20	11HA12
v 3	3.8									
		17.468	0.04	6	vérifier	0.26	8.55	12.43	20	11HA12
v 4	2									
		112.445	0.20	6	vérifier	1.33	6	12.43	20	11HA12

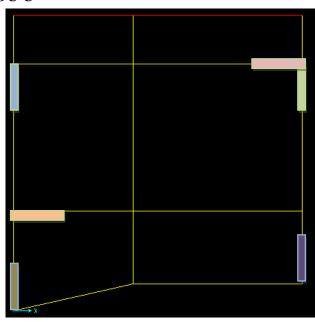
Remarque:

Dans les BLOC B et C on a gardé le même ferraillage de BLOC A car on trouver presque la même section.

Dans c'est deux dernier BLOC B et C on a ferraillé juste le max du voile par rapport tous les niveaux.

V.4.5 BLOC B

V1	V2	V3	V4	V5
_				


Figure V.8: Disposition des voiles bloc B

V.4.5.1 Ferraillage vertical:

Tableau V.45: Le ferraillage des voiles

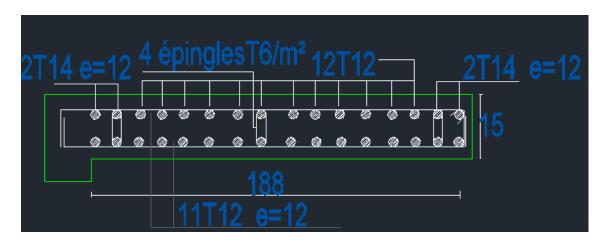
V	e	L	M	N	As	As _{RPA}	Asmi	As	
	(m	(m)	(KN.m)	(KN)	(cm2)	(cm2)	n	adopté	CHOIX DES
)						(cm2)	(cm2)	ARMATURE
									S
V	0,2	1.8	-707.27	-2639.2	0.5442	0.544	4.08	9.42	2x(6HA10)
1		8							
V	0,2	2.5	621.89	692.75	15.998	7.321	5.49	9.42	2x(6HA10)
2			3		0				
V	0,2	2	-661.58	2030.3	39.701	7.904	5.93	9.42	2x(6HA10)
3				7	1				
V	0,2	3.2	1340.9	-2548.6	0.0662	0.066	4.95	9.42	2x(6HA10)
4			6						
V	0,2	2.8	320.24	-1734.1	3.3839	3.384	2.53	9.42	2x(6HA10)
5			6						·

V.4.6 BLOC C

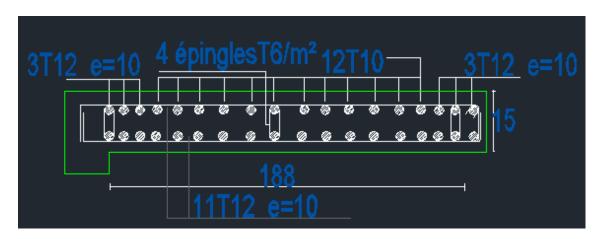
V1	V2	V3	V4	V5	V6

Figure V.9: Disposition des voiles bloc C

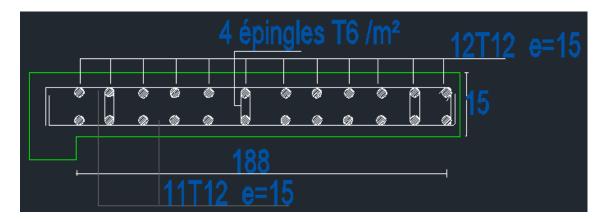
V.4.6.1 Ferraillage vertical:

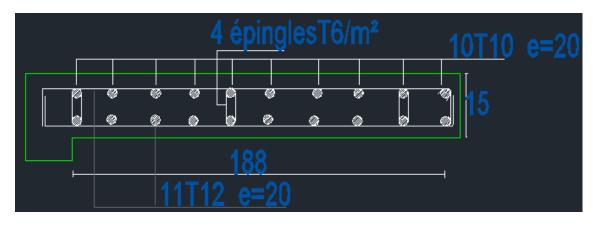

Tableau V.46 : Le ferraillage des voiles

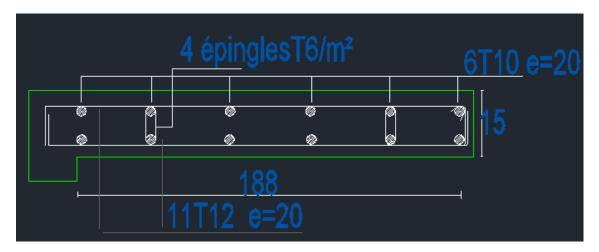
V	e	L	M	N	As	As _{RPA}	Asmin	As	
	(m)	(m)	(KN.m)	(KN)	(cm2)	(cm2)	(cm2)	adopte	CHOIX DES
								(cm2)	ARMATURES
V 1	0,2	2	-167.9602	358.401	7.3780	6.845	5.13	9.42	2x(6HA10)
V 2	0,2	2	210.8112	-2144.3	5.2398	2.82	2.12	9.42	2x(6HA10)
V 3	0,2	2	-164.0385	89.817	4.7300	4.473	3.55	9.42	2x(6HA10)
V 4	0,2	2	396.1428	-955.767	0.7831	0.783	5.87	9.42	2x(6HA10)
V 5	0,2	2	-277.0573	-2489.18	5.5219	2.664	2	9.42	2x(6HA10)
V6	0.2	2	405.1844	1507.67	24.59	7.225	5.42	9.42	2x(6HA10)


V.4.7 Ferraillage des voiles:

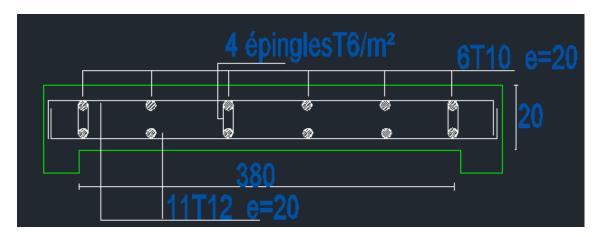
✓ Voile 1:


• 5^{éme} et 4^{éme} Entre-sol :

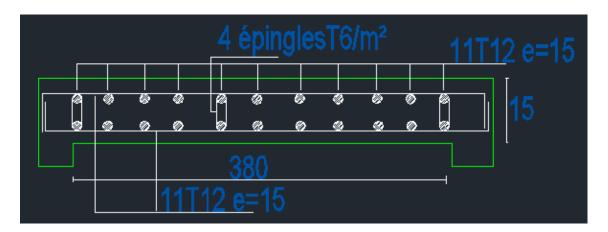

• 3^{éme} Entre-sol :


• 1^{éme} Entre-sol, RDC et 1^{er} Etage :

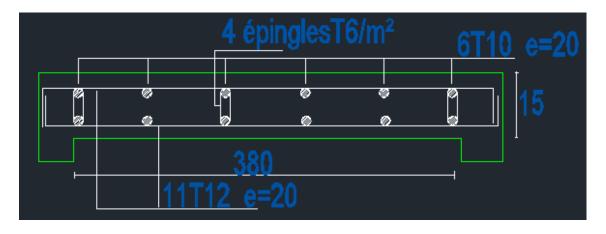
• 2^{éme} et 3^{éme} Etage:



• $4^{\text{\'eme}}$, $5^{\text{\'eme}}$ Etage et $2^{\text{\'eme}}$ Entre-sol:

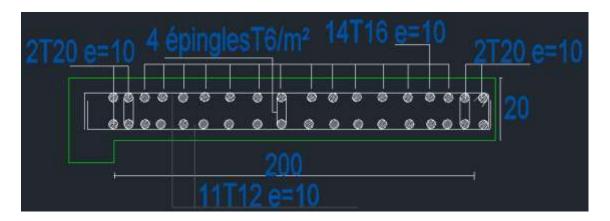

✓ Voile 2:

• Tous les Etages :



\checkmark Voile 3:

• 5^{éme} Entre-sol:



• Les autres étages :

✓ Voile 4:

• 5^{éme} Entre-sol:

• Les autres étages :

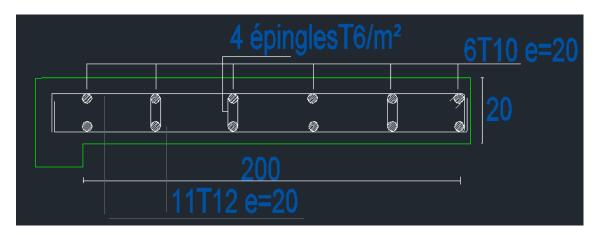


Figure V.10 : Schéma de ferraillage des voiles

VI.1 Introduction:

On appelle fondation la partie inférieure d'un ouvrage reposant sur un terrain d'assise au quelles sont transmise toutes les charges et surcharges supportées par cet ouvrage ^[10].

VI.2 Calcul des fondations :

On commence noté choix de fondation par les semelles isolées-filantes et radier, chaque étape fera l'objet de vérification; On suppose que l'effort normal prévenant de la superstructure vers les fondations est appliqué au centre de gravité (C.D.G) des fondations; On doit vérifier la condition suivante [10]:

$$\frac{N}{S} \le \sigma_{sol} \Rightarrow S \ge \frac{N}{\sigma_{sol}}$$

Avec:

 σ_{Sol} : Contrainte du sol

N : Effort normal appliqué sur la fondation

S: Surface de la fondation

VI.2.1 BLOC A

VI.2.1.1 Semelles isolées :

$$S \ge \frac{N}{\sigma_{sol}}$$
 d'ou $A.B \ge \frac{N}{\sigma_{sol}}$

Pour une semelle carrée : $B = \sqrt{S}$

A partir des résultats de sondage effectué au laboratoire de mécanique des sols. Une étude préalable du sol à donner une contrainte admissible $\sigma_{sol} = 2.5bars$ (Voir annexe I)

Les résultats des sections des semelles isolées sont résumés dans le tableau suivant :

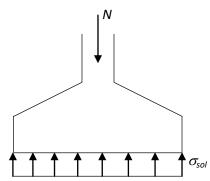


Figure VI.1: Semelle isolée sous poteau

Poteau	N (KN)	S (m ²)	$B = \sqrt{S}$ (m)	B ^{choisie} (m)
B-1	1837.95	7.36	2.73	3
B-2	2216.053	8.87	2.98	3
B-4	2039.676	8.16	2.86	3
B-6	2186.695	8.75	2.95	3
D-1	1506.271	6.03	2.46	2.5
D-2	1714.237	6.86	2.62	3
D-4	1478.475	5.92	2.44	2.5
D-6	1882.736	7.54	275	3
D-7	2048.796	8.20	2.87	3
D-8	547.141	2.19	1.48	1.5
E-1	1157.07	4.63	2.16	2.5
E-2	1862.148	7.45	2.73	3
E-4	1634.97	6.54	2.56	3
E-5	2014.743	8.06	2.84	3
E-6	2575.135	10.31	3.22	3.5
E-7	2854.635	11.42	3.38	3.5
E-8	1094.791	4.38	2.09	2.5
F-1	1545.782	6.19	2.49	2.5
F-2	3261.058	13.05	3.62	3.5
F-4	2553.492	10.22	3.20	3.5
F-5	2416.673	9.67	3.11	3.5
F-6	2939.064	11.76	3.43	3.5
F-7	3130.413	12.53	3.54	3.5
F-8	1522.682	6.10	2.47	2.5
H-1	1572.331	6.29	2.51	2.5
H-2	1672.287	6.69	2.59	3
H-4	1407.738	5.64	2.38	2.5
H-5	1809.304	7.24	2.70	3

Tableau VI.1: Sections des semelles isolées

• Conclusion:

D'après ces résultats, on remarque qu'il y a un chevauchement de certaines semelles, on passe alors à l'étude des semelles filantes.

VI.2.1.2 Semelles filantes:

On doit vérifier :
$$\sigma_{sol} \ge \frac{N}{S}$$

Tel que:

$$N = \sum N_i$$
 De chaque fil de poteaux

$$S=BxL$$
; $\sigma_{sol}=2.5bars$

B : Largeur de la semelle

L: Longueur de la semelle = 27.05m

$$\Rightarrow B \ge \frac{N}{L\sigma_{sol}}$$

Filles N(KN) $S(m^2)$ BxL choisie (m²) В 8280.374 33.12 1 X 27.05 9177.656 36.72 1 X 27.05 D 13193.492 52.78 1 X 27.05 Е 1 X 27.05 F 17369.164 69.48 Η 6461.66 25.85 1 X 27.05

Tableau VI.2: Sections des semelles filantes

• Conclusion:

On constate que la section totale des semelles filantes est inférieur à $\frac{1}{2}$ de la section de l'ouvrage $\left(133.25m^2 \prec \frac{446.325}{2} = 223.625m^2\right)$; donc on opte pour une semelle filent croise.

N.B: d'après les calculs on trouve que : le choix des fondations des blocs (B) et (C) c'est une semelle filent croise.

VI.2.1.3 Semelles filantes croisées :

Tout d'abord il faut calculée les coefficients de répartition des charges pour retrouver la charge revenant à chaque semelle filante.

	Poteaux central						
	% Sens xx	% Sens yy	P(KN)	Nx(KN)	Ny(KN)		
D-2	0.63	0.36	1417.237	1079.97	617.125		
D-4	0.63	0.36	1478.475	931.439	532.251		
D-6	0.64	0.35	1882.736	1204.95	658.96		
E-2	0.55	0.45	1862.148	1024.181	837.966		
E-4	0.55	0.45	1634.97	899.23	735.74		
E-5	0.42	0.59	2014.743	846.19	1188.69		
E-6	0.51	0.5	2575.135	1313.32	1287.57		
E-7	0.53	0.47	2854.635	1512.96	13411.68		
F-2	0.52	0.48	3261.058	1695.75	1565.31		
F-4	0.41	0.59	2553492	1046.93	1506.56		
F-5	0.38	0.62	2416.6373	918.34	1498.34		

Tableau VI.3: la répartition pour les poteaux centraux

Tableau VI.4: la répartition pour les poteaux d'angles

	Poteaux d'angles						
	% Sens xx	% Sens yy	P(KN)	Nx(KN)	Ny(KN)		
B-1	0.67	0.33	1837.95	1231.43	606.52		
B-6	0.67	0.33	2186.695	1465.09	721.61		
D-8	0.62	0.38	547.141	339.23	207.91		
F-8	0.46	0.54	1522.682	700.43	822.25		
H-1	0.59	0.41	1572.331	927.68	644.66		
H-5	0.35	0.65	1809.304	633.26	1176.05		

Poteaux rive % Sens yy Nx(KN)Ny(KN) % Sens xx P(KN) B-2 0.77 0.22 2216.053 1706.36 487.53 2039.676 0.77 0.22 B-4 1570.55 448.73 D-1 0.51 0.5 1506.271 768.19 753.14 0.24 2048.796 1557.08 491.71 D-7 0.76 E-1 0.410.74 1157.07 474.39 856.23 E-8 0.36 0.64 1094.791 394.12 700.67 958.38 F-1 0.38 0.62 1545.782 587.39 2939.064 F-6 0.61 0.39 1792.83 1146.23 F-7 0.64 0.36 3130.413 2003.46 1126.95 H-2 0.29 1672.287 1187.32 0.71 484.96 H-4 0.61 0.39 1407.738 858.72 54902

Tableau VI.5 : la répartition pour les poteaux de rive

VI.2.1.3.1 Les charges qui reviennent pour chaque fille :

Tableau VI.6: Section des semelles filante sens x-x

Fille	P(KN)	$\sigma (KN/m^2)$	L(m)	B(calculer)	B (choisir)	SF (m2)
SFB	5973.43	250	17.3	1.39	1.2	43.25
SFD	5880.859	250	27.05	0.87	1.2	67.625
SFE	6464.391	250	27.05	0.96	1.4	67.625
SFF	8745.13	250	27.05	1.29	1.4	67.625
SFH	3606.98	250	13.5	1.07	0.8	33.75
\sum SF						

Tableau VI.7: Section des semelles filante sens y-y

Fille	P(KN)	$\sigma (KN/m^2)$	L(m)	B(calculer)	B (choisir)	SF (m2)
SF1	3818.93	250	16.5	0.93	1	41.25
SF2	3992.891	250	16.5	0.97	1	41.25
SF4	3772.301	250	16.5	0.92	1	41.25
SF5	3863.08	250	10.5	1.48	1	26.25
SF6	3814.37	250	12.3	1.45	1	30.75
SF7	2960.34	250	9.3	1.27	1	23.25
SF8	1730.83	250	9.3	0.75	0.8	23.25
\sum SF						

• Conclusion : On constate que la section totale des semelles filantes est supérieure à $\frac{1}{2}$

de la section de l'ouvrage
$$\left(507.075m^2 \times \frac{446.325}{2} = 223.625m^2\right)$$
.

VI.2.1.3.2Pré dimensionnement de la semelle filante croise :

a. Dalle:

ht = (B-b/4) + 5cm = (100-70)/4 + 5cm = 12.5cm on a choisie h= 25cm

b. Nervure:

✓ Condition de coffrage :

bn > Lmax/10 = 610/10 = 61cm

On opt bn=65cm

✓ La hauteur de nervure :

Pour étudier la raideur d'une nervure nous utilisons la théorie de la poutre sur sol élastique ;

La nervure est rigide : $Lmax \le (\pi/2 \times le) + a^{[7]}$

 $(\pi/2 \times le) \ge (\text{entre axe poteaux}).$

Avec:

E: Module de Young

K: Coefficient de raideur du sol (selon le rapport du sol)

I: Inertie de la section transversale du radier.

bn : largeur de la nervure

bsf: largeur utile

a : largeur de poteau

bsf= 2.5m; E= 32164.195 MPa; K= 38.2 MN/m3; bn= 65cm; L=6.1 m

Alors la relation devient :

$$hn \ge \sqrt[3]{\frac{K \times 48 \times bsf \times (l)^4}{E \times bn \times \pi^4}}$$

 $\Rightarrow hn \ge 1.46m$

• Le choix final:

Les dimensions de la nervure : (bn= 65cm; hn= 150cm)

VI.2.1.3.3 Vérification au poinçonnement :

$$N_u \le (0.045 U_c h f_{c28}) / \gamma b$$

N_u: Effort normal du poteau le plus sollicité = 2575.135 KN

U_c: Périmètre du contour au niveau du feuillet moyen

$$U_c = 2[(a+b)+2h] = 8m$$

$$a = b = 0.7m$$

$$N_u \le (0.045 \times 8000 \times 1500 \times 30/1.5) = 1080KN$$

Donc: la condition est verifieer

VI.2.1.3.4 Vérification au renversement :

Selon RPA99/version 2003(Art.10.1.5), quel que soit le type de fondation (superficielle ou profonde) nous devons vérifier que l'excentrement des forces verticales gravitaires et des forces sismiques reste à l'intérieur de la moitié du centrale de la base des éléments de fondation résistant au reversement.

$$E0 = Mr/Nr < B/4^{[7]}$$

Avec:

E0 : La plus grande valeur de l'excentricité due aux charges sismiques.

Mr : Moment de renversement dû aux forces sismique.

Nr : effort normal de la structure.

B: la largeur du radier.

Tableau VI.8: Vérification au renversement sens x-x et y-y

Ī	Sens	Nr(KN)	Mr(KN.M)	E(m)	B(m)	B/4(m)	Obs
ĺ	XX	30670.79	10789.98	0.35	27.05	6.77	Cv
ĺ	YY	23952.742	1795.428	0.75	16.5	4.13	Cv

• Conclusion : Les conditions sont vérifiées donc le bâtiment est stable.

VI.2.1.3.5 Ferraillage des semelles filantes croise :

• Ferraillage de la semelle :

Le ferraillage se calcule par la méthode des bielles à l'ELU pour 1 m linéaire, nous avons :

$$As = Pu (B-b)/(8.d. \sigma s)$$

Pu: L'effort normal reparti à l'ELU.

✓ Exemple de calcul :

As=
$$425.26 \times 1000 \times (2.5-0.7)/(8 \times 0.45 \times 435) = 4.38 \ cm^2$$

$$Ar = (As.B)/4 = (5.02 \times 2.5)/4 = 2.51cm^2$$
 donc: $Ar = T10$

CNF: $0, 23 \times b \times d \times fc28/fe = 0.23 \times 100 \times 50 \times 2.4/500 = 5.52 cm^2$

Tableau VI.9: Ferraillage de la semelle sens x-x

Fille	P(KN)	L(m)	q(KN)	$As(cm^2)$	choix
SFB	7876.136	17.3	455.26	4.38	
SFD	8011.115	27.05	296.16	3.05	7T12
SFE	9720.648	27.05	359.36	3.7	
SFF	12017.00	27.05	444.25	4.57	8T12
SFH	4915.493	13.5	364.11	3.75	5T12

Tableau VI.10: Ferraillage de la semelle sens y-y

Fille	P(KN)	L(m)	Q(KN)	$As(cm^2)$	choix
SF1	5362.5	16.5	325	3.35	
SF2	5453.312	16.5	330.5	3.4	
SF4	5117.687	16.5	310.16	3.19	
SF5	5299.061	10.5	504.67	5.19	6T12
SF6	5233.336	12.3	425.47	4.38	
SF7	4071.117	9.3	437.75	4.51	
SF8	2365.867	9.3	254.39	2.62	5T12

• Ferraillage des nervures :

Les charges revenant pour chaque fille a L'ELU:

$$q_{elu} = N/L$$

L = 6.1 m (grande travée)

Moment en travée et sur appuis à l'ELU:

$$M0 = (q.1 \times 2)/8$$

$$Mt = 0.85M0$$
 et $Ma = 0.5M0$

✓ Condition de non fragilité :

 $0.23 \times b \times d \times ft28/fe = 0.23 \times 65 \times 108 \times 2.4/500 = 7.75 \ cm^2$

Elu: (flexion simple)

Tableau VI.11: Ferraillage de nervures.

	qu	M0	Mu	Ascal	choix	As (adopté)
	(kn.m)	(kn.m)	(kn.m)	(cm^2)		(cm^2)
Travée	504.67	2347.35	1995.25	35.84	12T20	37.70
Appuis			1173.68	20.62	12T16	24.13

• Ferraillage transversal:

 T_{elu} = q×1 / 2 = 504.67×6.1/2 = 1539.24 KN

At $\geq (T_{elu} \times St)/0.9 \times d \times \sigma s = 4.37 \ cm^2$

Donc : on prend 6T10 (As = $4.71cm^2$).

• Armature de peau :

 $Ap = (5cm^2)/ m \times 1.5 = 7.5cm^2$

Donc : on prend 4T16 (As = $8.04cm^2$).

VI.2.2 BLOC B:

VI.2.2.1 Pré dimensionnement de la semelle filante croise :

a. Dalle:

ht = (B-b/4) + 5cm = (140-70)/4 + 5cm = 22cm on a choise h = 30cm

b. Nervure:

• Condition de coffrage :

bn > Lmax/10 = 540/10 = 54cm

On opt bn=55cm

• La hauteur de nervure :

Avec: bsf= 2.5m; E= 32164.195 MPa; K= 38.2 MN/m3; bn= 55cm; L= 6.1 m

Alors la relation devient :

$$hn \ge \sqrt[3]{\frac{K \times 48 \times bsf \times (l)^4}{E \times bn \times \pi}}$$

 $\Rightarrow hn \ge 1.31m$

• Le choix final:

Les dimensions de la nervure : (bn= 55cm; hn= 130cm)

VI.2.2.2 Vérification au poinçonnement :

$$N_u \le (0.045 U_c h f_{c28}) / \gamma b$$

 $N_u = 9420KN \le (0.045 \times 8000 \times 1300 \times 30/1.5) = 9360KN$

Donc: la condition est verifier

VI.2.2.3 Vérification au renversement :

Selon RPA99/version 2003(Art.10.1.5); avec: E0= Mr/Nr < B/4

Tableau VI.12: Vérification au poinçonnement sens x-x et y-y

Sens	Nr(KN)	Mr(KN.M)	E(m)	B(m)	B/4(m)	Obs
XX	46093.15	13789.95	0.29	25.5	6.375	Cv
YY	19668.83	2565.338	0.13	11.4	2.85	Cv

Conclusion: Les conditions sont vérifiées donc le bâtiment est stable.

VI.2.2.4 Ferraillage des semelles filantes croise :

• Ferraillage de la semelle :

Tableau VI.13: Ferraillage de la semelle sens x-x

Fille	P(KN)	L(m)	q(KN)	As(cm2)	choix
SFA	5776.136	15.3	377.53	4.34	
SFC	8311.115	27.05	307.25	3.53	7T12
SFD	8920.648	22.25	400.92	4.61	
SFF	1117.005	11.3	98.85	1.14	8T12
SFI	5915.493	13.5	438.18	5.03	
SFJ	5562.32	14.75	377.11	4.33	5T12

Tableau VI.14: Ferraillage de la semelle sens x-x.

Fille	P(KN)	L(m)	Q(KN)	As(cm2)	choix
SF1	5362.5	14.5	369.82	4.25	
SF2	5453.312	14.5	376.09	4.32	
SF3	5117.687	14.5	352.94	4.05	6T12
SF5	5299.061	11.25	471.02	5.41	
SF6	5233.336	13.5	387.65	4.45	
SF8	4071.117	10.75	378.7	3.29	5T12

• Ferraillage des nervures :

✓ Condition de non fragilité :

 $0.23 \times b \times d \times ft28/fe = 0.23 \times 55 \times 117 \times 2.4/500 = 7.1 \ cm^2$

Elu: (flexion simple)

Tableau VI.15: Ferraillage des nervures.

	qu	M0	Mu	Ascal	choix	As (adopté)
	(kn.m)	(kn.m)	(kn.m)	(cm^2)		(cm^2)
Travée	471.02	1716.88	1459.35	30.50	12T20	37.70
Appuis			8158.44	32.03	12T20	37.70

• Ferraillage transversal:

$$T_{elu} = q \times 1 / 2 = 471.02 \times 5.4 / 2 = 1271.754 \text{ KN}$$

At
$$\geq (T_{elu} \times St)/0.9 \times d \times \sigma s = 4.16cm^2$$
)

Donc : on prend $6T10 \text{ (As } = 4.71cm^2).$

• Armature de peau :

$$Ap = (5cm^2)/ m \times 1.5 = 7.5cm^2$$

Donc : on prend 4T16 (As = $8.04cm^2$).

VI.2.3 BLOC C

VI.2.3.1 Pré dimensionnement de la semelle filante croise :

a. Dalle:

ht = (B-b/4) + 5cm = (80+50/4) + 5cm = 12.5cm on a choisie h = 20cm

b. Nervure:

• Condition de coffrage :

$$bn > Lmax/10 = 575/10 = 57.5cm$$

On opt bn = 60cm

• La hauteur de nervure :

On a: bsF= 2.52m; E= 32164.195 MPa; K= 38.2 MN/m³; bn= 60cm; 5.75 m

Alors la relation devient :

$$hn \ge \sqrt[3]{\frac{K \times 48 \times bsf \times (l)^4}{E \times bn \times \pi}}$$

 $\Rightarrow hn \ge 1.39m$

• Le choix final:

Les dimensions de la nervure : (bn= 60cm; hn= 150cm)

VI.2.3.2 Vérification au poinçonnement :

$$N_u \le (0.04 \, \mathcal{B}_c h f_{c2}) / \gamma b$$

 $N_u = 1650.006KN \le (0.045 \times 4400 \times 1500 \times 30/1.5) = 5940KN$

VI.2.3.3 Vérification au renversement :

Selon RPA99/version 2003(Art.10.1.5), on a: E0= Mr/Nr < B/4

Tableau VI.16: Vérification au renversement sens x-x et y-y.

Sens	Nr(KN)	Mr(KN.M)	E(m)	B(m)	B/4(m)	Obs
XX	6025.137	442.765	0.07	8.45	2.11	Cv
YY	6311.624	483.538	0.08	10.2	2.55	Cv

Conclusion: Les conditions sont vérifiées donc le bâtiment est stable.

VI.2.3.4 Ferraillage des semelles filantes croise :

• Ferraillage de la semelle :

Tableau VI.17: Ferraillage de la semelle sens x-x.

Fille	P(KN)	L(m)	Q(KN)	As(cm2)	choix
SFB	1730.88	10.2	169.69	2.95	5T12
SFC	3317.851	10.2	325.28	5.65	7T12
SFD	3065.331	10.2	300.52	5.22	

Tableau VI.18: Ferraillage de la semelle sens y-y.

Fille	P(KN)	L(m)	Q(KN)	As(cm2)	choix
SF1	1705.34	8.45	201.82	3.58	5T12
SF2	2214.352	7.6	291.361	5.09	6T12
SF3	2178.828	7.6	282.69	5.14	

• Ferraillage des nervures :

✓ Condition de non fragilité :

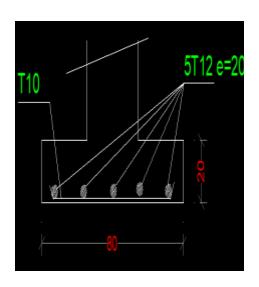
 $0.23 \times b \times d \times ft28/fe = 0.23 \times 60 \times 144.5 \times 2.4/500 = 9.57 \text{ cm}2$

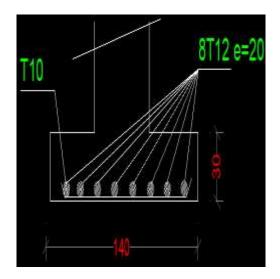
Elu: (flexion simple)

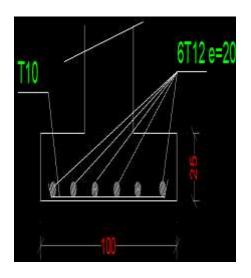
Tableau VI.19: Ferraillage de nervure.

	Qu	M0	Mu	Ascal	choix	As
	(kn.m)	(kn.m)	(kn.m)	(cm2)		(adopté)
						(cm2)
Travée	359.49	1485.7	1262.85	22.3	8T20	25.13
Appuis			742.85	12.91	8T14	12.31

• Ferraillage transversal :


 $T_{ELU} = q \times 1 / 2 = 359.495 \times 75/2 = 1033.53 \text{ KN}$


At $\geq (T_{ELU} \times \text{St})/0.9 \times d \times \sigma s = 2.64 \text{ cm}2$


Donc: on prend 4T10 (As = 3.14 cm²).

• Armature de peau :

 $Ap= (5cm^2)/ m \times 1.5 = 7.5cm^2$ Donc: on prend 4T16 (As = 8.04 cm²).

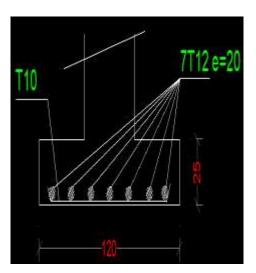
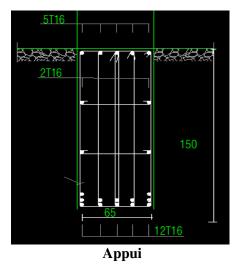
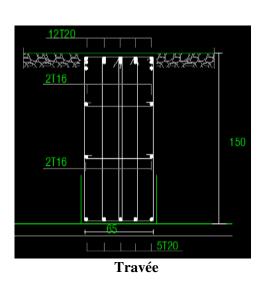
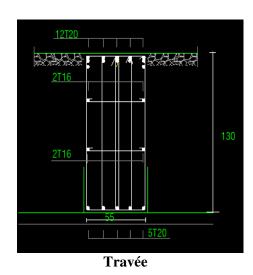
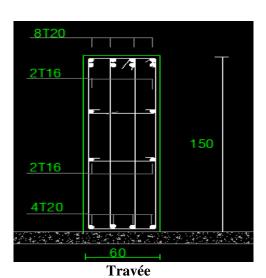




Figure VI.2 : Schéma de ferraillage semelle filent bloc A et B et C.

✓ Ferraillage nervure bloc A




Ferraillage nervure bloc B

2T16 130 2T16 Appui

✓ Ferraillage nervure bloc C

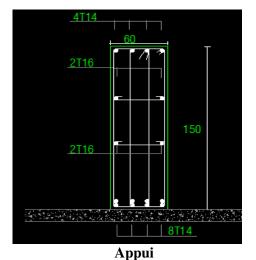


Figure VI.3 : Schéma de ferraillage nervure bloc A et B et C.

VI.3 Etude du voile périphérique :

VI.3.1 Introduction:

Notre structure comporte un voile périphérique qui s'élève du niveau de fondation jusqu'au niveau du RDC, il forme par sa grande rigidité une partie rigide et indéformable avec le plancher du RDC et les fondations.

Pour le pré dimensionnement du voile périphérique, on se réfère aux conditions minimales exigées par le règlement *RPA99*.

VI.3.2 Conditions exigées par le RPA99 :

- épaisseur $e \ge 15cm$; on a e=20cm.
- les armatures sont constituées de deux nappes.
- le pourcentage minimum du ferraillage est de 0,1%B dans les deux sens (horizontal et vertical). ($A_b=A_v=0,1\%B$)

Avec:

B: Section du voile

VI.3.3 Evaluation des charges :

On peut considérer que le voile est une dalle pleine reposant sur 4 appuis qui supporte les charges horizontales dues aux poussées des terres.

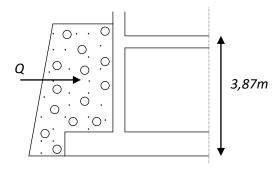


Figure VI.4 : Coupe verticale du voile périphérique

Dans notre cas, on considère le tronçon le plus défavorable

$$\begin{cases} Lx = 3,87m \\ Ly = 6.1m \end{cases}$$

Les charges et surcharges prises uniformément réparties sur une bande de 1ml, se situe à la base du voile (cas le plus défavorable).

Selon *BAEL91* [2], la charge de poussée des terres est donnée par :

Avec:

Q: Contrainte à la base sur une bande de 1 ml.

A : Coefficient numérique en fonction de l'angle de frottement interne.

γ : Poids spécifique des terres.

$$\gamma_h=20.8KN/m^3$$

H: Hauteur du voile=3,87m

$$\varphi = 27^{\circ} \Rightarrow A = f(\varphi) = tg^{\circ} \left(\frac{\pi}{4} - \frac{\varphi}{2}\right) = 0.376$$

Donc:

$$Q{=}A.\gamma.H.{=}30,\!27KN/ml \Rightarrow Q_u{=}1,\!35Q{=}40.86KN/m$$

VI.3.4 Effort dans la dalle:

$$\frac{L_x}{L_y} = 0.63 \succ 0.4 \Rightarrow \text{ travaille dans deux sens}$$

$$\mu_x \!\!=\!\! 0,\,0772 \quad avec: \qquad M_x \!\!=\!\! \mu_x Q_u l^2_x \!\!=\!\! 47.24 KNm$$

$$\mu_y = 0.343$$
 avec : $M_y = \mu_y M_x = 16.20 KNm$

• Moment en travée :

$$M_{tx}$$
=0,85 M_x =40.154 KNm

$$M_{ty}=0.85M_y=13.77KNm$$

• Moment sur appuis :

$$M_{ax}=M_{ay}=0.5M_{x}=23.62KNm$$

VI.3.5 Calcul du ferraillage:

b=100cm; d=18cm; σ_{bc} =17cm²

Tableau VI.20: Ferraillage du voile périphérique

	Sens	$M_{\rm u}$	μ	A's	α	Z(cm)	A ^{cal} _S	Choix	A_{S}^{adp}	Esp
		(KNm)		(cm ²)			(cm ²)		(cm ²)	(cm)
	х-х	40.15	0.073	0	0.091	17.34	5.32	5T12	5.65	20
Travée	у-у	13.77	0.025	0	0.031	17.76	4.31	5T12	5.65	20
Appuis	x-x et y-y	23.62	0.043	0	0.054	17.61	7.45	5T14	7.7	20

VI.3.6 Condition de non fragilité :

On a:

$$\begin{cases} A_x \geq A_x^{min} \; ; \, A_x^{min} = \rho_0 \bigg(3 - \frac{L_x}{L_y} \bigg) \frac{bh}{2} \\ A_y \geq A_y^{min} \; ; \, A_y^{min} = \rho_0 bh \end{cases}$$

 ρ_0 =0,0006 pour les barres de FeE500

$$\begin{cases} A_x^{min} = 0.0006 \left(3 - \frac{3.87}{6.1} \right) \frac{100x20}{2} = 1.42cm^2 \\ A_y^{min} = 0.0006x100x20 = 1.2cm^2 \end{cases}$$

• en travée :

$$\begin{cases} A_x = 5.32cm^2 > 1.42cm^2 \\ A_y = 4.31cm^2 > 1.2cm^2 \end{cases}$$

• sur appuis :

$$\begin{cases} A_x = 7.45cm^2 > 1.42cm^2 \\ A_y = 7.45cm^2 > 1.2cm^2 \end{cases}$$

VI.3.7 Vérification de l'effort tranchant :

On doit vérifier que :

$$\begin{split} &\tau_{u} = \frac{T_{u}^{max}}{bd} \leq \overline{\tau_{u}} = 0.05 f_{c28} = 1.5 MPa \\ &T_{x} = \frac{q_{u} L_{x} L_{y}}{2L_{x} + L_{y}} = 69.69 KN \\ &T_{y} = \frac{q_{u} L_{x}}{3} = 52.71 KN \\ &T_{u}^{max} = Max \left(T_{x} \ ; T_{y}\right) = 69.69 KN \\ &\tau_{u} = \frac{69.69.10^{3}}{10000180} = 0.39 MPa \prec 1.5 MPa.....vérifiée. \end{split}$$

VI.3.8 Vérification à l'ELS:

a). Evaluation des sollicitations à l'ELS:

$$\frac{L_x}{L_y} = 0.63 \succ 0.4 \Rightarrow ; \text{Qser=30,27KN/ml}$$

$$\mu_x$$
=0,0825 avec: M_x = $\mu_x Q_{ser} l_x^2$ =37.4KNm

$$\mu_y$$
=0,508 avec: M_y = $\mu_y M_x$ =18.99KNm

• Moment en travée :

$$M_{tx}=0,85Mx=31.79KNm$$

$$M_{ty}=0$$
, 85My=16.14KNm

• Moment sur appuis :

$$M_{ax} = M_{ay} = 0.5 M_x = 18.7 KNm$$

b). Vérification des contraintes:

IL faut vérifier également

$$\sigma_{bc} \leq \overline{\sigma_{bc}} = 0.6 f_{c28} = 18 MPa$$

Le tableau suivant récapitule les résultats trouvés.

Tableau VI.21: Vérification des contraintes à l'ELS

	Sens	M_{ser}	A_s	Y	I	σ_{bc}	$\overline{\sigma_{\scriptscriptstyle bc}}$	Vérification
		(KNm)	(cm ²)	(cm)	(cm ⁴)	(MPa)	(MPa)	
	X-X	31.79	4.18	10.71	44281.49	7.73	18	OK
Travée	у-у	16.14	1.83	2.88	7071.73	6.64	18	OK
Appuis	x-x et y-y	18.7	2.43	4.01	9283.37	8.13	18	OK

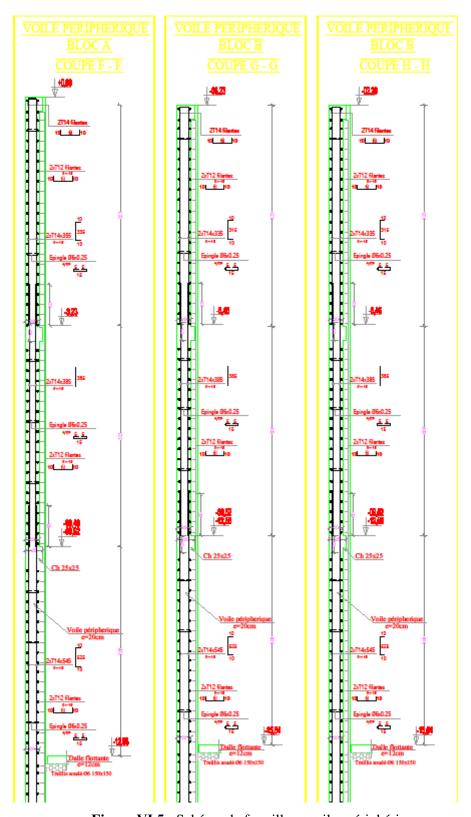
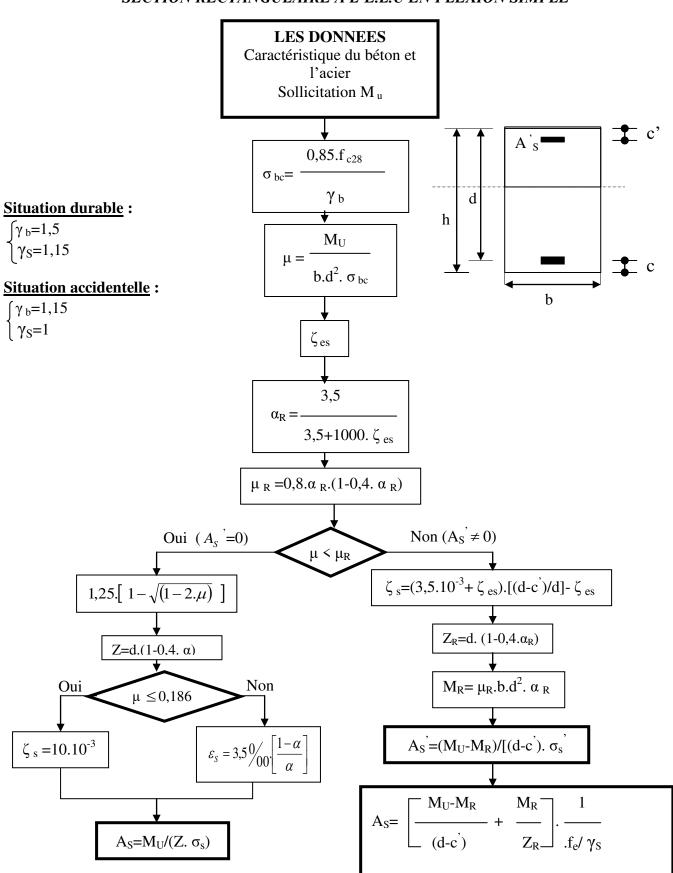


Figure VI.5 : Schéma de ferraillage voiles périphériques

Conclusion générale

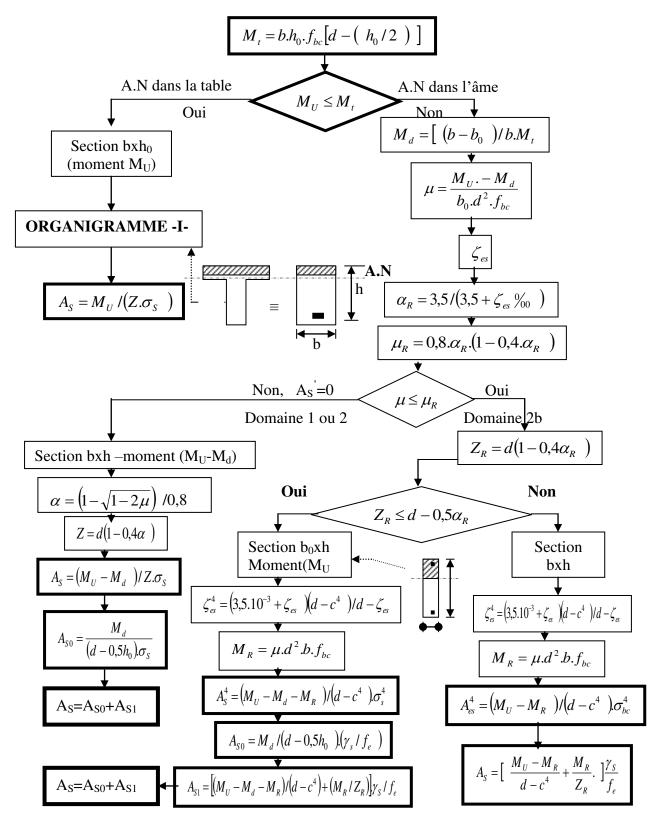
Les Conclusions auxquelles a abouti le présent travail, sont résumés dans les points suivants :

Le pré dimensionnement est une étape nécessaire pour la suite de l'analyse.

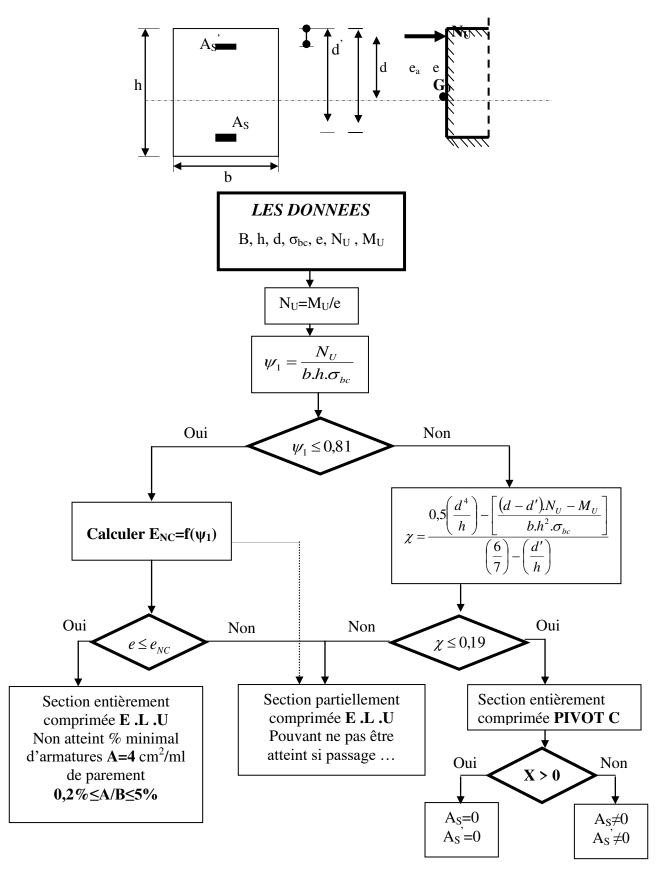

L'analyse dynamique est l'étape la plus importante dans l'analyse de la superstructure, elle permet de donner une vision proche de la réalité du comportement de la structure après les vérifications nécessaires des codes réglementaires.

Pour la disposition des voiles, on a constaté que la disposition des voiles, est un facteur beaucoup plus important que la quantité des voiles à placer dans une structure et a un rôle déterminant dans le comportement de cette dernière vis-à-vis du séisme.

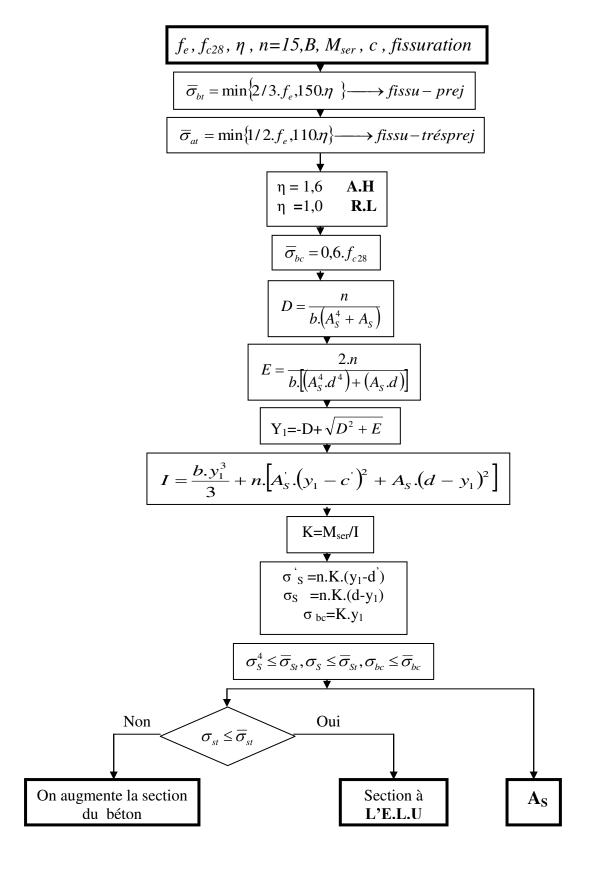
Enfin, nous espérons que ce modeste travail va constituer une référence fiable et crédible pour les promotions à venir.


ORGANIGRAMME -A-

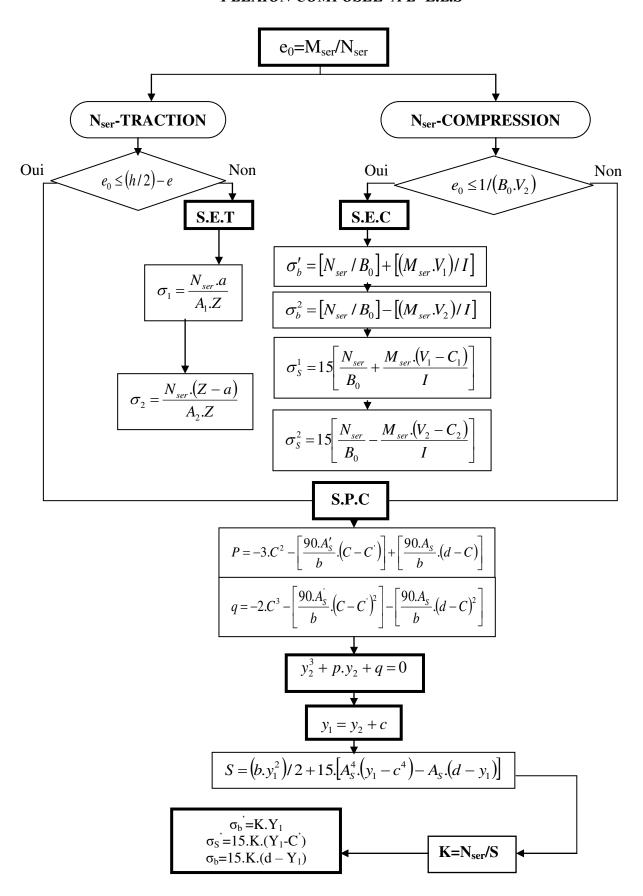
SECTION RECTANGULAIRE A L'E.L.U EN FLEXION SIMPLE


ORGANIGRAMME-B-

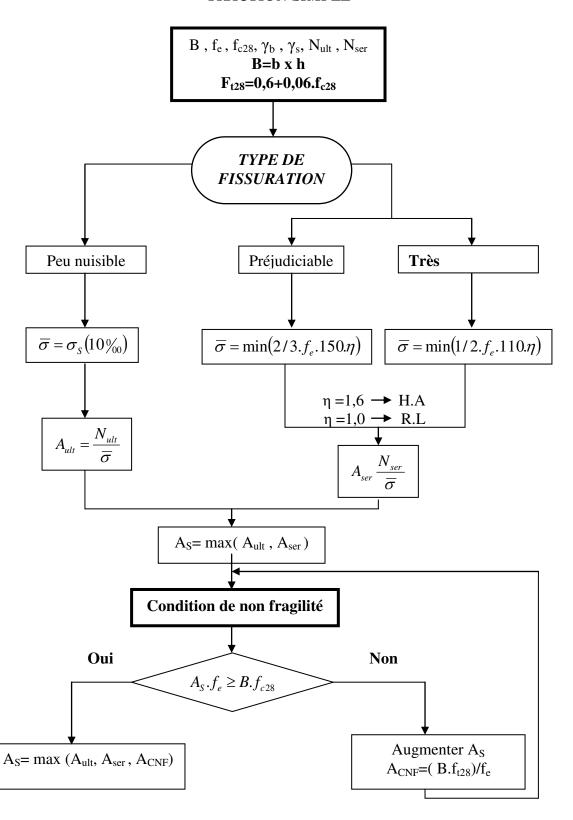
CALCUL D'UNE SECTION EN -Té- A L'E.L.U EN FLEXION SIMPLE


ORGANIGRAMME - C-

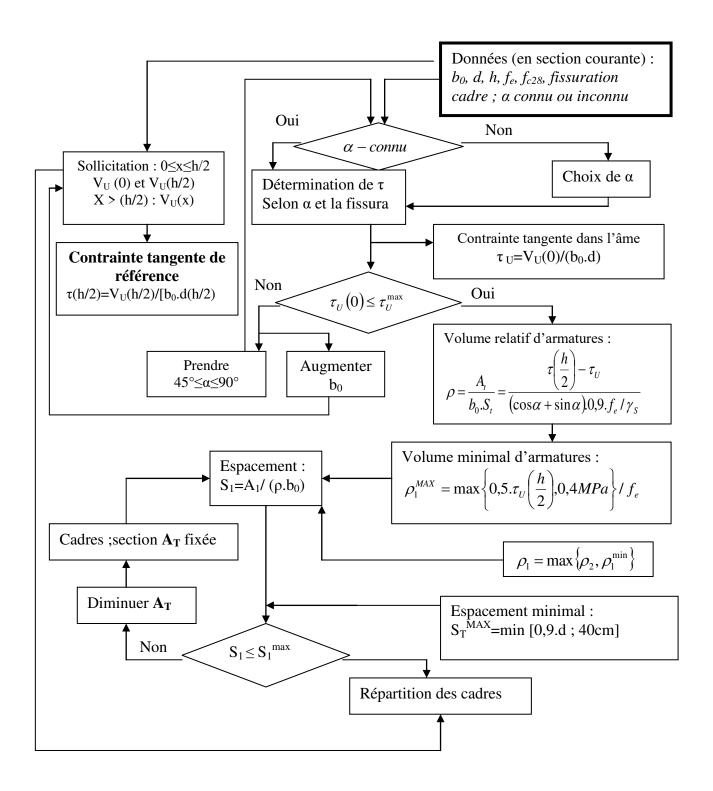
CALCUL D'UNE SECTION RECTANGULAIRE A L'E.L.U EN FLEXION COMPOSEE


ORGANIGRAMME -D-

VERIFICATION D'UNE SECTION RECTANGULAIRE A L'E.L.S


ORGANIGRAMME-E-

FLEXION COMPOSEE A L'E.L.S


ORGANIGRAMME-F-

TRACTION SIMPLE

ORGANIGRAMME -G-

CALCUL DES ARMATURES D' UNE POUTRE SOUMISE A L'EFFORT TRANCHANT

ANNEXE –I-ETUDE DE SOL

1. Introduction:

La reconnaissance des sols fait appel à différentes techniques de sondages et d'essais sur le site (in situ) et en laboratoire en vue de déterminer les caractéristiques principales des diverses couches de terrain rencontrées.

2. Reconnaissance géotechnique :

Les travaux de reconnaissance géotechnique ont consisté en la réalisation des :

- Essais in- situ.
- Essais de laboratoire.

2.1. Essais in- situ:

La reconnaissance sur site a comporté :

- Une compagne au pénétromètre dynamique.
- Une compagne géologique par sondage carotté.
- -Dans la première compagne, 12 essais au pénétromètre dynamique lourd ont été exécutés.

Ces essais nous ont permis d'avoir une idée sur la résistance du sol à la pénétration et sur son degré d'homogénéité.

-Dans la seconde compagne, deux (02) sondages carottés ont été exécutés.

Ces sondage, d'une profondeur *9,00m* sous le niveau de terrain naturel, nous a permis de connaître avec précision la nature du sol décrite par la carte géologique de la région et de faire des prélèvements d'échantillon de sol afin de réaliser les essais de laboratoire.

a). Essais pénétrometriques :

Ces essais sont d'un usage de plus en plus fréquent. Ils sont effectués à l'aide d'appareils comportant une tige métallique terminée par un cône .

Cet équipement est complété par un dispositif mesurant séparément l'effort exercé sur la pointe conique du pénétromètre fixée à l'extrémité d'un train de tiges, et le frottement latéral exercé sur le fut.

Les résultats obtenus sont traduits sous forme d'un diagramme, portant en abscisses la résistance de pénétration à la pointe R_p et en ordonnées, la profondeur en m.

b).sondage carottés:

Les coupes de ces sondages montrent la lithologie suivante :

Sondage N^01 :

 $0,00 \rightarrow 0,6m$: terre végétale

0,6→5,00m : Argile rougeâtre à marrons légèrement graveleuse (carbonatée)

 $5,00 \rightarrow 9,00m$: Argile marron graveleuse (quelques passées de rongnons (cailloux ronds et

lisses))

Sondage N^02 :

 $0 \rightarrow 1,7m$: Terre végétale

 $1,7 \rightarrow 9,00m$: Argile marron graveleuse et carbonatée.

2.2. Essais de laboratoire :

Pour déterminer les caractéristiques géotechniques des couches rencontrées, différents essais sont effectués en laboratoire sur les échantillons prélevés dans le sol en place à l'aide de carottiers, ces échantillons de terrain, si possible non remanié, sont repérés avec le numéro du sondage correspondant, le niveau de prélèvement ,sa partie supérieure et sa partie inférieure.

Toutes les précautions sont prises pendant le transport pour éviter les pertes de fines et conserver l'humidité naturelle de l'échantillon.

Les essais sont effectués dans les plus courts délais prélèvement, par des personnes qualifiées, aptes à interpréter les résultats. Leur objectif est d'identifier les sols et, à cet effet, de déterminer:

- -La masse volumique de l'échantillon.
- -Sa teneur en eau.
- -Sa granulométrie.
- -Les limites d'Atterberg.
- -Son gonflement.
- -Son angle de frottement interne.
- -Sa cohésion.

a). Essais physiques:

- Les densités sèches γ_d sont comprises entre 1,61t/m³ et 1,88t/m³
- Les densités humides γ_h varient entre 1,98t/m³ et 2,18t/m³
- Les teneurs en eau w sont entre 15,1% et 23,1%
- Poids volumique des grains solide $\gamma_s = 2.7t/m^3$
- Les degrés de saturation S_r des sols analysés varient entre 84% et 100%
- L'indice de consistance I_c , permet de donner une idée sur la structure des sols. Cet indice varie entre 0.98 et 1.42

Les résultats des essais physiques sont récapitulés dans le tableau ci-dessous :

Avec:

$$\begin{split} \gamma_h &= \gamma_d \left(I + w \right) \; ; \; w_{sat} = \gamma_w \left[\left(\frac{I}{\gamma_d} \right) - \left(\frac{I}{\gamma_s} \right) \right] \; ; \; \gamma_{sat} = \gamma_w + \gamma_d \left[I - \left(\frac{\gamma_w}{\gamma_s} \right) \right] \\ e &= \left(\frac{\gamma_s}{\gamma_d} \right) - I \; ; \; I_p = w_L - w_p \; ; \; I_c = \frac{w_L - w}{I_p} \\ \gamma_s &= 2.7 t / m^3 \; ; \; \gamma_w = 1.0 t / m^3 \end{split}$$

	Tableau.1. Tableau recapituatii des resultats des essais physiques														
	Prof	γ_d	W	S_t	γ_h	γ_{sat}	W_{sat}	e	<i>≤</i>	≤	W_L	W_p	I_p	I_c	Classe
	(m)	(t/m^3)	(%)	(%)	(t/m^3)	(t/m^3)	(%)		2mm	0,08mm	(%)	(%)	(%)	(%)	du sol
	1,2-1,7	1,85	17,8	100	2,18	2,16	17,02	0,46	99	93	52	26	26	1,32	A_t
S	2,5-2,7	1,70	21	90	2,07	2,07	21,79	0,59	91	83	50	22	28	1,03	A_p ; A_t
1	4,25-4,7	1,88	15,1	93	2,17	2,18	16,15	0,44	96	87	47	21	26	1,23	A_p
	5,45-5,6	1,68	21,6	96	2,05	2,06	22,49	0,61	83	73	49	21	28	0,98	A_p
	1,4-1,7	1,78	16,2	84	2,07	2,12	19,14	0,52	97	67	33	17	16	1,05	A_p
S	3,2-3,75	1,81	17,5	96	2,12	2,14	18,21	0,49	86	81	53	28	25	1,42	A_t
2	5,3-5,6	1,71	19	88	2,04	2,08	21,44	0,58	95	92	55	24	31	1,16	A_t
	8,5-8,9	1,61	23,1	92	1,98	2,01	25,07	0,68	99	93	60	30	30	1,23	A_t

Tableau.1: Tableau récapituatif des résultats des essais physiques

b). Essais mécaniques :

b).1.Essais de cisaillement rectiligne :

L'essai de cisaillement permet de déterminer les caractéristiques géotechniques fondamentales que sont la cohésion (c) et l'angle de frottement interne φ

•Cohésion : $0.85bar \le c \le 1.25bar$

•Angle de frottement : 27° , $58 \le \varphi \le 43^{\circ}$, 53

b).2. Essais de compressibilité à l'odomètre :

Cet essai a pour but la détermination des caractéristiques mécaniques relative à la contrainte de consolidation (σ_c) et au coefficient de compression (C_c) et sur consolidation (C_s) du sol.

• Contrainte de consolidation : $3,05bars \le \sigma_c \le 5,16bars$

• Coefficient de compression : $0.08 \le c_c \le 0.160$

• Coefficient de sur consolidation : $0.004 \le c_s \le 0.028$

Les résultats des essais mécaniques sont récapitulés dans le tableau ci-dessous :

Tableau.2: Tableau récapitulatif des résultats des essais mécaniques

	Profondeur(m)	$\sigma_{c}(bars)$	C_s	C_c	φ	C (bars)
Sondage 1	1,20-1,70	/	/	/	27°,7	1,017
	2,50-2,70	3,05	0,004	0,156	30°,96	0,95
	4,25-4,70	5,16	0,02	0,08	43°,53	0,85
Sondage 2	3,20-3,75	4,24	0,028	0,13	27°,58	1,25
	5,30-5,60	5,00	0,02	0,16	/	/
	8,50-8,90	4,59	0,02	0,13	/	/

3. Appréciation d'homogénéité des caractéristiques physiques et mécaniques :

- Si : $V = \frac{\Gamma}{x} \le 10\%$ \Rightarrow On prend la moyenne des caractéristiques des différents échantillons
- Si : $V = \frac{\Gamma}{x} > 10\%$ \Rightarrow On prend le minimum des caractéristiques des différents échantillons.

Avec:

$$\Gamma$$
: L'écart type $\Gamma = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})}{n}}$

$$\bar{x}$$
: La moyenne $\bar{x} = \frac{\sum_{i=1}^{n} (x_i)}{n}$

V : Coefficient de variation.

On trouve les résultats suivants :

Tableau.3: Caractéristiques physiques et mécaniques du sol

W	γ_d	γ_h	γ_{sat}	e	C	φ	$\sigma_{\!\scriptscriptstyle c}$	C_c	C_s
(%)	(t/m^3)	(t/m^3)	(t/m^3)		(bar)		(bar)		
18,91	1,75	2,08	2,10	0,55	0,94	27^{0}	3,67	0,13	0,017

4. Capacité portante admissible du sol :

La capacité portante admissible du sol peut être déterminée de deux manières :

- Soit à partir des essais mécaniques réalisés au laboratoire.
- Soit à partir des essais pénétrométriques.

a). A partir des essais pénétrométriques réalisés "in-situ" :

Il est courant d'utiliser comme capacité portante admissible, la relation suivante :

$$q_{adm1} = \frac{R_p}{F}$$

avec:

 R_p : Résistance de pénétration à la pointe.

 $R_p = 50bars$.

F: Coefficient de sécurité pris égal à 20.

$$q_{adm1} = \frac{50}{20} = 2,50bars$$

b). A partir des essais mécaniques réalisés au laboratoire :

Capacité portante pour un radier à long terme :

La capacité portante à long terme pour un radier générale est donnée par la formule suivante :

$$q_{adm2} = \gamma'_{1}D + \frac{\rho\gamma'_{2}N_{\gamma} + \gamma'_{1}D(N_{q} - 1) + CN_{c}}{F_{s}}$$

Avec:

 γ' : Poids volumique déjaugé = 11KN/ m^3 .

D: Fiche d'ancrage = 5m (à partir de la coté du terrain naturel).

$$\rho$$
: Rayon moyen = $\frac{B}{2\left(1+\frac{B}{L}\right)} = 6.30m$.

B: Largeur du radier = 22,6m.

L: Longueur du radier = 28,5m.

Fs: Facteur de sécurité = 3.

C: Cohésion =0,94 bar.

 N_{γ} ; N_{q} ; N_{c} :Facteurs de portance en fonction de l'angle de frottement φ

pour
$$\varphi = 27^{\circ} \Rightarrow \begin{cases} N_{\gamma} = 13.9 \\ N_{q} = 13.2 \\ N_{c} = 24 \end{cases}$$

Donc: q_{adm2} =6,75bars

On doit vérifier que :

$$q_u = \frac{N_u}{S} + \gamma' D \prec q_{adm}$$

 N_u : Effort normal supporté par le radier selon la combinaison G+Q+E (**RPA99**(2))

S: Surface du radier = $644,10m^2$

$$q_u = \frac{67367,92}{644,10} + 11x5 = 1,6bars < 6,75bars.....vérifiée$$

Conclusion:

La contrainte admissible que l'on prend est le minimum des deux contraintes

$$\Rightarrow \sigma_{sol} = Min(q_{adm1}; q_{adm2})$$
$$\Rightarrow \sigma_{sol} = 2,50bars.$$

5. Calcul du tassement :

L'évaluation du tassement est donnée par la méthode des tranches.

La vérification de l'effet du substratum :

- 1. si: L+2B < H: Pas d'effet de substratum $(H = \infty)$, les contraintes seront calculées par la méthode de *NEWMARK*.
- 2. si: L+2B>H: l'effet de substratum existe, dans ce cas H est considéré fini et les contraintes seront calculées par la méthode de BURMISTER.

H: Epaisseur du sol.

Remarque:

Pour notre cas $(H = \infty)$; donc on utilise la méthode de *NEWMARK*.

a). Méthode de calcul:

1. Découper le sol sous la fondation en des tranches suffisamment petites pour que σ'_{ν} (contrainte effective) varie linéairement.

Le découpage continu jusqu'à ce que $\Delta \sigma_{\nu}$ devient négligeable $\frac{\Delta \sigma_{\nu}}{\left(q - \gamma' D\right)} \rightarrow 0$

2. Calculer $\Delta \sigma_v$ au milieu de la tranche ''K'' à l'aide de la formule d'élasticité.

$$\begin{cases} \Delta \sigma_{v} = 4q' I_{\sigma}.....au \ milieu \ de \ la \ fondation \\ \Delta \sigma_{v} = q' I_{\sigma}...... \ \grave{a} \ l' \ extremit\'e de \ la \ fondation \end{cases} \eqno(7)$$

q': charge ramenée au niveau Z=0 avec $q'=q-\gamma'D$

3. Calculer
$$\sigma'_{v_0}(K) = \sigma'_{v_0}(K) + \Delta \sigma_{v_0}(K)$$

Avec : $\sigma'_{v_0} = \gamma' Z$ (contrainte due au poids des terres).

Où:

Z=0.00 et le niveau de terrain naturel.

 I_{σ} : Facteur d'influence, il est donné par :

$$I_{\sigma}: \text{ Facteur d'influence, il est donné par :}$$

$$\begin{cases}
si: Z \neq 0 \Rightarrow I_{\sigma} = \frac{m.n(l+m^2+2n^2)}{2\pi(l+n^2)(m^2+n^2)\sqrt{l+m^2+n^2}} + \frac{l}{2\pi}Arctg \frac{m}{n\sqrt{l+m^2+n^2}} \\
si: Z = 0 \Rightarrow I_{\sigma} = 0.25
\end{cases}$$

$$M = \frac{L/2}{B/2} \qquad ; \qquad n = \frac{Z}{B/2}$$

Pour notre cas, on a un radier rectangulaire

S (surface du radier) = $644,10 \text{ m}^2$

$$m = 1,26$$
 ; $n = \frac{Z}{11,30}$
 $q' = q - \gamma'D = \frac{N}{S} - \gamma'D$
 $q' = 104,59 - 11x5 = 49,59KPa$

les résultats de calcul des contraintes sont regroupés dans le tableau suivant :

Z0,5 1,5 7,5 8,5 9.5 2,5 3,5 4,5 5,5 6,5 (m) $0,2\overline{21}$ 0.044 0,133 0.310 0.398 0,487 0,575 0,664 0,752 0.841 0,2499 0,2497 0,2485 0,2462 0,2424 0,2371 0,2305 0,2227 0,2141 0,2047 σ'_{v_0} 60,50 71,50 82,50 93,50 104,50 115,50 126,50 137,50 148,50 159,50 (KPa) Milieu du $\Delta\sigma_{_{\scriptscriptstyle
u}}$ radier 49,57 49,53 49,29 48,84 48,08 47,03 45,72 44,17 42,47 40,60 (KPa) σ'_{v} 110,07 121,03 131,79 142,34 152,58 162,53 172,22 181,67 190,97 200,10 (KPa) \boldsymbol{A} $\Delta \sigma_{v}$ l'extrémité 12,39 12,38 12,32 12,21 12,02 11,76 11,43 11,04 10,62 10,15 (KPa) du radier σ'_{v} 72,89 83,88 94,82 105,71 116,52 127,26 137,93 148,54 159,12 (KPa)

Tableau.4: Contraintes des tranches sous radier

b). Calcul du tassement de chaque tranche et du tassement total :

Après avoir calculer les contraintes, on calcule le tassement $S_c(K)$ de la tranche (K) sous la contrainte $\sigma'_{\nu}(K)$, en se basant sur l'essai œdométrique.

$$1) S_{c}(K) = \frac{H_{o}}{1 + e_{o}} \left(C_{s} log \frac{\sigma_{c}(K)}{\sigma'_{v_{o}}(K)} + C_{c} log \frac{\sigma'_{v}(K)}{\sigma_{c}(K)} \right) \qquad si:\sigma'_{v}(K) \succ \sigma_{c}(K) \Rightarrow Sol \ sous \ consolid\acute{e}$$

$$2) S_{c}(K) = \frac{H_{o}}{1 + e_{o}} C_{s} log \frac{\sigma'_{v}(K)}{\sigma'_{v_{o}}(K)} \begin{cases} si: \sigma'_{v}(K) \prec \sigma_{c}(K) \Rightarrow & Sol \ sur \ consolidé. \\ si: \sigma'_{v}(K) = \sigma_{c}(K) \Rightarrow & Sol \ normal kment \ consolidé. \end{cases}$$

On calcule aussi le tassement total qui est égal à la somme des tassements des couches.

$$S_c^T = \sum_{i=1}^n S_c(K)$$

On trouve les résultats dans le tableau suivant :

Tableau.5: Tassement des couches

	Z(m)	0,5	1,5	2,5	3,5	4,5	5,5	6,5	7,5	8,5	9,5
	$H_0(m)$	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	e_0	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
	C_s	0,017	0,017	0,017	0,017	0,017	0,017	0,017	0,017	0,017	0,017
	C_c	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13
	$\sigma_{\!c}$										
	(KPa)	367	367	367	367	367	367	367	367	367	367
Milieu du	S_c										
radier	(mm)	2,85	2,51	2,23	2,00	1,80	1,63	1,47	1,33	1,20	1,08
A	S_c										
l'extrémité	(mm)	0,89	0,76	0,66	0,58	0,52	0,46	0,41	0,37	0,33	0,29
du radier											

Le tassement total est:

-Au milieu du radier : $S_c^T = 1.81 cm \prec S_c^{adm} = 10 cm$vérifiée.

-A l'extrémité du radier : $S_c^T = 0.53cm \prec S_c^{adm} = 10cm....vérifiée.$

 S_c^{adm} : Tassement admissible donné par le règlement soviétique SNIP 62

Bibliographie

- [1]: Règles parasismiques Algériennes *RPA 99-version 2003* DTR-BC-248.
- [2]: Cours de béton armé *BAEL 91 modifié 99* et DTU associés "JEAN-PIERRE MOUGIN édition EYROLLES 2000.
- [3]: Règles de conception et de calcul des structures en béton armé *C.B.A.93*.
- [4]: Charges permanentes et charges d'exploitation DTR-BC-22.
- [5]: La construction en zone sismique, par *Victore Davidovici*.
- [6]: Conception et calcul des structures de bâtiment ; *Henry Thonier* (tome3).
- [7] : Formulaire du béton armé : volume2 ; construction par *Victore Davidovici*.
- [8] : Formulaire du Béton Armé : Volume 1; "Eléments de Calcul", par *Victore Davidovici*.
- [9]: Etude d'un bâtiment a usage d'habitation et commercial (1ss+RDC+9 ETAGES) contreventé par des voiles et portiques, par SISSANI MAISARA, CHEMLI MOULOUD -2016/2017-
- [10]: Etude d'un bâtiment a usage administrative (R+6ETAGES+2SS) contreventé par des voiles en béton armé, par *KERROUR SAID -2010/2011- université SAADDAHLEB BLIDA 1*.