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ABSTRACT

La localisation est une problematique en plein essor avec, par exemple, l expansion des drones

civils et autres vehicules intelligents. Raison pour laquelle cette etude va se focaliser sur trois

aspects. Dans un premier temps, un effort sera porte sur l aspect positionnement d un mobile au

cour de son deplacement. Pour cela il est necessaire de se pencher sur le systeme de navigation

inertielle INS. Dans un deuxieme temps, Nous allons creer un modele representant un generateur

de trajectoire qui ne fournit aucune erreur sur la position, un autre modele(INS) qui differe du

premier par l injection de plusieurs types d erreurs au niveaux des capteurs inertielle pour faire

diverger la trajectoire de celle du reference, finalement la visualisation de la position et de l erreur

en position qui s influent par le type de capteur inertiel choisi. A la fin, la realisation d une logiciel

simulink permettant de calculer et d afficher un certain nombre de parametres de navigation a

partir de donnees INS Abstract :� The location is a problematic booming with, for example , the

expansion of the drones civilians and other intelligent vehicles. Reason for which this study will

focus on three aspects. In a first time, an effort will be focused on the aspect of positioning a

mobile at court of its travel. For this it is necessary to look on the inertial navigation system

INS. In a second time, we are going to create a model representing a generator of trajectory

that provides no error on the position, another model(INS) which differs from the first by the

injection of several types of errors at the levels of the inertial sensors for to diverge the trajectory

of that of the reference, finally the visualization of the position and of the error in position which

is influential by the type of inertial sensor chosen.In the end, the achievement of a graphical

interface allowing to calculate and display a number of Navigation settings from data INS and

ADC (Air Data Computer).



Table 1: List of Acronyms

ARW Angle Random Walk

CTP Conventional Terrestrial Pole

DR Dead Reckoning

DCM Direction Cosine Matrices

DTG Dynamically Tuned Gyroscopes

ECI Earth-Centered Inertial Frame

ECEF Earth-Centered Earth-Fixed Frame

ENU East-North-UP navigation frame

GPS Global Positioning System

GNSS Global Navigation Satellite Systems

GRS Geographic Reference System

HRG Hemispherical Resonant Gyroscopes

INS Inertial Navigation System

IMU Inertial Measurement Unit

IFOG Interferometric FIber-Optic Gyroscopes

IEEE

LLF Local-Level Frame

MEMS Micro-Electro-Mechanical-Systems

NEMS Nano-Electro-Mechanical- Systems

RF Radio Frequency

RLG Ring Laser Gyroscopes

SINS Strapdown Inertial Navigation System

UAV

VRW Velocity Random Walk

VBAs Vibrating Beam Accelerometers

b Body frame

e Earth frame

i Inertial frame

n Navigation frame

O Center of the Earth

P Center of the vehicle

p Wander azimuth frame



Table 2: Nomenclature

x, y, z 3 orthogonal axes or the 3 components of a Cartesian coordinate

AT Transpose of matrix A

a Vehicle acceleration

gp Gravity vector measured in p-frame

g Local gravity scalar

g0 Local gravity scalar at sea level

F The force

f specific force

m The mass of the body

e Major eccentricity of the ellipsoid of the Earth

ψG Grid azimuth angle of the vehicle in b-frame with respect to p-frame

α Wander azimuth angle of p-frame with respect to n-frame

ϕ

ω Angular Speed (disturbed signal) expressed in deg/s

ψ Heading angle of the vehicle in b-frame with respect to n-frame

θ

Grid pitch angle of the vehicle in b-frame with respect to n-frame or p-frame

γ Grid roll angle of the vehicle in b-frame with respect to n-frame or p-frame

∆ψ Increase of the heading angle ψ

∆θ Increase of the grid pitch angle θ

∆γ Increase of the grid roll angle γ

λ Longitude of the vehicle

ΦL Latitude of the vehicle

h Altitude of the vehicle above the sea level of the Earth

Φ0, λ0, h0 Initial vehicle position (latitude, longitude, height)

V0 Initial vehicle velocity (east, north, up)

V Vehicle velocity (east, north, up)

Vg Vehicle ground velocity

Re Length of the semi-major axis of the Earth

RN Meridian radius of curvature of the Earth



Tcircle Period of the circle trajectory in simulation

Tsshape Period of the s-shape trajectory in simulation

Asshape Amplitude of the s-shape trajectory in simulation

PV Position and velocity

N sensitivity axis misalignment (in radians)

B bias (expressed in percent of span)

kc crossaxis sensitivity (expressed in percent ofSpan of a

ν sensor noise (given by its density vd expressed in µg/Hz(1/2)

K scale factor (expressed in mV/g)

∆K scale factor error (percents of K)

S Sensitivity to the acceleration

rne Vehicle position measured in n-frame with respect to e-frame

V
(
e p)

Velocity vector measured in p-frame with respect to e-frame

Cp
b

Vehicle attitude DCM used to transform the measured angle in b frame to p-frame, with its 9 components Ti j, i, j = 1, 2, 3

C(p)
b Transpose ofCp

b is used to transform the measured vector in p-frame to b-frame

RE Transverse radius of curvature of the Earth

Rxp,Ryp Free curvature radiuses

Q Quaternion q1, q2, q3, q4: Four components of the quaternion Q

t The time

∆t Time step

C
(
ep) Vehicle position DCM used to transform the measured vector in e-frame to p-frame, with its 9 components Ci j, i, j = 1, 2, 3

Ce
p Transposeof Cp

e is used to transform the measured vector in p-frame to e-frame

Cn
b Vehicle attitude DCM used to transform the measured angle in b-frame to n-frame

fp Specific force vector measured in p-frame

fn Specific force vector measured in n-frame

f b Specific force vector measured in b-frame; the output of the 3 accelerometers



ωi Constant value of the turn rate of the Earth, ωie = 7.2921151467 · 10−5rad/s

ωie
n Turn rate of the Earth measured in n-frame

ωib
b Turn rate of the b-frame with respect to i-frame, which is measured in b-frame

ωen
n Transport rate of the n-frame with respect to e-frame, which is measured in n-frame

ωie
e Turn rate of the e-frame with respect to i-frame, which is measured in e-frame

ωep
p Turn rate of the p-frame with respect to e-frame, which is measured in p-frame

ωpe
e Turn rate of the e-frame with respect to p-frame, which is measured in e-frame

ωpb
b Turn rate of the b-frame with respect to p-frame, which is measured in b-frame

ωnb
b Turn rate of the b-frame with respect to n-frame, which is measured in b-frame

Ω(ω) Skew matrix form of ω
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General Itroduction

Navigation primarily dealt with vessels traveling in sea. However, it has now permeated into

every imaginable form of transportation as well as various other applications including location-

based services, search and rescue, law enforcement, road and air travel, remote asset tracking,

fleet management, intelligence gathering, sports, public safety, and environmental assessment and

planning. Advances in microelectronics and miniaturization of integrated circuits have facilitated

the production of inexpensive inertial sensors, global positioning system (GPS) receivers and

powerful computers. A navigation system can either be autonomous or be dependent on external

sources, or in some cases a combination of the two. The fusion of the two systems is traditionally

based on the technique of Kalman filtering.

There are two fundamental methods for finding a navigation solution: position fixing and dead

reckoning (DR).

Position fixing is based on the information of external sources with known locations, with GPS

being a typical example, On the other hand, dead reckoning is autonomous and relies on knowl-

edge of the initial location, speed and heading information.

Inertial navigation is a dead reckoning system which uses accelerometers and gyroscopes to mon-

itor translational motion and rotational motion respectively. [1].

General Classification of Positioning Techniques

Techniques Using Relative Measurements (Known as DR)

Odometry The odometry data is obtained by using sensors that measure the rotation of the

wheel axes and the steer axes This employs inertial sensors (gyroscopes and accelerometers)

which measure the rotation rates and the specific forces from which acceleration can be obtained.

16



Inertial navigation systems are autonomous,Starting from a known position and orientation,

measurements are integrated once for gyroscopes and twice for accelerometers to provide orienta-

tion and position respectively Inertial navigation alone, especially with low cost sensors, is thus

unsuitable for accurate positioning over an extended period of time.

Techniques Using Absolute Measurements (Known as Reference-based Sys-

tems)

Electronic Compasses an electronic compass is a device which uses magnetometers to provide

heading measurements relative to the Earth’s magnetic north by observing the direction of the

local magnetic field.

Active Beacons This approach can be used if the moving platform is to navigate in an already

known environment, and can provide accurate positioning information.There are several position-

ing algorithms that can be used with different active beacon systems, such as the trilateration-

based algorithm, the triangulation-based algorithms, and the fingerprinting algorithms. Trilat-

eration is the calculation of a vehicle’s position based on distance measurements relative to a

known beacon using, for example, time-of-flight information. Triangulation is the calculation of

a vehicle’s position and possibly its orientation based on the angles at which beacons are seen

relative to the moving platform’s longitudinal axis.

Global Navigation Satellite SystemsGNSS is mainly a technology for outdoor navigation. Cur-

rently, the most popular example is GPS, which is a constellation of satellites that transmit

encoded radio frequency (RF) signals. By means of trilateration, ground receivers can calculate

their position using the travel time of the satellites’s signals and information about their current

location, this being included in the transmitted signal.

Landmark Navigation This approach can be used if the moving platform is to navigate in an

environment that is well known. Landmarks are distinct objects or features such as geometric

shapes that can be detected and distinguished by appropriate sensors on a vehicle.



Map-Based Positioning (Or Model Matching) This approach can be used if the moving platform

is to navigate in a specific mapped environment. In this approach, the moving platform uses

its sensors to perceive its local environment, and this perception is then compared to a map

previously stored in its memory. If a match is found, then the vehicle can calculate its position

and orientation in this specific environment. Cameras and laser range finders are examples of

sensors that can be used with this type of positioning.

Combined Systems

For the category that uses relative measurements (i.e. dead reckoning) the determination of the

current vehicle position uses the knowledge of the previous position and the measurement of its

latest movements. For the category of absolute measurements (i.e. reference-based systems) the

current vehicle position is calculated by measuring known reference points but without knowledge

of its previous trajectory. Usually two methods or more, involving at least, one from each group,

are combined in order to obtain a reliable navigation solution.



Chapter 1

Basic Navigational Mathematics, Reference

Frames and the Earth’s Geometry

Navigation algorithms involve various coordinate frames and the transformation of coordinates

between them. For example, inertial sensors measure motion with respect to an inertial frame

which is resolved in the host platform’s body frame. This information is further transformed to a

navigation frame. A GPS receiver initially estimates the position and velocity of the satellite in

an inertial orbital frame. Since the user wants the navigational information with respect to the

Earth, the satellite’s position and velocity are transformed to an appropriate Earth-fixed frame.

Since measured quantities are required to be transformed between various reference frames during

the solution of navigation equations, it is important to know about the reference frames and the

transformation of coordinates between them. Assume rk vector r in k-frame and rm vector r in

m-frame

rk =


xk

yk

zk


rm = Rk

mrk (1.1)

k
r =

(
m

Rk

)−1
m
r =

k

Rm
m
r

where Rm
k represents the matrix that transforms vector r from the k-frame to the m-frame. where

k

Rm represents the matrix that transforms vector r from the m-frame to the k-frame . If the two
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coordinate frames are mutually orthogonal, their transformation matrix will also be orthogonal

and its inverse is equivalent to its transpose

m

Rk =

(
k

Rm

)−1

=

(
k

Rm

)T
The angular velocity of the k-frame relative to the m-frame, as resolved in the p-frame, is

represented by

p
ωmk =


ωx

ωy

ωz


The rotation between two coordinate frames can be performed in two steps and expressed as

the sum of the rotations between two different coordinate frames, as shown in Eq. 1.2

k
ωpk =

k
ωpm +

k
ωmk (1.2)

The rotation of the k-frame with respect to the p-frame can be performed in two steps: firstly

a rotation of the m-frame with respect to the p-frame and then a rotation of the k-frame with

respect to the m-frame

Skew-Symmetric Matrix The angular rotation between two reference frames can also be ex-

pressed by a skew-symmetric matrix instead of a vector. In fact this is sometimes desired in order

to change the cross product of two vectors into the simpler case of matrix multiplication. A vector

and the corresponding skew-symmetric matrix forms of an angular velocity vector are denoted as
p
ωmk

p
ωmk =


ωx

ωy

ωz

 ⇒
p

Ωmk =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (1.3)

Basic Operations with Skew-Symmetric Matrices Since a vector can be expressed as a cor-

responding skew-symmetric matrix, the rules of matrix operations can be applied to most vector

operations. If a, b and c are three-dimensional vectors with corresponding skew-symmetric ma-

trices A, B and C, then following relationships hold

[Ab] depicts the skew-symmetric matrix of vector Ab
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Table 1.1: Operations with Skew-Symmetric Matrices

a · b = aTb = bTa

a× b = Ab = BTa = −Ba

[Ab] = AB− BA

(a× b) · c = a · (b× c) = aTBc

a× (b× c) = ABc

(a× b)× c = ABc− BAc

Hence the transformation of an angular velocity vector
p
ωmk from the k-frame to thep-frame

can be expressed as

p
ωmk =

p

Rk
k
ωmk (1.4)

The equivalent transformation between two skew-symmetric matrices has the special form

p

Ωmk =
p

Rk

k

Ωmk

k

Rp (1.5)

1.1 Coordinate Frames

1.1.1 Earth-Centered Inertial Frame

An inertial frame is defined to be either stationary in space or moving at constant velocity (i.e.

no acceleration). All inertial sensors produce measurements relative to an inertial frame resolved

along the instrument’s sensitive axis [2].

� The origin is at the center of mass of the Earth.

� The z-axis is along axis of the Earth’s rotation through the conventional terrestrial pole

(CTP).

� The x-axis is in the equatorial plane pointing towards the vernal equinox.

� The y-axis completes a right-handed system.
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Figure 1.1: An illustration of the ECI and ECEF coordinate frames

1.1.2 Earth-Centered Earth-Fixed Frame

This frame is similar to the i-frame because it shares the same origin and z-axis as the i-frame,

but it rotates along with the Earth

� The origin is at the center of mass of the Earth.

� The z-axis is through the CTP.

� The x-axis passes through the intersection of the equatorial plane and the reference meridian

(i.e. the Greenwich meridian).

� The y-axis completes the right-hand coordinate system in the equatorial plane.

1.1.3 Local-Level Frame

A local-level frame (LLF) serves to represent a vehicle’s attitude and velocity when on or near

the surface of the Earth. This frame is also known as the local geodetic or navigation frame.
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� The origin coincides with the center of the sensor frame (origin of inertial sensor triad).

� The y-axis points to true north.

� The x-axis points to east.

� The z-axis completes the right-handed coordinate systems by pointing up, perpendicular to

reference ellipsoid.

Figure 1.2: The local-level ENU reference frame in relation to the ECI and ECEF frames

This frame is referred to as ENU since its axes are aligned with the east, north and up

directions

1.1.4 Wander Frame w-frame.

In the l-frame the y-axis always points towards true north, so higher rotation rates about the

z-axis are required in order to maintain the orientation of the l-frame in the polar regions (higher

latitudes) than near the equator (lower latitudes). As is apparent in Fig. 2.3b, the l-frame
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Figure 1.3: a The wander frame shown with respect to the local-level frame. b Rotation of the

y-axis of the local-level frame (shown with red/dark arrows) for a near polar crossing trajectory

at various latitudes

must rotate at higher rates to maintain its orientation when moving towards the pole, reaching

its maximum when it crosses the north pole. This rate can even become infinite (a singularity

condition) if the l-frame passes directly over the pole. The wander frame avoids higher rotation

rates and singularity problems. Instead of always pointing northward, this rotates about the

z-axis with respect to the l-frame. The angle between the y-axis of the wander frame and north

is known as the wander angle α: The rotation rate of this angle is given as

α̇ = −λ̇ sinϕ (1.6)

The wander frame (in relation to the l-frame) is shown in Fig.1.3 a, and is defined as

� The origin coincides with the center of the sensor frame (origin of inertial sensor triad).

� The z-axis is orthogonal to the reference ellipsoid pointing upward.

� The y-axis rotates by an angle α anticlockwise from north.

� The x-axis is orthogonal to the y and z axes and forms a right-handed coordinate frame.
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1.1.5 Body Frame

In most applications, the sensitive axes of the accelerometer sensors are made to coincide with

the axes of the moving platform in which the sensors are mounted. These axes are usually known

as the body frame. The body frame is defined as

� The origin usually coincides with the center of gravity of the vehicle (this simplifies derivation

of kinematic equations).

� The y-axis points towards the forward direction. It is also called the roll axis as the roll

angle is defined around this axis using the right-hand rule.

� The x-axis points towards the transverse direction. It is also called the pitch axis, as the

pitch angle corresponds to rotations around this axis using the righthand rule.

� The z-axis points towards the vertical direction completing a right-handed coordinate sys-

tem. It is also called the yaw axis as the yaw angle corresponds to rotations around this

axis using the right-hand rule.

Figure 1.4: A depiction of a vehicle’s azimuth, pitch and roll angles. The body axes are shown in

red
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Figure 1.5: The orbital coordinate system for a satellite

Orbital Coordinate System

This is a system of coordinates with Keplerian elements to locate a satellite in inertial space. It

is defined as follows

� The origin is located at the focus of an elliptical orbit that coincides with the center of the

mass of the Earth.

� The y-axis points towards the descending node, parallel to the minor axis of the orbital

ellipse.

� The x-axis points to the perigee (the point in the orbit nearest the Earth’s center) and along

the major axis of the elliptical orbit of the satellite.
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� The z-axis is orthogonal to the orbital plane.

1.2 Coordinate Transformations

The techniques for transforming a vector from one coordinate frame into another can use direction

cosines, rotation (Euler) angles or quaternions. They all involve a rotation matrix which is called

either the transformation matrix or the direction cosine matrices (DCM), and is represented as
l

Rkwhere the subscript represents the frame from which the vector originates and the superscript

is the target frame.

1.2.1 Euler Angles and Elementary Rotational Matrices

A transformation between two coordinate frames can be accomplished by carrying out a rotation

about each of the three axes. For example, a transformation from the reference frame a to the new

coordinate frame b involves first making a rotation of angle α about the z-axis, then a rotation

of an angle β about the new x-axis, and finally a rotation of an angle γ about the new y-axis. In

these rotations,α, β and γ are the Euler angles.

To transform a vector
a
r =

[
a
x;

a
y;

a
z
]

from frame a to frame d where the two frames are orientated

differently in space, we align frame a with frame d using the three rotations specified above,

each applying a suitable direction cosine matrix. The individual matrices can be obtained by

considering each rotation, one by one.
b
x
b
y
b
z

 =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1




a
x
a
y
a
z

 =
b

Ra


a
x
a
y
a
z

 (1.7)

where
b

Ra is the elementary DCM which transforms the coordinates
a
x;

a
y;

a
z to

b
x;

b
y;

b
z in a

frame rotated by an angle γ around the z-axis of frame a:

For the second rotation, we consider the (y − z) plane of the new coordinate frame b, and

rotate it by an angle β around its x-axis to an intermediate frame c as shown in Fig.
c
x
c
y
c
z

 =


1 0 0

0 cos β sin β

0 − sin β cos β




b
x
b
y
b
z

 =
c

Rb


b
x
b
y
b
z

 (1.8)
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Figure 1.6: Euler Angles and Elementary Rotational sequences

For the third rotation, we consider the x − z plane of new coordinate frame c; and rotate it

by an angle a about its y-axis to align it with coordinate frame d as shown in Fig.1.6.
d
x
d
y
d
z

 =


cos β 0 − sinα

0 1 0

sinα 0 cosα




c
x
c
y
c
z

 =
c

Rb


c
x
c
y
c
z

 (1.9)

We can combine all three rotations by multiplying the cosine matrices into a single transfor-

mation matrix as

d

Ra =
d

Rc

c

Rb

b

Ra

The final DCM for these particular set of rotations can be given as

d

Ra =


cosα cos γ − sin β sinα sin γ cosα sin γ + cos γ sin β sinα − cos β sinα

− cos β sin γ cos β cos γ sin β

cos γ sinα + cosα sin β sin γ sinα sin γ − cosα cos γ sin β cos β cosα

 (1.10)

The inverse transformation from frame d to a is therefore

a

Rd =

(
d

Ra

)−1

=

(
d

Ra

)T
=

(
d

Rc

c

Rb

b

Ra

)T
=

(
b

Ra

)T ( c

Rb

)T ( d

Rc

)T
(1.11)

For small values of α; β and γ we can use the following approximations

cos θ ≈ 1, sin θ ≈ θ (1.12)
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we can reduce the DCM to

d

Ra =


1 0 0

0 1 0

0 0 1

−


1 −γ α

γ 0 −β

−α β 0

 = I−Ψ (1.13)

where Ψis the skew-symmetric matrix for the small Euler angles. For the small angle approxima-

tion, the order of rotation is no longer important since in all cases the final result will always be

the matrix of the Eq.1.13 . Similarly, it can be verified that

a

Rd ≈


1 −γ α

γ 0 −β

−α β 0


T

= I−ΨT (1.14)

1.2.2 Transformation Between ECI and ECEF

The angular velocity vector between the i-frame and the e-frame as a result of the rotation of the

Earth is
e
ωie = (0, 0, ωe)

T

where ωe denotes the magnitude of the Earth’s rotation rate. The transformation from the

i-frame to the e-frame is a simple rotation of the i-frame about the z-axis by an angle ωet where

t is the time since the reference epoch (Fig.1.7 ).

e

Ri =


cosωet sinωet 0

−sinωet cosωet 0

0 0 1


T

(1.15)

1.2.3 Transformation Between LLF and ECEF

From Fig.1.8 it can be observed that to align the l-frame with the e-frame, the l-frame must

be rotated by ϕ − 90 degrees around its x-axis (east direction) and then by (−90 − λ) degrees

about its z-axis (up direction). For the definition of elementary direction cosine matrices, the

transformation from the l-frame to the e-frame is

e

Rl =
b

Ra (−λ− 90)
c

Rb (ϕ− 90) (1.16)
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Figure 1.7: Transformation between the e-frame and the i-frame

e

Ri =


cos (−λ− 90) sin (−λ− 90) 0

−sin (−λ− 90) cos (−λ− 90) 0

0 0 1




1 0 0

0 cos (ϕ− 90) sin (ϕ− 90)

0 − sin (ϕ− 90) cos (ϕ− 90)

 (1.17)

e

Ri =


− sinλ − sinϕ cosλ cosϕ cosλ

cosλ − sinϕ sinλ cosϕ sinλ

0 cosϕ sinϕ

 (1.18)

1.2.4 Transformation Between LLF and Wander Frame

The wander frame has a rotation about the z-axis of the l-frame by a wander angle α; as depicted

in Fig.1.9 Thus the transformation matrix from the w-frame frame to the l-frame corresponds to

the elementary matrix
b

Ra with an angle (−α); and is expressed as

l

Rw =


cosα − sinα 0

sinα cosα 0

0 0 1

 (1.19)
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Figure 1.8: The LLF in relation to the ECEF frame

Figure 1.9: The relationship between the l-frame and the w-frame (the third axes of these the

frames are not shown because they coincide and point out of the page towards the reader)

1.2.5 Transformation Between ECEF and Wander Frame

This transformation is obtained by first going from the w-frame to the l-frame and then from the

l-frame to the e-frame
e

Rw =
e

Rl

l

Rw (1.20)
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e

Rw =


− sinλ cosα− cosλ sinϕ sinα sinλ sinα− cosλ sinϕ cosα cosλ cosϕ

cosλ cosα− sinλ sinϕ sinα − cosλ sinα− sinλ sinϕ cosα sinλ cosϕ

cosϕ sinα cosϕ cosα sinϕ

 (1.21)

1.2.6 Transformation Between Body Frame and LLF

One of the important direction cosine matrices is
l

Rb which transforms a vector from the b-frame

to the l-frame, a requirement during the mechanization process. This is expressed in terms of

yaw, pitch and roll Euler angles. According to the definitions of these specific angles and the

elementary direction cosine matrices,
l

Rb can be expressed as

l

Rb =

(
b

Rl

)−1

=

(
b

Rl

)T
=

(
n

Rl

)T (m

Rn

)T ( b

Rm

)T
(1.22)

Substituting the elementary matrices into this equation gives

l

Rb =


cos y sin y 0

− sin y cos y 0

0 0 1


T 

1 0 0

0 cos p sin p

0 − sin p cos p


T 

cos r 0 − sin r

sin r 0 cos r

0 0 1


T

(1.23)

where ‘p’, ‘r’ and ‘y’ are the pitch, roll and yaw angles. With a known
l

Rb these angles can be

calculated as

l

Rb =


cos y cos r − sin y sin p sin r − sin y cos p cos y sin r + sin y sin p cos r

sin y cos r + cos y sin p sin r cos y cos p sin y sin r − cos y sin p cos r

− cos p sin r sin p cos p cos r

 (1.24)

p = tan−1


l

Rb (3, 2)

2

√[
l

Rb (1, 2)

]2

+

[
l

Rb (2, 2)

]2

 (1.25)

y = − tan−1

 l

Rb (1, 2)
l

Rb (2, 2)

 (1.26)

r = − tan−1

 l

Rb (3, 1)
l

Rb (3, 3)

 (1.27)
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1.2.7 Transformation From Body Frame to ECEF and ECI Frame

Two other important transformations are from the b-frame to the e-frame and the i-frames. Their

rotation matrices can be computed from those already defined as follows. For the body frame to

the e-frame
e

Rb =
e

Rl

l

Rb (1.28)

For the body frame to the i-frame
i

Rb =
i

Re

e

Rb (1.29)

1.3 Time Derivative of the Transformation Matrix

If a coordinate reference frame k rotates with angular velocity ω relative to another frame m, the

transformation matrix between the two is composed of a set of time variable functions. The time

rate of change of the transformation matrix
ė

Rb can be described using a set of differential equa-

tions. The frame in which the time differentiation occurs is usually identified by the superscript

of the variable. equation for the rate of change of the DCM is

ṁ

Rk =
m

Rk

k

Ωmk (1.30)

k

Ωmkis the skew-symmetric form of the angular velocity vector of the m-frame with respect to

the k-frame This implies that the time derivative of the rotation matrix is related to the angular

velocity vector ω of the relative rotation between the two coordinate frames. If we have the initial

transformation matrix between the body and inertial frames
i

Rb then we can update the change

of the rotation matrix using gyroscope output
b

Ωib

1.3.1 Time Derivative of the Position Vector in the Inertial Frame

For a position vector
b
r the transformation of its coordinates from the b-frame to the inertial frame

is
i
r =

i

Rb
b
r (1.31)

A rearrangement of the terms gives

i̇
r =

i

Rb

(
ḃ
r +

b

Ωib
b
r

)
(1.32)
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which describes the transformation of the velocity vector from the b-frame to the inertial frame.

This is often called the Coriolis equation.

1.3.2 Time Derivative of the Velocity Vector in the Inertial Frame

The time derivative of the velocity vector is obtained by differentiating Eq. 1.32 as follows

..
r
i

=
i

Rb

(
..
r
b

+ 2
b

Ωib
.
r
b

+
.

Ω
b

ibr
b + Ωb

ibΩ
b
ibr

b

)
(1.33)

where

where:
..
r
b

is the acceleration of the moving object in the b-frame

Ωb
ib is the angular velocity of the moving object measured by a gyroscope

2
b

Ωib
.
r
b

is the Coriolis acceleration
.

Ω
b

ibr
b is the tangential acceleration

Ωb
ibΩ

b
ibr

b is the centripetal acceleration

1.4 The Geometry of the Earth

Although the Earth is neither a sphere nor a perfect ellipsoid, it is approximated by an ellipsoid

for computational convenience. here are some of the important definitions

� Physical Surface ”Terrain”: This is defined as the interface between the solid and fluid

masses of the Earth and its atmosphere.

� Geometric Figure ”Geoid”: This is the equipotential surface. It can be thought of as the

idealized mean sea level extended over the land portion of the globe. The geoid is a smooth

surface but its shape is irregular and it does not provide the simple analytic expression

needed for navigational computations.

� Reference Ellipsoid ”Ellipsoid”: This mathematically defined surface approximates the geoid

by an ellipsoid that is made by rotating an ellipse about its minor axis, which is coincident
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Figure 1.10: A depiction of various surfaces of the Earth.

with the mean rotational axis of the Earth. The center of the ellipsoid is coincident with

the Earth’s center of mass.

Various parameter sets have been defined to model the ellipsoid.below shown some parameters

Normal and Meridian RadiiIn navigation two radii of curvature are of particular interest, the

Table 1.2: Earth’s parameter sets to model the ellipsoid

Semimajor axis (equatorial radius) a = 6378137m

Reciprocal flattening 1
f

= 298, 257223563

Earth’s rotation rate ωe = 7, 292115 10−5rad/s

Gravitational constant GM = 3, 986004418 1014m3

s2

Flatness f = a−b
a

= 0, 00335281

Semiminor axis b = a (1− f) = 6356752, 3142m

Eccentricity e =
√

a2−b2
a2

=
√
f (2− f) = 0, 08181919

normal radius and the meridian radius. These govern the rates at which the latitude and longitude

change as a navigating platform moves on or near the surface of the Earth. The normal radius

RN is defined for the east-west direction, and is also known as the great normal or the radius of

curvature of the prime vertical The meridian radius of curvature is defined for the north-south

direction and is the radius of the ellipse

RN =
a√(

1− e2 sin2 ϕ
) (1.34)
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RM =
a (1− e2)(

1− e2 sin2 ϕ
)3/2

(1.35)

1.4.1 Types of Coordinates in the ECEF Frame

Figure 1.11: Two types of ECEF coordinates and their interrelationship

1.4.2 Rectangular Coordinates in the ECEF Frame

Rectangular coordinates are like traditional Cartesian coordinates, and represent the position of

a point with its x, y and z vector components aligned parallel to the corresponding e-frame axes

(Fig. 1.11).

1.4.3 Geodetic Coordinates in the ECEF Frame

Geodetic coordinates are defined in a way that is more intuitive for positioning applications on

or near the Earth. Latitude(ϕ), Longitude(λ) and Altitude(h)
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1.4.4 Conversion From Geodetic to Rectangular Coordinates in the ECEF

Frame

In navigation, it is often necessary to convert from geodetic e-frame coordinates to rectangular

e-frame coordinates.

[xe, ye, ze] =


(RN + h) cosϕ cosλ

(RN + h) cosϕ sinλ

[RN (1− e2) + h] sinϕ

 (1.36)

1.4.5 Conversion From Rectangular to Geodetic Coordinates in the ECEF

Frame

Converting rectangular to geodetic coordinates is not straightforward, because the analytical

solution results in a fourth-order equation. There are approximate closed form solutions but an

iterative scheme is usually employed:

� Initialize the altitude as

h0 = 0

� Choose an arbitrary value of latitude

ϕ0 = tan−1

[
ze

P e (1− e2)

]
� The ellipsoidal height

P e =
(
RN + h

)
cosϕ

� The geodetic longitude is calculated as

λ = tan−1

(
ye

xe

)
� Starting from i = 1 iterate as follows

RNi =
a√(

1− e2 sin2 ϕi−1

)
�

hi =

√
(xe)2 + (ye)2

cosϕi−1

−RNi
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�

ϕi = tan−1

 ze√
(xe)2 + (ye)2

· RNi + hi
RNi (1− e2) + hi


� Compare ϕi, ϕi−1 and hi; hi−1 if convergence has been achieved then stop, otherwise repeat

step 5 using the new values.

1.5 Earth Gravity

The gravity field vector is different from the gravitational field vector. Due to the Earth’s rotation,

the gravity field is used more frequently and is defined as

g =
−
g − ΩieΩier (1.37)

where
−
g is the gravitational vector, Ωie is the skew-symmetric representation of the Earth’s rotation

vector ωie with respect to the i-frame, and r is the geocentric position vector. The second term

in the above equation denotes the centripetal acceleration due to the rotation of the Earth

around its axis. Usually, the gravity vector is given in the l-frame. Because the normal gravity

vector on the ellipsoid coincides with the ellipsoidal normal, the east and the north components

of the normal gravity vector are zero and only third component is non-zero

gl = [0 0 − g]T (1.38)

The magnitude of the normal gravity vector over the surface of the ellipsoid can be computed as

a function of latitude and height by a closed form expression known as the Somigliana formula

γ = a1

(
1 + a2 sin2 ϕ+ a3 sin4 ϕ

)
+
(
a4 + a5 sin2 ϕ+ a3 sin4 ϕ

)
h+ a6h

2 (1.39)

where h is the height above the Earth’s surface and the coefficients a1 through a6 for the 1980

geographic reference system (GRS) are defined as

a1 = 9, 7803267714m
s2

a4 = 0, 0000030876910891m
s2

a2 = 0, 0052790414m
s2

a5 = 0, 0000000043977311m
s2

a3 = 0, 0000232718m
s2

a6 = 0, 0000000000007211m
s2
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Conclusion : A navigation system can be autonomous or be dependent on external sources,

That depends on in order to locate the vehicle through a techniques using Relative Measurements

(Known as DR) which uses accelerometers and gyroscopes to provide orientation and position

respectively. And techniques using Absolute Measurements (Known as Reference-based Systems),

It is classified into several applications; Electronic Compasses, Active Beacons, Global Navigation

Satellite Systems (GNSS), Landmark Navigation and Map-Based Positioning.
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Chapter 2

Principle & Mathematical Model of Inertial

Navigation

2.1 Inertial Navigation System Principle

The principle of inertial navigation is based upon Newton’s first law of motion, which states:

A body continues in its state of rest, or uniform motion in a straight line, unless

it is compelled to change that state by forces impressed on it.

Newton’s second law of motion shares importance with his first law in the inertial navigation

system, and states

Acceleration is proportional to the resultant force and is in the same direction as

this force.

F = ma (2.1)

where F is the force

m is the mass of the body

a is the acceleration of the body due to the applied force F .

The physical quantity pertinent to an inertial navigation system is acceleration, because both

velocity v and displacement s can be derived from acceleration by the process of integration.

v =

∫
adt; s =

∫
vdt; s =

∫ ∫
adtdt (2.2)

An inertial navigation system is an integrating system consisting of a detector and an integrator.
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It detects acceleration, integrates this to derive the velocity and then integrates that to derive

the displacement. By measuring the acceleration of a vehicle in an inertial frame of reference and

then transforming it to the navigation frame and integrating with respect to time, it is possible to

obtain velocity, attitude and position differences. Measurement of the vehicle’s rotation is needed

for the transformation from the inertial to the navigation frame and for the computation of the

attitude of the vehicle.

Physical Implementation of an INS There are two implementation approaches to an INS:

� Stable platform system,

� Strapdown system.also known as a gimbaled system.

The components of these systems are shown in Fig. 2.1. In the stable platform, the inertial

sensors are mounted on a set of gimbals such that the platform always remains aligned with the

navigation frame. This is done by having a set of torque motors rotate the platform in response to

rotations sensed by the gyroscopes. Thus the output of the accelerometers is directly integrated for

velocity and position in the navigation frame. Since gimbaled systems are mechanically complex

and expensive, their use is limited.

Advances in electronics gave rise to strapdown systems. In these, the inertial sensors are rigidly

mounted onto the body of the moving platform and the gimbals are replaced by a computer that

simulates the rotation of the platform by software frame transformation. Rotation rates measured

by the gyroscopes are applied to continuously update the transformation between the body and

navigation frames. The accelerometer measurements are then passed through this transformation

to obtain the acceleration in the navigation frame. Strapdown systems are favored for their

reliability, flexibility, low power usage, being lightweight and less expensive than stable platforms.

The transition to strapdown systems was facilitated by the introduction of optical gyros to replace

rotor gyros, and by the rapid development of the processor technology required to perform the

computations.

An INS can be thought of as consisting of three principal modules: an inertial measurement

unit (IMU), a pre-processing unit, and a mechanization module. An IMU uses three mutually or-

thogonal accelerometers and three mutually orthogonal gyroscopes. The signals are pre-processed

by some form of filtering to eliminate disturbances prior to the mechanization algorithm which

converts the signals into positional and attitude information
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Figure 2.1: Arrangement of the components of a gimbaled IMU (left) and a strapdown IMU

(right)

Figure 2.2: The principal modules of an inertial navigation system

2.1.1 Inertial Sensors

Accelerometers

Figure 2.3: a An accelerometer in the null position with no force acting on it, b the same ac-

celerometer measuring a linear acceleration of the vehicle in the positive direction (to the right)

Acceleration will displace the proof mass from its equilibrium position, with the amount of
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displacement proportional to the acceleration. The displacement from the equilibrium position

is sensed by a pickoff and is then scaled to provide an indication of acceleration along this axis.

The equilibrium position is calibrated for zero acceleration. Acceleration to the right will cause

the proof mass to move left in relation to the case and (as shown by the scale) indicates positive

acceleration. the output of an accelerometer due to a gravitational field is the negative of the

field acceleration. The output of an accelerometer is called the specific force, and is given by

f = a− ⇀
g (2.3)

where f is the specific force a is the acceleration with respect to the inertial frame g is the

gravitational acceleration which is +9.8 m
s2

. To navigate with respect to the inertial frame we

need a, therefore in the navigation equations we convert the output of an accelerometer from f

to a by adding g. The acceleration a can be expressed as the double derivative of the position

vector r, as

a =

(
d2r

dt2

)
i

=
..
r (2.4)

using eq. Substituting Eqs. 1.37 and (2.4) into Eq. (2.3) provides

f =

(
d2r

dt2

)
i

− g − ΩieΩier (2.5)

Gyroscopes

Gyros measure the angular rate of a body with respect to the navigation frame, the rotation

of the navigation frame with respect to the Earth-fixed frame (as it traces the curvature of the

Earth), and the rotation of the Earth as it spins on its axis with respect to inertial space. These

quantities are all expressed in the body frame and can be given as

ωbib = ωbie + ωben + ωbnb (2.6)

where

� ωbib is the rotation rate of the body with respect to the i-frame

43



Chapter 2. Principle & Mathematical Model of Inertial NavigationChapter 2. Principle & Mathematical Model of Inertial Navigation

� ωbnb is the rotation rate of the body with respect to the navigation frame

� ωben is the rotation rate of the navigation frame with respect to the e-frame

� ωbie is the rotation rate of the Earth with respect to the i-frame.

Traditional gyroscopes were mechanical and based on angular momentum, but more recent ones

are based on either the Coriolis effect on a vibrating mass or the Sagnac interference effect. There

are three main types of gyroscope (Lawrence 1998): mechanical gyroscopes, optical gyroscopes,

and micro-electro-mechanical system (MEMS) gyroscopes.

2.2 Notes on Inertial Sensor Measurements

for strapdown systems the b-frame can take essentially any arbitrary direction because the ac-

celerometers and gyros are strapped onto the vehicle, which can adopt any orientation with respect

to the navigation frame. The establishment of the relationship between the INS body frame and

the local level (navigation) frame is usually done at the beginning of the survey by a stationary

alignment process. In this process, the initial attitude angles (pitch, roll and azimuth) between

the b-frame and the n-frame require to be estimated. The attitude angles are used in generating

the rotation matrix Rn
b for the transformation from the b-frame to the n-frame. The rotation

rates measured by the gyros are used to constantly update this matrix. Once this transformation

has been made, the process of integrating an acceleration measurement twice will provide the

IMU’s position difference relative to the initial point.

However, accelerometers cannot separate the total platform acceleration from that caused by the

presence of gravity. In fact, accelerometers provide the sum of the platform’s acceleration in

space and its acceleration due to gravity. The accelerometer measurements must be combined

with knowledge of the ambient gravitational field in order to determine the acceleration of the

vehicle with respect to a non-inertial reference frame.

Obviously, the inertial navigation is fundamentally dependent on an accurate specification of the

position, velocity and attitude of the moving platform prior to the start of navigation.
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2.2.1 Inertial Sensor Errors

Inertial sensors are prone to various errors which get more complex as the price of the sensor

goes down. The errors limit the accuracy to which the observables can be measured. They are

classified according to two broad categories of systematic and stochastic (or random) errors.

2.2.2 Systematic Errors

These types of errors can be compensated by laboratory calibration, especially for high-end sen-

sors. Some common systematic sensor errors (Grewal et al. 2007) are described below:

Systematic Bias Offset It is defined as the output of the sensor when there is zero input,

Scale Factor Error This is the deviation of the input–output gradient from unity.

Non-linearity This is non-linearity between the input and the output,

Scale Factor Sign Asymmetry This is due to the different scale factors for positive and negative

inputs

Dead Zone This is the range where there is no output despite the presence of an input

Quantization Error This type of error is present in all digital systems which generate their

inputs from analog signals

Non-orthogonality Error occur when any of the axes of the sensor triad depart from mutual

orthogonality. This usually happens at the time of manufacturing. Figure 2.4 depicts the case of

the z-axis being misaligned by an angular offset of θzx from xz-plane and θzy from the yz-plane.

Misalignment Error This is the result of misaligning the sensitive axes of the inertial sensors

relative to the orthogonal axes of the body frame as a result of mounting imperfections.
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Figure 2.4: Sensor bias,sensor scale factor and Non-linearity errors

Figure 2.5: Scale factor sign bias,Dead zone and quantization errors

2.2.3 Random Errors

Inertial sensors suffer from a variety of random errors which are usually modeled stochastically

in order to mitigate their effects.

Run-to-Run Bias Offset If the bias offset changes for every run, this falls under the bias re-

peatability error, and is called the run-to-run bias offset.

Bias Drift This is a random change in bias over time during a run, it is the instability in the

sensor bias for a single run, and is called bias drift, it is illustrated in Fig. ??. Bias is deterministic

but bias drift is stochastic. One cause of bias drift is a change in temperature.

Figure 2.6: Bias Drift and White noiser sign bias,Dead zone and quantization errors
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Scale Factor Instability Random changes in scale factor during a single run. This is usually

the result of temperature variations. The scale factor can also change from run to run, but stay

constant during a particular run. This demonstrates the repeatability of the sensor and is also

called the run-to-run scale factor.

White Noise This is an uncorrelated noise that is evenly distributed in all frequencies. This

type of noise can be caused by power sources but can also be intrinsic to semiconductor devices.

Notes on Random Errors Most manufacturers express the randomness associated with their

inertial sensors by the concept of random walk. The angle random walk (ARW) for gyroscopes is

usually specified in terms of (deg/hr/
√
Hz) or (deg/

√
hr) and the velocity random walk (VRW)

for accelerometers is given in terms of (µg/
√
Hz or m/s/

√
hr)

This definition requires knowledge of the data rate (sampling frequency) at which the sensor

measurements are acquired by the data acquisition systems. The data rate is related to the

bandwidth of the sensor, which is another important parameter. The inertial sensor bandwidth

(specified in Hz) defines the range of frequencies that can be monitored by the sensor. For

example a gyroscope with 100 Hz bandwidth is capable of monitoring the dynamics of frequencies

less than 100 Hz. Any higher frequencies will not be detected. Table 2.1 shows some important

performance specifications for various KVH gyroscopes [3].

Table 2.1: Performance specification of various KVH gyroscopes.

KVH DSP-300 (single

axis FOG)

KVH DSP-3100 (sin-

gle axis FOG)

DSP-3400 single axis

FOG

Bandwidth 100 Hz 1000 Hz 1000 Hz

Bias drift < 3deg/h < 1deg/h < 1deg/h

ARW < 6deg/h/
√
Hz < 4deg/h/

√
Hz < 4deg/h/

√
Hz

Scale factor < 0.05% < 0.05% < 0.05%
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2.2.4 Mathematical Models of Inertial Sensor Errors

2.2.5 Gyroscope Measurement Model

Measurements of angular rate can be modeled by the observation equation

∼
ωib

b =
b
ωib + bg + Sg

b
ωib +Ng

b
ωib + εg (2.7)

where

Table 2.2: Gyroscope Measurement Model.
∼
ωib

b the gyroscope measurement vector (deg/h)
b
ωib is the true angular rate velocity vector (deg/h)

bg is the gyroscope instrument bias vector (deg/h)

Sg is a matrix representing the gyro scale factor

Ng is a matrix representing non-orthogonality of the gyro triad

εg is a vector representing the gyro sensor noise (deg/h)

Ng =


1 θg,xy θg,xz

θg,yx 1 θg,yz

θg,zx θg,zy 1

 (2.8)

Sg =


Sg,x 0 0

0 Sg,y 0

0 0 Sg,z

 (2.9)

where θ(.),(.) are the small angles defining the misalignments between the different gyro axes and

S(.),(.) are the scale factors for the three gyros.

2.2.6 Accelerometer Measurement Model

Measurements of the specific force can be modeled by the observation equation

∼
f ib

b =
b

fib + ba + S1

b

fib + S2

b

fib +Na

b

fib + δg + εa (2.10)

where
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Table 2.3: Accelerometer Measurement Model.
∼
f ib

b is the accelerometer measurement vector (m/s2)
b

fib is the true specific force vector (i.e. observable) (m/s2)

ba is the accelerometer instrument bias vector (m/s2)

S1 is a matrix of the linear scale factor error

S2 is a matrix of the non-linear scale factor error

Na is a matrix representing non-orthogonality of the accelerometer triad

δg is the anomalous gravity vector (i.e. the deviation from the theoretical gravity value) (m/s2)

εa is a vector representing the accelerometer sensor noise (m/s2).

2.3 Classification of Inertial Sensors

A rough comparison of different inertial navigation sensors/systems is outlined in Table 2.4 with

data obtained from (Groves Dec 2007), (Petovello et al. Jun 2007), (Barbour and Schmidt 2001)

and (Wang and Williams 2008). Usually the cost of an IMU is dictated by the type of inertial

sensors. IMUs are categorized according to their intended applications, which mainly depend on

the gyroscope bias expressed in (deg/hour). A secondary measure of performance is the gyroscope

random walk, which is usually expressed in terms of (deg/root− hour) and accelerometer bias.

2.3.1 Gyroscope Technologies and their Applications

There are several gyroscope technologies, including ring laser gyroscopes (RLG), dynamically

tuned gyroscopes (DTG), hemispherical resonant gyroscopes (HRG), and interferometric fiber-

optic gyroscopes (IFOG). Spinning mass and ring laser gyroscopes offer high performance but

at high cost, and find their application in strategic/tactical and submarine navigation systems.

DTG offer a medium level of performance and share some applications with RLG (Prasad and

Ruggieri 2005). IFOG and Coriolis-based gyroscopes are of lower performance but cost less and

are typically used in torpedoes, tactical missile midcourse guidance, flight control and smart

munitions guidance and robotics. There has been a recent trend towards MEMS gyroscopes that

are being researched for low cost navigation applications such as car navigation and portable

navigation devices. Details of all these sensor technologies can be found in (Barbour and Schmidt

2001, Lawrence 1998).
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Table 2.4: Classification of inertial measurement units.

Performance Strategic grade Navigation

grade

Tactical grade Commercial

grade

Positional error < 100m/h 1 Nm/h 10–20 Nm/h Large variation

Gyroscope drift 0.0001 0.001◦/h < 0.01◦/h 1 10◦/h 0.1◦/s

Gyroscope ran-

dom walk

—- < 0.002◦/
√
h 0.05 0.02◦/

√
h several ◦/

√
h

Accelerometer

bias

0.1 - 1 µg < 100µg 1− 5 mg 100− 1000µg

Applications Intercontinental

ballistic missile,

Submarines.

General naviga-

tion, high preci-

sion georeferenc-

ing mapping.

Integrated with

GPS for map-

ping, Weapons

(short time).

Research, Low

cost navigation

pedometers, An-

tilock breaking,

active suspen-

sion, airbags.

2.3.2 Accelerometer Technologies and their Applications

The main accelerometer technologies are mechanical pendulous force-rebalance accelerometers,

vibrating beam accelerometers (VBAs) and gravimeters. The best performance is provided by

mechanically floated instruments, and these are used in strategic missiles. Mechanical pendulous

rebalance accelerometers are used in submarine navigation, land and aircraft navigation and space

applications. Quartz resonator accelerometers are low grade sensors typically found in tactical

missile midcourse guidance.

2.4 Calibration of Inertial Sensors

Calibration is defined as the process of comparing instrument outputs with known reference

information to determine coefficients that force the output to agree with the reference information

across the desired range of output values. Calibration is used to compute deterministic errors of

sensors in the laboratory. The calibration parameters to be determined can change according

to the specific technology in an IMU. To accurately determine all of the parameters, special
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calibration devices are needed, such as three-axial turntables, to perform either a six-position

static test or an angle rate test.

2.5 Initialization and Alignment of Inertial Sensors

An INS takes acceleration and rotation rates from sensors to calculates velocity and attitudes

by integrating them once, and then integrates the velocity in order to obtain the position. The

navigation equations require starting values for position, velocity and attitude. These are readily

available from the last epoch of an ongoing iteration, but for the first epoch the INS must be

specifically provided with this information before it can begin to function. This process is called

initialization for position and velocity, and is called alignment for attitude (Groves Dec 2007).

Position and Velocity Initialization Position can be initialized using a vehicle’s last known

position before it started to move. For a system where the INS is integrated with other systems,

typically GPS, a position can easily be provided by the external navigation system. In some

cases the starting point is known a priori (for example a pre-surveyed location). If the vehicle is

stationary then the velocity initialization can be made with zero input. If it is moving, the initial

velocity can be provided by an external navigation source such as GPS, Doppler or an odometer.

Attitude Alignment Attitude alignment involves two steps. First, the platform is leveled by

initializing the pitch (p) and roll (r) angles, and then gyro-compassing to provide an initial value

of the heading (alternatively known as the yaw angle ‘y’ or azimuth ‘A’).

2.6 Inertial Navigation System Modeling

Modeling requires representing real world phenomena by mathematical language. To keep the

problem tractable the goal is not to produce the most comprehensive descriptive model but to

produce the simplest possible model which incorporates the major features of the phenomena of

interest. The model is also restricted by the ability of mathematics to describe a phenomenon.

Here we deal with models which describe the motion of an object on or near the surface of the

Earth. This kind of motion is greatly influenced by the geometry of the Earth. There are two
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broad categories for modeling motion: dynamic and kinematic.in this further we will use the

second one.

2.6.1 INS Mechanization

Mechanization is the process of converting the output of an IMU into position, velocity and atti-

tude information. The outputs include rotation rates about three body axes ωbib measured by the

gyroscopes triad and three specific forces fb along the body axes measured by the accelerometer

triad, all of which are with respect to the inertial frame. Mechanization is a recursive process

that starts with a specified set of initial values and iterates on the output. A general diagram of

INS mechanization is shown in Fig. 2.7.

Figure 2.7: A block diagram depicting the mechanization process of an INS in the inertial frame

INS Mechanization in an Inertial Frame of Reference

The output of an accelerometer is called the specific force, and is given as

f i = ai − ⇀i
g (2.11)

where f is the specific force, a is the acceleration of the body, and
⇀
g is the gravitational vector.

By letting ai =
..
r
i

..
r
i

= f i +
⇀i
g (2.12)
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..
r
i

is the second derivative of the position vector measured from the origin of the inertial

frame to the moving platform

f i is the specific force
⇀i
g is the gravitational vector

For ease of solution, the set of three second-order differential equations can be transformed to

a set of first-order differential equations as follows

.
r
i

= vi (2.13)

.
v
i

= f i +
⇀i
g (2.14)

The measurements are usually made in the body frame. By assuming that the body frame

coincides with the sensor triad frame these measurements can be transformed into the inertial

frame using the transformation matrix Rb
i between the body frame and the inertial frame

f i = Rb
if b (2.15)

⇀
g
i

= Re
i⇀g

e
(2.16)

.
v
i

= Rb
if b +Re

i⇀g
e

(2.17)

As discussed

.

R
i

b = R
i

bΩ
b
ib (2.18)

where Ωb
ib is the skew-symmetric matrix form of the vector of angular velocities ωbib output by the

gyroscope.

p
ωmk =


ωx

ωy

ωz

 ⇒
p

Ωmk =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (2.19)

where ωx, ωy, ωz, are the gyroscope measurements in the b-frame. Solving Eq.2.18 yields the

desired transformation matrix R
i

b. Once the elements of the rotation matrix are known, it is

possible to calculate the attitude of the body using Euler angles
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The mechanization equations for the i-frame can therefore be summarized as
.
r

.
v
.i

Rb

 =


vi

Rb
if b + Re

i⇀g
e

R
i

bΩ
b
ib

 (2.20)

where the specific force vector fb and the angular velocity vector ωbib are sensor measurements.

The gravity model in the e-frame
⇀
g
e

is known in advance.

INS Mechanization in ECEF Frame

A position vector re in the e-frame can be transformed into the i-frame by using the rotation

matrix Ri
e as follows

ri = Re
if e (2.21)

After differentiating twice and rearranging the terms we get

..
r
i

= Re
i
(
..
r
e

+ 2Ωe
ie

.
r
e

+
.

Ωe
ier

e + Ωe
ieΩ

e
ier

e
)

(2.22)

Re
i
(
..
r
e

+ 2Ωe
ie

.
r
e

+
.

Ωe
ier

e + Ωe
ieΩ

e
ier

e
)

= f i +
⇀
g
i

(2.23)

Re
i
(
..
r
e

+ 2Ωe
ie

.
r
e

+
.

Ωe
ier

e + Ωe
ieΩ

e
ier

e
)

= Ri
bf

b +Ri
e

⇀
g
e

(2.24)

by letting Ri
b = Ri

eR
e
b and

.

Ωe
ier

e = 0

Re
i
(..
r
e

+ 2Ωe
ie

.
r
e

+ Ωe
ieΩ

e
ier

e
)

= Ri
eR

e
bf

b +Ri
e

⇀
g
e

(2.25)

..
r
e

+ 2Ωe
ie

.
r
e

+ Ωe
ieΩ

e
ier

e = Re
bf

b +
⇀
g
e

(2.26)

and because the gravity vector is defined as ge − Ωe
ieΩ

e
ier

e this can be further reduced to

..
r
e

= Re
bf

b − 2Ωe
ie

.
r
e

+ ge (2.27)

which is second-order and can be broken into the following first-order equations

.
r
e

= ve (2.28)

.
v
e

= Re
bf

b − 2Ωe
iev

e + ge (2.29)
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Figure 2.8: A block diagram depicting the mechanization process of an INS in the ECEF frame

The rate of change of the rotation matrix Re
b can be given as

.

R
e

b = Re
bΩ

b
eb (2.30)

As we wish to write the above expression in terms of sensed angular rate ωbib monitored by the

gyroscopes then we use the following relationship

Ωb
eb = Ωb

ei + Ωb
ib (2.31)

then
.

R
e

b = Re
b

(
Ωb
ei + Ωb

ib

)
(2.32)

The e-frame mechanization equations can be summarized as
.
r
e

.
v
e

.

R
e

b

 =


ve

Re
bf

b − 2Ωe
iev

e + ge

Re
b

(
Ωb

ei + Ωb
ib

)
 (2.33)

which represents the mechanization equations in the e-frame where the inputs are the sensed

accelerations f b from the accelerometers and rotation rates ωbib from the gyroscopes. The outputs

are the position vector r, the velocity vector v, and the Euler angles, all expressed in the e-frame.

55



Chapter 2. Principle & Mathematical Model of Inertial NavigationChapter 2. Principle & Mathematical Model of Inertial Navigation

INS Mechanization in the Local-Level Frame

Position Mechanization Equations

In many applications the mechanization equations are desired in the LLF

rl = [ϕ, λ, h]T (2.34)

the rate of change of platform position is expressed in terms of the velocity in the east, north and

up directions

.
ϕ =

vN
RM + h

(2.35)

.

λ =
ve

(RN + h) cosϕ
(2.36)

.

h = vu (2.37)

the time rate of change of the position components is related to the velocity components as

follows 
.
ϕ
.

λ
.

h

 =


0 1

RM+h
0

1
(RN+h) cosϕ

0 0

0 0 1



ve

vn

vu


l

(2.38)

.
r
l
= D−1vl (2.39)

in which D−1 transforms the velocity vector from rectangular coordinates into curvilinear coor-

dinates in the ECEF frame.

Velocity Mechanization Equations

The acceleration of the moving body is measured in the b-frame by an accelerometer These

measurements are known as specific force measurements and are given in the b-frame as

f b =


fx

fy

fz

 (2.40)

They can be transformed to the local-level frame using the rotation matrix Rl
b

f l =


fe

fn

fu

 = Rl
bf

r = Rl
b


fx

fy

fz

 (2.41)
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However, for three reasons the acceleration components expressed in the local level frame cannot

directly yield the velocity components of the moving body:

� The rotation of the Earth about its spin axis ωe = 15◦/hr is interpreted in the local-level

frame as the angular velocity vector ωlie

ωlie =


0

ωe cosϕ

ωe sinϕ

 (2.42)

� A change of orientation of the local-level frame with respect to the Earth

ωlel =


−ϕ

.

λ cosϕ
.

λ sinϕ

 =


− vn
RM+h

ve
RN+h

ve tanϕ
RN+h

 (2.43)

� The Earth’s gravity field is

gl =


0

0

−g

 (2.44)

Taking these three factors into the consideration we can derive the expression for the time rate

of change of the velocity components of the moving body.

·
v
l
= Rl

bf
b −
(
2Ωl

ie + Ωl
elv

l + gl
)

(2.45)

ωlie =


0

ωe cosϕ

ωe sinϕ

→ Ωl
ie =


0 −ωe sinϕ ωe cosϕ

ωe sinϕ 0 0

−ωe cosϕ 0 0

 (2.46)

ωlel =


−ϕ

.

λ cosϕ
.

λ sinϕ

 =


− vn
RM+h

ve
RN+h

ve tanϕ
RN+h

→ Ωl
el =


0 −ve tanϕ

RN+h
ve

RN+h

ve tanϕ
RN+h

0 vn
RM+h

− ve
RN+h

− vn
RM+h

0

 (2.47)

57



Chapter 2. Principle & Mathematical Model of Inertial NavigationChapter 2. Principle & Mathematical Model of Inertial Navigation

Attitude Mechanization Equations

The attitude (orientation) of the moving body is determined by solving the time derivative equa-

tion of the transformation matrix Rl
b that relates the body frame to the local-level frame. For

local-level mechanization the following time derivative equation of the transformation matrix

should be considered

.

R
l

b = Rl
bΩ

b
lb (2.48)

Ωb
lb = Ωb

ib − Ωb
il (2.49)

.

R
l

b = Rl
b

(
Ωb
ib − Ωb

il

)
(2.50)

The rotation matrix can be obtained by solving Eq. (2.50) for the attitude angles.

The quantity Ωb
ib, which is the rate of rotation of the b-frame with respect to the i-frame,

is directly measured by the gyroscopes. However, in addition to the angular velocities of the

moving body the gyroscopic measurements contain both the Earth’s rotation Ωb
ie and the change

in orientation of the LLF. So Ωb
il must be subtracted from Ωb

ib to remove these affects. Ωb
il

is composed of two parts: Ωb
ie ,which is the Earth’s rotation rate with respect to the i-frame

expressed in the body frame and Ωb
el, which is the change in the orientation of the LLF with

respect to the ECEF frame as expressed in body frame. Therefore

Ωb
il = Rb

l

(
Ωl
ie + Ωl

el

)
Rl
b (2.51)

By substituting this into Eq. (2.50) we get

.

R
l

b = Rl
b

[
Ωb
ib −Rb

l

(
Ωl
ie + Ωl

el

)
Rl
b

]
(2.52)

The results of the previous subsections can be summarized as follows
.
r
l

.
v
l

.

R
l

b

 =


D−1vl

Rl
bf

b −
(
2Ωl

ie + Ωl
el

)
vl + gl

Rl
b

{
Ωb

ib −Rb
l

(
Ωl

ie + Ωl
el

)
Rl

b

}
)

 (2.53)

which expresses the mechanization in the local-level frame. The position output is expressed in

ECEF curvilinear coordinates φ, λ, h, the velocity output is in l-frame coordinates ve; vn; vu, and
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the attitude angles (roll, pitch and yaw) are measured with respect to the l-frame. Figure 2.9 is

a block diagram of local-level frame mechanization.

Figure 2.9: A block diagram depicting the mechanization of an INS in the local-level frame

INS Mechanization in Wander Frame

The l-frame rotates continuously as it moves over the curved surface of the Earth because its y-

axis always pointing toward the north (tangential to the meridian).this rate of rotation becomes

ever greater as the l-frame approaches the pole and will become infinite if the l-frame passes

directly over the pole.

The rotational rate of the navigation l-frame over the Earth’s surface (known as the transport

rate) is

ωlel =


−ϕ

.

λ cosϕ
.

λ sinϕ

 =


ωe

ωn

ωu

 =


− vn
RM+h

ve
RN+h

ve tanϕ
RN+h

 (2.54)

where ωe, ωn and ωu are the east, north and up angular velocity components as in Fig. (2.10).

It is evident from Eq. (2.54) that the third component of the above vector will introduce

numerical instabilities as ϕ approaches π/2 and will actually be indeterminate at the pole. This

condition is avoided by using the wander azimuth frame in which the third component of Eq.

(2.54) is forced to zero and the y-axis of the w-frame will deviate from true north by an angle

α, referred to as the wander azimuth angle ([4]). This angle is initialized when initiating the
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Figure 2.10: A depiction of the rotational velocity components experienced in the l-frame

trajectory. In the wander frame, the wander azimuth angle between the true north and the y-

axis of the frame varies as the vehicle moves. The output parameters of the w-frame mechanization

are eventually transformed into the l-frame. The angular rate vector of the wander frame with

respect to the l-frame can be expressed ([5]) as

ωllw = [0 0
.
α]
T

(2.55)

and the angular rate of the wander frame with respect to the e-frame is

ωlew = ωlel + ωllw (2.56)

ωlew =


− .
ϕ

.

λ cosϕ
.

λ sinϕ

+


0

0
.
α

 =


− .
ϕ

.

λ cosϕ
.

λ sinϕ+
.
α

 (2.57)

and therefore the rotation rate of the w-frame with respect to the e-frame, resolved in the w-frame,

is

ωwew = Rw
l ω

l
ew (2.58)
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transpose of the matrix Rw
l

Rl
w


cosα − sinα 0

sinα cosα 0

0 0 1

 (2.59)

To force the third component ωu of Eq. (2.54) to be zero we must ensure that

.
α = −λ sinϕ (2.60)

The mechanization equations are equivalent to those of the l-frame except that all the notations

are for the w-frame rather than for the l-frame
.
r
w

.
v
w

.

R
w

b

 =


D−1vw

Rw
b f

b − (2Ωw
ie + Ωw

ew) vw + gw

Rw
b

(
Ωb

ib − Ωb
iw

)
)

 (2.61)

2.7 Parameterization of the Rotation Matrix

The solution of the mechanization equations requires the parameterization of the rotation matrix

Rl
b. The three most common methods are Euler angles, direction cosines and the quaternion. Euler

angles require only three independent parameters. Direction cosines require nine parameters, six

of which are independent. Both of these methods are computationally expensive and therefore

inappropriate for real-time computations. Furthermore, Euler angles are prone to singularities.

The six independent kinematic equations involved in the derivative of the rotation matrix
.

Ry
x =

Ry
xΩ

x
yx cannot be solved in closed form, and require numerical integration. The most effective way

of parameterizing the transformation matrix is therefore to use the quaternion method.[Appendix]

2.8 Quaternions

Solving the mechanization equations requires the parameterization of the rotation matrix Rl
b. The

most popular method is the quaternion approach ([6]). Euler’s theorem states that the rotation

of a rigid body (represented by the body frame) with respect to a reference frame (in this case the
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computational frame) can be expressed in terms of a rotation angle θ about a fixed axis and the

direction cosines of the rotation axis that define the rotation direction. Figure (2.11) represents a

quaternion where θ is the magnitude of the rotation and α, β and γ define the orientation of the

unit vector ‘n’ that lies along the axis of rotation. A quaternion is a four-parameter representation

of a transformation matrix that is defined ([7]) as follows

Figure 2.11: Spatial representation of a quaternion in relation to the reference frame XYZ

q =


q1

q2

q3

q4

 =


θx
θ

sin θ
2

θy
θ

sin θ
2

θz
θ

sin θ
2

cos θ
2

 (2.62)

where θ =
√
θ2
x + θ2

y + θ2
z is the rotation angle, and θx

θ
, θy

θ
and θz

θ
are direction cosines of

the rotation axis with respect to the computational frame. The components of a quaternion are

related by the constraint q2
1 + q2

2 + q2
3 + q2

4 = 1 The quaternion parameters are functions of time,

and the associated differential equation is

.
q =

1

2

⇀

Ω (ω) q (2.63)

where
⇀

Ω (ω) is the skew-symmetric matrix of the following form
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⇀

Ω (ω) =


0 ωz −ωy ωx

−ωy 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (2.64)

2.8.1 Relationship Between the Transformation Matrix and Quaternion Pa-

rameters

Once the quaternion parameters are known at a certain time, the rotation matrix R can be

obtained using the following direct relationship

R =


R(1, 1) R(1, 2) R(1, 3)

R(2, 1) R(2, 2) R(2, 3)

R(3, 1) R(3, 2) R(3, 3)

 =


q2

1 − q2
2 − q2

3 + q2
4 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) −q2
1 − q2

2 + q2
3 + q2

4


(2.65)

After determining the initial rotation matrix from the attitude angles measured during the align-

ment process, the initial values of the quaternion are calculated as A.3
q1

q2

q3

q4


t0

=


0.25

(
R(3,2)−R(2,3)

q4

)
0.25

(
R(1,3)−R(3,1)

q4

)
0.25

(
R(2,1)−R(1,2)

q4

)
0.25

√
1 +R(1, 1) +R(2, 2) +R(3, 3)

 (2.66)

2.9 Step by Step Computation of Navigation Parameters in the

l-Frame

Owing to the advantages offered by mechanization in the l-frame, many applications prefer to

implement mechanization in this frame of reference. steps of the mechanization process in the

l-frame are as follow.

� Obtain rotation rates (ωx, ωy, ωz) from the gyroscopes and accelerations (fx; fy; fz) from the

accelerometers. These measurements are in relation to the inertial frame resolved into the

body frame, and they constitute the IMU outputs.
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� Calculate the attitude angles of pitch, roll and azimuth (p, r, A) in terms of the rotation

rates (ωx, ωy, ωz). This involves the computation of Rl
b

� Use Rl
b. computed by the previous step to transform the specific forces in the body frame

to the navigation frame, yielding the accelerations in the local-level frame (fe, fn, fu).

� Since accelerometers also measure gravity and Coriolis forces, we must compensate for these

effects.

� Calculate the east, north and up velocities (Ve, Vn, Vu) by integrating the transformed specific

forces (fe, fn, fu).

� Calculate the geodetic coordinates of the position (ϕ, λ, h) by integrating the velocities.

64



Chapter 2. Principle & Mathematical Model of Inertial NavigationChapter 2. Principle & Mathematical Model of Inertial Navigation

65



Chapter 2. Principle & Mathematical Model of Inertial NavigationChapter 2. Principle & Mathematical Model of Inertial Navigation

It should be noted that the rotation rate of the l-frame due to the Earth’s rotation rate ωiie

and movement on the curved surface of the Earth ωlel must be compensated from the measured

angular rate of the body ωbib prior to integration. Similarly, the Coriolis acceleration due to the

Earth’s rotation Ωl
ie and movement of the l-frame over Earth’s curvature ωlel must be subtracted

from the measured specific force f b. The mechanization algorithm provides the position, veloc-

ity and attitude components of the moving platform in the following format � The position in

geodetic (curvilinear) coordinates (ϕ, λ, h) � The velocities along the east, north and up directions

(Ve;Vn;Vu) � The attitude angles as roll, pitch and yaw. Mechanization in the l-frame is more

intuitive for navigation on or near the Earth’s surface because the position of the moving platform

is provided in familiar map coordinates (latitude, longitude and altitude) and its attitude is given

as angles in the familiar roll, pitch and yaw scheme. Also, the gravity model for the l-frame is

simpler.

2.9.1 Raw Measurement Data

The output of inertial sensors can sometimes (and especially for low cost sensors) be the angular

rates and specific forces rather than incremental values. Because we require incremental values

for our algorithms the angular rates and specific forces must be changed to their incremental

counterparts as follows

∆
∼
v
b

=
∼
f
b

∆t (2.67)

∆
∼
θ
b

ib =
∼
ω
b

ib∆t (2.68)

∼
f
b

is the specific force (i.e. the output of the accelerometer) (m/sec2)
∼
ω
b

ib is the rotation rate of the body frame with respect to the inertial frame, resolved in

the body frame (i.e. the output of the gyroscope) (radian/sec)

∆
∼
v
b

is the change in specific force during the time interval t (i.e. the velocity) (m/s)

∆
∼
θ
b

ib is the change in angular rate during the time interval t (i.e. an angle) (in radians)

∆t is the sampling interval (i.e. the reciprocal of the sampling frequency) (sec)

2.9.2 Correction of the Measurement Data

Although inertial sensors are calibrated in the factory they are usually recalibrated in the labo-

ratory, as a result of this calibration the biases and scale factors of the sensors are computed and

66



Chapter 2. Principle & Mathematical Model of Inertial NavigationChapter 2. Principle & Mathematical Model of Inertial Navigation

subsequently compensated for in the raw measurements in order to obtain corrected measurements

using the following relationship

∆θbib =

∼
∆θ

b

ib − bgyro∆t
1 + Sgyro

(2.69)

∆vb =

∼
∆v

b

− bacc∆t
1 + Sacc

(2.70)

where

bgyro is the drift of the gyroscope (radians/sec)

Sgyro is the gyroscope scale factor (in ppm)

bgyro is the bias of the accelerometer (m/sec2)

Sgyro is the accelerometer scale factor (in ppm)

∆θbib the corrected incremental gyroscope output (in radians/sec)

∆vbib is the corrected incremental accelerometer output (in m/s)

2.9.3 Calculation and Updating of Rotation Matrix

In l-frame mechanization the updated rotation matrix Rl
b transforms the sensor outputs from the

body frame to the l-frame, which requires a determination of the angular increment θblb of the

body with respect to the l-frame.

Computation of Angular Increment of Body Rotation

The angular rate of the body with respect to the l-frame ωbib is

ωblb = ωbib − ωbil (2.71)

ωbil = Rb
lω

l
il (2.72)

ωlil = ωlie + ωlel (2.73)

ωlie = Rl
eω

e
ie (2.74)

(2.75)

ωlie =


−sinλ cosλ 0

− sinϕ cosλ − sinϕ sinλ cosϕ

cosϕ cosλ cosϕ sinλ sinϕ




0

0

ωe

 =


0

ωe cosϕ

ωe sinϕ

 (2.76)
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ωlel =


•
ϕ

•
λ cosϕ
•
λ sinϕ

 =


− vn
M+h

ve
N+h

ve tanϕ
N+h

 (2.77)

After finding the values of the appropriate terms through the above procedure and substituting

them into Eq. (2.75), the equation

is integrated for interval ∆t obtain the angular increment of the body rotation with respect

to the l-frame

θblb = θbib − θbil (2.78)

Updating the Quaternion

The quaternion can be updated by the analytical method. The closed form solution of the

quaternion equation is

qk+1 = qk +
1

2

[
2

(
cos

θ

2
− 1

)
I +

2

θ
sin

θ

2

−
S(ω)

]
qk (2.79)


q1

q2

q3

q4

 qk+1 = qk +
1

2

[
2

(
cos

θ

2
− 1

)
I +

2

θ
sin

θ

2

−
S(ω)

]
qk (2.80)
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Chapter 3

Simulation of Strapdown Inertial Navigation

System

Many navigation books and papers on inertial navigation system (INS) provide readers with the

basic principle of INS. Some also superficially describe simulation methods and rarely provide the

free code which can be used by new INS users to help them understand the theory and develop INS

applications. Commercial simulation software is available but is not free. The objective of this

paper is to develop an easy-to-understand step-by-step development method for simulating INS.

Here we consider the most popular INS which is the strapdown inertial navigation system (SINS).

The mathematical operations required in our work are mostly matrix manipulations and more

generally basic linear algebra [9]. In this paper,Matlab [10] and Mathematica [11] are chosen

as the simulation environments. It is a popular computing environment to perform complex

matrix calculations and to produce sophisticated graphics in a relatively easy manner. A large

collection of Matlab scripts are now available for a wide variety of applications and are often

used for university courses.Matlab is also becoming more and more popular in industrial research

centers in the design and simulation stages. The main purposes of this work are to develop a

comprehensive Matlab implementations for SINS.

In this work, we choose the p-frame as the navigation frame for vehicle trajectory calculation,

for the following reason. In the local geographic navigation frame mechanization, the n-frame

is required to rotate continuously as the system moves over the surface of the Earth in order

to keep its PyN axis pointing to the true north. In order to achieve this condition worldwide,

the n-frame must rotate at much greater rates about its PzN axis as the navigation system
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moves over the surface of the Earth in the polar regions, compared to the rates required at lower

latitudes. It is clear that near the polar areas the local geographic navigation frame must rotate

about its PzN axis rapidly in order to maintain the PyNaxis pointing to the pole. The heading

direction will abruptly change by 180° when moving past the pole. In the most extreme case,

the turn rate becomes infinite when passing over the pole. One way of avoiding the singularity,

and also providing a navigation system with worldwide capability, is to adopt a wander azimuth

mechanization in which the z-component of ωpep is always set to zero, that is, ωpepz = 0. A wander

axis system is a local level frame which moves over the Earth surface with the moving vehicle,

as depicted in Figure 3.1. However, as the name implies, the azimuth angle between PyN axis

Figure 3.1: The reference frames.

and Pyp axis varies with the vehicle position on Earth equation 2.60. This variation is chosen

in order to avoid discontinuities in the orientation of the wander frame with respect to Earth as

the vehicle passes over either the north or south pole. below, the main principle of SINS in the

p-frame is described. Along the same lines as in [2], a navigation equation for a wander azimuth
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system can be constructed as follows:

.
v
p
e = Cp

b f
b −
(
2Cp

eω
e
ie + ωpep

)
vpe + gp (3.1)

This matrix propagates in accordance with the following equation:

.

C
p

b = Cp
bΩb

pb (3.2)

Equation 3.2 is integrated to generate estimates of the vehicle speed in the wander azimuth

frame, vpe .This is then used to generate the turn rate of the wander frame with respect to the

Earth frame, ωpep

.

C
e

p = Ce
pΩ

p
ep (3.3)

(
.

C
e

p)
T = −Ωp

ep(C
e
p)
T (3.4)

.

C
p

e = −Ωp
epC

p
e (3.5)

Because the z-component of ωpep = 0 the matrix expression of ωpep is

ωpep =


ωpepx

ωpepy

0

 (3.6)

. This process is implemented iteratively and enables any singularities to be avoided.

3.1 Cosine Matrices (DCMs)

Vehicle Attitude DCM Cp
b The definition of the rotation sequence from p-frame to b-frame is

(see Figure 3.2)

xpypzp
zp,ΨG−→ x′ey

′
ez
′
e

y′e,θ−→ x′′ey
′′
ez
′′
e

x′′e ,γ−→ xbybzp (3.7)

p

Cb = (
b

Cp)
T =


cos γ cos ΨG − sin γ sin θ sin ΨG − cos θ sin ΨG sin γ cos ΨG + cos γ sin θ sin ΨG

cos γ sin ΨG + sin γ sin θ cos ΨG cos θ cos ΨG sin γ sin ΨG − cos γ sin θ cos ΨG

− sin γ cos θ sin θ cos γ cos θ


(3.8)

We have that

Ψ = ΨG + α (3.9)
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Figure 3.2: The relation between b-frame and p-frame.

, so

n

Cb =


cos γ cos Ψ− sin γ sin θ sin Ψ − cos θ sin Ψ sin γ cos Ψ + cos γ sin θ sin Ψ

cos γ sin Ψ + sin γ sin θ cos Ψ cos θ cos Ψ sin γ sin Ψ− cos γ sin θ cos Ψ

− sin γ cos θ sin θ cos γ cos θ

 (3.10)


ωbnbx

ωbnby

ωbnbz

 =


cos γ

.

θ − sin γ cos θ
.

ψ
.
γ + sin θ

.

ψ

sin γ
.

θ + cos γ cos θ
.

ψ

 (3.11)

Vehicle Position DCM Cp
e Position matrix Cp

e is the DCM from e-frame to p-frame. It has the

following rotating sequence (see Figure 3.3):

xeyeze
ze,λ−→ x′ey

′
ez
′
e

y′e,90°−ϕ−→ x′′ey
′′
ez
′′
e

z′′e ,90°−→ xNyEzU
zU ,α−→ xpypzp (3.12)

p

Ce =


− sinα sinϕ cosλ− cosα sinλ − sinα sinϕ sinλ+ cosα cosλ sinα cosϕ

− cosα sinϕ cosλ+ sinα sinλ − cosα sinϕ sinλ− sinα cosλ cosα cosϕ

cosϕ cosλ cosϕ sinλ sinϕ

 (3.13)
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Figure 3.3: The relation between e-frame and p-frame

A trajectory simulation method in the ENU-frame is described step by step to generate sensor

data. forward a trajectory and attitude simulator method in the p-frame is described step by

step to derive the desired trajectory and attitude from the simulated sensor data or real sensor

data; initial parameters and initial data calculation are provided Sensor Data Generator The

purpose of trajectory simulation is to generate data of the 3 orthogonal gyros and the 3 orthogonal

accelerometers according to the designed trajectory. It is mentioned in that p-frame is set up to

avoid the singularities when the vehicle passes over either the north or south pole. But in most

applications, the SINS systems are seldom operated under this extreme environment. The ENU-

frame can be implemented easier than p-frame, so it is chosen as the navigation frame. Figure

3.4 shows the whole process of the SINS principal in the ENU-frame mechanization. First, the

vehicle trajectory in the ENU-frame is set. Then, the sensor ideal output is derived using the

inverse principle of INS. The sensor simulation data can be obtained by adding noise to the ideal

data. Then, we use the simulated sensor data to derive the noise-corrupted simulated trajectory.
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Figure 3.4: SINS ENU-frame mechanization.

Besides, the difference between the ideal and simulated state vectors can be set as the input for

the observed measurements in the Kalman filter.

For the designed trajectory, the initial parameters are

� initial position, latitude ϕ0, longitude λ0, height h0

� initial velocity v = [vE0, vN0, vU0]

� the designed variation of acceleration a, which varies with time according to the designed

trajectory

� the designed variations of the attitude angles, pitch θ roll γ , and heading ψ, and attitude

angle rates,
.

θ,
.
γ ˙ , and

.

ψ˙, which vary with time according to the designed trajectory.

The Update of Velocity . The velocity is updated as

v ← v + a∆t (3.14)
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The Update of Position . The position is updated as

L← L+
vN∆t

RN

(3.15)

λ← λ+
vE∆t secL

RE

(3.16)

h← h+ vU∆t (3.17)

The Update of Attitude. The attitude angles are updated as The Update of Position. The

position is updated as

θ ← θ + ∆θ (3.18)

γ ← γ + ∆γ (3.19)

ψ ← ψ + ∆ψ (3.20)

The attitude rates are updated as

.

θ ←
.

θ + ∆
.

θ (3.21)

.
γ ← .

γ + ∆
.
γ (3.22)

.

ψ ←
.

ψ + ∆
.

ψ (3.23)

The expressions for ∆θ, ∆γ ,∆ψ and ∆
.

θ, ∆
.
γ, ∆

.

ψ depend on the designed trajectory. The

direction cosine matrix Cn
b can be calculated using matrix expression (3.52).We have that Cb

n =

(Cn
b )T

Gyro Data Generator. The output of the gyros is

ωbib = (I− Sg)(Cb
n(ωnie + ωnen) + ωbnb + εb) (3.24)

where ωbib is the simulated actual output, I is the 3x3 unit matrix, Sg is the 3 Ö 3 diagonal

matrix whose diagonal elements correspond to the 3 gyros’ scale factor errors, and εb is the

gyro’s drift and can be simulated as the sum of a constant noise and a random white noise

εb = εbconst + εbrandom

ωnie =


0

wie cosL

wie sinL

 (3.25)
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In a static base, ωbnb is equal to zero, whereas, in a moving base it is obtained as

ωbnb =


cos γ

.

θ − sin γ cos θ
.

ψ
.
γ + sin θ

.

ψ

sin γ
.

θ + cos γ cos θ
.

ψ

 (3.26)

Figure 3.5: SINS. program structure
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Accelerometer Data Generator. The measurement of the accelerometer is the specific force:

f b = (I− Sa)Cb
nf

n + ηb (3.27)

fn = a+ (2ωnie + ωnen)× v − g (3.28)

where f b is the simulated actual output, I is the 3x3 unit matrix. Sa is the 3x3 diagonal

matrix whose diagonal elements correspond to the 3 accelerometers’ scale factor errors, ηbis the

bias considered as the sum of a constant noise and a random white noise ηb = ηbconst + ηbrandom

g = [0, 0, g]T ], and

g = 9, 7803 + 0, 051799 C2
33 − 0, 94114 10−6 h

m

s2
(3.29)

where C33 is the 9th element of Cp
e and h is the vehicle altitude.

Examples. For four examples of static, straight line, circle, and s-shape situations, details will

be given next under the conditions that the vehicle is moving on the surface of the Earth with

no attitude change except for the heading angle,which means that the pitch angle, roll angle, and

altitude are constants during the simulation process:

∆θ = 0, (3.30)

∆γ = 0, (3.31)

∆
.

θ = 0, (3.32)

∆
.
γ = 0. (3.33)

The calculation method for the other parameters for the four situations is described as follows.

� Static: 

L=constant,

λ = constant,

vN = constant,

vE = constant,

∆ψ = constant,
.

ψ = constant.


(3.34)
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� Straight line: 

aE = constant,

aN = constant,

vE = vE + aE∆t,

vN = vN + aN∆t,

ψ = ψ0 + arctan vE
vN

.

ψ = aNvE−aEvN
v2E+v2N

.


(3.35)

� Circle: 
vg = constant,

aE = −2πvg cosψ

Tcircle
,

aN = −2πvg sinψ

Tcircle
,

∆
.

ψ = 2π
Tcircle

.

 (3.36)

� S-shape: 

vg = constant,

aE = −
vg cos(ψ0+Asshape sin( 2πt

Tsshape
))

Tsshape
·

2πAsshapecos(
2πt

Tsshape
)

Tsshape
,

aN = −
vg sin(ψ0+Asshape sin( 2πt

Tsshape
))

Tsshape
·

2πAsshapecos(
2πt

Tsshape
)

Tsshape
,

ψ = ψ0 + Asshape sin( 2πt
Tsshape

),
.

ψ =
2πAsshape cos( 2πt

Tsshape
)

Tsshape
.


(3.37)

3.2 MathematicalModel and Trajectory Calculation Steps

After the gyro and accelerometer data are simulated using the method described in the previous

section under the designed scenario, the next step we have to do is to figure out the mathemat-

ical model of SINS and the calculation steps to process the sensor data to get the calculated

trajectories. Based on the basic principles of strapdown inertial navigation system [12], we draw

the mathematical model in the p-frame mechanization in Figure 3.6. The calculation steps are
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Figure 3.6: SINS p-frame mechanization

described below. Although the situation that the vehicle passes over either the north or south

pole seldom happens, the universal p-frame is still chosen instead of the simpler ENU-frame to

give a navigation illustration in a different frame.

A. Quaternion Q Update and Optimal Normalization The quaternion formed by a rotating

body frame around the platform frame is

Q = q0 + q1ib + q2jb + q3kb (3.38)

The update for the quaternion can be obtained by solving the following quaternion differential

equation:



.
q0

.
q1

.
q2

.
q3

 =
1

2


0 −ωbpbx −ωbpby −ωbpbz
ωbpbx 0 ωbpbz −ωbpby
ωbpby −ωbpbz 0 ωbpbx

ωbpbz ωbpby −ωbpbx 0




q0

q1

q2

q3

 (3.39)

Based on the Euclide norm minimized indicator [12], the optimal normalization for the quaternion
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is

Q← Q√
q2

0 + q2
1 + q2

2 + q2
3

(3.40)

B. Cp
b Calculation. is vehicle attitude DCM which transforms the measured angle in the b-

frame to the p-frame, with its 9 components Tij , i, j = 1, 2, 3. Here we use Tij to distinguish it

from the components Cij which is used below.

After obtaining q0, q1, q2, andq3 using, Cp
b can be calculated as

R =


T (1, 1) T (1, 2) T (1, 3)

T (2, 1) T (2, 2) T (2, 3)

T (3, 1) T (3, 2) T (3, 3)

 =


q2

1 − q2
2 − q2

3 + q2
4+ 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) −q2
1 + q2

2 − q2
3 + q2

4 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) −q2
1 − q2

2 + q2
3 + q2

4


(3.41)

C. Specific Force Transformation from f b in b-Frame to fp in p-Frame.

fp = Cp
b f

b (3.42)

D. Velocity vpe Calculation.

.

vpe = fp − (2ωpie+ ωpep)× vpe + gp (3.43)

E. The ground speed is the vehicle velocity projection on the horizontal plane:

vg =
√
v2
x + v2

y (3.44)

F. Position Matrix Cp
e Update.

.

Cp
e = −Ωp

epC
p
e


.

C11

.

C12

.

C13
.

C21

.

C22

.

C23
.

C31

.

C32

.

C33

 =


0 0 −ωpepy
0 0 ωpepx

ωpepy −ωpepx 0



C11 C12 C13

C21 C22 C23

C31 C32 C33

 (3.45)

G. Position Angular Velocity ωpep Update. we have ωpep = 0 , and ωpepx

ωpepy

 =

 − 1
τa
− 1
Ryp

1
Rxp

1
τa

 vpex

vpey

 (3.46)
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1

Ryp

=
1

Re

(1− eC2
33 + 2eC2

23) (3.47)

1

Rxp

=
1

Re

(1− eC2
33 + 2eC2

13) (3.48)

1

τa
=

2e

Re

C13C23 (3.49)

where the elements of position matrix Cp
e can be obtained using (3.45).

H. Earth Angular Velocity ωpie and Attitude Angular Velocity ωbpb Calculation.

ωpie = Cp
eω

e
ie =


ωieC13

ωieC23

ωieC33

 (3.50)

ωbpb = ωbib − ωbip = ωbib − (Cp
b )−1(ωpie + ωpep) (3.51)

I. Attitude Angle Calculation.

p

Cb = (
b

Cp)
T =


cos γ cos ΨG − sin γ sin θ sin ΨG − cos θ sin ΨG sin γ cos ΨG + cos γ sin θ sin ΨG

cos γ sin ΨG + sin γ sin θ cos ΨG cos θ cos ΨG sin γ sin ΨG − cos γ sin θ cos ΨG

− sin γ cos θ sin θ cos γ cos θ


(3.52)

Thus, the principal values of ψ, θ, and γ are

θprincipal = sin−1 T32 (3.53)

γprincipal = tan−1

(
−T32

T32

)
(3.54)

ψGprincipal = tan−1

(
−T12

T22

)
(3.55)

Considering the defined range of the angles, the expressions of the real values of ψ , θ , and γ are

θ ← θprincipal (3.56)

γ ←


γprincipal if T33 > 0,

γprincipal + 180 if T33 < 0, γprincipal < 0,

γprincipal − 180 if T33 < 0, γprincipal > 0,

 (3.57)
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ψ ←


ψGprincipal if T22 > 0,

ψGprincipal + 180 if T22 < 0, ψGprincipal < 0,

ψGprincipal − 180 if T22 < 0, ψGprincipal > 0,

 (3.58)
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Chapter 4

Simulation of a Strap-Down Inertial

Navigation System’ Errors

4.1 Introduction

Inertial navigation is a dead reckoning positioning method based on the measurement and math-

ematical processing of the vehicle absolute acceleration and angular speed in order to estimate

its attitude, speed and position related to different reference. Due to the specific operation prin-

ciple, the positioning errors for this method result from the imperfection of the initial conditions

knowledge, from the errors due to the numerical calculation in the inertial system, and from the

accelerometers and gyros errors. Therefore, the inertial sensors performances play a main role

in the establishment of the navigation system precision, and should be considered in its design

phase frames [4]

The RLG (Ring Laser Gyros) has excellent scale-factor stability and linearity, negligible sen-

sitivity to acceleration, digital output, fast turn-on, excellent stability and repeatability across

the range, and no moving parts. Present day RLG’s is considered a matured technology and its

development efforts are to reduce costs more than to increase its performance [13] The studies pro-

vide that the developments in solid-state optics and fiber technology could lead to 0.001− deg/h

performance in miniature design. Although, gyros and accelerometers are yet too voluminous,

the miniaturization seems feasible in the near future and is developing [14].

The aerospace industry tendencies to realize unmanned aircraft (UAV), micro and nanosatellites,

easy to launch in space and with the performances analogous with the actual satellites, imposed
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a nimble(khafif) rhythm to the expansion of the NEMS (Nano-Electro-Mechanical- Systems) and

MEMS (Micro-Electro-Mechanical-Systems) technologies in the domain of the acceleration and

rotation sensors, used especially in the inertial navigation systems. The use of such miniaturized

sensors creates the premises (mukadimat mantiqia) to have redundant strap-down inertial naviga-

tion systems through the miscellaneous dedicated architectures and at the low-costs comparatively

with the case of non-miniaturized and very precise inertial sensors use. On the other way, the

use of these miniaturization technologies for the inertial sensors allows the implementation of the

entire inertial navigation system in a single chip, including here the sensors and all circuits for

the signals proccessing [15].

From the other point of view, these miniaturized sensors have some disadvantages due to the

performances decrease with the miniaturization degree increase. They are quite noises, because

at the great majority of the acceleration sensors the noise density is between 100µg/Hz
1
2 and a

few hundreds of µg/Hz
1
2 , for the bandwidths between 100Hz and 2500Hz, and at the gyro sensors

it is between 0.001
(

deg /s/Hz
1
2

)
& 0.1

(
deg /s/Hz

1
2

)
, for the pass bandwidths between 50Hz

and 100Hz. Also, for the same type of sensors the noise density can vary from one sensor to the

other with 20% of the catalogue value. The filtering of the noise it is not recommended because

it is possible to be altered the useful signal and, so, the sensor output doesn’t reflect exactly

the signal applied at the input of the sensor. Beside the noise increase, through miniaturization

appear negative influences on the stability and value of bias, on the scale factor calibration, on

the cross-axis sensitivity for the accelerometers and on the sensitivity at the accelerations applied

along any given axis for the gyros. For all of these the data sheets of the MEMS and NEMS

products stipulate maximal values relatively high, without be able to specify exactly their value

to be corrected [16]. To test the influences of the sensors errors on the solution of navigation

of strap-down inertial navigators we realized Matlab/Simulink models for the acceleration and

rotation sensors based on the sensors data sheets and on the IEEE equivalent models for the

inertial sensors. for the accelerometers was obtained the model in figure 4.1

The model has as inputs the acceleration ai, applied along of the sensitive axis, and the cross-

axis acceleration ac, and as output the perturbed acceleration a. The analytic form of the model

is:

a = (ai +Nai +B + kcac + ν)

(
1 +

∆K

K

)
(4.1)
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Figure 4.1: Accelerometers Matlab/Simulink model and its interface.

Table 4.1: Gyroscopes Error Model

Measurement range (span)[g] 25

Scale factor [mV/g] 160

Bandwidth [Hz] 1500

Noise density [ µg/Hz
1
2 ] 25

Bias [% from Span] 2

Scale factor error [% from Scale factor] 2

Crossaxis sensitivity [% from ac] 3

Sensitivity axis misalignment [rad] 0

Sample time [s] 0.01

where N is sensitivity axis misalignment (in radians), B-bias (expressed in percent of span), kc-

crossaxis sensitivity (expressed in percent of ac), ν-sensor noise (given by its density νd expressed

in µg/Hz
1
2 , K-scale factor (expressed in mV/g), and ∆K-scale factor error (percents of K), and a,
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ai, ac expressed in m/s2. The model was built for few miniaturized acceleration sensors and covers

theirs main errors: bias, scale factor error, sensitivity axis misalignment, cross axis sensitivity and

noise. The model related to the gyro sensors was implemented in Matlab/Simulink figure 4.2

Figure 4.2: Gyros Matlab/Simulink model and its interface.

starting from the equation

ω = (ωi + Sar +B + ν)

(
1 +

∆K

K

)
(4.2)

ω-sensors output angular speed (disturbed signal) expressed in deg/s, ωi-applied angular speed

(deg/s), S-sensitivity to the acceleration ar applied on an arbitrary direction (( deg/s)/g), B-bias

(expressed in percents of span), ν-sensor noise (given by its density νd expressed in (deg /s/Hz
1
2 ),

K-scale factor (expressed in mV/(deg/s)), ∆K-scale factor error (percents of K).

The models have the advantages to work independent with each of the sensor errors and to

study in this way their influence on the inertial navigator positioning solution. Although sensors

data sheets specifications are not related to the components of noise, for a more detailed study of

the navigators’ errors, the sensors’ models can be completed with some noise terms starting from

theirs Allan variance definitions. Allan’s variance results are related to the seven noise terms. Five
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Table 4.2: Accelerometers Error Model

Measurement range (span)[drg/s] 500

Scale factor [mV/drg/s] 10

Bandwidth [Hz] 60

Noise density [ µdrg/s/Hz
1
2 ] 0.0035

Bias [% from Span] 0.1

Scale factor error [% from Scale factor] 1

Sensitivity of acceleration [drg/s/g] 0.02

Sample time [s] 0.01

noise terms are basic terms: angle random walk, rate random walk, bias instability, quantization

noise and drift rate ramp, while the other two are the sinusoidal noise and exponentially correlated

(Markov) noise [16]

This section deals with solving of a navigation problem relative to terrestrial non-inertial

reference frames by using attitude matrices to calculate the vehicle attitude. Once it is highlighted

the general equation of inertial navigation, a numerical algorithm is developed for determining

the position and speed of the vehicle based on this equation. The algorithm provides position

and vehicle speed in horizontal local reference frame (ENU) and its global coordinates (latitude,

longitude and altitude). For the presented algorithm is developed an error model that highlights

the dependencies of the vehicle positioning, velocity and attitude errors by the strap-down inertial

sensor errors used to detect acceleration and angular speed. In the development of the error model

the small perturbation technique is used. Following is conducted a study of the dependence

of the inertial navigator outputs errors by the errors of the used inertial sensors based on the

Matlab/Simulink models built for acceleration and gyro sensors.

4.2 Navigation algorithm

The output
→
f of an accelerometer is influenced by the gravitational field, it is a combination

between the vehicle kinematic acceleration
→
a and the gravitational acceleration

→
g i.e.

→
f =

→
a −→g
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In literature, f is very well known as specific force according to the Coriolis formula we have:

d
→
r

dt

∣∣∣∣∣
I

=
d
→
r

dt

∣∣∣∣∣
P

+
→
Ω× →r =

→
v +

→
Ω× →r (4.3)

from where

→
a =

d

dt

[
d
→
r

dt

∣∣∣∣∣
I

]
I

=
d

dt

[
→
v +

→
Ω× →r

]
I

=
d
→
v

dt

∣∣∣∣∣
I

+
→
Ω× d

→
r

dt

∣∣∣∣∣
I

=
d
→
v

dt

∣∣∣∣∣
I

+
→
Ω×→v +

→
Ω×

(→
Ω× →r

)
(4.4)

→
r is the position vector of the monitored vehicle in inertial frame I,

→
v -the vehicle speed relative

to the ECEF (Earth Centered Earth Fixed) reference frame (denoted with P), and
→
Ω -Earth

rotation speed around its axis. Denoting with
→
ωN the absolute angular speed of the navigation

reference frame N , then the Coriolis formula applied to the d
→
v
dt

∣∣∣∣
I

term implies:

d
→
v

dt

∣∣∣∣
I

=
d
→
v

dt

∣∣∣∣
N

+
→
ΩN ×

→
v (4.5)

where d
→
v
dt

∣∣
N

is the derivative of v relative to the navigation frame. Therefore

→
a =

d
→
v

dt

∣∣∣∣
N

+
→
ωN ×

→
v +

→
Ω× →v +

→
Ω×

(→
Ω× →r

)
(4.6)

and the specific force can be rewritten as:

→
f =

d
→
v

dt

∣∣∣∣
N

+
→
ωN ×

→
v +

→
Ω× →v +

→
Ω×

(→
Ω× →r

)
− →g (4.7)

Considering
→
g a =

→
g −

→
Ω×

(→
Ω× →r

)
→
f =

d
→
v

dt

∣∣∣∣
N

+
→
ωN ×

→
v +

→
Ω× →v − →g a (4.8)

which is known as general equation of the inertial navigation.

The position and the speed of a vehicle may be obtained by the numerical integration of the

eq. 4.8 relative to the navigation frame. In the inertial navigation systems with stable platform,

the axes of the acceleration sensors are kept parallel with the navigation frame axes, and, as

a consequence, the components of the specific force are obtained directly in this frame. If a

strap-down architecture is used for the inertial measurement unit (IMU), then the components

of the specific force in the navigation frame should be calculated starting from the specific force

components in the vehicle frame (SV); the acceleration sensors in IMU are fixed directly on the
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vehicle rigid structure. In this situation the coordinate change between the vehicle frame and

navigation frame is made by using the rotation matrix describing the vehicle attitude relative to

the navigation frame. By choosing as navigation frame the local horizontal frame ENU (East-

North-Up) it results
→
ωN =

→
ωl (index l denotes the ENU frame). The scalar components of the

eq.4.8 in this frame are:

fxl =
dvxl
dt

+ ωylvzl − ωzlvyl + Ωylvzl − Ωzlvyl − gaxl

fyl =
dvyl
dt

+ ωxlvzl − ωzlvxl + Ωxlvzl − Ωzlvxl − gayl (4.9)

fzl =
dvzl
dt

+ ωxlvyl − ωylvxl + Ωxlvyl − Ωylvxl − gazl

where fxl, fyl, fzl are the components of the specific force in ENU frame; vxl, vyl, vzlcomponents

of the vehicle speed relative to ECEF frame in ENU frame;ωxl, ωyl, ωzl-components of the ENU

frame absolute angular speed
→
ωl on its own axes; Ωxl,Ωyl,Ωzl-components of

→
Ω in ENU frame;

gxl, gyl, gzl-components of the apparent gravitational acceleration in ENU frame

gxl ∼= 0, gyl ∼= 0, gzl ∼= 9.7803 + 0.0519 sin2 φ− 3.08 · 106 · h (4.10)

With these considerations we have[→
Ω
]
l
= [Ωxl Ωyl Ωzl]

T = [0 Ω cosφ Ω sinφ]T (4.11)

[
→
ωl

]
l
= [ωxl ωyl ωzl]

T =

[
− vyl
Rφ + h

,
vxl

Rλ + h
+ Ω cosφ,

vxl
Rλ + h

tanφ+ Ω sinφ

]T
(4.12)

Rφ = a
1− e2(

1− e2 sin2 φ
) 2

3

(4.13)

Rλ =
a(

1− e2 sin2 φ
) 1

2

(4.14)

The angular speed
→
ωr, relative to the ECEF reference frame, has in ENU frame the next

components: [
→
ωr

]
l
= [ωrxl ωryl ωrzl]

T =

[
− vyl
Rφ + h

,
vxl

Rλ + h
,

vxl
Rλ + h

tanφ

]T
(4.15)

Therefore, equations 4.2 become:
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dvxl
dt

= fxl +
vxlvyl
Rλ + h

tanφ+ 2Ω sinφvyl − vzl
(

vxl
Rλ + h

+ 2Ω cosφ

)
+ +gaxl

dvyl
dt

= fyl −
v2
xl

Rλ + h
tanφ− 2Ω sinφvxl − vzl

vyl
Rφ + h

+ gayl (4.16)

dvzl
dt

= fzl +
v2
yl

Rφ + h
+

v2
xl

Rλ + h
+ 2Ω cosφvxl + gazl

To integrate these equations we need to know the initial values of φ,λ ,h, vxl,vyl,vzl and,
→
f also,

the components of f and
→
g in ENU frame. Because the IMU of the strap-down inertial navigation

system contains three accelerometers and three gyros, its inputs will be the components of the

vehicle absolute acceleration and angular speed in the vehicle frame:[→
f
]
v

= [fxv fyv fzv]
T

[
→
ωv

]
v

= [ωxv ωyv ωzv]
T

The components of the specific force in ENU can be determinate by using the relation:[→
f
]
l
= Rl

v

[→
f
]
v

(4.17)

where
�

Rl
v = Rl

v
∼
ωv −

∼
ωlR

l
v (4.18)

where

∼
ωv =


0 −ωzv ωyv

ωzv 0 −ωxv
−ωyv ωxv 0

 (4.19)

∼
ωl =


0 −ωzl ωyl

ωzl 0 −ωxl
−ωyl ωxl 0

 (4.20)

Can be easily observed that eq. 4.18 has the general form:

�
X = XA−BX (4.21)
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with A =
∼
ωvand B =

∼
ωl. Considering that for a short period of time ∆t, between tn and tn+1

times, the angular speeds ωxv, ωyv,ωzv, and ωxl, ωyl,ωzl, are constant, we obtains:

∆φxv =

∫ tn+1

tn

ωxvdt = ωxv∆t

∆φyv =

∫ tn+1

tn

ωyvdt = ωyv∆t

∆φzv =

∫ tn+1

tn

ωzvdt = ωzv∆t

∆φxl =

∫ tn+1

tn

ωxldt = ωxl∆t

∆φyl =

∫ tn+1

tn

ωyldt = ωyl∆t

∆φzl =

∫ tn+1

tn

ωzldt = ωzl∆t

(4.22)

∆φxv,∆φyv,∆φzv are the increments of the angular rotations measured around the roll, pitch and

yaw axes,∆φxl,∆φyl,∆φzl the increments of the angular rotations around the ENU frame axes

calculated by the navigation processor In this way, the value provided for the X matrix at the

tn+1 time is given by:

Xn+1 = Xn +
�
Xn∆t = Xn +XnA∆t−B∆tXn (4.23)

Xn+1 = Xn (I + A∆t)−B∆tXn = XnAn −BnXn (4.24)

with

An =


1 −∆φzv ∆φyv

∆φzv 1 −∆φxv

−∆φyv ∆φxv 1

 (4.25)

Bn =


0 −∆φzl ∆φyl

∆φzl 0 −∆φxl

−∆φyl ∆φxl 0

 (4.26)

Therefore, the solution of the eq. 4.18 has the form:

Rl
v

∣∣
n+1

= Rl
v

∣∣
n
An −BnR

l
v

∣∣
n

(4.27)
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Through the numerical integration of the equations 4.2 are obtained the components of the relative

speed
→
v in ENU frame:vxl, vyl,vzl. With the equations

�
φ =

vyl
Rφ + h

(4.28)

�
λ =

vxl
(Rφ + h) cosφ

(4.29)

�
h = vzl (4.30)

the geographic coordinated of the vehicle are calculated using:

φ(t) = φ(0) +

∫ t

0

vyl
Rφ + h

dt (4.31)

λ(t) = λ(0) +

∫ t

0

vxl
(Rλ + h) cosφ

dt (4.32)

h(t) = h(0) +

∫ t

0

vzldt (4.33)

By using the rotation matrix between ENU and ECEF frames

[Rp
l ]
T = Rl

p =


− sinλ cosλ 0

− sinφ cosλ − sinφ sinλ cosφ

cosφ cosλ cosφ sinλ sinφ

 (4.34)

the components of the relative speed
→
v in ECEF frame result with equation:[

→
v
]
p

= Rp
l

[
→
v
]
l

(4.35)

numerical integration of the relative speed
[
→
v
]
p

yields
[
→
r
]
p[

→
r
]
p

=

[
→
r(0)

]
p

+

∫ t

0

[
→
v
]
p
dt = [xp, yp, zp]

T (4.36)

with the model of the gravitational field for ECEF reference frame (Radix, 1993),

[
→
ga

]
p

=


gaxp

gayp

gazp

 =


A1

xp
r3

(
1 + A2

r2

(
5z2p
r2
− 1
))

+ Ω2 · xp

A1
yp
r3

(
1 + A2

r2

(
5z2p
r2
− 1
))

+ Ω2 · yp

A1
zp
r3

(
1 + A2

r2

(
5z2p
r2
− 3
))

 (4.37)

A1 = −3.986005 · 1014 ·m3/s2, A2 = −6.66425 · 1010 ·m2 (Radix, 1993). Components of
→
g a in

ENU frame, starting from the model (33), are calculated by using the inverse transform ECEF

to ENU:
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Figure 4.3: Block diagram of the navigation algorithm.

[
→
ga

]
l
= Rl

p

[
→
ga

]
p

(4.38)
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Finally, the vehicle coordinates in ENU are obtained with the equation:[
→
r
]
l
=

[
→
r(0)

]
l

+

∫ t

0

[
→
v
]
l
dt = [xl, yl, zl]

T (4.39)

where
[
→
r
]

is the vehicle position vector in ENU reference frame. From the mathematical descrip-

tion of the algorithm, yields the block diagram in figure 4.3

4.3 Error model of the navigation algorithm

The quality of the inertial navigator depends on the precision of the used sensors and on the

numerical algorithms implemented in the navigation processor. For the error model developed

in this subchapter are taken into account only the errors of the inertial sensors, considering that

the numerical algorithm implemented in the navigation processor works free of errors. Thus, the

model highlights the dependence of the position, velocity and attitude errors by the errors of the

accelerometers and gyros in strap-down IMU.

Denoting with m the ideal value of a measurement and with
_
m its real value, given by the

measurement system, the measurement error is calculated with the relation:

δm = m− _
m (4.40)

Starting from this expression

δfxv = fxv −
_

fxv; δfyv = fyv −
_

fyv; δfzv = fzv −
_

fzv (4.41)

δωxv = ωxv −
_
ωxv; δωyv = ωyv −

_
ωyv; δωzv = ωzv −

_
ωzv (4.42)

Similarly can be defined the errors of the attitude angles(φ, θ, ψroll, pitch and yaw),errors of the

vehicle position over the ENU frame axes (xl, yl, zl), and the errors of the vehicle linear speed

(vxl, vyl, vzl):

δφ = φ−
_

φ; δθ = θ −
_

θ ; δψ = ψ −
_

ψ; (4.43)

δxl = xl −
_
xl; δyl = yl −

_
yl; δzl = zl −

_
zl; (4.44)

δvxl = vxl −
_
vxl; δvyl = vyl −

_
vyl; δvzl = vzl −

_
vzl; (4.45)
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Starting from the errors of the attitude angles may be deduced the errors affecting the attitude

matrices. Thus, with the equations expressing the elements of the rotation matrix Rv
l (ENU to

SV) and considering δφ · δθ = δφ · δψ = δψ · δθ = 0

Rv
l =

_

Rv
l


1 −δψ δθ

δψ 1 −δφ

−δθ δφ 1

 =
_

Rv
l

(
I +

∼
R
)

(4.46)

with

∼
R =


0 −δψ δθ

δψ 0 −δφ

−δθ δφ 0

 (4.47)

where Rv
l is the ideal matrix, and

_

Rvl the matrix provided by the navigation system (real). From

eq. 4.46 we have:

Rl
v = (Rv

l )
T =

(
I +

∼
R
)T
·
( _

Rv
l

)T
=
(
I −

∼
R
)
·
∼
Rl
v (4.48)

In similar way, for the Rl
pmatrix (ECEF to ENU), in which are considered the latitude and

longitude errors:

δλ = λ−
_

λ; δφ = φ−
_

φ; δh = h−
_

h; (4.49)

Rl
p =

(
I −

∼
P
)
·
_

Rl
p (4.50)

where Rl
p is the ideal matrix, and

_

Rl
p the matrix provided by the navigation system (real).

and
∼
P has the form:

∼
P =


0 −δpz δpy

δpz 0 −δpx
−δpy δpx 0

 (4.51)

with: δpx = −δφ, δpy = cos(
_

φ) · δλ, δpz = sin(
_

φ) · δλ One of the form of the attitude Poisson

equation is
�
Rv
l = Rv

l ·
∼
ωl −

∼
ωv ·Rv

l (4.52)
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where
∼
ωl and

∼
ωv have the expressions given by equations 4.19. Due to the erroneous measure-

ments, the inertial system integrates the next equation:

_
�
Rv
l =

_

Rv
l ·

_
∼
ωl −

_
∼
ωv ·

_

Rv
l (4.53)

Thus, it results:
_
�
Rv
l =

_

Rv
l ·
(
∼
ωl − δ

∼
ωl

)
−
(
∼
ωv − δ

∼
ωv

)
·
_

Rv
l (4.54)

with

δ
∼
ωv =


0 −δωzv δωyv

δωzv 0 −δωxv
−δωyv δωxv 0

 (4.55)

δ
∼
ωl =


0 −δωzvl δωyl

δωzl 0 −δωxl
−δωyl δωxl 0

 (4.56)

From eq. 4.47 we obtain:

Rv
l −

_

Rv
l =

_

Rv
l ·
∼
R (4.57)

which, through derivation, implies:

�
Rv
l −

�
_

Rv
l =

�
_

Rv
l ·
∼
R +

_

Rv
l ·

�
∼
R (4.58)

so
_

Rv
l ·

�
∼
R =

�
Rv
l −

�
_

Rv
l ·
(
I +

∼
R
)

(4.59)

Substituting and rearanging above relations we get:

�
∼
R =

{∼
R · ∼ωl −

∼
ωl ·

∼
R
}

+
{
δ
∼
ωl

}
−
{( _

Rv
l

)T
· δ ∼ωv ·

_

Rv
l

}
(4.60)

With formulas (4.61) and (4.30) it results:[
→
ωl

]
l
= [ωxl ωyl ωzl]

T =

[
− vyl
Rφ + h

,
vxl

Rλ + h
+ Ω cosφ,

vxl
Rλ + h

tanφ+ Ω sinφ

]T
=

=

[
−

�
φ,

�
λ cosφ+ Ω cosφ,

�
λ sinφ+ Ω sinφ

]T
(4.61)
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Evaluating the terms of differential equation (4.60), we obtain:

∼
R · ∼ωl −

∼
ωl ·

∼
R =


0 − (ωylδφ− ωxlδθ) ωxlδψ − ωzlδφ

ωylδφ− ωxlδθ 0 − (ωzlδθ − ωylδψ)

− (ωxlδψ − ωzlδφ) ωzlδθ − ωylδψ 0

 (4.62)

[δωl]l =


δωxl

δωyl

δωzl

 =


−

�
δφ

− sinφ ·
�
λ · δφ+ cosφ · δ

�
λ− Ω · sinφ · δφ

+ cosφ ·
�
λ · δφ+ sinφ · δ

�
λ+ Ω · cosφ · δφ

 (4.63)

and for the product

[( _

Rv
l

)T
· δ ∼ωv ·

_

Rv
l

]
are given by the following matrix elements expressions

Therefore, the elements of the matrix

�
∼
R from equation 4.60 are calculated by using relations of

a11 = a22 = a33 = 0

a21 = −a12 = − sin
_

θ · δωxv − sin
_

φ · cos
_

θ · δωyv + cos
_

φ · cos
_

θ · δωzv
a13 = −a31 = + cos

_

θ · sin
_

φ · δωxv +
(

sin
_

φ · sin
_

θ · sin
_

ψ + cos
_

φ · cos
_

ψ
)
· δωyv+

+
(

cos
_

φ · sin
_

θ · sin
_

ψ − sin
_

φ · cos
_

ψ
)
· δωzv

a13 = −a31 = + cos
_

θ · cos
_

φ · δωxv +
(

sin
_

φ · sin
_

θ · cos
_

ψ − cos
_

φ · sin
_

ψ
)
· δωyv+

+
(

cos
_

φ · sin
_

θ · cos
_

ψ + sin
_

φ · sin
_

ψ
)
· δωzv

the form:

r11 = r22 = r33 = 0

r21 = −r12 = (ωylδφ− ωxlδθ)− a21 + δωzl

r13 = −r31 = (ωxlδψ − ωzlδφ)− a13 + δωyl

r32 = −r23 = (ωzlδθ − ωylδψ)− a32 + δωxl

Taking into account that: [
δ
→
ωv

]
v

= [δωxv, δωyv, δωzv]
T (4.64)

can be quickly demonstrated that the elements described by formulas 4.3 come from a product

by the form

{( _

Rv
l

)T
·
[
δ
→
ωv

]
v

}
Thus, denoting with:

[→
Φ
]
l
= [deg φ, δθ, δψ]T (4.65)
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the vector having the components equal with the errors of the attitude angles, it appears that:


ωzlδθ − ωylδψ

ωxlδψ − ωzlδφ

ωylδφ− ωxlδθ

 = −
[
→
ωl ×

→
Φ
]
l

(4.66)

and the matrix equation 4.60 can be transfigured as:[→
�
Φ

]
l

= −
[
→
ωl ×

→
Φ
]
l
−
[( _

Rv
l

)T
·
[
δ
→
ωv

]]
v

+
[
δ
→
ωl

]
l

(4.67)

where

[( _

Rv
l

)T
·
[
δ
→
ωv

]]
v

represents the errors due to gyro measurements in ENU frame, and[
δ
→
ωl

]
l
contains the errors of the angular velocities assessment committed by navigation processor.

Equation 4.67 is the differential equation of the attitude error. the equation that characterizes

the speed error evolution in time is as follow:

[
δ

→
�
v

]
l

= −
[→
Φ
]
l
·
[→
f
]
v

+
_

Rl
v ·
[
δ
→
f
]
v

+
[ →
δga

]
l
−
[(
→
ωl + Ω

)
× δ→v

]
l
−
[( →
δωl + δΩ

)
× →v

]
l

(4.68)

[ →
δga

]
l
'
[
0, 0,−2

g

a
· δh
]

(4.69)

[ →
δΩ
]
l
' [0, −Ω · sinφ · δφ, Ω · cosφ · δφ]T (4.70)

from the next equation:

vxl = (Rλ + h) · cosφ ·
�
λ

vyl = (Rφ + h) ·
�
φ

vzl =
�
h

(4.71)

we obtain the positioning errors on the axes of the ENU frame:

δxl = (Rλ + h) · cosφ · δλ

δyl = (Rφ + h) · δφ

δzl = δh

(4.72)

By derivation with respect to time, equations 4.73 imply after rearrangement we get:
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δ
�
xl = δvxl − (Rφ + h) · sinφ ·

[
�
φ · δλ−

�
λ · δφ

]
+ cosφ ·

[
�
δλ−

�
λ · δh

]
δ
�
xl = δvyl +

�
h · δφ−

�
φ · δh

δ
�
xl = δvzl

(4.73)

If we denote: [
→
p
]
l
= [δpx, δpy, δpz]

T =
[
−δφ, cos

_

φ · δλ, sin
_

φ · δλ
]T

(4.74)

and we denote [→
�
r

]
l

=
[
δ

�
xl, δ

�
yl, δ

�
zl

]
(4.75)

the equation characterizing the evolution in time of the positioning error (eq. (83)) becomes:

[
δ

→
�
r

]
l

=
[
δ
→
v
]
l
+
[
→
p × →v

]
l
−
[
→
ωr × δ

→
r
]
l

(4.76)

In conclusion, the error model of the navigation algorithm in terrestrial non-inertial reference

frames by using attitude matrices is described by next equations:

[ →
�
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l
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δ
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]
l
−
[
→
ωr × δ

→
r
]
l

(4.77)

The resulting model consists of a system of coupled differential equations and contains nine

variables: three variables are errors in the determination of the attitude angles (δφ, δθ, δψ), three

variables are errors in the determination of the speed (δvxl, δvyl, δvzl) and three variables are errors

in determination of the position (δxl, δyl, δzl). The input variables of the model are the errors of

the six inertial sensors used in the strap-down inertial navigation system. In addition to the nine

variables, in the error model are involved the global positioning errors of the vehicle (δλ, δϕ, δh),

linking the nine differential equations. Numerical integration of the error model is rather difficult

due to the couplings between its equations, but also due to the time evolution considered for

inertial sensors errors. It can be performed, however, some numerical simulations, for different
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sources of error affecting the inertial sensors, in order to highlight their influence on the final

errors of the navigation algorithm.

4.4 Numerical simulations

The validation of the navigation algorithm and of its error model is achieved by building Mat-

lab/Simulink models for them followed by numerical simulation of these models for several navi-

gation particular cases. Following is conducted a study of the dependence of the inertial navigator

outputs errors by the errors of the used inertial sensors. For this purpose, the Matlab/Simulink

models built for acceleration and gyro sensors are used; on the inertial navigator inputs are con-

sidered three miniaturized optical integrated accelerometers (MOEMS) and three fiber optic gyros

with the associated errors according to their data sheets. Due to the fact that the accelerometer

and gyro software developed models allow users to work independently with each sensor error in

the theoretical model, are studied the influences of the noise, bias and scale factor sensors errors

on the navigation solution components. Simulations are performed for three different navigation

cases, the vehicle having the same initial position in all three cases: 1) the vehicle is immobile, 2)

the vehicle runs at 0.1g acceleration on the x-axis, 3) The vehicle is subjected to turning with an-

gular velocity 0.1degree/s, while running on the track with acceleration 0.1g along x-axis, which

means the sensing of an acceleration of -0.0516 m/s2 (−0.0053g) along y-axis.

Thus, starting from the navigation algorithm block scheme in Fig. 4.3 the Matlab/Simulink

model in Fig.4.4 is obtained. Also, the software implementation of the navigator error model

leads to the Matlab/Simulink model in Fig.4.5.
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Figure 4.4: Matlab/Simulink model of the navigation algorithm.
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Figure 4.5: Matlab/Simulink implementation of the inertial navigator error model.
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Figure4.6:MatlabSimulinkvalidationmodel.
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With these two models it results the validation model in Fig. 4.4; “REAL” and “IDEAL”

are blocks modelling the navigation algorithm (as in Fig. 4.4), having as inputs accelerations

and angular speeds signals disturbed by the errors of strap-down inertial sensors, respectively

undisturbed by the errors of strap-down inertial sensors. “ERROR” is a block by the form in

Fig. 4.5. The input blocks “Acc” and “Gyro” are accelerometers and gyros models as in Fig.

4.1 and Fig. 4.2, and theirs outputs are applied to the “REAL” block. The values of the input

constants are considered to be ideal signals, un-disturbed by the acceleration and rotation sensors,

these being applied to the “IDEAL” block. Modelling and Simulation Based Matlab/Simulink of

a Strap-Down Inertial Navigation System... The error model validation is realized through the

comparison of the differences between the outputs of the “IDEAL” and “REAL” blocks with the

outputs of the error model. In Fig. ================ a. are depicted the attitude

angles errors, the first column containing the differences between the outputs of the “IDEAL”

and “REAL” blocks, and the second column-the outputs of the error model. In the same mode

are built Fig. ========== b. (for the positioning errors in ENU reference frame) and Fig.

============== c. (for the speed errors in ENU reference frame).
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CONCLUSION
Main objectives of this work are to model and examine a model of an inertial navigation

unit. The research in this work led to the following contributions: Development of a simulation

method, which can be used to estimate the quality of a strapdown INS in a laboratory before

its using in practice. The development of the mechanization of an inertial unit. The creation

of a simulink interface that allows the determination of the various parameters of the inertial

navigation. During the achievement of this work we were able to learn the method of mechanizing.

Much difficulty have been presented in the creation of the simulink interface, and at the level of

the very complicated that we gave a lot of time to figure it out. By now we have been familiar

with this method and we have been able to set up the simulation of the position (latitude and

longitude) velocity attitude and errors associated with those parameters. Finally. We hope that

this document will be of assistance to new exploiters in this area.
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Appendix A

the first appendix

A.1 Inertial Sensor Performance Characteristics

To assess an inertial sensor for a particular application, numerous characteristics must be consid-

ered.

� Repeatability: The ability of a sensor to provide the same output for repeated applications

of the same input, presuming all other factors in the environment remain constant. It refers

to the maximum variation between repeated measurements in the same conditions over

multiple runs.

� Stability: This is the ability of a sensor to provide the same output when measuring a

constant input over a period of time. It is defined for single run.

� Drift: The term drift is often used to describe the change that occurs in a sensor measure-

ment when there is no change in the input. It is also used to describe the change that occurs

when there is zero input.

A.2 Solution to Transformation Matrix

The time rate of change of a transformation matrix from the body frame into a computational

frame k is where R is the transformation matrix from the body frame to the computational

frame, and X is the skew-symmetric matrix associated with the angular velocities xx;xy;xz of the



Chapter A. the first appendix 108 Chapter A. the first appendix

body frame with respect to the computational frame Equation (5.75) requires the solution of nine

differential equations in order to obtain the transformation matrix from the angular velocity data.

A closed form solution of this equation will now be discussed. Assuming the angular velocity x

is constant over the small time interval Dt, then the small incremental angular changes of the

rotation of the body frame with respect to the computation frame k is

A.3 Solutions of the Quaternion Equation

DiscretDuring a short interval of time Dt, the angular velocity of the rotation x can be presumed

constant, and the closed form of the discrete solution to the quaternion Eq. (5.91) ise Closed

form (Analytical) Solution

Numerical Integration Methods If the rotation rate is slow, then standard numerical integration

algorithms can also be used to solve the differential Eqs. (5.75) and (5.91). Euler’s Method For

a first-order differential equation
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