UNIVERSITE SAAD DAHLAB - BLIDA 1-

Faculté de Technologie

Département des Sciences de l'Eau et Environnement

MEMOIRE DE MASTER

Filière: Hydraulique

Spécialité : Ressources Hydrauliques

Thème:

Etude de diagnostic et proposition d'un schéma directeur de restructuration du réseau de distribution de la ville de Beni Tamou (Wilaya de Blida)

Présenté par

Maddi Fatma Zohra Chahrazede

Devant le jury composé de :

M. Taibi A M.C.A, U. de Blida Président

M. Messaoud-Nacer M.C.A, U. de Blida Examinateur

M. OULARBI A. M.C.B, U. de Blida Promoteur

Promotion 2019/2020

Dédicace

A mes chers parents et à toute personne que j'aime je dédie ce modeste travail.

Remerciements

Je remercie Dieu le tout puissant pour la volonté et le courage qu'il m'a donné pour bien mener ce travail.

Je tiens à remercier vivement mon promoteur Monsieur Oularbi pour le temps qu'il m'a consacré, pour son aide et ses précieux conseils.

Je remercie les membres du jury, qui m'ont honoré en examinant mon travail.

Ma profonde reconnaissance au personnel de l'Algérienne des eaux de m'avoir aidé à accomplir mon modeste travail.

Résumé

La présente étude a pour objectif de faire un diagnostic du réseau de distribution d'eau potable de la ville de Beni Tamou.

Notre travail consiste à présenter le réseau existant et effectuer des simulations à l'aide du logiciel **Epanet** pour étudier son comportement et déceler les anomalies causant les dysfonctionnements.

Sur la base des résultats de la simulation, une proposition d'une reconfiguration de la structure du réseau s'impose pour rééquilibrer les pressions et les vitesses permettant un fonctionnement régulier et une meilleure desserte en eau de la zone d'étude.

Mots clés: réseau de distribution d'eau potable, simulation, epanet, comportement, anomalies, dysfonctionnements, pression, vitesse.

Sammury

The present study aims for diagnisis of water distributions network in the city of Beni Tamou using Epanet soft ware we will run a simulation to study the behavior of the existing network and locate the anomalies that are causing dysfunction.

using the results of the simulation mentioned above; a solution will be proposed to reconfigur the networks structure and standardize the values of speed and pressure wich will allow a more regulare and better function of the net work.

keywords:

water distributions network, simulation, behavior, anomalies, dysfunction, speed, pressure.

ملخص

إن الدر اسة المقدمة تهدف إلى تشخيص اختلالات شبكة تو زيع الماء الشروب لمدينة بني تامو.

عملنا هذا يعتمد على تقديم الشبكة الحالية و القيام باقتراح محاكاة باستعمال برنامج Epanet لدراسة سلوك و تحديد المشاكل التي تتسبب في اختلالات توزيع المياه في المنطقة المدروسة و على أساس نتائج هذه المحاكاة تم إعادة تشكيل بنية الشبكة لإعادة التوازن للضغط والسرعة بتشغيل منتظم و توزيع جيد للماء الشروب في المنطقة.

الكلمات المفتاحية: شبكة توزيع الماء الشروب, محاكاة, سلوك, المشاكل, اختلالات, الضغط, السرعة.

SOMMAIRE

Introduction générale

CHAPITRE I: PRESENTATION DE LA ZONE D'ETUDE

Introduction
I-1 La situation géographique
I.2 Données naturelles du site
I.2.1 Situation Topographique
I.2 .2 Situation Géologique
I.2 .3 Situation Hydrogéologique
I.2.4 La séismicité et risque sismique
I.3 Données climatiques
I.3.1 Température
I.3.2 Hygrométrie
I.3.3 Pluviométrie
I.3.4 Les vents
I.3.5 Pédologie
I.4 Situation démographique
Conclusion. 5
CHAPITRE II: ESTIMATION DES BESOINS EN EAU DE L'AGGLOMERATION DE LA ZONE D'ETUDE Introduction
II-1 Estimation de la population projetée
II-2 Estimation des besoins de consommation
II.2.1 Evolution de la dotation unitaire
II.2.2 Calcul des différents ratios en termes de débits
II.3 Situation actuelle d'approvisionnement en eau potable pour la zone d'étude14
II.3.1 Etat de lieu de la capacité de production
II.3.2 Bilan hydrique production/ consommation
Interprétation des résultats
Conclusion
Conclusion
CHAPITRE III: DESCRIPTION ET DIAGNOSTIC DU RESEAU D'ALIMENTATION EN EAU POTABLE

III-1 Description des ouvrages de stockage existants	
III-2 Réseau d'adduction	
III-3 Réseau de distribution	
III-3-1 Age des canalisations du réseau de distribution de la zone d'étude	
III-3-2 Schéma global actuel du réseau de distribution	
III-4-1 Le logiciel AutoCAD	
III-4-2 Le logiciel COVADIS	
III-4-3 Le logiciel Epanet	
III-4-3-1 Objectif de l'utilisation du logiciel de simulation EPANET	
III-4-3-2 Principe de calcul du logiciel de simulation EPANET	
III-4-3-3 Données saisies	
III-4-4 Simulation du réseau existant	
III-4-4-1 Détermination des débits en route et nodaux	
III-4-4-2 Simulation du réseau de distribution existant	28
III-4-4-3 Interprétation des résultats de la simulation, cas de pointe à l'horizon 2020	44
III-4-4-4 Interprétation des résultats de la simulation pointe incendie, horizon 2020 .	63
III-4-4-5 Interprétation des résultats de la simulation, cas de pointe à l'horizon 2050	80
III-4-4-6 Interprétation des résultats de la simulation, pointe plus incendie à	
	07
1'horizon 2050	90
l'horizon 2050	
Conclusion	97
Chapitre IV: Reconfiguration de la structure du Reseau.	97
Chapitre IV: Reconfiguration de la structure du reseau. Introduction	98
CHAPITRE IV: RECONFIGURATION DE LA STRUCTURE DU RESEAU. Introduction	98 98
CHAPITRE IV : RECONFIGURATION DE LA STRUCTURE DU RESEAU. Introduction	98 98 99
CHAPITRE IV : RECONFIGURATION DE LA STRUCTURE DU RESEAU. Introduction	98 98 99 100
CHAPITRE IV: RECONFIGURATION DE LA STRUCTURE DU RESEAU. Introduction	98 98 99 100 .100
CHAPITRE IV: RECONFIGURATION DE LA STRUCTURE DU RESEAU. Introduction	989899 100100101
CHAPITRE IV: RECONFIGURATION DE LA STRUCTURE DU RESEAU. Introduction	989899 100100101 0
CHAPITRE IV: RECONFIGURATION DE LA STRUCTURE DU RESEAU. Introduction	989899 100100101 0

IV .3.3.3 Résultat de la simulation du réseau secteur 01, cas de pointe plus incendie108
IV .3.3.4 Interprétation des résultats de la simulation du secteur 01, cas Heure de pointe plus incendie
IV.4 Configuration du réseau projeté du secteur 02
IV.4.1 Calcul des débits du secteur 02
IV .4.2 Calcul des débits nodaux du secteur S02
IV.4.3 Simulation du comportement du réseau de distribution du secteur S02 à l'horizon
2050
IV.4.3.1 Résultat de la simulation du réseau secteur 02, cas de pointe
IV.4.3.2 Interprétation des résultats de la simulation du réseau du secteur 02, cas heure de pointe
IV.4.3.3 Résultat de la simulation du réseau secteur 02, cas de pointe plus incendie123
IV.4.3.4 Interprétation des résultats de la simulation du réseau du secteur 02, cas heure de pointe plus incendie
Calcul de la capacité totale de stockage du réservoir
Conclusion
Conclusion générale

Liste Des Tableaux

Chapitre I

Tableau I.1 : Profil géologique global 2
Tableau I.2 : Répartition des pluies moyennes mensuelles station de Beni mered4
Tableau I. 3 : Population de Beni tamou et Zaouia de 2008 à 2030 5
Chapitre II
Tableau II.1 : Estimation prévisionnelle de la population de la zone d'étude7
Tableau II.2 : Typologie Agglomérations / strates de population
Tableau II.3 : Evolution de la dotation domestique pour une agglomération de type urbain9
Tableau II.4 : Coefficient de majoration pour d'autres usagés 9
Tableau II.5 : Evolution de la Dotation domestique et d'autres usages en l/j/hab9
Tableau II.6 : Taux d'accroissement moyen de la dotation 10
Tableau II.7 : Consommation moyenne actuelle et prévisionnelle
Tableau II.8 : Evolution du rendement de distribution
Tableau II.9 : Résultat de calcul des différents débits
Tableau II.10 : Caractéristiques des forages de production
Tableau II.10 : Caractéristiques des forages de production (suite). 15
Tableau II.11 : Bilan production-besoin. 15
Chapitre III
Tableau III.1 : caractéristiques des ouvrages de stockage 18
Tableau III.2: Caractéristique du réseau d'adduction 19
Tableau III.3 : pourcentage de présence des matériaux dans le réseau de distribution20
Tableau III.4 : Secteurs de distribution du réseau actuel. 21
Tableau III.5 : résultats aux nœuds en cas de pointe, horizon2020. 29
Tableau III.5 : résultats aux nœuds en cas de pointe, horizon 2020(suite)
Tableau III.5 : résultats aux nœuds en cas de pointe, horizon 2020 (suite)31
Tableau III.5 : résultats aux nœuds en cas de pointe, horizon 2020 (suite)
Tableau III.5: résultats aux nœuds en cas de pointe, horizon 2020 (suite)
Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon 2020
Tableau III.6: résultats aux tronçons en cas de point à l'horizon 2020 (suite)
Tableau III.6: résultats aux tronçons en cas de pointe l'horizon 2020 (suite)
Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon 2020 (suite)

Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon 2020 (suite)	
Tableau III.6: résultats aux tronçons cas de pointe à 1'horizon 2020 (suite)	
Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon 2020 (suite) 40	
Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon 2020 (suite) 2020 (suite)	
Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon2020 (suite)	
Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon 2020 (suite)	
Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon 2020 (suite) 44	
Tableau III.7: résultats aux nœuds en cas de pointe plus incendie 2020	
Tableau III.7: résultats aux nœuds en cas de pointe plus incendie 2020 (suite)48	
Tableau III.7 : résultats aux nœuds en cas de pointe plus incendie 2020 (suite)	
Tableau III.7 : résultats aux nœuds en cas de pointe plus incendie 2020 (suite)	
Tableau III.7 : résultats aux nœuds en cas de pointe plus incendie 2020 (suite)51	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 202052	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)53	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)54	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)55	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)56	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)57	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)58	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)59	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)61	
Tableau III.8: Résultats des tronçons cas pointe plus incendie, horizon 2020 (suite)62	
Tableau III.9 : Résultats aux nœuds cas de pointe, horizon 2050	
Tableau III.9 : Résultats aux nœuds cas de pointe, horizon 2050 (suite)	
Tableau III.9 : Résultats aux nœuds cas de pointe, horizon 2050 (suite) 66	
Tableau III.9 : Résultats aux nœuds cas de pointe, horizon 2050 (suite)	
Tableau III.9 : Résultats aux nœuds cas de pointe, horizon 2050 (suite)	
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050	
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)	
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)	
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)	
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)	
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)	

Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite) 76
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)
Tableau III.10 : Résultats des tronçons cas de pointe, horizon2050 (suite)
Tableau III.11: Résultats aux nœuds en cas de pointe plus incendie, 2050(suite)81
Tableau III.11: Résultats aux nœuds en cas de pointe plus incendie, 2050(suite)82
Tableau III.11: Résultats aux nœuds en cas de pointe plus incendie, 2050(suite)83
Tableau III.11: Résultats aux nœuds en cas de pointe plus incendie, 2050(suite)84
Tableau III.11: Résultats aux nœuds en cas de pointe plus incendie, 2050(suite)85
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 205086
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite) 87
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite)88
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite)89
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite)90
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite)91
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite) 92
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite) 93
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite) 94
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite)95
Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite) 96
Chapitre IV
Tableau IV.1 : Débit de dimensionnement du secteur 01. 100 Tableau IV.2 : Débits nodaux du secteur 01. 100
Tableau IV.3 : Caractéristiques des conduites reliant château d'eau projeté au point n101
Tableau IV.4 : État des pressions du secteur S01 cas Heure de pointe, Horizon 2050 102
Tableau IV.4 : État des pressions du secteur S01 cas Heure de pointe, Horizon 2050(suite)
Tableau IV.5 : Résultat aux tronçons en cas de pointe secteur S01, Horizon2050104
Tableau IV.5 : Résultat aux tronçons en cas de pointe secteur S01, Horizon2050 (suite)104
Tableau IV.5 : Résultat aux tronçons en cas de pointe secteur S01, Horizon2050 (suite)106
Tableau IV.8 : Débit de dimensionnement du secteur 02
Tableau IV.9 : Débits nodaux du secteur S02 cas Heure de pointe, Horizon 2050109

Tableau IV.9 : Débits nodaux du secteur S02 cas Heure de pointe, Horizon 2050(suite)
Tableau IV.10: État des nœuds du secteur S02 cas de pointe, Horizon 2050
Tableau IV.10: État des nœuds du secteur S02 cas de pointe, Horizon 2050 (suite)112
Tableau IV.10: État des nœuds du secteur S02 cas de pointe, Horizon 2050 (suite)113
Tableau IV.10: État des nœuds du secteur S02 cas de pointe, Horizon 2050 (suite)114
Tableau IV.10 : État des nœuds du secteur S02 cas de pointe, Horizon 2050 (suite)115
Tableau IV.11 : Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 116
Tableau IV.11 : Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite) .117
Tableau IV.11 : Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite) .118
Tableau IV.11: Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite). 119
Tableau IV.11 : Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite) .120
Tableau IV.11 : Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite) 121
Tableau IV.11 : Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite) 122 Tableau IV.15: Détermination de la capacité utile théorique de stockage pour l'horizon
2050

Liste des figures

Chapitre I

Figure I.1 : Situation géographique Beni Tamou
Chapitre II
Figure II-1: Evolution du taux d'accroissement de la population
Figure II.2 : Evolution de la consommation journalière et de la population14
Chapitre III
Figure III.1 : répartition des linéaires du réseau de distribution existant en fonction des types de matériau
Figure III.2 : Schéma synoptique du système d'alimentation en eau potable actuel de la ville de Beni tamou
Figure III.3 : l'éditeur de propriétés des conduites sur Epanet
Figure III.4: l'éditeur de propriétés des nœuds sur Epanet
Figure III.5: l'éditeur de propriétés des ouvrages de stockage sur epanet27
Figure III.6: courbes de niveau des altitudes de la zone d'étude
Figure III.7 : Etat de pressions aux nœuds à l'heure de pointe cas de pointe, horizon 2020
Figure III.8 : Etat de pressions aux nœuds à l'heure de pointe cas de pointe plus incendie, horizon2020
Figure III.9: état de pressions aux nœuds à l'heure de pointe cas de pointe, horizon2050.
80
Figure III.10: Etat de pressions aux nœuds à l'heure de pointe cas de pointe plus incendie, horizon 2050
Chapitre IV
Figure IV.1 : Schéma synoptique du réseau de distribution projeté99
Figure IV.2 : Etat de pressions du secteur01 cas de pointe, Horizon2050107
Figure IV.3 : distribution des vitesses du secteur01 cas de pointe, Horizon2050107
Figure IV.4 : distribution des vitesses du secteur01 cas de pointe plus incendie Horizon2050

Figure IV.5: Etat de pressions du secteur 02 cas heure de pointe, Horizon2050	123
Figure IV.6: distribution des vitesses du secteur02 cas de pointe, Horizon2050	123
Figure IV.7 : Etat de pressions du secteur 02 cas heure de pointe plus incendie, Horizon2050.	124
Figure IV.8 : distribution des vitesses du secteur02 cas de pointe plus incendie, Horizon2050	125

Introduction générale

L'eau ressource vitale et élément essentiel, constitue un besoin primordial pour la survie de l'être humain et le développement socio-economique, son importance exige l'intervention de plusieurs disciplines que l'alimentation en eau potable en fait partie.

L'accroissement rapide de la population exige le développement des structures urbaines ce qui fait que la demande en eau soit plus grande et la satisfaction des exigences des agglomérations devient plus difficile avec la détérioration dans le temps de la structure initiale des réseaux s'ils existent.

La qualité du fonctionnement d'un réseau d'alimentation en eau potable dépend essentiellement de son état et de sa capacité à répondre aux exigences et aux normes d'un réseau équilibré, afin d'analyser son fonctionnement on fait appel aux études de diagnostic pour détecter les problèmes, trouver leurs causes et parer aux anomalies causant le dysfonctionnement.

C'est dans ce contexte que s'inscrit notre étude qui consiste à faire un diagnostic du réseau de distribution de la ville de Beni Tamou qui connait actuellement des troubles de distribution d'après le gestionnaire, notre étude repose sur l'analyse des résultats des simulations qui concrétisent le réseau de distribution à l'aide du logiciel Epanet pour identifier les anomalies actuelles et à long terme, ensuite proposer un nouveau schéma de restructuration dans le but d'améliorer le fonctionnement du réseau.

CHAPITRE I : Présentation de la zone d'étude

Introduction

Toute étude d'un projet d'alimentation en eau potable nécessite la connaissance de certains paramètres qui à la fois influencent la nature des besoins à satisfaire et conditionnent le choix de la variante à adopter.

Ces paramètres peuvent se présenter dans ce chapitre en quatre classes bien distinctes.

I.1. Situation géographique

La commune de Beni Tamou se situe en plein cœur de la Mitidja à 7 km du chef lieu de la Wilaya de Blida et à 55 km, Sud Est d'Alger

L'agglomération de Beni tamou est limitée par :

- La commune de Ben khelil au nord;
- La commue de Beni mered à l'est ;
- La daïra de l'Oued elleug à l'Ouest ;
- La commune de Blida au sud.

Figure I.1: Situation géographique Beni Tamou.

I.2. Données naturelles du site

I.2.1. Situation Topographique

La commune de Beni Tamou présente un relief uniforme avec une faible pente variant de 0 à 1 % avec des altitudes variant de 30m à 60m dans le sens sud-est.

I.2 .2. Situation Géologique

Le sol est composé de sable et de gravier au Sud, de limon au Nord-Ouest et des alluvions qui forment les lits des oueds.

Le tableau suivant donne le profil géologique global :

Tableau I.1 : profil géologique global

Age	Profondeur (m)	Lithologie
Quaternaire	70	Sable
Marne Jaune	415	Argile, Marnes, Graviers
Astien	544	Sable + Grès
Plais ancien	558	Marne

Source : ANRH Blida

I.2.3. Situation Hydrogéologique

La Mitidja est une vaste plaine du nord d'Algérie, elle couvre une superficie de 1300 km², soit 100 km de longueur et une largeur variant entre 8 et 18 km avec une altitude moyenne de 100 m, la zone d'étude est située en plein centre de la plaine alluviale de la Mitidja.

a- Formation des aquifères

La structure des horizons aquifères a été déterminée grâce à une étude géophysique par prospection électrique réalisée par C.G.G en 1968, ainsi que les coupes géo-électriques établies mettant en évidence deux niveaux résistants séparés par une couche conductrice, ces deux niveaux résistants correspondent à deux horizons aquifères perméables, et le niveau conducteur correspond à une couche argileuse imperméable.

L'aquifère alluvionnaire du quaternaire se situe en surface avec une épaisseur de l'ordre de 100 à 150 m, quant à l'aquifère de l'Astien, son toit a une profondeur de 200m.

b- Caractéristiques des nappes

La nappe de la Mitidja renferme deux grandes nappes importantes à savoir :

• Nappe des alluvions du quaternaire

La nappe des alluvions du quaternaire de la Mitidja peut être subdivisée en trois :

Quaternaire ancien : C'est des alluvions grossières représentées par des graviers assez grossiers légèrement argileux.

Quaternaire moyen: C'est des formations assez grossières représentées par des graviers grossiers et sable grossier avec intercalations argileuses

Quaternaire récent : Il s'agit des limons grés argiles noirs ou bleus et d'alluvions grossières à la base, nous rencontrons cette série aux bords des oueds importants de la Mitidja.

• Nappe de l'astien

L'astien est représenté par des grés et des calcaires gréseux avec des intercalations d'argile jaunâtre. Cette formation astienne est profonde, au niveau de la Mitidja est captive (sous pression) et elle affleure aux limites de la plaine Nord-Sud de façon irrégulière.

c- Piézométrie

Le sens d'écoulement des eaux de la plaine des alluvions se fait du sud vers le Nord-Ouest, la profondeur du niveau statique varie de 30 à 50m et nous pourrons même avoir un niveau dépassant 60 m en période d'irrigation.

d- La qualité des eaux

Les eaux des alluvions du quaternaire sont très bonnes du point de vue chimique, puisque leur résidu-sec et leur minéralisation tournent autour de 300 mg/l, c'est des eaux bicarbonatées très légères; à la suite de l'analyse chimique, l'eau ne demande qu'une javellisation pour être potable.

I.2.4.La séismicité et risque sismique

D'après la cartographie sismique toute la région de OUED EL ALLEUG est classée en zone III où la sismicité élevée dans la macro zonage depuis le séisme de ZEMMOURI 2003.

I.3. Données climatiques

Le climat est un facteur primordial pour la durée de vie du réseau, il permet d'orienter les techniques de pose, le choix du matériau à utiliser et d'élaborer un planning des travaux.

Le climat de la zone d'étude subit par sa situation géographique, la double influence de la mer et de la montagne, le caractère essentiel du climat est du type méditerranéen caractérisé par une saison sèche et chaude (mai, septembre) et d'une humide saison (octobre, avril).

I.3.1. Température

Elles varient d'année en année, mais généralement elles sont de l'ordre de 10°C en hiver et de 33°C en été, ceci n'est bien entendu que la moyenne qu'on puisse avoir.

I.3.2. Hygrométrie

La variation annuelle de l'humidité relative est moyennement faible ; de mai en septembre la moyenne n'atteint pas les 70%.

I.3.3.Pluviométrie

Pour une période d'observation de 20 ans, la valeur moyenne annuelle de jours de pluie est de 50 mm, la hauteur annuelle est de 380 mm d'eau, pendant la saison de mai en août la terre reçoit environ 4% des pluies annuelles, alors qu'au cours des mois de novembre, décembre et janvier elle en reçoit que le 50% environ.

Tableau I.2 : répartition des pluies moyennes mensuelles station de Beni mered.

Mois	S	О	N	D	J	F	M	A	M	J	J	О	annuel
Moyenne													
mensuel	26,2	31,4	66,9	56,6	43,8	30,5	65,1	50,3	15,6	0	23,8	8,6	418.8
(mm)									,			,	

Source d'information : *ANRH (Blida)*

I.3.4. Les vents

Le maximum de force des vents se situe durant la période hivernale et le minimum à la fin de l'été. Les vents locaux sont prédominants d'Ouest et Nord-ouest avec quelques vents nord-est, ils adoucissent le climat durant la saison chaude.

I.3.5. Pédologie

Le périmètre de la zone d'étude est constitué essentiellement d'alluvions récentes (limons argileux sableux) avec des poches d'alluvions anciennes (limons caillouteux de terrasse) situées au centre dans le périmètre d'étude, ainsi qu'au sud-est et sud-ouest.

Les limons de la Mitidja dans la partie la plus basse de cette plaine et les alluvions des vallées jusqu'à 5m tandis que les alluvions anciennes (terrasse des cailloutis et limon 15 à 20 m avec parfois des poudingues à gros éléments) sont du pléistocène.

Au final on peut considérer que la région d'étude est très homogène.

I.4. Situation démographique

Selon le PDAU, la démographie de Beni tamou y compris l'agglomération secondaire de Zaouia est donnée dans le tableau suivant :

Tableau I. 3: Population de Beni tamou et Zaouia de 2008 à 2030.

	2008	taux d'acc	2010	taux d'acc	2015	taux d'acc	2020	taux d'acc	2030
	Hab.	%	Hab.	%	Hab.	%	Hab.	%	Hab.
Chef lieu	33847	4.53	36980	4	44992	3.2	52666	2.6	68078
Total	36228	4.51	39570	4	48143	3.2	56355	2.6	72846

Source d'information : *PDAU*

Conclusion

La collecte et l'analyse de données essentiellement démographique vont permettre l'estimation des besoins de l'agglomération de la zone d'étude qui sera élaborée dans le chapitre suivant.

La situation topographique, géographique et climatique c'est des données aussi importantes qui vont aider à l'établissement du schéma directeur de restructuration du réseau.

CHAPITRE II : Estimation des besoins en eau de l'agglomération de la zone d'étude

Introduction

La satisfaction des besoins en eau d'une agglomération donnée exige une évaluation minutieuse des débits demandés, qui doit essentiellement passer par l'estimation de la population occupant le périmètre d'étude.

Dans ce chapitre on s'intéresse à évaluer le nombre d'habitant à court, moyen et long terme pour pouvoir calculer les besoins en eau à travers ces différents horizons, ce qui va nous permettre de dresser un bilan hydrique qui représente le premier pas dans notre étude de diagnostic.

II.1. Estimation de la population projetée

L'analyse de l'évolution de la population de la commune de Beni Tamou montre qu'entre 1998 et 2008 le nombre d'habitant passe de 23 305 à 36 228.

Les estimations de la population de la commune de Beni Tamou pour le court, moyen et long terme sont faites sur la base du dernier recensement général de la population de 2008.

L'évolution tendancielle, résumée dans le tableau **I-3**, montre que le taux d'accroissement sera à la baisse, pour le court terme il est de 4%, 3.2% pour le moyen terme et 2.6% pour le long terme pour se rapprocher du taux moyen de la wilaya de Blida tel que présenté sur le graphe ci-dessous.

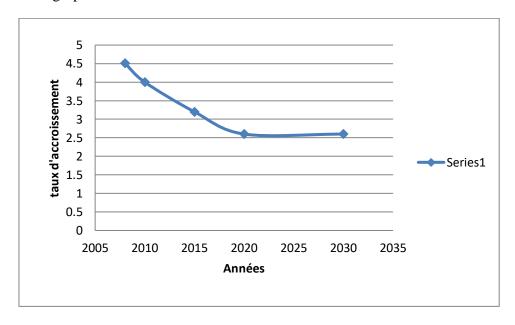


Figure II.1: Evolution du taux d'accroissement de la population.

En dehors des équipements collectifs (socio-éducatifs, socio-économiques et administratifs), la population de la commune de Béni Tamou suit la loi des accroissements géométrique basée sur un taux d'accroissement moyen annuel de $\tau=2.6\,\%$.

Cette loi est donnée est exprimée par la formule suivante :

$$Pn = P_0 (1 + \tau)^n$$

Pn: Population à l'horizon futur ;

 P_0 : Population à l'année de référence ;

 τ : Taux d'accroissement en %;

n: l'écart entre les deux horizons.

L'évolution de la population de la commune de Beni Tamou est présentée dans le tableau **II.1**

Tableau II.1 : Estimation prévisionnelle de la population de la zone d'étude.

	Horizon	2015	2020	2025	2030	2035	2040	2045	2050
•	Nombre d'habitant (hab.)	48143	56345	64072	72846	82821	94163	107057	121717

Source: APC Béni Tamou

II.2. Estimation des besoins de consommation

L'estimation des besoins de consommation d'une agglomération nécessite l'intervention de plusieurs paramètres tels que la typologie de l'agglomération, l'évaluation de nombre d'habitant ainsi que la dotation.

Pour bien évaluer les dotations de chaque type d'usagers on se réfère à l'étude d'actualisation du plan national de l'eau.

II.2.1. Evolution de la dotation unitaire

Selon l'hypothèse posée dans l'étude de l'actualisation du PNE de 2010, la dotation unitaire varie dans le temps et selon la typologie de l'agglomération de la zone d'étude d'où vient la nécessité d'identifier la strate de l'agglomération à étudier suivant la classification cidessous.

Tableau II.2 : Typologie Agglomérations / strates de population.

Désignation	Caractéristiques					
les métropoles à statut particulier de délégation (SPE) :	Alger; Oran; Constantine; Annaba					
Les métropoles	villes de plus de 300.000 habitants					
L'urbain dit supérieur	100.000 < pop. < 300.000 habitants					
L'urbain	20.000 < pop. < 100.000 habitants					
Semi urbain	5.000 < pop. < 20.000 habitants					
Semi rural	3.000 < pop. < 5.000 habitants					
Rural aggloméré	600 (100 unités d'habitation) < pop. < 3.000 habitants					
Rural éparse	population inférieure à 600 habitants (100 unités d'habitation).					

(Source : *P.N.E-2010*)

Compte tenu des résultats du tableau **II.1** et l'agglomération de la ville de Beni-Tamou est classée, selon les recommandations du PNE-2010, type urbain.

a-Dotation unitaire domestique

Elle est définie comme étant la quantité d'eau potable journalière que reçoit un habitant pour couvrir ses besoins domestiques.

Son estimation est complexe car elle doit satisfaire les habitudes culturelles relatives à l'usage de l'eau et en même temps une sagesse à mettre en œuvre pour consommer rationnellement sans gaspillage.

L'évaluation de la dotation unitaire selon la typologie de l'agglomération peut se faire selon l'hypothèse tendancielle qui suit la tendance actuelle qui est d'augmenter le per capita systématiquement au motif que les années antérieures n'ont pas permis une desserte satisfaisante ; dans cette optique on envisagerait un accroissement modéré mais régulier de la dotation sur l'ensemble du territoire. [2]

La variation des valeurs de la dotation pour une agglomération urbaine sont comme le montre le tableau suivant :

Tableau II.3 : Evolution de la dotation domestique pour une agglomération de type urbain.

	Hypothèse tendancielle					
Typologie agglomération	Dotation unitaire Gestion par l'offre		Dotation unitaire Gestion par demand			
	(l/j/hab.)		(l/j/hab.))	
	2010	2015	2020	2025	2030	
Urbain (U)	80	85	90	100	110	

b-Dotation liées aux autres usages

Les besoins administratifs, des commerces et de l'artisanat/petite industrie sont considérés comme étroitement liés à la typologie de l'agglomération et sont estimés par application directe aux dotations unitaires domestiques des coefficients de majoration spécifiques à chaque catégorie d'usagers.

Tableau II.4 : Coefficient de majoration pour d'autres usagés.

	Tau	Taux de majoration pour les autres usagers							
	Taux administration	Taux commerce	Taux artisanat et petite industrie	Taux total					
Urbain (%)	20	10	10	40					

Pour une agglomération donnée, les taux de majoration sont considérés comme constants sur l'ensemble de la période de projection dans la mesure où elle ne change pas de strate de population. Si l'agglomération change de strate, il lui sera affecté les taux de majorations associés à sa nouvelle strate.

Après avoir fixé le taux de majoration à 40 % de la dotation domestique, on obtient les valeurs des dotations suivantes :

Tableau II.5: Evolution de la Dotation domestique et d'autres usages en l/j/hab.

		Horizon								
Typologie agglomération	Actuelle			Provisionnelle						
aggiomeration	2010	1015	2017	2020	2025	2030	2035	2040	2045	2050
Urbain (U)	112	119	122	126	140	154	168	182	204	224

(Source PNE).

Les valeurs des colonnes en surbrillance ont été calculées à partir du procédé d'interpolation de Neville. Il est à souligner, à ce sujet, que les résultats sont établis, selon le PNE 2010 uniquement jusqu'à l'horizon 2030.

Accroissement de la dotation unitaire en eau pour une agglomération urbaine est exprimé par la relation appliquée au Maroc et qui s'exprime comme suit :

$$D_n = D_0 (1+r)^n en (l/j/hab.)$$

D_n: Dotation en eau à l'horizon n (1/j/hab.);

 \mathbf{D}_0 : Dotation en eau à l'année de référence (2020). $D_0 = 126 \text{ l/j/hab.}$;

r: Taux d'accroissement de la dotation (valeur comprise entre 2 et 5%);

n : L'écart entre l'année de référence et l'année de l'horizon.

La formule du calcule du taux d'accroissement r exprimé en % est :

$$r = \left[\left(\frac{D_n}{D_0} \right)^{\frac{1}{n}} - 1 \right] \times 100$$

Tableau II.6: Taux d'accroissement moyen de la dotation

Année	Dotation unitaire (1/j/hab.)	r(%)	r _{moy} (%)
2025	140	2,1	
2030	154	2	1.95
2035	168	1.9	
2040	186	1.8	

On utilise le taux d'accroissement de la population moyen pour déduire les valeurs de la dotation liées aux horizons 2045 et 2050.

II.2.2 Calcul des différents ratios en termes de débits

a-débit moyen journalier

Par définition c'est le rapport entre le volume écoulé, durant une journée complète, et la durée correspondante. Ce volume est calculé à partir de la chronique des débits instantanés. Si le débit est exprimé en m3 /s, le volume est calculé en m3 et la durée est de 86 400 s.

La consommation moyenne journalière est exprimée en mètre cube par jour et elle est exprimée par la relation suivante :

$$Q_m^j = \frac{dot \times pop}{1000}$$

Etude de diagnostic et proposition d'un Schéma directeur de restructuration du réseau de distribution de la ville de Béni Tamou (Wilaya de Blida)

 Q_m^j : Débit moyen journalier en m 3 / $_j$;

Dot: Dotation unitaire en 1/j/hab.;

pop: Nombre d'habitants.

Tableau II.7 : Consommation moyenne actuelle et prévisionnelle.

		Horizon										
		Actuelle			Prévisionnelle							
	2020	2025	2030	2035	2040	2045	2050					
Population (hab.)	39570	48143	56355	64072	72846	82821	94163	107057	121717			
Dotation (l/j.hab)	112	119	126	140	154	168	182	204	224			
Q_{moy}^{j} (m^{3}/j)	4431,84	5729,02	7100,72	8970,08	11218,27	13913,98	17137,61	21839,66	27264,68			

b - Débit maximum journalier Q_{max}^{j}

Le débit maximum journalier est défini comme étant le débit moyen journalier plus les fuites occasionnées dans le réseau et le volume d'eau non comptabilisé lors de la desserte. Dans ce contexte il est primordial de distinguer le débit maximal affecté à la distribution d celui affecté à l'adduction.

$$Q_{\max}^{j} = \frac{Q_{\max}^{j}}{R}$$

 Q_{max}^{j} : Débit maximum journalier en (m^{3}/j) ;

 Q_{moy}^{j} : Débit moyen journalier en (m^{3}/j) ;

R: rendement relatif à la distribution ou à l'adduction.

• Débit maximal journalier de distribution

Il tient compte des différentes pertes occasionnées dans le réseau de distribution entre en amont du des réservoirs.

$$Q_{\text{max}}^{j}(\text{dist}) = \frac{Q_{\text{moy}}^{j}}{R_{d}}$$

 $\emph{\textbf{R}}_{d}$: Rendement de distribution estimé selon le Plan National de l'Eau de 2010 comme suit :

Tableau II.8: Evolution du rendement de distribution.

Année	2010	2015	2020	2025	2030	2035	2040	2045	2050
R _d (%)	55	55	60	65	70	75	80	85	90
(Source · PNF)									

c. Débit de pointe journalier Q_p^j

La demande journalière de pointe sera obtenue en affectant au débit maximal journalier un coefficient de pointe journalière k_p^j . Cette demande s'exprime par la formule suivante :

$$Q_p^j = k_p^j \times Q_{max}^j$$

 \mathbf{Q}_{p}^{j} : Débit de pointe journalière en (m³/j) ;

 ${\pmb k}_p^j$: Coefficient de pointe journalière $1.05 \le k_p^j \le 1.15$;

Dans la suite de cette étude on utilisera la valeur moyenne k_p^j = 1,1 .

d-débit maximum journalier

Le débit maximal journalier est défini comme étant le débit d'une journée de l'année ou la consommation est maximale.

$$Q_{max}^j = Q_m^j \times k_p^j$$

 Q_{max}^{j} : Débit maximal journalier en (m 3 /j) ;

 Q_m^j : Débit moyen journalier en (m³/j) ;

 $oldsymbol{k_p^j}$: coefficient maximum journalier varie de 1,1 à 1,4 .

e - Débit moyen horaire

Le débit moyen horaire est donné par la relation suivante :

$$Q_{moy}^h = \frac{Q_{max}^j}{24}$$

 Q^h_{moy} : Débit moyen horaire en (m³/h) ;

 Q_{max}^{j} : Débit maximal journalier en (m³/j) ;

f- Débit de pointe horaire Q_p^h

Le débit de pointe horaire admet un rôle important dans le dimensionnement des réseaux de distribution et son estimation dépend du développement, des habitudes de la population et du régime de consommation en eau probable.

$$Q_p^h = k_p^h \times Q_m^h \qquad ;$$

 $egin{aligned} Q_p^h : ext{D\'ebit de pointe horaire en (m³/h) ;} \ Q_m^h : ext{D\'ebit moyen horaire en (m³/j) ;} \end{aligned}$

 k_n^h : Coefficient de pointe horaire. Ce coefficient représente l'augmentation de la consommation horaire pour la journée, il est estimé par la formule Française dite du « Génie Rural »:

$$k_p^h = 1.5 + \frac{2.5}{\sqrt{Q_{moy}^h(m^3/h)}}$$
 Avec $1.5 \le k_p^h \le 3.0$

Les résultats du calcul des débits relatifs à cette étude sont consignés dans le tableau suivant :

Horizon Q_{moy}^j $Q_{max}^{j}(\mathrm{dist}) \mid Q_{p}^{j}(\mathrm{dist})$ Q_{moyp}^h k_p^h Q_p^h R_d m^3/j m^3/j m³/h m^3/j m^3/h % 310,321754 2015 5729,017 0.55 11458,034 477,418083 1,61 770,751872 2020 7100,72 384,62215 0,60 13017,9805 871,848337 542,415853 1,60 485,879511 2025 8970,08 0,65 15180,141 632,505873 1,59 1011,63298 607,656398 11218,27 2030 0,70 17628,7131 734,529712 1,59 1169,55009 13913,98 753,673838 2035 0,75 20407,1685 850,298689 1,59 1348,34774 2040 17137,61 928,287174 0.80 23564,2129 981,842204 1,58 1551,09921 1182,98145 21839,66 2045 0,85 28263,0861 1177,62859 1,57 1852,23437 1476,83708 2050 27264,68 0,90 33323,5034 1388,47931 1,57 2175,87472

Tableau II.9 : Résultat de calcul des différents débits.

L'accroissement de la population et des besoins sont représentés sur le graphe ci-dessous

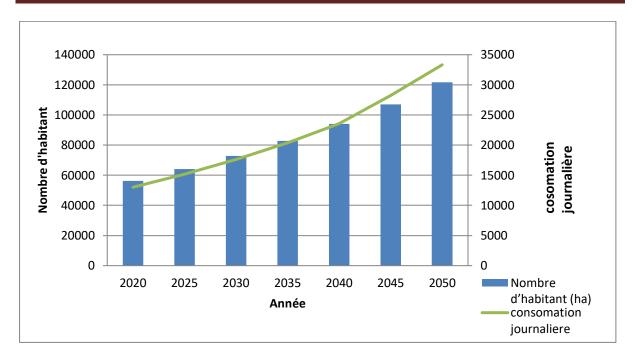


Figure II.2 : Evolution de la consommation journalière et de la population.

II.3. Situation actuelle d'approvisionnement en eau potable pour la zone d'étude

II.3.1 Etat de lieu de la capacité de production

L'approvisionnement en eau potable de la zone d'étude est assuré par des forages alimentant les réservoirs ou par injection directe à partir de ces derniers dans le réseau de distribution.

Un piquage est réalisé sur les conduites venant de la station de pompage SP3de Beni Tamou vers Blida EST et Maremene.

Forage	profondeur	calage	CTN	ND	NS	Qexp	Etat
	(m)	(m)	(m)	(m)	(m)	(l/s)	Opérationnel
F1	144	96	72.14	17.14		21	Opérationnel
F2	126	113	74.01	14.01		22	Opérationnel
F3	150	108	87.8	33.80		23	Opérationnel
F4	155	102	67.25	-17.45		14	Opérationnel
F5	155	104	108.36	32.36		8	Opérationnel
F6	120	105	94.19	22.19		14	Opérationnel
F7	141	132	133.02	36.42		3	Opérationnel

Tableau II.10 : Caractéristiques des forages de production.

Tableau II.10 : Caractéristiques des forages de production (suite)

Forage	profondeur	Calag	CTN	ND	NS	Qexp	Etat	
		e						
	(m)	(m)	(m)	(m)	(m)	(l/s)	Opérationnel	
F8	117	110	96.29	21.29		10	Opérationnel	
F9	180	105	118.37	44.37		7	Opérationnel	
F10		120	120.59	30.77		7	Opérationnel	
F11		100	102.59	27.59		8	Opérationnel	
F12	180	137	101.7	-8.30		7	Opérationnel	
F13	180	142	137.36	23.36		11	Opérationnel	
F14	180	141	89.00	-10.00		12	Opérationnel	
Débit d'e	xploitation total	(1/s)	167					
Piquage	(l/s)		29					

II.3.2 Bilan hydrique production/ consommation

Sur la base des calculs prévisionnels des débits de consommation développés précédemment et compte tenu des capacités disponibles et projetées de production on a aboutit au bilan hydrique suivant :

Tableau II.11: Bilan production-besoin.

Horizon	Production	Besoin en eau	Excès	Déficit	
	m ³ /j	m ³ /j	m ³ /j	m ³ /j	
2020	14129	13017,98	6422,02		
2025	14129	15180,14	4259,86		
2030	14129	17628,71	1811,29		
2035	14129	20407,17		967,17	
2040	14129	23564,21		4124,21	
2045	14129	28263,08		8823,08	
2050	14129	33323,50		13883,5	

Interprétation des résultats :

A travers les résultats du bilan hydrique établi et présenté dans le tableau II-11 on constate que le volume d'eau produit sera largement suffisant jusqu'à l'horizon 2035, au-delà de cet horizon on relève un déficit qui atteint une valeur de 13883,5 m³/j en 2050; d'où la nécessité de prévoir d'autres ressources pour combler ce déficit.

La vérification de la capacité des ouvrages de stockage actuels à accueillir le volume d'eau nécessaire pour satisfaire les besoins en eau de l'agglomération à long terme s'impose aussi dans notre cas.

Conclusion

Dans ce chapitre on s'est intéressé à l'évaluation des besoins de la consommation pour aboutir à un état de lieu du bilan hydrique besoin-ressource favorable à moyen terme, mais à long terme il y a lieu de prévoir un renforcement du système de production pour assurer une alimentation régulière et durable de la ville de Beni Tamou. Ce constat correspond un premier élément de l'étude de diagnostic du réseau actuel. Dans la suite de cette étude l'évaluation de la qualité du réseau de distribution reposera sur les débits réels de consommation déterminés dans ce chapitre.

CHAPITRE III : Description et diagnostic du réseau d'alimentation en eau potable

Introduction

Les perturbations de la distribution en eau potable d'une agglomération donnée peuvent être dues à plusieurs anomalies à différents niveaux soit dans la conception du réseau de distribution en lui-même ou bien en amant dans le réseau d'adduction ainsi que la dimension de ses ouvrages ou même en mode de gestion et d'exploitation du réseau.

Pou notre zone d'étude ; Malgré la suffisance du volume d'eau produit actuellement et à moyen terme tel que le bilan production/consommation le montre **Tableau II.11**, la distribution ne couvre pas les besoins journaliers des habitants (d'après le gestionnaire d'eau ADE Oued Elleug).

Le présent chapitre fait l'objet de notre étude, qui consiste à analyser le fonctionnement du réseau actuel d'alimentation en eau potable de la commune de Beni Tamou afin de pouvoir mettre en évidence les dysfonctionnements de ce dernier.

III.1 Description des ouvrages de stockage existants

> Château d'eau Zaouia

Situé au sud de l'agglomération, d'une capacité de 850 m³ il reçoit les eaux des forages F1, F2 et F11, le site du même château d'eau abrite un puisard équipé d'une pompe immergée permettant d'alimenter par pompage les parties hautes de la zone d'étude.

> Château d'eau frère Zedri

Le château d'eau des frères Zedri se situe au nord est de la zone d'étude, il reçoit les eaux à partir des forages F3, F12, F5 et F10 et d'un piquage de Ø315 à partir de la 500 venant de la station de pompage de Beni tamou.

Château d'eau Chaaba

Situé à l'ouest de la zone d'étude, il reçoit les eaux depuis le forage F5

➤ Château d'eau ben yattou

Situé au sud de la zone d'étude, d'une petite capacité il reçoit les eaux du forage F4

Château d'eau Saidani

Situé à Zaouia Ouest il reçoit les eaux depuis le forage F6.

> Réservoirs Djelouli

Le site abrite deux réservoirs, le premier reçoit les eaux du forage F9 et le deuxième reçoit celles des forages F1 et F2.

Ces derniers sont d'une capacité de 20m³ et 300m³ respectivement.

Les différents ouvrages de stockage présentent les caractéristiques suivantes:

Tableau III.1 : caractéristiques des ouvrages de stockage

Туре	Coord	onnées	Volume	CTN	CR	СТР
d'ouvrage	X	Y	(m³)	(m)	(m)	(m)
Château d'eau Zaouia	483508.1844	4041426.1285	850	129.74	141.74	149.74
Château d'eau Zedri	485346.1138	4042496.8496	1000	121.39	141.09	148.34
Château d'eau Chaaba	484336.6711	4042892.3632	100	108.84	110.88	113.68
Château d'eau Benyattou	483049.1927	4045050.0334	50	67.14	75.46	78.36
Château d'eau Saidani	484336.6711	4042892.3632	100	108.84	110.88	113.68
Réservoirs	483413.8767	4042058.2307	20	118.24	120.53	123.33
Djellouli	483412.4572	4042068.9189	300	118.24	116.8	120.54

III.2 Réseau d'adduction

Le système d'adduction de la zone d'étude repose essentiellement sur un pompage à partir des forages alimentant les différents réservoirs de la ville.

Le château d'eau 850 m³ de Zaouia est alimenté à partir des forages F1, F2 et F11.

Le château d'eau 1000m³ des frères Zedri s'alimente à partir du forage F3 et F12.

Le réservoir Djelouli s'alimente à partir du forage F9.

Le réservoir Saidani est alimenté à partir de F 6.

Le château d'eau de Beyattou s'alimente à partir de F4.

Néanmoins la présence de plusieurs injections directes sur le réseau de distribution de la ville reste assez remarquable.

Un apport provenant du système d'adduction Nord de Blida SP centrale de Beni Tamou vers Maramene et 4x5000 m3 de Blida est prévu être quotidien au futur pour renforcer le chef lieu de Beni tamou et surtout l'agglomération de Zaouia.

Tableau III.2: Caractéristique du réseau d'adduction.

Ressources	Réservoir à alimenter	Diamètre (mm)	Linéaire (m)	
F1- point de		150AG	355	
bifurcation		130AG	333	
F2-point de		100AG	220	
bifurcation		100AG	220	
Point de point de	Château d'eau	250PVC	2327	
bifurcation – CH	Zaouia			
Zaouia				
F11 -point de		160PEHD	500	
bifurcation		1001 ETID	300	
F3 -		200 PEHD	2170	
F5-	Château d'eau Zedri	160PEHD	1600	
F12-	Chaicau d cau Zeur	160 PEHD	1400	
F9	réservoir Djelouli	100AG	21	
F6	réservoir Saidani	150AG	573	
F4	Château d'eau	100AG	405	
	Beyattou	IUUAU	495	
F5	Chaaba	150AG	27	

III.3 Réseau de distribution

III.3.1 Age des canalisations du réseau de distribution de la zone d'étude

L'état physique des conduites influence d'une manière directe leur rendement, la durée de vie d'une canalisation représente un indice important indiquant sa phase de détérioration sans prendre en considération les conditions et les incidents du terrain.

La détermination de l'âge de la canalisation reste difficile vu l'absence des plans de recollement aux niveaux des services concernés néanmoins la nature du matériau peut nous orienter pour une estimation approximative de l'âge du réseau vu que certains matériaux ont été retirés de la nomenclature normalisée du fait qu'ils ne répondent plus aux nouvelles normes proposées dans la nouvelle nomenclature des réseaux d'eau potable.

Le réseau de distribution de la zone d'étude est caractérisé par une hétérogénéité en matière de matériau utilisé comme on peut le distinguer dans le tableau suivant :

Tableau III.3 : pourcentage de présence des matériaux dans le réseau de distribution

Matériaux	PVC	PEHD	FT	AC	AG
Linéaire (ml)	31723.86	7536.98	1652.83	23741.71	2423.77
Pourcentage(%)	47.29	11.24	2.46	35.39	3.61

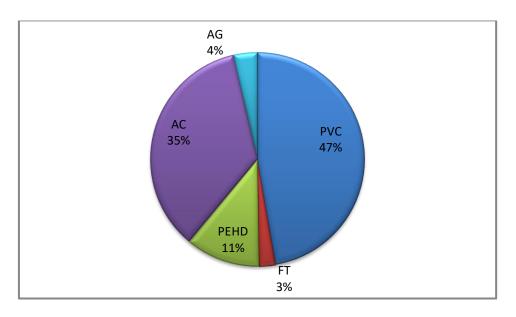


Figure III.1 : répartition des linéaires du réseau de distribution existant en fonction des types de matériau.

- ⇒ Une grande partie du réseau existant est en amiante ciment elle représente l'ancien réseau de la commune ainsi que celui de l'agglomération secondaire 'Zaouia', cette partie du réseau est réalisée depuis probablement plus de 35ans d'après le gestionnaire des ressources en eau et la nature du matériau le confirme.
- ⇒ 4 % du réseau existant est constitué de conduite en acier galvanisé avec des diamètres variant entre 80 et 150.
- ⇒ 3% du réseau est en fonte qui se présente en diamètre important et plus au moins ancien.
- ⇒ Plus de 50 % du réseau de distribution est en PVC et PEHD ; cette partie importante du réseau de la ville représente toutes les nouvelles extensions et une importante partie du réseau tertiaire.

III.3.2 Schéma global actuel du réseau de distribution

L'alimentation actuelle de la ville permet de découper le schéma global de distribution en 6 secteurs et cela se fait selon la source d'alimentation qui est dans notre cas l'ouvrage de stockage.

Tableau III.4 : Secteurs de distribution du réseau actuel.

Secteur	Point d'eau réservoir/château d'eau	Injection directe	
A	Château d'eau Zaouia	F7/F13	
	Château d'eau Zaouia		
В	Réservoir Djellouli	F6	
	Réservoir Saidani		
	Château d'eau Zaouia		
C	Château d'eau Zedri	F5	
	Château d'eau Chaaba		
D	Château d'eau Zaouia	F6	
	Château d'eau Chaaba	F8	
E	Château d'eau Zaouia	F3	
	Château d'eau Zedri		
F	Château d'eau Benyattou	F4	
F	Château d'eau Benyattou	F4	

Source d'information : DRE Blida

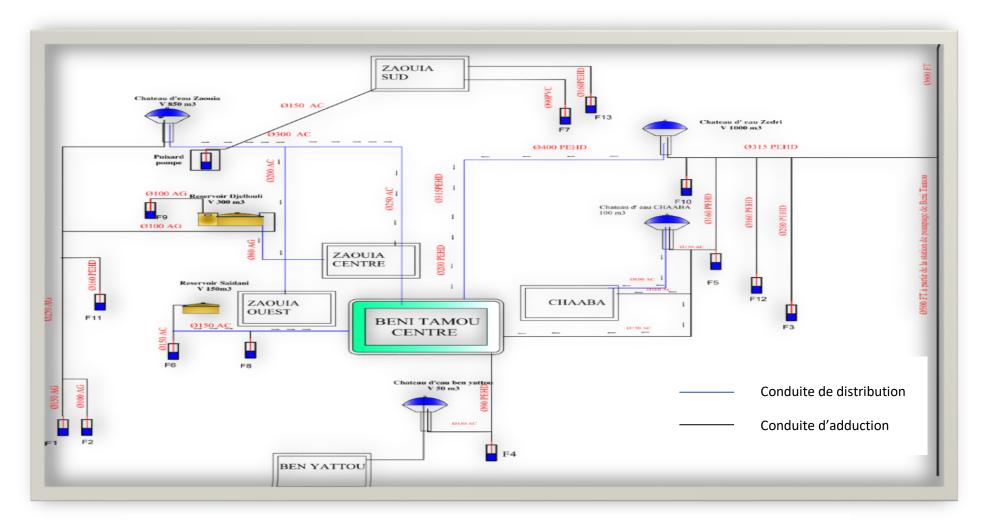


Figure III.2 : Schéma synoptique du système d'alimentation en eau potable actuel de la ville de Beni tamou

III.4 Fonctionnement et simulation du réseau existant

Apres avoir calculé les besoins en eau de l'agglomération et passé par la reconnaissance des différents organes constituants le réseau actuel, on passe à la matérialisation du réseau afin de pouvoir étudier son comportement hydraulique.

L'utilisation de trois principaux logiciels qui sont autocad, covadis et epanet est nécessaire pour prendre en considération tous les paramètres et les données réels liés au réseau existant.

III.4 .1 Le logiciel AutoCAD

Pour notre cas l'utilisation du logiciel autocad sur lequel le réseau est matérialisé représente la première étape à effectuer et cela a été fait à partir des plans du réseau d'AEP de la ville établis par le BET PROJETHALCONSULT.

AutoCAD, présenté ici dans sa version 2013, est une application universelle de Conception/Dessin Assisté (e) par Ordinateur. Les applications de CAO/DAO sont des outils très puissants. La vitesse et la facilité avec lesquelles un dessin peut être préparé et modifié sur un ordinateur présente un immense avantage par rapport au dessin à la main. Avec AutoCAD 2013, il est possible de créer, pour ainsi dire tout type de dessin. Il est préférable d'avoir de bonnes notions de dessin technique pour mieux apprécier les possibilités du logiciel. Ce logiciel très polyvalent permet d'effectuer la conception de divers éléments et objets en 2D et en 3D. [3]

III.4.2 Le logiciel COVADIS

GEOMEDIA Covadis 13 est un outil de conception adapté aux Projets VRD. C'est l'outil de base pour les bureaux d'études qui devront concevoir des projets VRD : voiries, assainissement, plateformes, projet linaires, travaux de terrassement etc.

COVADIS est un applicatif d'AutoCAD. En matière de DAO, l'opérateur dispose donc, dans l'environnement AutoCAD, des fonctionnalités de dessin orienté objet de COVADIS.

III.4.3 Le logiciel Epanet

EPANET est un logiciel de simulation du comportement hydraulique et qualitatif de l'eau sur de longues durées dans les réseaux sous pression.

Lors de la simulation dynamique Epanet calcule le débit dans chaque tuyau, la pression à chaque nœud, le niveau de l'eau dans les réservoirs, et la concentration en substances chimiques dans les différentes parties du réseau, au cours d'une durée de simulation divisée en plusieurs étapes. Le logiciel est également capable de calculer les temps de séjour et de suivre l'origine de l'eau.

EPANET a pour objectif une meilleure compréhension de l'écoulement et de l'usage de l'eau dans les systèmes de distribution. Il peut être utilisé pour différents types d'application dans l'analyse des systèmes de distribution. En voici quelques exemples: définition d'un programme de prélèvement d'échantillons, calage d'un modèle hydraulique, simulation du chlore résiduel, et estimation de l'exposition de la population à une substance. [5]

III.4.3 .1 Objectif de l'utilisation du logiciel de simulation EPANET

La simulation epanet du réseau existant va nous permettre de mettre en évidence les points de dysfonctionnement qui font que l'alimentation en eau potable de la zone d'étude soit perturbée et cela à partir de ses résultats qui concernent :

- la pression aux nœuds
- La vitesse des tronçons qu'on appelle tuyaux.

III.4.3.2 Principe de calcul du logiciel de simulation EPANET

Le logiciel se base dans le calcul du réseau maillé sur la méthode de HARDY-CROSS qui repose sur deux lois, à savoir la loi des nœuds qui affirme que le débit entrant dans un nœud est quoiqu'il arrive égal au débit sortant de ce nœud quelque soit le nombre d'entrées et de sorties dans ce nœud.

La loi des mailles qui stipule que la somme des pertes de charge est nulle.[5]

III.4.3.3 Données saisies

L'introduction des données se fait en trois étapes

a) Propriété des conduites

> Longueur des conduites

L'unité de longueur utilisée pour les tuyaux est le mètre. La construction du réseau a été facilitée par le fait qu'il nous a été possible d'importer un fichier comme fond d'écran représentant notre réseau et dans notre cas tout en conservant les longueurs.

> Diamètres des conduites

Le second paramètre à introduire est le diamètre interne des tuyaux exprimé en mm, Ce paramètre sera dans le cas d'une projection saisi dans un premier temps sans précaution car c'est pendant la simulation que nous allons le modifier de telle manière à obtenir des vitesses et des pressions de service raisonnables, mais dans notre cas de diagnostic les diamètres sont déjà fixés.

> Rugosité des conduites

Puisque nous allons calculer les pertes de charge linéaire à partir de la formule de DARCY-WEISBACH, nous attribuerons un coefficient k qui tient compte de la rugosité intérieure de la paroi de la conduite, de la viscosité relative et du système d'unité utilisé.

L'insertion des données concernant les conduites se fait conformément à l'éditeur de propriétés illustré sur la figure ci après :

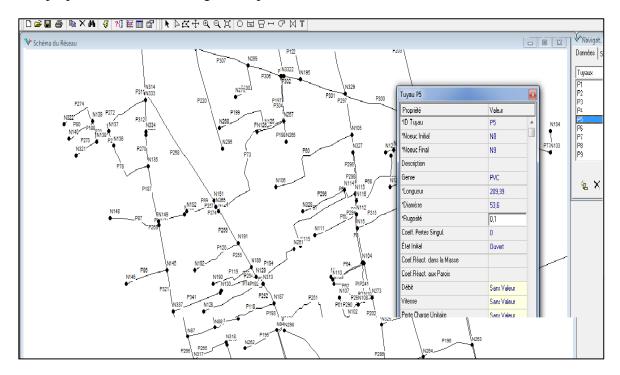


Figure III.3: l'éditeur de propriétés des conduites sur Epanet.

b) Propriétés des nœuds

> Altitude des nœuds

C'est la première caractéristique à saisir pour un nœud, nous avons pu déterminer ces côtes au sol en se basant sur un métafichier de COVADIS sur lequel nous avons reporté les levés topographique mesurés sur le site de la zone d'étude. Son unité est le mètre. [5]

> Demande de base des nœuds

Paramètre propre aux nœuds ; il s'agit d'insérer la demande en eau dans chacun d'eux en l/s. [5]

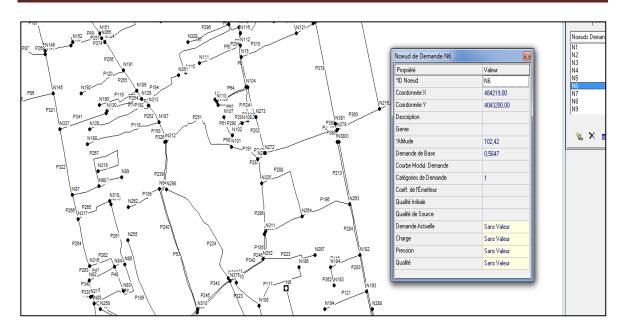


Figure III.4 : l'éditeur de propriétés des nœuds sur Epanet.

c) Caractéristiques des ouvrages de stockages

Les Réservoirs sont des nœuds avec une capacité de stockage, dont le volume d'eau stocké peut varier au cours du temps. Les données de base pour des réservoirs sont les suivantes :

- L'altitude du radier (où le niveau d'eau est zéro)
- ➤ Le diamètre (ou sa forme s'il n'est pas cylindrique)
- Les niveaux initial, minimal et maximale de l'eau

Le niveau dans les réservoirs doit rester entre les niveaux minimal et maximal. EPANET arrête la sortie d'eau si un réservoir est à son niveau minimal et arrête l'arrivée s'il est à son niveau maximal. Les réservoirs peuvent également servir de source pour une substance entrant dans le réseau.

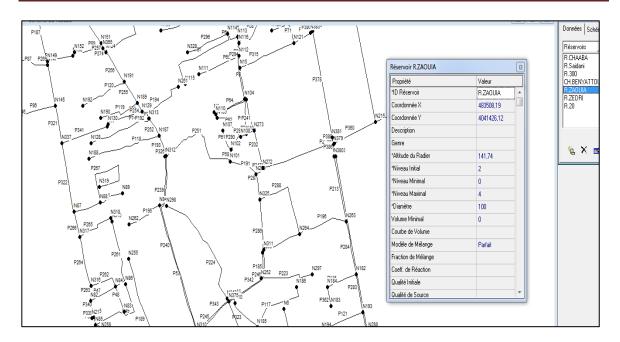


Figure III.5: l'éditeur de propriétés des ouvrages de stockage sur epanet.

III.4.4 Simulation du réseau existant

Après la matérialisation des nœuds et des tronçons sur Epanet on passe à la saisie des données réelles du réseau actuel de la ville afin de déceler les anomalies menant à un dysfonctionnement signalé par les habitants de la zone d'étude. Pour ce faire on doit d'abord évaluer les débits au niveau de chaque nœud et affecter à chaque tronçon son diamètre intérieur.

III.4.4.1 Détermination des débits en route et nodaux

La détermination des débits dans le réseau s'effectue de la manière suivante :

- On détermine la longueur de chaque tronçon du réseau.
- On calcul le débit en route pendant l'heure de pointe.
- On détermine le débit spécifique en considérant le débit en route.

a .Débit en route Qr

Il se définit comme étant le débit répartis uniformément le long d'un tronçon du réseau. Le débit de route et donné par la relation suivante :

$$\textstyle\sum Qr = \textstyle\sum Qcons - \textstyle\sum Qconc$$

Qr : La somme des débits en route (débit de chaque tronçon) .

Qcons: La somme des débits consommés.

Qconc: La somme des débits concentrés.

Avec:

 $\sum Qconc = \sum Qinc + \sum Qequip$

Qinc: Débit d'incendie.

Etude de diagnostic et proposition d'un Schéma directeur de restructuration du réseau de distribution de la ville de Béni Tamou (Wilaya de Blida)

Qequip: Besoins d'équipement.

b. Débit spécifique Qsp

Pour pouvoir utiliser le concept du débit spécifique nous supposons que les habitants sont répartie uniformément tout le long du réseau. Le débit spécifique est donné par la relation suivante :

$$Q_{sp} = \frac{Q_p^h}{\sum Li}$$

Avec:

 Q_{sp} : Débit spécifique (l/s/ml).

 Q_p^h : Débit de point horaire (l/s).

 $\sum Li$: Somme des longueurs relatives des tronçons du réseau (m).

c. Débit en route pour chaque tronçon

Il est exprimé par la formule suivante $Q_{ri} = Q_{sp} \times L_i$

d. Débit nodal

c'est le débit concentré à chaque point de jonction des conduites du réseau ;il s'exprime par la relation suivante :

$$Q_n = 0.5 \times \sum Qri + \sum Qconc$$

 Q_n : Débit au nœud i (1/s)

Qri: débit en route des tronçons reliés au nœud i.

Qconc : Débit concentré au nœud i.

Les résultats des calculs concernant les débits en route et nodaux relatifs au réseau actuel de la zone d'étude se présentent dans les tableaux (voir annexe 01).

III.4.4.2 Simulation du réseau de distribution existant

Le logiciel Epanet de simulation utilise trois formules de calcul des pertes de charges linéaire celle de HAZEN-Williams, de DARCY-Weisbach, et de Chezy-Manning.

Dans le cas de notre étude de diagnostic, nous avons opté pour l'équation de DARCY-Weisbach, dont le coefficient de rugosité absolue noté KDW est choisi en fonction du type des matériaux.

Dans notre cas d'étude ;on s'intéresse à étudier le comportement du réseau à l'heure de pointe dans le cas de pointe et pointe plus incendie aux horizons 2020 et 2050.

Résultat de la simulation du réseau existant en cas de pointe, horizon 2020

Tableau III.5 : Résultats aux nœuds en cas de pointe, horizon2020.

nœud	Altitude	Deman de	Charge	Pressio n	Nœud	Altitude	Deman de	Charge	Pressio n
	m	L/s	m	m		m	L/s	m	m.C.E
N1	90,27	0,28	127,5	37,23	N38	118	0,47	122,46	4,46
N2	117,06	1,01	136,14	19,08	N39	118,01	2,18	118,79	0,78
N3	117,69	0,63	136,08	18,39	N40	114,05	2,04	113,8	-0,25
N4	102,55	0,5	113,94	11,39	N41	104,85	1,35	112,68	7,83
N5	101,75	0,6	117,47	15,72	N42	118,51	0,53	136	17,49
N6	102,42	0,56	111,84	9,42	N43	123,14	1,55	147,98	24,84
N7	108,4	0,32	111,84	3,44	N44	142,37	0,27	147,2	4,83
N8	111,72	0,62	112,25	0,53	N45	136,13	0,15	144,31	8,18
N9	114,33	0,38	112,06	-2,27	N46	126,18	0,64	144,43	18,25
N10	100,75	0,26	114,36	13,61	N47	127,32	0,21	140,87	13,55
N11	100,72	0,89	114,45	13,73	N48	127,65	1,08	140,87	13,22
N12	102,93	0,63	109,52	6,59	N49	127,31	0,5	140,47	13,16
N13	103,9	0,28	109,51	5,61	N50	127,5	0,65	140,25	12,75
N14	90,17	0,66	127,58	37,41	N51	127,44	0,22	139,71	12,27
N15	88,27	0,71	127,46	39,19	N52	133,02	0,12	139,72	6,7
N16	96,17	0,38	116,53	20,36	N53	131,75	1,19	139,72	7,97
N17	68,93	0,57	84,14	15,21	N54	131,92	0,77	139,7	7,78
N18	71,93	1,04	92,43	20,5	N55	131,58	0,17	139,7	8,12
N19	75,4	0,78	123,81	48,41	N56	132,8	0,22	139,7	6,9
N20	100,66	0,61	116,49	15,83	N57	123,45	0,34	140,47	17,02
N21	96,29	0,63	116,53	20,24	N60	121,86	1,01	138,76	16,9
N22	135,8	0,88	147,33	11,53	N61	122,71	0,86	138,29	15,58
N23	135,92	1,2	146,78	10,86	N62	122,9	0,28	138,29	15,39
N24	140,24	0,66	146,63	6,39	N63	115,71	0,75	135,8	20,09
N25	132,88	1,05	150,4	17,52	N64	115,62	0,26	135,59	19,97
N26	135,29	2,32	149,53	14,24	N65	129,75	1,28	152,97	23,22
N27	137,66	0,21	149,53	11,87	N66	124,85	1,02	150,26	25,41
N28	135,76	0,59	147,34	11,58	N67	106,31	0,5	119,51	13,2
N29	135,78	1,2	145,69	9,91	N68	105,86	0,67	118,38	12,52
N30	134,53	0,81	144,57	10,04	N69	120,91	0,94	137,11	16,2
N31	134,46	0,99	144,31	9,85	N70	125,98	0,44	137,1	11,12
N.32	136,09	0,48	145,14	9,05	N71	120,77	0,63	137,07	16,3
N.33	132,18	0,3	145,13	12,95	N72	126,18	0,5	137,04	10,86
N.34	138,53	0,22	146,78	8,25	N73	120,72	1,01	137,07	16,35
N.35	138,61	0,28	146,65	8,04	N74	111,67	0,83	136,79	25,12
N.36	141,9	0,99	146,67	4,77	N75	118,84	1,15	137,1	18,26
N37	118,12	1,07	122,52	4,4	N76	110,15	0,85	136,8	26,65

Tableau III.5: résultats aux nœuds en cas de pointe, horizon 2020. (suite)

	Altitude	Demande	Charge	Pression	Nœud	Altitude	Demande	Charge	Pression
Noeud	m	L/s	m	m		m	l/s	m	m
N77	114,05	0,85	113,62	-0,43	N114	86,52	1,01	126,2	39,68
N78	114,05	0,34	134,75	20,7	N115	87,21	0,57	125,65	38,44
N79	119,53	0,57	122,48	2,95	N116	86,9	0,86	126,86	39,96
N80	118,69	1,63	137,07	18,38	N117	86,02	0,43	126,82	40,8
N81	127,6	0,79	136,78	9,18	N118	87,5	0,56	129,82	42,32
N82	95,4	0,64	116,12	20,72	N119	87,16	0,4	129,73	42,57
N83	98,65	0,16	115,45	16,8	N120	85,75	0,32	129,72	43,97
N84	95,41	1,09	115,46	20,05	N121	88,64	0,7	128,33	39,69
N85	96,56	1,07	117,05	20,49	N122	87,58	0,49	128,29	40,71
N86	96,5	0,49	116,69	20,19	N123	87,66	0,14	128,28	40,62
N87	91,35	0,56	115,19	23,84	N124	84,21	0,94	121,57	37,36
N88	91,62	0,99	113,74	22,12	N125	83,32	1,48	121,08	37,76
N89	92,2	0,18	113,71	21,51	N126	82,58	0,21	124,11	41,53
N90	87,48	0,36	114,96	27,48	N127	88,82	0,54	124,91	36,09
N91	87,8	0,4	129,74	41,94	N128	88,65	0,47	124,6	35,95
N92	87,19	0,54	129,18	41,99	N129	88,2	0,4	124,38	36,18
N93	101,91	1,41	130,37	28,46	N130	87,47	0,27	124,31	36,84
N94	93,82	1,38	128,11	34,29	N131	118,2	0,68	136,51	18,31
N95	139,78	0,77	146,42	6,64	N132	111,49	1,43	135,57	24,08
N96	136,36	0,31	146,4	10,04	N133	87,73	0,75	128,22	40,49
N97	124,65	0,1	132,32	7,67	N134	87,73	0,11	127,55	39,82
N98	124,89	0,09	132,32	7,43	N135	80,27	0,83	114,84	34,57
N99	122,94	1,31	134,72	11,78	N136	78,38	0,45	114,47	36,09
N100	124,22	1,35	132,32	8,1	N137	77,7	0,47	114,47	36,77
N101	93,32	0,94	127,69	34,37	N138	77,88	0,38	113,73	35,85
N102	92,4	0,32	127,7	35,3	N139	76,85	0,6	113,35	36,5
N103	91,16	0,31	127,73	36,57	N140	76,48	0,21	113,31	36,83
N104	90,14	0,82	127,44	37,3	N141	102,95	0,53	104,35	1,4
N105	83,93	1,3	125,61	41,68	N142	102,94	0,94	107,18	4,24
N106	84,3	0,72	-12,44	-96,74	N143	102,89	0,43	109,44	6,55
N107	91,8	0,13	127,69	35,89	N144	102,58	0,66	113,81	11,23
N108	91,24	0,39	127,72	36,48	N145	85,15	0,8	114,9	29,75
N109	90,46	0,23	127,67	37,21	N146	84,44	0,31	114,85	30,41
N110	90,17	0,24	127,39	37,22	N147	83,37	0,64	114,85	31,48
N111	87,57	0,33	127,04	39,47	N148	80,89	0,37	114,61	33,72
N112	87,67	0,47	127,16	39,49	N149	83,29	0,52	114,85	31,56
N113	86,89	0,7	127,04	40,15	N150	82,84	0,2	114,85	32,01

Tableau III.5: résultats aux nœuds en cas de pointe, horizon 2020. (suite)

37 3	Tableau 111.5: resultats aux nœuds en cas de pointe, nortzon 2020. (suite)							- ·	
Nœud	Altitude	Demand e	Charge	Pression	Nœud	Altitude	Demand e	Charge	Pression
	m	L/s	m	m		m	L/s	m	m.C.E
N151	83,75	1,02	121,3	37,55	N188	89,01	0,56	126,01	37
N152	83,01	0,21	121,26	38,25	N189	87,66	0,54	123,98	36,32
N153	98,99	0,73	113,21	14,22	N190	86,74	0,32	123,87	37,13
N154	97,94	0,62	113,14	15,2	N191	86,25	0,74	122,9	36,65
N155	95,48	0,12	113,14	17,66	N192	85,07	0,35	122,76	37,69
N156	102,34	0,02	103,92	1,58	N193	104,83	1,07	121,49	16,66
N157	102,13	0,65	103,87	1,74	N194	105,45	0,34	121,36	15,91
N158	101,22	0,47	103,85	2,63	N195	80,3	0,84	124,39	44,09
N159	98,31	0,42	107,18	8,87	N.196	76,6	0,37	124,23	47,63
N160	103,3	2,06	117,7	14,4	N197	105,24	1,51	132,48	27,24
N161	99,91	0,25	117,7	17,79	N198	102,66	0,72	132,47	29,81
N162	103,75	0,92	130,88	27,13	N199	67,5	0,48	75,61	8,11
N163	100,44	0,95	118,44	18	N200	67,11	0,32	75,5	8,39
N164	129,16	1,91	143,39	14,23	N201	66,83	0,4	75,93	9,1
N165	120,58	0,22	137,51	16,93	N202	66,66	0,32	75,81	9,15
N166	117,7	0,89	136,2	18,5	N203	66,31	0,42	75,78	9,47
N167	113,94	0,74	135,23	21,29	N204	66,22	0,27	75,71	9,49
N168	112,54	0,68	134,34	21,8	N205	65,68	0,75	75,7	10,02
N169	110,08	1,31	133,75	23,67	N206	65,57	0,68	74,82	9,25
N170	98,41	0,31	103,85	5,44	N207	70,72	1,11	71,28	0,56
N171	100,4	0,82	109,39	8,99	N208	69,91	0,83	71,08	1,17
N172	99,94	0,11	109,38	9,44	N209	69,82	0,37	69,6	-0,22
N173	97,38	0,37	113,11	15,73	N210	71,17	0,68	71,85	0,68
N174	111,83	0,32	135,41	23,58	N211	69,62	0,14	71,84	2,22
N175	107,8	0,65	135,39	27,59	N212	80,1	1,06	124,22	44,12
N176	107,53	0,54	134,76	27,23	N213	73,91	0,92	122,22	48,31
N177	107,14	0,59	134,2	27,06	N214	105,26	0,42	119,47	14,21
N178	109,99	0,22	134,15	24,16	N215	95,07	2,28	131,97	36,9
N179	111,62	0,26	134,67	23,05	N216	87,8	0,64	129,73	41,93
N180	105,67	0,85	133,1	27,43	N217	118,79	0,76	137,18	18,39
N181	109,23	0,37	132,93	23,7	N218	118,05	0,22	137,08	19,03
N182	102,57	0,9	124,14	21,57	N219	120,58	0,57	137,08	16,5
N183	104,35	0,12	123,79	19,44	N220	66,94	0,33	76,78	9,84
N184	102,97	0,46	123,8	20,83	N221	104,83	0,64	133,04	28,21
N185	102,19	1,37	113,36	11,17	N222	110,15	0,53	132,96	22,81
N186	101,88	0,45	113,08	11,2	223	142,35	0,56	147,23	4,88
N187	89,89	0,82	126,05	36,16	N224	126	0,78	145,46	19,46

Tableau III.5 : résultats aux nœuds en cas de pointe, horizon2020. (suite)

Nœud	Altitude	Demand e	Charge	Pression	Nœud	Altitude	Demand e	Charge	Pression
	m	L/s	m	m		m	L/s	m	m.C.E
N225	129,63	0,24	153,25	23,62	N264	99,28	1,19	128,53	29,25
N226	129,92	1,02	153,03	23,11	N265	80,05	0,36	121,07	41,02
N227	125	0,53	152,95	27,95	N266	82,29	0,11	124,12	41,83
N228	126,66	0,34	153,01	26,35	N267	81,52	0,56	124,12	42,6
N229	119,91	0,99	142,93	23,02	N268	80,6	0,43	120,83	40,23
N230	116,35	1,24	131,43	15,08	N269	78,65	0,66	124,07	45,42
N231	115,96	0,35	131,42	15,46	N270	80,19	0,27	124	43,81
N232	114,66	0,18	131,42	16,76	N271	94,86	0,92	132	37,14
N233	121,17	1,47	137,21	16,04	N272	84,93	0,87	129,13	44,2
N234	119,49	1,47	137,07	17,58	N273	92,2	0,49	127,76	35,56
N235	119,33	0,55	137,12	17,79	N274	80,75	0,15	129,7	48,95
N236	118,41	0,55	137,07	18,66	N275	85,62	0,73	129,7	44,08
N237	110,44	0,85	136,77	26,33	N276	71,21	0,52	123,79	52,58
N238	114,31	0,67	113,46	-0,85	N277	87,25	0,24	130,38	43,13
N239	112,07	0,35	135,21	23,14	N.278	108,58	0,78	111,95	3,37
N240	111,64	0,28	134,26	22,62	N279	108,35	0,43	111,7	3,35
N241	107,21	0,28	118,3	11,09	N280	107,83	0,86	112,48	4,65
N242	106,43	0,61	133,32	26,89	N281	105,58	0,6	111,84	6,26
N243	109,49	0,27	133,25	23,76	N282	111,59	0,74	112,26	0,67
N244	95,53	0,66	103,81	8,28	N283	108,9	0,09	111,5	2,6
N245	98,79	0,31	113,19	14,4	N284	109,51	0,28	112,61	3,1
N246	101,03	0,33	109,38	8,35	N285	112,76	0,55	115,37	2,61
N247	99,9	0,17	109,38	9,48	N286	108,88	0,18	112,88	4
N248	108,6	0,55	133,15	24,55	N287	110,15	0,74	138,71	28,56
N249	113,45	0,7	137,03	23,58	N288	105,85	0,41	115,94	10,09
N250	117,9	0,34	136	18,1	N289	108,35	0,35	111,76	3,41
N251	124,64	0,21	134,69	10,05	N290	85,71	0,24	128,28	42,57
N252	101,01	0,8	114,38	13,37	N291	66,96	0,12	75,97	9,01
N253	99,41	0,15	114,38	14,97	N292	76,56	1,07	123,88	47,32
N254	95,92	1,11	131,95	36,03	N293	72,85	0,9	121,98	49,13
N255	95,54	0,74	129,58	34,04	N294	77,34	1,13	123,91	46,57
N256	102,45	1,23	130,67	28,22	N295	81,34	0,57	123,37	42,03
N257	102,36	1,42	117,34	14,98	N296	71,71	0,8	74,07	2,36
N258	97,58	0,57	117,33	19,75	N297	101,73	0,41	114,16	12,43
N259	94,68	0,44	129,06	34,38	N298	93,27	0,79	111,02	17,75
N260	91,91	0,46	127,33	35,42	N299	108,56	1,09	112,92	4,36
N261	87,73	0,32	124,8	37,07	N300	113,13	1,09	112,36	-0,77
N262	93,74	0,27	128,05	34,31	N301	111,64	0,29	112,25	0,61
N263	98,75	1,08	128,27	29,52	N302	112,8	0,27	112,18	-0,62

Tableau III.5: résultats aux nœuds en cas de pointe, horizon 2020. (suite)

Nœud	Altitude	Demand e	Charge	Pression	Nœud	Altitude	Demand e	Charge	Pression
	m	L/s	m	m		m	L/s	m	m.C.E
N303	108,36	0,02	111,97	3,61	N343	100,48	1,77	111,09	10,61
N304	106,59	1,02	119,77	13,18	N344	108,76	0,57	111,87	3,11
N305	103,62	0,33	119,65	16,03	N345	108,88	0,98	111,87	2,99
N306	101,97	0,67	117,44	15,47	N346	110,13	0,52	116,14	6,01
N307	101,47	0,14	117,47	16	N347	98,32	1,37	103,86	5,54
N308	113,59	0,22	112,25	-1,34	N348	115,48	0,59	135,66	20,18
N309	103,13	0,17	117,7	14,57	N349	68,23	0,87	73,46	5,23
N310	101,59	1,75	117,33	15,74	N350	108,58	0,24	111,97	3,39
N311	99,28	1,06	128,79	29,51	N351	120,58	0,15	137,51	16,93
N312	91,36	1,75	127,33	35,97	N352	120,57	0,45	137,51	16,94
N313	88,84	0,45	124,92	36,08	N353	120,57	0	137,51	16,94
N314	77,65	1,56	118,52	40,87	N354	120,58	0	137,51	16,93
N315	93,37	0,45	115,17	21,8	N355	87,9	0,83	129,73	41,83
N316	95,12	0,81	115,72	20,6	N356	87,9	0,83	131,96	44,06
N317	92,71	0,72	115,33	22,62	N357	87,9	0	129,73	41,83
N318	93,38	0,27	115,26	21,88	N358	87,9	0,83	129,73	41,83
N319	90,75	0,59	113,13	22,38	N359	129,22	0	143,72	14,5
N320	78,92	0,16	114,84	35,92	N360	129,22	0,05	143,72	14,5
N321	77,39	0,18	113,7	36,31	N361	108,88	0,38	111,9	3,02
N322	75,71	0,29	113,24	37,53	N362	108,88	0,69	111,9	3,02
N323	110,34	0,63	115,98	5,64	N363	67,14	0,04	76,46	9,32
N324	111,94	1,29	115,46	3,52	N364	118,2	0,22	136,51	18,31
N325	96,33	0,96	128,94	32,61	N365	83,75	0,06	121,44	37,69
N326	106,63	0,53	115,46	8,83	N366	109,55	0,62	111,5	1,95
N328	86,4	0,33	126,08	39,68	N368	119,08	1,49	143	23,92
N329	81,37	1,76	125	43,63	N369	89,6	0,9	130,38	40,78
N330	75,47	0,72	124,81	49,34	N370	95,23	1,52	132,54	37,31
N331	84,59	0,47	125	40,41	N371	110,28	0,68	115,98	5,7
N332	79,98	0,51	124,21	44,23	N372	87,16	0,39	129,73	42,57
N333	77,97	0,57	118,41	40,44	N373	85,87	0,24	129,13	43,26
N334	78,79	0,17	118,39	39,6	N374	119,33	0,31	138,76	19,43
N335	118,5	0,57	135,43	16,93	N375	100,37	0,78	130,36	29,99
N336	102,32	0,49	135,38	33,06	N376	87,12	0,3	129,15	42,03
N337	87,55	1,01	114,97	27,42	N377	122,26	0,49	138,33	16,07
N338	98,5	0,25	103,84	5,34	N378	129,27	0,12	154,86	25,59
N339	68,43	0,89	75,11	6,68	N379	94,86	0,2	132,24	37,38
N340	68,51	0,49	70,27	1,76	N380	95,23	0,46	131,58	36,35
N341	68,38	0,74	61,68	-6,7	N381	94	0,68	132,23	38,22
N342	68,37	0,23	70,68	2,31	N383	89,6	0,27	130,35	40,75

Tableau III.6: résultats aux tronçons en cas de pointe, l'horizon 2020.

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	L/s	m/s	m/km	
P1	51,79	76,6	1,16	0,25	1,49	Ouvert
P2	275,93	150	-18,8	1,06	13,03	Ouvert
P3	308,52	96,8	0,56	0,08	0,12	Ouvert
P4	173,31	53,6	0,32	0,14	0,81	Ouvert
P5	209,89	53,6	0,38	0,17	0,96	Ouvert
P6	13,79	100	-5,26	0,67	6,93	Ouvert
P7	151,4	80	0,28	0,06	0,09	Ouvert
P8	106,81	150	9,67	0,55	2,78	Ouvert
P9	156,49	76,6	-7,06	1,53	49,7	Ouvert
P10	337,88	100	-0,61	0,08	0,12	Ouvert
P11	176,31	76,6	2,08	0,45	4,57	Ouvert
P12	359,54	76,6	0,66	0,14	0,52	Ouvert
P13	305,32	100	4,08	0,52	4,23	Ouvert
P14	116,89	76,6	0,21	0,05	0,06	Ouvert
P15	183,81	150	22	1,25	13,85	Ouvert
P16	41,96	150	17,79	1,01	9,13	Ouvert
P17	162,77	76,6	0,3	0,07	0,12	Ouvert
P18	121,86	76,6	0,22	0,05	0,07	Ouvert
P19	152,6	76,6	-0,28	0,06	0,11	Ouvert
P20	256,88	80	0,47	0,09	0,23	Ouvert
P21	277,3	80	4,91	0,98	19,38	Ouvert
P22	737,7	80	1,35	0,27	1,6	Ouvert
P23	290,56	76,6	0,53	0,12	0,35	Ouvert
P24	846,73	76,6	1,55	0,34	2,6	Ouvert
P25	83,41	76,6	0,15	0,03	0,02	Ouvert
P26	348,97	76,6	0,64	0,14	0,49	Ouvert
P27	114,37	150	-0,21	0,01	0	Ouvert
P28	55,88	150	15,37	0,87	6,85	Ouvert
P29	34,21	150	14,53	0,82	6,13	Ouvert
P30	119,62	150	12,29	0,7	4,43	Ouvert
P31	66,9	76,6	-0,12	0,03	0,02	Ouvert
P32	118,02	76,6	0,05	0,01	0,01	Ouvert
P33	94,53	76,6	0,17	0,04	0,03	Ouvert
P34	202,2	76,6	1,58	0,34	2,7	Ouvert
P35	262,94	76,6	0,22	0,05	0,07	Ouvert
P36	184,57	125	0,34	0,03	0,01	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe, horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	L/s	m/s	m/km	
P37	147,24	150	9,86	0,56	2,88	Ouvert
P38	153,86	150	0,28	0,02	0	Ouvert
P39	559,55	53,6	1,02	0,45	7,4	Ouvert
P40	37,61	100	11,2	1,43	30,45	Ouvert
P41	240,9	96,8	0,44	0,06	0,08	Ouvert
P42	275,37	96,8	0,5	0,07	0,1	Ouvert
P43	455,73	76,6	0,83	0,18	0,81	Ouvert
P44	464,45	76,6	0,85	0,18	0,83	Ouvert
P45	313,6	100	0,57	0,07	0,11	Ouvert
P46	430,26	73,6	0,79	0,19	0,89	Ouvert
P47	115,08	53,6	1,05	0,47	7,8	Ouvert
P48	89,71	53,6	-0,16	0,07	0,24	Ouvert
P49	268,36	53,6	0,49	0,22	1,83	Ouvert
P50	114,7	53,6	1,76	0,78	21,17	Ouvert
P51	99,06	53,6	0,18	0,08	0,29	Ouvert
P52	62,51	53,6	-0,3	0,13	0,73	Ouvert
P53	437,51	176,2	26,04	1,07	8,34	Ouvert
P54	169,82	76,6	0,31	0,07	0,13	Ouvert
P55	50,36	76,6	0,09	0,02	0,01	Ouvert
P56	261,7	76,6	4,82	1,05	23,48	Ouvert
P57	4	76,6	0,19	0,04	0,04	Ouvert
P58	41,59	200	-1,57	0,05	0,02	Ouvert
P59	111,54	100	3,89	0,5	3,86	Ouvert
P60	395,25	20	0,72	2,3	674,06	Ouvert
P61	70,01	53,6	0,13	0,06	0,11	Ouvert
P62	126,28	53,6	0,23	0,1	0,45	Ouvert
P63	151,86	53,6	-0,28	0,12	0,64	Ouvert
P64	131,41	53,6	0,24	0,11	0,49	Ouvert
P65	179,55	53,6	-0,33	0,15	0,86	Ouvert
P66	57,02	53,6	1,92	0,85	24,91	Ouvert
P67	313,13	53,6	0,57	0,25	2,44	Ouvert
P68	235,84	80	0,43	0,09	0,19	Ouvert
P69	207,26	150	-3,57	0,2	0,41	Ouvert
P70	173,95	80	0,32	0,06	0,11	Ouvert
P71	59,65	80	0,86	0,17	0,69	Ouvert
P72	76,42	53,6	0,14	0,06	0,15	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe, horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	L/s	m/s	m/km	
P73	375,5	100	2,27	0,29	1,38	Ouvert
P74	254,62	53,6	0,47	0,21	1,66	Ouvert
P75	149,88	53,6	0,27	0,12	0,62	Ouvert
P76	315,71	200	21,82	0,69	3,06	Ouvert
P77	60,83	20	0,11	0,35	17,61	Ouvert
P78	199,39	51,4	0,78	0,38	5,48	Ouvert
P79	53,7	51,4	1,65	0,8	23,3	Ouvert
P80	109,64	51,4	0,21	0,1	0,46	Ouvert
P81	23,34	150	-21,08	1,19	12,74	Ouvert
P82	163,27	150	-21,61	1,22	13,37	Ouvert
P83	118,08	150	-22,97	1,3	15,07	Ouvert
P84	192,33	150	-25,73	1,46	24,29	Ouvert
P85	4,75	150	-28,55	1,62	23,14	Ouvert
P86	169,71	63,8	0,31	0,1	0,33	Ouvert
P87	202,16	50	0,37	0,19	1,53	Ouvert
P88	110,12	100	0,2	0,03	0,01	Ouvert
P89	115,44	53,6	0,21	0,09	0,39	Ouvert
P90	366,77	100	13,47	1,72	43,88	Ouvert
P91	163,51	80	2,15	0,43	3,91	Ouvert
P92	66,56	80	1,11	0,22	1,1	Ouvert
P93	243,14	80	0,12	0,02	0,01	Ouvert
P94	67,1	100	1,68	0,21	0,78	Ouvert
P95	120,45	100	0,72	0,09	0,16	Ouvert
P96	229,59	150	0,42	0,02	0,01	Ouvert
P97	136,3	100	0,25	0,03	0,02	Ouvert
P98	252,09	150	41,58	2,35	48,68	Ouvert
P99	29,39	300	127,38	1,8	11,95	Ouvert
P100	474,22	300	124,48	1,76	11,41	Ouvert
P101	120,16	300	111,13	1,57	9,12	Ouvert
P102	55,67	300	88,41	1,25	5,81	Ouvert
P103	116,62	300	85,02	1,2	5,38	Ouvert
P104	115,7	300	83,42	1,18	5,18	Ouvert
P105	86,84	300	81,98	1,16	5,01	Ouvert
P106	127,65	300	81,02	1,15	4,9	Ouvert
P107	168,68	76,6	0,31	0,07	0,13	Ouvert
P108	59,32	53,6	0,11	0,05	0,07	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe, horizon 2020 (suite)

ID Arc	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID AIC	m	mm	L/s	m/s	m/km	
P109	202,96	76,6	0,37	0,08	0,18	Ouvert
P110	172,34	76,6	0,32	0,07	0,14	Ouvert
P111	44,55	76,6	4,89	1,06	24,08	Ouvert
P112	54,11	76,6	4,09	0,89	17	Ouvert
P113	140,58	53,6	0,22	0,1	0,43	Ouvert
P114	195,49	53,6	0,26	0,11	0,55	Ouvert
P115	204,59	53,6	0,37	0,17	1,1	Ouvert
P116	190,5	53,8	0,58	0,26	2,46	Ouvert
P117	244,58	53,6	0,45	0,2	1,54	Ouvert
P118	305,96	100	0,56	0,07	0,1	Ouvert
P119	173,41	53,6	0,32	0,14	0,81	Ouvert
P120	189,83	53,6	0,35	0,15	0,96	Ouvert
P121	182,43	53,8	0,34	0,15	0,9	Ouvert
P122	200,99	53,6	0,37	0,16	1,07	Ouvert
P123	390,93	150	0,72	0,04	0,02	Ouvert
P124	175,57	53,6	0,32	0,14	0,83	Ouvert
P125	173,75	53,6	0,32	0,14	0,81	Ouvert
P126	147,28	53,6	0,27	0,12	0,6	Ouvert
P127	370,94	53,6	0,68	0,3	3,37	Ouvert
P128	121,32	76,6	1,44	0,31	2,24	Ouvert
P129	204,45	34	0,37	0,41	11,33	Ouvert
P130	75,77	53,6	0,14	0,06	0,15	Ouvert
P131	501,24	53,6	0,92	0,41	5,99	Ouvert
P132	231,02	76,6	0,42	0,09	0,23	Ouvert
P133	454,9	176,2	-0,83	0,03	0,01	Ouvert
P134	13,23	150	-3,16	0,18	0,33	Ouvert
P135	170,07	125	-8,71	0,71	5,82	Ouvert
P136	239,65	150	-11,18	0,63	3,68	Ouvert
P137	210,72	125	0,9	0,07	0,08	Ouvert
P138	118,36	80	-0,22	0,04	0,05	Ouvert
P139	23,82	100	6,17	0,79	9,46	Ouvert
P140	38,82	73,6	2,12	0,5	5,81	Ouvert
P141	290,53	80	0,53	0,11	0,28	Ouvert
P142	347,36	51,4	0,86	0,41	6,55	Ouvert
P143	425,96	76,6	0,78	0,17	0,71	Ouvert
P144	53,19	150	19,24	1,09	10,64	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe à l'horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	L/s	m/s	m/km	
P145	47,21	150	20,02	1,13	11,51	Ouvert
P146	84,78	76,6	1,89	0,41	3,8	Ouvert
P147	289,81	76,6	0,53	0,12	0,35	Ouvert
P148	184,02	76,6	-0,34	0,07	0,15	Ouvert
P149	542,77	80	0,99	0,2	0,9	Ouvert
P150	190,92	150	0,35	0,02	0	Ouvert
P151	96,4	76,6	-0,18	0,04	0,03	Ouvert
P152	389,36	76,6	-1,76	0,38	3,33	Ouvert
P153	246,79	141	7,2	0,46	2,16	Ouvert
P154	169,88	141	5,03	0,32	1,08	Ouvert
P155	103,56	141	3,65	0,23	0,59	Ouvert
P156	92,12	141	2,86	0,18	0,37	Ouvert
P157	61,28	141	-0,12	0,01	0	Ouvert
P158	65,24	141	-2,43	0,16	0,27	Ouvert
P159	101	141	-4,44	0,28	0,85	Ouvert
P160	142,61	141	3,52	0,23	0,55	Ouvert
P161	158,08	141	2,97	0,19	0,4	Ouvert
P162	301,59	141	0,55	0,04	0,02	Ouvert
P163	464,26	76,6	-0,85	0,18	0,83	Ouvert
P164	365,15	76,6	0,67	0,15	0,54	Ouvert
P165	189,54	80	-0,35	0,07	0,13	Ouvert
P166	155,34	53,6	0,28	0,13	0,66	Ouvert
P167	152,99	53,6	-0,28	0,12	0,64	Ouvert
P168	173,2	100	10,25	1,31	25,59	Ouvert
P169	57,34	76,6	-1,17	0,25	1,52	Ouvert
P170	55,75	76,6	-2,39	0,52	6	Ouvert
P171	149,45	53,6	0,27	0,12	0,62	Ouvert
P172	101,42	150	3,73	0,21	0,45	Ouvert
P173	388,25	150	2,03	0,11	0,14	Ouvert
P174	112,3	96,8	1,42	0,19	0,67	Ouvert
P175	170,64	76,6	0,31	0,07	0,13	Ouvert
P176	181,29	96,8	-0,33	0,04	0,05	Ouvert
P177	92,44	96,8	0,17	0,02	0,01	Ouvert
P178	300,77	51,4	0,55	0,27	2,81	Ouvert
P179	417,25	150	16,65	0,94	8,01	Ouvert
P180	167,58	150	0,31	0,02	0	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe, horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	L/s	m/s	m/km	
P181	384,72	76,6	0,7	0,15	0,59	Ouvert
P182	312,88	150	2,51	0,14	0,21	Ouvert
P183	112,83	53,6	0,21	0,09	0,38	Ouvert
P184	287,52	300	79,16	1,12	4,68	Ouvert
P185	82,83	100	0,15	0,02	0,01	Ouvert
P186	606,71	176,2	-1,11	0,05	0,02	Ouvert
P187	165,54	150	1,77	0,1	0,11	Ouvert
P188	56,87	51,4	1,1	0,53	10,47	Ouvert
P189	401,5	53,6	-0,74	0,33	3,92	Ouvert
P190	310,31	150	0,57	0,03	0,01	Ouvert
P191	120,8	100	6,14	0,78	9,36	Ouvert
P192	38,19	150	-19,32	1,09	10,72	Ouvert
P193	72,49	150	-22,48	1,27	14,45	Ouvert
P194	177,35	53,6	0,32	0,14	0,85	Ouvert
P195	146,29	53,6	-0,27	0,12	0,59	Ouvert
P196	203,11	150	-4,24	0,24	0,57	Ouvert
P197	199,1	100	-0,36	0,05	0,05	Ouvert
P198	60,03	53,6	-0,11	0,05	0,07	Ouvert
P199	233,67	53,6	-0,43	0,19	1,41	Ouvert
P200	144,93	53,6	0,27	0,12	0,58	Ouvert
P201	312,24	176,2	28,6	1,17	10,03	Ouvert
P202	125,2	150	17,93	1,01	9,27	Ouvert
P203	290,85	96,8	-0,15	0,02	0,01	Ouvert
P204	39,51	150	16,74	0,95	8,09	Ouvert
P205	286,08	100	-0,52	0,07	0,09	Ouvert
P206	233,78	53,6	0,43	0,19	1,41	Ouvert
P207	83,92	150	-10,65	0,6	3,35	Ouvert
P208	329,86	53,6	0,6	0,27	2,7	Ouvert
P209	290,04	53,6	0,72	0,32	3,74	Ouvert
P210	301,46	76,6	0,55	0,12	0,37	Ouvert
P211	375,76	100	-3,19	0,41	2,63	Ouvert
P212	356,4	150	-18	1,02	9,33	Ouvert
P213	212,86	150	22,35	1,26	14,28	Ouvert
P214	189,51	53,6	0,35	0,15	0,96	Ouvert
P215	129,02	80	0,24	0,05	0,06	Ouvert
P216	101,23	53,6	-1,09	0,48	8,32	Ouvert
P217	25,03	96,8	10,92	1,48	34,39	Ouvert
P218	32,58	96,8	-7,96	1,08	18,48	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe, horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	L/s	m/s	m/km	
P219	491,17	53,6	0,9	0,4	5,76	Ouvert
P220	311,06	53,6	0,57	0,25	2,41	Ouvert
P221	153,82	76,6	6,49	1,41	42,11	Ouvert
P222	215,09	76,6	4,11	0,89	17,12	Ouvert
P223	224,06	53,6	0,41	0,18	1,3	Ouvert
P224	429,89	100	-0,79	0,1	0,19	Ouvert
P225	234,8	63,8	1,09	0,34	3,38	Ouvert
P226	148,34	53,6	0,27	0,12	0,61	Ouvert
P227	894,22	100	2,47	0,31	1,62	Ouvert
P228	134,44	150	33,86	1,92	32,41	Ouvert
P229	132,7	150	28,73	1,63	23,43	Ouvert
P230	296,19	150	3,18	0,18	0,33	Ouvert
P231	7,51	76,6	2,62	0,57	7,14	Ouvert
P232	138,24	76,6	2,35	0,51	5,8	Ouvert
P233	251,44	76,6	1,08	0,23	1,31	Ouvert
P234	7,79	150	-36,17	2,05	36,93	Ouvert
P235	181,85	53,6	0,33	0,15	0,89	Ouvert
P236	74,32	150	-5,45	0,31	1,14	Ouvert
P237	122,13	90	0,22	0,04	0,03	Ouvert
P238	92,19	100	0,17	0,02	0,01	Ouvert
P239	170,26	176,2	-24,4	1	7,34	Ouvert
P240	598,44	100	6,47	0,82	13,47	Ouvert
P241	106,14	150	10,61	0,6	3,32	Ouvert
P242	148,39	250	76,93	1,57	11,4	Ouvert
P243	104,63	250	34,42	0,7	2,35	Ouvert
P244	163,52	250	32,46	0,66	2,1	Ouvert
P245	171,49	200	5	0,16	0,18	Ouvert
P246	254,7	80	4,22	0,84	14,43	Ouvert
P247	36,37	176,2	9,8	0,4	1,24	Ouvert
P248	49,4	150	25	1,41	17,81	Ouvert
P249	290,49	150	-4,78	0,27	0,88	Ouvert
P250	175,74	150	-2,79	0,16	0,31	Ouvert
P251	352,65	200	6,77	0,22	0,32	Ouvert
P252	70,43	150	-21,1	1,19	12,75	Ouvert
P253	0,71	150	-20,32	1,15	11,84	Ouvert
P254	31,2	150	-18,64	1,05	10	Ouvert
P255	89,93	150	-17,78	1,01	9,12	Ouvert
P256	122,79	150	-16,7	0,94	8,06	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe, horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	LPS	m/s	m/km	
P257	18,81	150	-13,42	0,76	5,25	Ouvert
P258	421,98	150	-12,19	0,69	4,36	Ouvert
P259	342,33	76,6	3,3	0,72	11,19	Ouvert
P260	215,04	150	-15,64	0,88	7,08	Ouvert
P261	247,51	53,6	0,45	0,2	1,57	Ouvert
P262	140,88	53,6	0,65	0,29	3,11	Ouvert
P263	134,42	150	-10,76	0,61	3,42	Ouvert
P264	168,05	150	-9,3	0,53	2,57	Ouvert
P265	145,89	53,6	0,27	0,12	0,59	Ouvert
P266	78,49	150	-8,32	0,47	2,07	Ouvert
P267	324,84	53,6	0,59	0,26	2,62	Ouvert
P268	135,36	150	-3,5	0,2	0,4	Ouvert
P269	10,03	150	-2,5	0,14	0,21	Ouvert
P270	88,39	150	0,16	0,01	0	Ouvert
P271	46,16	51,4	0,33	0,16	1,1	Ouvert
P272	195,92	51,4	-1,79	0,86	27,07	Ouvert
P273	97,23	51,4	0,18	0,09	0,35	Ouvert
P274	159,56	51,4	0,29	0,14	0,86	Ouvert
P275	2,98	90	1,8	0,28	1,51	Ouvert
P276	8,62	90	1,23	0,19	0,74	Ouvert
P277	110,83	90	3,25	0,51	4,71	Ouvert
P278	40,78	90	3,53	0,55	5,51	Ouvert
P279	54,72	150	-12,11	0,69	4,3	Ouvert
P280	6,89	150	3,42	0,19	0,38	Ouvert
P281	116,5	80	2,37	0,47	4,71	Ouvert
P282	277,6	150	22,62	1,28	14,62	Ouvert
P283	124,18	150	24,03	1,36	16,47	Ouvert
P284	175,53	150	25,51	1,44	18,53	Ouvert
P285	161,99	150	-5,17	0,29	0,83	Ouvert
P286	160,56	150	-2	0,11	0,14	Ouvert
P287	82,64	150	-3,22	0,18	0,34	Ouvert
P288	283,28	53,6	-0,26	0,11	0,55	Ouvert
P289	288,78	150	0,53	0,03	0,01	Ouvert
P290	61,03	200	-2,02	0,06	0,03	Ouvert
P291	26	200	-2,64	0,08	0,06	Ouvert
P292	34,08	200	-6,84	0,22	0,33	Ouvert
P293	202,69	100	2,83	0,36	2,09	Ouvert
P294	36,94	150	17,53	0,99	8,87	Ouvert

Tableau III.6: résultats aux tronçons eu cas de pointe, horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	L/s	m/s	m/km	
P295	120,54	100	0,22	0,03	0,01	Ouvert
P296	181,38	53,6	0,33	0,15	0,88	Ouvert
P297	122,55	150	13,42	0,76	5,26	Ouvert
P298	192,56	150	15,45	0,87	6,92	Ouvert
P299	396	76,6	0,72	0,16	0,62	Ouvert
P300	254,29	150	0,47	0,03	0,01	Ouvert
P301	188,58	150	-10,48	0,59	3,24	Ouvert
P302	70,09	150	-9,27	0,52	2,56	Ouvert
P303	9,44	150	-7,29	0,41	1,61	Ouvert
P304	131,63	76,6	-0,88	0,19	0,89	Ouvert
P305	114,15	76,6	-0,21	0,05	0,06	Ouvert
P306	140,3	150	-5,89	0,33	1,07	Ouvert
P307	217,8	150	-4,97	0,28	0,77	Ouvert
P308	87,34	150	-3,27	0,19	0,35	Ouvert
P309	412,61	76,6	-8,1	1,76	65,18	Ouvert
P310	140,23	100	-1,3	0,17	0,48	Ouvert
P311	19,81	76,6	2,52	0,55	6,63	Ouvert
P312	93,48	51,4	0,17	0,08	0,32	Ouvert
P313	108,56	96,8	-0,88	0,12	0,28	Ouvert
P314	133,81	53,6	0,24	0,11	0,5	Ouvert
P315	243,17	150	8,58	0,49	2,2	Ouvert
P316	77,24	96,8	10,13	1,38	29,67	Ouvert
P317	41,77	96,8	-3,09	0,42	2,92	Ouvert
P318	4,95	160	1,01	0,05	0,03	Ouvert
P319	40,78	150	6,02	0,34	1,11	Ouvert
P320	267,83	150	0,49	0,03	0,01	Ouvert
P321	132,73	150	-4,62	0,26	0,67	Ouvert
P322	222,54	150	-5,99	0,34	1,1	Ouvert
P323	126,46	100	5	0,64	6,29	Ouvert
P324	136,3	76,6	0,25	0,05	0,09	Ouvert
P325	205,01	53,6	1,36	0,6	12,87	Ouvert
P326	6,88	200	-1,46	0,05	0,02	Ouvert
P327	536,09	96,8	-2,55	0,35	2,03	Ouvert
P328	224,31	96,8	-4,91	0,67	7,18	Ouvert
P329	82,64	76,6	3,28	0,71	11,07	Ouvert
P330	402,94	34	0,74	0,81	42,07	Ouvert
P331	127,06	34	0,23	0,26	4,59	Ouvert
P332	55,15	96,8	-7,16	0,97	15	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe, horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	L/s	m/s	m/km	
P333	7,37	73,6	-2,84	0,67	10,26	Ouvert
P334	40,83	73,6	1,43	0,34	2,74	Ouvert
P335	100	150	-6,91	0,39	1,45	Ouvert
P336	3,65	150	-24,82	1,4	22,61	Ouvert
P337	7,3	100	12,12	1,54	35,63	Ouvert
P338	100	150	14,08	0,8	5,77	Ouvert
P339	10,11	100	-1,24	0,16	0,44	Ouvert
P340	100	150	12,45	0,7	4,54	Ouvert
P341	198,51	100	0,36	0,05	0,05	Ouvert
P342	132,35	100	-1,37	0,17	0,53	Ouvert
P343	180,08	100	-7,52	0,96	13,93	Ouvert
P344	3,98	150	10,39	0,59	3,19	Ouvert
P345	29,84	90	5,25	0,31	3,2	Ouvert
P346	1,2	96,8	4,67	0,63	6,51	Ouvert
P347	0,57	96,8	-3,54	0,48	3,8	Ouvert
P348	3,54	150	15,82	0,9	7,25	Ouvert
P349	223,38	80	0,41	0,08	0,17	Ouvert
P350	275,75	327,4	79,94	0,95	3,03	Ouvert
P351	8,77	150	-22,1	1,25	13,97	Ouvert
P352	15,57	150	8,86	0,5	2,34	Ouvert
P353	788,72	257,8	77,71	1,49	9,91	Ouvert
P354	186,84	53,6	0,34	0,15	0,93	Ouvert
P355	361,15	100	0,66	0,08	0,14	Ouvert
P356	177,78	73,6	0,85	0,2	1,02	Ouvert
P357	143,18	53,6	0,26	0,12	0,57	Ouvert
P358	3,89	150	5,59	0,32	1,2	Ouvert
P359	270,11	34	0,49	0,54	19,36	Ouvert
P360	186,33	176,2	4,23	0,17	0,25	Ouvert
P361	12,19	150	-0,02	0,12	0	Ouvert
P362	61,16	53,8	0,12	0,05	0,09	Ouvert
P363	0,11	160	-7,66	0,38	1,27	Ouvert
P364	0,15	300	119,01	1,68	10,42	Ouvert
P365	0,61	176,2	0,83	0,03	0,02	Ouvert
P366	0,63	150	-2,33	0,13	0,18	Ouvert
P367	100	76,6	-1,52	0,33	2,51	Ouvert
P368	100	300	-82,33	1,16	5,05	Ouvert
P369	9,23	150	6,14	0,35	1,15	Ouvert
P370	12,09	100	2,11	0,27	1,19	Ouvert

Tableau III.6: résultats aux tronçons en cas de pointe, horizon 2020 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P371	1,63	300	127,43	1,8	11,96	Ouvert
P372	3,13	150	-10,64	0,6	3,34	Ouvert
P373	0,36	300	110,91	1,57	9,1	Ouvert
P374	16,61	150	-13,49	0,76	5,3	Ouvert
P375	50,79	53,6	0,09	0,04	0,05	Ouvert
P376	626,08	327,4	80,48	0,96	3,07	Ouvert
P377	540,43	257,8	78,45	1,5	10,1	Ouvert
P378	349,52	163,6	18,75	0,89	6,44	Ouvert
P379	130,43	130,8	0,24	0,02	1.2	Ouvert
P380	127	76,6	3,28	0,71	11,03	Ouvert
P381	17,14	200	9,56	0,3	0,62	Ouvert
P382	4,47	96,8	2,36	0,32	1,75	Ouvert
P383	83,21	300	119,16	1,69	10,47	Ouvert
P384	40,05	150	38,3	2,17	41,36	Ouvert
P385	39,68	257,8	76,2	1,46	9,53	Ouvert
P386	40,97	150	-22,82	1,29	14,88	Ouvert
P387	5,41	150	33,75	1,91	32,2	Ouvert
P388	23,52	257,8	19,43	0,37	0,66	Ouvert
P389	57,65	96,8	7,21	0,98	15,21	Ouvert
P390	10,45	200	-17,61	0,56	2,02	Ouvert

III.4.4.3 Interprétation des résultats de la simulation en cas de pointe à l'horizon 2020 :

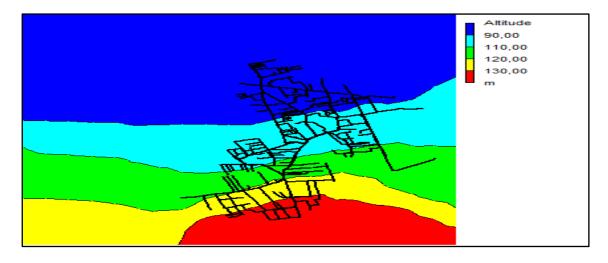


Figure III.6:courbes de niveau des altitudes de la zone d'étude.

D'après les résultats de la simulation du réseau actuel à l'horizon 2020 on constate clairement un déséquilibre en matière de pression et de vitesse dans ce dernier.

Secteur A: Une faible pression variant entre 0.4 et 1 bar au niveau de la partie haute de ce secteur qui est alimentée à partir d'un puisard et plus les altitudes diminuent la pression augmente pour atteindre les 3bars comme valeur maximale pour la partie alimentée essentiellement à partir du château d'eau Zaouia.

De faibles vitesses se présentent surtout au niveau des extrémités du réseau pouvant être au dessous de 0.1 m/s.

Secteur B: les pressions varient entre 1.5 et 3 bars dans la partie alimentée à partir du château d'eau Zaouia et les deux réservoirs Djellouli par contre le coté Ouest alimenté à partir du réservoir Saidani présente de très faibles pressions qui se situent au-dessous de 1 bars et qui atteignent 0.1 bar.

Le secteur présente de faibles vitesses au niveau des ramifications et de la partie alimentée à partir du réservoir Saidani.

Secteur C: le coté Ouest de cette zone alimenté à partir du réservoir Chaaba présente des pressions variant entre 0.3 et 1 bars qui sont très loin de la pression minimale de service, les valeurs de la pressions augmentent dans les nœuds des ruelles alimentées à partir des réservoirs Zaouia et frères Zedri pour atteindre l'intervalle [1-4] bars.

Les vitesses dans ce secteur s'améliorent et pouvant atteindre les 1.5 m/s.

Secteur D : cette partie de la ville présente des pressions plus ou moins acceptables variant entre 2 et 3 bars.

Les vitesses dans ce dernier s'affaiblissent au niveau des ramifications alimentées a partir de la conduite sortant du réservoir Saidani.

- Secteur E: pressions aux nœuds comprises entre 3 et 5 bars avec une dépression remarquable au nœud N106 et des vitesses admissibles au niveau des conduites maitresses contrairement aux bouts de réseau.
- Secteur F: alimenté uniquement à partir du réservoir Benyattou, présente de très faibles pressions inferieures à 1 bar et plusieurs points de dépressions.

 Les vitesses varient entre 0.1 et 0.85 m/s.

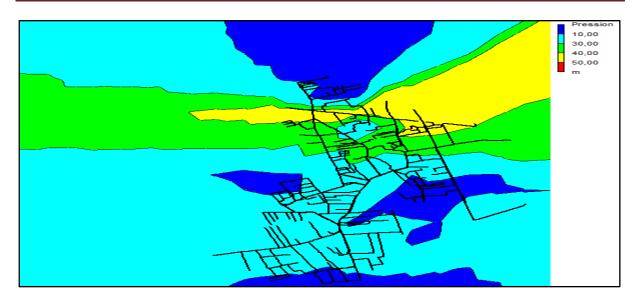


Figure III.7 : Etat de pression aux nœuds à l'heure de pointe cas de pointe, horizon 2020.

On remarque clairement d'une part la présence de plusieurs nœuds à pression inferieure à 1 bars situés au niveau des secteurs alimentés à partir des petits réservoirs à faible élévation tel que le réservoir Saidani, chaaba et benyattou, ce qui explique la présence de plusieurs injections directes sur le réseau de distribution actuel .

D'autre part les nœuds qui présentent des pressions inferieures à zéro ; une dépression qui favorise l'infiltration des eaux parasites (pollution) dans la conduite, s'il existe des fuites et des joints mal façonnés.

Ses nœuds de dépression se trouvent au niveau des zones alimentées à partir des réservoirs Benyattou, Chaaba et du puisard de Zaouia cela faute d'élévation de ces ouvrages par rapport aux réseaux qu'ils alimentent.

La présence de faibles vitesses inferieures à 0,5 m/s au niveau des ramifications et des extrémités du réseau s'avère excessive dans toute la zone d'étude.

➤ Calcul des débits nodaux en cas de pointe plus incendie, horizon 2020

Les résultats des calculs concernant les débits nodaux en cas de pointe plus incendie, horizon 2020 se présentent dans les tableaux (voir annexe 01).

➤ Résultats de la simulation cas de pointe plus incendie, horizon2020

Tableau III.7: résultats aux nœuds en cas de pointe plus incendie, horizon 2020.

	Altitude	Demand e	Charge	Pression		Altitude	Demand e	Charge	Pression
Noeud	m	L/s	m	m.C.E	Noeud	m	L/s	m	m.C.E
N1	90,27	0,28	112,27	22	N38	118	0,47	122,46	4,46
N2	117,06	1,01	124,78	7,72	N39	118,01	2,18	118,79	0,78
N3	117,69	0,63	124,73	7,04	N40	114,05	2,04	113,8	-0,25
N4	102,55	0,5	107,52	4,97	N41	104,85	1,35	112,68	7,83
N5	101,75	0,6	108,66	6,91	N42	118,51	0,53	124,64	6,13
N6	102,42	0,56	111,84	9,42	N43	123,14	1,55	121,61	-1,53
N7	108,4	0,32	111,77	3,37	N44	142,37	0,27	122,08	-20,29
N8	111,72	0,62	111,36	-0,36	N45	136,13	0,15	120,75	-15,38
N9	114,33	0,38	111,18	-3,15	N46	126,18	0,64	120,73	-5,45
N10	100,75	0,26	108,85	8,1	N47	127,32	0,21	119,46	-7,86
N11	100,72	0,89	108,82	8,1	N48	127,65	1,08	119,46	-8,19
N12	102,93	0,63	105,79	2,86	N49	127,31	0,5	119,33	-7,98
N13	103,9	0,28	105,78	1,88	N50	127,5	0,65	119,26	-8,24
N14	90,17	0,66	112,34	22,17	N51	127,44	0,22	119,11	-8,33
N15	88,27	0,71	111,9	23,63	N52	133,02	0,12	119,05	-13,97
N16	96,17	0,38	106,77	10,6	N53	131,75	1,19	119,05	-12,7
N17	68,93	0,57	81,36	12,43	N54	131,92	0,77	119,07	-12,85
N18	71,93	1,04	86,82	14,89	N55	131,58	0,17	119,07	-12,51
N19	75,4	0,78	100,03	24,63	N56	132,8	0,22	119,03	-13,77
N20	100,66	0,61	106,74	6,08	N57	123,45	0,34	119,33	-4,12
N21	96,29	0,63	106,77	10,48	N60	121,86	1,01	118,92	-2,94
N22	135,8	0,88	122,21	-13,59	N61	122,71	0,86	118,86	-3,85
N23	135,92	1,2	121,67	-14,25	N62	122,9	0,28	118,86	-4,04
N24	140,24	0,66	121,52	-18,72	N63	115,71	0,75	124,02	8,31
N25	132,88	18,05	124,03	-8,85	N64	115,62	0,26	123,82	8,2
N26	135,29	2,32	123,16	-12,13	N65	129,75	1,28	128,12	-1,63
N27	137,66	0,21	123,16	-14,5	N66	124,85	1,02	125,4	0,55
N28	135,76	0,59	122,22	-13,54	N67	106,31	0,5	111,74	5,43
N29	135,78	1,2	121,37	-14,41	N68	105,86	0,67	110,86	5
N30	134,53	0,81	120,86	-13,67	N69	120,91	17,94	119,36	-1,55
N31	134,46	0,99	120,75	-13,71	N70	125,98	0,44	119,34	-6,64
N.32	136,09	0,48	121,12	-14,97	N71	120,77	0,63	118,88	-1,89
N.33	132,18	0,3	121,1	-11,08	N72	126,18	0,5	118,85	-7,33
N.34	138,53	0,22	121,66	-16,87	N73	120,72	1,01	118,88	-1,84
N.35	138,61	0,28	121,54	-17,07	N74	111,67	0,83	118,6	6,93
N.36	141,9	0,99	121,55	-20,35	N75	118,84	1,15	118,78	-0,06
N37	118,12	1,07	122,52	4,4	N76	110,15	0,85	118,48	8,33

Tableau III.7: résultats aux nœuds en cas de pointe plus incendie, horizon 2020 (suite)

	Altitud	Deman	Charge	Pressio		Altitud	Deman	Charge	Pressio
Noeud	e	de		n	Noeud	e	de		n
	m	l/s	m	m	37444	m	l/s	m	m
N77	114,05	0,85	113,62	-0,43	N114	86,52	1,01	111,45	24,93
N78	114,05	0,34	121,71	7,66	N115	87,21	0,57	110,9	23,69
N79	119,53	0,57	122,48	2,95	N116	86,9	0,86	109,56	22,66
N80	118,69	1,63	118,66	-0,03	N117	86,02	0,43	109,52	23,5
N81	127,6	0,79	118,36	-9,24	N118	87,5	0,56	119,41	31,91
N82	95,4	0,64	106,31	10,91	N119	87,16	0,4	119,32	32,16
N83	98,65	0,16	105,61	6,96	N120	85,75	0,32	119,3	33,55
N84	95,41	1,09	105,62	10,21	N121	88,64	0,7	114,62	25,98
N85	96,56	1,07	107,35	10,79	N122	87,58	0,49	114,58	27
N86	96,5	0,49	106,99	10,49	N123	87,66	0,14	114,57	26,91
N87	91,35	0,56	105,23	13,88	N124	84,21	0,94	106,78	22,57
N88	91,62	0,99	103,78	12,16	N125	83,32	1,48	106,29	22,97
N89	92,2	0,18	103,76	11,56	N126	82,58	0,21	100,33	17,75
N90	87,48	0,36	104,95	17,47	N127	88,82	0,54	109,29	20,47
N91	87,8	0,4	119,32	31,52	N128	88,65	0,47	108,97	20,32
N92	87,19	0,54	118,77	31,58	N129	88,2	0,4	108,88	20,68
N93	101,91	18,41	113,23	11,32	N130	87,47	0,27	108,81	21,34
N94	93,82	1,38	111,71	17,89	N131	118,2	0,68	125,49	7,29
N95	139,78	0,77	121,31	-18,47	N132	111,49	1,43	124,67	13,18
N96	136,36	0,31	121,29	-15,07	N133	87,73	0,75	117,81	30,08
N97	124,65	0,1	123,22	-1,43	N134	87,73	0,11	117,14	29,41
N98	124,89	0,09	123,22	-1,67	N135	80,27	0,83	104,76	24,49
N99	122,94	1,31	125,62	2,68	N136	78,38	0,45	103,05	24,67
N100	124,22	1,35	123,22	-1	N137	77,7	0,47	102,87	25,17
N101	93,32	0,94	112,78	19,46	N138	77,88	0,38	102,13	24,25
N102	92,4	0,32	112,84	20,44	N139	76,85	0,6	101,75	24,9
N103	91,16	0,31	112,98	21,82	N140	76,48	0,21	101,71	25,23
N104	90,14	0,82	112,68	22,54	N141	102,95	0,53	104,08	1,13
N105	83,93	1,3	104,21	20,28	N142	102,94	0,94	104,98	2,04
N106	84,3	0,72	-33,84	-118,14	N143	102,89	0,43	105,76	2,87
N107	91,8	0,13	112,83	21,03	N144	102,58	0,66	107,47	4,89
N108	91,24	0,39	112,93	21,69	N145	85,15	0,8	104,86	19,71
N109	90,46	0,23	112,89	22,43	N146	84,44	0,31	104,82	20,38
N110	90,17	0,24	112,63	22,46	N147	83,37	0,64	104,8	21,43
N111	87,57	0,33	110,62	23,05	N148	80,89	0,37	104,56	23,67
N112	87,67	0,47	110,75	23,08	N149	83,29	0,52	104,79	21,5
N113	86,89	0,7	112,28	25,39	N150	82,84	0,2	104,79	21,95

Tableau III.7: résultats aux nœuds en cas de pointe plus incendie, horizon 2020 (suite)

Nœud	Altitude	Demand	Charge	Pression	Nœud	Altitude	Demand	Charge	Pression
	M	l/s	m	m.C.E		m	l/s	m	m.C.E
N151	83,75	1,02	106,59	22,84	N188	89,01	0,56	110,15	21,14
N152	83,01	0,21	106,55	23,54	N189	87,66	0,54	108,57	20,91
N153	98,99	0,73	106,87	7,88	N190	86,74	0,32	108,46	21,72
N154	97,94	0,62	106,8	8,86	N191	86,25	0,74	107,76	21,51
N155	95,48	0,12	106,79	11,31	N192	85,07	0,35	107,62	22,55
N156	102,34	0,02	103,92	1,58	N193	104,83	1,07	115,13	10,3
N157	102,13	0,65	103,87	1,74	N194	105,45	0,34	115,01	9,56
N158	101,22	0,47	103,85	2,63	N195	80,3	0,84	100,61	20,31
N159	98,31	0,42	104,98	6,67	N.196	76,6	0,37	100,44	23,84
N160	103,3	2,06	117,7	14,4	N197	105,24	1,51	117,33	12,09
N161	99,91	0,25	117,7	17,79	N198	102,66	0,72	117,32	14,66
N162	103,75	17,92	114,6	10,85	N199	67,5	0,48	75,61	8,11
N163	100,44	0,95	108,87	8,43	N200	67,11	0,32	75,5	8,39
N164	129,16	1,91	142,83	13,67	N201	66,83	0,4	75,93	9,1
N165	120,58	0,22	127,32	6,74	N202	66,66	0,32	75,81	9,15
N166	117,7	0,89	124,85	7,15	N203	66,31	0,42	75,78	9,47
N167	113,94	0,74	122,77	8,83	N204	66,22	0,27	75,71	9,49
N168	112,54	0,68	120,8	8,26	N205	65,68	0,75	75,7	10,02
N169	110,08	18,31	119,48	9,4	N206	65,57	0,68	74,82	9,25
N170	98,41	0,31	103,85	5,44	N207	70,72	1,11	71,28	0,56
N171	100,4	0,82	105,7	5,3	N208	69,91	0,83	71,08	1,17
N172	99,94	0,11	105,7	5,76	N209	69,82	0,37	69,6	-0,22
N173	97,38	0,37	106,77	9,39	N210	71,17	0,68	71,85	0,68
N174	111,83	0,32	124,51	12,68	N211	69,62	0,14	71,84	2,22
N175	107,8	0,65	124,49	16,69	N212	80,1	1,06	100,44	20,34
N176	107,53	0,54	123,86	16,33	N213	73,91	0,92	98,43	24,52
N177	107,14	0,59	123,3	16,16	N214	105,26	0,42	111,69	6,43
N178	109,99	0,22	123,25	13,26	N215	95,07	2,28	123,03	27,96
N179	111,62	0,26	123,77	12,15	N216	87,8	0,64	119,32	31,52
N180	105,67	0,85	122,2	16,53	N217	118,79	0,76	118,77	-0,02
N181	109,23	0,37	122,03	12,8	N218	118,05	0,22	119,08	1,03
N182	102,57	0,9	116,22	13,65	N219	120,58	0,57	119,09	-1,49
N183	104,35	0,12	115,88	11,53	N220	66,94	0,33	76,66	9,72
N184	102,97	0,46	115,88	12,91	N221	104,83	0,64	122,14	17,31
N185	102,19	1,37	109,26	7,07	N222	110,15	0,53	122,06	11,91
N186	101,88	0,45	108,98	7,1	223	142,35	0,56	122,12	-20,23
N187	89,89	0,82	110,18	20,29	N224	126	0,78	121,13	-4,87

Tableau III.7 : résultats aux nœuds en cas de pointe plus incendie, horizon 2020 (suite)

Nœud	Altitude	Demand e	Charge	Pression	Nœud	Altitude	Demand e	Charge	Pression
	m	l/s	m	m.C.E		m	l/s	m	m.C.E
N225	129,63	0,24	128,57	-1,06	N264	99,28	1,19	117,64	18,36
N226	129,92	1,02	128,35	-1,57	N265	80,05	0,36	106,28	26,23
N227	125	0,53	128,27	3,27	N266	82,29	0,11	100,33	18,04
N228	126,66	0,34	128,32	1,66	N267	81,52	0,56	100,33	18,81
N229	119,91	0,99	142,36	22,45	N268	80,6	0,43	106,04	25,44
N230	116,35	1,24	122,32	5,97	N269	78,65	0,66	100,28	21,63
N231	115,96	0,35	122,32	6,36	N270	80,19	0,27	100,21	20,02
N232	114,66	0,18	122,32	7,66	N271	94,86	0,92	123,07	28,21
N233	121,17	1,47	122,35	1,18	N272	84,93	0,87	117,5	32,57
N234	119,49	1,47	118,81	-0,68	N273	92,2	0,49	113,06	20,86
N235	119,33	0,55	118,71	-0,62	N274	80,75	0,15	119,29	38,54
N236	118,41	0,55	118,65	0,24	N275	85,62	0,73	119,29	33,67
N237	110,44	0,85	118,51	8,07	N276	71,21	0,52	100	28,79
N238	114,31	0,67	113,46	-0,85	N277	87,25	0,24	119,99	32,74
N239	112,07	0,35	122,75	10,68	N.278	108,58	0,78	111,88	3,3
N240	111,64	0,28	120,72	9,08	N279	108,35	0,43	111,63	3,28
N241	107,21	0,28	110,78	3,57	N280	107,83	0,86	111,94	4,11
N242	106,43	0,61	122,43	16	N281	105,58	0,6	111,3	5,72
N243	109,49	0,27	122,35	12,86	N282	111,59	0,74	111,37	-0,22
N244	95,53	0,66	103,81	8,28	N283	108,9	0,09	110,62	1,72
N245	98,79	0,31	106,85	8,06	N284	109,51	0,28	111,72	2,21
N246	101,03	0,33	105,69	4,66	N285	112,76	0,55	112,39	-0,37
N247	99,9	0,17	105,7	5,8	N286	108,88	0,18	112	3,12
N248	108,6	0,55	118,87	10,27	N287	110,15	0,74	134,33	24,18
N249	113,45	0,7	122,17	8,72	N288	105,85	0,41	112,96	7,11
N250	117,9	0,34	124,65	6,75	N289	108,35	0,35	111,74	3,39
N251	124,64	0,21	125,58	0,94	N290	85,71	0,24	114,57	28,86
N252	101,01	0,8	108,76	7,75	N291	66,96	0,12	75,97	9,01
N253	99,41	0,15	108,76	9,35	N292	76,56	1,07	100,09	23,53
N254	95,92	1,11	123,02	27,1	N293	72,85	0,9	98,19	25,34
N255	95,54	0,74	112,95	17,41	N294	77,34	1,13	100,12	22,78
N256	102,45	1,23	114,04	11,59	N295	81,34	0,57	99,58	18,24
N257	102,36	1,42	108,69	6,33	N296	71,71	0,8	74,07	2,36
N258	97,58	0,57	108,69	11,11	N297	101,73	0,41	108,54	6,81
N259	94,68	0,44	117,44	22,76	N298	93,27	0,79	111,02	17,75
N260	91,91	0,46	111,2	19,29	N299	108,56	1,09	112,01	3,45
N261	87,73	0,32	109,18	21,45	N300	113,13	1,09	111,45	-1,68
N262	93,74	0,27	111,64	17,9	N301	111,64	0,29	111,37	-0,27
N263	98,75	1,08	118,01	19,26	N302	112,8	0,27	111,3	-1,5

Tableau III.7: résultats aux nœuds en cas de pointe plus incendie, horizon 2020 (suite)

Nœud	Altitude	Demand e	Charge	Pression	Nœud	Altitude	Demand e	Charge	Pression
	m	l/s	m	m.C.E		m	l/s	m	m.C.E
N303	108,36	0,02	111,88	3,52	N343	100,48	1,77	111,09	10,61
N304	106,59	1,02	111,94	5,35	N344	108,76	0,57	111,87	3,11
N305	103,62	0,33	111,81	8,19	N345	108,88	0,98	111,87	2,99
N306	101,97	0,67	108,66	6,69	N346	110,13	0,52	113,06	2,93
N307	101,47	0,14	108,66	7,19	N347	98,32	1,37	103,86	5,54
N308	113,59	0,22	111,36	-2,23	N348	115,48	0,59	123,88	8,4
N309	103,13	0,17	117,7	14,57	N349	68,23	0,87	73,46	5,23
N310	101,59	1,75	108,76	7,17	N350	108,58	0,24	111,88	3,3
N311	99,28	1,06	117,44	18,16	N351	120,58	0,15	127,33	6,75
N312	91,36	18,75	111,2	19,84	N352	120,57	0,45	127,32	6,75
N313	88,84	0,45	109,3	20,46	N353	120,57	0	127,32	6,75
N314	77,65	1,56	104,71	27,06	N354	120,58	0	127,33	6,75
N315	93,37	0,45	105,33	11,96	N355	87,9	0,83	119,32	31,42
N316	95,12	0,81	105,85	10,73	N356	87,9	0,83	123,02	35,12
N317	92,71	0,72	105,4	12,69	N357	87,9	0	119,32	31,42
N318	93,38	0,27	105,33	11,95	N358	87,9	0,83	119,32	31,42
N319	90,75	0,59	103,17	12,42	N359	129,22	0	143,69	14,47
N320	78,92	0,16	104,76	25,84	N360	129,22	0,05	143,69	14,47
N321	77,39	0,18	102,1	24,71	N361	108,88	0,38	111,88	3
N322	75,71	0,29	101,64	25,93	N362	108,88	0,69	111,88	3
N323	110,34	0,63	113	2,66	N363	67,14	0,04	76,46	9,32
N324	111,94	1,29	112,49	0,55	N364	118,2	0,22	125,5	7,3
N325	96,33	0,96	117,44	21,11	N365	83,75	0,06	106,69	22,94
N326	106,63	0,53	112,48	5,85	N366	109,55	0,62	110,62	1,07
N328	86,4	0,22	112,28	27,43	N368	119,08	0,54	142,66	18,31
N329	81,37	0,33	111,32	24,92	N369	89,6	1,49	141,48	22,4
N330	75,47	18,76	101,22	19,85	N370	95,23	0,9	119,99	30,39
N331	84,59	0,72	101,02	25,55	N371	110,28	1,52	124,02	28,79
N332	79,98	0,47	101,22	16,63	N372	87,16	0,68	113	2,72
N333	77,97	0,51	100,42	20,44	N373	85,87	0,39	119,32	32,16
N334	78,79	0,57	104,65	26,68	N374	119,33	0,24	118,71	32,84
N335	118,5	0,17	104,62	25,83	N375	100,37	0,31	118,92	-0,41
N336	102,32	0,57	124,53	6,03	N376	87,12	17,78	113,05	12,68
N337	87,55	0,49	124,48	22,16	N377	122,26	0,3	118,73	31,61
N338	98,5	1,01	104,96	17,41	N378	129,27	17,49	129,23	6,97
N339	68,43	0,25	103,84	5,34	N379	94,86	0,12	131,1	1,83
N340	68,51	0,89	75,11	6,68	N380	95,23	0,2	123,51	28,65
N341	68,38	0,49	70,27	1,76	N381	94	0,46	122,6	27,37
N342	68,37	0,74	61,68	-6,7	N383	89,6	0,68	123,48	29,48

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020.

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	1/s	m/s	m/km	
P1	51,79	76,6	1,16	0,25	1,1	Ouvert
P2	275,93	150	-12,47	0,71	4,12	Ouvert
P3	308,52	96,8	0,56	0,08	0,11	Ouvert
P4	173,31	53,6	0,32	0,14	0,63	Ouvert
P5	209,89	53,6	0,38	0,17	0,88	Ouvert
P6	13,79	100	3,39	0,43	2,05	Ouvert
P7	151,4	80	0,28	0,06	0,08	Ouvert
P8	106,81	150	14,85	0,84	4,12	Ouvert
P9	156,49	76,6	-8,09	1,75	34,86	Ouvert
P10	337,88	100	-0,61	0,08	0,1	Ouvert
P11	176,31	76,6	2,08	0,45	3,09	Ouvert
P12	359,54	76,6	0,66	0,14	0,41	Ouvert
P13	305,32	100	4,08	0,52	2,85	Ouvert
P14	116,89	76,6	0,21	0,05	0,05	Ouvert
P15	183,81	150	15,9	0,9	4,66	Ouvert
P16	41,96	150	11,69	0,66	2,68	Ouvert
P17	162,77	76,6	0,3	0,07	0,11	Ouvert
P18	121,86	76,6	0,22	0,05	0,06	Ouvert
P19	152,6	76,6	-0,28	0,06	0,1	Ouvert
P20	256,88	80	0,47	0,09	0,22	Ouvert
P21	277,3	80	4,91	0,98	18,01	Ouvert
P22	737,7	80	1,35	0,27	1,51	Ouvert
P23	290,56	76,6	0,53	0,12	0,29	Ouvert
P24	846,73	76,6	1,55	0,34	1,84	Ouvert
P25	83,41	76,6	0,15	0,03	0,02	Ouvert
P26	348,97	76,6	0,64	0,14	0,39	Ouvert
P27	114,37	150	-0,21	0,01	0	Ouvert
P28	55,88	150	9,26	0,52	2,41	Ouvert
P29	34,21	150	8,42	0,48	2	Ouvert
P30	119,62	150	6,65	0,38	1,28	Ouvert
P31	66,9	76,6	-0,12	0,03	0,02	Ouvert
P32	118,02	76,6	-0,41	0,09	0,19	Ouvert
P33	94,53	76,6	0,17	0,04	0,03	Ouvert
P34	202,2	76,6	1,12	0,24	1,04	Ouvert
P35	262,94	76,6	0,22	0,05	0,06	Ouvert
P36	184,57	125	0,34	0,03	0,01	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	LPS	m/s	m/km	
P37	147,24	150	3,75	0,21	0,43	Ouvert
P38	153,86	150	0,28	0,02	0	Ouvert
P39	559,55	53,6	1,02	0,45	4,86	Ouvert
P40	37,61	100	10,14	1,29	23,32	Ouvert
P41	240,9	96,8	0,44	0,06	0,07	Ouvert
P42	275,37	96,8	0,5	0,07	0,09	Ouvert
P43	455,73	7,6	0,83	0,18	0,62	Ouvert
P44	464,45	76,6	0,85	0,18	0,64	Ouvert
P45	313,6	100	0,57	0,07	0,1	Ouvert
P46	430,26	73,6	0,79	0,19	0,68	Ouvert
P47	115,08	53,6	1,16	0,51	6	Ouvert
P48	89,71	53,6	-0,16	0,07	0,2	Ouvert
P49	268,36	53,6	0,49	0,22	1,35	Ouvert
P50	114,7	53,6	1,76	0,78	12,65	Ouvert
P51	99,06	53,6	0,18	0,08	0,24	Ouvert
P52	62,51	53,6	-0,3	0,13	0,57	Ouvert
P53	437,51	176,2	20,74	0,85	3,47	Ouvert
P54	169,82	76,6	0,31	0,07	0,11	Ouvert
P55	50,36	76,6	0,09	0,02	0,01	Ouvert
P56	261,7	76,6	4,82	1,05	13,78	Ouvert
P57	4	76,6	0,19	0,04	0,04	Ouvert
P58	41,59	200	-15,19	0,48	1,43	Ouvert
P59	111,54	100	3,89	0,5	2,62	Ouvert
P60	395,25	20	0,72	2,3	349,28	Ouvert
P61	70,01	53,6	0,13	0,06	0,1	Ouvert
P62	126,28	53,6	0,23	0,1	0,37	Ouvert
P63	151,86	53,6	-0,28	0,12	0,51	Ouvert
P64	131,41	53,6	0,24	0,11	0,4	Ouvert
P65	179,55	53,6	-0,33	0,15	0,67	Ouvert
P66	57,02	53,6	1,92	0,85	14,67	Ouvert
P67	313,13	53,6	0,57	0,25	1,76	Ouvert
P68	235,84	80	0,43	0,09	0,16	Ouvert
P69	207,26	150	-3,57	0,2	0,39	Ouvert
P70	173,95	80	0,32	0,06	0,1	Ouvert
P71	59,65	80	0,86	0,17	0,65	Ouvert
P72	76,42	53,6	0,14	0,06	0,13	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P73	375,5	100	2,27	0,29	1,3	Ouvert
P74	254,62	53,6	0,47	0,21	1,23	Ouvert
P75	149,88	53,6	0,27	0,12	0,49	Ouvert
P76	315,71	200	20,77	0,66	2,62	Ouvert
P77	60,83	20	0,11	0,35	11,02	Ouvert
P78	199,39	51,4	1,26	0,61	8,59	Ouvert
P79	53,7	51,4	1,65	0,8	13,82	Ouvert
P80	109,64	51,4	0,21	0,1	0,37	Ouvert
P81	23,34	150	-13,7	0,78	5,13	Ouvert
P82	163,27	150	-14,23	0,81	5,53	Ouvert
P83	118,08	150	-15,59	0,88	6,6	Ouvert
P84	192,33	150	-18,35	1,04	8,72	Ouvert
P85	4,75	150	-21,17	1,2	11,99	Ouvert
P86	169,71	63,8	0,31	0,1	0,27	Ouvert
P87	202,16	50	0,37	0,19	1,18	Ouvert
P88	110,12	100	0,2	0,03	0,01	Ouvert
P89	115,44	53,6	0,21	0,09	0,32	Ouvert
P90	366,77	100	12,42	1,58	34,71	Ouvert
P91	163,51	80	2,15	0,43	3,67	Ouvert
P92	66,56	80	1,11	0,22	1,04	Ouvert
P93	243,14	80	0,12	0,02	0,01	Ouvert
P94	67,1	100	1,68	0,21	0,74	Ouvert
P95	120,45	100	0,72	0,09	0,16	Ouvert
P96	229,59	150	0,42	0,02	0,01	Ouvert
P97	136,3	100	0,25	0,03	0,02	Ouvert
P98	252,09	150	29,33	1,66	22,76	Ouvert
P99	29,39	300	207,85	2,94	29,49	Ouvert
P100	474,22	300	204,95	2,9	28,68	Ouvert
P101	120,16	300	151,5	2,14	15,17	Ouvert
P102	55,67	300	129,83	1,84	11,63	Ouvert
P103	116,62	300	126,43	1,79	7,1	Ouvert
P104	115,7	300	124,83	1,77	10,77	Ouvert
P105	86,84	300	123,4	1,75	10,53	Ouvert
P106	127,65	300	122,44	1,73	10,37	Ouvert
P107	168,68	76,6	0,31	0,07	0,11	Ouvert
P108	59,32	53,6	0,11	0,05	0,06	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.	État
ID Arc	m	mm	l/s	m/s	m/km	
P109	202,96	76,6	0,37	0,08	0,15	Ouvert
P110	172,34	76,6	0,32	0,07	0,12	Ouvert
P111	44,55	76,6	4,89	1,06	14,1	Ouvert
P112	54,11	76,6	4,09	0,89	10,26	Ouvert
P113	140,58	53,6	0,22	0,1	0,35	Ouvert
P114	195,49	53,6	0,26	0,11	0,44	Ouvert
P115	204,59	53,6	0,37	0,17	0,84	Ouvert
P116	190,5	53,8	0,58	0,26	1,77	Ouvert
P117	244,58	53,6	0,45	0,2	1,15	Ouvert
P118	305,96	100	0,56	0,07	0,1	Ouvert
P119	173,41	53,6	0,32	0,14	0,64	Ouvert
P120	189,83	53,6	0,35	0,15	0,74	Ouvert
P121	182,43	53,8	0,34	0,15	0,7	Ouvert
P122	200,99	53,6	0,37	0,16	0,82	Ouvert
P123	390,93	150	0,72	0,04	0,02	Ouvert
P124	175,57	53,6	0,32	0,14	0,65	Ouvert
P125	173,75	53,6	0,32	0,14	0,64	Ouvert
P126	147,28	53,6	0,27	0,12	0,48	Ouvert
P127	370,94	53,6	0,68	0,3	2,37	Ouvert
P128	121,32	76,6	1,44	0,31	1,61	Ouvert
P129	204,45	34	0,37	0,41	7,26	Ouvert
P130	75,77	53,6	0,14	0,06	0,13	Ouvert
P131	501,24	53,6	0,92	0,41	4	Ouvert
P132	231,02	76,6	0,42	0,09	0,19	Ouvert
P133	454,9	176,2	-0,83	0,03	0,01	Ouvert
P134	13,23	150	-3,16	0,18	0,31	Ouvert
P135	170,07	125	-2,61	0,21	0,55	Ouvert
P136	239,65	150	-5,07	0,29	0,76	Ouvert
P137	210,72	125	1,36	0,11	0,16	Ouvert
P138	118,36	80	-0,22	0,04	0,05	Ouvert
P139	23,82	100	7,19	0,92	8,47	Ouvert
P140	38,82	73,6	2,12	0,5	3,85	Ouvert
P141	290,53	80	0,53	0,11	0,27	Ouvert
P142	347,36	51,4	0,86	0,41	4,35	Ouvert
P143	425,96	76,6	0,78	0,17	0,55	Ouvert
P144	53,19	150	13,14	0,74	4,73	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P145	47,21	150	13,92	0,79	5,29	Ouvert
P146	84,78	76,6	1,89	0,41	2,6	Ouvert
P147	289,81	76,6	0,53	0,12	0,28	Ouvert
P148	184,02	76,6	-0,34	0,07	0,13	Ouvert
P149	542,77	80	0,99	0,2	0,85	Ouvert
P150	190,92	150	0,35	0,02	0	Ouvert
P151	96,4	76,6	-0,18	0,04	0,03	Ouvert
P152	389,36	76,6	-1,76	0,38	2,31	Ouvert
P153	246,79	141	30,31	1,94	20,15	Ouvert
P154	169,88	141	28,14	1,8	17,61	Ouvert
P155	103,56	141	9,76	0,62	2,61	Ouvert
P156	92,12	141	8,96	0,57	2,24	Ouvert
P157	61,28	141	5,99	0,38	1,09	Ouvert
P158	65,24	141	3,67	0,24	0,46	Ouvert
P159	101	141	1,67	0,11	0,12	Ouvert
P160	142,61	141	3,52	0,23	0,43	Ouvert
P161	158,08	141	2,97	0,19	0,32	Ouvert
P162	301,59	141	0,55	0,04	0,02	Ouvert
P163	464,26	76,6	-0,85	0,18	0,64	Ouvert
P164	365,15	76,6	0,67	0,15	0,43	Ouvert
P165	189,54	80	-0,35	0,07	0,11	Ouvert
P166	155,34	53,6	0,28	0,13	0,53	Ouvert
P167	152,99	53,6	-0,28	0,12	0,51	Ouvert
P168	173,2	100	9,2	1,17	19,25	Ouvert
P169	57,34	76,6	-1,17	0,25	1,12	Ouvert
P170	55,75	76,6	-2,39	0,52	3,96	Ouvert
P171	149,45	53,6	0,27	0,12	0,49	Ouvert
P172	101,42	150	3,73	0,21	0,43	Ouvert
P173	388,25	150	2,03	0,11	0,14	Ouvert
P174	112,3	96,8	1,42	0,19	0,52	Ouvert
P175	170,64	76,6	0,31	0,07	0,12	Ouvert
P176	181,29	96,8	-0,33	0,04	0,04	Ouvert
P177	92,44	96,8	0,17	0,02	0,01	Ouvert
P178	300,77	51,4	0,55	0,27	2	Ouvert
P179	417,25	150	10,55	0,6	3,09	Ouvert
P180	167,58	150	0,31	0,02	0	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P181	384,72	76,6	0,7	0,15	0,46	Ouvert
P182	312,88	150	2,51	0,14	0,2	Ouvert
P183	112,83	53,6	0,21	0,09	0,31	Ouvert
P184	287,52	300	103,58	1,47	7,46	Ouvert
P185	82,83	100	0,15	0,02	0,01	Ouvert
P186	606,71	176,2	-1,11	0,05	0,02	Ouvert
P187	165,54	150	2,26	0,13	0,17	Ouvert
P188	56,87	51,4	1,1	0,53	6,67	Ouvert
P189	401,5	53,6	-0,74	0,33	2,72	Ouvert
P190	310,31	150	0,57	0,03	0,01	Ouvert
P191	120,8	100	13,11	1,67	38,58	Ouvert
P192	38,19	150	-19,86	1,12	10,58	Ouvert
P193	72,49	150	-23,02	1,3	14,14	Ouvert
P194	177,35	53,6	0,32	0,14	0,66	Ouvert
P195	146,29	53,6	-0,27	0,12	0,47	Ouvert
P196	203,11	150	7,98	0,45	1,81	Ouvert
P197	199,1	100	-0,36	0,05	0,05	Ouvert
P198	60,03	53,6	-0,11	0,05	0,07	Ouvert
P199	233,67	53,6	-0,43	0,19	1,06	Ouvert
P200	144,93	53,6	0,27	0,12	0,47	Ouvert
P201	312,24	176,2	51,18	2,1	17,82	Ouvert
P202	125,2	150	36,73	2,08	35,45	Ouvert
P203	290,85	96,8	-0,15	0,02	0,01	Ouvert
P204	39,51	150	33,74	1,91	29,98	Ouvert
P205	286,08	100	-0,52	0,07	0,09	Ouvert
P206	233,78	53,6	0,43	0,19	1,06	Ouvert
P207	83,92	150	-4,62	0,26	0,64	Ouvert
P208	329,86	53,6	0,6	0,27	1,93	Ouvert
P209	290,04	53,6	0,72	0,32	2,6	Ouvert
P210	301,46	76,6	0,55	0,12	0,3	Ouvert
P211	375,76	100	5,46	0,7	6,98	Ouvert
P212	356,4	150	-11,97	0,68	2,8	Ouvert
P213	212,86	150	28,55	1,62	21,57	Ouvert
P214	189,51	53,6	0,35	0,15	0,74	Ouvert
P215	129,02	80	0,24	0,05	0,06	Ouvert
P216	101,23	53,6	-1,09	0,48	5,41	Ouvert
P217	25,03	96,8	10,92	1,48	19,44	Ouvert
P218	32,58	96,8	-7,96	1,08	11,01	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P219	491,17	53,6	0,9	0,4	3,86	Ouvert
P220	311,06	53,6	0,57	0,25	1,74	Ouvert
P221	153,82	76,6	7,52	1,63	30,55	Ouvert
P222	215,09	76,6	4,11	0,89	10,33	Ouvert
P223	224,06	53,6	0,41	0,18	0,99	Ouvert
P224	429,89	100	-0,79	0,1	0,18	Ouvert
P225	234,8	63,8	1,09	0,34	2,36	Ouvert
P226	148,34	53,6	0,27	0,12	0,49	Ouvert
P227	894,22	100	2,47	0,31	1,22	Ouvert
P228	134,44	150	44,75	2,53	30,38	Ouvert
P229	132,7	150	22,62	1,28	13,66	Ouvert
P230	296,19	150	3,18	0,18	0,32	Ouvert
P231	7,51	76,6	2,62	0,57	4,64	Ouvert
P232	138,24	76,6	2,35	0,51	3,84	Ouvert
P233	251,44	76,6	1,08	0,23	0,98	Ouvert
P234	7,79	150	-47,06	2,66	57,85	Ouvert
P235	181,85	53,6	0,33	0,15	0,69	Ouvert
P236	74,32	150	0,95	0,05	0,03	Ouvert
P237	122,13	90	0,22	0,04	0,02	Ouvert
P238	92,19	100	0,17	0,02	0,01	Ouvert
P239	170,26	176,2	-19,09	0,78	2,99	Ouvert
P240	598,44	100	4,22	0,54	4,09	Ouvert
P241	106,14	150	15,79	0,89	6,76	Ouvert
P242	148,39	250	101,35	2,06	18,4	Ouvert
P243	104,63	250	54,09	1,1	5,35	Ouvert
P244	163,52	250	52,13	1,06	4,98	Ouvert
P245	171,49	200	12,97	0,41	1,06	Ouvert
P246	254,7	80	-4,81	0,96	17,26	Ouvert
P247	36,37	176,2	13,58	0,56	1,62	Ouvert
P248	49,4	150	12,27	0,69	4,14	Ouvert
P249	290,49	150	1,62	0,09	0,09	Ouvert
P250	175,74	150	3,61	0,2	0,39	Ouvert
P251	352,65	200	27,36	0,87	4,47	Ouvert
P252	70,43	150	-21,64	1,22	12,52	Ouvert
P253	0,71	150	-20,86	1,18	11,65	Ouvert
P254	31,2	150	-19,18	1,09	9,89	Ouvert
P255	89,93	150	-18,32	1,04	9,04	Ouvert
P256	122,79	150	-17,24	0,98	8,03	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P257	18,81	150	-13,96	0,79	5,32	Ouvert
P258	421,98	150	-12,73	0,72	4,45	Ouvert
P259	342,33	76,6	3,3	0,72	7,01	Ouvert
P260	215,04	150	-16,12	0,91	7,04	Ouvert
P261	247,51	53,6	0,45	0,2	1,17	Ouvert
P262	140,88	53,6	0,55	0,24	1,63	Ouvert
P263	134,42	150	-11,14	0,63	3,44	Ouvert
P264	168,05	150	-9,78	0,55	2,67	Ouvert
P265	145,89	53,6	0,27	0,12	0,47	Ouvert
P266	78,49	150	-8,8	0,5	2,18	Ouvert
P267	324,84	53,6	0,59	0,26	1,88	Ouvert
P268	135,36	150	-3,99	0,23	0,48	Ouvert
P269	10,03	150	-2,98	0,17	0,28	Ouvert
P270	88,39	150	0,16	0,01	0	Ouvert
P271	46,16	51,4	0,81	0,39	3,97	Ouvert
P272	195,92	51,4	-1,3	0,63	9,08	Ouvert
P273	97,23	51,4	0,18	0,09	0,29	Ouvert
P274	159,56	51,4	0,29	0,14	0,67	Ouvert
P275	2,98	90	1,8	0,28	1,1	Ouvert
P276	8,62	90	1,23	0,19	0,57	Ouvert
P277	110,83	90	3,25	0,51	3,15	Ouvert
P278	40,78	90	3,53	0,72	6,72	Ouvert
P279	54,72	150	-6,08	0,34	1,08	Ouvert
P280	6,89	150	3,42	0,19	0,36	Ouvert
P281	116,5	80	2,37	0,47	4,41	Ouvert
P282	277,6	150	16,59	0,94	7,45	Ouvert
P283	124,18	150	18	1,02	8,74	Ouvert
P284	175,53	150	19,48	1,1	10,19	Ouvert
P285	161,99	150	6,46	0,37	1,21	Ouvert
P286	160,56	150	0,6	0,03	0,02	Ouvert
P287	82,64	150	-0,03	0	0	Ouvert
P288	283,28	53,6	0,34	0,15	0,7	Ouvert
P289	288,78	150	0,53	0,03	0,01	Ouvert
P290	61,03	200	-15,64	0,5	1,51	Ouvert
P291	26	200	-16,26	0,52	1,63	Ouvert
P292	34,08	200	-20,46	0,65	2,54	Ouvert
P293	202,69	100	2,83	0,36	1,98	Ouvert
P294	36,94	150	34,53	1,95	31,39	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P295	120,54	100	0,22	0,03	0,01	Ouvert
P296	181,38	53,6	0,33	0,15	0,69	Ouvert
P297	122,55	150	30,42	1,72	24,46	Ouvert
P298	192,56	150	32,45	1,84	27,76	Ouvert
P299	396	76,6	0,72	0,16	0,49	Ouvert
P300	254,29	150	0,47	0,03	0,01	Ouvert
P301	188,58	150	-10,48	0,59	3,24	Ouvert
P302	70,09	150	-9,27	0,52	2,41	Ouvert
P303	9,44	150	-7,29	0,41	1,52	Ouvert
P304	131,63	76,6	-0,88	0,19	0,68	Ouvert
P305	114,15	76,6	-0,21	0,05	0,05	Ouvert
P306	140,3	150	-5,89	0,33	1,01	Ouvert
P307	217,8	150	-4,97	0,28	0,73	Ouvert
P308	87,34	150	-3,27	0,19	0,34	Ouvert
P309	412,61	76,6	-9,13	1,98	43,36	Ouvert
P310	140,23	100	-1,3	0,17	0,46	Ouvert
P311	19,81	76,6	2,04	0,44	2,99	Ouvert
P312	93,48	51,4	0,17	0,08	0,27	Ouvert
P313	108,56	96,8	-0,88	0,12	0,23	Ouvert
P314	133,81	53,6	0,24	0,11	0,41	Ouvert
P315	243,17	150	20,4	1,15	11,15	Ouvert
P316	77,24	96,8	21,95	2,98	68,9	Ouvert
P317	41,77	96,8	-3,09	0,42	2,03	Ouvert
P318	4,95	160	7,12	0,35	0,81	Ouvert
P319	40,78	150	6,02	0,34	1,06	Ouvert
P320	267,83	150	0,49	0,03	0,01	Ouvert
P321	132,73	150	-5,1	0,29	0,77	Ouvert
P322	222,54	150	-6,47	0,37	1,21	Ouvert
P323	126,46	100	-3,65	0,46	3,21	Ouvert
P324	136,3	76,6	0,25	0,05	0,08	Ouvert
P325	205,01	53,6	1,36	0,6	8,04	Ouvert
P326	6,88	200	4,39	0,14	0,14	Ouvert
P327	536,09	96,8	-2,55	0,35	1,45	Ouvert
P328	224,31	96,8	-4,91	0,67	4,63	Ouvert
P329	82,64	76,6	3,28	0,71	6,94	Ouvert
P330	402,94	34	0,74	0,81	23,82	Ouvert
P331	127,06	34	0,23	0,26	3,19	Ouvert
P332	55,15	96,8	-7,16	0,97	9,1	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P333	7,37	73,6	-2,84	0,67	6,48	Ouvert
P334	40,83	73,6	1,43	0,34	1,94	Ouvert
P335	100	150	-6,91	0,39	1,37	Ouvert
P336	3,65	150	-17,44	0,99	7,9	Ouvert
P337	7,3	100	11,07	1,41	27,69	Ouvert
P338	100	150	14,56	0,82	5,78	Ouvert
P339	10,11	100	-1,24	0,16	0,36	Ouvert
P340	100	150	12,94	0,73	4,59	Ouvert
P341	198,51	100	0,36	0,05	0,05	Ouvert
P342	132,35	100	-1,37	0,17	0,5	Ouvert
P343	180,08	100	1,13	0,14	0,36	Ouvert
P344	3,98	150	4,36	0,25	0,47	Ouvert
P345	29,84	90	4.2	0.2	0	Ouvert
P346	1,2	96,8	4,67	0,63	4,24	Ouvert
P347	0,57	96,8	-3,54	0,48	2,58	Ouvert
P348	3,54	150	9,8	0,55	2,68	Ouvert
P349	223,38	80	0,41	0,08	0,17	Ouvert
P350	275,75	327,4	120,53	1,43	4,26	Ouvert
P351	8,77	150	-16,07	0,91	7	Ouvert
P352	15,57	150	2,84	0,16	0,22	Ouvert
P353	788,72	257,8	118,31	2,27	13,08	Ouvert
P354	186,84	53,6	0,34	0,15	0,72	Ouvert
P355	361,15	100	0,66	0,08	0,13	Ouvert
P356	177,78	73,6	0,85	0,2	0,78	Ouvert
P357	143,18	53,6	0,26	0,12	0,46	Ouvert
P358	3,89	150	-0,81	0,05	0,03	Ouvert
P359	270,11	34	0,49	0,54	11,81	Ouvert
P360	186,33	176,2	4,23	0,17	0,2	Ouvert
P361	12,19	150	-0,02	0	0	Ouvert
P362	61,16	53,8	0,12	0,05	0,08	Ouvert
P363	0,11	160	-30,76	1,53	17,93	Ouvert
P364	0,15	300	182,48	2,58	22,76	Ouvert
P365	0,61	176,2	0,83	0,03	0,02	Ouvert
P366	0,63	150	-2,33	0,13	0,18	Ouvert
P367	100	76,6	-1,52	0,33	1,78	Ouvert
P368	100	300	-123,74	1,75	10,58	Ouvert
P369	9,23	150	6,14	0,35	1,09	Ouvert
P370	12,09	100	2,11	0,27	1,13	Ouvert

Tableau III.8: Résultat des tronçons cas pointe plus incendie, horizon 2020(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P371	1,63	300	207,9	2,94	29,5	Ouvert
P372	3,13	150	4,04	0,23	0,42	Ouvert
P373	0,36	300	151,28	2,14	15,74	Ouvert
P374	16,61	150	-14,03	0,79	5,37	Ouvert
P375	50,79	53,6	0,09	0,04	0,05	Ouvert
P376	626,08	327,4	121,07	1,44	4,3	Ouvert
P377	540,43	257,8	119,04	2,28	13,23	Ouvert
P378	349,52	163,6	30,57	1,45	9,99	Ouvert
P379	130,43	130,8	0,24	0,02	0	Ouvert
P380	127	76,6	3,28	0,71	6,91	Ouvert
P381	17,14	200	9,56	0,3	0,59	Ouvert
P382	4,47	96,8	2,36	0,32	1,27	Ouvert
P383	83,21	300	182,63	2,58	22,83	Ouvert
P384	40,05	150	49,19	2,78	63,15	Ouvert
P385	39,68	257,8	116,79	2,24	12,77	Ouvert
P386	40,97	150	-29,01	1,64	22,27	Ouvert
P387	5,41	150	56,33	3,19	82,56	Ouvert
P388	23,52	257,8	31,25	0,6	1,17	Ouvert
P389	57,65	96,8	7,21	0,98	9,22	Ouvert
P390	10,45	200	-29,43	0,94	5,16	Ouvert

III.4.4.4 Interprétation des résultats de la simulation pointe plus incendie, horizon 2020 :

La simulation en heure de pointe du réseau existant en cas de pointe plus incendie présente les mêmes anomalies observées dans le cas de pointe avec des pressions plus basses et de faibles vitesses dans la plupart des tronçons.

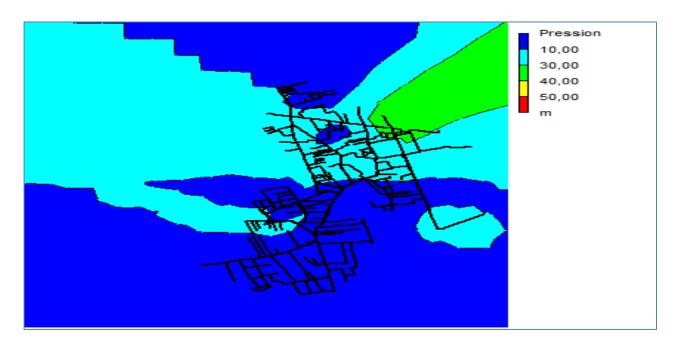


Figure III.8 : Etat de pressions aux nœuds à l'heure de pointe cas de pointe plus incendie, horizon2020.

> Résultats de la simulation cas de pointe, horizon 2050

Tableau III.9: résultat aux nœuds cas de pointe, horizon 2050.

Nœud	Altitude	Demande	Charge	Pression	Nœud	Altitude	Demande	Charge	Pression
	m	I/s	m	m.C.E		m	I/s	m	m.C.E
N1	90,27	0,69	94,26	3,99	N38	118	1,16	122,16	4,16
N2	117,06	2,49	117,73	0,67	N39	118,01	5,37	118,74	0,73
N3	117,69	1,55	117,45	-0,24	N40	114,05	5,04	89,24	-24,81
N4	102,55	1,25	98,24	-4,31	N41	104,85	3,34	82,97	-21,88
N5	101,75	1,49	97,09	-4,66	N42	118,51	1,31	117,05	-1,46
N6	102,42	1,4	111,7	9,28	N43	123,14	3,83	76,22	-46,92
N7	108,4	0,78	72,55	-35,85	N44	142,37	0,66	85,95	-56,42
N8	111,72	1,54	70,67	-41,05	N45	136,13	0,38	84,5	-51,63
N9	114,33	0,95	69,78	-44,55	N46	126,18	1,58	83,93	-42,25
N10	100,75	0,63	96,85	-3,9	N47	127,32	0,52	84,19	-43,13
N11	100,72	2,21	96,68	-4,04	N48	127,65	2,66	84,19	-43,46
N12	102,93	1,57	99,34	-3,59	N49	127,31	1,24	84,18	-43,13
N13	103,9	0,68	99,28	-4,62	N50	127,5	1,61	84,18	-43,32
N14	90,17	1,65	94,62	4,45	N51	127,44	0,54	84,23	-43,21
N15	88,27	1,75	92,97	4,7	N52	133,02	0,3	83,64	-49,38
N16	96,17	0,95	88,6	-7,57	N53	131,75	2,94	83,64	-48,11
N17	68,93	1,4	76,56	7,63	N54	131,92	1,91	83,95	-47,97
N18	71,93	2,57	77,11	5,18	N55	131,58	0,43	83,93	-47,65
N19	75,4	1,93	73,05	-2,35	N56	132,8	0,54	83,57	-49,23
N20	100,66	1,53	88,39	-12,27	N57	123,45	0,83	84,17	-39,28
N21	96,29	1,57	88,58	-7,71	N60	121,86	2,51	84,71	-37,15
N22	135,8	2,18	86,64	-49,16	N61	122,71	2,13	85,29	-37,42
N23	135,92	2,97	83,91	-52,01	N62	122,9	0,7	85,29	-37,61
N24	140,24	1,63	83,19	-57,05	N63	115,71	1,85	116,83	1,12
N25	132,88	2,59	90,99	-41,89	N64	115,62	0,65	115,84	0,22
N26	135,29	5,74	83,94	-51,35	N65	129,75	3,17	98,98	-30,77
N27	137,66	0,53	83,9	-53,76	N66	124,85	2,53	85,51	-39,34
N28	135,76	1,47	86,7	-49,06	N67	106,31	1,25	100,32	-5,99
N29	135,78	2,97	85,03	-50,75	N68	105,86	1,65	99,72	-6,14
N30	134,53	2,01	84,59	-49,94	N69	120,91	2,33	99,67	-21,24
N31	134,46	2,45	84,52	-49,94	N70	125,98	1,09	99,59	-26,39
N.32	136,09	1,19	84,79	-51,3	N71	120,77	1,54	92,09	-28,68
N.33	132,18	0,74	84,71	-47,47	N72	126,18	1,25	91,98	-34,2
N.34	138,53	0,55	83,87	-54,66	N73	120,72	2,5	92,17	-28,55
N.35	138,61	0,69	83,22	-55,39	N74	111,67	2,06	90,79	-20,88
N.36	141,9	2,45	83,29	-58,61	N75	118,84	2,85	89,22	-29,62
N37	118,12	2,63	122,45	4,33	N76	110,15	2,1	87,76	-22,39

Tableau III.9 : résultat aux nœuds cas de pointe, horizon 2050 (suite)

Nœud	Altitude	Deman de	Charge	Pressio n	Nœud	Altitude	Deman de	Charge	Pressio n
	m	I/s	m	m.C.E		m	l/s	m	m.C.E
N77	114,05	2,1	88,36	-25,69	N114	86,52	2,49	88,61	2,09
N78	114,05	0,84	114,69	0,64	N115	87,21	1,42	85,92	-1,29
N79	119,53	1,42	122,28	2,75	N116	86,9	2,12	89,59	2,69
N80	118,69	4,02	87,23	-31,46	N117	86,02	1,07	89,41	3,39
N81	127,6	1,95	85,8	-41,8	N118	87,5	1,39	99,39	11,89
N82	95,4	1,58	85,99	-9,41	N119	87,16	1	98,96	11,8
N83	98,65	0,41	82,31	-16,34	N120	85,75	0,79	98,87	13,12
N84	95,41	2,68	82,4	-13,01	N121	88,64	1,72	95,51	6,87
N85	96,56	2,64	91,91	-4,65	N122	87,58	1,2	95,32	7,74
N86	96,5	1,21	90,16	-6,34	N123	87,66	0,35	95,26	7,6
N87	91,35	1,38	79,96	-11,39	N124	84,21	2,33	85,4	1,19
N88	91,62	2,44	72,67	-18,95	N125	83,32	3,65	82,64	-0,68
N89	92,2	0,45	72,55	-19,65	N126	82,58	0,52	74,81	-7,77
N90	87,48	0,9	78,47	-9,01	N127	88,82	1,33	91,15	2,33
N91	87,8	1	99,11	11,31	N128	88,65	1,15	89,63	0,98
N92	87,19	1,35	96,21	9,02	N129	88,2	0,99	90,13	1,93
N93	101,91	3,49	105,59	3,68	N130	87,47	0,68	89,78	2,31
N94	93,82	3,41	98,83	5,01	N131	118,2	1,68	118,76	0,56
N95	139,78	1,9	82,08	-57,7	N132	111,49	3,54	116,66	5,17
N96	136,36	0,77	81,99	-54,37	N133	87,73	1,85	91,64	3,91
N97	124,65	0,25	93,46	-31,19	N134	87,73	0,28	87,02	-0,71
N98	124,89	0,23	93,45	-31,44	N135	80,27	2,05	77,51	-2,76
N99	122,94	3,24	105,59	-17,35	N136	78,38	1,11	71,37	-7,01
N100	124,22	3,33	93,46	-30,76	N137	77,7	1,15	70,84	-6,86
N101	93,32	2,33	96,61	3,29	N138	77,88	0,94	67,14	-10,74
N102	92,4	0,78	96,6	4,2	N139	76,85	1,47	65,27	-11,58
N103	91,16	0,78	96,58	5,42	N140	76,48	0,5	65,09	-11,39
N104	90,14	2,02	95,11	4,97	N141	102,95	1,31	103,53	0,58
N105	83,93	3,21	82,69	-1,24	N142	102,94	2,31	100,84	-2,1
N106	84,3	1,79	-1069,3	-1153,6	N143	102,89	1,06	99,37	-3,52
N107	91,8	0,32	96,56	4,76	N144	102,58	1,63	98,25	-4,33
N108	91,24	0,96	96,59	5,35	N145	85,15	1,98	77,98	-7,17
N109	90,46	0,57	96,37	5,91	N146	84,44	0,77	77,77	-6,67
N110	90,17	0,59	94,87	4,7	N147	83,37	1,57	77,65	-5,72
N111	87,57	0,81	90,67	3,1	N148	80,89	0,91	76,25	-4,64
N112	87,67	1,16	91,26	3,59	N149	83,29	1,29	77,64	-5,65
N113	86,89	1,72	92,83	5,94	N150	82,84	0,5	77,63	-5,21

Tableau III.9 : résultat aux nœuds cas de pointe, horizon 2050 (suite)

Nœud	Altitude	Deman de	Charge	Pressio n	Noeud	Altitude	Deman de	Charge	Pressio n
	m	l/s	m	m.C.E		m	l/s	m	m.C.E
N151	83,75	2,52	85,11	1,36	N188	89,01	1,38	93,45	4,44
N152	83,01	0,52	84,94	1,93	N189	87,66	1,33	89,38	1,72
N153	98,99	1,81	94,81	-4,18	N190	86,74	0,78	88,85	2,11
N154	97,94	1,52	94,42	-3,52	N191	86,25	1,82	87,5	1,25
N155	95,48	0,3	94,4	-1,08	N192	85,07	0,86	86,83	1,76
N156	102,34	2,52	103,58	1,24	N193	104,83	2,64	86,79	-18,04
N157	102,13	1,61	103,3	1,17	N194	105,45	0,82	86,19	-19,26
N158	101,22	1,16	103,2	1,98	N195	80,3	0,84	76,34	-3,96
N159	98,31	1,04	100,83	2,52	N.196	76,6	0,91	75,55	-1,05
N160	103,3	5,08	111,99	8,69	N197	105,24	3,74	110,27	5,03
N161	99,91	0,62	111,98	12,07	N198	102,66	1,77	110,23	7,57
N162	103,75	2,28	107,36	3,61	N199	67,5	1,19	72,21	4,71
N163	100,44	2,34	97,08	-3,36	N200	67,11	0,79	71,67	4,56
N164	129,16	4,73	142,46	13,3	N201	66,83	0,4	73,84	7,01
N165	120,58	0,54	121,12	0,54	N202	66,66	0,79	73,31	6,65
N166	117,7	2,19	118,08	0,38	N203	66,31	1,03	73,09	6,78
N167	113,94	1,83	115,66	1,72	N204	66,22	0,67	72,76	6,54
N168	112,54	1,67	113,87	1,33	N205	65,68	1,86	72,7	7,02
N169	110,08	3,24	112,7	2,62	N206	65,57	1,68	68,4	2,83
N170	98,41	0,76	103,21	4,8	N207	70,72	2,74	50,21	-20,51
N171	100,4	2,01	99,08	-1,32	N208	69,91	2,04	49,25	-20,66
N172	99,94	0,27	99,06	-0,88	N209	69,82	0,92	41,99	-27,83
N173	97,38	0,92	94,27	-3,11	N210	71,17	1,69	53,1	-18,07
N174	111,83	0,78	115,88	4,05	N211	69,62	0,34	53,05	-16,57
N175	107,8	1,6	115,76	7,96	N212	80,1	2,63	75,36	-4,74
N176	107,53	0,54	113,08	5,55	N213	73,91	2,27	65,44	-8,47
N177	107,14	1,45	110,55	3,41	N214	105,26	1,04	100,11	-5,15
N178	109,99	0,64	110,13	0,14	N215	95,07	5,64	107,25	12,18
N179	111,62	0,88	112,35	0,73	N216	87,8	1,58	99,1	11,3
N180	105,67	1,44	105,86	0,19	N217	118,79	1,87	87,78	-31,01
N181	109,23	0,93	105,03	-4,2	N218	118,05	0,54	95,51	-22,54
N182	102,57	2,22	91,36	-11,21	N219	120,58	1,42	95,55	-25,03
N183	104,35	0,28	89,73	-14,62	N220	66,94	0,8	76,46	9,52
N184	102,97	1,14	89,76	-13,21	N221	104,83	1,57	105,55	0,72
N185	102,19	3,38	98,7	-3,49	N222	110,15	1,31	105,13	-5,02
N186	101,88	1,11	97,34	-4,54	223	142,35	1,37	86,12	-56,23
N187	89,89	2,03	93,61	3,72	N224	126	1,93	83,88	-42,12

Tableau III.9: résultat aux nœuds cas de pointe, horizon 2050 (suite)

Noeud	Altitude	Demand e	Charge	Pression	Noeud	Altitude	Demand e	Charge	Pression
	m	l/s	m	m.C.E		M	l/s	m	m.C.E
N225	129,63	0,6	99,56	-30,07	N264	99,28	2,93	99,42	0,14
N226	129,92	2,53	98,46	-31,46	N265	80,05	0,9	82,59	2,54
N227	125	1,31	98,07	-26,93	N266	82,29	0,27	74,81	-7,48
N228	126,66	0,83	98,35	-28,31	N267	81,52	1,38	74,84	-6,68
N229	119,91	2,45	139,9	19,99	N268	80,6	1,06	81,44	0,84
N230	116,35	3,06	88,98	-27,37	N269	78,65	1,62	74,47	-4,18
N231	115,96	0,86	88,98	-26,98	N270	80,19	0,66	74,15	-6,04
N232	114,66	0,44	88,96	-25,7	N271	94,86	2,28	107,44	12,58
N233	121,17	3,62	107,42	-13,75	N272	84,93	2,14	100,39	15,46
N234	119,49	2,67	90,51	-28,98	N273	92,2	1,2	96,59	4,39
N235	119,33	1,36	87,48	-31,85	N274	80,75	0,37	98,8	18,05
N236	118,41	1,36	87,21	-31,2	N275	85,62	1,81	98,81	13,19
N237	110,44	2,1	89,05	-21,39	N276	71,21	1,29	72,92	1,71
N238	114,31	1,65	87,61	-26,7	N277	87,25	0,59	101,66	14,41
N239	112,07	0,86	115,54	3,47	N.278	108,58	1,93	73,07	-35,51
N240	111,64	0,7	113,48	1,84	N279	108,35	1,06	71,87	-36,48
N241	107,21	0,69	99,34	-7,87	N280	107,83	2,12	73,12	-34,71
N242	106,43	1,5	106,75	0,32	N281	105,58	1,49	70,02	-35,56
N243	109,49	0,68	106,4	-3,09	N282	111,59	1,83	70,71	-40,88
N244	95,53	1,63	103,03	7,5	N283	108,9	0,23	66,99	-41,91
N245	98,79	0,77	94,71	-4,08	N284	109,51	0,69	72,47	-37,04
N246	101,03	0,82	99,05	-1,98	N285	112,76	1,36	74,67	-38,09
N247	99,9	0,42	99,08	-0,82	N286	108,88	0,45	73,22	-35,66
N248	108,6	1,36	109,76	1,16	N287	110,15	1,83	126,41	16,26
N249	113,45	1,74	106,55	-6,9	N288	105,85	1,01	77,89	-27,96
N250	117,9	0,84	117,08	-0,82	N289	108,35	0,86	111,19	2,84
N251	124,64	0,51	105,42	-19,22	N290	85,71	0,58	95,28	9,57
N252	101,01	1,99	96,31	-4,7	N291	66,96	0,29	74,05	7,09
N253	99,41	0,37	96,31	-3,1	N292	76,56	2,65	73,4	-3,16
N254	95,92	2,74	107,2	11,28	N293	72,85	2,22	64,03	-8,82
N255	95,54	1,82	101,24	5,7	N294	77,34	2,79	73,57	-3,77
N256	102,45	3,03	106,6	4,15	N295	81,34	1,41	70,93	-10,41
N257	102,36	3,51	96,55	-5,81	N296	71,71	1,99	64,38	-7,33
N258	97,58	1,4	96,53	-1,05	N297	101,73	1,01	95,25	-6,48
N259	94,68	1,08	100,24	5,56	N298	93,27	1,94	107,54	14,27
N260	91,91	1,13	96,6	4,69	N299	108,56	2,69	73,25	-35,31
N261	87,73	0,8	90,61	2,88	N300	113,13	2,69	70,51	-42,62
N262	93,74	0,66	98,5	4,76	N301	111,64	0,72	70,7	-40,94
N263	98,75	2,67	99,13	0,38	N302	112,8	0,67	70,35	-42,45

Tableau III.9: résultat aux nœuds cas de pointe, horizon 2050 (suite)

Nœud	Altitud e	Deman de	Charge	Pressio n	Nœud	Altitud e	Deman de	Charge	Pressio n
ID	m	l/s	m	m.C.E		m	l/s	m	m.C.E
N303	108,36	0,06	73,07	-35,29	N343	100,48	4,37	107,96	7,48
N304	106,59	2,51	100,51	-6,08	N344	108,76	1,4	111,85	3,09
N305	103,62	0,82	99,91	-3,71	N345	108,88	2,43	111,85	2,97
N306	101,97	1,65	96,93	-5,04	N346	110,13	1,29	78,34	-31,79
N307	101,47	0,35	97,08	-4,39	N347	98,32	3,39	103,29	4,97
N308	113,59	0,55	70,66	-42,93	N348	115,48	1,45	116,15	0,67
N309	103,13	0,42	111,99	8,86	N349	68,23	2,15	61,41	-6,82
N310	101,59	4,31	96,53	-5,06	N350	108,58	0,59	73,07	-35,51
N311	99,28	2,61	99,83	0,55	N351	120,58	0,38	121,12	0,54
N312	91,36	4,33	96,6	5,24	N352	120,57	1,12	121,11	0,54
N313	88,84	1,12	91,17	2,33	N353	120,57	0	121,11	0,54
N314	77,65	3,86	82,78	5,13	N354	120,58	0	121,12	0,54
N315	93,37	1,12	80,99	-12,38	N355	87,9	0	99,1	11,2
N316	95,12	2	83,41	-11,71	N356	87,9	2,06	107,23	19,33
N317	92,71	1,77	80,91	-11,8	N357	87,9	0	99,1	11,2
N318	93,38	0,66	80,58	-12,8	N358	87,9	2,06	99,1	11,2
N319	90,75	1,47	69,69	-21,06	N359	129,22	0,01	143,67	14,45
N320	78,92	0,4	77,51	-1,41	N360	129,22	0,13	143,67	14,45
N321	77,39	0,44	67,01	-10,38	N361	108,88	0,94	111,86	2,98
N322	75,71	0,72	64,76	-10,95	N362	108,88	0,94	111,86	2,98
N323	110,34	1,57	78,08	-32,26	N363	67,14	0,11	76,46	9,32
N324	111,94	3,2	75,12	-36,82	N364	118,2	0,54	118,77	0,57
N325	96,33	2,38	100,03	3,7	N365	83,75	0,16	85,27	1,52
N326	106,63	1,31	75,1	-31,53	N366	109,55	1,54	67,01	-42,54
N328	86,4	0,55	92,82	7,97	N368	119,08	1,32	140,65	16,3
N329	81,37	0,82	88,02	1,62	N369	89,6	3,69	138,61	19,53
N330	75,47	4,35	79,39	-1,98	N370	95,23	2,22	101,66	12,06
N331	84,59	1,79	78,45	2,98	N371	110,28	3,75	108,99	13,76
N332	79,98	1,15	79,38	-5,21	N372	87,16	1,68	78,1	-32,18
N333	77,97	1,27	75,28	-4,7	N373	85,87	0,97	98,93	11,77
N334	78,79	1,4	82,43	4,46	N374	119,33	0,61	95,96	10,09
N335	118,5	0,42	82,31	3,52	N375	100,37	0,76	84,7	-34,63
N336	102,32	1,42	115,97	-2,53	N376	87,12	1,93	105,53	5,16
N337	87,55	1,21	115,75	13,43	N377	122,26	0,74	96,04	8,92
N338	98,5	2,5	78,52	-9,03	N378	129,27	3,7	123,96	1,7
N339	68,43	0,62	103,15	4,65	N379	94,86	0,29	103,15	-26,12
N340	68,51	2,19	69,65	1,22	N380	95,23	0,5	108,15	13,29
N341	68,38	1,22	45,69	-22,82	N381	94	1,15	106,62	11,39
N342	68,37	1,82	2,35	-66,03	N383	89,6	1,69	108,1	14,1

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050.

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P1	51,79	76,6	2,86	0,62	5,43	Ouvert
P2	275,93	150	12,59	0,71	4,19	Ouvert
Р3	308,52	96,8	1,4	0,19	0,5	Ouvert
P4	173,31	53,6	0,78	0,35	3,04	Ouvert
P5	209,89	53,6	0,95	0,42	4,25	Ouvert
P6	13,79	100	7,36	0,94	12,46	Ouvert
P7	151,4	80	0,68	0,14	0,43	Ouvert
P8	106,81	150	24,11	1,36	15,48	Ouvert
P9	156,49	76,6	-2,25	0,49	3,52	Ouvert
P10	337,88	100	-1,53	0,19	0,57	Ouvert
P11	176,31	76,6	5,15	1,12	15,5	Ouvert
P12	359,54	76,6	1,63	0,35	2	Ouvert
P13	305,32	100	10,1	1,29	23,1	Ouvert
P14	116,89	76,6	0,53	0,11	0,28	Ouvert
P15	183,81	150	18,39	1,04	9,11	Ouvert
P16	41,96	150	7,99	0,45	1,81	Ouvert
P17	162,77	76,6	0,74	0,16	0,5	Ouvert
P18	121,86	76,6	0,55	0,12	0,3	Ouvert
P19	152,6	76,6	-0,69	0,15	0,45	Ouvert
P20	256,88	80	1,16	0,23	1,14	Ouvert
P21	277,3	80	12,13	2,41	106,4	Ouvert
P22	737,7	80	3,34	0,66	8,5	Ouvert
P23	290,56	76,6	1,31	0,29	1,38	Ouvert
P24	846,73	76,6	3,83	0,83	9,12	Ouvert
P25	83,41	76,6	0,38	0,08	0,16	Ouvert
P26	348,97	76,6	1,58	0,34	1,9	Ouvert
P27	114,37	150	-0,52	0,03	0,01	Ouvert
P28	55,88	150	1,98	0,11	0,13	Ouvert
P29	34,21	150	-0,1	0,01	0	Ouvert
P30	119,62	150	-3,62	0,2	0,4	Ouvert
P31	66,9	76,6	-0,3	0,07	0,11	Ouvert
P32	118,02	76,6	-1,87	0,41	2,56	Ouvert
P33	94,53	76,6	0,43	0,09	0,2	Ouvert
P34	202,2	76,6	1,91	0,42	2,66	Ouvert
P35	262,94	76,6	0,54	0,12	0,29	Ouvert
P36	184,57	125	0,83	0,07	0,07	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P37	147,24	150	-11,64	0,66	3,98	Ouvert
P38	153,86	150	0,7	0,04	0,02	Ouvert
P39	559,55	53,6	2,53	1,12	24,08	Ouvert
P40	37,61	100	8,39	1,07	16,09	Ouvert
P41	240,9	96,8	1,09	0,15	0,33	Ouvert
P42	275,37	96,8	1,25	0,17	0,41	Ouvert
P43	455,73	76,6	2,06	0,45	3,04	Ouvert
P44	464,45	76,6	2,1	0,46	3,14	Ouvert
P45	313,6	100	1,42	0,18	0,54	Ouvert
P46	430,26	73,6	1,95	0,46	3,32	Ouvert
P47	115,08	53,6	2,93	1,3	31,25	Ouvert
P48	89,71	53,6	-0,41	0,18	0,97	Ouvert
P49	268,36	53,6	1,21	0,54	6,54	Ouvert
P50	114,7	53,6	4,35	1,93	63,62	Ouvert
P51	99,06	53,6	0,45	0,2	1,15	Ouvert
P52	62,51	53,6	-0,74	0,33	2,74	Ouvert
P53	437,51	176,2	47,32	1,94	15,45	Ouvert
P54	169,82	76,6	0,77	0,17	0,54	Ouvert
P55	50,36	76,6	0,23	0,05	0,07	Ouvert
P56	261,7	76,6	11,91	2,58	70,22	Ouvert
P57	4	76,6	0,47	0,1	0,23	Ouvert
P58	41,59	200	6,74	0,21	0,31	Ouvert
P59	111,54	100	9,6	1,22	13,19	Ouvert
P60	395,25	20	1,79	5,69	2914,57	Ouvert
P61	70,01	53,6	0,32	0,14	0,63	Ouvert
P62	126,28	53,6	0,57	0,25	1,74	Ouvert
P63	151,86	53,6	-0,69	0,3	2,41	Ouvert
P64	131,41	53,6	0,59	0,26	1,88	Ouvert
P65	179,55	53,6	-0,81	0,36	3,23	Ouvert
P66	57,02	53,6	4,73	2,1	73,9	Ouvert
P67	313,13	53,6	1,42	0,63	8,59	Ouvert
P68	235,84	80	1,07	0,21	0,78	Ouvert
P69	207,26	150	-6,76	0,38	1,31	Ouvert
P70	173,95	80	0,79	0,16	0,55	Ouvert
P71	59,65	80	2,13	0,42	3,17	Ouvert
P72	76,42	53,6	0,35	0,15	0,73	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P73	375,5	100	5,61	0,71	7,35	Ouvert
P74	254,62	53,6	1,15	0,51	5,97	Ouvert
P75	149,88	53,6	0,68	0,3	2,36	Ouvert
P76	315,71	200	33,5	1,07	6,64	Ouvert
P77	60,83	20	0,28	0,88	75,94	Ouvert
P78	199,39	51,4	2,6	1,25	30,81	Ouvert
P79	53,7	51,4	4,07	1,96	69,01	Ouvert
P80	109,64	51,4	0,5	0,24	1,67	Ouvert
P81	23,34	150	26,23	1,48	18,25	Ouvert
P82	163,27	150	24,92	1,41	16,5	Ouvert
P83	118,08	150	21,57	1,22	12,43	Ouvert
P84	192,33	150	14,73	0,83	5,68	Ouvert
P85	4,75	150	7,78	0,44	1,72	Ouvert
P86	169,71	63,8	0,77	0,24	1,28	Ouvert
P87	202,16	50	0,91	0,47	6,92	Ouvert
P88	110,12	100	0,5	0,06	0,08	Ouvert
P89	115,44	53,6	0,52	0,23	1,5	Ouvert
P90	366,77	100	14,02	1,79	44,04	Ouvert
P91	163,51	80	5,32	1,06	21,07	Ouvert
P92	66,56	80	2,74	0,54	5,81	Ouvert
P93	243,14	80	0,3	0,06	0,1	Ouvert
P94	67,1	100	4,15	0,53	4,11	Ouvert
P95	120,45	100	1,78	0,23	0,82	Ouvert
P96	229,59	150	1,04	0,06	0,04	Ouvert
P97	136,3	100	0,62	0,08	0,11	Ouvert
P98	252,09	150	39,43	2,23	40,78	Ouvert
P99	29,39	300	246,54	3,49	41,36	Ouvert
P100	474,22	300	239,35	3,39	39	Ouvert
P101	120,16	300	168,87	2,39	19,55	Ouvert
P102	55,67	300	133,14	1,88	12,23	Ouvert
P103	116,62	300	124,75	1,76	10,75	Ouvert
P104	115,7	300	120,79	1,71	10,09	Ouvert
P105	86,84	300	117,26	1,66	9,52	Ouvert
P106	127,65	300	114,89	1,63	9,14	Ouvert
P107	168,68	76,6	0,76	0,17	0,53	Ouvert
P108	59,32	53,6	0,27	0,12	0,48	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P109	202,96	76,6	0,92	0,2	0,73	Ouvert
P110	172,34	76,6	0,78	0,17	0,55	Ouvert
P111	44,55	76,6	10,94	2,37	60,18	Ouvert
P112	54,11	76,6	9,52	2,07	46,77	Ouvert
P113	140,58	53,6	0,64	0,28	2,97	Ouvert
P114	195,49	53,6	0,88	0,39	3,75	Ouvert
P115	204,59	53,6	0,93	0,41	4,06	Ouvert
P116	190,5	53,8	1,41	0,62	8,43	Ouvert
P117	244,58	53,6	1,11	0,49	5,56	Ouvert
P118	305,96	100	1,38	0,18	0,51	Ouvert
P119	173,41	53,6	0,78	0,35	3,04	Ouvert
P120	189,83	53,6	0,86	0,38	3,56	Ouvert
P121	182,43	53,8	0,82	0,36	3,26	Ouvert
P122	200,99	53,6	0,91	0,4	3,94	Ouvert
P123	390,93	150	1,77	0,1	0,11	Ouvert
P124	175,57	53,6	0,79	0,35	3,11	Ouvert
P125	173,75	53,6	0,79	0,35	3,05	Ouvert
P126	147,28	53,6	0,67	0,3	2,29	Ouvert
P127	370,94	53,6	1,68	0,74	11,59	Ouvert
P128	121,32	76,6	3,54	0,77	7,92	Ouvert
P129	204,45	34	0,92	1,02	35,51	Ouvert
P130	75,77	53,6	0,34	0,15	0,72	Ouvert
P131	501,24	53,6	2,27	1	19,79	Ouvert
P132	231,02	76,6	1,04	0,23	0,92	Ouvert
P133	454,9	176,2	-2,06	0,08	0,06	Ouvert
P134	13,23	150	-5,76	0,33	0,97	Ouvert
P135	170,07	125	14,46	1,18	14,65	Ouvert
P136	239,65	150	8,37	0,47	1,98	Ouvert
P137	210,72	125	4,21	0,34	1,35	Ouvert
P138	118,36	80	-0,54	0,11	0,27	Ouvert
P139	23,82	100	0,05	0,01	0	Ouvert
P140	38,82	73,6	5,23	1,23	19,3	Ouvert
P141	290,53	80	1,31	0,26	1,44	Ouvert
P142	347,36	51,4	2,12	1,02	21,49	Ouvert
P143	425,96	76,6	1,93	0,42	2,69	Ouvert
P144	53,19	150	11,57	0,65	3,7	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P145	47,21	150	13,5	0,76	4,99	Ouvert
P146	84,78	76,6	4,67	1,01	12,99	Ouvert
P147	289,81	76,6	1,31	0,28	1,37	Ouvert
P148	184,02	76,6	-0,83	0,18	0,62	Ouvert
P149	542,77	80	2,45	0,49	4,71	Ouvert
P150	190,92	150	0,86	0,05	0,03	Ouvert
P151	96,4	76,6	-0,44	0,09	0,2	Ouvert
P152	389,36	76,6	-4,36	0,95	11,49	Ouvert
P153	246,79	141	52,83	3,38	55,49	Ouvert
P154	169,88	141	47,47	3,04	45,62	Ouvert
P155	103,56	141	44,05	2,82	39,81	Ouvert
P156	92,12	141	42,1	2,7	36,64	Ouvert
P157	61,28	141	34,74	2,23	25,83	Ouvert
P158	65,24	141	29,97	1,92	19,75	Ouvert
P159	101	141	25,02	1,6	14,23	Ouvert
P160	142,61	141	8,69	0,56	2,12	Ouvert
P161	158,08	141	7,33	0,47	1,56	Ouvert
P162	301,59	141	1,36	0,09	0,08	Ouvert
P163	464,26	76,6	-2,1	0,46	3,14	Ouvert
P164	365,15	76,6	1,65	0,36	2,05	Ouvert
P165	189,54	80	-0,86	0,17	0,65	Ouvert
P166	155,34	53,6	0,7	0,31	2,51	Ouvert
P167	152,99	53,6	-0,69	0,31	2,44	Ouvert
P168	173,2	100	6,06	0,77	8,52	Ouvert
P169	57,34	76,6	-2,89	0,63	5,52	Ouvert
P170	55,75	76,6	-5,25	1,14	16,03	Ouvert
P171	149,45	53,6	0,68	0,3	2,35	Ouvert
P172	101,42	150	11,69	0,66	3,77	Ouvert
P173	388,25	150	5,02	0,28	0,75	Ouvert
P174	112,3	96,8	3,52	0,48	2,56	Ouvert
P175	170,64	76,6	0,77	0,17	0,54	Ouvert
P176	181,29	96,8	-0,82	0,11	0,2	Ouvert
P177	92,44	96,8	0,42	0,06	0,06	Ouvert
P178	300,77	51,4	1,36	0,66	9,77	Ouvert
P179	417,25	150	5,15	0,29	0,79	Ouvert
P180	167,58	150	0,76	0,04	0,02	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	l/s	m/s	m/km	
P181	384,72	76,6	1,74	0,38	2,25	Ouvert
P182	312,88	150	6,2	0,35	1,12	Ouvert
P183	112,83	53,6	0,51	0,23	1,44	Ouvert
P184	287,52	300	110,29	1,56	8,44	Ouvert
P185	82,83	100	0,37	0,05	0,05	Ouvert
P186	606,71	176,2	-2,74	0,11	0,1	Ouvert
P187	165,54	150	5,05	0,29	0,76	Ouvert
P188	56,87	51,4	2,69	1,3	32,87	Ouvert
P189	401,5	53,6	-1,82	0,8	13,34	Ouvert
P190	310,31	150	1,4	0,08	0,07	Ouvert
P191	120,8	100	11,54	1,47	30,05	Ouvert
P192	38,19	150	-31,84	1,8	26,75	Ouvert
P193	72,49	150	-39,66	2,24	41,25	Ouvert
P194	177,35	53,6	0,8	0,36	3,16	Ouvert
P195	146,29	53,6	-0,66	0,29	2,26	Ouvert
P196	203,11	150	-7,16	0,41	1,47	Ouvert
P197	199,1	100	-0,9	0,11	0,23	Ouvert
P198	60,03	53,6	-0,27	0,12	0,49	Ouvert
P199	233,67	53,6	-1,06	0,47	5,13	Ouvert
P200	144,93	53,6	0,66	0,29	2,22	Ouvert
P201	312,24	176,2	58,29	2,39	22,6	Ouvert
P202	125,2	150	33,92	1,92	30,3	Ouvert
P203	290,85	96,8	-0,37	0,05	0,05	Ouvert
P204	39,51	150	40,11	2,27	42,19	Ouvert
P205	286,08	100	-1,29	0,16	0,45	Ouvert
P206	233,78	53,6	1,06	0,47	5,13	Ouvert
P207	83,92	150	-4,41	0,25	0,59	Ouvert
P208	329,86	53,6	1,49	0,66	9,42	Ouvert
P209	290,04	53,6	1,77	0,78	12,76	Ouvert
P210	301,46	76,6	1,36	0,3	1,47	Ouvert
P211	375,76	100	12,48	1,59	35,03	Ouvert
P212	356,4	150	-22,57	1,28	13,6	Ouvert
P213	212,86	150	36,6	2,07	35,19	Ouvert
P214	189,51	53,6	0,86	0,38	3,55	Ouvert
P215	129,02	80	0,58	0,12	0,3	Ouvert
P216	101,23	53,6	-2,69	1,19	26,86	Ouvert
P217	25,03	96,8	26,38	3,58	96,32	Ouvert
P218	32,58	96,8	-19,67	2,67	56,41	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	M	mm	l/s	m/s	m/km	
P219	491,17	53,6	2,22	0,98	19,09	Ouvert
P220	311,06	53,6	1,41	0,62	8,49	Ouvert
P221	153,82	76,6	0,85	0,18	0,62	Ouvert
P222	215,09	76,6	10,14	2,2	52,43	Ouvert
P223	224,06	53,6	1,01	0,45	4,76	Ouvert
P224	429,89	100	-1,94	0,25	0,97	Ouvert
P225	234,8	63,8	2,69	0,84	11,66	Ouvert
P226	148,34	53,6	0,67	0,3	2,32	Ouvert
P227	894,22	100	6,11	0,78	7,55	Ouvert
P228	134,44	150	47,73	2,7	59,48	Ouvert
P229	132,7	150	35,04	1,98	32,31	Ouvert
P230	296,19	150	7,85	0,44	1,75	Ouvert
P231	7,51	76,6	6,47	1,4	23,36	Ouvert
P232	138,24	76,6	5,81	1,26	19,26	Ouvert
P233	251,44	76,6	2,67	0,58	4,81	Ouvert
P234	7,79	150	-53,43	3,02	74,37	Ouvert
P235	181,85	53,6	0,82	0,36	3,3	Ouvert
P236	74,32	150	-8,5	0,48	1,97	Ouvert
P237	122,13	90	0,55	0,09	0,14	Ouvert
P238	92,19	100	0,42	0,05	0,06	Ouvert
P239	170,26	176,2	-43,25	1,77	13,12	Ouvert
P240	598,44	100	0,6	0,08	0,11	Ouvert
P241	106,14	150	26,45	1,5	18,57	Ouvert
P242	148,39	250	104,78	2,13	19,65	Ouvert
P243	104,63	250	63,07	1,28	7,23	Ouvert
P244	163,52	250	58,22	1,19	6,18	Ouvert
P245	171,49	200	7,42	0,24	0,37	Ouvert
P246	254,7	80	5,49	1,09	22,37	Ouvert
P247	36,37	176,2	22,23	0,91	3,93	Ouvert
P248	49,4	150	-2,24	0,13	0,17	Ouvert
P249	290,49	150	-6,85	0,39	1,31	Ouvert
P250	175,74	150	-1,94	0,11	0,12	Ouvert
P251	352,65	200	2,47	0,08	0,05	Ouvert
P252	70,43	150	-36,25	2,05	34,54	Ouvert
P253	0,71	150	-34,32	1,94	31,01	Ouvert
P254	31,2	150	-30,18	1,71	24,06	Ouvert
P255	89,93	150	-28,06	1,59	20,85	Ouvert
P256	122,79	150	-25,38	1,44	17,12	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	M	mm	l/s	m/s	m/km	
P257	18,81	150	-17,28	0,98	8,06	Ouvert
P258	421,98	150	-14,24	0,81	5,53	Ouvert
P259	342,33	76,6	8,16	1,77	35,43	Ouvert
P260	215,04	150	-39,34	2,23	24,01	Ouvert
P261	247,51	53,6	1,12	0,5	5,68	Ouvert
P262	140,88	53,6	1,28	0,57	7,18	Ouvert
P263	134,42	150	-26,93	1,52	19,23	Ouvert
P264	168,05	150	-23,64	1,34	14,89	Ouvert
P265	145,89	53,6	0,66	0,29	2,25	Ouvert
P266	78,49	150	-21,21	1,2	12,04	Ouvert
P267	324,84	53,6	1,47	0,65	9,17	Ouvert
P268	135,36	150	-9,32	0,53	2,44	Ouvert
P269	10,03	150	-6,84	0,39	1,34	Ouvert
P270	88,39	150	0,4	0,02	0,01	Ouvert
P271	46,16	51,4	1,49	0,72	11,42	Ouvert
P272	195,92	51,4	-3,73	1,8	59,12	Ouvert
P273	97,23	51,4	0,44	0,21	1,36	Ouvert
P274	159,56	51,4	0,72	0,35	3,21	Ouvert
P275	2,98	90	4,44	0,7	5,48	Ouvert
P276	8,62	90	3,04	0,48	2,8	Ouvert
P277	110,83	90	8,03	1,26	15,87	Ouvert
P278	40,78	90	8,72	1,37	18,39	Ouvert
P279	54,72	150	-8,02	0,45	1,83	Ouvert
P280	6,89	150	8,44	0,48	2,01	Ouvert
P281	116,5	80	5,86	1,17	25,47	Ouvert
P282	277,6	150	33,99	1,92	30,42	Ouvert
P283	124,18	150	37,45	2,12	36,84	Ouvert
P284	175,53	150	41,09	2,32	44,23	Ouvert
P285	161,99	150	-9,45	0,53	2,5	Ouvert
P286	160,56	150	-6,57	0,37	1,25	Ouvert
P287	82,64	150	-9,6	0,54	2,58	Ouvert
P288	283,28	53,6	-0,64	0,29	2,14	Ouvert
P289	288,78	150	1,31	0,07	0,06	Ouvert
P290	61,03	200	5,65	0,18	0,22	Ouvert
P291	26	200	4,11	0,13	0,12	Ouvert
P292	34,08	200	-6,27	0,2	0,27	Ouvert
P293	202,69	100	6,99	0,89	11,28	Ouvert
P294	36,94	150	42,08	2,38	46,38	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	M	mm	l/s	m/s	m/km	
P295	120,54	100	0,55	0,07	0,09	Ouvert
P296	181,38	53,6	0,82	0,36	3,29	Ouvert
P297	122,55	150	31,93	1,81	26,9	Ouvert
P298	192,56	150	36,93	2,09	35,83	Ouvert
P299	396	76,6	1,79	0,39	2,37	Ouvert
P300	254,29	150	1,15	0,07	0,05	Ouvert
P301	188,58	150	-24,64	1,39	16,16	Ouvert
P302	70,09	150	-22,89	1,3	13,99	Ouvert
P303	9,44	150	-18	1,02	8,74	Ouvert
P304	131,63	76,6	-2,17	0,47	3,33	Ouvert
P305	114,15	76,6	-0,52	0,11	0,27	Ouvert
P306	140,3	150	-14,56	0,82	5,78	Ouvert
P307	217,8	150	-12,28	0,7	4,15	Ouvert
P308	87,34	150	-8,09	0,46	1,86	Ouvert
P309	412,61	76,6	-4,83	1,05	13,74	Ouvert
P310	140,23	100	-3,22	0,41	2,53	Ouvert
P311	19,81	76,6	5,55	1,21	17,75	Ouvert
P312	93,48	51,4	0,42	0,2	1,27	Ouvert
P313	108,56	96,8	-2,18	0,3	1,1	Ouvert
P314	133,81	53,6	0,61	0,27	1,94	Ouvert
P315	243,17	150	19,72	1,12	10,44	Ouvert
P316	77,24	96,8	23,57	3,2	78,4	Ouvert
P317	41,77	96,8	-7,62	1,04	10,18	Ouvert
P318	4,95	160	37,53	1,87	16,15	Ouvert
P319	40,78	150	13,75	0,78	5,17	Ouvert
P320	267,83	150	1,21	0,07	0,05	Ouvert
P321	132,73	150	-12,07	0,68	4,01	Ouvert
P322	222,54	150	-15,47	0,88	6,5	Ouvert
P323	126,46	100	-8	1,02	14,64	Ouvert
P324	136,3	76,6	0,62	0,13	0,37	Ouvert
P325	205,01	53,6	3,37	1,49	40,19	Ouvert
P326	6,88	200	-2,45	0,08	0,05	Ouvert
P327	536,09	96,8	-6,31	0,86	7,26	Ouvert
P328	224,31	96,8	-12,12	1,65	23,47	Ouvert
P329	82,64	76,6	8,11	1,76	35,01	Ouvert
P330	402,94	34	1,82	2,01	118,78	Ouvert
P331	127,06	34	0,57	0,63	15,36	Ouvert
P332	55,15	96,8	-17,68	2,4	46,5	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	M	mm	l/s	m/s	m/km	
P333	7,37	73,6	-6,42	1,51	27,87	Ouvert
P334	40,83	73,6	3,54	0,83	9,6	Ouvert
P335	100	150	-15,94	0,9	6,89	Ouvert
P336	3,65	150	16,99	0,96	7,5	Ouvert
P337	7,3	100	10,68	1,36	25,82	Ouvert
P338	100	150	35,48	2,01	33,12	Ouvert
P339	10,11	100	-3,1	0,39	2,09	Ouvert
P340	100	150	31,43	1,78	26,08	Ouvert
P341	198,51	100	0,9	0,11	0,23	Ouvert
P342	132,35	100	-3,37	0,43	2,76	Ouvert
P343	180,08	100	1,78	0,23	0,82	Ouvert
P344	3,98	150	3,77	0,21	0,4	Ouvert
P345	29,84	90	0,001	0,22	0,4	Ouvert
P346	1,2	96,8	11,54	1,57	21,46	Ouvert
P347	0,57	96,8	-8,74	1,19	13,01	Ouvert
P348	3,54	150	17,19	0,97	7,98	Ouvert
P349	223,38	80	1,01	0,2	0,88	Ouvert
P350	275,75	327,4	163	1,94	7,4	Ouvert
P351	8,77	150	-32,69	1,85	28,17	Ouvert
P352	15,57	150	33,2	1,2	22,4	Ouvert
P353	788,72	257,8	157,48	3,02	22,09	Ouvert
P354	186,84	53,6	0,84	0,37	3,46	Ouvert
P355	361,15	100	1,63	0,21	0,7	Ouvert
P356	177,78	73,6	2,1	0,49	3,79	Ouvert
P357	143,18	53,6	0,65	0,29	2,18	Ouvert
P358	3,89	150	8,86	0,5	2,13	Ouvert
P359	270,11	34	1,22	1,35	58,19	Ouvert
P360	186,33	176,2	10,44	0,43	1,01	Ouvert
P361	12,19	150	-0,06	0	0	Ouvert
P362	61,16	53,8	0,28	0,12	0,49	Ouvert
P363	0,11	160	-53,95	2,68	31,2	Ouvert
P364	0,15	300	223,36	3,16	34,04	Ouvert
P365	0,61	176,2	0	0	0	Ouvert
P366	0,63	150	-3,7	0,21	0,43	Ouvert
P367	100	76,6	-3,75	0,81	8,81	Ouvert
P368	100	300	-118,1	1,67	9,66	Ouvert
P369	9,23	150	15,18	0,86	6,26	Ouvert
P370	12,09	100	5,21	0,66	6,38	Ouvert

Tableau III.10 : résultats des tronçons en cas de pointe, horizon2050 (suite)

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	M	mm	l/s	m/s	m/km	
P371	1,63	300	246,68	3,49	41,41	Ouvert
P372	3,13	150	15,22	0,86	5,52	Ouvert
P373	0,36	300	168,32	2,38	19,43	Ouvert
P374	16,61	150	-17,44	0,99	8,21	Ouvert
P375	50,79	53,6	0,23	0,1	0,37	Ouvert
P376	626,08	327,4	164,32	1,95	7,51	Ouvert
P377	540,43	257,8	159,3	3,05	22,57	Ouvert
P378	349,52	163,6	42,8	2,04	18,41	Ouvert
P379	130,43	130,8	0,59	0,04	0,03	Ouvert
P380	127	76,6	7,43	1,61	29,9	Ouvert
P381	17,14	200	23,62	0,75	3,36	Ouvert
P382	4,47	96,8	5,84	0,79	6,32	Ouvert
P383	83,21	300	223,74	3,17	34,12	Ouvert
P384	40,05	150	58,7	3,32	89,6	Ouvert
P385	39,68	257,8	153,73	2,95	21,14	Ouvert
P386	40,97	150	-37,74	2,14	37,41	Ouvert
P387	5,41	150	71,01	4,02	130,72	Ouvert
P388	23,52	257,8	44,48	0,85	2,21	Ouvert
P389	57,65	96,8	15,77	2,14	37,75	Ouvert
P390	10,45	200	-39,99	1,27	9,39	Ouvert

III.4.4.5 Interprétation des résultats de la simulation en cas de pointe à l'horizon 2050 :

La simulation en cas de point à long terme (horizon 2050) a révélé les anomalies suivantes :

- La plupart des nœuds présentent des pressions négatives à raison de 214/382 nœuds (cas de dépressions).
- Dans le secteur A, la partie alimentée à partir du puisard présente des pressions très basses et le débit fourni par la pompe du puisard est clairement insuffisant pour alimenter cette dernière.

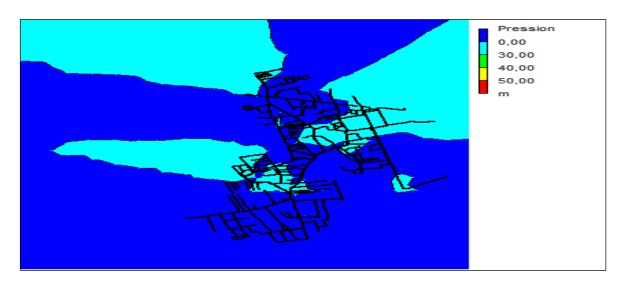


Figure III.9: état de pressions aux nœuds à l'heure de pointe cas de pointe, horizon2050.

La figure **III.9** montre que les pressions très basses voire négatives se présentent d'une manière excessive au niveau des secteurs alimentés à partir des petits réservoirs à faible élévations telque le réservoir Saidani ,chaaba et benyattou et la partie haute alimentée à partir du puisard.

Contrairement aux pressions les vitesses augmentent considérablement à l'horizon 2050.

> Résultats de la simulation cas de pointe plus incendie, horizon2050.

Tableau III.11: résultats aux nœuds en cas de pointe plus incendie, horizon 2050.

Nœud	Altitude	Demande	Charge	Pression	Noeud	Altitude	Demande	Charge	Pression
	m	l/s	m	m.C.E		m	l/s	m	m.C.E
N1	90,27	0,69	70,39	-19,88	N38	118	1,16	122,1	4,16
N2	117,06	2,49	100,0	-17	N39	118,01	5,37	118,7	0,73
N3	117,69	1,55	99,78	-17,91	N40	114,05	5,04	89,24	-24,81
N4	102,55	1,25	83,11	-19,44	N41	104,85	3,34	82,97	-21,88
N5	101,75	1,49	76,23	-25,52	N42	118,51	1,31	99,38	-19,13
N6	102,42	1,4	111,7	9,28	N43	123,14	3,83	29,83	-93,31
N7	108,4	0,78	54,25	-54,15	N44	142,37	0,66	40,76	-101,61
N8	111,72	1,54	52,38	-59,34	N45	136,13	0,38	40,49	-95,64
N9	114,33	0,95	51,49	-62,84	N46	126,18	1,58	39,85	-86,33
N10	100,75	0,63	78,72	-22,03	N47	127,32	0,52	40,5	-86,82
N11	100,72	2,21	78,19	-22,53	N48	127,65	2,66	40,5	-87,15
N12	102,93	1,57	88,9	-14,03	N49	127,31	1,24	40,52	-86,79
N13	103,9	0,68	88,84	-15,06	N50	127,5	1,61	40,55	-86,95
N14	90,17	1,65	70,76	-19,41	N51	127,44	0,54	40,81	-86,63
N15	88,27	1,75	67,85	-20,42	N52	133,02	0,3	40,12	-92,9
N16	96,17	0,95	59,37	-36,8	N53	131,75	2,94	40,12	-91,63
N17	68,93	1,4	71,71	2,78	N54	131,92	1,91	40,49	-91,43
N18	71,93	2,57	68,64	-3,29	N55	131,58	0,43	40,48	-91,1
N19	75,4	1,93	32,55	-42,85	N56	132,8	0,54	40,05	-92,75
N20	100,66	1,53	59,15	-41,51	N57	123,45	0,83	40,51	-82,94
N21	96,29	1,57	59,34	-36,95	N60	121,86	2,51	42,04	-79,82
N22	135,8	2,18	41,46	-94,34	N61	122,71	2,13	43,27	-79,44
N23	135,92	2,97	38,73	-97,19	N62	122,9	0,7	43,27	-79,63
N24	140,24	1,63	38,01	-102,23	N63	115,71	1,85	98,31	-17,4
N25	132,88	19,59	44,61	-88,27	N64	115,62	0,65	97,32	-18,3
N26	135,29	5,74	37,55	-97,74	N65	129,75	3,17	56,93	-72,82
N27	137,66	0,53	37,52	-100,14	N66	124,85	2,53	43,45	-81,4
N28	135,76	1,47	41,52	-94,24	N67	106,31	1,25	84,78	-21,53
N29	135,78	2,97	40,66	-95,12	N68	105,86	1,65	84,27	-21,59
N30	134,53	2,01	40,51	-94,02	N69	120,91	19,33	63,12	-57,79
N31	134,46	2,45	40,5	-93,96	N70	125,98	1,09	63,04	-62,94
N.32	136,09	1,19	40,57	-95,52	N71	120,77	1,54	53,73	-67,04
N.33	132,18	0,74	40,49	-91,69	N72	126,18	1,25	53,62	-72,56
N.34	138,53	0,55	38,69	-99,84	N73	120,72	2,5	53,84	-66,88
N.35	138,61	0,69	38,03	-100,58	N74	111,67	2,06	52,45	-59,22
N.36	141,9	2,45	38,1	-103,8	N75	118,84	2,85	49,94	-68,9
N37	118,12	2,63	122,4	4,33	N76	110,15	2,1	48,48	-61,67

Tableau III.11: résultats aux nœuds en cas de pointe plus incendie, horizon 2050(suite).

	Altitude	Demande	Charge	Pression		Altitude	Demande	Charge	Pression
Noeud	m	LPS	m	m	Noeud	m	LPS	m	m
N77	114,05	2,1	88,36	-25,69	N114	86,52	2,49	66,08	-20,44
N78	114,05	0,84	94,65	-19,4	N115	87,21	1,42	63,39	-23,82
N79	119,53	1,42	122,28	2,75	N116	86,9	2,12	61,14	-25,76
N80	118,69	4,02	47,35	-71,34	N117	86,02	1,07	60,96	-25,06
N81	127,6	1,95	45,92	-81,68	N118	87,5	1,39	81,89	-5,61
N82	95,4	1,58	53,63	-41,77	N119	87,16	1	81,47	-5,69
N83	98,65	17,41	-59,79	-158,44	N120	85,75	0,79	81,37	-4,38
N84	95,41	2,68	11,16	-84,25	N121	88,64	1,72	73,15	-15,49
N85	96,56	2,64	66,13	-30,43	N122	87,58	1,2	72,96	-14,62
N86	96,5	1,21	64,37	-32,13	N123	87,66	0,35	72,9	-14,76
N87	91,35	1,38	46,58	-44,77	N124	84,21	2,33	66,57	-17,64
N88	91,62	2,44	39,28	-52,34	N125	83,32	3,65	63,81	-19,51
N89	92,2	0,45	39,17	-53,03	N126	82,58	0,52	34,31	-48,27
N90	87,48	0,9	45,36	-42,12	N127	88,82	1,33	69,96	-18,86
N91	87,8	1	81,62	-6,18	N128	88,65	1,15	68,44	-20,21
N92	87,19	1,35	78,72	-8,47	N129	88,2	0,99	69,32	-18,88
N93	101,91	3,49	81,36	-20,55	N130	87,47	0,68	68,96	-18,51
N94	93,82	3,41	75,59	-18,23	N131	118,2	1,68	101,53	-16,67
N95	139,78	1,9	36,89	-102,89	N132	111,49	3,54	99,52	-11,97
N96	136,36	0,77	36,8	-99,56	N133	87,73	1,85	74,14	-13,59
N97	124,65	0,25	79,03	-45,62	N134	87,73	0,28	69,52	-18,21
N98	124,89	0,23	79,03	-45,86	N135	80,27	2,05	44,69	-35,58
N99	122,94	3,24	91,16	-31,78	N136	78,38	1,11	43,49	-34,89
N100	124,22	3,33	79,04	-45,18	N137	77,7	1,15	43,49	-34,21
N101	93,32	2,33	74,05	-19,27	N138	77,88	0,94	39,78	-38,1
N102	92,4	0,78	74,05	-18,35	N139	76,85	1,47	37,91	-38,94
N103	91,16	0,78	74,05	-17,11	N140	76,48	0,5	37,73	-38,75
N104	90,14	2,02	72,58	-17,56	N141	102,95	1,31	102,68	-0,27
N105	83,93	3,21	46,55	-37,38	N142	102,94	2,31	94,25	-8,69
N106	84,3	1,79	-1105,4	-1189,7	N143	102,89	1,06	89,03	-13,86
N107	91,8	0,32	74	-17,8	N144	102,58	1,63	83,21	-19,37
N108	91,24	0,96	74,05	-17,19	N145	85,15	1,98	44,99	-40,16
N109	90,46	0,57	73,83	-16,63	N146	84,44	0,77	44,78	-39,66
N110	90,17	0,59	72,33	-17,84	N147	83,37	1,57	44,76	-38,61
N111	87,57	0,81	63,91	-23,66	N148	80,89	0,91	43,36	-37,53
N112	87,67	1,16	64,49	-23,18	N149	83,29	1,29	44,75	-38,54
N113	86,89	1,72	70,29	-16,6	N150	82,84	0,5	44,75	-38,09

Tableau III.11: résultats aux nœuds en cas de pointe plus incendie, horizon 2050(suite).

	Altitude	Demande	Charge	Pression		Altitude	Demande	Charge	Pression
Noeud	m	l/s	m	m	Noeud	m	l/s	m	m
N151	83,75	2,52	66,46	-17,29	N188	89,01	1,38	71,46	-17,55
N152	83,01	0,52	66,28	-16,73	N189	87,66	1,33	68,85	-18,81
N153	98,99	1,81	79,76	-19,23	N190	86,74	0,78	68,32	-18,42
N154	97,94	1,52	79,38	-18,56	N191	86,25	1,82	67,74	-18,51
N155	95,48	0,3	79,35	-16,13	N192	85,07	0,86	67,06	-18,01
N156	102,34	2,52	103,58	1,24	N193	104,83	2,64	68,49	-36,34
N157	102,13	1,61	103,3	1,17	N194	105,45	0,82	67,9	-37,55
N158	101,22	1,16	103,2	1,98	N195	80,3	0,84	35,85	-44,45
N159	98,31	1,04	94,24	-4,07	N.196	76,6	0,91	35,05	-41,55
N160	103,3	5,08	111,99	8,69	N197	105,24	3,74	87,78	-17,46
N161	99,91	0,62	111,98	12,07	N198	102,66	1,77	87,74	-14,92
N162	103,75	19,28	83,63	-20,12	N199	67,5	1,19	72,21	4,71
N163	100,44	2,34	75,58	-24,86	N200	67,11	0,79	71,67	4,56
N164	129,16	4,73	141,55	12,39	N201	66,83	0,4	73,84	7,01
N165	120,58	0,54	105,01	-15,57	N202	66,66	0,79	73,31	6,65
N166	117,7	2,19	100,41	-17,29	N203	66,31	1,03	73,09	6,78
N167	113,94	1,83	96,31	-17,63	N204	66,22	0,67	72,76	6,54
N168	112,54	1,67	93,22	-19,32	N205	65,68	1,86	72,7	7,02
N169	110,08	20,24	91,18	-18,9	N206	65,57	1,68	68,4	2,83
N170	98,41	0,76	103,21	4,8	N207	70,72	2,74	50,21	-20,51
N171	100,4	2,01	88,74	-11,66	N208	69,91	2,04	49,25	-20,66
N172	99,94	0,27	88,71	-11,23	N209	69,82	0,92	41,99	-27,83
N173	97,38	0,92	79,23	-18,15	N210	71,17	1,69	53,1	-18,07
N174	111,83	0,78	98,73	-13,1	N211	69,62	0,34	53,05	-16,57
N175	107,8	1,6	98,62	-9,18	N212	80,1	2,63	34,87	-45,23
N176	107,53	0,54	95,93	-11,6	N213	73,91	2,27	24,95	-48,96
N177	107,14	1,45	93,4	-13,74	N214	105,26	1,04	84,57	-20,69
N178	109,99	0,64	92,99	-17	N215	95,07	5,64	92,15	-2,92
N179	111,62	0,88	95,2	-16,42	N216	87,8	1,58	81,61	-6,19
N180	105,67	1,44	88,71	-16,96	N217	118,79	1,87	47,9	-70,89
N181	109,23	0,93	87,88	-21,35	N218	118,05	0,54	58,01	-60,04
N182	102,57	2,22	73,07	-29,5	N219	120,58	1,42	58,04	-62,54
N183	104,35	0,28	71,43	-32,92	N220	66,94	0,8	76,15	9,21
N184	102,97	1,14	71,46	-31,51	N221	104,83	1,57	88,4	-16,43
N185	102,19	3,38	84,08	-18,11	N222	110,15	1,31	87,98	-22,17
N186	101,88	1,11	82,72	-19,16	223	142,35	1,37	40,94	-101,41
N187	89,89	2,03	71,62	-18,27	N224	126	1,93	39,51	-86,49

Tableau III.11: résultats aux nœuds en cas de pointe plus incendie, horizon 2050 (suite).

	Altitude	Demande	Charge	Pression		Altitude	Demande	Charge	Pression
Noeud	m	LPS	m	m	Noeud	m	LPS	m	m
N225	129,63	0,6	57,78	-71,85	N264	99,28	2,93	80,83	-18,45
N226	129,92	2,53	56,68	-73,24	N265	80,05	0,9	63,76	-16,29
N227	125	1,31	56,28	-68,72	N266	82,29	0,27	34,32	-47,97
N228	126,66	0,83	56,57	-70,09	N267	81,52	1,38	34,35	-47,17
N229	119,91	2,45	139	19,09	N268	80,6	1,06	62,61	-17,99
N230	116,35	3,06	74,56	-41,79	N269	78,65	1,62	33,97	-44,68
N231	115,96	0,86	74,55	-41,41	N270	80,19	0,66	33,65	-46,54
N232	114,66	0,44	74,54	-40,12	N271	94,86	2,28	92,33	-2,53
N233	121,17	3,62	78,84	-42,33	N272	84,93	2,14	81,33	-3,6
N234	119,49	2,67	51,68	-67,81	N273	92,2	1,2	74,07	-18,13
N235	119,33	1,36	47,59	-71,74	N274	80,75	0,37	81,3	0,55
N236	118,41	1,36	47,32	-71,09	N275	85,62	1,81	81,32	-4,3
N237	110,44	2,1	50,22	-60,22	N276	71,21	1,29	32,42	-38,79
N238	114,31	1,65	87,61	-26,7	N277	87,25	0,59	84,21	-3,04
N239	112,07	0,86	96,19	-15,88	N.278	108,58	1,93	54,78	-53,8
N240	111,64	0,7	92,83	-18,81	N279	108,35	1,06	53,58	-54,77
N241	107,21	0,69	83,9	-23,31	N280	107,83	2,12	54,83	-53
N242	106,43	1,5	89,61	-16,82	N281	105,58	1,49	51,72	-53,86
N243	109,49	0,68	89,26	-20,23	N282	111,59	1,83	52,42	-59,17
N244	95,53	1,63	103,03	7,5	N283	108,9	0,23	48,7	-60,2
N245	98,79	0,77	79,67	-19,12	N284	109,51	0,69	54,18	-55,33
N246	101,03	0,82	88,7	-12,33	N285	112,76	1,36	56,38	-56,38
N247	99,9	0,42	88,73	-11,17	N286	108,88	0,45	54,93	-53,95
N248	108,6	1,36	88,24	-20,36	N287	110,15	1,83	119	8,85
N249	113,45	1,74	77,97	-35,48	N288	105,85	1,01	59,59	-46,26
N250	117,9	0,84	99,42	-18,48	N289	108,35	0,86	111,17	2,82
N251	124,64	0,51	91	-33,64	N290	85,71	0,58	72,92	-12,79
N252	101,01	1,99	77,83	-23,18	N291	66,96	0,29	74,05	7,09
N253	99,41	0,37	77,82	-21,59	N292	76,56	2,65	32,91	-43,65
N254	95,92	2,74	92,09	-3,83	N293	72,85	2,22	23,53	-49,32
N255	95,54	1,82	77,31	-18,23	N294	77,34	2,79	33,07	-44,27
N256	102,45	3,03	82,67	-19,78	N295	81,34	1,41	30,43	-50,91
N257	102,36	3,51	75,85	-26,51	N296	71,71	1,99	64,38	-7,33
N258	97,58	1,4	75,83	-21,75	N297	101,73	1,01	76,76	-24,97
N259	94,68	1,08	81,15	-13,53	N298	93,27	1,94	107,54	14,27
N260	91,91	1,13	73,71	-18,2	N299	108,56	2,69	54,96	-53,6
N261	87,73	0,8	69,42	-18,31	N300	113,13	2,69	52,22	-60,91
N262	93,74	0,66	75,26	-18,48	N301	111,64	0,72	52,4	-59,24
N263	98,75	2,67	80,83	-17,92	N302	112,8	0,67	52,06	-60,74

Tableau III.11: résultats aux nœuds en cas de pointe plus incendie, horizon 2050(suite).

Noeud	Dema	nde	Charge	Pression	Noeud	Altitude	Demande	Charge	Pression
	m	I/s	m	m.C.E		m	I/s	m	m.C.E
N303	108,36	0,06	54,78	-53,58	N343	100,48	4,37	107,96	7,48
N304	106,59	2,51	84,94	-21,65	N344	108,76	1,4	111,85	3,09
N305	103,62	0,82	84,34	-19,28	N345	108,88	2,43	111,85	2,97
N306	101,97	1,65	76,12	-25,85	N346	110,13	1,29	60,05	-50,08
N307	101,47	0,35	76,22	-25,25	N347	98,32	3,39	103,29	4,97
N308	113,59	0,55	52,36	-61,23	N348	115,48	1,45	97,63	-17,85
N309	103,13	0,42	111,99	8,86	N349	68,23	2,15	61,41	-6,82
N310	101,59	4,31	75,85	-25,74	N350	108,58	0,59	54,78	-53,8
N311	99,28	2,61	80,88	-18,4	N351	120,58	0,38	105,02	-15,56
N312	91,36	21,33	73,71	-17,65	N352	120,57	1,12	105	-15,57
N313	88,84	1,12	69,98	-18,86	N353	120,57	0	105	-15,57
N314	77,65	3,86	65,75	-11,9	N354	120,58	0	105,02	-15,56
N315	93,37	1,12	9,76	-83,61	N355	87,9	0	81,61	-6,29
N316	95,12	2	49,58	-45,54	N356	87,9	2,06	92,12	4,22
N317	92,71	1,77	47,39	-45,32	N357	87,9	0	81,61	-6,29
N318	93,38	0,66	47,06	-46,32	N358	87,9	2,06	81,61	-6,29
N319	90,75	1,47	36,3	-54,45	N359	129,22	0,01	143,62	14,4
N320	78,92	0,4	44,69	-34,23	N360	129,22	0,13	143,62	14,4
N321	77,39	0,44	39,65	-37,74	N361	108,88	0,94	111,85	2,97
N322	75,71	0,72	37,4	-38,31	N362	108,88	0,94	111,85	2,97
N323	110,34	1,57	59,79	-50,55	N363	67,14	0,11	76,46	9,32
N324	111,94	3,2	56,82	-55,12	N364	118,2	0,54	101,54	-16,66
N325	96,33	2,38	81,01	-15,32	N365	83,75	0,16	66,52	-17,23
N326	106,63	1,31	56,8	-49,83	N366	109,55	1,54	48,72	-60,83
N328	86,4	0,55	70,28	-14,57	N368	119,08	1,32	138,85	14,5
N329	81,37	0,82	65,48	-20,92	N369	89,6	3,69	136,03	16,95
N330	75,47	21,35	38,89	-42,48	N370	95,23	2,22	84,22	-5,38
N331	84,59	1,79	37,96	-37,51	N371	110,28	3,75	94,58	-0,65
N332	79,98	1,15	38,88	-45,71	N372	87,16	1,68	59,8	-50,48
N333	77,97	1,27	34,78	-45,2	N373	85,87	0,97	81,44	-5,72
N334	78,79	1,4	65,2	-12,77	N374	119,33	0,61	78,46	-7,41
N335	118,5	0,42	65,08	-13,71	N375	100,37	0,76	42,04	-77,29
N336	102,32	1,42	98,83	-19,67	N376	87,12	18,93	80,96	-19,41
N337	87,55	1,21	98,6	-3,72	N377	122,26	0,74	78,55	-8,57
N338	98,5	2,5	45,4	-42,15	N378	129,27	20,7	109,54	-12,72
N339	68,43	0,62	103,15	4,65	N379	94,86	0,29	62,92	-66,35
N340	68,51	2,19	69,65	1,22	N380	95,23	0,5	93,39	-1,47
N341	68,38	1,22	45,69	-22,82	N381	94	1,15	91,28	-3,95
N342	68,37	1,82	2,35	-66,03	N383	89,6	1,69	93,32	-0,68

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050.

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	mm	I/s	m/s	m/km	
P1	51,79	76,6	1,16	0,25	1,1	Ouvert
P2	275,93	150	-12,47	0,71	4,12	Ouvert
Р3	308,52	96,8	0,56	0,08	0,11	Ouvert
P4	173,31	53,6	0,32	0,14	0,63	Ouvert
P5	209,89	53,6	0,38	0,17	0,88	Ouvert
P6	13,79	100	3,39	0,43	2,05	Ouvert
P7	151,4	80	0,28	0,06	0,08	Ouvert
P8	106,81	150	14,85	0,84	4,12	Ouvert
P9	156,49	76,6	-8,09	1,75	34,86	Ouvert
P10	337,88	100	-0,61	0,08	0,1	Ouvert
P11	176,31	76,6	2,08	0,45	3,09	Ouvert
P12	359,54	76,6	0,66	0,14	0,41	Ouvert
P13	305,32	100	4,08	0,52	2,85	Ouvert
P14	116,89	76,6	0,21	0,05	0,05	Ouvert
P15	183,81	150	15,9	0,9	4,66	Ouvert
P16	41,96	150	11,69	0,66	2,68	Ouvert
P17	162,77	76,6	0,3	0,07	0,11	Ouvert
P18	121,86	76,6	0,22	0,05	0,06	Ouvert
P19	152,6	76,6	-0,28	0,06	0,1	Ouvert
P20	256,88	80	0,47	0,09	0,22	Ouvert
P21	277,3	80	4,91	0,98	18,01	Ouvert
P22	737,7	80	1,35	0,27	1,51	Ouvert
P23	290,56	76,6	0,53	0,12	0,29	Ouvert
P24	846,73	76,6	1,55	0,34	1,84	Ouvert
P25	83,41	76,6	0,15	0,03	0,02	Ouvert
P26	348,97	76,6	0,64	0,14	0,39	Ouvert
P27	114,37	150	-0,21	0,01	0	Ouvert
P28	55,88	150	9,26	0,52	2,41	Ouvert
P29	34,21	150	8,42	0,48	2	Ouvert
P30	119,62	150	6,65	0,38	1,28	Ouvert
P31	66,9	76,6	-0,12	0,03	0,02	Ouvert
P32	118,02	76,6	-0,41	0,09	0,19	Ouvert
P33	94,53	76,6	0,17	0,04	0,03	Ouvert
P34	202,2	76,6	1,12	0,24	1,04	Ouvert
P35	262,94	76,6	0,22	0,05	0,06	Ouvert
P36	184,57	125	0,34	0,03	0,01	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	l/s	m/s	m/km	
P37	147,24	150	3,75	0,21	0,43	Ouvert
P38	153,86	150	0,28	0,02	0	Ouvert
P39	559,55	53,6	1,02	0,45	4,86	Ouvert
P40	37,61	100	10,14	1,29	23,32	Ouvert
P41	240,9	96,8	0,44	0,06	0,07	Ouvert
P42	275,37	96,8	0,5	0,07	0,09	Ouvert
P43	455,73	76,6	0,83	0,18	0,62	Ouvert
P44	464,45	76,6	0,85	0,18	0,64	Ouvert
P45	313,6	100	0,57	0,07	0,1	Ouvert
P46	430,26	73,6	0,79	0,19	0,68	Ouvert
P47	115,08	53,6	1,16	0,51	6	Ouvert
P48	89,71	53,6	-0,16	0,07	0,2	Ouvert
P49	268,36	53,6	0,49	0,22	1,35	Ouvert
P50	114,7	53,6	1,76	0,78	12,65	Ouvert
P51	99,06	53,6	0,18	0,08	0,24	Ouvert
P52	62,51	53,6	-0,3	0,13	0,57	Ouvert
P53	437,51	176,2	20,74	0,85	3,47	Ouvert
P54	169,82	76,6	0,31	0,07	0,11	Ouvert
P55	50,36	76,6	0,09	0,02	0,01	Ouvert
P56	261,7	76,6	4,82	1,05	13,78	Ouvert
P57	4	76,6	0,19	0,04	0,04	Ouvert
P58	41,59	200	-15,19	0,48	1,43	Ouvert
P59	111,54	100	3,89	0,5	2,62	Ouvert
P60	395,25	20	0,72	2,3	349,28	Ouvert
P61	70,01	53,6	0,13	0,06	0,1	Ouvert
P62	126,28	53,6	0,23	0,1	0,37	Ouvert
P63	151,86	53,6	-0,28	0,12	0,51	Ouvert
P64	131,41	53,6	0,24	0,11	0,4	Ouvert
P65	179,55	53,6	-0,33	0,15	0,67	Ouvert
P66	57,02	53,6	1,92	0,85	14,67	Ouvert
P67	313,13	53,6	0,57	0,25	1,76	Ouvert
P68	235,84	80	0,43	0,09	0,16	Ouvert
P69	207,26	150	-3,57	0,2	0,39	Ouvert
P70	173,95	80	0,32	0,06	0,1	Ouvert
P71	59,65	80	0,86	0,17	0,65	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	LPS	m/s	m/km	
P73	375,5	100	2,27	0,29	1,3	Ouvert
P74	254,62	53,6	0,47	0,21	1,23	Ouvert
P75	149,88	53,6	0,27	0,12	0,49	Ouvert
P76	315,71	200	20,77	0,66	2,62	Ouvert
P77	60,83	20	0,11	0,35	11,02	Ouvert
P78	199,39	51,4	1,26	0,61	8,59	Ouvert
P79	53,7	51,4	1,65	0,8	13,82	Ouvert
P80	109,64	51,4	0,21	0,1	0,37	Ouvert
P81	23,34	150	-13,7	0,78	5,13	Ouvert
P82	163,27	150	-14,23	0,81	5,53	Ouvert
P83	118,08	150	-15,59	0,88	6,6	Ouvert
P84	192,33	150	-18,35	1,04	8,72	Ouvert
P85	4,75	150	-21,17	1,2	11,99	Ouvert
P86	169,71	63,8	0,31	0,1	0,27	Ouvert
P87	202,16	50	0,37	0,19	1,18	Ouvert
P88	110,12	100	0,2	0,03	0,01	Ouvert
P89	115,44	53,6	0,21	0,09	0,32	Ouvert
P90	366,77	100	12,42	1,58	34,71	Ouvert
P91	163,51	80	2,15	0,43	3,67	Ouvert
P92	66,56	80	1,11	0,22	1,04	Ouvert
P93	243,14	80	0,12	0,02	0,01	Ouvert
P94	67,1	100	1,68	0,21	0,74	Ouvert
P95	120,45	100	0,72	0,09	0,16	Ouvert
P96	229,59	150	0,42	0,02	0,01	Ouvert
P97	136,3	100	0,25	0,03	0,02	Ouvert
P98	252,09	150	29,33	1,66	22,76	Ouvert
P99	29,39	300	207,85	2,94	29,49	Ouvert
P100	474,22	300	204,95	2,9	28,68	Ouvert
P101	120,16	300	151,5	2,14	15,17	Ouvert
P102	55,67	300	129,83	1,84	11,63	Ouvert
P103	116,62	300	126,43	1,79	7,1	Ouvert
P104	115,7	300	124,83	1,77	10,77	Ouvert
P105	86,84	300	123,4	1,75	10,53	Ouvert
P106	127,65	300	122,44	1,73	10,37	Ouvert
P107	168,68	76,6	0,31	0,07	0,11	Ouvert
P108	59,32	53,6	0,11	0,05	0,06	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge Unit.	État
ID Arc	m	Mm	l/s	m/s	m/km	
P109	202,96	76,6	0,37	0,08	0,15	Ouvert
P110	172,34	76,6	0,32	0,07	0,12	Ouvert
P111	44,55	76,6	4,89	1,06	14,1	Ouvert
P112	54,11	76,6	4,09	0,89	10,26	Ouvert
P113	140,58	53,6	0,22	0,1	0,35	Ouvert
P114	195,49	53,6	0,26	0,11	0,44	Ouvert
P115	204,59	53,6	0,37	0,17	0,84	Ouvert
P116	190,5	53,8	0,58	0,26	1,77	Ouvert
P117	244,58	53,6	0,45	0,2	1,15	Ouvert
P118	305,96	100	0,56	0,07	0,1	Ouvert
P119	173,41	53,6	0,32	0,14	0,64	Ouvert
P120	189,83	53,6	0,35	0,15	0,74	Ouvert
P121	182,43	53,8	0,34	0,15	0,7	Ouvert
P122	200,99	53,6	0,37	0,16	0,82	Ouvert
P123	390,93	150	0,72	0,04	0,02	Ouvert
P124	175,57	53,6	0,32	0,14	0,65	Ouvert
P125	173,75	53,6	0,32	0,14	0,64	Ouvert
P126	147,28	53,6	0,27	0,12	0,48	Ouvert
P127	370,94	53,6	0,68	0,3	2,37	Ouvert
P128	121,32	76,6	1,44	0,31	1,61	Ouvert
P129	204,45	34	0,37	0,41	7,26	Ouvert
P130	75,77	53,6	0,14	0,06	0,13	Ouvert
P131	501,24	53,6	0,92	0,41	4	Ouvert
P132	231,02	76,6	0,42	0,09	0,19	Ouvert
P133	454,9	176,2	-0,83	0,03	0,01	Ouvert
P134	13,23	150	-3,16	0,18	0,31	Ouvert
P135	170,07	125	-2,61	0,21	0,55	Ouvert
P136	239,65	150	-5,07	0,29	0,76	Ouvert
P137	210,72	125	1,36	0,11	0,16	Ouvert
P138	118,36	80	-0,22	0,04	0,05	Ouvert
P139	23,82	100	7,19	0,92	8,47	Ouvert
P140	38,82	73,6	2,12	0,5	3,85	Ouvert
P141	290,53	80	0,53	0,11	0,27	Ouvert
P142	347,36	51,4	0,86	0,41	4,35	Ouvert
P143	425,96	76,6	0,78	0,17	0,55	Ouvert
P144	53,19	150	13,14	0,74	4,73	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	l/s	m/s	m/km	
P145	47,21	150	13,92	0,79	5,29	Ouvert
P146	84,78	76,6	1,89	0,41	2,6	Ouvert
P147	289,81	76,6	0,53	0,12	0,28	Ouvert
P148	184,02	76,6	-0,34	0,07	0,13	Ouvert
P149	542,77	80	0,99	0,2	0,85	Ouvert
P150	190,92	150	0,35	0,02	0	Ouvert
P151	96,4	76,6	-0,18	0,04	0,03	Ouvert
P152	389,36	76,6	-1,76	0,38	2,31	Ouvert
P153	246,79	141	30,31	1,94	20,15	Ouvert
P154	169,88	141	28,14	1,8	17,61	Ouvert
P155	103,56	141	9,76	0,62	2,61	Ouvert
P156	92,12	141	8,96	0,57	2,24	Ouvert
P157	61,28	141	5,99	0,38	1,09	Ouvert
P158	65,24	141	3,67	0,24	0,46	Ouvert
P159	101	141	1,67	0,11	0,12	Ouvert
P160	142,61	141	3,52	0,23	0,43	Ouvert
P161	158,08	141	2,97	0,19	0,32	Ouvert
P162	301,59	141	0,55	0,04	0,02	Ouvert
P163	464,26	76,6	-0,85	0,18	0,64	Ouvert
P164	365,15	76,6	0,67	0,15	0,43	Ouvert
P165	189,54	80	-0,35	0,07	0,11	Ouvert
P166	155,34	53,6	0,28	0,13	0,53	Ouvert
P167	152,99	53,6	-0,28	0,12	0,51	Ouvert
P168	173,2	100	9,2	1,17	19,25	Ouvert
P169	57,34	76,6	-1,17	0,25	1,12	Ouvert
P170	55,75	76,6	-2,39	0,52	3,96	Ouvert
P171	149,45	53,6	0,27	0,12	0,49	Ouvert
P172	101,42	150	3,73	0,21	0,43	Ouvert
P173	388,25	150	2,03	0,11	0,14	Ouvert
P174	112,3	96,8	1,42	0,19	0,52	Ouvert
P175	170,64	76,6	0,31	0,07	0,12	Ouvert
P176	181,29	96,8	-0,33	0,04	0,04	Ouvert
P177	92,44	96,8	0,17	0,02	0,01	Ouvert
P178	300,77	51,4	0,55	0,27	2	Ouvert
P179	417,25	150	10,55	0,6	3,09	Ouvert
P180	167,58	150	0,31	0,02	0	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	LPS	m/s	m/km	
P181	384,72	76,6	0,7	0,15	0,46	Ouvert
P182	312,88	150	2,51	0,14	0,2	Ouvert
P183	112,83	53,6	0,21	0,09	0,31	Ouvert
P184	287,52	300	103,58	1,47	7,46	Ouvert
P185	82,83	100	0,15	0,02	0,01	Ouvert
P186	606,71	176,2	-1,11	0,05	0,02	Ouvert
P187	165,54	150	2,26	0,13	0,17	Ouvert
P188	56,87	51,4	1,1	0,53	6,67	Ouvert
P189	401,5	53,6	-0,74	0,33	2,72	Ouvert
P190	310,31	150	0,57	0,03	0,01	Ouvert
P191	120,8	100	13,11	1,67	38,58	Ouvert
P192	38,19	150	-19,86	1,12	10,58	Ouvert
P193	72,49	150	-23,02	1,3	14,14	Ouvert
P194	177,35	53,6	0,32	0,14	0,66	Ouvert
P195	146,29	53,6	-0,27	0,12	0,47	Ouvert
P196	203,11	150	7,98	0,45	1,81	Ouvert
P197	199,1	100	-0,36	0,05	0,05	Ouvert
P198	60,03	53,6	-0,11	0,05	0,07	Ouvert
P199	233,67	53,6	-0,43	0,19	1,06	Ouvert
P200	144,93	53,6	0,27	0,12	0,47	Ouvert
P201	312,24	176,2	51,18	2,1	17,82	Ouvert
P202	125,2	150	36,73	2,08	35,45	Ouvert
P203	290,85	96,8	-0,15	0,02	0,01	Ouvert
P204	39,51	150	33,74	1,91	29,98	Ouvert
P205	286,08	100	-0,52	0,07	0,09	Ouvert
P206	233,78	53,6	0,43	0,19	1,06	Ouvert
P207	83,92	150	-4,62	0,26	0,64	Ouvert
P208	329,86	53,6	0,6	0,27	1,93	Ouvert
P209	290,04	53,6	0,72	0,32	2,6	Ouvert
P210	301,46	76,6	0,55	0,12	0,3	Ouvert
P211	375,76	100	5,46	0,7	6,98	Ouvert
P212	356,4	150	-11,97	0,68	2,8	Ouvert
P213	212,86	150	28,55	1,62	21,57	Ouvert
P214	189,51	53,6	0,35	0,15	0,74	Ouvert
P215	129,02	80	0,24	0,05	0,06	Ouvert
P216	101,23	53,6	-1,09	0,48	5,41	Ouvert
P217	25,03	96,8	10,92	1,48	19,44	Ouvert
P218	32,58	96,8	-7,96	1,08	11,01	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	I/s	m/s	m/km	
P219	491,17	53,6	0,9	0,4	3,86	Ouvert
P220	311,06	53,6	0,57	0,25	1,74	Ouvert
P221	153,82	76,6	7,52	1,63	30,55	Ouvert
P222	215,09	76,6	4,11	0,89	10,33	Ouvert
P223	224,06	53,6	0,41	0,18	0,99	Ouvert
P224	429,89	100	-0,79	0,1	0,18	Ouvert
P225	234,8	63,8	1,09	0,34	2,36	Ouvert
P226	148,34	53,6	0,27	0,12	0,49	Ouvert
P227	894,22	100	2,47	0,31	1,22	Ouvert
P228	134,44	150	44,75	2,53	30,38	Ouvert
P229	132,7	150	22,62	1,28	13,66	Ouvert
P230	296,19	150	3,18	0,18	0,32	Ouvert
P231	7,51	76,6	2,62	0,57	4,64	Ouvert
P232	138,24	76,6	2,35	0,51	3,84	Ouvert
P233	251,44	76,6	1,08	0,23	0,98	Ouvert
P234	7,79	150	-47,06	2,66	57,85	Ouvert
P235	181,85	53,6	0,33	0,15	0,69	Ouvert
P236	74,32	150	0,95	0,05	0,03	Ouvert
P237	122,13	90	0,22	0,04	0,02	Ouvert
P238	92,19	100	0,17	0,02	0,01	Ouvert
P239	170,26	176,2	-19,09	0,78	2,99	Ouvert
P240	598,44	100	4,22	0,54	4,09	Ouvert
P241	106,14	150	15,79	0,89	6,76	Ouvert
P242	148,39	250	101,35	2,06	18,4	Ouvert
P243	104,63	250	54,09	1,1	5,35	Ouvert
P244	163,52	250	52,13	1,06	4,98	Ouvert
P245	171,49	200	12,97	0,41	1,06	Ouvert
P246	254,7	80	-4,81	0,96	17,26	Ouvert
P247	36,37	176,2	13,58	0,56	1,62	Ouvert
P248	49,4	150	12,27	0,69	4,14	Ouvert
P249	290,49	150	1,62	0,09	0,09	Ouvert
P250	175,74	150	3,61	0,2	0,39	Ouvert
P251	352,65	200	27,36	0,87	4,47	Ouvert
P252	70,43	150	-21,64	1,22	12,52	Ouvert
P253	0,71	150	-20,86	1,18	11,65	Ouvert
P254	31,2	150	-19,18	1,09	9,89	Ouvert
P255	89,93	150	-18,32	1,04	9,04	Ouvert
P256	122,79	150	-17,24	0,98	8,03	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	l/s	m/s	m/km	
P257	18,81	150	-13,96	0,79	5,32	Ouvert
P258	421,98	150	-12,73	0,72	4,45	Ouvert
P259	342,33	76,6	3,3	0,72	7,01	Ouvert
P260	215,04	150	-16,12	0,91	7,04	Ouvert
P261	247,51	53,6	0,45	0,2	1,17	Ouvert
P262	140,88	53,6	0,55	0,24	1,63	Ouvert
P263	134,42	150	-11,14	0,63	3,44	Ouvert
P264	168,05	150	-9,78	0,55	2,67	Ouvert
P265	145,89	53,6	0,27	0,12	0,47	Ouvert
P266	78,49	150	-8,8	0,5	2,18	Ouvert
P267	324,84	53,6	0,59	0,26	1,88	Ouvert
P268	135,36	150	-3,99	0,23	0,48	Ouvert
P269	10,03	150	-2,98	0,17	0,28	Ouvert
P270	88,39	150	0,16	0,01	0	Ouvert
P271	46,16	51,4	0,81	0,39	3,97	Ouvert
P272	195,92	51,4	-1,3	0,63	9,08	Ouvert
P273	97,23	51,4	0,18	0,09	0,29	Ouvert
P274	159,56	51,4	0,29	0,14	0,67	Ouvert
P275	2,98	90	1,8	0,28	1,1	Ouvert
P276	8,62	90	1,23	0,19	0,57	Ouvert
P277	110,83	90	3,25	0,51	3,15	Ouvert
P278	40,78	90	3,53	0,72	6,72	Ouvert
P279	54,72	150	-6,08	0,34	1,08	Ouvert
P280	6,89	150	3,42	0,19	0,36	Ouvert
P281	116,5	80	2,37	0,47	4,41	Ouvert
P282	277,6	150	16,59	0,94	7,45	Ouvert
P283	124,18	150	18	1,02	8,74	Ouvert
P284	175,53	150	19,48	1,1	10,19	Ouvert
P285	161,99	150	6,46	0,37	1,21	Ouvert
P286	160,56	150	0,6	0,03	0,02	Ouvert
P287	82,64	150	-0,03	0	0	Ouvert
P288	283,28	53,6	0,34	0,15	0,7	Ouvert
P289	288,78	150	0,53	0,03	0,01	Ouvert
P290	61,03	200	-15,64	0,5	1,51	Ouvert
P291	26	200	-16,26	0,52	1,63	Ouvert
P292	34,08	200	-20,46	0,65	2,54	Ouvert
P293	202,69	100	2,83	0,36	1,98	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	I/s	m/s	m/km	
P295	120,54	100	0,22	0,03	0,01	Ouvert
P296	181,38	53,6	0,33	0,15	0,69	Ouvert
P297	122,55	150	30,42	1,72	24,46	Ouvert
P298	192,56	150	32,45	1,84	27,76	Ouvert
P299	396	76,6	0,72	0,16	0,49	Ouvert
P300	254,29	150	0,47	0,03	0,01	Ouvert
P301	188,58	150	-10,48	0,59	3,24	Ouvert
P302	70,09	150	-9,27	0,52	2,41	Ouvert
P303	9,44	150	-7,29	0,41	1,52	Ouvert
P304	131,63	76,6	-0,88	0,19	0,68	Ouvert
P305	114,15	76,6	-0,21	0,05	0,05	Ouvert
P306	140,3	150	-5,89	0,33	1,01	Ouvert
P307	217,8	150	-4,97	0,28	0,73	Ouvert
P308	87,34	150	-3,27	0,19	0,34	Ouvert
P309	412,61	76,6	-9,13	1,98	43,36	Ouvert
P310	140,23	100	-1,3	0,17	0,46	Ouvert
P311	19,81	76,6	2,04	0,44	2,99	Ouvert
P312	93,48	51,4	0,17	0,08	0,27	Ouvert
P313	108,56	96,8	-0,88	0,12	0,23	Ouvert
P314	133,81	53,6	0,24	0,11	0,41	Ouvert
P315	243,17	150	20,4	1,15	11,15	Ouvert
P316	77,24	96,8	21,95	2,98	68,9	Ouvert
P317	41,77	96,8	-3,09	0,42	2,03	Ouvert
P318	4,95	160	7,12	0,35	0,81	Ouvert
P319	40,78	150	6,02	0,34	1,06	Ouvert
P320	267,83	150	0,49	0,03	0,01	Ouvert
P321	132,73	150	-5,1	0,29	0,77	Ouvert
P322	222,54	150	-6,47	0,37	1,21	Ouvert
P323	126,46	100	-3,65	0,46	3,21	Ouvert
P324	136,3	76,6	0,25	0,05	0,08	Ouvert
P325	205,01	53,6	1,36	0,6	8,04	Ouvert
P326	6,88	200	4,39	0,14	0,14	Ouvert
P327	536,09	96,8	-2,55	0,35	1,45	Ouvert
P328	224,31	96,8	-4,91	0,67	4,63	Ouvert
P329	82,64	76,6	3,28	0,71	6,94	Ouvert
P330	402,94	34	0,74	0,81	23,82	Ouvert
P331	127,06	34	0,23	0,26	3,19	Ouvert
P332	55,15	96,8	-7,16	0,97	9,1	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	I/s	m/s	m/km	
P333	7,37	73,6	-2,84	0,67	6,48	Ouvert
P334	40,83	73,6	1,43	0,34	1,94	Ouvert
P335	100	150	-6,91	0,39	1,37	Ouvert
P336	3,65	150	-17,44	0,99	7,9	Ouvert
P337	7,3	100	11,07	1,41	27,69	Ouvert
P338	100	150	14,56	0,82	5,78	Ouvert
P339	10,11	100	-1,24	0,16	0,36	Ouvert
P340	100	150	12,94	0,73	4,59	Ouvert
P341	198,51	100	0,36	0,05	0,05	Ouvert
P342	132,35	100	-1,37	0,17	0,5	Ouvert
P343	180,08	100	1,13	0,14	0,36	Ouvert
P344	3,98	150	4,36	0,25	0,47	Ouvert
P345	29,84	90	4.2	0.35	0.21	Ouvert
P346	1,2	96,8	4,67	0,63	4,24	Ouvert
P347	0,57	96,8	-3,54	0,48	2,58	Ouvert
P348	3,54	150	9,8	0,55	2,68	Ouvert
P349	223,38	80	0,41	0,08	0,17	Ouvert
P350	275,75	327,4	120,53	1,43	4,26	Ouvert
P351	8,77	150	-16,07	0,91	7	Ouvert
P352	15,57	150	2,84	0,16	0,22	Ouvert
P353	788,72	257,8	118,31	2,27	13,08	Ouvert
P354	186,84	53,6	0,34	0,15	0,72	Ouvert
P355	361,15	100	0,66	0,08	0,13	Ouvert
P356	177,78	73,6	0,85	0,2	0,78	Ouvert
P357	143,18	53,6	0,26	0,12	0,46	Ouvert
P358	3,89	150	-0,81	0,05	0,03	Ouvert
P359	270,11	34	0,49	0,54	11,81	Ouvert
P360	186,33	176,2	4,23	0,17	0,2	Ouvert
P361	12,19	150	-0,02	0	0	Ouvert
P362	61,16	53,8	0,12	0,05	0,08	Ouvert
P363	0,11	160	-30,76	1,53	17,93	Ouvert
P364	0,15	300	182,48	2,58	22,76	Ouvert
P365	0,61	176,2	0,83	0,03	0,02	Ouvert
P366	0,63	150	-2,33	0,13	0,18	Ouvert
P367	100	76,6	-1,52	0,33	1,78	Ouvert
P368	100	300	-123,74	1,75	10,58	Ouvert
P369	9,23	150	6,14	0,35	1,09	Ouvert
P370	12,09	100	2,11	0,27	1,13	Ouvert

Tableau III.12: Résultats aux tronçons cas de pointe plus incendie, horizon 2050(suite).

	Longueur	Diamètre	Débit	Vitesse	Pert.Charge	État
ID Arc	m	Mm	l/s	m/s	m/km	
P371	1,63	300	207,9	2,94	29,5	Ouvert
P372	3,13	150	4,04	0,23	0,42	Ouvert
P373	0,36	300	151,28	2,14	15,74	Ouvert
P374	16,61	150	-14,03	0,79	5,37	Ouvert
P375	50,79	53,6	0,09	0,04	0,05	Ouvert
P376	626,08	327,4	121,07	1,44	4,3	Ouvert
P377	540,43	257,8	119,04	2,28	13,23	Ouvert
P378	349,52	163,6	30,57	1,45	9,99	Ouvert
P379	130,43	130,8	0,24	0,02	0	Ouvert
P380	127	76,6	3,28	0,71	6,91	Ouvert
P381	17,14	200	9,56	0,3	0,59	Ouvert
P382	4,47	96,8	2,36	0,32	1,27	Ouvert
P383	83,21	300	182,63	2,58	22,83	Ouvert
P384	40,05	150	49,19	2,78	63,15	Ouvert
P385	39,68	257,8	116,79	2,24	12,77	Ouvert
P386	40,97	150	-29,01	1,64	22,27	Ouvert
P387	5,41	150	56,33	3,19	82,56	Ouvert
P388	23,52	257,8	31,25	0,6	1,17	Ouvert
P389	57,65	96,8	7,21	0,98	9,22	Ouvert
P390	10,45	200	-29,43	0,94	5,16	Ouvert

III.4.4.6 Interprétation des résultats de la simulation en cas de pointe plus incendie à l'horizon 2050

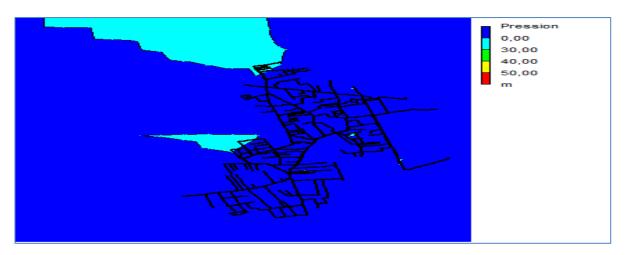


Figure III.10: Etat de pressions aux nœuds à l'heure de pointe cas de pointe plus incendie, horizon 2050.

Etude de diagnostic et proposition d'un Schéma directeur de restructuration du réseau de distribution de la ville de Béni Tamou (Wilaya de Blida)

La simulation en cas de pointe plus incendie du réseau actuel à long terme accentue les cas de dépressions comme le montre la figure **III.9.**

Quant aux vitesses elles s'améliorent considérablement dans la plupart des tronçons.

Comparons la défaillance du réseau actuel à assurer le paramètre pression à celui de la vitesse à long terme on remarque que le réseau reprend mieux en matière de vitesse à long terme et cela confirme le fait que le problème majeur réside dans la mauvaise implantation des ouvrages de stockage par rapport aux zones à alimenter.

Néanmoins le déséquilibre constaté en matière de pression et de vitesse est dû aussi à un mauvais dimensionnement des conduites.

Conclusion

L'analyse des résultats de la simulation du réseau de distribution actuel démontre que ce dernier ne répond pas parfaitement aux exigences et aux normes de fonctionnement d'un réseau d'alimentation en eau potable équilibré en matière de vitesse et de pression.

Le problème majeur réside probablement dans l'implantation des ouvrages de stockage d'une manière à avoir une élévation qui n'assure pas la pression nécessaire pour satisfaire les besoins de l'agglomération ce qui a poussé le gestionnaire à renforcer le réseau de distribution avec des injections directes qui peuvent à leurs tours endommager la performance des conduites et le fonctionnement des pompes en elles mêmes à long terme.

Pour remédier à tous ces problèmes il convient donc de revoir la structuration du réseau en sa globalité afin d'assurer la satisfaction des besoins en eau futurs de l'agglomération de Beni Tamou ce qui fera l'objet du prochain chapitre.

Chapitre IV : Reconfiguration de la structure du réseau.

Introduction

Les résultats des simulations effectuées ont révélé des dysfonctionnements dans le réseau de distribution de la ville de Beni Tamou, qui font que ce dernier fait preuve d'une incapacité à desservir l'agglomération aux horizons futurs.

Les anomalies observées lors de la simulation du réseau à l'état actuel et à long terme sont dues à une mauvaise implantation des réservoirs et aussi au mauvais choix des caractéristiques de conduites dans quelques zones du réseau de distribution à étudier.

Pour remédier à ces problèmes on fera appel à plusieurs modifications dans le réseau de distribution au niveau des caractéristiques des conduites afin qu'il soit alimenté gravitairement si possible à partir des réservoirs existants de la ville et on proposera des cotes d'implantation favorables pour assurer une meilleure desserte en eau.

IV.1 Anomalies et recommandations

Les résultats de la simulation du réseau existant à l'horizon actuel et long terme, mènent à chercher à apporter des solutions pour améliorer le fonctionnement de ce dernier et cela à travers les actions suivantes :

- Apres analyse de l'âge du réseau selon les matériaux utilisés, il s'est avéré qu'une grande partie du réseau existant est en amiante ciment (non recommandé pour des raisons sanitaires), acier galvanisé et en fonte, on propose donc de remplacer ces conduites avec d'autres en PVC ou en PEHD afin d'obtenir un réseau homogène.
- ⇒ Les résultats de la simulation ont montré l'incapacité du réseau actuel à fournir la pression nécessaire dans quelques zone alimentées à partir des réservoirs; Saidani, chaaba et Beyattou, Sans oublier la partie haute de Zaouia sud qui s'alimente à partir d'un puisard qui n'assure pas une alimentation correcte actuellement en matière de pression et de vitesse.
 - On remarque à long terme que l'état des nœuds passe à la dépression dans toute la zone d'étude c'est ce qui nous pousse à proposer dans ce cas de doter la partie haute d'un réservoir d'une élévation suffisante pour assurer son alimentation et de mieux exploiter les châteaux d'eau Zedri et Zaouia pour assurer la pression nécessaire.
- ⇒ Les vitesses faibles obtenues à l'horizon actuel sont dues à un mauvais choix des caractéristiques des conduites d'un coté et à la nature et la structure urbaine de la ville qui exige la conception de plusieurs ramifications.

IV .2 Schéma du réseau de distribution projeté

A l'appui de ces constats, après réflexion et pour améliorer la qualité de la distribution de la zone d'étude, on a convenu de décomposer la zone d'étude en deux secteurs.

- ✓ Zaouia sud et zaouïa ouest seront alimentés à partir du réservoir projeté ;
- ✓ Béni Tamou centre et zaouïa centre et chaaba et Benyattou seront alimentés à partir des deux châteaux d'eau existants zaouïa et Zedri.

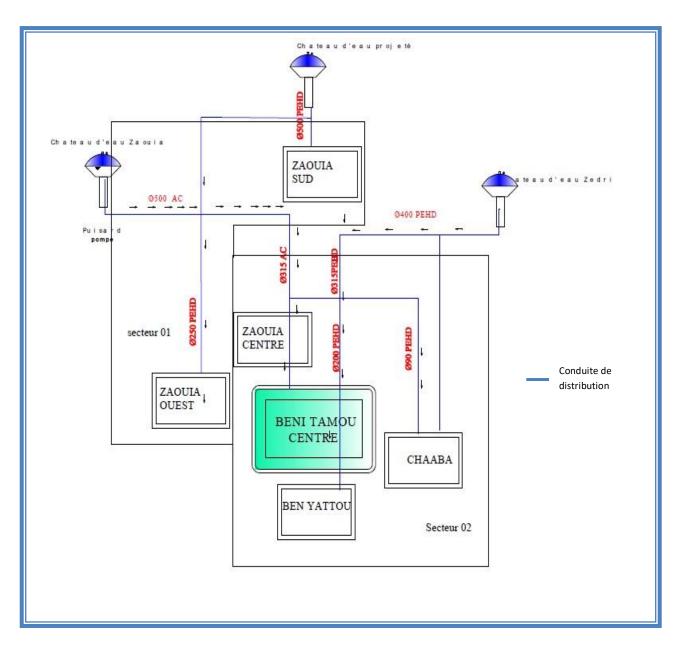


Figure IV.1 : Schéma synoptique du réseau de distribution projeté.

IV .3 Configuration du réseau projeté du secteur 01

IV.3.1 Calcul des débits du secteur 01

Pour évaluer le débit alimentant le premier secteur on doit passer le calcul du nombre d'habitant, on utilise la densité d'habitation avec les mêmes valeurs de dotation utilisées dans le chapitre 'estimation des besoins en eau de la zone d'étude'.

Tableau IV.1 : Débit de dimensionnement du secteur 01.

Superficie	Densité	Nombre d'habitant	$Q_{p(dist)}^{h}$	$Q_{p(dist)}^{h}$
На	hab./ha	hab.	m ³ /h	1/s
249,79	169	42227	785,56	218,22

Tableau IV.2 :Débits nodaux du secteur 01.

Nœud	Qn	Nœud	Qn	Nœuds	Qn	Nœuds	Qn
	(l/s)		(l/s)		(l/s)		(l/s)
n1	2,75	n27	2,22	n55	2,40	n86	2,71
n2	2,49	n28	2,22	n56	3,11	n87	2,26
n3	2,03	n29	0,85	n57	2,42	n88	1,04
n4	2,03	n30	4,70	n58	3,30	n89	0,87
n5	0,79	n31	1,55	n59	2,42	n91	4,30
n6	0,87	n32	1,95	n60	2,45	n92	0,79
n 7	0,73	n33	0,24	n61	1,73	n93	3,10
n8	0,79	n34	0,96	n62	4,04	n94	0,84
n9	2,53	n35	1,35	n64	4,64	n95	3,94
n10	1,83	n36	3,04	n65	2,25	n96	0,80
n11	1,66	n37	6,63	n66	2,44	n97	2,24
n12	1,61	n38	4,42	n67	1,57	n98	0,95
n13	2,29	n39	0,61	n68	2,94	n99	0,62
n14	0,82	n40	6,87	n69	0,77	n100	0,39
n15	1,68	n41	6,25	n70	1,69	n101	3,72
n16	1,20	n43	3,52	n71	0,80	n102	5,28
n17	1,39	n44	0,50	n72	2,99	n103	2,02
n18	0,62	n45	0,99	n73	0,59	n104	0,60
n19	2,76	n47	1,82	n75	0,96	n105	1,50
n20	0,63	n48	3,25	n76	2,12	n106	1,34
n21	1,25	n49	4,49	n77	0,56	n107	1,04
n22	1,23	n50	2,43	n78	0,49	n108	0,90
n23	1,22	n51	2,34	n79	2,51	n111	0,87
n24	2,13	n52	4,17	n80	1,21	n112	0,70
n25	0,28	n53	2,01	n84	2,28	n113	0,69
n26	2,40	n54	3,06	n85	2,70		

IV .3 .2 Détermination de la cote du radier du réservoir surélevé

La hauteur d'implantation du château d'eau est calculée en fonction de la consommation d'eau et de la pression demandée ainsi que la topographie du sol.

$$CR = CTN + Hn + \sum \Delta Hch - n$$

Hn: Pression de service au point le plus défavorable n.

CTN: Cote du terrain naturel au point n.

 $\sum \Delta Hch - n$: Somme de perte de charge du château jusqu'au point n

Connaissons les débits aux nœuds on utilise la méthode de la répartition arbitraire des débits pour une détermination approximative des diamètres des conduites du secteur 01.

Tableau IV.3: Caractéristiques des conduites reliant château d'eau projeté au point n.

Tronçons	Débits	Diamètre	Vitesses	PDC
_	(1/s)	(mm)	(m/s)	(m)
Ch-projeté-N113	218 ,3	440,6	1,43	3.18
N113-N1	217,5	440,6	1,34	2.99
N1-N9	205,5	440,6	1,34	2.88
N9-N15	252,6	440,6	1,34	2.68
N15-N36	143,3	352,6	1,47	4.09
N36-N30	128,61	352,6	1.32	3.35
N30-N40	114,11	352,6	1,5	2.7
N40-N51	95,94	352,6	0,98	1.97
N51-N101	52,77	277,6	0,87	2.11
N101-N102	49,05	277,6	0,81	1,84
N102-N84	36,33	220,4	0,95	3,25
N84-N86	15,98	117,6	1,47	15,14
N86-N90	9.08	117,6	0,84	5,47

Pour assurer la pression minimale de service $P_{min} = 1$ bar au point le plus défavorable, la cote du radier doit être fixée à:

CR = 160 m

Avec : $\sum \Delta Hch - n90 = 51,76m$

Et le château d'eau sera projeté à la cote CTN = 145m, ce qui conduit à une hauteur d'élévation du radier de 15 m.

IV .3.3 Simulation du comportement du réseau de distribution du secteur S01 à l'horizon 2050

IV .3.3.1 résultats de la simulation du réseau du secteur 01, cas de pointe

Tableau IV.4 : État des pressions du secteur S01 cas Heure de pointe, Horizon 2050.

Nœud	Débit	Charge	Pression	Nœud	Débit	Charge	Pression
	(I/s)	(m)	(m.C.E)		(I/s)	(m)	(m.C.E)
n1	2,76	159,45	17,1	n31	1,56	156,27	26,32
n2	2,49	158,54	16,64	n32	1,95	156,09	26,5
n3	2,04	158,01	17,38	n33	0,24	155,64	25,88
n4	2,04	157,49	17,71	n34	0,96	154,47	27,79
n5	0,79	156,08	19,07	n35	1,36	154,55	29,55
n6	0,87	155,67	19,27	n36	3,04	158,04	25,12
n7	0,74	156,87	19,98	n37	6,64	151,34	16,02
n8	0,8	157,46	18,94	n38	4,43	143,86	20,69
n9	2,53	158,65	22,85	n39	0,61	150,66	12,89
n10	1,84	156,91	20,98	n40	6,88	156,42	34,19
n11	1,67	156,56	20,47	n41	6,26	149,87	24,89
n12	1,61	156,47	20,51	n43	3,53	144,97	28,61
n13	2,3	156,4	21,19	n44	0,5	143,79	29,14
n14	0,82	154,85	18,33	n45	1	142,97	27,01
n15	1,69	158,59	22,83	n47	1,82	151,92	25,76
n16	3,4	156,06	20,26	n48	3,25	151,35	23,71
n17	1,39	155,52	19,43	n49	4,5	150,97	23,46
n18	0,62	154,99	19,57	n50	2,43	149,35	16,52
n19	2,76	154,36	19,7	n51	2,34	156,26	35,68
n20	0,64	154,66	16,24	n52	4,17	153,36	32,19
n21	1,26	155,3	14,4	n53	2,02	148,73	35,26
n22	1,24	151,68	10,69	n54	3,06	150,54	29,77
n23	1,23	151,71	11,48	n55	2,41	146,13	34,42
n24	2,13	152,01	26,18	n56	3,12	150,25	30,76
n25	0,29	153,95	19,41	n57	2,43	145,74	35,3
n26	2,4	153,68	19,2	n58	3,31	149,74	30,91
n28	2,23	153,41	27,39	n59	2,43	145,22	35,07
n29	0,85	154,23	22,02	n60	2,45	151,91	31,03
n30	4,71	157,57	27,87	n61	1,73	150,91	30,33

Tableau IV.4 : État des pressions du secteur S01 cas Heure de pointe, Horizon 2050(suite).

Nœud	Débit	Charge	Pression	Nœud	Débit	Charge	Pression
	(I/s)	(m)	(m.C.E)		(I/s)	(m)	(m.C.E)
n62	4,04	149,35	30,57	n91	4,31	148,39	50,43
n64	4,65	148,26	29,6	n90	6,43	151,11	52,86
n65	2,25	144,61	16,99	n91	4,31	148,39	50,43
n66	2,44	149,02	29,61	n92	0,8	147,32	49,61
n67	1,58	145,12	26,6	n93	3,1	148,39	49,35
n68	2,95	149,37	27,51	n94	0,84	147,13	48,31
n69	0,77	148,08	25,42	n95	3,95	149,7	46,81
n70	1,7	147,6	24,94	n96	0,81	148,22	44,28
n71	0,81	146,49	23,62	n97	2,24	148,67	48,27
n72	2,99	150,73	23,31	n98	0,95	146,93	45,89
n73	0,6	150,7	23,38	n99	0,63	148,58	48,65
n75	0,97	149,15	25,68	n100	0,39	148,47	48,38
n76	2,13	149,58	17,66	n101	3,72	156	37,72
n77	0,57	149,03	17,13	n102	5,28	154,92	47,13
n78	0,49	148,47	16,76	n103	2,03	149,42	43,04
n79	2,51	153,69	21,36	n104	0,6	147,51	38,68
n80	1,21	150,29	23,58	n105	1,51	148,75	43,07
n84	2,28	154,25	51,48	n106	1,35	148,2	43,45
n85	2,71	152,97	49,88	n107	1,05	145,17	36,41
n86	2,72	153,21	50,99	n108	0,91	146,71	37,94
n87	2,26	152,6	50,49	n111	0,87	150,09	26,09
n88	1,04	149,61	50,09	n112	0,71	149,89	26,5
n89	0,87	150,79	52,29	n113	0,7	159,7	15,34
n90	6,43	151,11	52,86	ch-projeté	-218,27	160	0

Tableau IV.5: Résultat aux tronçons en cas de pointe secteur S01, Horizon2050.

Tronçon	Débit	Vitesse	PDC	État
	(I/s)	(m/s)	(m/km)	
p1	9,77	0,9	6,25	Ouvert
p2	6,48	0,6	2,99	Ouvert
р3	3,7	0,75	7,33	Ouvert
p4	0,79	0,56	9,27	Ouvert
р5	0,87	0,61	10,92	Ouvert
р6	0,74	0,52	8,11	Ouvert
р7	0,8	0,5	7,06	Ouvert
р8	12,6	1,16	9,86	Ouvert
р9	10,12	0,93	6,65	Ouvert
p10	7,2	0,66	3,61	Ouvert
p11	4,34	0,4	1,47	Ouvert
p12	0,82	0,58	9,85	Ouvert
p13	44,89	1,84	14,04	Ouvert
p14	39,26	1,61	11,01	Ouvert
p15	37,02	1,52	9,89	Ouvert
p16	36,4	1,49	9,59	Ouvert
p17	0,64	0,7	18,45	Ouvert
p18	1,26	0,49	5,21	Ouvert
p19	1,24	0,87	20,24	Ouvert
p20	1,23	0,86	19,99	Ouvert
p21	2,13	0,59	5,77	Ouvert
p22	31,5	1,29	7,38	Ouvert
p23	29,39	1,21	6,51	Ouvert
p24	2,23	0,62	6,24	Ouvert
p25	0,85	0,53	7,91	Ouvert
p26	6,07	1,17	15,55	Ouvert
p27	3,55	0,68	5,96	Ouvert
p28	0,24	0,42	9,8	Ouvert
p29	0,96	0,6	9,8	Ouvert
p30	1,36	0,53	5,94	Ouvert
p31	11,68	1,59	21,94	Ouvert
p32	4,43	0,85	8,84	Ouvert
p33	0,61	0,43	5,86	Ouvert
p34	11,29	1,04	8,1	Ouvert
p35	5,03	1,02	12,66	Ouvert
p36	0,5	0,56	12,22	Ouvert
p37	1	0,62	0,62 10,46	
p38	1,82	0,57	5,84	Ouvert
p39	26,99	1,11	5,58	Ouvert
p40	2,43	0,49	3,47	Ouvert

Tableau IV.5: Résultat aux tronçons en cas de pointe secteur S01, Horizon2050(suite).

Tronçon	Débit	Vitesse	PDC	État
	(I/s)	(m/s)	(m/km)	
p41	40,83	1,67	11,81	Ouvert
p42	2,02	0,79	11,99	Ouvert
p43	2,41	0,75	9,57	Ouvert
p44	2,43	0,76	9,72	Ouvert
p45	2,43	0,76	9,73	Ouvert
p46	34,64	1,42	8,76	Ouvert
p47	31,32	1,28	7,3	Ouvert
p48	28,88	1,18	6,31	Ouvert
p49	12,13	0,78	3,85	Ouvert
p50	23,41	0,96	4,31	Ouvert
p51	17,86	1,14	7,74	Ouvert
p52	2,25	0,7	8,5	Ouvert
p53	5,58	0,51	2,29	Ouvert
p54	8,48	0,78	4,84	Ouvert
p55	1,58	0,7	10,4	Ouvert
p56	-5,34	0,49	2,12	Ouvert
p57	0,77	0,54	8,78	Ouvert
p58	0,81	0,5	7,21	Ouvert
p59	-2,51	0,78	10,28	Ouvert
p60	-9,06	0,83	5,45	Ouvert
p61	-15,24	0,63	1,99	Ouvert
p62	-23,14	0,95	4,23	Ouvert
p63	0,6	0,42	5,65	Ouvert
p64	0,97	0,6	9,85	Ouvert
p65	3,19	0,65	5,62	Ouvert
p66	-0,57	0,4	5,13	Ouvert
p67	0,49	0,54	11,82	Ouvert
p68	3,72	1,03	15,57	Ouvert
p69	1,21	0,75	14,69	Ouvert
p72	18,07	1,16	7,9	Ouvert
p73	15,98	1,47	15,14	Ouvert
p74	4,18	0,85	9,08	Ouvert
p75	1,04	0,73	15	Ouvert
p76	0,87	0,61	10,88	Ouvert
p77	9,08	0,84	5,47	Ouvert

Tableau IV.5: Résultat aux tronçons en cas de pointe secteur S01, Horizon2050(suite).

Tronçon	Débit	Vitesse	P.d.c	État
	(I/s)	(m/s)	(m/km)	
p78	2,16	0,68	7,91	Ouvert
p79	4,81	0,65	4,47	Ouvert
p80	0,8	0,5	7,02	Ouvert
p81	-0,29	0,04	0,03	Ouvert
p82	0,84	0,53	7,79	Ouvert
p83	-4,24	0,58	3,56	Ouvert
p84	0,81	0,57	9,57	Ouvert
p85	4,21	0,86	9,22	Ouvert
p86	0,95	0,59	9,61	Ouvert
p87	0,63	0,25	1,55	Ouvert
p88	0,39	0,28	2,71	Ouvert
p89	49,05	0,81	1,84	Ouvert
p90	36,33	0,95	3,25	Ouvert
p91	7,44	1,51	25,58	Ouvert
p92	0,6	0,66	16,65	Ouvert
p93	4,81	0,98	11,7	Ouvert
p94	2,4	0,75	9,51	Ouvert
p95	1,05	0,74	15,13	Ouvert
p96	0,91	0,64	11,72	Ouvert
p97	13,2	1,79	27,39	Ouvert
p99	0,87	0,61	10,89	Ouvert
p100	0,71	0,5	7,55	Ouvert
p101	217,57	1,43	2,99	Ouvert
p102	205,04	1,34	2,68	Ouvert
p103	189,91	1,94	6,84	Ouvert
p104	143,33	1,47	4,09	Ouvert
p105	128,61	1,32	3,35	Ouvert
p106	114,11	1,17	2,7	Ouvert
p107	95,94	0,98	1,97	Ouvert
p108	52,77	0,87	2,11	Ouvert
1	218,27	1,43	3	Ouvert

IV .3.3.2 Interprétation des résultats de la simulation du secteur 01, cas Heure de pointe, Horizon 2050

D'après les résultats de la simulation du réseau projeté du secteur 01 en cas de pointe, on remarque que les pressions sont acceptables et s'améliorent et varient entre 10 et 40 m.C.E dans la plupart des nœuds et atteignent 50 m.C.E dans la région de Zaouia ouest comme le montre la figure suivante.

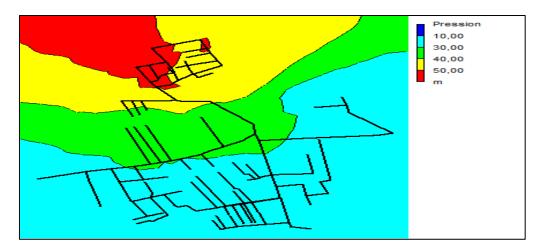


Figure IV.2: Etat de pressions du secteur01 cas de pointe, Horizon2050.

Concernant les vitesses elles sont acceptables selon les recommandations du C.T.H partout à part les tronçons P88 et P87 qui représentent des bouts du réseau dans lesquels on préconise de placer des robinets de vidange afin de pouvoir nettoyer le réseau pour éviter le rétrécissement des conduites suite au dépôt et d'accumulation des solides.

Le tronçon P81 présente une vitesse très faible mais il se trouve dans une maille où toutes les vitesses dépassent 0.5m/s ce qui a l'avantage d'assurer l'écoulement.

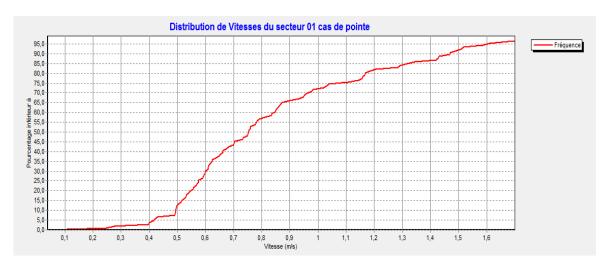


Figure IV.3: distribution des vitesses du secteur01 cas de pointe, Horizon2050.

IV .3.3.3 Résultat de la simulation du réseau secteur 01, cas de pointe plus incendie

(Voir les tableaux annexes 2)

IV .3.3.4 Interprétation des résultats de la simulation du secteur 01, cas Heure de pointe plus incendie

Les résultats de la simulation du comportement du secteur 01 du réseau dans le cas de pointe plus incendie sont pratiquement identiques à ceux du cas pointe avec un léger changement peu remarquable et une augmentation des vitesses dans certains tronçons.

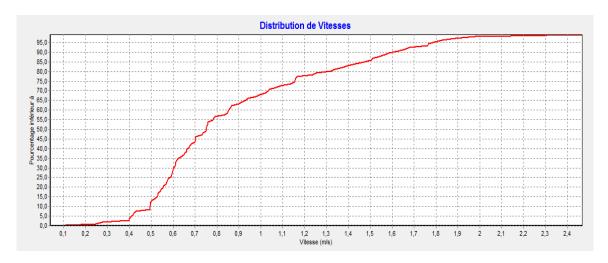


Figure IV.4 : distribution des vitesses du secteur01 cas de pointe plus incendie, Horizon2050.

IV.4 Configuration du réseau projeté du secteur 02

IV.4.1 Calcul des débits du secteur 02

Pour évaluer le débit alimentant le deuxième secteur on doit passer le calcul du nombre d'habitant, on utilise la densité d'habitation avec les mêmes valeurs de dotation utilisées dans le chapitre 'estimation des besoins en eau de la zone d'étude'.

Tableau IV.8 : Débit de dimensionnement du secteur 02.

Superficie	Densité	Nombre d'habitant	Q_p^h (dist)	Q_p^h (dist)
(ha)	(hab./ha)	hab.	(m ³ /h)	(1/s)
470,21	169	79465	1390.31	386.19

IV .4.2 Calcul des débits nodaux du secteur S02

Tableau IV.9: Débits nodaux du secteur S02 cas Heure de pointe, Horizon 2050.

Nœuds	Qn	Nœuds	Qn	Nœuds	Qn	Nœuds	Qn
	(I/s)		(I/s)		(I/s)		(I/s)
N1	0,69	N91	1	N126	0,52	N164	4,73
N2	2,49	N92	1,35	N127	1,33	N165	0,54
N3	1,55	N93	3,49	N128	1,15	N166	2,19
N4	1,25	N94	3,41	N129	0,99	N167	1,83
N5	1,49	N101	2,33	N130	0,68	N168	1,67
N8	1,54	N102	0,78	N131	1,68	N169	3,24
N9	0,95	N103	0,78	N132	3,54	N175	1,6
N11	2,21	N104	2,02	N133	1,85	N182	2,22
N12	1,57	N105	3,21	N134	0,28	N183	0,28
N13	0,68	N106	1,79	N135	2,05	N184	1,14
N14	1,65	N107	0,32	N136	1,11	N187	2,03
N15	1,75	N108	0,96	N137	1,15	N188	1,38
N16	0,95	N109	0,57	N138	0,94	N189	1,33
N19	2,93	N110	0,59	N139	1,47	N190	0,78
N42	1,31	N111	0,81	N140	0,5	N191	1,82
N63	1,85	N112	1,16	N141	1,31	N192	0,86
N64	0,65	N113	1,72	N142	2,31	N193	2,64
N67	1,25	N114	2,49	N143	1,06	N194	0,82
N68	1,65	N115	1,42	N144	1,63	N195	0,84
N78	0,84	N116	2,12	N145	1,98	N.196	0,91
N82	1,58	N117	1,07	N146	0,77	N197	3,74
N83	0,41	N118	1,39	N147	1,57	N198	1,77
N84	2,68	N119	1	N148	0,91	N212	2,63
N85	2,64	N120	0,79	N149	1,29	N213	2,27
N86	1,21	N121	1,72	N150	0,5	N214	1,04
N87	1,38	N122	1,2	N151	2,52	N215	5,64
N88	2,44	N123	0,35	N152	0,52	N216	1,58
N89	0,45	N124	2,33	N162	2,28	N239	0,86
N90	0,9	N125	3,65	N163	2,34	N240	0,7

Tableau IV.9: Débits nodaux du secteur S02 cas Heure de pointe, Horizon 2050(suite).

Nœuds	Qn	Nœuds	Qn	Nœuds	Qn	Nœuds	Qn
	(I/s)		(I/s)		(I/s)		(I/s)
N241	0,69	N282	1,83	N318	0,66	N371	1,68
N248	1,36	N283	0,23	N319	1,47	N372	0,97
N250	0,84	N284	0,69	N320	0,4	N373	0,61
N252	1,99	N285	1,36	N321	0,44	N374	1,93
N253	0,37	N286	0,45	N322	0,72	N375	0,74
N254	2,74	N288	1,01	N323	1,57	N376	0
N255	1,82	N290	0,58	N324	3,2	N381	1,69
N256	3,03	N292	2,65	N325	2,38	N383	0,66
N257	3,51	N293	2,22	N326	0,55	1	1,72
N258	1,4	N294	2,79	N327	0,82	2	1,86
N259	1,08	N295	1,41	N328	4,35	3	1,94
N260	1,13	N297	1,01	N329	1,79	6	1,98
N261	0,8	N299	2,69	N330	1,15	7	1
N262	0,66	N300	2,69	N331	1,27	8	0,86
N263	2,67	N301	0,72	N332	1,4	9	0,86
N264	2,93	N302	0,67	N333	0,42	10	1,9
N265	0,9	N304	2,51	N334	1,42	11	3,13
N266	0,27	N305	0,82	N335	1,21	12	2,14
N267	1,38	N306	1,65	N336	2,5	13	3,14
N268	1,06	N307	0,35	N346	1,29	14	4,2
N269	1,62	N308	0,55	N348	1,45	15	2,19
N270	0,66	N310	4,31	N355	0	16	3,14
N271	3,51	N311	2,61	N357	0	17	3,5
N272	2,14	N312	4,33	N360	0,13	18	5,2
N273	5,2	N313	1,12	N364	0,54	19	3,1
N274	0,37	N314	3,86	N365	0,16	20	2,53
N275	1,81	N315	1,12	N366	1,54	21	3,98
N276	1,29	N316	2	N367	1,32	22	2,99
N277	0,59	N317	1,77	N368	3,69	23	3,2
				N369	2,22	24	3,5

IV.4.3 Simulation du comportement du réseau de distribution du secteur S02 à l'horizon 2050

IV.4.3.1 Résultat de la simulation du réseau secteur 02, cas de pointe

Tableau IV.10 : État des noeuds du secteur S02 cas de pointe, Horizon 2050.

Nœud	CTN	Débit	charge	pression	Nœud	CTN	Débit	charge	pression
	(m)	(I/s)	(m)	(m.C.E)		(m)	(I/s)	(m)	(m.C.E)
N1	90,27	0,69	126,92	36,65	N85	96,56	2,64	134,51	37,95
N2	117,06	2,49	136,2	19,14	N86	96,5	1,21	132,75	36,25
N3	117,69	1,55	135,92	18,23	N87	91,35	1,38	130,49	39,14
N4	102,55	1,25	135,66	33,11	N88	91,62	2,44	128,13	36,51
N5	101,75	1,49	135,29	33,54	N89	92,2	0,45	127,14	34,94
N8	111,72	1,54	131,67	19,95	N90	87,48	0,9	126,77	39,29
N9	114,33	0,95	123,86	9,53	N91	87,8	1	127,86	40,06
N11	100,72	2,21	130,99	30,27	N92	87,19	1,35	123,7	36,51
N12	102,93	1,57	135,98	33,05	N93	101,91	3,49	134,57	32,66
N13	103,9	0,68	132,82	28,92	N94	93,82	3,41	132,83	39,01
N14	90,17	1,65	130,11	39,94	N101	93,32	2,33	131,32	38
N15	88,27	1,75	129,32	41,05	N102	92,4	0,78	131,21	38,81
N16	96,17	0,95	133,7	37,53	N103	91,16	0,78	130,98	39,82
N19	75,4	2,93	120,17	44,77	N104	90,14	2,02	130,7	40,56
N42	118,51	1,31	133,73	15,22	N105	83,93	3,21	127,97	44,04
N63	115,71	1,85	138,12	22,41	N106	84,3	1,79	125,74	41,44
N64	115,62	0,65	134,07	18,45	N107	91,8	0,32	130,11	38,31
N67	106,31	1,25	135,2	28,89	N108	91,24	0,96	131,04	39,8
N68	105,86	1,65	135,17	29,31	N109	90,46	0,57	125,51	35,05
N78	114,05	0,84	137,18	23,13	N110	90,17	0,59	124,5	34,33
N82	95,4	1,58	132,94	37,54	N111	87,57	0,81	127,39	39,82
N83	98,65	0,41	128,18	29,53	N112	87,67	1,16	129,12	41,45
N84	95,41	2,68	130,35	34,94	N113	86,89	1,72	130	43,11

Tableau IV.10 : État des noeuds du secteur S02 cas de pointe , Horizon 2050 (suite).

Nœud	CTN	Débit	charge	pression	Nœud	CTN	Débit	charge	pression
	(m)	(I/s)	(m)	(m.C.E)		(m)	(I/s)	(m)	(m.C.E)
N114	86,52	2,49	129,75	43,23	N137	77,7	1,15	121,4	43,7
N115	87,21	1,42	127,06	39,85	N138	77,88	0,94	120,08	42,2
N116	86,9	2,12	128,91	42,01	N139	76,85	1,47	119,42	42,57
N117	86,02	1,07	125,24	39,22	N140	76,48	0,5	118,12	41,64
N118	87,5	1,39	126,87	39,37	N141	102,95	1,31	136,54	33,59
N119	87,16	1	126,44	39,28	N142	102,94	2,31	136,21	33,27
N120	85,75	0,79	124,86	39,11	N143	102,89	1,06	135,99	33,1
N121	88,64	1,72	128,84	40,2	N144	102,58	1,63	135,66	33,08
N122	87,58	1,2	128,38	40,8	N145	85,15	1,98	127,71	42,56
N123	87,66	0,35	126,99	39,33	N146	84,44	0,77	126,23	41,79
N124	84,21	2,33	130,73	46,52	N147	83,37	1,57	125,46	42,09
N125	83,32	3,65	128,52	45,2	N148	80,89	0,91	123,06	42,17
N126	82,58	0,52	122	39,42	N149	83,29	1,29	125,36	42,07
N127	88,82	1,33	131,84	43,02	N150	82,84	0,5	124,05	41,21
N128	88,65	1,15	130,32	41,67	N151	83,75	2,52	130,6	46,85
N129	88,2	0,99	131,63	43,43	N152	83,01	0,52	129,1	46,09
N130	87,47	0,68	130,53	43,06	N162	103,75	2,28	135,8	32,05
N131	118,2	1,68	138,55	20,35	N163	100,44	2,34	135,23	34,79
N132	111,49	3,54	137,53	26,04	N164	129,16	4,73	141,6	12,44
N133	87,73	1,85	121,8	34,07	N165	120,58	0,54	139,09	18,51
N134	87,73	0,28	119,25	31,52	N166	117,7	2,19	138,4	20,7
N135	80,27	2,05	122,71	42,44	N167	113,94	1,83	137,85	23,91
N136	78,38	1,11	121,53	43,15	N168	112,54	1,67	136,98	24,44

Tableau IV.10 : État des nœuds du secteur S02 cas de pointe , Horizon 2050 (suite).

Nœud	CTN	Débit	charge	pression	Nœud	CTN	Débit	charge	pression
	(m)	(I/s)	(m)	(m.C.E)		(m)	(I/s)	(m)	(m.C.E)
N169	110,08	3,24	136,7	26,62	N240	111,64	0,7	133,59	21,95
N175	107,8	1,6	137,19	29,39	N241	107,21	0,69	131,92	24,71
N182	102,57	2,22	136,36	33,79	N248	108,6	1,36	134,29	25,69
N183	104,35	0,28	134	29,65	N250	117,9	0,84	134,27	16,37
N184	102,97	1,14	134,75	31,78	N252	101,01	1,99	128,67	27,66
N187	89,89	2,03	132,01	42,12	N253	99,41	0,37	128,34	28,93
N188	89,01	1,38	129,48	40,47	N254	95,92	2,74	125,21	29,29
N189	87,66	1,33	131,48	43,82	N255	95,54	1,82	129,94	34,4
N190	86,74	0,78	129,91	43,17	N256	102,45	3,03	135,3	32,85
N191	86,25	1,82	131,12	44,87	N257	102,36	3,51	133,16	30,8
N192	85,07	0,86	129,1	44,03	N258	97,58	1,4	130,54	32,96
N193	104,83	2,64	136,8	31,97	N259	94,68	1,08	131,86	37,18
N194	105,45	0,82	132,87	27,42	N260	91,91	1,13	132,22	40,31
N195	80,3	0,84	125,33	45,03	N261	87,73	0,8	130,16	42,43
N.196	76,6	0,91	122,97	46,37	N262	93,74	0,66	129,95	36,21
N197	105,24	3,74	136,09	30,85	N263	98,75	2,67	135,8	37,05
N198	102,66	1,77	133,93	31,27	N264	99,28	2,93	133,89	34,61
N212	80,1	2,63	124,59	44,49	N265	80,05	0,9	126,22	46,17
N213	73,91	2,27	114,67	40,76	N266	82,29	0,27	122,73	40,44
N214	105,26	1,04	125,02	19,76	N267	81,52	1,38	123,45	41,93
N215	95,07	5,64	132,54	37,47	N268	80,6	1,06	124,94	44,34
N216	87,8	1,58	127,91	40,11	N269	78,65	1,62	123,31	44,66
N239	112,07	0,86	135,84	23,77	N270	80,19	0,66	120,51	40,32

Tableau IV.10 : État des noeuds du secteur S02 cas de pointe , Horizon 2050 (suite).

Nœud	CTN	Débit	charge	pression	Nœud	CTN	Débit	charge	Pression
	(m)	(I/s)	(m)	(m.C.E)		(m)	(I/s)	(m)	(m.C.E)
N271	94,86	3,51	135,37	40,51	N304	106,59	2,51	135,23	28,64
N272	84,93	2,14	131,67	46,74	N305	103,62	0,82	133,44	29,82
N273	92,2	5,2	130,94	38,74	N306	101,97	1,65	134,76	32,79
N274	80,75	0,37	114,79	34,04	N307	101,47	0,35	135,26	33,79
N275	85,62	1,81	120,39	34,77	N308	113,59	0,55	129,92	16,33
N276	71,21	1,29	118,08	46,87	N310	101,59	4,31	132,04	30,45
N277	87,25	0,59	125,12	37,87	N311	99,28	2,61	133,16	33,88
N282	111,59	1,83	131,72	20,13	N312	91,36	4,33	132,2	40,84
N283	108,9	0,23	127,57	18,67	N313	88,84	1,12	131,84	43
N284	109,51	0,69	132,96	23,45	N314	77,65	3,86	129,7	52,05
N285	112,76	1,36	136,3	23,54	N315	93,37	1,12	118,01	24,64
N286	108,88	0,45	134,35	25,47	N316	95,12	2	132,14	37,02
N288	105,85	1,01	134,78	28,93	N317	92,71	1,77	131,37	38,66
N290	85,71	0,58	126,35	40,64	N318	93,38	0,66	128,51	35,13
N292	76,56	2,65	120,99	44,43	N319	90,75	1,47	125,15	34,4
N293	72,85	2,22	117,94	45,09	N320	78,92	0,4	115,59	36,67
N294	77,34	2,79	121,59	44,25	N321	77,39	0,44	119,15	41,76
N295	81,34	1,41	118,95	37,61	N322	75,71	0,72	118,17	42,46
N297	101,73	1,01	125,49	23,76	N323	110,34	1,57	137,94	27,6
N299	108,56	2,69	134,36	25,8	N324	111,94	3,2	138,72	26,78
N300	113,13	2,69	131,63	18,5	N325	96,33	2,38	132,34	36,01
N301	111,64	0,72	131,71	20,07	N327	84,85	0,55	128,31	43,46
N302	112,8	0,67	128,72	15,92	N328	86,4	0,82	127,97	41,57

Tableau IV.10 : État des nœuds du secteur S02 cas de pointe , Horizon 2050 (suite).

Nœud	CTN	Débit	charge	pression	Nœud	CTN	Débit	charge	pression
	(m)	(I/s)	(m)	(m.C.E)		(m)	(I/s)	(m)	(m.C.E)
N329	81,37	4,35	127,43	46,06	N377	122,26	0	139,46	17,2
N330	75,47	1,79	125,19	49,72	N381	94	1,69	125,44	31,44
N331	84,59	1,15	122,91	38,32	N383	89,6	0,66	127,26	37,66
N332	79,98	1,27	124,5	44,52	1	102,6558	1,72	132,11	29,45
N333	77,97	1,4	129,42	51,45	2	104,235889	1,86	131,34	27,1
N334	78,79	0,42	126,99	48,2	3	106,85655	1,94	131,25	24,4
N335	118,5	1,42	137,28	18,78	6	108,2	1,98	131,86	23,66
N336	102,32	1,21	136,59	34,27	7	102,3566	1	130,3	27,94
N337	87,55	2,5	129,05	41,5	8	102,258566	0,86	129,85	27,59
N346	110,13	1,29	137,87	27,74	9	104,263233	0,86	125,79	21,53
N348	115,48	1,45	136,78	21,3	10	107,225566	1,9	131,23	24,01
N355	87,9	0	127,91	40,01	11	71,93	3,13	119,05	47,12
N357	87,9	0	127,9	40	12	71,17	2,14	118,52	47,35
N360	129,22	0,13	141,73	12,51	13	69,91	3,14	118,2	48,29
N364	118,2	0,54	138,55	20,35	14	69,82	4,2	83,76	13,94
N365	83,75	0,16	130,67	46,92	15	67,5	2,19	116,4	48,9
N366	109,55	1,54	128,02	18,47	16	66,83	3,14	116,14	49,31
N367	124,35	1,32	141,79	17,44	17	66,31	3,5	115,88	49,57
N368	119,08	3,69	141,12	22,04	18	65,68	5,2	115,59	49,91
N369	89,6	2,22	127,22	37,62	19	65,57	3,1	110,64	45,07
N371	110,28	1,68	137,9	27,62	20	65,49	2,53	110,11	44,62
N372	87,16	0,97	126,41	39,25	21	66,22	3,98	112,42	46,2
N373	85,87	0,61	121,44	35,57	22	66,66	2,99	113,7	47,04
N375	100,37	1,93	133,93	33,56	23	68,23	3,2	114,98	46,75
N376	87,12	0,74	105,4	18,28	24	68,51	3,5	109,94	41,43

Tableau IV.11: Résultat aux tronçons en cas de pointe secteur S02, Horizon2050.

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge	État
	(mm)	(I/s)	(m/s)	m/km	
P1	76,6	2,86	0,62	5,43	Ouvert
P2	277,6	41,2	0,68	1,35	Ouvert
P5	34	0,95	1,05	37,19	Ouvert
P7	34	0,68	0,75	20,9	Ouvert
P8	277,6	105,85	1,75	7,46	Ouvert
P23	53,6	1,31	0,58	7,53	Ouvert
P40	42,6	0,19	0,13	0,77	Ouvert
P47	53,6	2,44	1,08	22,55	Ouvert
P48	27,2	-0,41	0,7	24,13	Ouvert
P49	53,6	1,21	0,54	6,54	Ouvert
P50	67,8	4,35	1,21	20,58	Ouvert
P51	34	0,45	0,49	9,94	Ouvert
P52	34	-0,74	0,81	292,61	Ouvert
P53	277,6	74,9	1,24	3,97	Ouvert
P58	220,4	33,69	0,88	2,84	Ouvert
P59	141	9,6	0,62	2,54	Ouvert
P60	63,8	1,79	0,56	5,65	Ouvert
P61	27,2	0,32	0,54	15,65	Ouvert
P62	27,2	0,57	0,98	43,84	Ouvert
P63	34	-0,69	0,76	21,01	Ouvert
P64	27,2	0,59	1,02	47,18	Ouvert
P65	42,6	-0,81	0,57	9,64	Ouvert
P66	96,8	4,73	0,64	4,34	Ouvert
P67	53,6	1,42	0,63	8,59	Ouvert
P68	42,6	1,07	0,75	15,58	Ouvert
P69	79,2	2,92	0,59	4,8	Ouvert
P70	42,6	0,79	0,55	9,11	Ouvert
P71	63,8	2,13	0,67	7,69	Ouvert
P72	27,2	0,35	0,59	18,23	Ouvert
P73	96,8	5,61	0,76	5,88	Ouvert
P74	53,6	1,15	0,51	5,97	Ouvert
P75	42,2	0,68	0,48	7,34	Ouvert
P76	277,6	66,74	1,1	3,22	Ouvert
P77	21	0,28	0,79	41,84	Ouvert
P78	79,2	3,29	0,67	5,93	Ouvert
P79	63,8	4,07	1,27	24,44	Ouvert

Tableau IV.11: Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite).

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge	État
	(mm)	(I/s)	(m/s)	m/km	
P80	34	0,5	0,55	11,86	Ouvert
P81	277,6	53,16	0,88	2,13	Ouvert
P82	277,6	51,85	0,86	2,04	Ouvert
P83	277,6	49,54	0,82	1,88	Ouvert
P84	277,6	46,22	0,76	1,66	Ouvert
P85	277,6	44,59	0,74	1,55	Ouvert
P86	42,6	0,77	0,54	8,73	Ouvert
P87	42,6	0,91	0,64	11,87	Ouvert
P88	34	0,5	0,55	11,95	Ouvert
P89	34	0,52	0,57	12,98	Ouvert
P90	96,8	5,82	0,79	6,27	Ouvert
P98	176,2	16,37	0,67	2,26	Ouvert
P99	440,6	276,94	1,82	4,64	Ouvert
P100	440,6	272,21	1,79	4,5	Ouvert
P101	440,6	271,66	1,78	4,48	Ouvert
P102	440,6	202,7	1,33	2,62	Ouvert
P103	440,6	194,31	1,27	2,43	Ouvert
P104	440,6	190,35	1,25	2,34	Ouvert
P105	440,6	186,82	1,23	2,26	Ouvert
P106	440,6	184,44	1,21	2,21	Ouvert
P116	53,8	1,41	0,62	8,43	Ouvert
P118	53,6	1,38	0,61	8,25	Ouvert
P119	42,6	0,78	0,55	9,06	Ouvert
P120	42,6	0,86	0,6	10,63	Ouvert
P121	36,2	0,82	0,8	21,52	Ouvert
P122	42,6	0,91	0,64	11,75	Ouvert
P123	63,8	1,77	0,55	5,54	Ouvert
P131	53,6	2,27	1	19,79	Ouvert
P132	34	1,04	1,15	44,08	Ouvert
P133	96,8	-7,62	1,04	10,17	Ouvert
P134	96,8	3,92	0,53	3,1	Ouvert
P142	53,6	2,12	0,94	17,58	Ouvert
P165	42,6	-0,86	0,6	10,6	Ouvert
P166	34	0,7	0,77	21,86	Ouvert
P167	34	-0,69	0,76	21,29	Ouvert
P168	79,2	-2,15	0,44	2,79	Ouvert

Tableau IV.11: Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite).

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge	État
	(mm)	(I/s)	(m/s)	m/km	
P178	53,6	1,36	0,6	8	Ouvert
P182	96,8	6,2	0,84	7,03	Ouvert
P184	440,6	179,85	1,18	2,11	Ouvert
P185	27,2	0,37	0,64	20,98	Ouvert
P186	63,8	-2,74	0,86	12,08	Ouvert
P187	79,2	5,74	1,16	16,02	Ouvert
P188	63,8	2,69	0,84	11,68	Ouvert
P189	53,6	-1,82	0,8	13,34	Ouvert
P190	53,6	1,4	0,62	8,45	Ouvert
P191	96,8	4,8	0,65	4,44	Ouvert
P192	176,2	-26,33	1,08	5,33	Ouvert
P193	220,4	-34,15	0,9	2,91	Ouvert
P194	42,6	0,8	0,56	9,43	Ouvert
P195	34	-0,66	0,73	19,67	Ouvert
P196	176,2	36	1,48	9,4	Ouvert
P197	42,6	-0,9	0,63	11,56	Ouvert
P198	27,2	-0,27	0,47	11,98	Ouvert
P199	42,6	-1,06	0,74	15,33	Ouvert
P200	34	0,66	0,72	19,35	Ouvert
P201	96,8	8,29	1,13	11,85	Ouvert
P202	277,6	92,71	1,53	5,86	Ouvert
P203	27,7	-0,37	0,62	19,24	Ouvert
P204	277,6	87,05	1,44	5,22	Ouvert
P205	53,6	-1,29	0,57	7,32	Ouvert
P209	53,6	1,77	0,78	12,76	Ouvert
P210	53,6	1,36	0,6	8,03	Ouvert
P212	141	-20,5	1,31	9,92	Ouvert
P213	220,4	-27,81	0,73	2,01	Ouvert
P215	34	0,58	0,64	15,78	Ouvert
P216	53,6	-2,69	1,19	26,86	Ouvert
P219	67,8	2,22	0,62	6,21	Ouvert
P220	53,6	1,41	0,62	8,49	Ouvert
P223	42,6	1,01	0,71	14,23	Ouvert
P225	63,8	2,69	0,84	11,66	Ouvert
P226	34	0,67	0,74	20,16	Ouvert
P235	42,6	0,82	0,58	9,85	Ouvert

Tableau IV.11: Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite).

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge Unit.	État
	(mm)	(I/s)	(m/s)	m/km	
P236	141	-16,46	1,05	6,68	Ouvert
P237	34	0,55	0,61	14,33	Ouvert
P239	277,6	-70,83	1,17	3,59	Ouvert
P241	277,6	108,19	1,79	7,77	Ouvert
P242	440,6	174,34	1,14	1,99	Ouvert
P243	352,6	155,69	1,59	4,75	Ouvert
P244	352,6	150,84	1,54	4,49	Ouvert
P245	277,6	72,45	1,2	3,74	Ouvert
P246	277,6	64,36	1,06	3,02	Ouvert
P247	277,6	-86,56	1,43	5,17	Ouvert
P248	220,4	-22,89	0,6	1,41	Ouvert
P249	141	-14,81	0,95	5,52	Ouvert
P250	117,6	-9,9	0,91	6,39	Ouvert
P251	220,4	-31,22	0,82	2,47	Ouvert
P252	220,4	-30,73	0,81	2,4	Ouvert
P253	220,4	-28,81	0,76	2,15	Ouvert
P254	176,2	-24,66	1,01	4,74	Ouvert
P255	176,2	-22,54	0,92	4,03	Ouvert
P256	176,2	-19,87	0,81	3,21	Ouvert
P257	141	-11,76	0,75	3,65	Ouvert
P258	141	-8,73	0,56	2,14	Ouvert
P260	220,4	-36,93	0,97	3,35	Ouvert
P261	34	1,12	1,23	49,82	Ouvert
P262	53,6	1,77	0,78	12,73	Ouvert
P263	176,4	-28,1	1,15	5,97	Ouvert
P264	176,4	-24,33	1	4,6	Ouvert
P265	34	0,66	0,73	19,58	Ouvert
P266	141	-21,9	1,4	11,18	Ouvert
P267	53,6	1,47	0,65	9,17	Ouvert
P268	96,8	-10,01	1,36	16,62	Ouvert
P269	96,8	-7,53	1,02	9,95	Ouvert
P270	21	0,4	1,15	80,56	Ouvert
P271	79,2	2,18	0,44	2,85	Ouvert
P272	51,4	-3,04	1,47	40,94	Ouvert
P273	34	0,44	0,48	9,62	Ouvert
P274	42,6	0,72	0,51	7,83	Ouvert

Tableau IV.11: Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite).

ID Arc	Diamètre	Débit	Vitesse	Pdc	État
	(mm)	(I/s)	(m/s)	m/km	
P275	96,8	4,44	0,6	3,87	Ouvert
P276	79,2	3,04	0,62	5,16	Ouvert
P277	96,8	8,03	1,09	11,18	Ouvert
P278	79,2	8,72	1,77	34	Ouvert
P280	277,6	-97,06	1,6	6,37	Ouvert
P281	277,6	-99,64	1,65	6,68	Ouvert
P282	277,6	-73,58	1,22	3,85	Ouvert
P283	277,6	-70,11	1,16	3,52	Ouvert
P284	277,6	-66,48	1,1	3,2	Ouvert
P285	176,2	24	0,98	4,51	Ouvert
P286	277,6	85,75	1,42	5,08	Ouvert
P287	277,6	92,44	1,53	5,83	Ouvert
P288	117,6	9,07	0,83	5,46	Ouvert
P290	220,4	32,59	0,85	2,67	Ouvert
P291	220,4	31,06	0,81	2,45	Ouvert
P292	220,4	20,68	0,54	1,18	Ouvert
P293	117,6	6,99	0,64	3,43	Ouvert
P294	277,6	89,02	1,47	5,44	Ouvert
P295	34	0,55	0,6	14	Ouvert
P296	42,6	0,82	0,58	9,81	Ouvert
P297	277,6	78,87	1,3	4,37	Ouvert
P298	277,6	83,87	1,39	4,88	Ouvert
P299	63,8	1,79	0,56	5,67	Ouvert
P300	42,6	1,15	0,81	17,8	Ouvert
P301	220,4	-71,58	1,88	11,14	Ouvert
P302	220,4	-69,83	1,83	10,65	Ouvert
P303	220,4	-64,94	1,7	9,33	Ouvert
P304	63,8	-2,17	0,68	7,97	Ouvert
P305	34	-0,52	0,57	12,73	Ouvert
P306	220,4	-61,49	1,61	8,45	Ouvert
P307	220,4	-59,22	1,55	7,89	Ouvert
P308	220,4	-55,03	1,44	6,9	Ouvert
P310	220,4	-50,16	1,31	5,84	Ouvert
P311	76,6	4,86	1,06	13,99	Ouvert
P312	27,2	0,42	0,73	25,93	Ouvert
P313	42,6	-2,18	1,53	55,52	Ouvert

Tableau IV.11: Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite).

ID Arc	Diamètre	Débit	Vitesse	Pdc.	État
	(mm)	(I/s)	(m/s)	m/km	
P314	34	0,61	0,67	16,82	Ouvert
P315	176,2	-15,09	0,62	1,96	Ouvert
P316	96,8	-11,24	1,53	20,47	Ouvert
P317	96,8	-7,62	1,04	10,18	Ouvert
P319	277,6	55,97	0,92	2,34	Ouvert
P321	117,6	-12,76	1,17	10,09	Ouvert
P322	141	-16,16	1,04	6,46	Ouvert
P326	220,4	-35,56	0,93	3,13	Ouvert
P335	277,6	-57,38	0,95	2,45	Ouvert
P336	277,6	48,48	0,8	1,8	Ouvert
P337	79,2	2,48	0,5	3,59	Ouvert
P338	176,2	33,07	1,36	8,06	Ouvert
P340	176,4	32,12	1,31	7,61	Ouvert
P341	42,6	0,9	0,63	11,5	Ouvert
P342	63,8	-3,37	1,06	17,47	Ouvert
P343	96,8	-5,58	0,76	5,83	Ouvert
P348	150	15,12	0,86	4,25	Ouvert
P349	42,6	1,01	0,71	14,15	Ouvert
P350	352,6	107,89	1,1	2,44	Ouvert
P351	277,6	74,88	1,24	3,97	Ouvert
P354	42,6	0,84	0,59	10,33	Ouvert
P356	63,8	2,1	0,66	7,51	Ouvert
P357	34	0,65	0,71	18,94	Ouvert
P358	141	16,82	1,08	6,94	Ouvert
P360	117,6	16,01	1,47	15,19	Ouvert
P362	27,2	0,28	0,48	12,37	Ouvert
P365	96,8	-7,62	1,04	10,17	Ouvert
P366	96,8	3,92	0,53	3,1	Ouvert
P368	352,6	-187,66	1,92	6,69	Ouvert
P371	440,6	277,07	1,82	4,65	Ouvert
P373	440,6	271,12	1,78	4,47	Ouvert
P374	141	-11,93	0,76	3,74	Ouvert
P375	27,2	0,23	0,4	8,97	Ouvert
P376	352,6	109,21	1,12	2,49	Ouvert
P378	63,8	-1,69	0,53	5,1	Ouvert
P379	34	0,59	0,65	16,08	Ouvert

Tableau IV.11: Résultat aux tronçons en cas de pointe secteur S02, Horizon2050 (suite).

ID Arc	Diamètre	Débit	Vitesse	Pdc.	État
	(mm)	(I/s)	(m/s)	m/km	
P382	96,8	5,84	0,79	6,31	Ouvert
P383	440,6	272,21	1,79	4,5	Ouvert
P389	96,8	6,09	0,83	6,8	Ouvert
P390	96,8	4,49	0,61	3,96	Ouvert
2	277,6	54,37	0,9	2,22	Ouvert
3	277,6	104,2	1,72	7,25	Ouvert
1	79,2	6,16	1,25	18,18	Ouvert
4	79,2	3,44	0,7	6,4	Ouvert
5	63,8	0,72	0,23	1,15	Ouvert
6	63,8	-2,08	0,65	7,37	Ouvert
7	79,2	-5,96	1,21	17,13	Ouvert
8	42,6	1	0,7	13,91	Ouvert
9	42,6	0,86	0,6	10,59	Ouvert
10	34	0,86	0,95	31,18	Ouvert
11	63,8	1,9	0,59	6,29	Ouvert
12	113	4,2	0,42	1,67	Ouvert
13	113	7,34	0,73	4,53	Ouvert
14	141	9,48	0,61	2,48	Ouvert
15	176,2	45,94	1,88	14,64	Ouvert
16	79,2	5,63	1,14	15,46	Ouvert
17	63,8	2,53	0,79	10,42	Ouvert
18	176,2	33,33	1,37	8,17	Ouvert
19	176,2	24,43	1	4,66	Ouvert
20	141	18,3	1,17	8,08	Ouvert
21	117,6	10,82	1	7,51	Ouvert
22	63,8	3,98	1,24	23,47	Ouvert
23	63,8	2,99	0,94	14,08	Ouvert
24	96,8	6,7	0,91	8,08	Ouvert
25	63,8	3,5	1,09	18,65	Ouvert

IV.4.3.2 Interprétation des résultats de la simulation du réseau du secteur 02, cas heure de pointe

Les résultats de la simulation du réseau relatif au secteur 02 après reconfiguration montrent que le réseau en sa globalité répond aux normes en matière de pression comprise entre 10 et 50 m et de vitesses entre 0.5 et 1.5m/s



Figure IV.5: Etat de pressions du secteur 02 cas heure de pointe, Horizon2050.

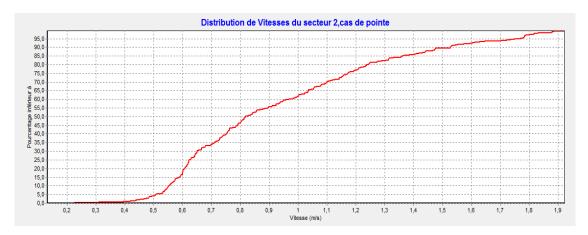


Figure IV.6: distribution des vitesses du secteur02 cas de pointe, Horizon2050.

La figure (IV.6) montre que 10% des conduites du réseau ont une vitesse supérieure à 1.5m/s sans dépasser 1.8 m/s, cette partite du réseau représente les tronçons proches des réservoirs d'alimentation.

D'après la figure (IV.6) 5% des conduites ont une vitesse inferieure à 0.5 m/s, ces derniers se trouvent soit dans une maille ou en fin de réseau.

IV.4.3.3 Résultat de la simulation du réseau secteur 02, cas de pointe plus incendie

Les résultats relatifs à la simulation du réseau de secteur 02 en cas de pointe plus incendie (voir tableaux annexe 2).

IV.4.3.4 Interprétation des résultats de la simulation du réseau du secteur 02, cas heure de pointe plus incendie

Figure IV.7 : Etat de pressions du secteur 02 cas heure de pointe plus incendie, Horizon2050.

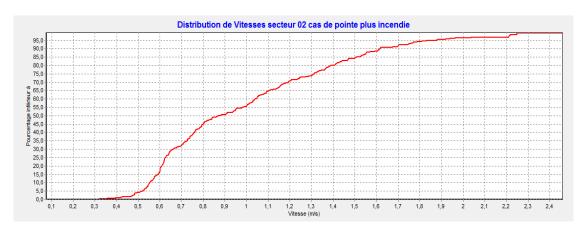


Figure IV.8 : distribution des vitesses du secteur02 cas de pointe plus incendie, Horizon2050.

La simulation du réseau du secteur 02 en cas de pointe plus incendie est presque identique à celle de cas de pointe avec augmentation des vitesses au niveau des tronçons proches des réservoirs.

Concernant les pressions aux nœuds, elles restent presque similaires à celles du cas heure de pointe.

⇒ Calcul de la capacité totale de stockage du réservoir

Dans une adduction d'eau le réservoir est l'organe intermédiaire entre la source d'alimentation et le réseau de distribution.

La capacité du réservoir utile doit être estimée en tenant compte des variations des débits à l'entrée comme à la sortie ; c'est-à-dire d'une part du mode d'exploitation des ouvrages de relevage (Temps de pompage, mode de pompage) situés en amont et d'autre part de la variation horaire de la demande. Le plus souvent, la capacité est calculée pour satisfaire aux variations journalières du débit de consommation en tenant compte bien entendu de l'heure de plus forte consommation et de la réserve d'eau destinée à l'incendie. [1]

Il est possible de réduire leur capacité en calculant le volume minimum pour assurer la continuité de la distribution. A la limite, le réservoir peut servir de simple régulateur de pression en fonction du rythme d'enclenchement de la pompe. Pour estimer la capacité d'un réservoir, on a recours soit à la méthode analytique, soit à la méthode graphique. Dans ce projet on a utilisé la méthode analytique qui exige deux régimes distincts :

- Le régime de consommation de notre agglomération est caractérisé par la courbe de consommation de tous les horizons, dans notre cas on utilisera les débits du **Tableau II.9.**
- Le régime d'apport d'eau à partir de la source vers le réservoir que nous avons fixé un régime de pompage de 20 heures du fait d'un captage à partir de forages.

En conséquence, la capacité sera déduite à partir des résidus entre le cumul d'apport et de départ d'eau pour chaque heure pendant 24 heures. Le volume utile du réservoir est donné par la relation suivante :

$$Cu = \frac{b\% \times Q_p^j(dist)}{100}$$

b % : Représente le maximum des restes de $Q_p^j(dist)$ exprimé en pourcentage.

La réserve d'incendie est par définition, la réserve minimale d'eau nécessaire pour l'extinction d'un sinistre moyen d'une durée de deux heures avec un débit moyen de 60 m3/h, en conséquence cette réserve minimale à prévoir est de 120 m3. Alors le volume total du réservoir serait le suivant :

$$Vt = Vu + Vinc$$

Tableau IV.15: Détermination de la capacité utile théorique de stockage pour l'horizon2050 :

Heures	Cons horaire	Apport horaire	Apport cumulé	Cons cumulée	Déficit et
					Excédent
	%	%	%	%	%
0-1	3,35	0		-3,35	4,95
1-2	3,25	0		-3,25	1,7
2-3	3,3	0		-3,3	-1,6
3-4	3,2	0		-3,2	-4,8
4-5	3,25	5	1,75		-3,05
5-6	3,4	5	1,6		-1,45
6-7	3,85	5	1,15		-0,3
7-8	4,45	5	0,55		0,25
8-9	5,2	5		-0,2	0,05
9-10	5,05	5		-0,05	0
10-11	4,85	5	0,15		0,15
11-12	4,6	5	0,4		0,55
12-13	4,6	5	0,4		0,95
13-14	4,55	5	0,45		1,4
14-15	4,75	5	0,25		1,65
15-16	4,7	5	0,3		1,95
16-17	4,65	5	0,35		2,3
17-18	4,35	5	0,65		2,95
18-19	4,4	5	0,6		3,55
19-20	4,3	5	0,7		4,25
20-21	4,3	5	0,7		4,95
21-22	4,2	5	0,8		5,75
22-23	3,75	5	1,25		7
23-24	3,7	5	1,3		8,3
Total	100	100	13,1	13,1	

$$b = 8.3 + |-4.8| = 11.3 \%$$

 $Cu = 4381.83 \text{ m}^3$.

$$Ct = Cu + Vinc = 4501 m^3$$
.

La capacité totale de prévision du réservoir de stockage pour la zone d'étude est de 4501 m³. Pour combler le déficit par rapport au volume disponible, il serait nécessaire de projeter un volume complémentaire de 2500 m³.

Conclusion

Un diagnostic du fonctionnement du réseau de distribution à été mené à l'appui de résultats de simulation pour deux périodes, heure de pointe et heure creuse avec et sans incendie.

Les résultats obtenus ont permis d'identifier quelques anomalies dans le fonctionnement du réseau de distribution de la zone d'étude alimentée gravitairement à partir des réservoirs existants, permettant Les propositions suggérées pour corriger ces anomalies consistent en la projection d'un nouveau réservoir avec une implantation adéquate pour assurer un équilibre dans la distribution des vitesses et des pressions en particulier dans la zone haute ; Zaouia sud et Zaouia ouest. Le réservoir projeté sera connecté au réservoir existant de Zaouia pour assurer le complément de la réserve d'eau stockée.

D'autre part et afin d'aboutir à une configuration homogène dans la structure du réseau, on recommande de remplacer les conduites en fonte, acier galvanisé et amiante de ciment par de nouvelles conduites en PEHD ou en PVC ou la combinaison des deux.

On a relevé, sur la base des résultats de la simulation, certain tronçons situés sur les ramifications et en fin de réseau présentent de faibles vitesses, pour y remédier à cet état de fait on préconise l'installation de robinets de vidange pour permettre d'éviter l'accumulation des dépôts solides qui rétrécissent la section des conduites.

Concernant les vitesses qui dépassent la valeur limite de 1.5 m/s, relevées sur certains tronçons situés à proximité des réservoirs, on peut envisager l'installation de vannes de régulation de débit pour limiter la vitesse à des valeurs acceptables.

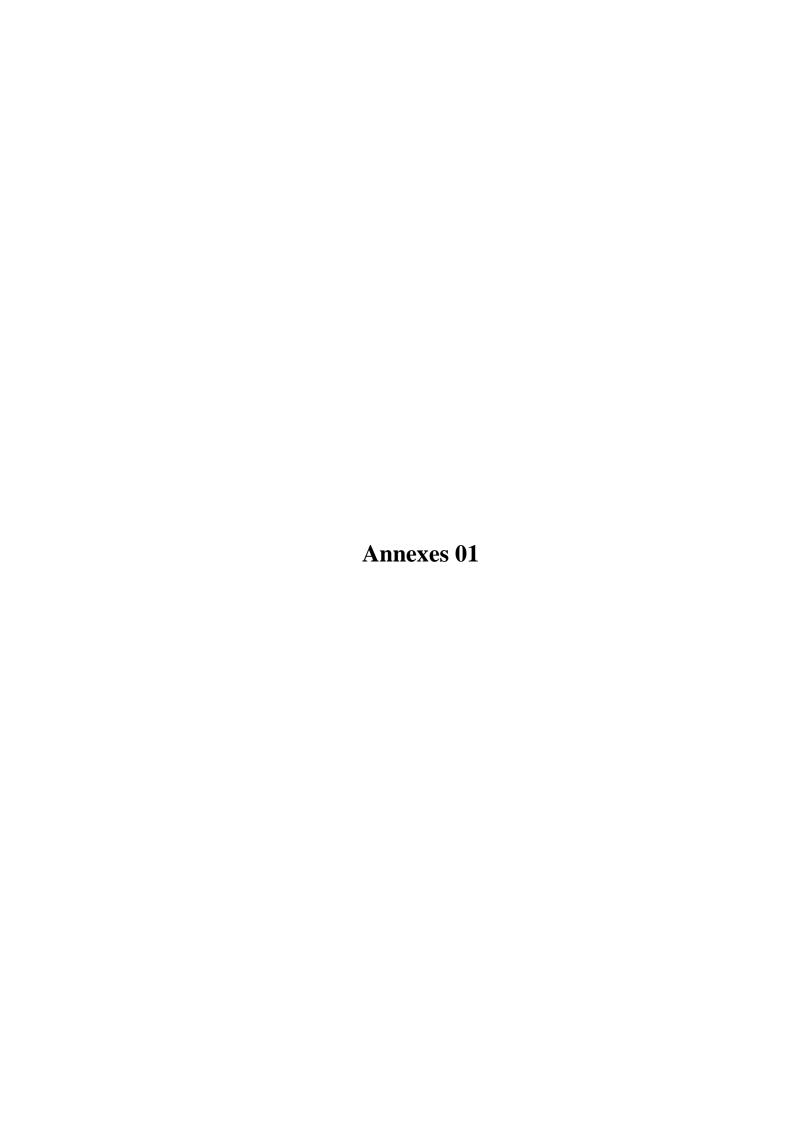
Conclusion générale

L'étude de diagnostic qu'on a mené nous a permis de présenter le réseau de distribution existant de la ville de Beni Tamou et d'analyser son fonctionnement actuel et son comportement à long terme (horizon 2050) tout en prenant en considération l'accroissement de la population et l'augmentation de ses besoins en eau.

Notre diagnostic s'est essentiellement basé sur les résultats des simulations qui nous ont permis d'identifier les anomalies causant des dysfonctionnements induisant des perturbations dans la distribution actuelle .

Les résultats de la simulation ont révélé l'incapacité du réseau actuel à assurer l'alimentation en eau potable à l'horizon 2050.

Pour remédier à ces problèmes on a proposé une reconfiguration du réseau de distribution qui se base sur une alimentation gravitaire à partir des deux principaux réservoirs de la ville « château d'eau Zedri » et « château d'eau Zaouia » tout en projetant un nouveau château d'eau qui permet d'alimenter la partie haute de ville.


L'analyse de l'âge du réseau selon les matériaux utilisés, a révélé qu'une grande partie du réseau existant est en amiante ciment (non recommandé pour des raisons sanitaires), acier galvanisé et en fonte, on propose donc de remplacer ces conduites avec d'autres en PVC ou en PEHD afin d'obtenir un réseau homogène.

Le redimensionnement d'une partie du réseau s'impose surtout pour les conduites maitresses et cela suite à son comportement à l'horizon actuel.

La reconfiguration du réseau existant pour une projection à long terme a été réalisée de telle manière à équilibrer les deux paramètres vitesse et pression pour que le réseau réponde aux exigences de l'agglomération à l'horizon futur.

Bibliographie

- [1] A.Hamas « MFE diagnostic du réseau d'alimentation en eau potable de la ville de Bordj Ghedir,ENSH 2011 »
- [2] Etude d'actualisation du plan national de l'eau PNE, mission 2 volume 4 Aout 2010.
- [3] I.Chareb Yesaad «MFE master hydro -informatique dessin assisté par ordinateur,2011»
- [4] A. DUPONT Paris 1977« Hydraulique urbaine », Tome II, édition Eyrolles.
- [5] manuel Epanet 2.0 version française.

Tableau : calcul des débits spécifiques horizon ,2020.

Tronçons	L	Qsp	Qri	Tronçons	L	Qsp	Qri	Tronçons	L	Qsp	Qr
	(m)	(l/s)	(1/s)		(m)	(l/s)	(1/s)		(m)	(l/s)	(l/s)
P1	51.79	0.0037	0.18	P25	83.41	0.0037	0.3	P49	268.36	0.0037	0.98
P2	275.93		1.01	P26	348.97		1.27	P50	114.7		0.42
P3	308.52		1.13	P27	114.37		0.41	P51	99.06		0.36
P4	173.31		0.63	P28	55.88		0.2	P52	62.51		0.23
P5	209.89		0.77	P29	34.21		0.12	P53	437.51		1.6
P6	13.79		0.05	P30	119.62		0.43	P54	169.82		0.62
P7	151.4		0.55	P31	66.9		0.24	P55	50.36		0.18
P8	106.81		0.39	P32	118.02		0.43	P56	261.7		0.96
P9	156.49		0.57	P33	94.53		0.35	P57	4		0.01
P10	337.88		1.24	P34	202.2		0.74	P58	41.59		0.15
P11	176.31		0.65	P35	262.94		0.96	P59	111.54		0.41
P12	359.54		1.32	P36	184.57		0.67	P60	395.25		1.45
P13	305.32		1.12	P37	147.24		0.539	P61	70.01		0.25
P14	116.89		0.42	P38	153.86		0.56	P62	126.28		0.46
P15	183.81		0.67	P39	559.55		2.04	P63	151.86		0.55
P16	41.96		0.15	P40	37.61		0.14	P64	131.41		0.48
P17	162.77		0.59	P41	240.9		0.88	P65	179.55		0.65
P18	121.86		0.45	P42	275.37		1.01	P66	57.02		0.21
P19	152.6		0.55	P43	455.73		1.66	P67	313.13		1.14
P20	256.88		0.94	P44	464.45		1.7	P68	235.84		0.86
P21	277.3		1.01	P45	313.6		1.14	P69	207.26		0.76
P22	737.7		2.7	P46	430.26		1.57	P70	173.95		0.63
P23	290.56		1.06	P47	115.08		0.42	P71	59.65		0.21
P24	846.73		3.09	P48	89.71		0.32	P72	76.42		0.27

Tronçons	L		Qri	Tronçons	L	Qri	Tronçons	L	Qri
	(m)]	(1/s)		(m)	(l/s)		(m)	(l/s)
P73	375.5		1.37	P97	136.3	0.49	P121	182.43	0.66
P74	254.62]	0.93	P98	252.09	0.92	P122	200.99	0.735
P75	149.88		0.54	P99	29.39	0.1	P123	390.93	1.43
P76	315.71		1.15	P100	474.22	1.73	P124	175.57	0.64
P77	60.83		0.22	P101	120.16	0.43	P125	173.75	0.63
P78	199.39		0.72	P102	55.67	0.2	P126	147.28	0.53
P79	53.7		0.196	P103	116.62	0.42	P127	370.94	1.35
P80	109.64		0.4	P104	115.7	0.42	P128	121.32	0.44
P81	23.34		0.08	P105	86.84	0.31	P129	204.45	0.74
P82	163.27		0.59	P106	127.65	0.46	P130	75.77	0.27
P83	118.08		0.43	P107	168.68	0.61	P131	501.24	1.83
P84	192.33		0.7	P108	59.32	0.21	P132	231.02	0.84
P85	4.75		0.017	P109	202.96	0.74	P133	454.9	1.66
P86	169.71		0.62	P110	172.34	0.63	P134	13.23	0.048
P87	202.16		0.74	P111	44.55	0.16	P135	170.07	0.62
P88	110.12		0.4	P112	54.11	0.19	P136	239.65	0.87
P89	115.44		0.422	P113	140.58	0.51	P137	210.72	0.77
P90	366.77		1.34	P114	195.49	0.715	P138	118.36	0.43
P91	163.51		0.59	P115	204.59	0.74	P139	23.82	0.08
P92	66.56		0.24	P116	190.5	0.69	P140	38.82	0.14
P93	243.14		0.89	P117	244.58	0.89	P141	290.53	1.06
P94	67.1		0.24	P118	305.96	1.12	P142	347.36	1.27
P95	120.45		0.44	P119	173.41	0.63	P143	425.96	1.55
P96	229.59		0.84	P120	189.83	0.69	P144	53.19	0.19

Tronçons	L	Qsp	Qri	Tronçons	L	Qsp	Qri	Tronçons	L	Qsp	Qri
	(m)	(l/s)	(1/s)		(m)	(1/s)	(l/s)		(m)	(1/s)	(1/s)
P73	375.5	0.0037	1.37	P97	136.3	0.0037	0.49	P121	182.43	0.0037	0.66
P74	254.62		0.93	P98	252.09		0.92	P122	200.99		0.735
P75	149.88		0.54	P99	29.39		0.1	P123	390.93		1.43
P76	315.71		1.15	P100	474.22		1.73	P124	175.57		0.64
P77	60.83		0.22	P101	120.16		0.43	P125	173.75		0.63
P78	199.39		0.72	P102	55.67		0.2	P126	147.28		0.53
P79	53.7		0.196	P103	116.62		0.42	P127	370.94		1.35
P80	109.64		0.4	P104	115.7		0.42	P128	121.32		0.44
P81	23.34		0.08	P105	86.84		0.31	P129	204.45		0.74
P82	163.27		0.59	P106	127.65		0.46	P130	75.77		0.27
P83	118.08		0.43	P107	168.68		0.61	P131	501.24		1.83
P84	192.33		0.7	P108	59.32		0.21	P132	231.02		0.84
P85	4.75		0.017	P109	202.96		0.74	P133	454.9		1.66
P86	169.71		0.62	P110	172.34		0.63	P134	13.23		0.048
P87	202.16		0.74	P111	44.55		0.16	P135	170.07		0.62
P88	110.12		0.4	P112	54.11		0.19	P136	239.65		0.87
P89	115.44		0.422	P113	140.58		0.51	P137	210.72		0.77
P90	366.77		1.34	P114	195.49		0.715	P138	118.36		0.43
P91	163.51		0.59	P115	204.59		0.74	P139	23.82		0.08
P92	66.56		0.24	P116	190.5		0.69	P140	38.82		0.14
P93	243.14		0.89	P117	244.58		0.89	P141	290.53		1.06
P94	67.1		0.24	P118	305.96		1.12	P142	347.36		1.27
P95	120.45		0.44	P119	173.41		0.63	P143	425.96		1.55
P96	229.59		0.84	P120	189.83		0.69	P144	53.19		0.19

Tronçons	L (m)	Qsp (l/s)	Qri (l/s)	Tronçons	L (m)	Qsp (l/s)	Qri (l/s)	Tronçons	L (m)	Qsp (l/s)	Qri
											(l/s)
P218	32.58		0.11	P242	148.39		0.54	P266	78.49		0.28
P219	491.17		1.79	P243	104.63		0.38	P267	324.84		1.18
P220	311.06		1.13	P244	163.52		0.59	P268	135.36		0.49
P221	153.82		0.56	P245	171.49		0.62	P266	78.49		0.28
P222	215.09		0.78	P246	254.7		0.93	P267	324.84		1.18
P223	224.06		0.82	P247	36.37		0.13	P268	135.36		0.49
P224	429.89		1.57	P248	49.4		0.18	P269	10.03		0.03
P225	234.8		0.85	P249	290.49	0.0037	1.063	P270	88.39		0.32
P226	148.34		0.54	P250	175.74	0.0037	0.643	P271	46.16		0.16
P227	894.22		3.27	P251	352.65		1.29	P272	195.92	0.0037	0.71
P228	134.44	0.0037	0.49	P252	70.43		0.257	P273	97.23	0.0007	0.355
P229	132.7		0.48	P253	0.71		0.003	P274	159.56		0.58
P230	296.19		1.08	P254	31.2		0.11	P275	2.98		0.01
P231	7.51		0.027	P255	89.93		0.32	P276	8.62		0.03
P232	138.24		0.50	P256	122.79		0.44	P277	110.83		0.4
P233	251.44		0.92	P257	18.81		0.068	P278	40.78		0.14
P234	7.79		0.028	P258	421.98		1.54	P279	54.72		0.20
P235	181.85		0.66	P259	342.33		1.25	P280	6.89		0.02
P236	74.32		0.27	P260	215.04		0.78	P281	116.5		0.42
P237	122.13		0.44	P261	247.51		0.90	P282	277.6		1.01
P238	92.19		0.33	P262	140.88		0.51	P283	124.18		0.45
P239	170.26		0.62	P263	134.42		0.49	P284	175.53		0.64
P240	598.44		2.19	P264	168.05		0.61	P285	161.99		0.59
P241	106.14		0.38	P265	145.89		0.53	P286	160.56		0.58

Tronçons	L (m)	Qsp (l/s)	Qri (l/s)	Tronçons	L (m)	Qsp (l/s)	Qri (l/s)	Tronçons	L (m)	Qsp (l/s)	Qri
											(l/s)
P218	32.58		0.11	P242	148.39		0.54	P266	78.49		0.28
P219	491.17		1.79	P243	104.63		0.38	P267	324.84		1.18
P220	311.06		1.13	P244	163.52		0.59	P268	135.36		0.49
P221	153.82		0.56	P245	171.49		0.62	P266	78.49		0.28
P222	215.09		0.78	P246	254.7		0.93	P267	324.84		1.18
P223	224.06		0.82	P247	36.37		0.13	P268	135.36		0.49
P224	429.89		1.57	P248	49.4		0.18	P269	10.03		0.03
P225	234.8		0.85	P249	290.49	0.0037	1.063	P270	88.39		0.32
P226	148.34		0.54	P250	175.74	0.0037	0.643	P271	46.16		0.16
P227	894.22		3.27	P251	352.65		1.29	P272	195.92	0.0037	0.71
P228	134.44	0.0037	0.49	P252	70.43		0.257	P273	97.23	0.0007	0.355
P229	132.7		0.48	P253	0.71		0.003	P274	159.56		0.58
P230	296.19		1.08	P254	31.2		0.11	P275	2.98		0.01
P231	7.51		0.027	P255	89.93		0.32	P276	8.62		0.03
P232	138.24		0.50	P256	122.79		0.44	P277	110.83		0.4
P233	251.44		0.92	P257	18.81		0.068	P278	40.78		0.14
P234	7.79		0.028	P258	421.98		1.54	P279	54.72		0.20
P235	181.85		0.66	P259	342.33		1.25	P280	6.89		0.02
P236	74.32		0.27	P260	215.04		0.78	P281	116.5		0.42
P237	122.13		0.44	P261	247.51		0.90	P282	277.6		1.01
P238	92.19		0.33	P262	140.88		0.51	P283	124.18		0.45
P239	170.26		0.62	P263	134.42		0.49	P284	175.53		0.64
P240	598.44		2.19	P264	168.05		0.61	P285	161.99		0.59
P241	106.14		0.38	P265	145.89		0.53	P286	160.56		0.58

Tableau : Calcul des débits nodaux encas de pointe, horizon 2020.

nœuds	tronçons	Qr	Qn	nœuds	tronçons	Qr	Qn
		(l/s.ml)	(1/s)			(l/s.ml)	(1/s)
N1	P63	0,55	0,27	N18	P309	1,51	
N2	P354	0,68			P9	0,57	1,04
	P182	1,14		N19	P310	0,51	
	P1	0,18	1,009		P205	1,04	0,78
N3	P23	1,06		N20	P10	1,23	0,61
	P1	0,18	0,62	N21	P339	0,03	
N4	P168	0,63			P10	1,236	0,63
	P85	0,017		N22	P369	0,033	
	P2	1,01	0,50		P230	1,08	
N5	P358	0,01			P11	0,64	0,88
	P248	0,18		N23	P18	0,44	
	P2	1,01	0,60		P12	1,31	
N6	P3	1,12	0,56		P11	0,64	1,20
N7	P4	0,63	0,31	N24	P12	1,31	0,65
N8	P276	0,03		N25	P229	0,48	
	P237	0,44			P228	0,49	
	P5	0,76	0,62		P13	1,1	1,04
N9	P5	0,76	0,38	N26	P24	3,09	
N10	P323	0,46			P14	0,42	
	P6	0,05	0,25		P13	1,11	2,32
N11	P343	0,65		N27	P14	0,42	0,2
	P342	0,48		N28	P369	0,03	
	P11	0,64	0,89		P229	0,48	
N12	P336	0,01			P15	0,67	0,59
	P84	0,70		N29	P145	0,17	
	P7	0,55	0,63		P143	1,55	
N13	P7	0,55	0,27		P15	0,67	1,20
N14	P241	0,38		N30	P144	0,19	
	P63	0,55			P26	1,27	
	P8	0,39	0,667		P16	0,15	0,81
N15	P315	0,89		N31	P179	1,52	
	P294	0,13			P25	0,30	
	P8	0,39	0,70		P16	0,15	0,99
N16	P340	0,36		N.32	P145	0,17	
	P339	0,03			P144	0,19	
	P338	0,36	0,384		P17	0,59	0,48
N17	P221	0,56		N.33	P17	0,59	0,29
	P9	0,57	0,56	N.34	P18	0,44	0,22

nœuds	troncons	Qspec	Qn	nœuds	troncons	Qspec	Qn
		(l/s.ml)	(1/s)			(l/s.ml)	(1/s)
N.35	P19	0,55	0,27	N54	P137	0,77	
N.36	P233	0,92			P33	0,34	
	P232	0,50			P32	0,43	0,77
	P19	0,55	0,99	N55	P33	0,34	0,17
N37	P370	0,04		N56	P35	0,43	0,21
	P45	1,14		N57	P36	0,67	0,33
	P20	0,94	1,06	N60	P180	0,61	
N38	P20	0,94	0,47		P136	0,87	
N39	P381	0,06			P37	0,53	1,01
	P227	3,27		N61	P135	0,62	
	P21	1,01	2,17		P38	0,56	
N40	P367	0,36			P37	0,53	0,86
	P22	2,70		N62	P38	0,56	0,28
	P21	1,015	2,04	N63	P356	0,65	
N41	P22	2,7	1,35		P104	0,42	
N42	P23	1,06	0,53		P103	0,42	0,75
N43	P24	3,09	1,54	N64	P357	0,52	0,26
N44	P232	0,50		N65	P234	0,02	
	P231	0,02	0,26		P228	0,49	
N45	P25	0,30	0,15		P39	2,04	1,28
N46	P26	1,27	0,63	N66	P39	2,04	1,02
N47	P27	0,41	0,21	N67	P337	0,026	
N48	P179	1,52			P132	0,84	
	P28	0,20			P40	0,13	0,50
	P27	0,418	1,07	N68	P168	0,63	
N49	P36	0,67			P167	0,56	
	P29	0,12			P40	0,13	0,66
	P28	0,20	0,58	N69	P155	0,37	
N50	P34	0,74			P154	0,62	
	P30	0,43			P41	0,88	0,94
	P111	0,12	0,65	N70	P41	0,88	0,44
N51	P137	0,77		N71	P318	0,018	
	P136	0,877			P157	0,22	
	P30	0,43	0,21		P42	1,01	0,62
N52	P31	0,24	0,12	N72	P42	1,01	0,50
N53	P35	0,96		N73	P318	0,01	
	P34	0,74			P156	0,33	
	P32	0,43			P43	1,66	1,01
	P31	0,24	1,18	N74	P43	1,66	0,83

nœuds	troncons	Qspec	Qn	nœuds	troncons	Qspec	Qn
		(l/s.ml)	(1/s)			(l/s.ml)	(1/s)
N75	P159	0,36		N94	P239	0,62	
	P158	0,23			P195	0,53	
	P44	1,7	1,15		P53	1,60	1,38
N76	P44	1,7	0,85	N95	P233	0,92	
N77	P367	0,36			P54	0,62	0,77
	P164	1,33	0,85	N96	P54	0,62	0,31
N78	P368	0,36		N97	P57	0,014	
	P105	0,31	0,34		P55	0,18	0,09
N79	P45	1,14	0,57	N98	P55	0,18	0,09
N80	P162	1,10		N99	P259	1,25	
	P161	0,57			P183	0,41	
	P46	1,57	1,62		P56	0,95	1,31
N81	P46	1,57	0,78	N100	P259	1,25	
N82	P340	0,36			P152	1,42	
	P263	0,49			P57	0,01	1,34
	P47	0,42	0,63	N101	P251	1,29	
N83	P48	0,32	0,16		P191	0,44	
N84	P262	0,51			P58	0,15	0,94
	P261	0,90		N102	P290	0,22	
	P48	0,32			P61	0,25	
	P47	0,42	1,08		P58	0,15	0,31
N85	P338	0,36		N103	P292	0,12	
	P260	0,78			P291	0,09	
	P49	0,98	1,06		P59	0,40	0,31
N86	P49	0,98	0,49	N104	P293	0,74	
N87	P118	1,12	0,56		P64	0,48	
N88	P267	1,18			P59	0,40	0,81
	P51	0,36		N105	P298	0,70	
	P50	0,43	0,98		P297	0,44	
N89	P51	0,36	0,18		P60	1,44	1,3
N90	P341	0,72	0,36	N106	P60	1,44	0,72
N91	P134	0,04		N107	P61	0,25	0,12
	P69	0,75	0,40	N108	P291	0,09	
N92	P314	0,48			P290	0,22	
	P216	0,37			P62	0,46	0,39
	P52	0,22	0,54	N109	P62	0,46	0,23
N93	P245	0,62					
	P244	0,59		N110	P64	0,48	0,24
	P53	1,60	1,41	N111	P65	0,65	0,32

:

nœuds	troncons	Qspec	Qn	nœuds	troncons	Qspec	Qn
		(l/s.ml)	(l/s)			(l/s.ml)	(l/s)
N112	P294	0,13		N129	P254	0,11	
	P204	0,14			P192	0,13	
	P65	0,65	0,46		P75	0,54	0,40
N113	P295	0,44		N130	P75	0,54	0,27
	P293	0,74		N131	P373	0,00	
	P66	0,20	0,69		P102	0,20	
N114	P296	0,66			P76	1,155	0,68
	P67	1,14		N132	P335	0,36	
	P66	0,20	1,00		P90	1,34	
N115	P67	1,14	0,57		P76	1,15	1,43
N116	P298	0,70		N133	P142	1,27	
	P204	0,14			P77	0,22	0,74
	P68	0,86	0,85	N134	P77	0,22	0,11
N117	P68	0,86	0,43	N135	P270	0,32	
N118	P389	0,21			P187	0,60	
	P317	0,15			P78	0,72	0,82
	P69	0,75	0,56	N136	P271	0,16	
N119	P382	0,016			P78	0,72	0,44
	P317	0,15		N137	P300	0,93	0,46
	P70	0,63	0,40	N138	P273	0,35	,
N120	P70	0,63	0,31		P188	0,2	
N121	P316	0,282	- 7-		P79	0,19	0,38
	P315	0,89		N139	P274	0,58	3,2 3
	P71	0,218	0,69		P188	0,208	
N122	P215	0,472	- 7		P80	0,40	0,59
	P72	0,279		N140	P80	0,40	0,20
	P71	0,218	0,48	N141	P147	1,06	0,53
N123	P72	0,279	0,13	N142	P96	0,84	-,
N124	P374	0,06	-, -		P83	0,43	
, •	P256	0,44			P82	0,59	0,93
	P73	1,37	0,94	N143	P336	0,013	2,2
N125	P199	0,85	,-		P174	0,41	
	P197	0,72			P83	0,43	0,42
	P73	1,37	1,47	N144	P91	0,59	- ,
N126	P305	0,41	0,208		P85	0,017	
N127	P253	0,002	-,		P84	0,704	0,66
- \ /	P192	0,13		N145	P321	0,485	2,20
	P74	0,93	0,53		P268	0,49	
N128	P74	0,93	0,46		P86	0,62	0,80

nœuds	troncons	Qspec	Qn	nœuds	troncons	Qspec	Qn
		(l/s.ml)	(1/s)			(l/s.ml)	(l/s)
N146	P86	0,62	0,31	N164	P149	1,98	
N147	P269	0,03			P100	1,73	
	P268	0,49			P99	0,10	1,91
	P87	0,74	0,63	N165	P364	0,001	
N148	P87	0,74	0,37		P363	0,001	
N149	P269	0,03			P101	0,43	0,22
	P187	0,60		N166	P182	1,14	
	P88	0,40	0,52		P103	0,42	
N150	P88	0,40	0,20		P102	0,20	0,88
N151	P258	1,54		N167	P368	0,36	
	P257	0,06			P165	0,69	
	P89	0,42	1,01		P104	0,42	0,74
N152	P89	0,42	0,21	N168	P166	0,56	
N153	P175	0,62			P106	0,46	
	P92	0,24			P105	0,31	0,67
	P91	0,59	0,73	N169	P184	1,05	
N154	P109	0,74			P178	1,10	
	P93	0,24			P106	0,46	1,31
	P92	0,24	0,61	N170	P107	0,61	0,30
N155	P93	0,24	0,12	N171	P177	0,33	
N156	P173	1,42			P176	0,66	
	P172	0,37			P174	0,41	
	P94	0,24	1,01		P108	0,21	0,81
N157	P107	0,61		N172	P108	0,21	0,10
	P95	0,44		N173	P109	0,74	0,37
	P94	0,24	0,65	N174	P110	0,63	0,31
N158	P324	0,49		N175	P320	0,98	
	P95	0,44	0,46		P319	0,14	
N159	P96	0,84	0,42		P111	0,16	0,64
N160	P238	0,33		N176	P114	0,71	
	P227	3,27			P112	0,19	
	P97	0,49	2,05		P111	0,16	0,53
N161	P97	0,49	0,24	N177	P380	0,46	
N162	P243	0,38			P113	0,51	
	P242	0,54			P112	0,19	0,58
	P98	0,92	0,92	N178	P113	0,51	0,25
N163	P260	0,78		N179	P114	0,71	0,35
	P248	0,18		N180	P170	0,20	
	P98	0,92	0,94		P169	0,20	
					P115	0,74	0,58

nœuds	troncons	Qspec	Qn	nœuds	troncons	Qspec	Qn
		(l/s.ml)	(1/s)			(l/s.ml)	(1/s)
N181	P115	0,74	0,37	N201	P333	0,02	
Noeud N182	P284	0,64			P140	0,14	
	P283	0,45			P125	0,63	0,40
	P116	0,69	0,89	N202	P125	0,63	0,31
N183	P362	0,22	0,11	N203	P334	0,14	
N184	P362	0,22			P140	0,14	
	P116	0,69	0,46		P126	0,53	0,41
N185	P323	0,46		N204	P126	0,53	0,26
	P211	1,37		N205	P334	0,14	
	P117	0,89	1,36		P127	1,35	0,75
N186	P117	0,89	0,44	N206	P127	1,35	0,67
N187	P252	0,25		N207	P330	1,47	
	P193	0,26			P329	0,30	
	P118	1,12	0,82		P128	0,44	1,11
N188	P118	1,12	0,56	N208	P331	0,46	
N189	P255	0,32			P129	0,74	
	P254	0,11			P128	0,44	0,82
	P119	0,63	0,53	N209	P129	0,74	0,37
N190	P119	0,63	0,31	N210	P329	0,30	
N191	P256	0,44			P222	0,78	
	P255	0,32			P130	0,27	0,68
	P120	0,69	0,73	N211	P130	0,27	0,13
N192	P120	0,69	0,34	N212	P303	0,03	
N193	P283	0,45			P302	0,25	
	P282	1,01			P131	1,83	1,06
	P121	0,66	1,06	N213	P131	1,83	0,91
N194	P121	0,66	0,33	N214	P132	0,84	0,42
N195	P302	0,25		N215	P360	0,68	
	P301	0,69			P186	2,22	
	P122	0,73	0,84		P133	1,66	2,28
N.196	P122	0,73	0,36	N216	P366	0,01	
N197	P242	0,54			P365	0,01	
	P184	1,05			P142	1,27	0,63
	P123	1,43	1,51	N217	P160	0,52	
N198	P123	1,43	0,71		P159	0,36	
N199	P332	0,20			P135	0,62	0,75
	P218	0,11		N218	P138	0,43	0,21
	P124	0,64	0,48	N219	P156	0,33	
N200	P124	0,64	0,32		P155	0,37	
					P138	0,43	0,57

nœuds	troncons	Qspec	Qn	nœuds	troncons	Qspec	Qn
		(l/s.ml)	(1/s)			(l/s.ml)	(l/s)
N220	P221	0,56		N244	P355	1,32	0,66
	P139	0,08	0,32	N245	P175	0,62	0,31
N221	P169	0,20		N246	P176	0,66	0,33
	P141	1,06	0,63	N247	P177	0,33	0,16
N222	P141	1,06	0,53	N248	P178	1,10	0,55
N223	P231	0,02		N249	P181	1,40	0,70
	P230	1,08	0,55	N250	P354	0,68	0,34
N224	P143	1,55	0,77	N251	P183	0,41	0,20
N225	P384	0,14		N252	P342	0,48	
	P234	0,02			P223	0,82	
	P146	0,31	0,24		P185	0,30	0,80
N226	P148	0,67		N253	P185	0,30	0,15
	P147	1,06		N254	P186	2,22	1,11
	P146	0,31	1,02	N255	P189	1,46	0,73
N227	P147	1,06	0,53	N256	P244	0,59	
N228	P148	0,67	0,33		P243	0,38	
N229	P149	1,98	0,99		P189	1,46	1,22
N230	P152	1,42		N257	P250	0,64	
	P151	0,35			P249	1,06	
	P150	0,69	1,23		P190	1,13	1,42
N231	P150	0,69	0,34	N258	P190	1,13	0,56
N232	P151	0,35	0,17	N259	P287	0,30	
N233	P181	1,40			P247	0,13	
	P154	0,62			P191	0,44	0,43
	P153	0,90	1,46	N260	P326	0,02	
N234	P163	1,69			P239	0,62	
	P158	0,23			P193	0,26	0,45
	P157	0,22	1,08	N261	P194	0,64	0,32
N235	P161	0,57		N262	P195	0,53	0,26
	P160	0,52	0,55	N263	P284	0,64	
N236	P162	1,10	0,55		P213	0,77	
N237	P163	1,69	0,84		P196	0,74	1,08
N238	P164	1,33	0,66	N264	P288	1,03	
N239	P165	0,69	0,34		P285	0,59	
N240	P166	0,56	0,28		P196	0,74	1,18
N241	P167	0,56	0,28	N265	P197	0,72	0,36
N242	P380	0,46		N266	P198	0,21	0,10
	P171	0,54		N267	P305	0,41	
	P170	0,20	0,60		P304	0,48	
N243	P171	0,54	0,27		P198	0,21	0,55

nœuds	tronçons	Qspec	Qn	nœuds	tronçons	Qspec	Qn
		(l/s.ml)	(1/s)			(l/s.ml)	(1/s)
N268	P199	0,85	0,42	N288	P349	0,81	0,40
N269	P307	0,79		N289	P214	0,69	0,34
	P306	0,51	0,65	N290	P215	0,47	0,23
N270	P200	0,53	0,26	N291	P333	0,02	
N271	P387	0,01			P218	0,11	
	P360	0,68			P217	0,09	0,11
	P201	1,14	0,92	N292	P310	0,02	
N272	P247	0,13			P308	0,31	
	P202	0,45			P219	1,79	1,07
	P201	1,14	0,86	N293	P219	1,79	0,89
N273	P292	0,12		N294	P308	0,31	
	P241	0,38			P307	0,79	
	P202	0,45	0,48		P220	1,13	1,12
N274	P203	0,30	0,15	N295	P220	1,13	0,56
N275	P313	0,39		N296	P328	0,82	
	P203	1,06	0,73		P222	0,78	0,80
N276	P205	1,04	0,52	N297	P223	0,82	0,41
N277	P379	0,47	0,23	N298	P224	1,57	0,78
N.278	P352	0,05		N299	P348	0,01	
	P344	0,01			P225	0,85	
	P206	0,85			P212	1,30	1,08
	P4	0,63	0,78	N300	P348	0,01	
N279	P206	0,85	0,42		P225	0,85	
N280	P279	0,20			P212	1,30	1,08
	P208	1,20		N301	P276	0,03	
	P207	0,30	0,85		P275	0,01	
N281	P208	1,20	0,60		P226	0,54	0,29
N282	P277	0,40		N302	P226	0,54	0,27
	P275	0,01		N303	P361	0,04	0,02
	P209	1,06	0,73				
N283	P375	0,18	0,09	N304	P337	0,02	
N284	P278	0,14			P235	0,66	
	P277	0,40	0,27		P90	1,34	1,01
N285	P210	1,10	0,55	N305	P235	0,66	0,33
N286	P348	0,01		N306	P249	1,06	
	P279	0,20			P236	0,27	0,66
	P278	0,14	0,18	N307	P358	0,01	
N287	P277	0,40			P236	0,27	0,14
	P275	0,01		N308	P237	0,44	0,22
	P209	1,06	0,73	N309	P238	0,33	0,16

nœuds	tronçons	Qspec	Qn	nœuds	tronçons	Qspec	Qn
		(l/s.ml)	(l/s)			(l/s.ml)	(1/s)
N310	P343	0,65		N329	P301	0,69	
	P250	0,64			P300	0,93	
	P240	2,19	1,74		P299	1,44	
N311	P286	0,58			P297	0,44	1,75
	P285	0,59		N330	P299	1,44	0,72
	P246	0,93	1,05	N331	P300	0,93	0,46
N312	P326	0,02		N332	P306	0,51	
	P251	1,29			P304	0,48	
	P240	2,19	1,75		P303	0,03	0,51
N313	P253	0,01		N333	P312	0,34	
	P252	0,25			P311	0,07	
	P194	0,64	0,45		P272	0,71	0,56
N314	P311	0,07		N334	P312	0,34	0,17
	P309	1,51		N335	P335	0,36	
	P258	1,54	1,56		P319	0,14	
N315	P261	0,90	0,45		P110	0,63	0,57
N316	P264	0,61		N336	P320	0,98	0,49
	P263	0,49		N337	P341	0,72	
	P262	0,51	0,81		P322	0,81	
N317	P266	0,28			P321	0,48	1,01
	P265	0,53		N338	P324	0,49	0,24
	P264	0,61	0,71	N339	P332	0,20	
N318	P265	0,53	0,26		P328	0,82	
N319	P267	1,18	0,59		P325	0,75	0,88
N320	P270	0,32	0,16	N340	P359	0,98	0,49
N321	P273	0,35	0,17	N341	P330	1,47	0,73
N322	P274	0,58	0,29	N342	P331	0,46	0,23
N323	P349	0,81		N343	P327	1,96	
	P281	0,42			P224	1,57	1,76
	P280	0,02	0,63	N344	P347	0,01	
N324	P289	1,05			P346	0,01	0,56
	P281	0,42			P3	1,12	
	P210	1,10	1,29	N345	P347	0,01	0,98
N325	P288	1,03			P327	1,96	
	P287	0,30		N346	P351	0,03	0,52
	P286	0,58	0,96		P282	1,01	
N326	P289	1,05	0,52	N347	P355	1,32	1,37
N327	P295	0,44	0,22		P173	1,42	
N328	P296	0,66	0,33	N348	P357	0,52	0,58
					P356	0,65	

nœuds	tronçons	Qspec	Qn	nœuds	tronçons	Qspec	Qn
		(l/s.ml)	(l/s)			(l/s.ml)	(1/s)
N349	P359	0,98		N367	P376	0,06	
	P325	0,75	0,86		P350	1,00	0,53
N350	P361	0,04		N368	P377	1,97	
	P345	0,10			P350	1,00	1,49
	P344	0,01		N369	P390	0,03	
	P207	0,30	0,23		P379	0,47	
N351	P383	0,30			P378	1,27	0,89
	P18	0,38	0,15	N370	P385	0,14	
N352	P153	0,90			P353	2,88	1,51
	17	0,36	0,45	N371	P351	0,03	
N353	P363	0,0004			P280	0,02	
	17	0,29	0,01		P212	1,30	0,68
N354	P364	0,0005		N372	P382	0,01	
	18	0,31	0,01		P313	0,39	
N355	P365	0,002			P216	0,37	0,39
	50	0,32	0,001	N373	P314	0,48	0,24
N356	P210	1,66		N374	P180	0,61	0,30
	50	0,38	0,83	N375	P246	0,93	
N357	P366	0,002			P245	0,62	0,78
	52	0,28	0,001	N376	P52	0,59	0,29
N358	P211	1,66		N377	P383	0,30	
	52	0,4	0,83		P100	1,73	
N359	P371	0,005			P56	0,95	1,49
	73	0,3	0,002	N378	P384	0,14	
N360	P99	0,107			puisard	0,38	0,11
	73	0,4	0,053	N379	P388	0,08	
N361	P372	0,011			P387	0,01	
	P352	0,05			P386	0,14	
	P214	0,69			P385	0,14	0,20
	76	0,22	0,381	N380	P386	0,14	
N362	P211	1,37			P213	0,77	0,46
	76	0,27	0,68	N381	P388	0,08	
N363	P139	0,08			P378	1,27	0,68
	77	0,38	0,04	N383	P390	0,03	
N364	P373	0,001			P389	0,21	
	P101	0,43	0,22		P316	0,28	0,26
N365	P374	0,06					
	P257	0,06	0,06				
N366	P375	0,18					
	P209	1,06	0,62				

Tableau : débits nodaux cas de pointe plus incendie, horizon2020.

nœuds	tronçons	Qspec	Qn +Qinc	nœuds	tronçons	Qsp	Qn +Qinc
		(l/s.ml)	(l/s)			(l/s.ml)	(1/s)
N1	P63	0,55	0,27	N18	P309	1,51	
N2	P354	0,68			P9	0,57	1,04
	P182	1,14		N19	P310	0,51	
	P1	0,18	1,009		P205	1,04	0,78
N3	P23	1,06		N20	P10	1,23	0,61
	P1	0,18	0,62	N21	P339	0,03	
N4	P168	0,63			P10	1,236	0,63
	P85	0,017		N22	P369	0,033	
	P2	1,01	0,50		P230	1,08	
N5	P358	0,01			P11	0,64	0,88
	P248	0,18		N23	P18	0,44	
	P2	1,01	0,60		P12	1,31	
N6	P3	1,12	0,56		P11	0,64	1,20
N7	P4	0,63	0,31	N24	P12	1,31	0,65
N8	P276	0,03		N25	P229	0,48	
	P237	0,44			P228	0,49	
	P5	0,76	0,62		P13	1,1	18,04
N9	P5	0,76	0,38	N26	P24	3,09	
N10	P323	0,46			P14	0,42	
	P6	0,05	0,25		P13	1,11	2,32
N11	P343	0,65		N27	P14	0,42	0,2
	P342	0,48		N28	P369	0,03	
	P11	0,64	0,89		P229	0,48	
N12	P336	0,01			P15	0,67	0,59
	P84	0,70		N29	P145	0,17	
	P7	0,55	0,63		P143	1,55	
N13	P7	0,55	0,27		P15	0,67	1,20
N14	P241	0,38		N30	P144	0,19	
	P63	0,55			P26	1,27	
	P8	0,39	0,667		P16	0,15	0,81
N15	P315	0,89		N31	P179	1,52	
	P294	0,13			P25	0,30	
	P8	0,39	0,70		P16	0,15	0,99
N16	P340	0,36		N.32	P145	0,17	
	P339	0,03			P144	0,19	
	P338	0,36	0,384		P17	0,59	0,48
N17	P221	0,56		N.33	P17	0,59	0,29
	P9	0,57	0,56	N.34	P18	0,44	0,22

nœuds	tronçons	Qspec +Qinc	Qn +Qinc	nœuds	troncons	Qspec	Qn +Qinc
		(l/s.ml)	(l/s)			(l/s.ml)	(1/s)
N.35	P19	0,55	0,27	N54	P137	0,77	
N.36	P233	0,92			P33	0,34	
	P232	0,50			P32	0,43	0,77
	P19	0,55	0,99	N55	P33	0,34	0,17
N37	P370	0,04		N56	P35	0,43	0,21
	P45	1,14		N57	P36	0,67	0,33
	P20	0,94	1,06	N60	P180	0,61	
N38	P20	0,94	0,47		P136	0,87	
N39	P381	0,06			P37	0,53	1,01
	P227	3,27		N61	P135	0,62	
	P21	1,01	2,17		P38	0,56	
N40	P367	0,36			P37	0,53	0,86
	P22	2,70		N62	P38	0,56	0,28
	P21	1,015	2,04	N63	P356	0,65	
N41	P22	2,7	1,35		P104	0,42	
N42	P23	1,06	0,53		P103	0,42	0,75
N43	P24	3,09	1,54	N64	P357	0,52	0,26
N44	P232	0,50		N65	P234	0,02	
	P231	0,02	0,26		P228	0,49	
N45	P25	0,30	0,15		P39	2,04	1,28
N46	P26	1,27	0,63	N66	P39	2,04	1,02
N47	P27	0,41	0,21	N67	P337	0,026	
N48	P179	1,52			P132	0,84	
	P28	0,20			P40	0,13	0,50
	P27	0,418	1,07	N68	P168	0,63	
N49	P36	0,67			P167	0,56	
	P29	0,12			P40	0,13	0,66
	P28	0,20	0,58	N69	P155	0,37	
N50	P34	0,74			P154	0,62	
	P30	0,43			P41	0,88	17,94
	P111	0,12	0,65	N70	P41	0,88	0,44
N51	P137	0,77		N71	P318	0,018	
	P136	0,877			P157	0,22	
	P30	0,43	0,21		P42	1,01	0,62
N52	P31	0,24	0,12	N72	P42	1,01	0,50
N53	P35	0,96		N73	P318	0,01	
	P34	0,74			P156	0,33	
	P32	0,43			P43	1,66	1,01

	P31	0,24	1,18	N74	P43	1,66	0,83
nœuds	troncons	Qspec	Qn+Qinc	nœuds	troncons	Qspec	Qn +Qinc
		(l/s.ml)	(l/s)			(l/s.ml)	(l/s)
N75	P159	0,36		N94	P239	0,62	
	P158	0,23			P195	0,53	
	P44	1,7	1,15		P53	1,60	1,38
N76	P44	1,7	0,85	N95	P233	0,92	
N77	P367	0,36			P54	0,62	0,77
	P164	1,33	0,85	N96	P54	0,62	0,31
N78	P368	0,36		N97	P57	0,014	
	P105	0,31	0,34		P55	0,18	0,09
N79	P45	1,14	0,57	N98	P55	0,18	0,09
N80	P162	1,10		N99	P259	1,25	
	P161	0,57			P183	0,41	
	P46	1,57	1,62		P56	0,95	1,31
N81	P46	1,57	0,78	N100	P259	1,25	
N82	P340	0,36			P152	1,42	
	P263	0,49			P57	0,01	1,34
	P47	0,42	0,63	N101	P251	1,29	
N83	P48	0,32	17,16		P191	0,44	
N84	P262	0,51			P58	0,15	0,94
	P261	0,90		N102	P290	0,22	
	P48	0,32			P61	0,25	
	P47	0,42	1,08		P58	0,15	0,31
N85	P338	0,36		N103	P292	0,12	
	P260	0,78			P291	0,09	
	P49	0,98	1,06		P59	0,40	0,31
N86	P49	0,98	0,49	N104	P293	0,74	
N87	P118	1,12	0,56		P64	0,48	
N88	P267	1,18			P59	0,40	0,81
	P51	0,36		N105	P298	0,70	
	P50	0,43	0,98		P297	0,44	
N89	P51	0,36	0,18		P60	1,44	1,3
N90	P341	0,72	0,36	N106	P60	1,44	0,72
N91	P134	0,04		N107	P61	0,25	0,12
	P69	0,75	0,40	N108	P291	0,09	
N92	P314	0,48			P290	0,22	
	P216	0,37			P62	0,46	0,39
	P52	0,22	0,54	N109	P62	0,46	0,23
N93	P245	0,62					
	P244	0,59		N110	P64	0,48	0,24
	P53	1,60	1,41	N111	P65	0,65	0,32

nœuds	tronçons	Qspec	Qn +Qinc	nœuds	tronçons	Qspec	Qn +Qinc
		(l/s.ml)	(l/s)			(l/s.ml)	(l/s)
N112	P294	0,13		N129	P254	0,11	
	P204	0,14			P192	0,13	
	P65	0,65	0,46		P75	0,54	0,40
N113	P295	0,44		N130	P75	0,54	0,27
	P293	0,74		N131	P373	0,00	
	P66	0,20	0,69		P102	0,20	
N114	P296	0,66			P76	1,155	0,68
	P67	1,14		N132	P335	0,36	
	P66	0,20	1,00		P90	1,34	
N115	P67	1,14	0,57		P76	1,15	1,43
N116	P298	0,70		N133	P142	1,27	
	P204	0,14			P77	0,22	0,74
	P68	0,86	0,85	N134	P77	0,22	0,11
N117	P68	0,86	0,43	N135	P270	0,32	
N118	P389	0,21			P187	0,60	
	P317	0,15			P78	0,72	0,82
	P69	0,75	0,56	N136	P271	0,16	
N119	P382	0,016			P78	0,72	0,44
	P317	0,15		N137	P300	0,93	0,46
	P70	0,63	0,40	N138	P273	0,35	
N120	P70	0,63	0,31		P188	0,2	
N121	P316	0,282			P79	0,19	0,38
	P315	0,89		N139	P274	0,58	
	P71	0,218	0,69		P188	0,208	
N122	P215	0,472			P80	0,40	0,59
	P72	0,279		N140	P80	0,40	0,20
	P71	0,218	0,48	N141	P147	1,06	0,53
N123	P72	0,279	0,13	N142	P96	0,84	
N124	P374	0,06			P83	0,43	
	P256	0,44			P82	0,59	0,93
	P73	1,37	0,94	N143	P336	0,013	
N125	P199	0,85			P174	0,41	
	P197	0,72			P83	0,43	0,42
	P73	1,37	1,47	N144	P91	0,59	
N126	P305	0,41	0,208		P85	0,017	
N127	P253	0,002			P84	0,704	0,66
	P192	0,13		N145	P321	0,485	
	P74	0,93	0,53		P268	0,49	
N128	P74	0,93	0,46		P86	0,62	0,80

nœuds	tronçons	Qspec	Qn+Qinc	nœuds	tronçons	Qspec	Qn+Qinc
		(l/s.ml)	(l/s)			(l/s.ml)	(l/s)
N146	P86	0,62	0,31	N164	P149	1,98	
N147	P269	0,02	0,31	11104	P100	1,73	
11177	P268	0,03			P99	0,10	1,91
	P87	0,74	0,63	N165	P364	0,001	1,71
N148	P87	0,74	0,37	11103	P363	0,001	
N149	P269	0,03	0,37		P101	0,43	0,22
11112	P187	0,60		N166	P182	1,14	0,22
	P88	0,40	0,52	11100	P103	0,42	
N150	P88	0,40	0,20		P102	0,20	0,88
N151	P258	1,54	0,20	N167	P368	0,36	0,00
11101	P257	0,06		1(10)	P165	0,69	
	P89	0,42	1,01		P104	0,42	0,74
N152	P89	0,42	0,21	N168	P166	0,56	3,7 .
N153	P175	0,62	3,22		P106	0,46	
11200	P92	0,24			P105	0,31	0,67
	P91	0,59	0,73	N169	P184	1,05	3,51
N154	P109	0,74	3,12	- 1.20	P178	1,10	
- 1	P93	0,24			P106	0,46	18,31
	P92	0,24	0,61	N170	P107	0,61	0,30
N155	P93	0,24	0,12	N171	P177	0,33	,
N156	P173	1,42	· · · · · · · · · · · · · · · · · · ·		P176	0,66	
- 1 - 2	P172	0,37			P174	0,41	
	P94	0,24	1,01		P108	0,21	0,81
N157	P107	0,61		N172	P108	0,21	0,10
	P95	0,44		N173	P109	0,74	0,37
	P94	0,24	0,65	N174	P110	0,63	0,31
N158	P324	0,49		N175	P320	0,98	
	P95	0,44	0,46		P319	0,14	
N159	P96	0,84	0,42		P111	0,16	0,64
N160	P238	0,33		N176	P114	0,71	
	P227	3,27			P112	0,19	
	P97	0,49	2,05		P111	0,16	0,53
N161	P97	0,49	0,24	N177	P380	0,46	
N162	P243	0,38			P113	0,51	
	P242	0,54			P112	0,19	0,58
	P98	0,92	17,92	N178	P113	0,51	0,25
N163	P260	0,78		N179	P114	0,71	0,35
	P248	0,18		N180	P170	0,20	
	P98	0,92	0,94		P169	0,20	
					P115	0,74	0,58

nœuds	tronçons	Qspec	Qn+Qinc	nœuds	tronçons	Qspec	Qn +Qinc
		(l/s.ml)	(1/s)			(l/s.ml)	(l/s)
N181	P115	0,74	0,37	N201	P333	0,02	
N182	P284	0,64			P140	0,14	
	P283	0,45			P125	0,63	0,40
	P116	0,69	0,89	N202	P125	0,63	0,31
N183	P362	0,22	0,11	N203	P334	0,14	
N184	P362	0,22			P140	0,14	
	P116	0,69	0,46		P126	0,53	0,41
N185	P323	0,46		N204	P126	0,53	0,26
	P211	1,37		N205	P334	0,14	
	P117	0,89	1,36		P127	1,35	0,75
N186	P117	0,89	0,44	N206	P127	1,35	0,67
N187	P252	0,25		N207	P330	1,47	
	P193	0,26			P329	0,30	
	P118	1,12	0,82		P128	0,44	1,11
N188	P118	1,12	0,56	N208	P331	0,46	
N189	P255	0,32			P129	0,74	
	P254	0,11			P128	0,44	0,82
	P119	0,63	0,53	N209	P129	0,74	0,37
N190	P119	0,63	0,31	N210	P329	0,30	
N191	P256	0,44			P222	0,78	
	P255	0,32			P130	0,27	0,68
	P120	0,69	0,73	N211	P130	0,27	0,13
N192	P120	0,69	0,34	N212	P303	0,03	
N193	P283	0,45			P302	0,25	
	P282	1,01			P131	1,83	1,06
	P121	0,66	1,06	N213	P131	1,83	0,91
N194	P121	0,66	0,33	N214	P132	0,84	0,42
N195	P302	0,25		N215	P360	0,68	
	P301	0,69			P186	2,22	
	P122	0,73	0,84		P133	1,66	2,28
N.196	P122	0,73	0,36	N216	P366	0,01	
N197	P242	0,54			P365	0,01	
	P184	1,05			P142	1,27	0,63
	P123	1,43	1,51	N217	P160	0,52	
N198	P123	1,43	0,71		P159	0,36	
N199	P332	0,20			P135	0,62	0,75
	P218	0,11		N218	P138	0,43	0,21
	P124	0,64	0,48	N219	P156	0,33	
N200	P124	0,64	0,32		P155	0,37	
					P138	0,43	0,57

nœuds	tronçons	Qsp	Qn +Qinc	nœuds	tronçons	Qspec	Qn +Qinc
		(l/s.ml)	(l/s)			(l/s.ml)	(l/s)
N220	P221	0,56		N244	P355	1,32	0,66
	P139	0,08	0,32	N245	P175	0,62	0,31
N221	P169	0,20		N246	P176	0,66	0,33
	P141	1,06	0,63	N247	P177	0,33	0,16
N222	P141	1,06	0,53	N248	P178	1,10	0,55
N223	P231	0,02		N249	P181	1,40	0,70
	P230	1,08	0,55	N250	P354	0,68	0,34
N224	P143	1,55	0,77	N251	P183	0,41	0,20
N225	P384	0,14		N252	P342	0,48	
	P234	0,02			P223	0,82	
	P146	0,31	0,24		P185	0,30	0,80
N226	P148	0,67		N253	P185	0,30	0,15
	P147	1,06		N254	P186	2,22	1,11
	P146	0,31	1,02	N255	P189	1,46	0,73
N227	P147	1,06	0,53	N256	P244	0,59	
N228	P148	0,67	0,33		P243	0,38	
N229	P149	1,98	0,99		P189	1,46	1,22
N230	P152	1,42		N257	P250	0,64	
	P151	0,35			P249	1,06	
	P150	0,69	1,23		P190	1,13	1,42
N231	P150	0,69	0,34	N258	P190	1,13	0,56
N232	P151	0,35	0,17	N259	P287	0,30	
N233	P181	1,40			P247	0,13	
	P154	0,62			P191	0,44	0,43
	P153	0,90	1,46	N260	P326	0,02	
N234	P163	1,69			P239	0,62	
	P158	0,23			P193	0,26	0,45
	P157	0,22	1,08	N261	P194	0,64	0,32
N235	P161	0,57		N262	P195	0,53	0,26
	P160	0,52	0,55	N263	P284	0,64	
N236	P162	1,10	0,55		P213	0,77	
N237	P163	1,69	0,84		P196	0,74	1,08
N238	P164	1,33	0,66	N264	P288	1,03	
N239	P165	0,69	0,34		P285	0,59	
N240	P166	0,56	0,28		P196	0,74	1,18
N241	P167	0,56	0,28	N265	P197	0,72	0,36
N242	P380	0,46		N266	P198	0,21	0,10
	P171	0,54		N267	P305	0,41	
	P170	0,20	0,60		P304	0,48	
N243	P171	0,54	0,27		P198	0,21	0,55

nœuds	tronçons	Qspec	Qn +Qinc	nœuds	tronçons	Qspec	Qn +Qinc
		(l/s.ml)	(1/s)			(l/s.ml)	(1/s)
N268	P199	0,85	0,42	N288	P349	0,81	0,40
N269	P307	0,79		N289	P214	0,69	0,34
	P306	0,51	0,65	N290	P215	0,47	0,23
N270	P200	0,53	0,26	N291	P333	0,02	
N271	P387	0,01			P218	0,11	
	P360	0,68			P217	0,09	0,11
	P201	1,14	0,92	N292	P310	0,02	
N272	P247	0,13			P308	0,31	
	P202	0,45			P219	1,79	1,07
	P201	1,14	0,86	N293	P219	1,79	0,89
N273	P292	0,12		N294	P308	0,31	
	P241	0,38			P307	0,79	
	P202	0,45	0,48		P220	1,13	1,12
N274	P203	0,30	0,15	N295	P220	1,13	0,56
N275	P313	0,39		N296	P328	0,82	
	P203	1,06	0,73		P222	0,78	0,80
N276	P205	1,04	0,52	N297	P223	0,82	0,41
N277	P379	0,47	0,23	N298	P224	1,57	0,78
N.278	P352	0,05		N299	P348	0,01	
	P344	0,01			P225	0,85	
	P206	0,85			P212	1,30	1,08
	P4	0,63	0,78	N300	P348	0,01	
N279	P206	0,85	0,42		P225	0,85	
N280	P279	0,20			P212	1,30	1,08
	P208	1,20		N301	P276	0,03	
	P207	0,30	0,85		P275	0,01	
N281	P208	1,20	0,60		P226	0,54	0,29
Noeud N282	P277	0,40		N302	P226	0,54	0,27
	P275	0,01		N303	P361	0,04	0,02
	P209	1,06	0,73				
N283	P375	0,18	0,09	N304	P337	0,02	
N284	P278	0,14			P235	0,66	
	P277	0,40	0,27		P90	1,34	1,01
N285	P210	1,10	0,55	N305	P235	0,66	0,33
N286	P348	0,01		N306	P249	1,06	
	P279	0,20			P236	0,27	0,66
	P278	0,14	0,18	N307	P358	0,01	
N287	P277	0,40			P236	0,27	0,14
	P275	0,01		N308	P237	0,44	0,22
	P209	1,06	0,73*	N309	P238	0,33	0,16

nœuds	tronçons	Qspec	Qn +Qinc	nœuds	tronçons	Qspec	Qn +Qinc
		(l/s.ml)	(l/s)			(l/s.ml)	(1/s)
N310	P343	0,65		N329	P301	0,69	
	P250	0,64			P300	0,93	
	P240	2,19	1,74		P299	1,44	
N311	P286	0,58			P297	0,44	18,75
	P285	0,59		N330	P299	1,44	0,72
	P246	0,93	1,05	N331	P300	0,93	0,46
N312	P326	0,02		N332	P306	0,51	
	P251	1,29			P304	0,48	
	P240	2,19	18,75		P303	0,03	0,51
N313	P253	0,01		N333	P312	0,34	
	P252	0,25			P311	0,07	
	P194	0,64	0,45		P272	0,71	0,56
N314	P311	0,07		N334	P312	0,34	0,17
	P309	1,51		N335	P335	0,36	
	P258	1,54	1,56		P319	0,14	
N315	P261	0,90	0,45		P110	0,63	0,57
N316	P264	0,61		N336	P320	0,98	0,49
	P263	0,49		N337	P341	0,72	
	P262	0,51	0,81		P322	0,81	
N317	P266	0,28			P321	0,48	1,01
	P265	0,53		N338	P324	0,49	0,24
	P264	0,61	0,71	N339	P332	0,20	
N318	P265	0,53	0,26		P328	0,82	
N319	P267	1,18	0,59		P325	0,75	0,88
N320	P270	0,32	0,16	N340	P359	0,98	0,49
N321	P273	0,35	0,17	N341	P330	1,47	0,73
N322	P274	0,58	0,29	N342	P331	0,46	0,23
N323	P349	0,81		N343	P327	1,96	
	P281	0,42			P224	1,57	1,76
	P280	0,02	0,63	N344	P347	0,01	
N324	P289	1,05			P346	0,01	0,56
	P281	0,42			P3	1,12	
	P210	1,10	1,29	N345	P347	0,01	0,98
N325	P288	1,03			P327	1,96	
	P287	0,30		N346	P351	0,03	0,52
	P286	0,58	0,96		P282	1,01	
N326	P289	1,05	0,52	N347	P355	1,32	1,37
N327	P295	0,44	0,22		P173	1,42	
N328	P296	0,66	0,33	N348	P357	0,52	0,58
					P356	0,65	

nœuds	tronçons	Qspec	Qn +Qinc	nœuds	tronçons	Qspec	Qn +Qinc
		(l/s.ml)	(1/s)			(l/s.ml)	(1/s)
N12.40	D250	0.00		NO.7	D276	0.06	
N349	P359	0,98	0.96	N367	P376	0,06	0.52
NOEO	P325	0,75	0,86	N260	P350	1,00	0,53
N350	P361	0,04		N368	P377	1,97	1.40
	P345	0,10		N260	P350	1,00	1,49
	P344	0,01	0.22	N369	P390	0,03	
N1251	P207	0,30	0,23		P379	0,47	0.90
N351	P383	0,30	0.15	N270	P378	1,27	0,89
	P18	0,38	0,15	N370	P385	0,14	1.71
N352	P153	0,90	0.17	27051	P353	2,88	1,51
	17	0,36	0,45	N371	P351	0,03	
N353	P363	0,0004			P280	0,02	
	17	0,29	0,01		P212	1,30	0,68
N354	P364	0,0005		N372	P382	0,01	
	18	0,31	0,01		P313	0,39	
N355	P365	0,002			P216	0,37	0,39
	50	0,32	0,001	N373	P314	0,48	0,24
N356	P210	1,66		N374	P180	0,61	0,30
	50	0,38	0,83	N375	P246	0,93	
N357	P366	0,002			P245	0,62	17,78
	52	0,28	0,001	N376	P52	0,59	0,29
N358	P211	1,66		N377	P383	0,30	
	52	0,4	0,83		P100	1,73	
N359	P371	0,005			P56	0,95	18,49
	73	0,3	0,002	N378	P384	0,14	
N360	P99	0,107			puisard	0,38	0,11
	73	0,4	0,053	N379	P388	0,08	
N361	P372	0,011			P387	0,01	
	P352	0,05			P386	0,14	
	P214	0,69			P385	0,14	0,20
	76	0,22	0,381	N380	P386	0,14	
N362	P211	1,37			P213	0,77	0,46
	76	0,27	0,68	N381	P388	0,08	
N363	P139	0,08			P378	1,27	0,68
	77	0,38	0,04	N383	P390	0,03	,
N364	P373	0,001	.,		P389	0,21	
	P101	0,43	0,22		P316	0,28	0,26
N365	P374	0,06	- ,——			- ,— -	1,20
- 10 00	P257	0,06	0,06				
N366	P375	0,18	0,00				
11000	P209	1,06	0,62				

Annexe 02

Tableau IV.6 : État des noeuds du secteur S01 cas de pointe plus incendie, Horizon 2050.

Nœud	Débit	Charge	Pression	Nœud	Débit	Charge	Pression
	(I/s)	(m)	(m.C.E)		(I/s)	(m)	(m.C.E)
n1	2,76	159,19	16,84	n31	1,56	154,79	24,84
n2	2,49	158,28	16,38	n32	1,95	154,61	25,02
n3	2,04	157,75	17,13	n33	0,24	154,16	24,4
n4	2,04	157,23	17,45	n34	0,96	152,99	26,31
n5	0,79	155,82	18,82	n35	1,36	153,07	28,07
n6	0,87	155,41	19,01	n36	3,04	156,95	24,03
n7	0,74	156,61	19,72	n37	6,64	150,25	14,93
n8	0,8	157,21	18,68	n38	4,43	142,77	19,6
n9	2,53	157,99	22,19	n39	0,61	149,57	11,8
n10	1,84	156,25	20,32	n40	6,88	154,27	32,03
n11	1,67	155,9	19,81	n41	6,26	147,72	22,74
n12	1,61	155,81	19,85	n43	3,53	142,82	26,46
n13	2,3	155,74	20,53	n44	0,5	141,64	26,99
n14	0,82	154,19	17,67	n45	1	140,82	24,86
n15	1,69	157,9	22,13	n47	1,82	150,98	24,82
n16	3,4	155,25	19,45	n48	3,25	150,21	22,57
n17	1,39	154,68	18,59	n49	4,5	149,79	22,29
n18	0,62	154,12	18,7	n50	2,43	148,18	15,35
n19	2,76	153,45	18,8	n51	2,34	154	33,42
n20	0,64	154	15,58	n52	4,17	151,24	30,07
n21	1,26	154,64	13,74	n53	2,02	146,62	33,15
n22	1,24	151,02	10,03	n54	3,06	148,6	27,83
n23	1,23	151,05	10,83	n55	2,41	144,2	32,49
n24	2,13	151,1	25,27	n56	3,12	148,34	28,84
n25	0,29	153,01	18,47	n57	2,43	143,83	33,38
n26	2,4	152,72	18,25	n58	3,31	147,88	29,06
n28	2,23	152,59	26,58	n59	2,43	143,37	33,21
n29	0,85	153,39	21,18	n60	2,45	149,88	29
n30	21,71	156,09	26,39	n61	1,73	148,95	28,36

Tableau IV.6 : État des pressions du secteur S01 cas Heure de pointe plus incendie, Horizon 2050 (suite).

Nœud	Débit	Charge	Pression	Nœud	Débit	Charge	Pression
	(I/s)	(m)	(m.C.E)		(I/s)	(m)	(m.C.E)
n62	4,04	147,56	28,78	n90	6,43	147,02	48,77
n64	4,65	146,58	27,92	n91	4,31	144,3	46,34
n65	2,25	142,93	15,31	n92	0,8	143,23	45,52
n66	2,44	147,34	27,93	n93	3,1	144,3	45,26
n67	1,58	143,44	24,92	n94	0,84	143,04	44,22
n68	2,95	147,84	25,98	n95	3,95	145,61	42,72
n69	0,77	146,55	23,89	n96	0,81	144,13	40,19
n70	1,7	145,81	23,15	n97	2,24	144,58	44,19
n71	0,81	144,7	21,83	n98	0,95	142,84	41,8
n72	2,99	149,52	22,11	n99	0,63	144,49	44,56
n73	0,6	149,56	22,25	n100	0,39	144,38	44,29
n75	0,97	147,98	24,51	n101	20,72	153,36	35,08
n76	2,13	148,38	16,46	n102	5,28	151,5	43,71
n77	0,57	147,82	15,93	n103	2,03	146	39,62
n78	0,49	147,26	15,55	n104	0,6	144,09	35,26
n79	2,51	152,21	19,88	n105	1,51	145,33	39,65
n80	1,21	148,81	22,1	n106	1,35	144,78	40,03
n84	19,28	150,16	47,39	n107	1,05	141,75	32,99
n85	2,71	148,88	45,8	n108	0,91	143,29	34,52
n86	2,72	149,12	46,9	n111	0,87	148,06	24,06
n87	2,26	148,51	46,4	n112	0,71	147,93	24,53
n88	1,04	145,52	46	n113	0,7	159,56	15,2
n89	0,87	146,7	48,2	ch projeté	-269,27	160	0

tronçon	Diamètre	Débit	Vitesse	P.d.c	Etat
	(mm)	(I/s)	(m/s)	(m/km)	
p1	117,6	9,77	0,9	6,25	Ouvert
p2	117,6	6,48	0,6	2,99	Ouvert
р3	79,2	3,7	0,75	7,33	Ouvert
p4	42,6	0,79	0,56	9,27	Ouvert
р5	42,6	0,87	0,61	10,92	Ouvert
р6	42,6	0,74	0,52	8,11	Ouvert
р7	45,2	0,8	0,5	7,06	Ouvert
р8	117,6	12,6	1,16	9,86	Ouvert
p9	117,6	10,12	0,93	6,65	Ouvert
p10	117,6	7,2	0,66	3,61	Ouvert
p11	117,6	4,34	0,4	1,47	Ouvert
p12	42,6	0,82	0,58	9,84	Ouvert
p13	176,2	46,05	1,89	14,71	Ouvert
p14	176,2	40,42	1,66	11,6	Ouvert
p15	176,2	38,18	1,57	10,46	Ouvert
p16	176,2	37,55	1,54	10,15	Ouvert
p17	34	0,64	0,7	18,45	Ouvert
p18	57	1,26	0,49	5,21	Ouvert
p19	42,6	1,24	0,87	20,24	Ouvert
p20	42,6	1,23	0,86	19,99	Ouvert
p21	67,8	2,13	0,59	5,77	Ouvert
p22	176,2	32,66	1,34	7,88	Ouvert
p23	176,2	30,55	1,25	6,98	Ouvert
p24	67,8	2,23	0,62	6,24	Ouvert
p25	45,2	0,85	0,53	7,91	Ouvert
p26	81,4	6,07	1,17	15,55	Ouvert
p27	81,4	3,55	0,68	5,96	Ouvert
p28	27,2	0,24	0,42	9,8	Ouvert
p29	45,2	0,96	0,6	9,8	Ouvert
p30	57	1,36	0,53	5,94	Ouvert
p31	96,8	11,68	1,59	21,94	Ouvert
p32	81,4	4,43	0,85	8,84	Ouvert
p33	42,6	0,61	0,43	5,86	Ouvert
p34	117,6	11,29	1,04	8,1	Ouvert
p35	79,2	5,03	1,02	12,66	Ouvert
p36	34	0,5	0,56	12,22	Ouvert
p37	45,2	1	0,62	10,46	Ouvert
p38	63,8	1,82	0,57	5,84	Ouvert
p39	176,2	28,14	1,15	6,02	Ouvert
p40	79,2	2,43	0,49	3,47	Ouvert

Tableau IV.7 : Résultat aux tronçons en cas de pointeplus incendie secteur S01, Horizon2050(suite).

tronçon	Diamètre	Débit	Vitesse	P.d.c	Etat
	(mm)	(I/s)	(m/s)	(m/km)	
P41	176,2	39,67	1,63	11,21	Ouvert
P42	57	2,02	0,79	11,99	Ouvert
P43	63,8	2,41	0,75	9,57	Ouvert
P44	63,8	2,43	0,76	9,72	Ouvert
P45	63,8	2,43	0,76	9,73	Ouvert
P46	176,2	33,48	1,37	8,24	Ouvert
p47	176,2	30,16	1,24	6,82	Ouvert
p48	176,2	27,73	1,14	5,86	Ouvert
p49	141	10,97	0,7	3,22	Ouvert
p50	176,2	22,26	0,91	3,94	Ouvert
p51	141	16,71	1,07	6,86	Ouvert
p52	63,8	2,25	0,7	8,5	Ouvert
p53	117,6	4,42	0,41	1,51	Ouvert
p54	117,6	8,48	0,78	4,84	Ouvert
p55	53,6	1,58	0,7	10,4	Ouvert
p56	117,6	-6,5	0,6	3,01	Ouvert
p57	42,6	0,77	0,54	8,78	Ouvert
p58	45,2	0,81	0,5	7,21	Ouvert
p59	63,8	-2,51	0,78	10,28	Ouvert
p60	117,6	-10,21	0,94	6,76	Ouvert
p61	176,2	-16,4	0,67	2,27	Ouvert
p62	176,2	-24,29	1	4,61	Ouvert
p63	42,6	0,6	0,42	5,65	Ouvert
p64	45,2	0,97	0,6	9,85	Ouvert
p65	79,2	3,19	0,65	5,62	Ouvert
p66	42,6	-0,57	0,4	5,13	Ouvert
p67	34	0,49	0,54	11,82	Ouvert
p68	67,8	3,72	1,03	15,57	Ouvert
p69	45,2	1,21	0,75	14,69	Ouvert
p72	141	18,07	1,16	7,9	Ouvert
p73	117,6	15,98	1,47	15,14	Ouvert
p74	79,2	4,18	0,85	9,08	Ouvert
p75	42,6	1,04	0,73	15	Ouvert
p76	42,6	0,87	0,61	10,88	Ouvert
p77	117,6	9,08	0,84	5,47	Ouvert
p78	63,8	2,16	0,68	7,91	Ouvert
p79	96,8	4,81	0,65	4,47	Ouvert
p80	45,2	0,8	0,5	7,02	Ouvert

Tableau IV.7 : Résultat aux tronçons en cas de pointe plus incendie secteur S01, Horizon2050(suite).

tronçon	Diamètre	Débit	Vitesse	P.d.c	Etat
	(mm)	(l/s)	(m/s)	(m/km)	
p81	96,8	-0,29	0,04	0,03	Ouvert
p82	45,2	0,84	0,53	7,79	Ouvert
p83	96,8	-4,24	0,58	3,56	Ouvert
p84	42,6	0,81	0,57	9,57	Ouvert
p85	79,2	4,21	0,86	9,22	Ouvert
p86	45,2	0,95	0,59	9,61	Ouvert
p87	57	0,63	0,25	1,55	Ouvert
p88	42,6	0,39	0,28	2,71	Ouvert
p89	277,6	66,05	1,09	3,16	Ouvert
p90	220,4	53,33	1,4	6,52	Ouvert
p91	79,2	7,44	1,51	25,58	Ouvert
p92	34	0,6	0,66	16,65	Ouvert
p93	79,2	4,81	0,98	11,7	Ouvert
p94	63,8	2,4	0,75	9,51	Ouvert
p95	42,6	1,05	0,74	15,13	Ouvert
p96	42,6	0,91	0,64	11,72	Ouvert
p97	96,8	13,2	1,79	27,39	Ouvert
p99	42,6	0,87	0,61	10,89	Ouvert
p100	42,6	0,71	0,5	7,54	Ouvert
p101	440,6	268,57	1,76	4,39	Ouvert
p102	440,6	256,04	1,68	4,02	Ouvert
p103	352,6	240,91	2,47	10,58	Ouvert
p104	352,6	193,18	1,98	7,05	Ouvert
p105	352,6	178,46	1,83	6,1	Ouvert
p106	352,6	146,95	1,5	4,28	Ouvert
p107	352,6	128,79	1,32	3,36	Ouvert
p108	277,6	86,77	1,43	5,19	Ouvert
1	440,6	269,27	1,77	4,41	Ouvert

Tableau IV.13: Etat des pressions dans le secteur 02, cas de pointe plus incendie.

Nœud	CTN	débit	charge	pression	Nœud	CTN	débit	charge	pression
	(m)	(l/s)	(m)	(m)		(m)	(I/s)	(m)	(m)
N1	90,27	0,69	123,38	33,11	N85	96,56	19,64	130,58	34,02
N2	117,06	2,49	134,57	17,51	N86	96,5	1,21	128,82	32,32
N3	117,69	1,55	134,29	16,6	N87	91,35	1,38	126,5	35,15
N4	102,55	1,25	132,77	30,22	N88	91,62	2,44	124,14	32,52
N5	101,75	1,49	132,15	30,4	N89	92,2	0,45	123,16	30,96
N8	111,72	1,54	129,58	17,86	N90	87,48	0,9	122,75	35,27
N9	114,33	0,95	121,77	7,44	N91	87,8	1	124,29	36,49
N11	100,72	2,21	127,85	27,13	N92	87,19	1,35	120,14	32,95
N12	102,93	1,57	133,28	30,35	N93	101,91	3,49	131,39	29,48
N13	103,9	0,68	130,12	26,22	N94	93,82	3,41	129,13	35,31
N14	90,17	1,65	126,57	36,4	N101	93,32	2,33	127,69	34,37
N15	88,27	1,75	125,78	37,51	N102	92,4	0,78	127,6	35,2
N16	96,17	0,95	129,76	33,59	N103	91,16	0,78	127,43	36,27
N19	75,4	2,93	116,63	41,23	N104	90,14	2,02	127,14	37
N42	118,51	1,31	132,1	13,59	N105	83,93	3,21	124,43	40,5
N63	115,71	1,85	136,33	20,62	N106	84,3	1,79	122,2	37,9
N64	115,62	0,65	132,28	16,66	N107	91,8	0,32	126,5	34,7
N67	106,31	1,25	132,81	26,5	N108	91,24	0,96	127,47	36,23
N68	105,86	1,65	132,49	26,63	N109	90,46	0,57	121,94	31,48
N78	114,05	0,84	134,86	20,81	N110	90,17	0,59	120,94	30,77
N82	95,4	1,58	128,99	33,59	N111	87,57	0,81	123,85	36,28
N83	98,65	0,41	124,23	25,58	N112	87,67	1,16	125,58	37,91
N84	95,41	2,68	126,39	30,98	N113	86,89	1,72	126,45	39,56

Tableau IV.13 : Etat des pressions dans le secteur 02, cas de pointe plus incendie(suite).

Nœud	CTN	débit	charge	pression	Noeud	CTN	débit	charge	pression
	(m)	(I/s)	(m)	(m)		(m)	(I/s)	(m)	(m)
N114	86,52	2,49	126,2	39,68	N137	77,7	1,15	116,93	39,23
N115	87,21	1,42	123,51	36,3	N138	77,88	0,94	115,61	37,73
N116	86,9	2,12	125,37	38,47	N139	76,85	1,47	114,95	38,1
N117	86,02	1,07	121,7	35,68	N140	76,48	0,5	113,65	37,17
N118	87,5	1,39	123,31	35,81	N141	102,95	1,31	134,13	31,18
N119	87,16	1	122,89	35,73	N142	102,94	2,31	133,63	30,69
N120	85,75	0,79	121,3	35,55	N143	102,89	1,06	133,29	30,4
N121	88,64	1,72	125,3	36,66	N144	102,58	1,63	132,78	30,2
N122	87,58	1,2	124,84	37,26	N145	85,15	1,98	123,66	38,51
N123	87,66	0,35	123,45	35,79	N146	84,44	0,77	122,17	37,73
N124	84,21	2,33	125,26	41,05	N147	83,37	1,57	121,32	37,95
N125	83,32	3,65	123,05	39,73	N148	80,89	0,91	118,92	38,03
N126	82,58	0,52	118,46	35,88	N149	83,29	1,29	121,22	37,93
N127	88,82	1,33	127,52	38,7	N150	82,84	0,5	119,9	37,06
N128	88,65	1,15	126	37,35	N151	83,75	2,52	125,13	41,38
N129	88,2	0,99	127,02	38,82	N152	83,01	0,52	123,64	40,63
N130	87,47	0,68	125,92	38,45	N162	103,75	19,28	132,85	29,1
N131	118,2	1,68	136,99	18,79	N163	100,44	2,34	132,02	31,58
N132	111,49	3,54	135,57	24,08	N164	129,16	4,73	141,53	12,37
N133	87,73	1,85	118,22	30,49	N165	120,58	0,54	137,79	17,21
N134	87,73	0,28	115,68	27,95	N166	117,7	2,19	136,77	19,07
N135	80,27	2,05	118,39	38,12	N167	113,94	1,83	135,91	21,97
N136	78,38	1,11	117,08	38,7	N168	112,54	1,67	134,55	22,01

Tableau IV.13 : Etat des pressions dans le secteur 02, cas de pointe plus incendie(suite).

Nœud	CTN	débit	charge	pression	Nœud	CTN	débit	charge	pression
	(m)	(I/s)	(m)	(m)		(m)	(I/s)	(m)	(m)
N169	110,08	20,24	134,1	24,02	N240	111,64	0,7	131,15	19,51
N175	107,8	1,6	135,08	27,28	N241	107,21	0,69	129,23	22,02
N182	102,57	2,22	133,63	31,06	N248	108,6	1,36	131,7	23,1
N183	104,35	0,28	131,26	26,91	N250	117,9	0,84	132,64	14,74
N184	102,97	1,14	132,02	29,05	N252	101,01	1,99	125,54	24,53
N187	89,89	2,03	127,9	38,01	N253	99,41	0,37	125,2	25,79
N188	89,01	1,38	125,37	36,36	N254	95,92	2,74	121,59	25,67
N189	87,66	1,33	126,64	38,98	N255	95,54	1,82	126,9	31,36
N190	86,74	0,78	125,07	38,33	N256	102,45	3,03	132,26	29,81
N191	86,25	18,82	125,65	39,4	N257	102,36	3,51	130,03	27,67
N192	85,07	0,86	123,63	38,56	N258	97,58	1,4	127,4	29,82
N193	104,83	2,64	134,3	29,47	N259	94,68	1,08	128,41	33,73
N194	105,45	0,82	130,37	24,92	N260	91,91	1,13	128,33	36,42
N195	80,3	0,84	121,79	41,49	N261	87,73	0,8	125,85	38,12
N.196	76,6	0,91	119,43	42,83	N262	93,74	0,66	126,26	32,52
N197	105,24	3,74	133,26	28,02	N263	98,75	2,67	132,75	34
N198	102,66	1,77	131,09	28,43	N264	99,28	2,93	130,65	31,37
N212	80,1	2,63	121,05	40,95	N265	80,05	0,9	120,75	40,7
N213	73,91	2,27	111,13	37,22	N266	82,29	0,27	119,19	36,9
N214	105,26	1,04	122,63	17,37	N267	81,52	1,38	119,91	38,39
N215	95,07	5,64	128,92	33,85	N268	80,6	1,06	119,47	38,87
N216	87,8	1,58	124,33	36,53	N269	78,65	1,62	119,77	41,12
N239	112,07	0,86	133,9	21,83	N270	80,19	0,66	116,97	36,78

Tableau IV.13 : Etat des pressions dans le secteur 02, cas de pointe plus incendie(suite).

Nœud	CTN	débit	charge	pression	Nœud	CTN	débit	Charge	pression
	(m)	(I/s)	(m)	(m)		(m)	(I/s)	(m)	(m)
N271	94,86	20,51	131,74	36,88	N304	106,59	2,51	132,85	26,26
N272	84,93	2,14	128,2	43,27	N305	103,62	0,82	131,06	27,44
N273	92,2	5,2	127,4	35,2	N306	101,97	1,65	131,63	29,66
N274	80,75	0,37	111,23	30,48	N307	101,47	0,35	132,13	30,66
N275	85,62	1,81	116,83	31,21	N308	113,59	0,55	127,83	14,24
N276	71,21	1,29	114,54	43,33	N310	101,59	4,31	128,9	27,31
N277	87,25	0,59	121,57	34,32	N311	99,28	2,61	129,85	30,57
N282	111,59	1,83	129,63	18,04	N312	91,36	4,33	128,31	36,95
N283	108,9	0,23	125,48	16,58	N313	88,84	1,12	127,52	38,68
N284	109,51	0,69	130,87	21,36	N314	77,65	3,86	124,27	46,62
N285	112,76	1,36	134,67	21,91	N315	93,37	1,12	114,06	20,69
N286	108,88	0,45	132,26	23,38	N316	95,12	2	128,18	33,06
N288	105,85	1,01	132,86	27,01	N317	92,71	1,77	127,4	34,69
N290	85,71	0,58	122,8	37,09	N318	93,38	0,66	124,54	31,16
N292	76,56	2,65	117,45	40,89	N319	90,75	1,47	121,17	30,42
N293	72,85	2,22	114,4	41,55	N320	78,92	0,4	111,27	32,35
N294	77,34	2,79	118,05	40,71	N321	77,39	0,44	114,68	37,29
N295	81,34	1,41	115,41	34,07	N322	75,71	0,72	113,7	37,99
N297	101,73	1,01	122,35	20,62	N323	110,34	1,57	136,02	25,68
N299	108,56	2,69	132,27	23,71	N324	111,94	3,2	137,09	25,15
N300	113,13	2,69	129,54	16,41	N325	96,33	2,38	128,94	32,61
N301	111,64	0,72	129,62	17,98	N327	84,85	0,55	124,76	39,91
N302	112,8	0,67	126,63	13,83	N328	86,4	0,82	124,42	38,02

Tableau IV.13 : Etat des pressions dans le secteur 02, cas de pointe plus incendie (suite).

Noeud	CTN	débit	charge	pression	Noeud	CTN	débit	Charge	pression
	(m)	(I/s)	(m)	(m)		(m)	(I/s)	(m)	(m)
N329	81,37	4,35	123,89	42,52	N377	122,26	0	138,35	16,09
N330	75,47	1,79	121,65	46,18	N381	94	1,69	121,89	27,89
N331	84,59	1,15	119,37	34,78	N383	89,6	0,66	123,71	34,11
N332	79,98	1,27	120,96	40,98	1	102,6558	1,72	129,13	26,47
N333	77,97	1,4	124,01	46,04	2	104,235889	1,86	128,54	24,3
N334	78,79	0,42	121,59	42,8	3	106,85655	1,94	128,52	21,67
N335	118,5	1,42	135,21	16,71	6	108,2	1,98	129,4	21,2
N336	102,32	1,21	134,2	31,88	7	102,3566	1	127,31	24,96
N337	87,55	2,5	125,03	37,48	8	102,258566	0,86	127,04	24,78
N346	110,13	1,29	135,91	25,78	9	104,263233	0,86	123,06	18,8
N348	115,48	1,45	134,99	19,51	10	107,225566	1,9	128,77	21,55
N355	87,9	0	124,33	36,43	11	71,93	3,13	115,51	43,58
N357	87,9	0	124,33	36,43	12	71,17	2,14	114,98	43,81
N360	129,22	0,13	141,73	12,51	13	69,91	3,14	114,66	44,75
N364	118,2	0,54	136,99	18,79	14	69,82	4,2	80,22	10,4
N365	83,75	0,16	125,2	41,45	15	67,5	2,19	112,86	45,36
N366	109,55	1,54	125,93	16,38	16	66,83	3,14	112,6	45,77
N367	124,35	1,32	141,26	16,91	17	66,31	3,5	112,34	46,03
N368	119,08	3,69	140,35	21,27	18	65,68	5,2	112,05	46,37
N369	89,6	2,22	123,67	34,07	19	65,57	3,1	107,1	41,53
N371	110,28	1,68	135,96	25,68	20	65,49	2,53	106,57	41,08
N372	87,16	0,97	122,86	35,7	21	66,22	3,98	108,88	42,66
N373	85,87	0,61	117,89	32,02	22	66,66	2,99	110,16	43,5
N375	100,37	1,93	130,7	30,33	23	68,23	3,2	111,44	43,21
N376	87,12	0,74	101,85	14,73	24	68,51	3,5	106,4	37,89

Tableau IV.14 : Résultat de la simulation S02 cas de pointe plus incendie.

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge	État
	(mm)	(I/s)	(m/s)	m/km	
P1	76,6	2,86	0,62	5,43	Ouvert
P2	277,6	54,66	0,9	2,24	Ouvert
P5	34	0,95	1,05	37,19	Ouvert
P7	34	0,68	0,75	20,9	Ouvert
P8	277,6	105,89	1,75	7,47	Ouvert
P23	53,6	1,31	0,58	7,53	Ouvert
P40	42,6	0,76	0,53	8,54	Ouvert
P47	53,6	2,44	1,08	22,6	Ouvert
P48	27,2	-0,41	0,7	24,13	Ouvert
P49	53,6	1,21	0,54	6,54	Ouvert
P50	67,8	4,35	1,21	20,58	Ouvert
P51	34	0,45	0,49	9,94	Ouvert
P52	34	-0,74	0,81	292,61	Ouvert
P53	277,6	86,41	1,43	5,16	Ouvert
P58	220,4	29,24	0,77	2,2	Ouvert
P59	141	9,6	0,62	2,54	Ouvert
P60	63,8	1,79	0,56	5,65	Ouvert
P61	27,2	0,32	0,54	15,65	Ouvert
P62	27,2	0,57	0,98	43,84	Ouvert
P63	34	-0,69	0,76	21,01	Ouvert
P64	27,2	0,59	1,02	47,18	Ouvert
P65	42,6	-0,81	0,57	9,64	Ouvert
P66	96,8	4,73	0,64	4,34	Ouvert
P67	53,6	1,42	0,63	8,59	Ouvert
P68	42,6	1,07	0,75	15,58	Ouvert
P69	79,2	2,88	0,59	4,7	Ouvert
P70	42,6	0,79	0,55	9,11	Ouvert
P71	63,8	2,13	0,67	7,69	Ouvert
P72	27,2	0,35	0,59	18,23	Ouvert
P73	96,8	5,61	0,76	5,88	Ouvert
P74	53,6	1,15	0,51	5,97	Ouvert
P75	42,2	0,68	0,48	7,34	Ouvert
P76	277,6	80,2	1,33	4,5	Ouvert
P77	21	0,28	0,79	41,84	Ouvert
P78	79,2	3,49	0,71	6,59	Ouvert
P79	63,8	4,07	1,27	24,44	Ouvert

Tableau IV.14 : Résultat de la simulation S02 cas de pointe plus incendie.

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge	État
	(mm)	(I/s)	(m/s)	m/km	
P80	53,6	1,36	0,6	8	Ouvert
P81	96,8	6,2	0,84	7,03	Ouvert
P82	440,6	215,27	1,41	2,93	Ouvert
P83	27,2	0,37	0,64	20,98	Ouvert
P84	63,8	-2,74	0,86	12,08	Ouvert
P85	79,2	5,94	1,21	17,05	Ouvert
P86	63,8	2,69	0,84	11,68	Ouvert
P87	53,6	-1,82	0,8	13,34	Ouvert
P88	53,6	1,4	0,62	8,45	Ouvert
P89	96,8	5,64	0,77	5,93	Ouvert
P90	176,2	-43,13	1,77	13,05	Ouvert
P98	220,4	-50,94	1,34	6	Ouvert
P99	42,6	0,8	0,56	9,43	Ouvert
P100	34	-0,66	0,73	19,67	Ouvert
P101	176,2	37,86	1,55	10,3	Ouvert
P102	42,6	-0,9	0,63	11,56	Ouvert
P103	27,2	-0,27	0,47	11,98	Ouvert
P104	42,6	-1,06	0,74	15,33	Ouvert
P105	34	0,66	0,72	19,35	Ouvert
P106	96,8	8,1	1,1	11,35	Ouvert
P116	277,6	97,2	1,61	6,39	Ouvert
P118	27,7	-0,37	0,62	19,24	Ouvert
P119	277,6	87,05	1,44	5,22	Ouvert
P120	53,6	-1,29	0,57	7,32	Ouvert
P121	53,6	1,77	0,78	12,76	Ouvert
P122	53,6	1,36	0,6	8,03	Ouvert
P123	141	-20,98	1,34	10,34	Ouvert
P131	220,4	-44,58	1,17	4,71	Ouvert
P132	34	0,58	0,64	15,78	Ouvert
P133	53,6	-2,69	1,19	26,86	Ouvert
P134	67,8	2,22	0,62	6,21	Ouvert
P142	53,6	1,41	0,62	8,49	Ouvert
P165	42,6	1,01	0,71	14,23	Ouvert
P166	63,8	2,69	0,84	11,66	Ouvert
P167	34	0,67	0,74	20,16	Ouvert
P168	42,6	0,82	0,58	9,85	Ouvert

Tableau IV.14 : Résultat de la simulation S02 cas de pointe plus incendie.

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge	État
	(mm)	(I/s)	(m/s)	m/km	
P178	53,6	1,36	0,6	8	Ouvert
P182	96,8	6,2	0,84	7,03	Ouvert
P184	440,6	179,85	1,18	2,11	Ouvert
P185	27,2	0,37	0,64	20,98	Ouvert
P186	63,8	-2,74	0,86	12,08	Ouvert
P187	79,2	5,74	1,16	16,02	Ouvert
P188	63,8	2,69	0,84	11,68	Ouvert
P189	53,6	-1,82	0,8	13,34	Ouvert
P190	53,6	1,4	0,62	8,45	Ouvert
P191	96,8	4,8	0,65	4,44	Ouvert
P192	176,2	-26,33	1,08	5,33	Ouvert
P193	220,4	-34,15	0,9	2,91	Ouvert
P194	42,6	0,8	0,56	9,43	Ouvert
P195	34	-0,66	0,73	19,67	Ouvert
P196	176,2	36	1,48	9,4	Ouvert
P197	42,6	-0,9	0,63	11,56	Ouvert
P198	27,2	-0,27	0,47	11,98	Ouvert
P199	42,6	-1,06	0,74	15,33	Ouvert
P200	34	0,66	0,72	19,35	Ouvert
P201	96,8	8,29	1,13	11,85	Ouvert
P202	277,6	92,71	1,53	5,86	Ouvert
P203	27,7	-0,37	0,62	19,24	Ouvert
P204	277,6	87,05	1,44	5,22	Ouvert
P205	53,6	-1,29	0,57	7,32	Ouvert
P209	53,6	1,77	0,78	12,76	Ouvert
P210	53,6	1,36	0,6	8,03	Ouvert
P212	141	-20,5	1,31	9,92	Ouvert
P213	220,4	-27,81	0,73	2,01	Ouvert
P215	34	0,58	0,64	15,78	Ouvert
P216	53,6	-2,69	1,19	26,86	Ouvert
P219	67,8	2,22	0,62	6,21	Ouvert
P220	53,6	1,41	0,62	8,49	Ouvert
P223	42,6	1,01	0,71	14,23	Ouvert
P225	63,8	2,69	0,84	11,66	Ouvert
P226	34	0,67	0,74	20,16	Ouvert
P235	42,6	0,82	0,58	9,85	Ouvert

Tableau IV.14 : Résultat de la simulation S02 cas de pointe plus incendie (suite).

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge	État
	(mm)	(I/s)	(m/s)	m/km	
P236	141	-16,46	1,05	6,68	Ouvert
P237	34	0,55	0,61	14,33	Ouvert
P239	277,6	-82,34	1,36	4,72	Ouvert
P241	277,6	108,23	1,79	7,77	Ouvert
P242	440,6	209,77	1,38	2,79	Ouvert
P243	352,6	170,37	1,74	5,61	Ouvert
P244	352,6	165,53	1,7	5,32	Ouvert
P245	277,6	75,63	1,25	4,04	Ouvert
P246	277,6	68,02	1,12	3,34	Ouvert
P247	277,6	-91,24	1,51	5,69	Ouvert
P248	220,4	-36,35	0,95	3,26	Ouvert
P249	141	-14,81	0,95	5,52	Ouvert
P250	117,6	-9,9	0,91	6,39	Ouvert
P251	220,4	-25,93	0,68	1,77	Ouvert
P252	220,4	-47,53	1,25	5,29	Ouvert
P253	220,4	-45,6	1,2	4,91	Ouvert
P254	176,2	-41,46	1,7	12,15	Ouvert
P255	176,2	-39,34	1,61	11,04	Ouvert
P256	176,2	-19,66	0,81	3,15	Ouvert
P257	141	-11,56	0,74	3,54	Ouvert
P258	141	-8,52	0,55	2,05	Ouvert
P260	220,4	-54,13	1,42	6,7	Ouvert
P261	34	1,12	1,23	49,82	Ouvert
P262	53,6	1,76	0,78	12,69	Ouvert
P263	176,4	-28,3	1,16	6,05	Ouvert
P264	176,4	-24,53	1	4,67	Ouvert
P265	34	0,66	0,73	19,58	Ouvert
P266	141	-22,1	1,42	11,36	Ouvert
P267	53,6	1,47	0,65	9,17	Ouvert
P268	96,8	-10,22	1,39	17,24	Ouvert
P269	96,8	-7,73	1,05	10,44	Ouvert
P270	21	0,4	1,15	80,56	Ouvert
P271	79,2	2,38	0,48	3,34	Ouvert
P272	51,4	-2,84	1,37	36,18	Ouvert
P273	34	0,44	0,48	9,62	Ouvert
P274	42,6	0,72	0,51	7,83	Ouvert

Tableau IV.14 : Résultat de la simulation S02 cas de pointe plus incendie(suite).

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge.	État
	(mm)	(I/s)	(m/s)	m/km	
P275	96,8	4,44	0,6	3,87	Ouvert
P276	79,2	3,04	0,62	5,16	Ouvert
P277	96,8	8,03	1,09	11,18	Ouvert
P278	79,2	8,72	1,77	34	Ouvert
P280	277,6	-116,17	1,92	8,85	Ouvert
P281	277,6	-118,75	1,96	9,21	Ouvert
P282	277,6	-92,21	1,52	5,8	Ouvert
P283	277,6	-88,75	1,47	5,41	Ouvert
P284	277,6	-85,12	1,41	5,02	Ouvert
P285	176,2	25,34	1,04	4,98	Ouvert
P286	277,6	90,75	1,5	5,64	Ouvert
P287	277,6	97,96	1,62	6,48	Ouvert
P288	117,6	9,59	0,88	6,04	Ouvert
P290	220,4	28,14	0,74	2,05	Ouvert
P291	220,4	26,61	0,7	1,85	Ouvert
P292	220,4	16,23	0,43	0,76	Ouvert
P293	117,6	6,99	0,64	3,43	Ouvert
P294	277,6	89,02	1,47	5,44	Ouvert
P295	34	0,55	0,6	14	Ouvert
P296	42,6	0,82	0,58	9,81	Ouvert
P297	277,6	78,87	1,3	4,37	Ouvert
P298	277,6	83,87	1,39	4,88	Ouvert
P299	63,8	1,79	0,56	5,67	Ouvert
P300	42,6	1,15	0,81	17,8	Ouvert
P301	220,4	-71,58	1,88	11,14	Ouvert
P302	220,4	-69,83	1,83	10,65	Ouvert
P303	220,4	-64,94	1,7	9,33	Ouvert
P304	63,8	-2,17	0,68	7,97	Ouvert
P305	34	-0,52	0,57	12,73	Ouvert
P306	220,4	-61,49	1,61	8,45	Ouvert
P307	220,4	-59,22	1,55	7,89	Ouvert
P308	220,4	-55,03	1,44	6,9	Ouvert
P310	220,4	-50,16	1,31	5,84	Ouvert
P311	76,6	4,66	1,01	12,96	Ouvert
P312	27,2	0,42	0,73	25,93	Ouvert
P313	42,6	-2,18	1,53	55,52	Ouvert

Tableau IV.14 : Résultat de la simulation S02 cas de pointe plus incendie(suite).

ID Arc	Diamètre	Débit	Vitesse	Pert.Charge	État
	(mm)	(I/s)	(m/s)	m/km	
P314	34	0,61	0,67	16,82	Ouvert
P315	176,2	-15,12	0,62	1,96	Ouvert
P316	96,8	-11,28	1,53	20,59	Ouvert
P317	96,8	-7,62	1,04	10,18	Ouvert
P319	277,6	68,86	1,14	3,41	Ouvert
P321	117,6	-12,96	1,19	10,38	Ouvert
P322	141	-16,36	1,05	6,61	Ouvert
P326	220,4	-30,26	0,79	2,34	Ouvert
P335	277,6	-70,27	1,16	3,54	Ouvert
P336	277,6	61,37	1,01	2,77	Ouvert
P337	79,2	3,05	0,62	5,18	Ouvert
P338	176,2	33,28	1,36	8,15	Ouvert
P340	176,4	32,33	1,32	7,69	Ouvert
P341	42,6	0,9	0,63	11,5	Ouvert
P342	63,8	-3,37	1,06	17,47	Ouvert
P343	96,8	-5,58	0,76	5,83	Ouvert
P348	150	15,6	0,88	4,5	Ouvert
P349	42,6	1,01	0,71	14,15	Ouvert
P350	352,6	127	1,3	3,28	Ouvert
P351	277,6	93,51	1,54	5,95	Ouvert
P354	42,6	0,84	0,59	10,33	Ouvert
P356	63,8	2,1	0,66	7,51	Ouvert
P357	34	0,65	0,71	18,94	Ouvert
P358	141	16,82	1,08	6,94	Ouvert
P360	117,6	15,97	1,47	15,13	Ouvert
P362	27,2	0,28	0,48	12,37	Ouvert
P365	96,8	-7,58	1,03	10,09	Ouvert
P366	96,8	3,88	0,53	3,04	Ouvert
P368	352,6	-240,09	2,46	10,51	Ouvert
P371	440,6	342,96	2,25	6,88	Ouvert
P373	440,6	337,01	2,21	6,64	Ouvert
P374	141	-11,72	0,75	3,62	Ouvert
P375	27,2	0,23	0,4	8,97	Ouvert
P376	352,6	128,32	1,31	3,34	Ouvert
P378	63,8	-1,69	0,53	5,1	Ouvert
P379	34	0,59	0,65	16,08	Ouvert