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Abstract: 

This thesis focuses on the design and development of two independent nonlinear control methods 

for attitude tracking of quadrotors UAV. We first introduce the concept of the quadrotor, where 

the nonlinear dynamic model of quadrotor is obtained by using Newton’s equations of motion 

along with the set of frames necessary. Then, a detailed study about each controller is presented 

where the first controller is a robust optimal adaptive which deals with tracking problem in 

presence of parametric uncertainties, actuator amplitude constraints, and unknown time-varying 

external disturbances. This method uses a nonlinear disturbance observer that was integrated 

with an adaptive control to handle external disturbance and parametric uncertainties respectively. 

While a PSO algorithm is proposed to tackle input constraints.  The second one presents a 

geometric adaptive control system with state inequality constraints for the attitude dynamics of a 

rigid body which was presented on 𝑆𝑂(3) manifolds avoiding undesired regions and deal with 

external disturbances. The control systems are designed such that the desired attitude is 

stabilized based on Lyapunov theory. Finally, to test and validate the proposed controllers, 

several simulation using Matlab code are presented with a comparison between the developed 

controllers in term of their dynamic performance.  

Keywords: Quadrotor UAV, attitude tracking control, ROAC, GAC, Lyapunov theory. 

 

Résumé : 

Cette thèse se concentre sur la conception et le développement de deux méthodes de contrôle non 

linéaires indépendantes pour le suivi d'attitude des drones quadrirotors. Nous introduisons 

d'abord le concept du quadrirotor, où le modèle dynamique non linéaire du quadrirotor est obtenu 

en utilisant les équations de mouvement de Newton avec les différents repères utilisés. Ensuite, 

une étude détaillée sur chaque contrôleur est présentée dans laquelle le premier contrôleur est un 

adaptatif optimal robuste qui traite le problème de suivi en présence d'incertitudes paramétriques, 

de contraintes d'amplitude d'actionneur et de perturbations externes variant dans le temps 

inconnu. Cette méthode utilise un observateur de perturbations non linéaire qui a été intégré à un 

contrôle adaptatif pour éliminer respectivement les perturbations externes et les incertitudes 

paramétriques. Alors qu'un algorithme PSO est proposé pour gérer les contraintes d'entrée. Le 

second présente un système de contrôle adaptatif géométrique avec des contraintes d'inégalité 

d'état pour la dynamique d'attitude d'un corps rigide qui a été présenté sur des variétés SO (3) 



 ii 

évitant les régions indésirables et traitant les perturbations externes. Les systèmes de contrôle 

sont conçus de telle sorte que l'attitude souhaitée est stabilisée sur la base de la théorie de 

Lyapunov. Enfin, pour tester et valider les contrôleurs proposés, plusieurs simulations utilisant le 

code Matlab sont présentées afin de comparer entre les contrôleurs développés en terme de leurs 

performances dynamiques. 

Mots clés : UAV quadrirotor, contrôle de suivi d’attitude, ROAC, GAC, théorie de Lyapunov. 
 

 

 :   ملخص 

تركز هذه الأطروحة على تصميم وتطوير طريقتين مستقلتين للتحكم غير الخطي لتتبع موقف الطائرات بدون طيار الرباعية. 

حيث يتم الحصول على النموذج الديناميكي غير الخطي للرباعي باستخدام معادلات نيوتن للحركة  الرباعي،نقدم أولاً مفهوم 

يتم تقديم دراسة مفصلة حول كل طريقة تحكم حيث تكون طريقة التحكم  ذلك،اللازمة. بعد  الممجموعة المعجنبًا إلى جنب مع 

وقيود سعة المشغل والاضطرابات  معلميهالأولى وسيلة تكيفية مثالية قوية تتعامل مع مشكلة التتبع في ظل وجود شكوك 

اقب اضطراب غير خطي تم دمجه مع عنصر تحكم الخارجية غير المعروفة المتغيرة بمرور الوقت. تستخدم هذه الطريقة مر

لمعالجة قيود  PSOتكيفي للتعامل مع الاضطرابات الخارجية والشكوك المعلمية على التوالي. بينما تم اقتراح خوارزمية 

لب سم صات الموقف لجكالإدخال. تمثل طرقة التحكم الثانية نظام تحكم هندسي تكيفي مع قيود عدم المساواة في الحالة لدينامي

المناطق غير المرغوب فيها والتعامل مع الاضطرابات الخارجية. تم تصميم أنظمة  لتجنب  SO(3)والذي تم تقديمه على متشع

 .Lyapunovالتحكم بحيث يتم تثبيت الموقف المطلوب بناءً على نظرية 

التحكم  للمقارنة بين أنظمة Matlabخدام كود يتم تقديم محاكاة باست المقترحة،لاختبار والتحقق من صحة أنظمة التحكم  أخيرًا، 

 المطورة من حيث أدائها الديناميكي.

.النموذج الديناميكي، الخطيغير  ، للتحكمموقفتتبع ، الرباعيةبدون طيار طائرة : الكلمات المفتاحية  
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INTRODUCTION 

BACKGROUND 

   UAV technology is constantly evolving as a new innovation and a big investment where there 

has been a constant increase in the use of UAV over the past several decades. The UAV is a 

flying machine without a pilot on-board. The initial purpose for UAV was military 

reconnaissance, intelligence and surveillance applications. Furthermore, and because of the 

development in the electronics field that made a huge leap in microcomputers performance while 

the size and weight of the components decreases, the drone platforms got out of the military 

sector, and started to be introduced in the civilian applications such as the data collection, the 

aerial photography, the agriculture and especially in the commercial field.  

     Aside from further developing the current applications of UAV systems mentioned before, a 

large market will be explored is personal air taxi service and package delivery especially with 

online shopping. The latter is of particular interest to companies such as Amazon and Domino’s 

Pizza (Desjardins, 2018), which are putting their efforts in developing the required technologies. 

Where according to the Drone Market Report 2020, the global UAV market will grow from 

$22.5 billion in 2020 to over $42.8 billion in 2025 at a CAGR (Compound annual growth rate) of 

13.8% [1]. The reasons for this much interest in UAVs is due to their ability to perform those 

tasks, which are difficult or dangerous for humans with less cost and less investment of 

resources. 

    Due to extensive usage of the UAV, various types of UAVs are produced depending on their 

applications. Although there is huge variety of drone platforms. For example, there are hybrid, 

fixed-wing planes, single rotor helicopters, quadrotors… and each of them has advantages and 

drawbacks. One of the most popular UAV is the Quadrotor, because it has a number of 

advantages over the other UAVs due to its ability to take-off and land vertically. Furthermore, 

like a helicopter, the quadrotor can hover, but with its four rotors, it is capable of lifting larger 

payloads relative to its own weight. In addition, a small-sized quadrotor is agile, highly 

maneuverable, and is inherently more stable due to the four-rotor design with counter rotating 

props. Owing to these advantages, and a growing-range of useful applications, the quadrotor has 

become a popular subject for research. For that, the work developed in this thesis is focused on 

quadrotors. 

   Efficient motion control of quadrotors is still an important scientific challenge because the 

quadrotors are under-actuated systems, which means having fewer actuators than the degree of 

freedom with highly nonlinear and coupled dynamics. Furthermore, the development of effective 

quadrotor controllers is essential. The control techniques involved must also improve in order to 
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provide better performance and increased versatility. Linear and nonlinear control methods are 

proposed in literature to achieve the control objectives. Simplistic linear control techniques were 

employed for computational ease and stable hover flight such as the classical PID controller, 

which was, applied in many approaches like Bouabdallah et al [2], [3], [4]. A modified version 

of the PID controller was presented in [5] also LQR controllers mentioned in [6] and [7], where 

Bethke et al. developed techniques using LQR to perform flight tests indoors for long duration 

missions. However, with better modelling techniques and faster on board computational 

capabilities, comprehensive nonlinear techniques to be run on real-time have become an 

achievable goal. Nonlinear methodologies promise to rapidly increase the performances for these 

systems and make them more robust. Various nonlinear control methods have been proposed in 

literature such as Feedback Linearization in [8], where D. Lee et al. presented two types of 

controllers for AQ using nonlinear techniques. These included a feedback linearization controller 

that involved high-order derivative terms. S. Bouabdallah et al. presented applications of control 

strategies using the backstepping technique in [9], [10]. In [11], a robust sliding mode controller 

was introduced for trajectory tracking of a quadrotor. All these control methods have been 

successfully controlled systems with certain and fully known dynamics. 

    All the control techniques suggested above require complete knowledge of the system model 

and model parameters. Systems that need to be controlled, such as quadrotor, suffer from 

uncertainty in its parameters, i.e. errors in the identified values of the parameters, which can lead 

to significant deterioration of the controller performance. Furthermore, unmodeled variations in 

system parameters such as mass or inertia during flight can cause significant stabilization errors 

to occur. This problem could make such systems unstable and harder to control. Therefore, the 

need for an accurate nonlinear model of quadrotor dynamics can be overcome by using adaptive 

methods that can react to and correct errors in model parameter estimates, modify parameter 

estimates when they change. There were many different methods used the adaptive control to 

deal with parametric uncertainties in literature such as in [12] where a general review of adaptive 

control applied to quadrotors was presented. In [13], the trajectory tracking control problem was 

addressed using direct and indirect model reference adaptive control. Decentralized control has 

been combined with adaptive nonlinear control techniques for quadrotor trajectory tracking. In 

[14], the quadrotor dynamic was separated into two subsystems, and decentralized adaptive 

controls were applied to solve the trajectory tracking problem. Similarly, a decentralized 

adaptive controller was proposed in [15] to stabilize the altitude and attitude of the quadrotor 

when model uncertainties are present. Let us notice that many of the adaptive controllers in 

literature present significant disadvantage, which is the external disturbances, that was not taken 

into account. 
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   During the flight, the quadrotor is usually affected by external disturbances, including severe 

wind, rain and vibration. A realistic objective when it comes to external disturbances is to reject 

its effects acting on the UAV. The rejection of unknown external disturbances offers a more 

challenging task due to the limited available information about the disturbance. The rejection of 

external disturbances has been attempted in various ways where the robust control was the 

responsible to remain the stability to the system in the presence of disturbances.  Many 

literatures studied the tracking control of quadrotors in the presence of parametric uncertainties 

and external disturbances simultaneously, for example: Bialy et al. (2013), Selfridge and Tao 

(2014), Zhao et al. (2015), Basri et al. (2015), Yang and Yan (2016) … 

   Unfortunately, the parametric uncertainties and external disturbances are not the only problems 

facing the quadrotors control, where the input constraints are considered as one of the reasons 

that reduce the performance of quadcopters by making the optimization problem extremely 

challenging. Methods control of input constraints was not mentioned in many approaches. 

  Another problem that face the control of quadrotors is the parameterization of rigid body 

attitude. We find different types of attitude presentations such as Euler angles, quaternions and 

matrix rotation. Where it is known that the Euler angles parameterization suffer from 

singularities, usually, the singularity is because only three parameters are used. As for the 

quaternions, which use four parameters to represent the attitude, they do not have singularities 

but they double cover the special orthogonal group what make the representation of attitude has 

non-unique representation and that called the ambiguities. Where for the rotation matrix that is 

the natural presentation of attitude is the set of orthogonal matrices whose determinant is one 

[16], it is a unique and global mathematical parameterization.  

   In addition to attitude representation, the attitude control suffers from the state constraints 

where there are regions that must be avoided while tracking attitude of a quadrotor. Several 

approaches studied the attitude control using the different attitude representations in the presence 

and absence of constraints. 

MOTIVATION AND OBJECTIVES 

     The prospected growth of the use of UAVs in the next years requires the managing of these 

units in a safe and controlled manner. Therefore, this thesis tries to contribute to the integration 

of UAVs into our daily lives, by designing and validating high performance control algorithms 

for quadcopters with the goal of robustly tracking attitude control. 

   To achieve this goal, and to deal with the challenges that arise quadrotors control, two different 

control approaches are developed. The parameters of the quadrotor are identified to allow the 

implementation of the two controllers. The study of the kinematics and dynamics will help to 
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understand the physics of the quadrotor and its behavior. Together with the modelling, will help 

to determine the control algorithm structure to achieve a better stabilization. The whole system is 

validated and tested using Matlab code. 

   Many approaches studied the control of quadrotor in the presence of parametric uncertainties, 

external disturbances and input constraints individually. Nevertheless, there is no study before 

about tracking control of quadrotor in the presence of the three problems simultaneously. For 

that, the first objective of this thesis is to develop control algorithm based on approach [17] that 

deals with parametric uncertainties, external disturbances and input constraints together. The 

adaptive control is used to tackle with parametric uncertainties by updating an adaptive law that 

estimates the unknown parameters. While the robust control makes sure the closed loop control 

system, remain stable in the presence of disturbance using a Nonlinear Disturbances Observer. 

Finally, a PSO algorithm will minimize the effect of input saturation. 

   The second objective of this study is to develop a Geometric Adaptive Control based on 

approach [18]. Geometric control is concerned with the development of control systems for 

dynamic systems evolving on nonlinear manifolds that cannot be globally identified with 

Euclidean spaces. By characterizing geometric properties of nonlinear manifolds intrinsically, 

geometric control techniques completely avoid singularities and ambiguities that are associated 

with local coordinates or improper characterizations of a configuration manifold [19]. Where we 

will represent the attitude dynamics on 𝑆𝑂(3) and focusing on developing an adaptive attitude 

control that will deal with inequality constraints. Furthermore, to enable the convergence of 

attitude in the presence of external disturbances, an adaptive law will be update. 

  A Lyapunov theory will ensure the stability of the vehicle inside the flight envelope at all times 

in the both of approaches. A detailed study about the nature of these controllers will be presented 

in the next chapters of this thesis. 

  The final objective is to compare and evaluate the overall performance of the developed control 

algorithms and conclusions are drawn with respect to the effectiveness of each method in 

rejecting external disturbances, dealing with parametric uncertainties and input constraints.
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THESIS OUTLINE 

The outline of this thesis is summarized as follows: 

  In Chapter 1, general definitions and information about UAVs will be given in the first 

section. While in the second section, an overview about the attitude and its 

representation will be presented. 

 In Chapter 2, more detailed information about quadrotors will be given. It also provides 

a general concept of quadrotor and its basic movements are explained and illustrated. In 

addition, the quadrotor model is further illustrated by providing some detail using the 

Newton-Euler method. Furthermore, the literature survey and theoretical background for 

the linear and nonlinear control techniques for the hovering and trajectory tracking 

control of the UAV will be presented finally. 

 In Chapter 3, the proposed control schemes are described. This is followed by an 

explanation detailed of the robust optimal adaptive control and the geometric adaptive 

control. Where the control design of both controllers will be given in addition to their 

stability analysis.  

 In Chapter 4, the aforementioned control schemes are validated in simulation Matlab 

using a more realistic model. Throughout this chapter, an explanation of the validation 

model differences, the parameter tuning for the tracking attitude and several simulation 

tests are developed. Finally, the simulation results are shown for two considered 

controllers. 

 In the last chapter, using the results obtained in simulation, conclusions are drawn on the 

performance of each controller. The main points reached during the development of the 

thesis are presented. This thesis is finalized with remarks that could be improved in a 

future work. 
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Chapter 1 

UAV GENERALITIES AND ATTITUDE REPRESENTATION 

1.1 INTRODUCTION 

      Technology advancement has a lot of impact on the quality of life. These fast-paced 

technological advancements became integrated as a precision tool not only in the industry, but 

also in our social lives. One of this technology researches has made Unmanned Aerial Vehicles 

(UAVs) or simply drones, a reality which is very trending nowadays. 

   UAVs have been widely adopted in the military world over the last decade and the success of 

these military applications is increasingly driving efforts to establish UAVs in civil applications 

that could avoid risking human lives especially for dangerous situations such as, search and 

rescue at damaged disaster areas, firefighting etc. Performing these hazardous tasks without 

direct human interaction is highly valuable.  

   In aeronautics, piloting an aircraft basically means flying an aircraft, which is related to the 

capability to control the attitude of the vehicle. While most UAVs are remotely operated, they 

almost have an on board autopilot in charge of flying the aircraft. For that, for a better 

performance, controlling attitude poses significant challenges for the UAVs future. 

  The aim of this chapter is to provide an overview of drones and attitude. In the first section, a 

literature review about UAVs is presented firstly and then their classification and applications 

were discussed.  In the second section, we will see different types of reference systems also some 

attitude presentations. 

1.2 UAV OVERVIEW 

1.2.1 Technology of UAVs 

     Unmanned Aerial Vehicles (UAVs), also known as aerial drones, are an aircraft flying 

without a human pilot on board, whether their controlling is performed remotely by radio waves 

or autonomously by on board computers. They are often equipped with accessories used for 

surveillance and monitoring, in the form of the optoelectronic heads. The design and 

configuration of drones can vary according to their specifications and applications. They can be 

very small compared to manned air vehicles since additional space and weight considerations for 

human crew are not included to the air vehicle. With the latest development of Micro Electro 

Mechanical Systems (MEMS) technology, human crew with large weight and space can be 

replaced with very small electronic devices in UAVs. Therefore, for specific operations that 
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require small size aerial vehicles, UAVs can be very effective and they can provide the attack 

capability for high-risk missions mostly in the military applications. 

 The UAVs can be used in other applications such as the surveillance, the data collections, 

photography, commercial and many other fields. 

 Drones offer less stressful environment. They are used for better decision making and able to fly 

in dangerous zones. 

Drones vary in shape and size and they can be categorized according to weight, flight range, 

flight altitude, autonomy, and purpose of use, which will be detailed in the following subsection. 

1.2.2 Classification of UAVs 

     There is no one standard for the classification of UAVs. Defense agencies have their own 

standard, and civilians have their ever-evolving loose categories for UAVs. However, we can 

classify them by size, range and endurance, number of propellers used inside…etc. 

Here are two main types of drones from which most are developed 

1.2.2.1 Classification of drones according to number of Propellers 

     We have two type of drones with different propellers: Rotary drones and Fixed Wing drones. 

1.2.2.1.1 Rotary drones 

     Rotary wing UAVs feature rotors consisting of blades that revolve around a fixed mast 

generating lift. The rotors generate vertical thrust by diverting the air downward. These drones 

can stand stable in the air and they are divided into two types: 

 Single Rotor drones that look similar in structure and design to actual helicopters. They 

have one big rotor plus a small sized rotor on the tail for direction and stability. They are 

strong, durable and have long-lasting flight time but they have a higher complexity and can 

be expensive. Single rotor drone is usually used for research and surveying. 

 

Figure 1.1: Single rotor UAV 
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 Multirotor that are the most popular type of drone because of their small size, ready to fly 

out of the box capabilities and are also the cheapest drone options. They carry several rotors 

on their body and can be further classified based on the number of them (tricopter, 

quadcopter, etc.). They are usually used in aerial photography, construction and security. 

 

Figure 1.2: DJI Phantom Quadrotor 

1.2.2.1.2 Fixed Wing Drones 

       Here is entirely different category from all above. Their designs are unique as compared to 

commonly used multi rotor type drones. A fixed wing drones consist of one rigid wing, they are 

designed to look and work like an airplane. These drones are not able to stand stable in one place 

in air as they are not much powerful to fight against gravitational force. Fixed wing UAVs are 

well known in the military as they are often used when manned flight is considered too risky or 

difficult. 

 

Figure 1.3: AgEagle RX60 Fixed wing UAV 
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1.2.2.1.3 General comparison between fixed and rotary wing UAVs 

     The main advantages of fixed-wing UAVs are long endurance and high cruise speeds since 

they are aerodynamically more efficient. Moreover, they are relatively simpler to design 

compared to rotary-wing. On the other hand, since fixed-wing UAVs require runways or launch 

systems to take-off and land, they are disadvantageous compared to rotary wing UAVs that have 

Vertical Take-Off and Landing (VTOL) ability [20], [21] and [22]. Fixed-wing UAVs are also 

more prone to be damaged during landing compared to rotary UAVs. Summary of the 

comparison between fixed-wing UAVs with CTOL ability and rotary-wing UAVs with VTOL 

ability can be seen in Table 1.1. 

Table 1.1: General comparison between UAV 

 Advantages Disadvantages 

Rotary-wings 

VTOL UAVs 

-No need for runways 

-Hovering ability 

-High manouverability 

-Short range and endurance 

-Limited speed and altitude 

flight 

-More complex mechanism 

-High energy consumption 

Fixed-wings 

CTOL UAVs 

-Long range and endurance 

-High speed and altitude 

flight 

-More simple mechanism 

-Energy efficient 

-Requires runways 

-No hovering 

-Less maneuverability 

-More prone to be damaged 

during landing 

 

     The high maneuverability of rotary wing UAVs and the VTOL ability enables to operate in 

complicated and limited environments. In addition, the hovering ability that is important if 

operation requires staying in the air at a specific location, such as mapping, aerial photography, 

surveillance…, made the rotary wing UAVs very popular and the best choice for specific type of 

missions. 

     In this thesis, a quadrotor, which is also a rotary wing UAV, was used. In chapter 2, more 

detailed information about quadrotors will be given and discussed. 
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1.2.2.2 Classification of drones according to size 

For classification according to size, we can come up with the sub-classes below. 

1.2.2.2.1 Very Small drones 

     The very small UAV class applies to UAVs with dimensions ranging from the size of a large 

insect to 30-50 cm long. The insect-like UAVs, with flapping or rotary wings, are a popular 

micro design. They are extremely small in size, very lightweight, and can be used for spying and 

biological warfare. Larger ones utilize conventional aircraft configuration. The choice between 

flapping or rotary wings is a matter of desired maneuverability. Flapping wing-based designs 

allow perching and landing on small surfaces. 

Examples of very small UAVs are the Australian Cyber Technology CyberQuad Mini and Maxi 

and the US Aurora Flight Sciences Skate. 

 

Figure 1.4: Very small UAVs 

1.2.2.2.2 Small drones 

     The small UAV class, also called mini-UAV, applies to UAVs that have at least one 

dimension greater than 50 cm and no larger than 2 meters. Many of the designs in this 

category are based on the fixed-wing model, and most are hand-launched by throwing them 

in the air. 

Examples of members of this small UAV class are the Turkish Bayraktar and the US Army 

RQ-7 Shadow. 
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Figure 1.5: Small UAVs 

1.2.2.2.3 Medium drones 

     The medium UAV class applies to UAVs that are too heavy to be carried by one person 

but are still smaller than a light aircraft. They usually have a wingspan of about 5-10 m and 

can carry payloads of 100 to 200 kg. 

Examples of this type are the UK Watchkeeper, the RQ-5A Hunter, and the RQ-2 Pioneer. 

 

 

Figure 1.6: Medium UAVs 

1.2.2.2.4 Large drones 

     The large UAV class applies to the large UAVs that are somewhat comparable to size of 

aircraft. They are used mainly for combat operations by the military. Placed that cannot be 

covered with normal jets are usually captured with these drones. They are main device for 

surveillance applications. Users can also classify them further into different categories 

depending upon their range and flying abilities. 

Examples of these large UAVs are the US General Atomics Predator A and B. 
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Figure 1.7: Large UAVs 

 

1.2.3 Applications of UAVs 

     Mentioning all UAVs applications is a difficult task, as there are so many possibilities in civil 

and military fields which they both use UAVs for reconnaissance and surveillance. In this 

subsection, we will discuss the different applications of drones. 

The two main classification for UAVs applications are the military application and the civilian 

application. 

1.2.3.1 The military application 

     Military applications focus on weapons delivery and guided missile support as well as 

directing artillery and spotting enemy positions. 

1.2.3.2 The civilian application 

     Today, civilian missions include various application such, some of them are listed below: 

 Security awareness; 

 Disaster response, including search and support to rescuers; 

 Communications and broadcast, including news/sporting event coverage; 

 Cargo transport; 

 Spectral and thermal analysis; 

 Commercial photography, aerial mapping and charting; 

  Science and research; 

 Critical infrastructure monitoring and inspection. 
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1.2.4 Accessories on-board 

     A side from the mechanical components that allow a drone to generate lift and maneuver in 

mid-air, drones also employ an array of sensors that constantly collect information from their 

surroundings. With this information, drones can maintain their positions, velocity, acceleration 

and other information. In this paragraph, we are quoting some sensors used in UAVs. 

 Gyroscope: The most basic of drone sensors, a gyroscope measures the rate of rotation and 

helps keeping the drone balanced. Gyroscopes are devices that consist of a mounted wheel 

that spins on an axis that is free to move in any direction. They are used to provide stability 

or maintain a reference direction. 

 Accelerometer: The accelerometer of drone works together with its gyroscope. It is used to 

provide the acceleration force which the drone is subjected to in all three axis X, Y and Z. 

This data can be used to calculate velocity, direction and even rate of change of altitude of 

the drone. It is also used to detect the vibration that the drone is experiencing. 

 FPV Camera: Most of action camera lovers and shooting experts love to buy drones 

equipped with camera to capture classic shots at tough locations. The film making industry is 

utilizing them commonly for movie footage. FPV cameras are small, light and reasonably 

priced.  They are mounted on to a drone to send real time video down to the ground using a 

video transmitter. The FPV camera allows you to see where the drone is flying and what it is 

seeing as if it had its own eyes. 

 GPS: The most common use of GPS in UAV is navigation. It is a central component of most 

navigation system on a UAV. GPS is used to determine the position of the vehicle. The 

relative positioning and speed of the vehicle are also usually determined by the UAV GPS. 

     Besides gyroscopes and accelerometers, drones can also use magnetometers, pressure sensor 

as well as temperature sensors and more. 
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Figure 1.8: Various sensor types 

 

1.3 PRESENTATION OF ATTITUDE 

     In this thesis we are interesting especially in attitude controlling for UAVs. For that, this 

section will introduce a presentation of attitude and mathematical preliminaries which will be 

used to describe the motion modelling of UAV in chapter 2.  

Firstly, it is necessary to introduce the reference coordinates in which we describe the structure 

and the position. Then, different attitude parameterizations and motion equations are presented.  

1.3.1 Coordinate Systems 

     A coordinate system is a reference system used to represent or determine the position of 

points or other geometric elements on a manifold. The use of a coordinate system allows 

problems in geometry to be translated into problems about numbers and vice versa.  

     There are many types of reference systems but only two reference frames will be used in this 

thesis, these are Earth inertial reference frame and body fixed reference frame.  
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1.3.1.1 Mobile reference system {ℬ}  

    The mobile reference system, or body fixed reference frame denoted ℬ, is associated to the 

vehicle, with its origin at the Center of Mass (COM) of the mobile as illustrated in Figure 1.9. 

The axes of this frame are: 

 (x−axis): directed along the longitudinal axis oriented from the rear towards the front 

 (y−axis): directed along the transverse axis oriented from left to right 

 (z−axis): completes the Direct Cartesian coordinate following the rule of the right hand. 

 

 

 

Figure 1.9: Mobile frame 

1.3.1.2 The navigation reference system {n} 

     The navigation frame is important in navigation because it helps to know the attitude relative 

to the north, east, and down directions. For position and velocity, it provides a convenient set of 

resolving axes. 

 The navigation frame’s origin is the point a navigation solution is sought for.  

 (x−axis): or north (N) axis, is the projection in the plane orthogonal to the z-axis of the line 

from the user to the North Pole.  

 (y−axis): By completing the orthogonal set, the y-axis always points east and is known as the 

east (E) axis.  

 (z−axis): also known as the down (D) axis is defined as the normal to the surface of the 

reference ellipsoid, pointing roughly toward the center of the Earth.  
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Figure 1.10: Navigation frame 

1.3.1.3 The ECI (Earth Centered Inertial) reference system {i} 

     Newton’s laws are applicable in this system. The ECI does not follow the rotation of the earth 

and therefore do not rotate relative to the stars. The origin of this system is the center of the 

Earth. The corresponding coordinate system is a coordinate system with axes marked: 

 (x−axis): to the "Vernal Equinox" (distant star). 

 (y−axis): to complete the direct reference system. 

 (z−axis): always points along the Earth’s axis of rotation from the center to the North Pole. 

1.3.1.4 The ECEF (Earth Centered Earth-Fixed) reference system {e} 

     The ECEF is similar to the ECI frame, except that all axes remain fixed with respect to the 

Earth.  

 (x−axis): points from the center to the intersection of the equator with the IERS reference 

meridian (IRM), or conventional zero meridian (CZM), which defines 0-degree longitude. 

 (y−axis): completes the right-handed orthogonal set, pointing from the center to the 

intersection of the equator with the 90deg east meridian. 

 (z−axis): always points along the Earth’s axis of rotation from the center to the North Pole. 
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Figure 1.11: ECI and ECEF frames 

1.3.1.5 Geodetic Coordinates system (The WGS-84 standard) 

     The "WGS 84" is a three-dimensional terrestrial reference system expressing the position in 

terms of latitude, longitude and altitude. These are based on a reference ellipsoid, which 

approximates the shape of the Earth. 

 The latitude ϕ: is the angle between the equatorial plane and the normal to the surface of the 

Earth (ellipsoid) at the point in question. It is zero at the equator and is counted positive for 

the northern hemisphere, negative for the southern hemisphere. 

 The longitude λ: is the angle between the Greenwich meridian and the desired point. It is 

counted positively towards the East. 

 The height h: "ellipsoidal height - not to be confused with altitude", is the difference in 

meters between that point and the reference ellipsoid measured normal to the ellipsoid. This 

value is set in a geodetic system and may differ from the altitude of several tens of meters. It 

should be noted that in general the satellite positioning systems provide ellipsoidal height and 

not an altitude. 

The altitude of a point M of a topographic surface approximates the distance between the point 

and the reference surface known as the geoid. 
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Figure 1.12: Latitude and longitude 

1.3.2 Transformation Matrices 

     As defined previously, two reference frames will be used in the modelling of quadrotor. To 

find the components of a vector in both of the frames, transformation matrices have to be 

formulated at first. By making successive rotations around corresponding axis, one can move 

from one frame to another. 

To relate any vector in the components of body fixed frame and Earth inertial frame, we have to 

make three sequence of rotations [23]. The order of rotations is important and in this thesis, the 

common order of roll, pitch, yaw (θ, ϕ, ψ) will be used. 

By making three successive transformations, we can find the transformation matrix 𝑅1 that 

transforms 𝐹𝐼 to 𝐹𝐵 as follows: 

𝑅1 = 𝑅(𝜙)𝑅(𝜃)𝑅(𝜓) = [

1 0 0
0 𝑐(𝜙) 𝑠(𝜙)

0 −𝑠(𝜙) 𝑐(𝜙)
] [
𝑐(𝜃) 0 −𝑠(𝜃)
0 1 0
𝑠(𝜃) 0 𝑐(𝜃)

] [
𝑐(ѱ) 𝑠(ѱ) 0

−𝑠(ѱ) 𝑐(ѱ) 0
0 0 1

]         (1.1) 

For notational simplicity, trigonometric functions cos() and sin() are shortened as c() and s(). By 

extending Equation (1.1), final form of 𝑅1 is obtained as follows [24]: 

𝑅1 = [

𝑐(𝜃)𝑐(ѱ) 𝑐(𝜃)𝑠(ѱ) −𝑠(𝜃)

𝑠(𝜙)𝑠(𝜃)𝑐(ѱ) − 𝑐(𝜙)𝑠(ѱ) 𝑠(𝜙)𝑠(𝜃)𝑠(ѱ) + 𝑐(𝜙)𝑐(ѱ) 𝑠(𝜙)𝑐(𝜃)

𝑐(𝜙)𝑠(𝜃)𝑐(ѱ) + 𝑠(𝜙)𝑠(ѱ) 𝑐(𝜙)𝑠(𝜃)𝑠(ѱ) − 𝑠(𝜙)𝑐(ѱ) 𝑐(𝜙)𝑐(𝜃)
]                      (1.2) 

The rotation matrix for moving the opposite direction (from body frame to inertia frame) is given 

by: 

𝑅 = 𝑅(−𝜓)𝑅(−𝜃)𝑅(−𝜙)  
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Performing the multiplication, the complete rotation matrix is as follows: 

𝑅 = [

𝑐(ѱ)𝑐(𝜃) 𝑐(ѱ)𝑠(𝜃)𝑠(𝜙) − 𝑠(ѱ)𝑐(𝜙) 𝑐(ѱ)𝑠(𝜃)𝑐(𝜙) + 𝑠(ѱ)𝑠(𝜙)

𝑐(𝜃)𝑠(ѱ) 𝑠(𝜙)𝑠(𝜃)𝑠(ѱ) + 𝑐(𝜙)𝑐(ѱ) 𝑠(ѱ)𝑠(𝜃)𝑐(𝜙) − 𝑐(ѱ)𝑠(𝜙)

−𝑠(𝜃) 𝑐(𝜃)𝑠(𝜙) 𝑐(𝜙)𝑐(𝜃)
]                       (1.3) 

1.3.3 Attitude Representation 

     The attitude is the orientation of the body-fixed reference frame with respect to the trajectory 

reference frame. This orientation of a rigid body in space is often crucial, especially in aerospace 

applications [25].  

The naturel parameterization of rigid body attitude belongs to the configuration space known as 

Special Orthogonal group SO (3) and is represented in most general terms as 3×3 rotation 

matrix. 

 In this subsection, we provide a description of various attitude parameterizations such as Euler 

angles, unit quaternions and rotation matrix. 

1.3.3.1 Rotation Matrix representation  

     We call a rotation matrix or Direction Cosine Matrix (DCM), denoted R every rotation of the 

mobile frame relative to the inertial fixed frame. 

Rotation matrices form a group under the operation of matrix multiplication called the Special 

Orthogonal Group 𝑆𝑂(3) ∈ ℝ3×3. The abbreviation SO refers to the properties of rotation 

matrices: 

𝑆𝑂(3) = {𝑅 ∈ ℝ3×3|𝑅𝑇𝑅 = 𝑅𝑅𝑇 = 𝐼𝑑 , det(𝑅) = 1}                                                               (1.4) 

Since it uses nine numbers to represent three angular degrees of freedom, there are six 

independent constraints on the matrix elements. Each column (and row) is unit vector, which 

gives us three constraints and the columns (and rows) are orthogonal to each other, yielding 

another three constraints. The translation and rotation together are represented as Special 

Euclidean group SE (3) [26]. 

To represent vector components in another frame, we need a rotation matrix. For example, if we 

have a vector 𝑥  in earth inertial frame and we want to represent it in body-fixed frame, we write:  

𝑥𝑏 = 𝑅𝑇𝑥                                                                                                                                     (1.5) 

with R is the matrix obtained in equation (1.2). 

The kinematic equation of rigid body rotation described by matrix R is given by [26]: 

�̇� = 𝑅𝑆(𝜔)                                                                                                                                 (1.6) 

where S(.) is anti-symmetric matrix defined by: 
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𝑆(𝑥) = [
0 −𝑥3 𝑥2
𝑥3 0 −𝑥1
−𝑥2 𝑥1 0

]   𝑎𝑛𝑑 𝑥 = [

𝑥1
𝑥2
𝑥3
]                                                                              (1.7) 

1.3.3.2 Euler Angle parameterization  

     In Euler angle representation, the rotation from the inertial frame to the body frame is formed 

by three successive rotations using the right hand rule.  

A rotation around the axis 𝑒3
𝑖  with an angle ψ called “yaw angle”, which transforms the basis 

{𝑒1
𝑖 , 𝑒2

𝑖 , 𝑒3
𝑖 } to { 𝑒1

𝑖′ , 𝑒2
𝑖′ , 𝑒3

𝑖′} gives the corresponding rotation matrix below: 

R𝒛 = [
cos (𝜓) −sin (𝜓) 0

sin(𝜓) cos (𝜓) 0
0 0 1

]  

A rotation around the axis  𝑒2
𝑖′   with an angle θ called “pitch angle”, which transforms the basis { 

𝑒1
𝑖′ , 𝑒2

𝑖′ , 𝑒3
𝑖′} to { 𝑒1

𝑖′′ , 𝑒2
𝑖′′ , 𝑒3

𝑖′′} gives the following corresponding rotation matrix: 

R𝒚 = [
cos (𝜃) 0 sin (θ)
0 1 0

−sin (θ) 0 cos (θ)
]   

A rotation around the axis 𝑒1
𝑖′′ with an angle ϕ called “roll angle”, which transforms the basis { 

𝑒1
𝑖′′ , 𝑒2

𝑖′′ , 𝑒3
𝑖′′} to { 𝑒1

𝑏 , 𝑒2
𝑏 , 𝑒3

𝑏} gives the following corresponding rotation matrix: 

R𝒙 = [

1 0 0
0 cos (ϕ) −sin (ϕ)
0 sin (ϕ) cos (ϕ)

]   

The total rotation R (ψ, θ, ϕ), which transforms from the body frame to the inertial frame is the 

rotation matrix given in equation (1.2). 

Euler angles (ϕ, θ, ψ) can be derived directly from the integration of the angular velocity 

provided by gyroscopes. Either 𝜔 ∈ ℝ3 the angular velocity vector expressed in the body frame, 

the equation linking this velocity vector to Euler angles is given as follows [26]: 

 [

�̇�

�̇�
ѱ̇

] =
1

cos𝜃
[

cos 𝜃 sin𝜙 sin 𝜃 cos𝜙 sin 𝜃
0 cos𝜙 cos 𝜃 − sin𝜙 cos 𝜃
0 sin𝜙 cos𝜙

]𝜔                                                                (1.8) 

From equation (1.8), at Pitch angle of 
𝜋

2
, it is unable to differentiate between Yaw and Roll 

degrees of freedom that is mean, Euler angles suffer from singularity. 
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1.3.3.3 Quaternion parameterization  

     Generally, the Euler axis-angle attitude representation is not trivial for the mathematical 

manipulation point of view. For this and to give another global parameterization using only four 

parameters (against nine in rotation matrix parameterization), Euler extend his theorem of angle-

axis representation by introducing a rotation around a unit vector a considered as imaginary 

complex part with an angle θ considered as scalar part, which gives: 

𝑄 = 𝑒
𝜃

2
(𝑎𝑥𝑖+𝑎𝑦𝑗+𝑎𝑧𝑘) = cos(

𝜃

2
) + sin (

𝜃

2
) (𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘)                                                   (1.9) 

where 𝑖2 = 𝑗2 = 𝑘2 = −1 is a generalization of complex numbers. 

We can note: 

𝑄 = [
𝑞0
𝑞 ] = [

cos(
𝜃

2
)

sin(
𝜃

2
)𝑎
]                                                                                                              (1.10) 

with 𝑞0 ∈ ℝ and  𝑞 = [

𝑞1
𝑞2
𝑞3
] ∈ ℝ3. 

This notation conducts us to the fact that in general 𝑄 ∈ ℝ4, but since a is a unit vector, 

therefore: 

‖𝑄‖ = 𝑄𝑇𝑄 = 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1                                                                                   (1.11) 

which means that the set of unit quaternions define the unit sphere 𝑆3 such that: 

𝑆3 = {𝑄 ∈ ℝ4|𝑄𝑇𝑄 = 1}  

We can cite some properties of quaternions as follows: 

 The multiplication of two quaternions P = (𝑝0, 𝑝) and Q = (𝑞0, 𝑞), denoted by "ʘ", is a 

quaternion given by: 

𝑃ʘ𝑄 = [
𝑝0𝑞0 − 𝑝

𝑇𝑞
𝑝0𝑞 + 𝑞0𝑝 + 𝑝 × 𝑞

]                                                                                            (1.12) 

 The inverse of a quaternion Q = (𝑞0, 𝑞) is also a quaternion defined by   𝑄−1 = (𝑞0, −𝑞). 

The rotation matrix of (1.3) can be rewritten as a function of the quaternion as follows: 

𝑅(𝑞0, 𝑞) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞1 − 𝑞1𝑞1) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

]                        (1.13)  

which gives us: 
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𝑅(𝑞0, 𝑞) = 𝐼3×3 + 2𝑆(𝑞)
2 + 2𝑞0𝑆(𝑞)                                                                                     (1.14)                  

Euler angles can also be deduced from the quaternion and the rotation matrix as follows: 

 {

𝜙 = 𝑎𝑡𝑎𝑛2(𝑅32, 𝑅33) = 𝑎𝑡𝑎𝑛2[2(𝑞2𝑞3 + 𝑞0𝑞1); 1 − 2(𝑞1
2 + 𝑞2

2)]                            

𝜃 = − asin(𝑅31) = − asin[2(𝑞1𝑞3 − 𝑞0𝑞2)]                                                                   

ѱ = 𝑎𝑡𝑎𝑛2(𝑅21, 𝑅11) = 𝑎𝑡𝑎𝑛2[2(𝑞1𝑞2 + 𝑞0𝑞3); 1 − 2(𝑞2
2 + 𝑞3

2)]                            

           (1.15) 

where 𝑎𝑡𝑎𝑛2 is the inverse tangent function in all four quadrants. 

1.3.4 Problems of attitude representations 

1.3.4.1 Problem with rotation matrix 

     The unique problem of rotation matrix parameterization is that since the translation and 

rotation constraints are represented together, the 6 constraints are larger compared to all other 

parameterizations mentioned. They are therefore computationally more expensive than they 

them. In the other hand, these have the advantage that they have no singularities or ambiguities 

such as double cover in attitude space in their representation as the rotation matrix is uniquely 

determined for a given configuration [26]. 

1.3.4.2 Problem with Euler angles 

      They exhibit a phenomenon known as Gimbal Lock, which results in a singularity in the 

attitude representation. Note that the Euler angles are relative sequential rotations. For example, 

in a (123) rotation, a single roll angle will change the orientation of pitch and yaw axis but in 

case of a single pitch angle rotation, the roll axis remains intact while yaw axis changes its 

orientation with the pitch rotation. When the pitch is 90°, the roll and yaw axis becomes the 

same and system can rotate only about 2 axis in space at that particular instant. Therefore, when 

the axis of two out of the three gimbals are driven parallel to each other in a configuration, there 

is a loss of degree of freedom and the dimension of the attitude space reduces to 2. The gimbal is 

still free to move, however, in order to move along the third missing axis in this configuration, 

the body will have to move simultaneously along two gimbals axis and may exhibit unfamiliar 

motions when such a situation is encountered physically. 

1.3.4.3 Problem with Quaternions 

 Ambiguities in representing an attitude because there are two quaternions. The constraint of 

unit modulus of quaternions restricts the quaternions to a sphere of unit radius in 4 

dimensions, known as the three-sphere which is the set of unit-vectors in ℝ4. This three 

sphere double covers the attitude configuration of the special orthogonal group, SO (3). 
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 Single physical attitude of a rigid body may yield two different control inputs, which causes 

inconsistency in the resulting control system, a specific choice between two quaternions 

generates discontinuity that makes the resulting control system sensitive to noise and 

disturbances. 

 The following table summarize the properties of the three representations of attitude 

studied above by representing the globality and uniqueness properties: 

Table 1.2: Global and unique properties of attitude parametrization 

Attitude parametrization Globality Uniqueness 

Rotation matrices Yes Yes 

Quaternions Yes No 

Euler angles No No 

1.3.5 Attitude kinematics and dynamics  

1.3.5.1 Attitude kinematics 

     The study of attitude kinematics is based on the time derivative of a vector in a rotating 

coordinate system. 

Let 𝑒1
𝑏𝑖, 𝑒2

𝑏𝑖, 𝑒3
𝑏𝑖 ∈ ℝ3 be the principal axis of the body fixed frame expressed in the inertial 

reference frame, then : 

𝑅 = [𝑒1
𝑏𝑖   𝑒2

𝑏𝑖   𝑒3
𝑏𝑖]                                                                                                                  (1.16) 

where 𝑒1
𝑏𝑖, 𝑒2

𝑏𝑖, 𝑒3
𝑏𝑖 are column vectors forming the columns of 𝑅. 

The derivative of the principal axis expressed in the inertial reference frame is given as: 

𝑑

𝑑𝑡
(𝑒1

𝑏𝑖(𝑡)) = 𝑆(Ω𝐸(𝑡))𝑒1
𝑏𝑖(𝑡)                                                                                                   (1.17) 

𝑑

𝑑𝑡
(𝑒2

𝑏𝑖(𝑡)) = 𝑆(Ω𝐸(𝑡))𝑒2
𝑏𝑖(𝑡)                                                                                                 (1.18) 

𝑑

𝑑𝑡
(𝑒3

𝑏𝑖(𝑡)) = 𝑆(Ω𝐸(𝑡))𝑒3
𝑏𝑖(𝑡)                                                                                                 (1.19) 

where Ω𝐸  is the vector of angular velocity expressed in the inertial reference frame and 𝑆(Ω𝐸(𝑡)) 

is the skew symmetric matrix defined by equation (1.7) 
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Attitude kinematics on 𝑺𝑶(𝟑) 

     To get attitude kinematics using rotation matrix as parametrization of attitude, it suffices to 

calculate the expression of the derivative of R using the elementary definition (1.16) which 

gives: 

�̇�(𝑡) = [�̇�1
𝑏𝑖(𝑡)     �̇�2

𝑏𝑖(𝑡)     �̇�3
𝑏𝑖(𝑡)]  

�̇�(𝑡) = 𝑆(Ω𝐸(𝑡))[𝑒1
𝑏𝑖   𝑒2

𝑏𝑖   𝑒3
𝑏𝑖]                                                                                              (1.20) 

Using the fact that 

Ω𝐸(𝑡) = 𝑅(𝑡)Ω𝐵(𝑡)                                                                                                                 (1.21) 

with Ω𝐵 is the vector of angular velocity expressed in the body reference frame. In addition to 

the property of skew symmetric matrix: 

𝑆(𝑅𝑥) = 𝑅𝑆(𝑥)𝑅𝑇                                                                                                                   (1.22) 

which makes the equation (1.20) as: 

�̇�(𝑡) = 𝑅(𝑡)𝑆(Ω𝐵(𝑡))                                                                                                              (1.23) 

1.3.5.2 Attitude dynamics  

     Consider a rigid-body moving in 3D space. The angular momentum can be expressed in the 

inertial reference frame as: 

𝐿(𝑡) = 𝑅(𝑡)𝐼𝑟Ω𝐵(𝑡)                                                                                                                 (1.24) 

where 𝐼𝑟 is the moment of inertia or inertia matrix of rigid body expressed in the body reference 

frame. 

Using the Newton’s law of motion, one can get: 

𝑑

𝑑𝑡
(𝐿(𝑡)) = 𝑅(𝑡)�̅�(𝑡)                                                                                                               (1.25) 

With: 

 �⃗̅� ∶ is the quadrotor torque vector expressed in the body reference frame. 

Using equation (1.24) and (1.25), the simplified attitude dynamics can be expressed as: 

𝐼𝑟Ω̇𝐵(𝑡) = −𝑆(Ω𝐵(𝑡))𝐼𝑟Ω𝐵(𝑡) + �̅�(𝑡)                                                                                    (1.26) 
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1.4 CONCLUSION 

     In this chapter, we have concluded the preliminary notions about UAVs technology and the 

attitude parameterizations as an introduction in order to achieve the aim of developing a 

quadrotor model, which is necessary in this thesis. Quadrotor is a small rotary-wing UAV with 

vertical take-off and landing (VTOL) ability. The main difference of quadrotors compared to 

other conventional VTOL UAVs such as helicopters is using fixed-pitch propellers to control the 

quadrotor instead of variable-pitch propellers, which are generally used in helicopters. As the 

name implies, fixed pitch-propeller systems could not change the pitch angle of the propeller, 

instead, control problem can be handled by changing the angular velocities of each propeller 

properly. According to that, we conclude that, the basic difference and advantage of quadrotors 

compared to other VTOL UAVs with variable-pitch propellers is the removal of complex 

mechanical transmission mechanisms that complicates both structural and aerodynamic design. 

This advantage made them one of the most popular platforms for UAV researches. 

 Due to its versatility, availability, and mechanical characteristics, a quadrotor was chosen in this 

thesis for developing control strategies. 

Detailed modeling and control techniques for quadrotors will be described in the next chapter. 
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Chapter 2 

QUADROTOR DESCRIPTION 

2.1 INTRODUCTION 

     At the beginning of the 21st century, the evolution of aerial robotics has allowed a wide range 

of applications fields. One of the most known aerial robot is the Quadrotor or Quadcopter. A 

quadrotor is a rotorcraft capable of hover, forward flight, and VTOL and is emerging as a 

fundamental research and application platform at present with flexibility, adaptability, and ease 

of construction. They are equipped with a set of sensors allowing the measurements of the 

position, linear and angular velocities and other physical quantities used to estimate crucial 

information such as attitude. These data are required to control the motion of the quadrotors. 

     Since a quadrotor is basically considered an unstable system with the characteristics of 

dynamics such as being intensively nonlinear, multivariable, strongly coupled, and under-

actuated, a precise and practical model is critical to control the vehicle which seems to be simple 

to operate. As a rotorcraft, the complicated aerodynamic effects of the rotors mainly dominate 

the dynamics of a quadrotor. Many controllers have been presented to overcome this 

aerodynamic complexity of the control [27]. 

     This chapter provides a presentation of quadrotor UAVs firstly. Secondly, it gives a tutorial of 

the platform configuration, comprehensive nonlinear model, and dynamic model identification 

for a quadrotor which will be simplified to use in the derivation of control laws that are 

explained in Chapter 3. Finally, various control methods that have been proposed for quadrotors 

controlling were presented. 

2.2 QUADROTOR PRESENTATION 

2.2.1 Quadrotor definition 

     A quadrotor is a rotary wing UAV consisting of four rotors located at the ends of cross 

structure. Its four rotor based propulsion system provides higher payload capacity and 

maneuverability. By varying the speeds of each rotor, the flight of the quadrotor is controlled. 

This type of UAV possess certain essential characteristics, which highlight their potential for use 

in search and rescue applications. Characteristics that provide a clear advantage over other flying 

UAVs include their Vertical Takeoff and Landing (VTOL) and hovering capability, as well as 

their ability to make slow precise movements.  
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Rotors driven with motors give the dominating forces and moments acting on the quadrotor. 

According to the orientation of the blades, relative to the body coordinate system, there are two 

basic types of quadrotor configurations: Plus and Cross configurations. 

     In the Plus configuration, a pair of blades, spinning in the same clockwise or counter-

clockwise direction, are fabricated on 𝑥 and 𝑦 coordinates of the body frame coordinate system. 

On the contrary, a different Cross configuration is adopted by some other quadrotors, in which 

there is no rotor at the front or the rear but instead two rotors are on the right side and two others 

on the left. 

 

Figure 2.1: Plus and Cross configurations 

     In contrast with the Plus configuration, for the same desired motion, the Cross-style provides 

higher momentum that can increase the maneuverability performance as each move requires all 

four blades to vary their rotation speed. 

2.2.2 Basic concepts & movements of the quadrotor 

     The quadrotor has 6-DOF and four actuators. Each motor is connected to a propeller and all 

the propellers’ axes of rotation are fixed and parallel to each other. In addition, all the propellers 

have fixed-pitch blades and their airflow goes downwards to get an upward lift. 

     To balance the quadrotor and remove the need for a tail rotor, an opposite pair’s directions 

have been configured. The left and the right propellers rotate clockwise, while the front and the 

rear ones rotate counter-clockwise with the same speed. 

The space motion of the rigid body quadrotor can be divided into two parts: 

 The barycenter movement: three barycenter movements that correspond with the three 

translations. These movements define the position of the quadrotor. 
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Figure 2.2: Structure model of quadrotor with inertial frame and body frame 

 Movement around the barycenter: three angular motions that correspond with the three 

rotation motions along the axes. This movement defines the attitude of the quadrotor. 

This leads to six different degrees of freedom, whose control can be implemented by adjusting 

the rotational speed of the different motors. Those variables could be controlled using different 

movements, which allow the quadrotor to reach a desired altitude and attitude. Those movements 

are defined as throttle, roll, pitch and yaw. Follows is a description of each movement. 

2.2.2.1 Throttle movement of quadrotor 

     Throttle movement is achieved by increasing (or decreasing) the speeds of all propellers by 

the same value. This generates a vertical force along z-axis in B-frame, which leads to raising or 

lowering the quadrotor. 

 
Figure 2.3: Throttle movement of quadrotor 
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2.2.2.2 Roll movement of quadrotor 

     Roll movement is achieved by increasing (or decreasing) the left propeller’s speed and by 

decreasing (or increasing) the right one. This difference in speed generates a torque in x-axis in 

B-frame, which makes the quadrotor turn and leads to roll angle acceleration. 

 

Figure 2.4: Roll movement of quadrotor 

2.2.2.3 Pitch movement of quadrotor 

     This command is similar to the roll one and is provided by increasing (or decreasing) the rear 

propeller speed and by decreasing (or increasing) the front one. This lead to a torque with respect 

to the Y-axis in body frame that makes the quadrotor turn. 

 

Figure 2.5: Pitch movement of quadrotor 

2.2.2.4 Yaw movement of quadrotor 

     This command is provided by increasing (or decreasing) the front-rear propellers speed and 

by decreasing (or increasing) that of the left-right couple. It leads to a torque with respect the Z-

axis in body frame, which makes the quadrotor turn. The yaw movement is generated thanks to 

the fact that the left-right propellers rotate clockwise while the front-rear ones rotate 

counterclockwise. 



QUADROTOR DESCRIPTION                                                                                                | CHAPTER 2   
 

 30 

 

Figure 2.6: Yaw movement of quadrotor 

2.3 QUADROTOR MATHEMATICAL MODEL 

     The first step towards designing a controller for quadrotor is to state a mathematical model to 

work with. This section presents mathematical models for the quadrotor UAV system where 6-

DOF rigid body kinematics and dynamics are applied to it using Newton-Euler equations. 

     The equations of motion are derived by using of two coordinate frames which were defined 

previously, the body-fixed and earth-fixed frame, and they are more conveniently formulated in 

the body-fixed frame. To make the body equations simpler, two assumptions have been made: 

 The origin of the body-fixed frame is coincident with the center of mass (COM) of the body. 

  The axes of the B-frame coincide with the body principal axes of inertia to have a diagonal 

Inertia matrix. 

The position of the center of gravity of the quadrotor in inertial frame is represented by:  

𝑟 = [𝑥 𝑦 𝑧]𝑇                                                                                                                               (2.1) 

where the attitude is represented by: 

𝜂 = [𝜙 𝜃 ѱ]𝑇                                                                                                                             (2.2) 

In this work, we interest in developing a quadrotor controller that avoid problems related to 

attitude tracking such as parametric uncertainties, external disturbances… For that, we take in 

consideration the presence of external disturbances in the modelling of quadrotor dynamic 

model.  

2.3.1 Kinematics  

     In order to modelling a quadrotor UAV, we need to convert translational and rotational 

velocities from the vehicle body frame to the inertial reference frame. Kinematics of translation 

and rotation can be applied to achieve this conversion by using Euler angles, which are used to 

convert from the inertial earth fixed reference frame to the body fixed reference frame using the 

rotation sequence 𝜓-𝜃-𝜙. 
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2.3.1.1 Translational velocities 

     To convert the translational velocities, we will use the rotation matrix that was obtained in the 

previous chapter to convert from E-frame to B-frame: 

 

𝑅1 = [

𝑐(𝜃)𝑐(ѱ) 𝑐(𝜃)𝑠(ѱ) −𝑠(𝜃)

𝑠(𝜙)𝑠(𝜃)𝑐(ѱ) − 𝑐(𝜙)𝑠(ѱ) 𝑠(𝜙)𝑠(𝜃)𝑠(ѱ) + 𝑐(𝜙)𝑐(ѱ) 𝑠(𝜙)𝑐(𝜃)

𝑐(𝜙)𝑠(𝜃)𝑐(ѱ) + 𝑠(𝜙)𝑠(ѱ) 𝑐(𝜙)𝑠(𝜃)𝑠(ѱ) − 𝑠(𝜙)𝑐(ѱ) 𝑐(𝜙)𝑐(𝜃)
]                      (2.3) 

 

Let us 𝑉𝐵 and 𝑉𝐸  be the components of the translational velocity of quadrotor in frames B-frame 

and E-frame, respectively. Then by using transformation matrix obtained in Equation (2.3), one 

can obtain 𝑉𝐵 as follows: 

𝑉𝐵 = 𝑅1𝑉𝐸                                                                                                                                   (2.4) 

It is important to note that transformation matrix 𝑅1 is nonsingular. Therefore, inverse of 𝑅1 

exists. By multiplying both sides of Equation (2.4) with 𝑅1
−1, one can also obtain: 

𝑉𝐸 =  𝑅1
−1𝑉𝐵                                                                                                                              (2.5) 

where  𝑅1
−1 = 𝑅 obtained in equation (1.3) from the previous chapter. So 𝑉𝐸 can be converted to 

velocities in the inertial earth reference frame as follows: 

𝑉𝐸 = 𝑅𝑉𝐵                                                                                                                                    (2.6) 

By differentiating Equation (2.1) with respect to time and using equation (2.6), one obtains: 

[
�̇�
�̇�
�̇�
] = [

𝑐(ѱ)𝑐(𝜃) 𝑐(ѱ)𝑠(𝜃)𝑠(𝜙) − 𝑠(ѱ)𝑐(𝜙) 𝑐(ѱ)𝑠(𝜃)𝑐(𝜙) + 𝑠(ѱ)𝑠(𝜙)

𝑐(𝜃)𝑠(ѱ) 𝑠(𝜙)𝑠(𝜃)𝑠(ѱ) + 𝑐(𝜙)𝑐(ѱ) 𝑠(ѱ)𝑠(𝜃)𝑐(𝜙) − 𝑐(ѱ)𝑠(𝜙)

−𝑠(𝜃) 𝑐(𝜃)𝑠(𝜙) 𝑐(𝜙)𝑐(𝜃)
] [
𝑢
𝑣
𝑤
]             (2.7) 

where 

𝑉𝐵 = [𝑢 𝑣 𝑤]𝑇 ∈ ℝ3are the linear velocities expressed in the body reference frame. 

𝑉𝐸 = [�̇� �̇� �̇�]𝑇 ∈ ℝ3are the linear velocities expressed in the inertial earth reference frame. 

2.3.1.2 Rotational velocities 

     Rotational velocities in the body reference frame can be converted to the inertial reference 

frame using a similar approach as for the translational velocities with the consideration of the 

rotation about the appropriate vector in each intermediate frame [31]: 

[

�̇�

�̇�
ѱ̇

] = [

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin 𝜙 sec 𝜃 cos𝜙 sec 𝜃

] [
𝑝
𝑞
𝑟
]                                                                                 (2.8) 
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where 

�⃗� 𝐵 = [𝑝 𝑞 𝑟]𝑇 ∈ ℝ3 are the angular velocities expressed in the body reference frame. 

�⃗� 𝐸 = [�̇� �̇� ѱ̇]𝑇 ∈ ℝ3 are the angular velocities expressed in the inertial earth reference frame. 

2.3.2 Dynamics 

     Conservation of linear and angular momentum are applied to derive the rigid body dynamics 

of the quadrotor UAV system. A 6 DOF rigid body under external forces and moments applied 

to the center of gravity in the presence of external disturbances written in the body reference 

frame can be expressed in Newton-Euler form as: 

𝑚𝑉𝐸⃗⃗⃗⃗ 
̇ = 𝐹 + 𝑚𝑑1⃗⃗⃗⃗                                                                                                                         (2.9) 

𝐼𝑟𝛺𝐵⃗⃗⃗⃗  ⃗
̇ + �⃗� 𝐵 × 𝐼𝑟�⃗� 𝐵 = �⃗̅� + 𝑑                                                                                                      (2.10) 

where 

�⃗� 𝐵: is the angular velocities expressed in the body reference frame, 

𝑉𝐸⃗⃗⃗⃗ 
̇ : is the linear acceleration expressed in the inertial earth reference frame, 

𝑚: is the mass of the quadrotor, 

𝐹 : is the quadrotor forces vector expressed in the inertial earth reference frame, 

�⃗̅� ∶ is the quadrotor torque vector expressed in the body reference frame, 

𝑑1⃗⃗⃗⃗ ∶ is the external disturbance where: 

𝑑 1 = [
0
0
𝑑1

]                                                                                                                                 (2.11) 

𝑑 = [𝑑2 𝑑3 𝑑4]
𝑇 is the external disturbance with unknown bound generated by an exogenous 

system, 

𝐼𝑟 ∈ ℝ
3×3 ∶ is the inertia matrix of the quadrotor where symmetry is assumed in all axes resulting 

in all off-diagonal values to be zero: 

𝐼𝑟 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]                                                                                                               (2.12) 
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Figure 2.7: Rotor configuration, force and torque generated by each propeller of the quadrotor, 

reference frames FB and FE 

2.3.2.1 Forces 

     In quadrotors, there are two main forces acting on its body:  

 Thrust force which is the summation of all forces generated by the four motors. All these 

forces are proportional to the propellers’ speed square. Moreover, they are acting only along 

z-axis of the B-frame and could be calculated using the following equation:  

𝑓𝑖 = 𝑏𝜔𝑖
2                                                                                                                                   (2.13) 

𝑢1 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 = 𝑏(𝜔1
2 + 𝜔2

2 + 𝜔3
2 + 𝜔4

2)                                                                (2.14) 

where 

𝑏: is the thrust factor 

𝑓𝑖: is the thrust produced by rotors with 𝑖 = 1, 2, 3, 4 

𝜔𝑖: is the angular speed of the 𝑖𝑡ℎ rotor 

𝑢1: is the total thrust in B-frame.  

 Gravitational Force which is generated by the gravitational acceleration acting along the z-

axis expressed in inertial earth reference frame. It is giving by: 

𝑃 = 𝑚𝑔                                                                                                                                    (2.15) 

Combining all forces acting on the quadrotor body expressed in the inertial earth reference frame 

yields: 

𝐹 = 𝑅𝑢1 +𝑚𝑔                                                                                                                         (2.16) 
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𝐹 = [

𝑠(ѱ)𝑠(𝜙) + 𝑐(ѱ)𝑠(𝜃)𝑐(𝜙)

−𝑐(ѱ)𝑠(𝜙) + 𝑠(ѱ)𝑠(𝜃)𝑐(𝜙)

𝑐(𝜃)𝑐(𝜙)

] 𝑢1 − [
0
0
𝑚𝑔

]                                                                    (2.17) 

2.3.2.2 Torques 

     Two main sources generate torques in a quadrotor system:  

 Torques generated directly by the main movement inputs. They are proportional to the speed 

of the propellers and acting on the body frame.  

[

𝑢2
𝑢3
𝑢4
] = [

𝑏𝐿(𝜔2
2 − 𝜔4

2)

𝑏𝐿(𝜔3
2 − 𝜔1

2)
−𝑄1 + 𝑄2 − 𝑄3 + 𝑄4

]                                                                                                 

(2.18) 

where 

𝑄𝑖 = 𝑑𝜔𝑖
2 is the drag moment of the 𝑖𝑡ℎ rotors and 𝑑 is the drag factor and 𝐿 is the distance 

between the center of a propeller and the center of mass of quadrotor. 

 Gyroscopic Torque: Since two of the propellers are rotating clockwise and the other two 

rotating counterclockwise, an overall imbalance will happen when the algebraic sum of the 

rotor speeds is not equal to zero. This imbalance will cause a gyroscopic effect. Furthermore, 

this effect is proportional to the roll and pitch rates. The following equation defines the 

overall propeller’s speed: 

𝛺𝑟 = −𝜔1 + 𝜔2 − 𝜔3 +𝜔4                                                                                                   (2.19) 

Combining all torques acting on quadrotor body expressed in the body reference frame yields: 

�̅� = −𝐽𝑟𝛺𝑟 [
𝑞
−𝑝
0
] + [

𝑢2
𝑢3
𝑢4
] = [

−𝐽𝑟𝛺𝑟𝑞 + 𝑢2
𝐽𝑟𝛺𝑟𝑝 + 𝑢3

𝑢4

]                                                                            (2.20) 

with 𝐽𝑟 the total rotational moment of inertia of propeller. 

In order to simplify the calculation of angular velocity of rotors, equation (2.14) with equation 

(2.18) become: 

[

𝑢1
𝑢2
𝑢3
𝑢4

] = [

𝑏 𝑏 𝑏 𝑏
0 −𝑏𝐿 0 𝑏𝐿
−𝑏𝐿 0 𝑏𝐿 0
−𝑑 𝑑 −𝑑 𝑑

]

[
 
 
 
 
𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

                                                                                     (2.21)  
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2.3.2.3 The dynamic equations 

     The dynamical equations of quadrotor UAV derived from equations (2.9) and (2.10) can be 

written in following forms below. 

For Translational Motion, and by substituting equation (2.11) and equation (2.17) into equation 

(2.9), the nonlinear dynamic model is given as follows: 

[
�̈�
�̈�
�̈�
] = − [

0
0
𝑔
] + 𝑅 [

0
0

𝑢1
𝑚⁄
] + 𝑑1 [

0
0
1
]                                                                                          (2.22) 

For Rotational Motion, and by substituting equations (2.12) and (2.20) into equation (2.10), the 

following equation of the nonlinear dynamical model can be obtained as: 

[
�̇�
�̇�
�̇�

] = [

(𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟 𝐼𝑥𝑥⁄

(𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑟 𝐼𝑦𝑦⁄

(𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞 𝐼𝑧𝑧⁄

] + �̅� [

1 𝐼𝑥𝑥⁄

1 𝐼𝑦𝑦⁄

1 𝐼𝑧𝑧⁄

] + [

𝑑2
𝑑3
𝑑4

]                                                                    (2.23) 

The relation between body angular velocities and rate of change of Euler angles is given by: 

[
𝑝
𝑞
𝑟
] = [

�̇�

�̇�
�̇�

]  ,         [
�̇�
�̇�
�̇�

] = [

�̈�

�̈�
�̈�

]                                                                                                    (2.24) 

Substituting the relations defined in equation (2.24) into equation (2.23), the simplified nonlinear 

dynamic model for rotational motion is obtained as follows: 

[

�̈�

�̈�
�̈�

] = [

(𝐼𝑦𝑦 − 𝐼𝑧𝑧)�̇�ѱ̇ 𝐼𝑥𝑥⁄

(𝐼𝑧𝑧 − 𝐼𝑥𝑥)ѱ̇�̇� 𝐼𝑦𝑦⁄

(𝐼𝑥𝑥 − 𝐼𝑦𝑦)�̇��̇� 𝐼𝑧𝑧⁄

] + �̅� [

1 𝐼𝑥𝑥⁄

1 𝐼𝑦𝑦⁄

1 𝐼𝑧𝑧⁄

] + [

𝑑2
𝑑3
𝑑4

]                                                                    (2.25) 

The final simplified form of the dynamic model of quadrotor is given as: 

{
 
 
 
 

 
 
 
 
�̈� = (cos𝜙 sin 𝜃 cosѱ + sin𝜙 sinѱ)

𝑢1

𝑚

�̈� = (cos𝜙 sin 𝜃 cosѱ − sin𝜙 sinѱ)
𝑢1

𝑚

�̈� = −𝑔 + cos𝜙 cos 𝜃
𝑢1

𝑚
+ 𝑑1                   

�̈� = �̇�ѱ̇
𝐼𝑦𝑦−𝐼𝑧𝑧

𝐼𝑥𝑥
−

𝐽𝑟

𝐼𝑥𝑥
�̇�𝛺𝑟 +

𝑢2

𝐼𝑥𝑥
+ 𝑑2

�̈� = ѱ̇�̇�
𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦
+

𝐽𝑟

𝐼𝑦𝑦
�̇�𝛺𝑟 +

𝑢3

𝐼𝑦𝑦
+ 𝑑3

ѱ̈ = �̇��̇�
𝐼𝑥𝑥−𝐼𝑦𝑦

𝐼𝑧𝑧
+

𝑢4

𝐼𝑧𝑧
+ 𝑑4                    

                                                                                (2.26) 

where 

�̈�, �̈�, �̈� ∶ are the linear accelerations around X, Y and Z-axis respectively. 
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�̈�, �̈�, ѱ̈ ∶ are the angular accelerations around X, Y and Z-axis respectively. 

This dynamic model will be used in the next chapter in order to design controllers for quadrotors 

attitude tracking using two different methods.  

2.4 CONTROL TECHNIQUES 

     The state of the art in quadrotor control has suffered a drastic change in the last few years. 

The number of projects tackling this problem, in different research fields, has considerably 

increased. Numerous approaches can be taken when designing stable control laws for quadrotor 

UAVs.  In general, these approaches can be divided into linear control, nonlinear control and 

intelligent control as shown in figure 2.8. In this section, an overview of the most important 

developed techniques applied to quadrotors UAVs will be presented.   

 

Figure 2.8: Categorization of controllers 

 

 

2.4.4 Linear Robust Controllers  

     Early in quadrotor development, it was found that linear controllers were sufficient to obtain 

stable flight. However, with the evolution of controlling it seemed that the application of linear 

controllers to nonlinear systems such as UAVs would not result in a robust response due to their 

inherent design through linearization. We examine several of these control techniques to include, 

a Proportional Integral Derivative (PID) controller, Linear Quadratic Controllers, and 𝐻∞ 

controller. 

 



QUADROTOR DESCRIPTION                                                                                                | CHAPTER 2   
 

 37 

2.4.1.1 Proportional Integral Derivative Controller 

     The PID controller (or three-term controller) is one of the most popular controllers due to its 

simplicity. PID controllers are considered as a classical approach in control theory. 

     A  PID controller is a control loop mechanism employing feedback that is widely used 

in industrial control systems and a variety of other applications requiring continuously 

modulated control. A PID controller continuously calculates an error value e(t) as the difference 

between a desired set point (SP=r(t)) and a measured process variable (PV=y(t)) and applies a 

correction based on proportional, integral, and derivative terms (denoted P, I, 

and D respectively). 

 

Figure 2.9: Block diagram of PID controller 

The block diagram of figure 2.9 shows the principles of how these terms are generated and 

applied. The controller attempts to minimize the error over time by adjustment of a control 

variable u(t), such as the opening of a control valve, to a new value determined by a weighted 

sum of the control terms . 

The overall control function is:  

u(t) = 𝐾𝑝 e(t) + 𝐾𝑖  ∫ e(t′) dt′
t

0
+ 𝐾𝑑  

de(t)

dt
                                                                            (2.27) 

where 𝐾𝑝 , 𝐾𝑖  and 𝐾𝑑  , all non-negative, denote the coefficients for the proportional integral 

and derivative terms respectively ( denoted P, I, and D). 

2.4.1.2 Linear Quadratic Controller 

    There are two types of Linear Quadratic Controllers, namely: Linear Quadratic Regulator 

(LQR) controllers and Linear Quadratic Gaussian (LQG) Controllers for quadrotor control. In 

the former, the system is optimized based on a cost function and minimum cost by weighting 

factors supplied by the user. In the latter, the LQG controller is a combination of a Kalman type 

filter with a linear-quadratic regulator LQR. 

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Control_valve
https://en.wikipedia.org/wiki/Weighted_sum
https://en.wikipedia.org/wiki/Weighted_sum
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
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2.4.1.3  𝑯∞ Controller 

     For a system with external disturbances and model uncertainties, the 𝐻∞  controller can be a 

good choice for linear control of quadrotors. The quadrotor system is routinely affected by wind 

gusts and model uncertainties. Thus, some researchers have applied the 𝐻∞   controller into the 

quadrotor system to make the system more robust to external disturbances [28]. 𝐻∞ control is 

concerned with assuring overall stability for the closed-loop system by applying optimization in 

the frequency domain. This is achieved by finding a feedback gain that will minimize the 

maximum response for the closed-loop system in the frequency domain together with assuring 

closed-loop stability [32]. Using the H1 technique, the formulation derives a controller using the 

Riccati equations there by solving an optimization problem to control the quadrotor. To do this 

the Linear Matrix Inequality (LMI), approach has typically been applied for solutions of the 

Riccati equation. On the other hand, the nonlinear H1 controller is generally obtained by 

Hamilton-Jacobi equations that can replace the linear Riccati assumptions. 

2.4.5 Nonlinear Controllers 

     This subsection will emphasize nonlinear control design, which is focused on altering the 

stability of nonlinear systems specifically. Since the quadrotor system has four inputs and six 

degrees of freedom, it considered as a nonlinear under-actuated system. Therefore, to get better 

performance, a nonlinear controller is warranted and since the control of quadrotors has been 

looked at for a number of years now, there are a large body of papers developing nonlinear 

control theory for quadrotors. These approaches include feedback linearization, backstepping 

control techniques, and sliding mode control that will be presented next. 

2.4.2.1 Feedback Linearization  

     One of the more common approaches in nonlinear control is feedback linearization. Using 

this method, the nonlinear system is transformed into an equivalent linear system. Then using the 

linear systems, similarity transformation was used to produce a nonsingular matrix. This is a 

form of diffeomorphism and can be used to transform the state variables of the nonlinear system 

into a linear system. Then a standard linear control theory can be applied to the system and 

subsequently the solution from the linearized system is converted back into the nonlinear system 

[28]. 

A generic nonlinear system can be characterized as [33]: 

𝑥 ̇ = 𝑓 (𝑥) + 𝑔(𝑥)�⃗�                                                                                                                    (2.28) 
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where 

𝑥 ∈ ℝ𝑛 is the state vector, �⃗� ∈ ℝ𝑚 are the inputs to the system, 𝑓 (𝑥) ∈ ℝ𝑛 represents the 

nonlinear system dynamics and 𝑔(𝑥) ∈ ℝ𝑛×𝑚 is the nonlinear input matrix. 

Given that (𝑥) is invertible, feedback linearization can be applied to this nonlinear system by 

inverting Equation (2.28) as: 

�⃗� (𝑥) = 𝑔−1(𝑥)[�⃗⃗� (𝑥) − 𝑓 (𝑥)]                                                                                                 (2.29) 

�⃗⃗� (𝑥) ∈ ℝ𝑛 is a virtual controller which can be designed using classic control techniques to 

guarantee desirable stability dynamics. Most often, the virtual control signal is generated using a 

simple linear controller that assures the desirable dynamics. 

2.4.2.2 Backstepping   

     Backstepping control is a popular and effective approach to stabilize nonlinear systems. In a 

similar fashion as feedback linearization, backstepping control applies (multiple) feedback loops. 

The technique is constructed from subsystems that can be stabilized using other methods. The 

process starts with a known-stable system and “back out” new controllers that progressively 

stabilize each of the subsystems. The process completes when the final control is achieved. 

Instead of minimizing a cost function, like is performed in H∞ loop shaping and LQR control, a 

virtual control input is generated using a Lyapunov approach such that the closed-loop system 

exhibits desired dynamic characteristics [29]. When applied in a cascade architecture, emphasis 

must be placed on selecting an appropriate Lyapunov equation for each loop to ensure the output 

of the outer loop, which acts as a virtual control input to the inner loop, assures favorable 

transient and steady-state characteristics of the closed-loop system. 

 

Figure 2.10: Architecture of cascade backstepping control applied to quadrotor UAV 
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2.4.2.3 Sliding Mode Controller  

     Sliding Mode Controller (SMC) is a nonlinear control method that modifies the system using 

a discontinuous control signal thereby forcing the system to move within the system’s normal 

behavior [30]. The control law is not continuous in time and it switches from one state to another 

based on position in state space. While there are model uncertainties and external disturbances, 

this control technique guides the system to the sliding surface. The sliding surface is located 

between the control structures, so that the control law has to switch from one structure to another 

one. Hence, SMC technique can be classified as one of the variable structure control method. 

This characteristic of the control law and delay in control switching is a disadvantage when using 

SMC causing some chattering behavior. To reduce the chattering, some ideas have been 

suggested. The first idea is to design the switching components control law in the continuous 

control one for reducing the amplitude of chattering. The second idea is to approximate the 

signum function by the saturation function that has a high slope. To design the sliding mode 

controller, a designer defines a sliding surface, and then designs the controller for the reaching 

phase where the system stays on the sliding surface. In the reaching phase, the controller can be 

proposed by Lyapunov theory that assures stable conditions on the sliding surface in finite time. 

2.4.6 Intelligent Controller  

     Control systems based on biological inspired intelligent systems have become increasingly 

popular due to the potential to mimic human body functions that have been optimized through 

years of evolution [30]. These systems can be characterized by their ability to learn from 

environmental information that will increase their robustness, accuracy and intelligence. Unique 

characteristic of an intelligent control is that it covers a very wide range of uncertainty compared 

with other control strategies. This reason led to development of control strategies such as mode 

predictive, fuzzy logic, and neural network controllers. The following subsection deal with these 

controllers and application to the quadrotor. 

2.4.3.1 Model Predictive Controller  

     By increasing the required coverage of uncertainty, the control strategies need to predict the 

future behavior of the system and generate the future control input for optimizing a cost function. 

The model predictive controller (MPC) is categorized as an advanced process control method 

that is used for maintaining the output at the operational conditions and set points. The MPC 

strategy is particularly suited for problems with constraints on input, output and states, and 

varying objectives and limits on variables. Although the MPC needs a precise prediction model 
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and full-state estimation, it has the advantage that it can enforce constraints on inputs and 

outputs, and its systematic design is easy to maintain. 

2.4.3.2 Fuzzy Logic  

     Fuzzy logic control is a heuristic approach that easily embeds the knowledge and key 

elements of human thinking in the design of nonlinear controllers. Qualitative and heuristic 

considerations, which cannot be handled by conventional control theory, can be used for control 

purposes in a systematic form, applying fuzzy control concepts. Fuzzy logic control does not 

need to accurate mathematical model, can work with imprecise inputs, can handle nonlinearity 

and can present disturbance insensitivity greater than the most nonlinear controllers. Fuzzy logic 

controllers usually outperform other controllers in complex, nonlinear, or undefined systems for 

which a good practical knowledge exists. 

Fuzzy logic controllers are based on fuzzy sets, that is, classes of objects in which the transition 

from membership to non-membership is smooth rather than abrupt. Therefore, boundaries of 

fuzzy sets can be vague and ambiguous, making them useful for approximation models: 

1. A Rule-Base (a set of If-Then rules) holds the knowledge, in the form of a set of rules, of how 

to achieve the best control result. 

2. An Inference Mechanism evaluates control rules related with the current time and then decide 

what the best input to control the plant. 

3. A Fuzzification interface simply modifies the control inputs into information that the 

inference mechanism can easily utilize to compare to the rules in the rule-base. 

4. A Defuzzification interface converts the results of the inference mechanism into actual inputs 

for the plant. 

 

Figure 2.11: Block diagram of simple fuzzy logic controller 
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2.4.3.3 Neural Network  

     A neural network is a series of algorithms that endeavors to recognize underlying 

relationships in a set of data through a process that mimics the way the human brain operates. In 

this sense, neural networks refer to systems of neurons, either organic or artificial in nature. 

Neural network generates the best possible result without needing to redesign the output criteria. 

The NN control strategy has been used for a design of a nonlinear dynamic system with 

uncertain nonlinear terms and system errors. The objective of this control strategy is to find the 

weights for achieving a desired input and output. Through this process termed as training the 

network, the system obtains a control law overcoming a wide range of uncertainty. 

 
Figure 2.12: An example of neural network system 
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2.5 CONCLUSION 

     In this chapter, qualitative introduction on the principles of working of a quadrotor was 

discussed, in addition to the mathematical model, which was presented. The full nonlinear 

equations of the dynamic model have been obtained by classical Euler-Newtonian mechanics 

with the knowledge of different force imposed on, especially aerodynamic function, as a base 

and preliminary for the next control and simulation work. Then we studied many different 

controllers that may be used by quadrotors in a variety of scenarios, where we have shown that 

there are many previous works have demonstrated that it is possible to control the quadrotor 

using linear control techniques by linearizing the dynamics around an operating point, usually 

chosen to be the hover. However, a wider flight envelope and better performances can be 

achieved by using nonlinear control techniques that consider a more general form of the 

dynamics of the vehicle in all flight zones.  As the number of applications grow, the need for 

imaginative new control strategies that build upon older ones will undoubtedly grow for better 

performance. For that, two new adaptive control strategies were proposed to make a quadrotor 

stably and robustly track a desired attitude under the influences of many constraints as well as 

input uncertainties and external disturbances. These two adaptive controllers will be presented 

and detailed in the next chapter. 
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Chapter 3 

DESCRIPTION OF ATTITUDE CONTROLLERS  

ROAC and GAC 

 

3.1 INTRODUCTION 

     In practice, there are various technical challenges in the control of a quadrotor UAV that is 

subjected to unknown external disturbances, model uncertainties and input constraints. The 

quadrotor is always subject to different uncertainties, i.e. the quadrotor motions cannot always be 

described by their exact dynamics. 

     The unknown disturbances in practical aerospace environments include wind gust, noises, 

…etc. The model uncertainties of a quadrotor UAV are usually induced by the imprecise 

hydrodynamic coefficients which arise in the mathematical model of the quadrotor, while the 

input constraints are caused by the effect of input saturation. Unfortunately, only a few types of 

research have addressed disturbances, parametric uncertainties and input constraints in 

simulations or experiments simultaneously. 

     To tackle these technical issues that were mentioned previously, two methods for tracking 

attitude control of quadrotors will be introduced in this chapter. 

     The two adaptive control strategies are based on Lyapunov theory in order to design effective 

controllers. The first strategy, Robust Optimal Adaptive Control ROAC developed by M. Navabi 

[17], is a composition of two controllers that used Lyapunov based technique optimized by PSO 

algorithm for controlling nonlinear system in addition to a Disturbance Observer Based Control. 

For the second strategy, a Geometric Adaptive Control GAC developed by Shankar Kulumani 

[18], is used to stabilize the desired attitude while the controlled attitude avoids undesired 

regions defined by an inequality constraint. For disturbances rejection, an adaptive update law is 

added for attitude stabilization. 

     This chapter is organized as follow. In Section 3.2, the first controller approach ROAC is 

detailed. The design of ROAC with the stability analysis are given in the same section. The 

second controller GAC will be presented and detailed in section 3.3. The chapter is ended by 

conclusion that summarizes the whole chapter. 
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3.2 ROBUST OPTIMAL ADAPTIVE CONTROLLER 

     In this section, a nonlinear robust optimal adaptive controller ROAC will be studied based on 

the approach described in [17]. The aim of the controller is to solve attitude tracking control 

problem in presence of parametric uncertainties, exogenous disturbance, and input constraints.  

     The procedure proposed consists of two stages. In the first stage, the controller is designed 

under the assumption that there is no disturbance or the disturbance is measurable. In the second 

stage, a nonlinear disturbance observer is designed and then integrated with the previous 

designed controller. 

 

Figure 3.1: Structure of nonlinear system controller ROAC 

 

     The ROAC control method can be explained in three steps. The first step is the adaptive 

controller. In this step, an adaptive control law is used to tackle and stabilize the problem of 

nonlinear and parametric uncertainties of quadrotor. The second step is about using a PSO 

algorithm, which was combined with the adaptive controller to obtain an optimal adaptive 

controller that regulate controller parameter offline. In the third step, to improve the robustness 

of system when there are unknown external disturbances, a nonlinear disturbance observer was 

added.  

Before explaining these steps, the dynamic model of the quadrotor UAV obtained in the previous 

chapter can be conveniently viewed as a system composed of two subsystems, the position 

subsystem and the rotational subsystem. Where it is shown that the control inputs appear in 

altitude and attitude, in such a way that the translation subsystem (x and y) depends on the angle 

subsystem, but the angle subsystem is independent from the translation one. For that, we can 

rewrite the equation (2.26) by dividing the simplified dynamic model obtained previously into 
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two subsystems. The first, ∏1 (under-actuated subsystem), comprises linear translations in x and 

y directions, and the second one, ∏2  (fully actuated sub-system), contains the dynamics of 

altitude and attitude. The subsystems ∏1 and ∏2 are as follow: 

∏1 = {
�̈� = (cos𝜙 sin 𝜃 cosѱ + sin𝜙 sinѱ)

𝑢1

𝑚

�̈� = (cos𝜙 sin 𝜃 cosѱ − sin𝜙 sinѱ)
𝑢1

𝑚

                                                                         (3.1) 

∏2 =

{
  
 

  
 
�̈� = −𝑔 + cos𝜙 cos 𝜃

𝑢1

𝑚
+ 𝑑1                  

�̈� = �̇�ѱ̇
𝐼𝑦𝑦−𝐼𝑧𝑧

𝐼𝑥𝑥
−

𝐽𝑟

𝐼𝑥𝑥
�̇�𝛺𝑟 +

𝑢2

𝐼𝑥𝑥
+ 𝑑2  

�̈� = ѱ̇�̇�
𝐼𝑧𝑧−𝐼𝑥𝑥

𝐼𝑦𝑦
+

𝐽𝑟

𝐼𝑦𝑦
�̇�𝛺𝑟 +

𝑢3

𝐼𝑦𝑦
+ 𝑑3 

ѱ̈ = �̇��̇�
𝐼𝑥𝑥−𝐼𝑦𝑦

𝐼𝑧𝑧
+

𝑢4

𝐼𝑧𝑧
+ 𝑑4                     

                                                                      (3.2) 

Therefore, for the design of controller, it suffices to extract appropriate outputs from subsystem 

∏2. 

3.2.1 Control design 

     A control system is a system that maintain equilibrium determined by an input set point. By 

comparing the values that define the overall state or orientation of a system to the desired values. 

The objective of our controller is forcing the states of subsystem ∏2 to track desired altitude and 

attitude   𝑥𝑑 = [𝑧𝑑  𝜙𝑑  𝜃𝑑  𝜓𝑑]
𝑇 despite the presence of parametric uncertainties, input constraints 

and external disturbance. To guarantee the tracking performance, this approach is based on 

Lyapunov theory. 

3.2.1.1 Adaptive Trajectory Tracking control design 

     In this part, a control law is obtained to deal with parametric uncertainties problem in the first 

step. In the second step, we developed a new performance index for evaluating the performance 

of adaptive controller. 

     The nonlinear dynamic model associated with fully actuated subsystem ∏2 of the quadrotor, 

obtained in equation (3.2), can be rewritten in the following form: 

𝐻(𝑥)�̈� + 𝐶(𝑥, �̇�)�̇� + 𝑔(𝑥) = 𝑈 + 𝐷                                                                                        (3.3) 

where 

𝑥 = [𝑧 𝜙 𝜃 𝜓]𝑇 denotes state vector of system 

𝑈 = [𝑢1  𝑢2 𝑢3 𝑢4] is the control input vector 

D represents measurable disturbance originated from 𝛺𝑟 with unknown bound  
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H(x) is the system inertia matrix, 𝐶(𝑥, �̇�) contains centrifugal and Coriolis torques, and g(x) 

indicates the vector of gravitational torques. They are presented as follows: 

𝐻(𝑥) = |
|

𝑚

cos𝜙 cos𝜃
0 0 0

0 𝐼𝑥𝑥 0 0
0 0 𝐼𝑦𝑦 0

0 0 0 𝐼𝑧𝑧

|
|                                                                                             (3.4) 

𝐶(𝑥, �̇�) = ||

0 0 0 0
0 0 −ѱ̇𝑎1 + 𝐽𝑟𝛺𝑟 0

0 −ѱ̇𝑎2 − 𝐽𝑟𝛺𝑟 0 0

0 0 −ѱ̇𝑎3 0

||                                                                      (3.5) 

𝑔(𝑥) = ||

𝑚𝑔

cos𝜙 cos𝜃

0
0
0

||                                                                                                                           (3.6) 

The terms 𝑎1, 𝑎2 𝑎𝑛𝑑 𝑎3 are defined as: 

𝑎1 = 𝐼𝑦𝑦 − 𝐼𝑧𝑧   ,  𝑎2 = 𝐼𝑧𝑧 − 𝐼𝑥𝑥   ,   𝑎3 = 𝐼𝑥𝑥 − 𝐼𝑦𝑦 

     It is very complicated to obtain the control laws to achieve the desired trajectory 𝑥𝑑 due to 

parametric uncertainties problem. For that, we choose a Lyapunov function, which is positive 

definite itself and has negative semi-definite first order derivative with respect to time. The 

Lyapunov function is chosen as: 

{

𝑉(𝑡) =
1

2
[𝑠𝑇𝐻𝑠 + �̃�𝛤1

−1�̃� + �̃�𝑇𝛤2
−1�̃�                                   

�̃� = �̂� − 𝑎, 𝑎 = [𝑚 𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧]
𝑇
, �̂� = [�̂� 𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧]

𝑇

�̃� = 𝐷 − �̂�                                                                                    

                                                       (3.7) 

with 𝑎, �̂�  unknown parameter and its estimated; 𝐷, �̂� unknown disturbances and its estimated; 

�̃�, �̃� estimation errors; and 𝛤1, 𝛤2 symmetric positive definite matrices. 

We define the velocity error 𝑠 as: 

𝑠 = �̇̃� − 𝛬�̃� = �̇� − �̇�𝑟                                                                                                               (3.8) 

where �̃� = 𝑥 − 𝑥𝑑 is tracking error and Λ is a symmetric positive definite matrix. 

For obtaining control and adaption laws, the new variable is defined as:  �̇�𝑟 =  �̇�𝑑 − 𝛬�̃� 

The first order derivative of 𝑉(𝑡) with respect to time is found as: 

�̇�(𝑡) = 𝑠𝑇𝐻�̇� +
1

2
𝑠𝑇�̇�𝑠 + �̃�𝑇𝛤1

−1�̇̂� − �̃�𝑇𝛤2
−1�̇̂�                                                                             (3.9) 
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By using the derivative of equation (3.8), equation (3.9) becomes: 

�̇�(𝑡) = 𝑠𝑇(𝐻�̈� − 𝐻�̈�𝑟) +
1

2
𝑠𝑇�̇�𝑠 + �̃�𝑇𝛤1

−1�̇̂� − �̃�𝑇𝛤2
−1�̇̂�                                                           (3.10) 

Using equation (3.3), the following expression is calculated: 

�̇�(𝑡) = 𝑠𝑇(𝑈 + 𝐷 − 𝐶�̇� − 𝑔 − 𝐻�̈�𝑟) +
1

2
𝑠𝑇�̇�𝑠 + �̃�𝑇𝛤1

−1�̇̂� − �̃�𝑇𝛤2
−1�̇̂�                                    (3.11) 

We can replace (�̇�) by (𝑠 + �̇�𝑟), then equation (3.11) becomes: 

�̇�(𝑡) = 𝑠𝑇(𝑈 + 𝐷 − 𝐶�̇�𝑟 − 𝑔 − 𝐻�̈�𝑟) + 𝑠
𝑇(�̇� − 2𝐶) + �̃�𝑇𝛤1

−1�̇̂� − �̃�𝑇𝛤2
−1�̇̂�                        (3.12) 

The quadratic function associated with a skew-matrix is zero and suppose that 

𝐻(𝑥), 𝐶(𝑥, �̇�)�̇� 𝑎𝑛𝑑 𝑔(𝑥)  linearly depend on unknown parameters of system with the design of 

controller is:          

𝑈 = 𝑌�̂� − �̂� − 𝐾𝐷𝑠                                                                                                                  (3.13) 

 The derivative of Lyapunov function becomes: 

�̇�(𝑡) = 𝑠𝑇𝑌�̃� + 𝑠𝑇�̃� − 𝑠𝑇𝐾𝐷𝑠 + �̃�
𝑇𝛤1

−1�̇̂� − �̃�𝑇𝛤2
−1�̇̂�                                                               (3.14) 

The adaption law and disturbance estimation are chosen as: 

�̇̂� = −𝛤1𝑌
𝑇𝑠                                                                                                                             (3.15) 

�̇̂� = 𝛤2𝑠                                                                                                                                             (3.16) 

The final form of  �̇�(𝑡), which is negative semi-definite, is obtained as: 

�̇�(𝑡) = −𝑠𝑇𝐾𝐷𝑠 ≤ 0                                                                                                                     (3.17) 

According to Lyapunov theory and Barbalat’s lemma, the errors tracking converge to zero and 

the stability is guarantee. 

     The controller design depends on Λ , 𝛤1 and 𝐾𝐷. To determine the previous parameters, a new 

performance index minimized is developed. 

The performance index 𝐽(𝛬, 𝛤1, 𝐾𝐷) is a summation of three terms: 

 The first term deals with control inputs constraints by minimizing summation of integral of 

violated control law (SIVCL) for each control input: 

𝐼𝑉𝐶𝐿𝑖 = {
∫ 𝑎𝑖|𝑢𝑖(𝑡) − 𝑢𝑖

𝑙𝑖𝑚|, 𝑎𝑖 > 0   𝑖𝑓   𝑢𝑖(𝑡) < 𝑢𝑖
𝑚𝑖𝑛𝑜𝑟 𝑢𝑖(𝑡) > 𝑢𝑖

𝑚𝑎𝑥𝑇

𝑡=0

0                          𝑖𝑓       𝑢𝑖
𝑚𝑖𝑛 ≤ 𝑢𝑖(𝑡) ≤ 𝑢𝑖

𝑚𝑎𝑥                         
                          (3.18) 
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𝑢𝑖
𝑙𝑖𝑚 = {

𝑢𝑖
𝑚𝑎       𝑢𝑖(𝑡) > 𝑢𝑖

𝑚𝑎𝑥

𝑢𝑖
𝑚𝑖𝑛       𝑢𝑖(𝑡) < 𝑢𝑖

𝑚𝑖𝑛                                                                                                       (3.19) 

𝑆𝐼𝑉𝐶𝐿 = ∑ 𝐼𝑉𝐶𝐿𝑖
𝑛
𝑖=1                                                                                                                            (3.20) 

where 𝑖 = 1,… , 𝑛 is the number of actuators. 

T is simulation time span. 

𝑢𝑖 is control law for the 𝑖𝑡ℎ actuators. 

𝑢𝑖
𝑚𝑎𝑥 𝑎𝑛𝑑 𝑢𝑖

𝑚𝑖𝑛 are upper and lower bounds of the 𝑖𝑡ℎ actuators. 

𝑎𝑖 is weighting factor. 

We want to find the fastest and optimal response, which is the desired response when SIVCL 

equal to zero. 

 The second term considers time response of closed-loop system to achieve the desired 

response by using Summation of Settling Time (SST) of all outputs: 

𝑆𝑆𝑇 = ∑ 𝑏𝑖
𝑛
𝑖=1 𝑆𝑡𝑖, 𝑏𝑖 > 0                                                                                                       (3.21) 

where 𝑏𝑖  is weighting factor and 𝑆𝑡𝑖 is settling time of the 𝑖𝑡ℎ outputs which is the necessary 

time to become a response steady. 

 The third term exhibits total energy consumption using Summation of Lower Riemann Sum 

(SLRS) of control laws: 

𝑆𝐿𝑅𝑆 = ∑ 𝑐𝑖 ∫ 𝑢𝑖
𝑇

𝑡=0
𝑑𝑡𝑛

𝑖=1                                                                                                                       (3.22) 

where 𝑐𝑖 is weighting factor. 

The importance of each term and magnitude of weighting coefficients in performance index are 

determined by designer requirements. 

To satisfy the control system objectives, the performance index is written as:  

𝐽(𝛬, 𝛤1, 𝐾𝐷) = 𝑆𝐼𝑉𝐶𝐿 + 𝑆𝑆𝑇 + 𝑆𝐿𝑅𝑆                                                                                           (3.23) 

In the next step, the performance index will minimize using PSO algorithm. 

3.2.1.2 Adaptive Control Parameters Optimization 

     In this part, a Particle Swarm Optimization (PSO) algorithm was used to determine adaptive 

control parameters in order to satisfy the problem of input constraints by determining the best 

settling time under constraints on control law. 

     A PSO algorithm is a stochastic optimization technique. It is inspired by the swarm behavior 

of birds flocking, and utilizes this behavior to guide the particles to search for globally optimal 

solutions.  
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     In PSO, a population of particles is spread randomly throughout the search space. The 

particles are assumed to be flying in the search space. The velocity and position of each particle 

is updated iteratively based on personal and social experiences. Each particle possesses a local 

memory in which the best so far achieved experience is stored. Also a global memory keeps the 

best solution found so far. The sizes of both memories are restricted to one. The local memory 

represents the personal experience of the particle and the global memory represents the social 

experience of the swarm. The balance between the effect of the personal and social experiences 

are maintained using randomized correction coefficients. 

The following figure represents a flowchart of the PSO algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                       No 

                                                  

 

          Yes                                               

 

Figure 3.2: Flowchart of PSO algorithm  

     By tracking these steps, we will simulate a PSO algorithm using Matlab code to minimize the 

parameters of the controlled system in order to achieve to the control objectives in the next 

chapter. 
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3.2.1.3 Nonlinear Disturbance Observer Design  

     In the third step, to improve disturbance attenuation ability of nonlinear controllers, a 

nonlinear disturbance observer NDO will be used. 

     A nonlinear disturbance observer NDO is designed to deduce external disturbances and then 

to compensate for the influence of the disturbances using proper feedback. 

     The design of the controller is separated from the design of the disturbance observer. For that, 

the disturbance observer will be integrated with the controller by replacing the disturbance in the 

control law with its estimation yielded by the disturbance observer.  

The mathematical model of a quadrotor is described by: 

�̇� = 𝑓(𝑥) + 𝑔1(𝑥)𝑢 + 𝑔2(𝑥)𝑑                                                                                                     (3.24) 

where 

{

𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8]
𝑇 = [𝑧 �̇� 𝜙 �̇� 𝜃 �̇� 𝜓  �̇�]𝑇  is the state vector

𝑢 = [𝑢1 𝑢2 𝑢3 𝑢4]
𝑇           is input vector                                                               

𝑑 = [𝑑1 𝑑2 𝑑3 𝑑4]
𝑇               is external disturbance vector                           

                         (3.25) 

It is assumed that 𝑓(𝑥), 𝑔1(𝑥), 𝑔2(𝑥) are smooth nonlinear functions in terms of x. 

Using equation (3.2) and (3.25), we obtain:      

 𝑓(𝑥) =

[
 
 
 
 
 
 
 
𝑥2
−𝑔
𝑥4

𝐼1𝑥6𝑥8
𝑥6

𝐼2𝑥4𝑥8
𝑥8

𝐼3𝑥4𝑥6]
 
 
 
 
 
 
 

  𝑔2 (𝑥) =

[
 
 
 
 
 
 
 
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1]

 
 
 
 
 
 
 

, 𝑔1(𝑥) =

[
 
 
 
 
 
 
 
 
 

0 0 0 0
𝑚

cos𝑥3 cos𝑥5
0 0 0

0 0 0 0

0
1

𝐼𝑥𝑥
0 0

0 0 0 0

0 0
1

𝐼𝑦𝑦
0

0 0 0 0

0 0 0
1

𝐼𝑧𝑧]
 
 
 
 
 
 
 
 
 

                (3.26) 

     We supposed that the disturbance d is generated by a linear exogenous system, then the model 

of external disturbance can be represented as: 

{
�̇� = 𝐴𝜒  
𝑑 = 𝐶𝜒  

                                                                                                                                        (3.27) 

where 𝜒 = [𝜒1 𝜒2 𝜒3 𝜒4 𝜒5 𝜒6 𝜒7 𝜒8]
𝑇 is the state vector of the exogenous system,  

𝐴 ∈ ℝ8×8 and 𝐶 ∈ ℝ4×8are given known matrices.  

In NDO designing, it assumed there are four different disturbance sources: 
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{
 

 
𝑑1 = 2 sin(2𝑡 + 1)                                       
𝑑2 = 0.25 sin(3𝑡 + 1)                                 

𝑑3 = 0.05 sin(2𝑡 + 1)                                 
𝑑4 = 0.05 sin(𝑡)                                           

                                                                              (3.28) 

To estimate the unknown disturbance d, a basic disturbance observer is designed as: 

�̇̂� = 𝐴𝜒 + 𝐿(𝑥)𝑔2(𝑥)𝑒𝑑                                                                                                               (3.29) 

with 𝑒𝑑 = 𝑑 − �̂� and 𝐿(𝑥) is the nonlinear gain function of the observer. 

Using  𝑒𝑑 with equations (3.24) and (3.29), the nonlinear observer becomes: 

�̇̂� = 𝐴𝜒 + 𝐿(𝑥)(�̇� − 𝑓(𝑥) − 𝑔1(𝑥)𝑢 − 𝑔2(𝑥)�̂�)                                                                     (3.30) 

However, the above disturbance observer cannot be implemented since the derivative of the state 

is required (sensors problem). A new nonlinear disturbance observer is then proposed after 

defining a following auxiliary variable: 

𝜅 = �̂� − Ϛ(x)                                                                                                                                 (3.31) 

Ϛ(x) is a nonlinear function to be designed. The nonlinear observer gain L(x) is then determined 

by: 𝐿(𝑥) =
𝜕Ϛ(𝑥)

𝜕𝑥
 

The nonlinear observer is obtained by deriving 𝜅 as: 

�̇� = (𝐴 − 𝐿(𝑥)𝑔2(𝑥)𝐶)𝜅 + 𝐴Ϛ(𝑥) − 𝐿(𝑥)(𝑓(𝑥) + 𝑔1(𝑥)𝑢 − 𝑔2(𝑥)𝐶Ϛ(𝑥))                          (3.32) 

Consider 𝑒 = 𝜒 − �̂� is the estimation error. The disturbance observer can exponentially track the 

disturbance if the nonlinear gain function L(x) is chosen such that the error dynamics is globally 

exponentially: 

�̇� = (𝐴 − 𝐿(𝑥)𝑔2𝐶)𝑒                                                                                                               (3.33) 

where (𝐴 − 𝐿(𝑥)𝑔2𝐶) is considered as Hurwits matrix with : 

Ϛ(𝑥) = [𝐿12𝑥2 0 𝐿34𝑥4 0 𝐿56𝑥6 0 𝐿78𝑥8 0]
𝑇                                                                               (3.34) 

3.2.2 Stability analysis 

     In order to verify and ensure the stability of the closed-loop performance of the system, 

M.Navabi has used a Lyapunov theory to performed stability analysis. 

The composite controller that compensate the external disturbance is: 

𝑈𝑐 = 𝑈 + 𝛾𝑑                                                                                                                                  (3.35) 

Using the composite controller in the mathematical model of quadrotor equation (3.24) yields: 
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�̇� = 𝑓(𝑥) + 𝑔1(𝑥)𝑈 + 𝑔1(𝑥)𝛾𝑑 + 𝑔2(𝑥)𝑑                                                                               (3.36) 

Satisfying the condition of disturbance rejection 

 𝑔1(𝑥)𝛾 = −𝑔2(𝑥),                                                                                                                          (3.37) 

 the closed-loop dynamic of quadrotor becomes: 

�̇� = 𝑓(𝑥) + 𝑔1(𝑥)𝑈                                                                                                                        (3.38) 

which shows that the control law 𝑈 = 𝑌�̂� − �̂� − 𝐾𝐷𝑠 is the responsible about global stability of 

the system and convergence of tracking. 

For more robustness, the disturbance 𝑑 in the control law is replaced with its estimation �̂� 

yielded by the disturbance observer equation (3.33), what makes the closed-loop system can 

rewrite as: 

�̇� = 𝑓(𝑥) + 𝑔1(𝑥)𝑈 + 𝑔2(𝑥)(𝑑 − �̂�)                                                                                        (3.39) 

For the stability analysis, the composite system of closed-loop and observer error dynamics is 

used: 

{
ẋ = f(x) + g1(x)U + g2(x)Ce

ė = (A − L(x)g2(x)C)e            
                                                                                                  (3.40) 

The Lyapunov function of the system above is given by: 

𝑉(𝑥, 𝑒) = 𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 + 𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟                                                                                                 (3.41) 

where 

{
𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 =

1

2
[𝑠𝑇𝐻𝑠 + �̃�𝑇𝛤1

−1�̃� + �̃�𝑇𝛤2
−1�̃�]                         

𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑒𝑇𝑃𝑒      𝑤𝑖𝑡ℎ 𝑃 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 
                                                 (3.42) 

Deriving equation (3.41): 

�̇�(𝑥, 𝑒) =
𝜕𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝜕𝑥
(𝑓 + 𝑔1(𝑥)𝑈) +

𝜕𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝜕𝑥
𝑔2(𝑥) + 2𝑃𝑒

𝑇(𝐴 − 𝐿(𝑥)𝑔2(𝑥)𝐶)𝑒                       (3.43) 

where 

{

𝜕𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝜕𝑥
(𝑓 + 𝑔1(𝑥)𝑈) = −𝑠

𝑇𝐾𝐷𝑠 ≤ 0 < 𝛿1‖𝑥‖ with 𝛿1is a small positive scalar

2𝑃𝑒𝑇(𝐴 − 𝐿(𝑥)𝑔2(𝑥)𝐶)𝑒 < −𝛿𝑒𝑇𝑒 with 𝛿 is a small positive scalar                            
       (3.44) 

The final form of Lyapunov derivative function is: 

�̇�(𝑥, 𝑒) < −𝛿1‖𝑥‖ +
𝜕𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝜕𝑥
𝑔2(𝑥)𝐶𝑒 − 𝛿𝑒

𝑇𝑒                                                                     (3.45) 

     As a result according to Lyapunov first derivative and a method described in [34], for every 

state and observer error, the system is stable and they converge to origin as 𝑡 → ∞. 
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3.3 GEOMETRIC ADAPTIVE CONTROLLER 

     This second section presents nonlinear geometric adaptive control GAC, developed by 

Shankar Kulumani in [18], for a quadrotor unmanned aerial vehicle under the influence of 

uncertainties. Assuming that there exist unstructured disturbances in the translational dynamics 

and the attitude dynamics, a geometric nonlinear controller is developed to follow an attitude 

tracking command. In particular, a new form of an adaptive control term is proposed to 

guarantee asymptotical convergence of tracking error variables when there exist uncertainties at 

the dynamics of quadrotors where the disturbances are considered arbitrary without any 

simplification. The corresponding stability properties are analyzed mathematically, and it is 

verified by several simulations in the next chapter. 

     Therefore, the first step in control design is to propose a configuration error function on 

𝑆𝑂(3) with a logarithmic barrier function  to avoid constrained regions with the advantage to 

handle an arbitrary number of constrained regions without modification. Then, an adaptive 

update law will be developed to tackle the external disturbances. 

3.3.1 Attitude dynamics and inequality constraints 

     Rigid body attitude control is an important problem for aerospace vehicles because of 

problems associated with its different parameterization. In this study, singularities and 

ambiguities of local parameterization such as Euler angles and quaternion are completely 

avoided using the rotation matrix as a parametrization of the attitude to generate agile maneuvers 

in a uniform way. The control of a trajectory tracking problem requires state feedback to define 

tracking errors between the current states and the desired states. Since the closed loop system 

dynamics evolve on nonlinear manifolds, which describe the configuration space of the 

quadrotor attitude 𝑅 ∈ 𝑆𝑂(3) , error functions are defined on the same manifolds.  

     The nonlinear manifold is a topological space that locally resembles Euclidean space near 

each point. More precisely, an n-manifold is a topological space with the property that each point 

has a neighborhood that is homeomorphic to the Euclidean space of dimension n. The concept of 

a manifold is central to many parts of geometry and modern mathematical physics because it 

allows complicated structures to be described and understood in terms of the simpler local 

topological properties of Euclidean space.       

     In order to design an attitude controller, we will first define the attitude dynamics in SO(3) 

group and the inequality constraints.  

 



DESCRIPTION OF ATTITUDE CONTROLLERS ROAC AND GAC              |CHAPTER 3                              
 

 55 

3.3.1.1 Attitude Dynamics in SO(3) 

     The attitude dynamic equations of a rigid body are given by, [35]:  

𝐼𝑟Ω̇𝐵 + Ω𝐵 × 𝐼𝑟Ω𝐵 = 𝑢 +𝑊(𝑅, Ω𝐵)∆                                                                                    (3.46) 

�̇� = 𝑅Ω̂𝐵                                                                                                                                  (3.47) 

where 𝐼𝑟 ∈ ℝ
3×3 is the inertia matrix, Ω𝐵 ∈  ℝ

3is the angular velocity expressed with respect to 

the body fixed frame, and 𝑅 ∈ 𝑆𝑂(3)  is a rotation matrix that represents the transformation of 

the representation of a vector from a fixed frame to the inertial reference frame. The control 

moment is denoted by 𝑢 ∈  ℝ3 and it is expressed with respect to the body fixed frame. It assume 

that the external disturbance is expressed by 𝑊(𝑅,Ω𝐵)∆, where 𝑊(𝑅,Ω𝐵): 𝑆𝑂(3) × ℝ
3 → ℝ3×𝑝 

is a known function of the attitude and the angular velocity. The disturbance is represented by 

∆∈ ℝp and is unknown but fixed uncertain parameter. Furthermore, 𝑊(𝑅,Ω𝐵) and ∆ are 

bounded by  

‖𝑊‖ ≤ 𝐵𝑊         ,   ‖∆‖ ≤ 𝐵∆                                                                                                      (3.48) 

This form of uncertainty enters the system dynamics through the input channel and as a result is 

referred to as a matched uncertainty. While this form of uncertainty is easier than the unmatched 

variety many physically realizable disturbances may be modeled in this manner. 

The hat map ˄:ℝ3 → SO(3) represents the transformation of a vector in ℝ3  to a 3 × 3 skew-

symetric matrix such that �̂�𝑦 = 𝑥 × 𝑦 for any 𝑥, 𝑦 ∈  ℝ3 [36]. It replaces S(.) in equation (1.6). 

The inverse of the hat map is the vee map ˅:ℝ3 → SO(3). The properties of the hat map are: 

𝑥. �̂�𝑧 = 𝑦. �̂�𝑥  , �̂��̂�𝑧 = (𝑥. 𝑧)𝑦 − (𝑥. 𝑦)𝑧                                                                                  (3.49) 

𝑥 × �̂� = �̂��̂� − �̂��̂� = 𝑦𝑥𝑇(𝐴 − 𝐴𝑇)˅                                                                                         (3.50) 

𝑡𝑟[𝐴�̂�] =
1

2
𝑡𝑟[�̂�(𝐴 − 𝐴𝑇)] = −𝑥𝑇(𝐴 − 𝐴𝑇)˅                                                                          (3.51) 

�̂�𝐴 + 𝐴𝑇�̂� = ({𝑡𝑟[𝐴]𝐼3×3 − 𝐴}𝑥)
˄                                                                                                             (3.52) 

𝑅𝑥𝑅𝑇 = (𝑅𝑥)˄  ,     𝑅(𝑥 × 𝑦) = 𝑅𝑥 × 𝑅𝑦                                                                                                      (3.53) 

for any  𝑥, 𝑦, 𝑧 ∈  ℝ3, 𝐴 ∈ ℝ3×3 and 𝑅 ∈ 𝑆𝑂(3)  . In this study, the maximum eigenvalue and the 

minimum eigenvalue of J are denoted by 𝜆𝑀   ,𝜆𝑚 respectively . The Frobenius norm of the 

matrix A is denoted by ‖𝐴‖ ≤ ‖𝐴‖𝑓 = √𝑡𝑟(𝐴𝑇𝐴) ≤ √𝑟𝑎𝑛𝑘(𝐴)‖𝐴‖ 
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3.3.1.2 State Inequality Constraint 

     The two-sphere is the manifold of unit-vectors in ℝ3 such that 𝑆2 = {𝑞 ∈ ℝ3| ‖𝑞‖ = 1}.  We 

define 𝑟 ∈ 𝑆2 to be a unit vector from the mass center of the rigid body along a certain direction 

and it is represented with respect to the body-fixed frame. Let 𝑣 ∈ 𝑆2 is defined to be a unit 

vector from the mass center of the rigid body toward an undesired pointing direction and 

represented in the inertial reference frame. 

 It is further assumed that optical sensor has a strict non-exposure constraint with respect to the 

celestial object. This hard constraint is formulated as: 

rTRTv ≤ cos θ                                                                                                                          (3.54) 

where  0° ≤ θ ≤ 90° is the required minimum angular separation between r and RTv. 

The objective here is to determine a control input that insure the stabilization of the system from 

an initial attitude R0  to a desired attitude Rd while satisfying (3.54) 

3.3.2 Attitude Control on 𝐒𝐎(𝟑) with Inequality Constraints  

     In order to achieve the aim of this study which is designing a geometric adaptive control that 

ensure the stabilization of the system where the disturbances are considered, the author first, 

selects a proper configuration error function that is positive definite function which measures the 

error between the current configuration and the desired configuration. Then he defines a 

configuration error vector and a velocity error vector in the tangent space through the derivative 

of [36]. A rigorous Lyapunov analysis is presented to establish stability properties without any 

timescale separation assumption. To handle the attitude inequality constraint, the author proposes 

a new attitude configuration error function. More explicitly, he extends the trace form used in 

[36], for attitude control on with the addition of a logarithmic barrier 𝑆𝑂(3) function. Based on 

the proposed configuration error function, nonlinear geometric attitude controllers are 

constructed. A smooth control system is first developed assuming that there is no disturbance, 

and then it is extended to include an adaptive update law for stabilization in the presence of 

unknown disturbances. The proposed attitude configuration error function and error dynamic are 

summarized as follows. 

 Attitude error function 

     Recall that R is the rotation matrix to describe the quadrotor attitude, and Rd is the desired 

rotation matrix. To describe the relative rotation from the body frame to the desired frame, an 

attitude error function  Ψ: SO(3) → ℝ3, an attitude error vector eR ∈  ℝ
3  and an angular 

velocity eΩ ∈  ℝ
3  , are defined as follows : 
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Ψ(R) = B(R)A(R)                                                                                                                   (3.55) 

eR = eRAB(R) + A(R)eRB                                                                                                       (3.56) 

eΩ = Ω                                                                                                                                     (3.57) 

with 

A(R) =
1

2
 tr[G(I − Rd

TR)]                                                                                                        (3.58) 

B(R) = 1 −
1

α
ln (

cosθ−rTRTv

1+cosθ
)                                                                                                  (3.59) 

eRA =
1

2
(GRd

T − RTRdG)
˅                                                                                                        (3.60) 

eRB =
(RTv)

˅
r

α(rTRTv−cosθ)
                                                                                                                 (3.61) 

where α ∈  ℝ is a positive constant and G ∈  ℝ3×3 is a diagonal matrix. 

Then, the following properties hold:  

(i) It’s noted that equation (3.58) is positive definite function about Rd . We have 0° ≤ θ ≤

90°  which is the constraint angle , so that 0 ≤ cos θ , then we have the term rTRTv 

represents the cosine of the angle between the body fixed vector and the inertial vector v , 

it follows that  

0 ≤
cos θ − rTRTv

1 + cos θ
≤ 1 

for all ∈ SO(3). Then  its negative logarithm is always positive and 1 < B. 

As a result, the error function Ψ = AB , that is composed of two positive terms, is always 

positive definite and it is minimized at R = Rd 

(ii) The variation of A(R)  with respect to a variation of δR = Rη̂ for 𝜂∊ℝ3 is given by : 

DRA. δR = η. eRA                                                                                                           (3.62) 

Using the several property of the hat map that was given in equation (3.51) and the 

variation of equation (3.58), which was  taken with respect to δR = Rη̂, equation (3.62) 

becomes: 

DRA. δR = η.
1

2
(GRd

T − RTRdG)
˅                                                                                    (3.63) 

(iii) The variation of B(R) with respect to a variation of δR = Rη̂ for 𝜂∊ℝ3 is given by : 

DRB. δR = η. eRB                                                                                                           (3.64) 
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Using the scalar triple product from equation (3.49) with the variation of equation (3.59), 

the final form of equation (3.64) is given as: 

DRB. δR = η.
(RTv)

˅
r

α(rTRTv−cosθ)
                                                                                              (3.65) 

(iv) There are four critical points of eRA , the desired attitude Rd  as well as rotations about 

each body fixed axis by 180° and the repulsive error vector eRB is zero only when the 

numerator (RTv)˅r = 0 . This condition only occurs if the desired attitude results in the 

body fixed vector  r  becoming aligned with RTv while simultaneously satisfying {Rd} ∪

{Rd exp (πŝ)} for s∊{ e1, e2, e3}. 

(v) Since it assumes the system will not operate in violation of the constraints, the addition of 

the barrier function does not add additional critical points to the control system. The 

desired equilibrium is eR = 0 and A=0. Therefore, An upper bound of ‖eRA‖ is given as : 

‖eRA‖
2
≤

A(R)

b1
                                                                                                                (3.66) 

 where the constant b1 is given by b1 =
h1

h2+h3
  for : 

{

ℎ1 = min{𝑔1 + 𝑔2,   𝑔2 + 𝑔3,   𝑔3 + 𝑔1}               

ℎ2 = min {(𝑔1 − 𝑔2)
2, (𝑔2 − 𝑔3)

2, (𝑔3 − 𝑔1)
2}  

ℎ3 = min {(𝑔1 + 𝑔2)
2, (𝑔2 + 𝑔3)

2, (𝑔3 + 𝑔1)
2}

  

 Error dynamic 

     In order to find the attitude error dynamics for 𝛹, some error dynamics of the system will be 

defined. 

Firstly, using the kinematics from equation (3.47) and noting that �̇�𝑑 = 0, the time derivative of 

𝑅𝑑
𝑇𝑅 is given as: 

𝑑(𝑅𝑑
𝑇𝑅)

𝑑𝑡
= 𝑅𝑇 𝑅�̂�Ω                                                                                                                            

(3.67) 

By substituting equation (3.67) in equation (3.58), the time derivative of 𝐴(𝑅) is given as: 

𝑑(𝐴(𝑅))

𝑑𝑡
= −

1

2
 𝑡𝑟[𝐺𝑅𝑑

𝑇𝑅�̂�Ω]                                                                                                         (3.68) 

Applying the hat map property from equation (3. 51), equation (3.68) becomes: 

d

dt
(A(R)) = eRA . eΩ                                                                                                                  (3.69) 

The time derivative of the repulsive error function is given by: 
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𝑑(𝐵(𝑅))

𝑑𝑡
=

𝑟𝑇(Ω̂𝐵𝑅
𝑇)𝑣

𝛼(𝑟𝑇𝑅𝑇𝑣−𝑐𝑜𝑠 𝜃)
                                                                                                             (3.70) 

Using the scalar triple product that was given by equation (3.59), the equation (3.70) can be 

rewritten as: 

𝑑

𝑑𝑡
(𝐵(𝑅)) = 𝑒𝑅𝐵 . 𝑒Ω                                                                                                                 (3.71) 

By deriving equation (3.60) and using the hat map property given in equation (3.52), the 

derivative of attractive attitude error vector, 𝑒𝑅𝐴, is given by : 

𝑑(𝑒𝑅𝐴)

𝑑𝑡
=

1

2
(�̂�Ω𝑅

𝑇𝑅𝑑𝐺 + (𝑅
𝑇𝑅𝑑𝐺)

𝑇�̂�Ω)ˇ = E(R, Rd)eΩ                                                            (3.72) 

where 𝐸(𝑅, 𝑅𝑑) is a matrix ∈  ℝ3×3 given by: 

𝐸(𝑅, 𝑅𝑑) =
1

2
(𝑡𝑟[𝑅𝑇𝑅𝑑𝐺]𝐼 − 𝑅

𝑇𝑅𝑑𝐺)                                                                                    (3.73) 

To find the time derivative of the repulsive attitude error vector 𝑒𝑅𝐵, we first derive equation 

(3.61): 

𝑑(𝑒𝑅𝐵)

𝑑𝑡
= 𝑎Ω𝐵𝑣

𝑇𝑅𝑟 − 𝑎𝑅𝑇𝑣Ω𝐵
𝑇𝑟 + 𝑏𝑅𝑇𝑣𝑅𝑟                                                                             (3.74) 

with 𝑎 ∈ ℝ and 𝑏 ∈ ℝ given by:                         

𝑎 = [𝛼(𝑟𝑇𝑅𝑇𝑣 − 𝑐𝑜𝑠 𝜃)]−1   ,    𝑏 =
𝑟𝑇Ω̂𝐵𝑅

𝑇𝑣

𝛼(𝑟𝑇𝑅𝑇𝑣−𝑐𝑜𝑠 𝜃)2
     

Then, using the scalar triple product from equation (3.49) as   𝑟. Ω𝐵 × (𝑅
𝑇𝑣) = (𝑅𝑇𝑣). 𝑟 × Ω𝐵, 

equation (3.74) becomes: 

d

dt
(eRB) = F(R)eΩ                                                                                                                    (3.75) 

where 𝐹(𝑅) is a matrix ∈  ℝ3×3 given as follows: 

𝐹(𝑅) =
1

𝛼(𝑟𝑇𝑅𝑇𝑣−𝑐𝑜𝑠 𝜃)
[(𝑣𝑇𝑅𝑟)𝐼 − 𝑅𝑇𝑣𝑟𝑇 +

𝑅𝑇�̂�𝑅𝑟𝑣𝑇𝑅�̂�

(𝑟𝑇𝑅𝑇𝑣−𝑐𝑜𝑠𝜃)
]                                                    (3.76) 

Deriving the configuration error function gives: 

𝑑(𝛹)

𝑑𝑡
= �̇�𝐵 + 𝐴�̇�                                                                                                                          (3.77) 

By substituting equations (3.58), (3.59), (3.69) and (3.71) into equation (3.77) with the use of 

equation (3.56), the final form of equation (3.77) is given as follows: 

d

dt
(Ψ) = eR. eΩ                                                                                                                         (3.78) 

The time derivatives of eR, eΩ are respectively: 
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d  

dt
(eR) = �̇�𝑅𝐴B(R) + eRAḂ(R) + Ȧ(𝑅)eRB + A(R)�̇�𝑅𝐵                                                           (3.79) 

𝑑

𝑑𝑡
(𝑒Ω) = 𝐼𝑟

−1(−Ω𝐵 × 𝐽Ω𝐵 + 𝑢 +𝑊(𝑅, Ω𝐵)∆)                                                                      (3.80) 

3.3.2.1 Attitude controller without disturbance 

     In this subsection, a nonlinear geometric controller for the stabilization of a rigid body is 

going to be introduced, where we assume that there is no disturbances, i.e. ∆= 0. 

For a given desired attitude command  (𝑅𝑑 ,Ω𝑑 = 0) , that satisfies the condition in equation 

(3.54) and positive constraints  𝑘𝑅 , 𝑘Ω ∈ ℝ, a control input 𝑢 ∈ ℝ3 is defined as follows: 

𝑢 = −𝑘𝑅𝑒𝑅 − 𝑘Ω𝑒Ω + Ω𝐵 × 𝐼𝑟Ω𝐵                                                                                           (3.81) 

Consider the following Lyapunov function: 

𝑉 =
1

2
𝑒Ω. 𝐼𝑟𝑒Ω + 𝑘𝑅(𝑅, 𝑅𝑑)                                                                                                      (3.82) 

From the property (i) above, 𝑉 ≥ 0 . Using equations (3.78) and (3.80) with  ∆= 0, the time 

derivative of V is given by: 

�̇� = −𝑘Ω‖𝑒Ω‖
2                                                                                                                        (3.83) 

Since V is positive definite and �̇� is negative semi-definite, the zero equilibrium point 𝑒𝑅 , 𝑒Ω is 

stable in the sense of Lyapunov. This also implies 𝑙𝑖𝑚
𝑡→∞

‖𝑒Ω‖ = 0 and ‖𝑒𝑅‖ is uniformly bounded, 

as the Lyapunov function is non-increasing. From equations (3.72) and (3.75),  𝑙𝑖𝑚
𝑡→∞

�̇�𝑅 = 0 . One 

can show that ‖�̈�𝑅‖ is bounded. From Barbalat’s Lemma, it follows 𝑙𝑖𝑚
𝑡→∞

�̇�𝑅 = 0 . Therefore, the 

zero equilibrium of the attitude error is asymptotically stable. 

Furthermore, since �̇� ≤ 0 , then the Lyapunov function is uniformly bounded which implies: 

𝛹(𝑅(𝑡)) ≤ 𝑉(𝑡) ≤ 𝑉(0) 

In addition, the logarithmic term in (3.59) ensures 𝛹(𝑅) → ∞ as  𝑟𝑇𝑅𝑇𝑣 → 𝑐𝑜𝑠 𝜃 . Therefore, 

the inequality constraint is always satisfied given that the desired equilibrium lies in feasible set. 

Then is asymptotically stable, and the inequality constraint is satisfied. 

3.3.2.2 Adaptive Control 

     In this case, an adaptive controller for attitude control in the presence of external disturbance 

∆, which is fixe but unknown, will be detailed to asymptotically stabilize the system to a desired 

attitude. 
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First, it’s necessary to show that �̇�𝑹 is bounded. For this, consider a domain D about the desired 

attitude defined as: 

𝐷 = {𝑅 ∈ 𝑆𝑂(3)|𝛹 < 𝜓 < ℎ1, 𝑟
𝑇𝑅𝑇𝑣 < 𝛽 < 𝑐𝑜𝑠 𝜃}                                                             (3.84) 

Then the following statements hold: 

(i) The selected domain ensues that the configuration error function is bounded  𝛹 < 𝜓. 

This implies that both A(R) and B(R) are bounded by constants  𝑐𝐴𝑐𝐵 < 𝜓 < ℎ1 . Furthermore, 

since ‖𝐵‖ > 1 this ensures that 𝑐𝐴, 𝑐𝐵 < 𝜓, which defines the upper bounds of A(R) and B(R) 

by: 

𝐴(𝑅) < 𝑐𝐴   ,     𝐵(𝑅) < 𝑐𝐵                                                                                                       (3.85) 

(ii) Upper bounds of 𝐸(𝑅, 𝑅𝑑)  and F(R) are given by using the Frobenius norm . The 

Frobenius norm ‖𝐸‖𝐹 is given as : 

‖𝐸‖𝐹
2 ≤

1

4
(𝑡𝑟[𝐺2] + 𝑡𝑟[𝐺2]) ≤

1

2
𝑡𝑟[𝐺]2                                                                                  (3.86) 

since  ‖𝐸‖ ≤ ‖𝐸‖𝐹 , which gives: 

‖𝐸‖ ≤
1

√2
𝑡𝑟[𝐺]                                                                                                                        (3.87) 

The Frobenius norm ‖𝐹‖𝐹 is: 

‖𝐹‖𝐹 =
1

𝛼2(𝑟𝑇𝑅𝑇𝑣−𝑐𝑜𝑠 𝜃)2
[𝑡𝑟[𝑎𝑇𝑎] − 2𝑡𝑟[𝑎𝑇𝑏] + 2𝑡𝑟[𝑎𝑇𝑐] + 𝑡𝑟[𝑏𝑇𝑏] − 2𝑡𝑟[𝑏𝑇𝑐] + 𝑡𝑟[𝑐𝑇𝑐]]      

                                                                                                                                                  (3.88) 

where the terms a, b and c are given by:  

𝑎 = 𝑟𝑇𝑅𝑟𝐼  ,   𝑏 = 𝑅𝑇𝑣𝑟𝑇  ,       𝑐 =
𝑅𝑇�̂�𝑅𝑟𝑣𝑇𝑅�̂�

𝑟𝑇𝑅𝑇𝑣 − 𝑐𝑜𝑠 𝜃
 

which gives the upper bound as follows: 

‖𝐹‖ ≤
(𝛽2+1)(𝛽−𝑐𝑜𝑠𝜃)2+1+𝛽2(𝛽2−2)

𝛼2(𝛽−𝑐𝑜𝑠 𝜃)4
                                                                                          (3.89) 

(iii) Upper bounds of the attitude error vectors 𝑒𝑅𝐴 and 𝑒𝑅𝐵 are given as:  

‖𝑒𝑅𝐴‖ ≤ √
𝜓

𝑏1
                                                                                                                            (3.90) 

‖𝑒𝑅𝐵‖ ≤
𝑠𝑖𝑛 𝜃

𝛼(𝑐𝑜𝑠 𝜃−𝛽)
                                                                                                                   (3.91) 

These results are combined to yield a maximum upper bound of the time derivative of the 

attitude error vector �̇�𝑅  as:  
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‖�̇�𝑅‖ ≤ 𝐻‖𝑒Ω‖                                                                                                                         (3.92) 

with  𝐻 ∈ ℝ is defined as:  

𝐻 = ‖𝐵‖‖𝐸‖ + 2‖𝑒𝑅𝐴‖‖𝑒𝑅𝐵‖ + ‖𝐴‖‖𝐹‖                                                                              (3.93) 

 

Adaptive Attitude Control 

Given a desired attitude command  (𝑅𝑑,Ω𝑑 = 0) , and positive constraints  𝑘𝑅 , 𝑘Ω, 𝑘∆, 𝑐 ∈ ℝ., a 

control input  𝑢 ∈ ℝ3 and an adaptive update law for the estimated uncertainty ∆̅ are defined as 

follows: 

𝑢 = −𝑘𝑅𝑒𝑅 − 𝑘Ω𝑒Ω + Ω𝐵 × 𝐼𝑟Ω𝐵 −𝑊∆̅                                                                                (3.94) 

∆̇̅= 𝑘∆𝑊
𝑇(𝑒Ω + 𝑐𝑒𝑅)                                                                                                               (3.95) 

Consider the Lyapunov function V given by:  

𝑉 =
1

2
𝑒Ω. 𝐼𝑟𝑒Ω + 𝑘𝑅𝛹 + 𝑐𝐼𝑟𝑒Ω. 𝑒𝑅 +

1

2𝑘∆
𝑒∆. 𝑒∆                                                                        (3.96) 

Over the domain D in equation (3.84), the Lyapunov function is bounded in D by  

V ≤ zTWz                                                                                                                                 (3.97) 

where e∆ = ∆ − ∆̅  , z = [‖eR‖, ‖eΩ‖, ‖e∆‖]
T ∈ ℝ3 and the matrix  W ∊ ℝ3×3  is given by: 

W =

[
 
 
 
 
 kRψ

1

2
cλM 0

1

2
cλM

1

2
λM 0

0 0
1

2k∆]
 
 
 
 
 

 

The time derivative of V with the control inputs (3.94) is given by: 

V̇ = −kΩeΩ
TeΩ + (eΩ + ceR)

TWe∆ − kRceR
TeR − kΩceR

TeΩ + c𝐼𝑟eΩ
TeṘ −

1

k∆
e∆
T∆̇̅                  (3.98) 

where ė∆ = −∆̇̅ is used. The terms linearly dependent on e∆  are combined with (3.95) to yield  

e∆
T(WT(eΩ + ceR) −

1

k∆
∆̇̅= 0                                                                                                    (3.99) 

An upper bound on V̇ is written as:  

V̇ ≤ −ξ
TMξ                                                                                                                                (3.100) 

where  ξ = [‖eR‖, ‖eΩ‖] ∈ ℝ
2, and the matrix M ∈ ℝ2×2 is: 
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M = [
kRc

kΩc

2
kΩc

2
kΩ − cλMH

]                                                                                                       (3.101) 

To satisfy that the matrix M is positive definite, c is chosen as: 

0 < 𝑐 <
4𝑘𝑅𝑘Ω

𝑘Ω
2+4𝑘−𝑅𝜆𝑀𝐻

                                                                                                              (3.102) 

This implies that V̇ is negative semidefinite and  lim
t→∞

ξ = 0 . As the Lyapunov function is non-

increasing, z is uniformly bounded. The zero equilibrium of the error vectors is stable in the 

sense of Lyapunov. Furthermore, 𝑒𝑅 , 𝑒Ω → 0 as  𝑡 → ∞ , and ∆̅ is uniformly bounded. 

3.4 CONCLUSION  

     This chapter presents detailed studies about two nonlinear strategies of tracking attitude 

control of UAV quadrotors, where a robust optimal adaptive control method was used in the first 

strategy to deal with parametric uncertainties, external disturbances and input constraints 

simultaneously, and a geometric adaptive control of attitude dynamics on 𝑆𝑂(3) with state 

inequality constraints in the second strategy. In the first controller, the parametric uncertainties 

have been compensated using the adaptive nonlinear control method based on Lyapunov stability 

arguments, that has been widely used as a suitable choice. While a nonlinear disturbance 

observer was used to deduce the external disturbances and finally the inputs of system were 

optimized using a PSO algorithm. For the second controller, the proposed control system is 

developed on 𝑆𝑂(3) and avoids the singularities of Euler angles parameters while incorporating 

state inequality constraints. In addition, the unwinding and double coverage ambiguity of 

quaternions are also completely avoided. The control system handles uncertain disturbances 

while avoiding constrained regions using an update adaptive law. The validity of the developed 

controllers will be confirmed by several simulations in the next chapter. 
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Chapter 4 

SIMULATION RESULTS 

 

4.1 INTRODUCTION 

     To verify the control methods that have been proposed and developed in chapter 3, several 

simulations using MATLAB/CODE have been conducted in this chapter. The performances of 

the proposed methods are evaluated on a high fidelity model of the quadrotor where nonlinear 

dynamics, external disturbances, and parametric uncertainties are taken into account along with 

the inputs constraints. The simulations are divided into three sections in accordance with chapter 

3, where section 4.2 holds the simulation results of the Robust Optimal Adaptive Controller, and 

section 4.3 presents the simulation results of the Geometric Adaptive Controller. While the last 

section provides a comparison analysis between the performances of the nonlinear geometric 

adaptive controller and the robust optimal adaptive controller, where the controllers are tested on 

their ability to track a desired attitude of a quadrotors. 

4.2 SIMULATION RESULTS OF ROBUST OPTIMAL ADAPTIVE 

CONTROLLER 

  In this section, simulation results are presented to show the efficiency of the robust optimal 

adaptive control in the presence of external disturbances, parametric uncertainties and input 

constraints, in which the developed mathematical models in Chapter 2 and control architectures 

in Chapter 3 are numerically solved.   

 The quadrotor parameters that were used in simulations are the same used in [37] and they are 

given in Table 4.1 as follows 
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Table 4.1: Parameters of Quadrotor 

Parameters Description Value Unit 

g 

m 

I𝑥𝑥 

I𝑦𝑦 

I𝑧𝑧 

J𝑟 

L 

b 

d 

Gravity 

Mass 

Inertia on 𝑥 axis 

Inertia on 𝑦 axis 

Inertia on 𝑧 axis 

Rotor Inertia 

Arm length 

Thrust coefficient 

Drag coefficient 

9.8° 

0.650 

7.5e-3 

7.5e-3 

1.3e-2 

6e-5 

0.23 

3.13e-5 

7.5e-7 

𝑚. 𝑠−2 

𝑘𝑔 

𝑘𝑔.𝑚2 

𝑘𝑔.𝑚2 

𝑘𝑔.𝑚2 

𝑘𝑔.𝑚2 

𝑚 

𝑁. 𝑠2 

𝑁.𝑚. 𝑠2 

We will use the same quadrotor configuration for all subsequent simulations, including those 

equipped with nonlinear geometric adaptive controller. 

4.2.1 Results for Adaptive trajectory tracking 

   The first simulation deals with parametric uncertainties where we tried to detect the effects of 

time-varying parameters on tracking performance. The initial conditions are set to: 

 Translational position: [0 0 0]𝑇 . 

 Angular rates: [10 10 10]𝑇. 

 The mass and moments of inertia are increased every 10 seconds with 100% of 

uncertainty. 

 The desired trajectory is associated with the sinusoidal reference signal: 

 𝑟𝑑 = 10 sin(0.5𝑡) 

   The simulation results are shown in Figure 4.1 and Figure 4.2. It can be seen from Figure 4.1 

that the proposed control technique provided very accurate tracking of the attitude reference 

trajectory in very fast and precisely way. While the estimation of quadrotor parameters response 

has been shown in Figure 4.2. From the estimation plot, it can be noticed that the proposed 

method can estimate unknown parameters quickly and accurately, in the same time it fixes them 

bounded. 
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Figure 4.1: Altitude and attitude control with a sinusoidal desired output in presence of 

uncertainty but without external disturbance. 

 
 

Figure 4.2: Estimation of time-varying unknown parameters of quadrotor. 
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4.2.2 Results for trajectory tracking using Nonlinear Disturbance Observer  

    This subsection evaluates the performance of the nonlinear disturbance observer based 

controller developed before in order to verify its robustness issue against external disturbance. 

For the purpose of the simulation, the external disturbances imposed on the system for 7.5 

seconds and their vectors are given by the functions: 

{

𝑑1 = 2sin(2𝑡 + 1)       
𝑑2 = 0.25 sin(3𝑡 + 1)

𝑑3 = 0.05 sin(2𝑡 + 1)

𝑑4 = 0.05 sin(𝑡)          

 

The initial value of the exogenous system is taken as: 

 𝜒0 = [2 sin 1  4 cos 1  0.25 sin 1  0.75 cos 1  0.05 sin 1  0.1 sin 1  0 0.05]𝑇 

The plots of the estimated disturbances are presented in Figure 4.3, where it can be seen that the 

nonlinear disturbance observer can estimate the unknown disturbances in close vicinity of the 

real disturbances, while the magnitude of observer gains are the responsible of the convergence 

rate. For that, a faster convergence depends on large gains without any modification needs on the 

controller. 

 

Figure 4.3: Disturbance estimated by nonlinear disturbance observers. 

 

Figures 4.4 and 4.5 show the effect of the external disturbances acting on the stabilization of 

quadrotor during the fly, where they provide a comparison between the stabilization of system 
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with and without using the nonlinear disturbance observer on the altitude, attitude and 

translational trajectories respectively.   

 

Figure 4.4: Altitude and attitude stabilization with NDO 

     From Figure 4.4, we can see that the external disturbances effect badly on the stability 

performance of the system with oscillatory response in altitude and attitude, while the integrated 

NDO with the adaptive controller showed better performance against external disturbances and 

parametric uncertainties with a guarantee of stable flight. 

   The effects of external disturbance on quadrotor position are depicted in Figure 4.5. As the 

translational motion of the quadrotor relies on the attitude angles, the consequences of acquiring 

the desired bounded and smooth attitude angles are reflected in the position plots in the form of 

deviation. From position plots, it can be inferred that the proposed composite controller showed 

better stiffness against the disturbances by retaining the position in the close vicinity of the 

desired values with less deviation from origin.  
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Figure 4.5: Position of quadrotor in hovering, while the system is subject to external 

disturbances. 

4.2.3 Results of PSO algorithm 

 In order to reach the control objectives, this subsection we will introduce the Particle Swarm 

Optimization (PSO) algorithm to our system where the quadrotor should reach desired set point 

in presence of control input constraints along with parametric uncertainties and external 

disturbances. The PSO algorithm is utilized to tune the controller by minimizing the presented 

cost function. The initial conditions are set to: 𝑥0 = [0 0 10° 0 10° 0 10° 0]
𝑇, while the final set 

points are 1 and 0 for the final altitude and attitude respectively. 

The simulation results of variation of the global best cost versus the Number of Function 

Evaluation (NFE) in the PSO algorithm is presented in Figure 4.6. While Table 4.2 presents the 

best solutions founded by the PSO algorithm for different weighting factors. 
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Figure 4.6: Global best cost 

Table 4.2: Best solution obtained by the PSO algorithm with different weighting factor values. 

Weighting Factor Λ 𝛤1 𝐾𝐷 Best Cost 

a1=a2=1 

b1=b2=1 

c1=c2=1 

1.5364 1.2805 1.2092 6.68853 

a1=a2=2 

b1=b2=1 

c1=c2=1 

3.6270 2.7571 1.3401 7.76627 

a1=a2=1 

b1=b2=2 

c1=c2=1 

1.9190 4.8436 1.7065 9.70998 

a1=a2=1 

b1=b2=1 

c1=c2=2 

7.9660 3.9880 1.8311 10.86427 

From the Table 4.2, we can see that the best solution for our system is the solution obtained for 

a1=a2=1, b1=b2=1 and c1=c2=1. 

Figures 4.7 and 4.8 provide results of outputs tracking and it was shown that the outputs properly 

reach desired set points, and the control inputs are continuous and limited as desired. 
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Figure 4.7: Simulation results of the set point tracking 

 

Figure 4.8: Angular speed of rotors 
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4.3 SIMULATION RESULTS OF GEOMETRIC ADAPTIVE 

CONTROLLER 

   In this section, the simulation of attitude tracking by the geometric adaptive nonlinear control 

is given to validate the performance of this controller against the external disturbances and 

inequality constraints. 

Where a set of proposed scenarios are presented to test the different control variations. The 

model parameters for the quadrotor that were used in these simulations are the same as the 

parameters used with the robust optimal adaptive controller as mentioned before, in order to 

facilitate the comparison between the two controllers in the next section, while the control 

system parameters are chosen as: 

 𝐺 = 𝑑𝑖𝑎𝑔[0.9,1.1,1.0]                              𝛼 = 15                                       𝑐 = 1.0 

 Attitude error gain (𝑘𝑅): 0.4 

 Angular velocity error gain (𝑘Ω): 0.296 

 Disturbance error gain (𝑘∆): 0.5 

 A body fixed sensor: 𝑟 = [1,0,0] 

 The multiple inequality constraints are defined in Table 4.3 as: 

Table 4.3: Multiple inequality constraints 

Constraint Vector (𝑣) Angle (𝜃) 

[0.174,−0.934, −0.034]𝑇  40° 

[0, 0.7071, 0.7071]𝑇  40° 

[−0.853, 0.436, −0.286]𝑇  40° 

[−0.122,−0.140,−0.983]𝑇  20° 

 ∆= [2sin(2𝑡 + 1)  0.25 sin(3𝑡 + 1)  0.05 sin(2𝑡 + 1)]𝑇  

 The initial conditions are set to: 

𝑅0 = exp (225° ×
𝜋

180
�̂�3)                      Ω0 = 0  

4.3.1 Configuration error function visualization 

    As described in Chapter 3, the stability of the nonlinear geometric controller is evaluated by 

analyzing the error functions to check whether the desired attitude is asymptotically stabilized. 

Therefore, we firstly visualize the attitude error function on 𝑆𝑂(3) using a spherical coordinate 

representation in terms of a latitude and longitude. Figures 4.9 to 4.11 provide a visualization of 
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the attitude error function potential in addition to its composites. Where, Figure 4.9. represents 

the attractive error function 𝐴(𝑅), from it can be seen that the desired attitude lies at the 

minimum of 𝐴(𝑅). While Figure 4.10 represents the repulsive error function 𝐵(𝑅), where it 

shows that as the boundary of the constraint is neared, the barrier term increases and this was 

caused by the state inequality constraints which was incorporated by applying a logarithmic 

barrier term. The logarithmic barrier quickly decays away from the constraint boundary in 

addition to the positive constant 𝛼 which serves to shape the barrier function. As 𝛼 is increased 

the impact of 𝐵(𝑅) is reduced away from the constraint boundary. 

 

Figure 4.9: Attractive 𝐴(𝑅) error function visualization 

 

Figure 4.10: Repulsive 𝐵(𝑅) error function visualization 
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    In order to visualize the attitude error function, we will represent the superposition of the 

attractive and repulsive functions in Figure 4.11. From this figure we can define our control 

system such that the attitude trajectory follows the negative gradient of 𝛹 toward the minimum 

at 𝑅 = 𝑅𝑑, while avoiding the constrained region. 

 

Figure 4.11: Configuration error function visualization 

4.3.2 Results of Attitude control without Disturbance 

   In the first scenario of simulation for attitude control and stabilization, we assume that there are 

no disturbances. Where Figures 4.12 and 4.13 show the simulation results without using the 

adaptive update law.  

  From Figure 4.12, we can see that the system does not achieve to zero steady state error which 

means the system is not stable. The same thing for the configuration error function that was 

presented in Figure 4.13, which couldn’t converge to zero while there exist steady state errors. 
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Figure 4.12: Attitude error vector 𝑒𝑅 

 

Figure 4.13: Configuration Error 𝛹 without adaptive law  

 

 

 

 



   SIMULATION RESULTS                                                                         |CHAPTER 4                              
 

 76 

4.3.3 Results of Adaptive Attitude Control 

   In the second scenario of simulation for attitude control, we will use the adaptive update law 

developed in Chapter 3 in order to handle the uncertain disturbances while avoiding constrained 

regions. Where the simulation results are presented in Figures 4.14 to 4.17. 

   Figure 4.14 presents the configuration error function after applying the adaptive update law, 

where it was shown that the error function converged to zero this time, that means that the 

adaptive control can asymptotically stabilize the system to a desired attitude while ensuring that 

state constraints are satisfied. The angle to constraints are presents in Figure 4.15 where we can 

see that he angle arccos (𝑟𝑇𝑅𝑇𝑣𝑖) betweene the body fixed sensor and each constraint is satisfied 

for the entire maneuver . 

 

Figure 4.14: Configuration Error 𝛹 with adaptive law 

 

Figure 4.15: Angle to constraints 
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  Figure 4.16 shows the efficiency of the adaptive control against unknown disturbances. Where 

the adaptive control estimates the real disturbance while fixed them bounded and that enables the 

system to stabilize to a desired attitude. 

 

Figure 4.16: Disturbance estimate  Δ̅ 

   The path of the body fixed sensor in the inertia frame was presentd in Figure 4.17. The system 

avoids the constrained region illustrated by the circular cone in Figure 4.17 while the initial and 

the final attitude were represented with a green cirle  and a green X respectively, by rotating 

around the boundary of the constraint. This verifies that the proposed control system exhibits the 

desired performance. 

 

Figure 4.17: Attitude trajectory 
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4.4 COMPARISON ANALYSIS  

   In this subsection, simulation results of Robust optimal adaptive controller will be compared to 

the Geometric adaptive controller using the same initial and final conditions sets. Where we will 

compare the tracking errors between the actual and desired trajectory. The simulation results of 

this comparison is presented in Figure 4.18. 

From Figure 4.18, it is observed that the geometric adaptive controller converges faster than the 

robust optimal adaptive controller towards the 0 for the attitude and 1 for the trajectory. While 

the robust optimal adaptive controller takes 4s to converge to the desired set points. 

   For more precisely comparison results between the aforementioned controllers, Table 4.4 

presents the indices that allows to a better analysis which are: the response time and the 

overshoot.   

 

Figure 4.18: Comparison between ROAC and GAC controllers  

Table 4.4: Simulation results comparison 

 Response time Overshoot Run time 

GAC 1 s 0% 6 s 

ROAC 4 s 0% 9 s 
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4.5 CONCLUSION 

  
    This chapter presents simulation results for the robust optimal adaptive and geometric 

adaptive controllers developed and studied in the previous chapter. Where each controller was 

tested and evaluated via different scenarios of simulation in order to verify its efficiency in 

trajectory tracking. The first controller provides a good altitude and attitude tracking in the 

presence of parametric uncertainties using an adaptive controller which estimate the desired 

parameters, while the integrated nonlinear disturbance observer estimates the fixed and unknown 

disturbances. Furthermore, in order to deal with input constraints, we used a PSO algorithm. The 

second controller showed more efficiency results in trajectory tracking while avoiding inequality 

constraints regions and better performance in estimating the unknown disturbances by fixing 

them bounded using an adaptive update law. 

 Finally, we conclude that the nonlinear geometric controller offers greater tracking capability 

and robustness to external disturbances and inequality constraints. It is also fast to respond to 

errors and damp out oscillatory responses. 



                                                                                                                           |CONCLUSIONS                             
 

 80 

 

CONCLUSIONS  

   Autonomous robotic systems have been developing in an accelerating pace in recent years, 

what started as an interesting concept, exclusive to only a few institutions, has become a global 

trend all over the world especially the aerial vehicles namely Drones. The most popular and 

advantageous aerial vehicle is the Quadrotor UAV because of its VTOL concept especially for 

specific type of missions/operations. Although quadrotor have many advantageous properties, it 

has a highly nonlinear, coupled and under-actuated dynamics. Therefore, control of the vehicle is 

not straightforward and many researchers interested in designing and verifying control methods 

for quadrotors. 

  In this thesis, attitude tracking of a quadrotor is obtained by using two independent control 

strategies called as “Robust Optimal Adaptive Controller” and “Geometric Adaptive Controller”. 

Throughout the thesis, first, dynamic model of the quadrotor is derived by using Newton’s 

equations of motion. Then, each control methods are studied and developed in order to get the 

final control design. Finally, the validation of control systems is obtained by simulations in 

MATLAB/Code and control systems are compared to each other. 

  The first controller is addressed to attitude stabilization and tracking problem of quadrotor in 

the presence of parametric uncertainties, external disturbances and input constraints. Based on 

numerical results, robust optimal adaptive controller has the ability to stabilize nonlinear 

dynamic system of quadrotor, force the states to follow desired reference signals, and find 

optimal solution for the tracking problem. Where the developed adaptive update law deals with 

parametric uncertainties by estimating the real parameters in very accurate way. While to reduce 

the effect of input saturation of the uncertain quadrotor model, the PSO algorithm showed that it 

can achieved to the optimal adaptive controller parameters quickly and efficiently. The nonlinear 

disturbance observer integrated with the optimal adaptive controller provides a high accurate 

attenuation to the external disturbances. 

  The second controller is a developed geometric adaptive control system which incorporates 

state inequality constraints on SO(3). The presented control system is developed directly on 

SO(3) and it avoids singularities and ambiguities that are inherent to attitude parameterizations. 

In order to avoid the constrained regions, the attitude configuration error is augmented with a 

barrier function. While to cancel the effects of uncertainties, an adaptive control law is proposed. 

The numerical results showed that it is straightforward to incorporate an arbitrary amount of 

large constraints. Another feature of this control is that it is computed autonomously on-board 

the UAV. 
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   According to the comparison results, it could be stated that, the geometric adaptive controller 

could track the attitude trajectory with high accuracy compared to robust optimal adaptive 

controller. Where the presented geometric adaptive controller is simple, efficient and ideal for 

hardware implementation on embedded systems. 

  Although simulations give good and motivating results, to achieve a complete validation, 

controllers have to be verified by real time experiments. Therefore, experimental validation in a 

real environment of obtained control algorithms could be performed as a future work. In 

addition, dynamic model of the quadrotor can be detailed to obtain more realistic and accurate 

results and performance of controllers could be increased by making some modifications.
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