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الرحمن الرحيمالله بسم 
﴾وقضى ربك ألا تعبدوا إلا إياه و بالوالدين احسانا ﴿:الله تعالىقال 

أهدي هذا العمل المتواضع إلى الوالدين الكريمين حفظهما الله
إلى إخوتي

إلى أحمد و خليل و أسماء
إلى الأخ الصغير عبد الرحمان 

علهم ممن حفظهم الله جميعا وأجزل لهم المثوبة والله أسأل أن يتولاهم في الدنيا و الآخرة وان يج
إذا أعطي شكر وإذ

إبتلي صبر وإذا أذنب استغفر وأن يسبغ عليهم نعمه ظاهرة و باطنه
إلى كل الأصدقاء و النفوس الطيبة

إلى كل أساتذتي إلى كل من درسني وعلمني وأعانني من قريب أو من بعيد
.إلى من وسعتهم ذاكرتي و لم تسعهم مذكرتي 
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Ix́ : the moments of inertia of the undeformed satellite with respect to the y-axis.
Ix́ : the moments of inertia of the undeformed satellite with respect to the z-axis.
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G :is a gain.
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~Text: external torque vector applied to the hub B.
DB
G :the static-dynamic model of B at point G.

DA
G:the static-dynamic model of A at point G.

TGP :transport the direct dynamic model of a hub body B from a point G to a point P.
~rGP :vector position of point P in frame RG

~rcp:vector position of point C in frame RP

JBG: moment of inertia tensor of the main body with respect to G written in RG.
~VG: absolute linear velocity vector of B in RG.
~VP : absolute linear velocity vector of B in P .
~FP : reaction forces vector between hub/appendage.
~TP : reaction torque vector between hub/appendage.
QP : is called generalized force.
DA
P :the static-dynamic model of A at point P.

DB
P :the static-dynamic model of B at point P.

TCP :transport the direct dynamic model of an appendage A from a point C to a point
P
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Abstract

The kinematic model of a body is a system of equations that define the
position in space of each particle of the body from the values of a set of
variables. The time variation of these variables describes the motion of the
body. After, we review the different ways to describe the rigid motion and
how to express all the kinematic variables and their time derivatives that we
need later to formulate the dynamics. Finally, the kinematics of the flexible
body are described by adding a set of deformation functions on to the rigid
body kinematics, Many multibody dynamics software are available to build
such kind of models but they address the nonlinear behavior and they are too
much loud to be handled at the early prototyping phase. in the present work
we starts by defining the metaheuristic optimization algorithm used later in
PID tuning and after that we have two linear aproche the direct state space
methode with three degree of freedom and free hybrid model with six degree
of freedom after that in each model we apply the diffirent control thecnique
proposed, this fact leads clearly to an improvement of the pointing accuracy.
finaly a comparative stady between the two aproaches

Keywords: Structures flexibles, Dynamic Model, Linear system, Pivot Joint, Modélisation
multi-corps, Cantilever Hybrid Model, Decoupling Control, MIMO-PID, PSO algorithm,
ACO algorithm
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General introduction

introduction

Designing satellites with various missions such as climatic, military, geology and
astrological missions will cause the payloads being increased and as a result, the

increase of their dimensions, weight and consumed power. So, for more energy absorption,
the effective section surface of satellite should be increased to installing more solar panels.
On the other side, the existent limitations on satellites launch will cause the restriction
on their volume and weight[8]. To decrease the volume of satellites, they are designed as
a concentrated structure with some supplemental parts which are fastened before launch
and are opened after settlement in orbit, and to decrease the weight of satellites, the light
materials are used in designing structures. The whole of these factors, means light weight,
low volume and large section surface will cause the flexibility of satellites structure. In this
case, preserving correct direction of main body and flexible parts encounter with many
challenges. According to these realities, many theoretical researches have been done to
identify and control flexible structures [30, 31]. In the past three decades, the flexible
satellites which are known as big spatial structures in some articles are considered a lot.
In some NASA reports, the effect of satellites flexibility in attitude control system, as
unusual acts, has been mentioned [25]. More researches on this issue have specified that
the reason of this strange act is the flexibility of the structure which will be intensified in
some cases by attitude control system [26]. Before 70’s decade, the attitude control and
stabilization systems of satellites were designed according to dynamic modeling of rigid
bodies and Single-Input SingleOutput (SISO) controllers. Along with the development
of spatial sciences in the late 70’s, big satellites which have flexible parts and include
many sensors and actuators were considered. So, the need for using complex control laws
and Multi-Input Multi-Output (MIMO) control systems for satellites were found to be
essential[27] . For high-accuracy performance in pointing, three-axis attitude control will
be used for satellites which lead to a MIMO control system.
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Chapter 1

Dynamics and Control of Flexible
Space Vehicles

1.1 Introduction

Spacecraft are very complex mechanical multi-body systems including flexible and/or
rotating appendages. The design of the AOCS requires a linear model taking into

account all the rigid and flexible couplings between the hub (where the AOCS acts) and
the various appendages. Note that the linear assumption is quite realistic for such systems
since perturbations and so motions are very small (except for very dexterous observation
satellites). This linear assumption is furthermore valid in the field of future missions for
deep space exploration involving formation flying of several spacecraft. For this kind of
formation flying mission, it is more and more accepted that the 3 rotation D.O.F. and the
3 translation D.O.F. must be treated all together (Gaulocher et al. 2005). Therefore, a 6
D.O.F. model including couplings between rotations and translations must be developed.
Lots of multibody softwares are available to build such kind of models but they address
the nonlinear behavior and they are too much loud to be handled at the early prototyping
phase. So a tool is required to develop quickly the dynamic model and to prototype the
AOCS or to analyze and to optimize the main dynamic parameters of the mechanical
structure or AOCS and finally to assess the global performance of the system. (Khalid
H.M. 2008)
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1.2 Spacecraft Attitude Actuators:

We can conceptually divide actuator types into two general classes, passive and active.
Passive actuators operate more or less open loop. In other words, after the spacecraft is
in the desired attitude, passive actuators will keep it there with little or no additional
torques needed. Active actuators, on the other hand, require continuous feedback and
adjustment.

1.2.1 Dampers:

A damper is another actuator usually used in combination with others for a complete
system. Generally speaking, a damper is a device that changes angular momentum by
absorbing energy. We know momentum is constant only as long as energy stays constant.
If we add or take away energy, then a momentum will change. As a spacecraft attitude
actuator, dampers absorb unwanted momentum.

1.2.2 Thrusters:

are perhaps the simplest types of active actuator to visualize. Thrusters are simply rockets
that rely on “brute force” to rotate a spacecraft. By applying a balanced force with a pair
of rockets on opposite sides of a spacecraft, we can produce a torque, as shown in Figure
below. By varying which thruster pair we use and how much force we apply, we can rotate
a spacecraft in any direction. Placing thrusters as far from the satellite’s center of mass
as possible gives them a larger moment arm and allows them to exert a greater torque
for a given force. This is evident from the important concept we saw earlier. The greater
the distance over which a force is applied, the more torque is delivered from the same
force. However, as we learned earlier, because of precession, when a spacecraft is already
spinning, any applied torque in a direction other than the spin axis causes the spacecraft
to rotate at constant velocity about an axis perpendicular to the torque direction. The
biggest advantage of using thrusters is that they can produce a well-defined “torque on
demand,” allowing the spacecraft to slew quickly from one attitude to another.

1.2.3 Momentum-control Devices:

The most common actuator for spacecraft attitude control is a family of systems that all
rely on angular momentum. These momentum-control devices actively vary the angular
momentum of small, rotating masses within a spacecraft to change its attitude. Typically,
an attitude control system uses at least three separate reaction wheels, oriented at right
angles to each other, as seen in Figure.

3



1.3 Sensors Technologies:

This section shows different types of sensors used in attitude determination algorithms.
The different types of sensors (gyro, sun sensor, earth sensor, star tracker) discussed in
this section are commercially available. For all of them different suppliers exist capable
to offer products based on the same technology and a wide offer in terms of accuracy [9]
, field of view (FOV), mass, power consumption and cost.

1.3.1 Gyroscopes:

Gyroscopes (gyros) are inertial sensorsmeasuring the angular rate or the incremental
angular rotation about its measurement axis. Two basic types of gyro exist: the rate
gyro and the rate integrated gyro. first the classic mechanical gyro technology is based

4



on a rapidly spinning mass that senses changes in the inertial orientation of the gyro
spin axis. Any satellite rotation about the gyro’s input axis realizes a torque on the
gyro output axis that causes an angular rotation or another physical reaction which is
measured in output. second the rate gyro sensors (RG)measure the spacecraft rotation
rate. They are relatively inexpensive and they can be used for the attitude stabilization
(e.g. in a PID controller) or the rate damping modes (see [9] Chap. 4). All these sensors
are affected by different error sources like angular drift errors that can be estimated
and then calibrated using optical attitude sensor measurements such as those provided
by Earth-Sun sensors or star trackers. The rate integrating gyros (RIG) measure the
angular displacement,They aremore expensive than rate gyro sensors and are used in
attitude determination algorithms.

1.3.2 Rate Integrating Sensor (Fiber Optic Gyro):

The first optical gyroscope was described by Sagnac [44] in 1913, under the form of a
ring interferometer. the most precise sensors among any other types of gyroscopes[42]
Sagnac an optical interferometer enclosing a surface located on a rotating support will
detect a phase difference of the optical signal, which is proportional to the angular rate
and to the surface enclosed by the optical path. A ring interferometer rotation detector
(gyroscope) using optical fiber waveguide is designed. The sensitivity of the device is
enhanced via multiple traverses of counterrotating beams around an area, but restrictions
on the optimum fiber length are imposed by the photon noise limit. A well-defined
wavefront and efficient coupling of light into the fiber are required. Laser light divided
by a beam splitter is focused on the terminations of single-mode fibers. After exiting,
the light is returned through the fibers in the opposite direction and the beams are
recombined at the beam splitter, with the image magnified and displayed. Displacement
of one end of the fiber from the focal point of the converging lens produces growing fringes
as an error signal. The system is sufficiently sensitive for navigation applications, is free
from pulling and lock-in characterizing ring laser systems (and hence can detect very
low angular velocities), but is inferior to the ring laser in ultimate theoretical sensitivities
,Fiber optic gyro (FOG) technology (i.e. continuously operating for a long period of time,
typically 15 years) for space applications can provide very good performances in all the
main requirements [9] .

1.3.3 Sun Sensor:

The Sun sensors are the most commonly used attitude sensors in safe modes (see [9]
Chap. 4 the SAM-EM mode). When the mission is not very demanding in terms of
accuracy the sun sensors can be selected also for the Normal Pointing Mode attitude
determination.The Sun sensor measures the incident sunlight direction with respect to
the sensor optical reference plane. The design is generally simple and reliable and its
algorithms are robust, simple and inexpensive. There are two main types of Sun sensors:
the analog and the digital sensors. First the analog sun sensor typically has an analog
output signal that is a function of the Sun incidence angle. Analog sensors are based on
photocells that have a current output proportional to the cosine of the angle between the
Sun’s direction and the perpendicular to the detectors.Second The digital Sun sensors are
based on different types of detectors. The most common detectors are Charged-Coupled
Device or Active Pixel Sensor. The sensor is typically equipped with a measurement
unit designed around digital devices like Application Specific Integrated Circuit or Field

5



Programmable Gate Array, able to calculate the Sun’s incidence angle relative to the
perpendicular of the sensor mounting surface when the Sun is in the sensor’s field of
view (FOV) and to provide this information to the AOCS. Moreover, the sensor provides
other information like Sun presence, detector temperature, secondary voltage and other
housekeeping information that can be used by the AOCS to determine the attitude of the
spacecraft and to detect sensor failures. The digital Sun sensor is more expensive than
the analog Sun sensor but ensures a more accurate performance (i.e. a few hundredths
of degree instead of a few tenths of degree).
Solar panels can also be used as sun sensors. The currents from the different solar

panels are monitored. Accuracies of 1˝ are obtainable ([24]) . As the sun is the only
reference used, only the pointing direction toward the sun can be determined.

1.3.4 Star Tracker:

Star sensors represent today themost accurate attitude sensors for demanding satellite
missions. The basic principle of a star sensor is based on the accurate measurement of the
star directions in Body Reference Frame that is compared with the known accurate star
reference direction in Earth Centered Inertial frame available in the on board catalog.
Using both measured and known star directions an attitude estimation algorithm like
QUEST(see [23],[24])can be used to obtain a three axis measurement of the satellite
attitude in Earth Centered Inertial frame. Star sensors are divided in two major categories:
scanners and fixed head star trackers. Scanners, popular 20–30 years ago, can be used
when the satellites are spinning. In this case, the sensor uses the spin of the spacecraft
for the searching and scanning function when stars pass through multiple slits in the
scanner’s field of view. Today the more used star sensors are the fixed-head star trackers
(single or multiple heads) that, thanks to the more powerful processors available in today
space application, are able to electronically implement a search and track function over
a limited field of view. These sensors are able to acquire, select and recognize stars from
a lost-in-space attitude, with relatively high tumbling rates in few seconds with an high
value of probability of success. After the attitude acquisition, the star trackers are today
able to maintain autonomously the tracking of stars (up to 15 stars or more for each
head) and on this basis are able to provide a very accurate attitude information.
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Chapter 2

Metaheuristic Optimization Algorithm

2.4 Introduction:

Metaheuristic algorithms become an important part of modern optimization. A
wide range of metaheuristic algorithms have emerged over the past two decades, and

many metaheuristics algorithms is becoming more and more popular.optimization is an
important subject with many important application[28], and algorithms for optimization
are diverse with a wide range of successful applications [29, 16] Among these optimization
algorithms, modern metaheuristics are becoming increasingly popular, leading to a new
branch of optimization,called metaheuristic optimization, most metaheuristic algorithms
are nature-inspired [17, 18, 34], from simulated annealing [34] to ant colony optimization
[17], and from particle swarm optimization [32] to cuckoo search . Since the appearance
of swarm intelligence algorithms such as PSO in the 1990s, more than a dozen new
metaheuristic algorithms have been developed and these algorithms have been applied to
almost all areas of optimization, design, scheduling and planning, data mining, machine
intelligence, and many others. Thousands of research papers and dozens of books have
been published

7



2.5 Particle swarm optimization(PSO):

2.5 Particle swarm optimization(PSO):

2.5.1 Introduction:

Particle swarm optimization algorithms were introduced in 1995 byKennedy and
Eberhart as an alternative to standard genetic algorithms. These algorithms are

inspired by swarms of insects (or schools of fish or flocks of birds) and their coordinated
movements, in fact, just as these animals move in groups to find food or avoid predators,
particle swarm algorithms seek solutions for an optimization problem. The individuals
in the algorithm are called particles and the population is called a swarm.[5], Swarm-
based algorithms emerged as a powerful family of optimization techniques, inspired by
the collective behavior of social animals. In particle swarm optimization (PSO) the set of
candidate solutions to the optimization problem is defined as a swarm of particles which
may flow through the parameter space defining trajectories which are driven by their
own and neighbors best performances. (Federico Marini). In this algorithm, a particle
decides its next movement based on its own experience, which in this case is the memory
of the best position it has encountered, and based on its best neighbor. The new speed
and direction of the particle will be defined according to three trends: the propensity to
follow its own path, its tendency to return to its best position reached and its tendency
to go to its best neighbor.

2.5.2 Principle:

The principle of the PSO developed by Kennedy and Eberhart [32] is based on the
behavior of flocks of birds. Thus, PSO was fundamentally developed through the simulation
of the behavior of flocks of birds in two-dimensional space. The position of each agent is
represented by its coordinates along the two axes X and Y , to which the speeds expressed
by V x (speed along the X axis) and V y (speed along the Y axis) are associated. The
modification of the behavior of each agent is based on the position and speed information.
At each iteration the agent proceeds via an objective function to the evaluation of its
best value until the (best) and its positive along the two axes X and Y . This information
is obtained from an analysis of the personal experiences of each agent. In addition,
each agent knows the best overall value of the group (gbest) among the (pbest). This
information represents the value around which other agents are performing. Thus, each
agent tries to modify his position based on the following information:

• Current position px, yq,
• Current speed (Vx, Vy),
• Distance between current position and pbest
• Distance between current position and gbest

2.5.2.1 Concept of speed:

The modified speed of each agent will be written as follows [14] :

V k`1
I “ WV k

I ` C1rand1 ˚ ppbesti ´ Ski q ` C2rand2 ˚ pgbesti ´ Ski q (1)

8



2.5 Particle swarm optimization(PSO):

Where:
Vk
I : the speed of agent I at iteration K.

W: agent speed at iteration.
Cj: weighting factor.
rand: random number between 1 and 0.
Ski : current position of agent i at iteration k.
pbest: best agent position i.
gbest: best overall position of the group.

2.5.2.2 Weighting function(W ):

Usually used in the equation(1),and called inertia weight approch(IWA).

W “ Wmax ´ Wmax ´Wmin

itermax
˚ iter (2)

Wmax: final weight,
Wmin: initial weight,
itermax: maximal itertion number,
iter: curant iteration number.

2.5.2.3 The current position:

looking for the point in the Solution space is modified according to the equation below:

sk`1
i “ ski ` V k`1

i (3)

ski : current agent position,
sk`1
i : agent’s changed position,
V k`1
i : agent’s changed speed.

2.5.2.4 Algorithme pso:

For each particle i “ 1, . . . ..s do
Randomly initialize xi
Randomly initialize vi(or just set vi to zero)
Set yi “ xi
End for
Repeat
For each particle i “ 1, . . . s do
Evaluate the fitness of particle pxiq
Update yi using equation
Update y using equation
For each dimension j “ 1, . . . ..nd do
Apply velocity update using equation
End loop
Apply position using equation
End loop Until some convergence criteria is satisfied

9



2.5 Particle swarm optimization(PSO):

using what we have defined we can build the following flowchart.

start

generation of initial
state of each agent

evaluation of the
researche point
of each agent

modification of each
researche point

by state equation

maximum
iteration?

stop

no

yes

Figure 1: the general Flot chart organization of (PSO)

2.5.3 Conclusion:

This Algorithm is particularly simple to implement. As we can see, the solution space is
explored by multiple particles, the best areas discovered by a particle being communicated
to a given neighborhood in order to pass on the information. However, in general the
neighborhood is not complete, which prevents the algorithm from falling into local optima.
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2.6 Ant Colony Optimization (ACO):

2.6 Ant Colony Optimization (ACO):

2.6.1 Introduction:

The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real
ants in their search for the shortest paths to food sources. It has recently attracted

a lot of attention and has been successfully applied to a number of different optimization
problems. Due to the importance of the feature selection problem and the potential of
ACO, is a population-based metaheuristic that can be used to find approximate solutions
to difficult optimization problems.[15]
In ACO, a set of software agents called artificial ants search for good solutions to a given
optimization problem. To apply ACO, the optimization problem is transformed into the
problem of finding the best path on a weighted graph. The artificial ants (hereafter ants)
incrementally build solutions by moving on the graph. The solution construction process
is stochastic and is biased by a pheromone model, that is, a set of parameters associated
with graph components (either nodes or edges) whose values are modified at runtime by
the ants.[33]

2.6.2 Principle:

Let’s say the number of cities is n, the number of ants is m, the distance between city i
and j is dij,pi, j “ 1, 2....., nq,and the concentration of pheromone in city pi, jq at time t
is τijptq. At the initial time, the pheromone concentration τijptq between cities is equal
to τijp0q=C (C is a constant), and the probability of its choice is expressed by pkij, and
the formula is as follows:

pkij “
rτijptqsαrηijptqsβ

ř

sPallowedk
rτisptqsαrηisptqsβ (4)

ηijptq is the heuristic function, which indicates the degree of expectation of ants from city
i to city j. allowedk(k “ 1, 2, ...,m) indicates that ant k is to visit the urban set. β is
the important factor of heuristics function, and α is the important factor of pheromone.
When all ants complete a cycle, they update the pheromone according to formula (5):

"

τijpt` nq “ p1´ ρqτijptq `∆τij
∆τij “

řm
k“1 ∆τ kij

(5)

ρ is the pheromone volatilization coefficient, p1 ´ ρq is called the pheromone residual
factor, and ∆τij is the pheromone concentration released by the ant of k on the path of
pi, jq. In the basic ACO, only the positive feedback pheromone concentration is usually
updated. the model of formula (6) is used to update the pheromone concentration in the
search process.

∆τ kij “
$

&

%

Q

Lk
0

(6)

Q is a constant that represents the total amount of pheromone released once by an ant .
Lk indicates that the ant of k passes the length of path pi, jq [11] .
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2.6 Ant Colony Optimization (ACO):

start

initialization

Generat K antes

For each ant construct a
subset using transition rule

Evaluate the objective function

Calculate the optimum value

update antes

maximum
iteration?

stop

no

yes

Figure 2: the general Flot chart organization of (aco)

12



2.6 Ant Colony Optimization (ACO):

2.6.3 Algorithm ACO:

Start.
Initialize the pheromone-trails and parameters.
Generate a random population of m ants (solution).
For every individual ant ascertain the best position according to the objective Function.
Get the best ant in search space.
Restore the pheromone-trail.
Verify if the termination is true.
End.

2.6.4 Conclution:

Artificial ants implement a randomized construction heuristic, which makes probabilistic
decisions. The accumulated search experience is taken into account by the adaptation of
the pheromone trail. In ACO Local search is extremely important to obtain good results.
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Chapter 3

Direct state space model for Satellites
with Flexible Appendages Attitude

Control
3.1 Introduction:

The interaction between the attitude control system and flexible appendages manifests
itself on the overall system by degradation of the pointing accuracy, instability may

also arise, and, eventually, in appendage deflections which are too large[2]. The problem
of avoiding excessively large appendage deflections by means of auxiliary control loops has
been discussed in [48].Although system instability may be generally avoided by means of
a suitable control design, such as limited loop gains [46, 47] and opportune control system
bandwidth [48], flexibility may lead to large attitude errors [45], particularly when the
attitude control system is designed using a rigid model of the satellite. For these reasons,
the necessity of designing a controller specifically for the flexible satellite has been pointed
out by many authors. An interesting approach was proposed by Likins [46]. The method
calls for an accurate model of the flexible satellite and consists of a three-stage process
for the control system design, utilizing classical frequency domain techniques. A direct
application of a multi-loop synthesis method, in the frequency domain, has been also
recently proposed in [49].
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3.2 Modling of the satellite:

3.2 Modling of the satellite:

The very simple satellite configuration considered is shown in Figure(3)

Figure 3: satellite configuration

x, y, z : principal axes of inertia of the undeformed
φ, θ, ψ : Euler angles, pitch, roll and yaw,satellite,

the flexible solar array are represented here as
shown in two point masses having two degrees-of-
freedom mass,spring is the very simple mold of a
satellite with main body and flexible appendage for
simplicity raison which can only rotate with respect
to the x axis. All the movements are harmonic
with some damping, assumed, for simplicity, to
be proportional to the velocity. Ky ,Kz, Kp are
the spring constants and Cy ,Cz, Cp the damping
factors.are also shown the coordinates αy,αz,βy,βz
(deflection) and αp,βp (rotations), which describe the
position of the movable parts with respect to the main
body.
where:
Q=value of the point mass.
L=distance of the point mass from the satellite
centrer of mass.
Ip=moment of inertia of the movable material frame
with respect to the x axis.

the moments of inertia of the undeformed satellite
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3.2 Modling of the satellite:

are
$

&

%

Ix́ “ Ix ` Ip
Iý “ Iy ` 2QL2

Iź “ Iz ` 2QL2

(7)

where Ix,Iy,Iz are the principal moments of inertia of the rigid body.

3.2.1 Equation of movement:

The dynamics of the satellite, without any momentum exchange devices acting, can
be obtained, in this simple case, by utilizing Lagrange’s equations of motion the same
result is obviously obtained using other approaches, like the ’hybrid coordinates’ one.the
following equation result:

$

&

%

Mx “ p:αp ` :βpqIp ` pIý ´ Iźqrp` Ix́ 9p

My “ p:αp ` :βpqQL` pIź ´ Ix́qrp` Iý 9q

Mz “ p:αp ` :βpqQL` pIx́ ´ Iýqpq ` Iź 9r

(8)

where M=(Mx,My,Mz) are the torques applied to the satellite main body.
and:

9r=-
1

L
( :αy ` Cy

Q
9αy ` Ky

Q
αy) 9r=

1

L
( :βy ` Cy

Q
9βy ` Ky

Q
βy)

9q=-
1

L
( :βz ` Cz

Q
9βz ` Kz

Q
βz) 9q=

1

L
( :αz ` Cz

Q
9αz ` Kz

Q
αz)

9p=
1

L
( :αp ` Cp

ip
9αp ` Kp

ip
αp) 9p=

1

L
( :βp ` Cp

ip
9βp ` Kp

ip
βp)

3.2.2 Liniarization of equation of movement:

the consuption of the satellite attitude controler are based on non linear control theory
or linear control theory this part permits the linearisation of equation(8) ,assuming as
usual, p, q and r very small, therefore neglecting their products. In this case:

p « 9φ, q « 9θ, r « 9ψ (9)

and if :
ξ “ αp ` βp, ζ “ αy ´ βy, η “ βz ´ αz (10)

the dynamics is described by the decoupled set of equations
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Mx “ :ξIp ` :φIx́

´2Ip :φ “ Ip:ξ ` Cp 9ξ `Kpξ

My “ :ηφL` :θIý

´2QL:θ “ Q:η ` Cz 9η `Kzη

Mz “ :ψIź ` :ζQL

´2QL :ψ “ Q:ζ ` Cy 9ζ `Kyζ

(11)
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3.2 Modling of the satellite:

It can be concluded that the dynamics around each body axis is described by a set of
equations of the type:

›

›

›

›

›

M “ A:σ `B:γ

F :σ “ C:γ `D 9γ ` Eγ (12)

where σ is the angular displacement of the main body with respect to an inertial reference
and γ is the angular displacement of the flexible arrays with. respect to the main body;
A, ..., F are suitable coefficients and M is the control torques applied to the main body
Calling :

x1 “ σ, x2 “ γ, x3 “ 9σ, x4 “ 9γ (13)

system (12) my be rewritten as:

9X1 “ X3

9X2 “ X4

9X3 “ A1X4 ` A2X2 ` A3M
9X4 “ A4X4 ` A5X2 ` A6M

(14)

where (A1,....,A6) A are suitable coefficients. It may be verified, by means of a continuous
controllability test, that this linearized system is controllable. Particularly does this mean
that it is possible to find a time history for M, the torque applied to the satellite main
body, which is able, starting from arbitrary values of displacements and vibrations, to
force the system to an established position in space, with zero rate and with vibrations
completely damped out.

3.2.3 Control with momentum exchange devices:

The most common actuator for spacecraft attitude control is a family of systems that all
rely on angular momentum. These momentum-control devices actively vary the angular
momentum of small, rotating masses within a spacecraft to change its attitude. Typically,
an attitude control system uses at least three separate reaction wheels, oriented at right
angles to each other,When an actuator is used to provide a momentum H with respect
to the body axes, the forces exerted on the satellite are

$

’

’

’

’

&

’

’

’

’

%

Mx “ ´ 9Hx ` rHy ´ qHz

My “ ´ 9Hy ` pHz ´ rHx

Mz “ ´ 9Hz ` qHx ´ pHy

(15)

where Hx, Hy and Hz are the components of H along the body axes.
Usually the actuator configuration employed provides a momentum which is much larger
along one axis (say x) than along the others; as p, q and r are considered small, it is
possible to rewrite (15) using (9) as follows

$

’

’

’

’

&

’

’

’

’

%

Mx “ ´ 9Hx

My “ ´ 9Hy ´ rH0 « ´ 9Hy ´ 9ψH0

Mz “ ´ 9Hz ` qH0 « ´ 9Hz ´ 9θH0

(16)
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3.2 Modling of the satellite:

where H0 is the nominal value of Hx, the largest component of H. If (16) is substituted
into (11), the set of equations describing the flexible satellite may be written

# ´ 9Hx “ :ξIp ` :φIx́

Ip:ξ ` Cp 9ξ `Kpξ ` 2Ip :φ “ 0
(17)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´ 9Hy “ :ηQL` :θIý `H0
9ψ

Q:η ` Cz 9η `Kzη ` 2QL:θ “ 0

´ 9Hz “ :ζQL` :ψIź `H0
:θ

Q:ζ ` Cy 9ζ `Kyζ ` 2QL :ψ “ 0

(18)

In such a way the system breaks into two linear ones, the first describing only the
behaviour around the x axis, and the second describing the behaviour of the coupled
y and z axes. As the problem of designing a control loop for the decoupled x axis,
described by (17), is quite simple and classical, it will not be considered here. A controller
for system (18), describing the coupled motion of the y and z axes, will be designed.
In this case interest is not in the control of the variables η and ζ, which refer to the
flexible appendages, but in the control of the attitude angles of the rigid body, θ and ψ.
This means, for instance, correct pointing of the satellite antennae, placed on the rigid
body, independently from the oscillation of the large flexible solar arrays. System (18) is
therefore considered, with the addi- tion of the attitude angle feedback through sensors
with a given time constant τs. Then the effective inputs (the reference attitude angles θR
and ψR), are put in evidence. The additional equations are:

#

9Hy “ GpUsy ´ θRq
9Hz “ GpUsz ´ ψRq

(19)

where G is a gain and Usy, Usz are the output signals from the sensors, that is:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Usy “ p 1

τs
qθs

Usz “ p 1

τs
qψs

9θs “ θ ´ p 1

τs
qθs

9ψs “ ψ ´ p 1

τs
qψs

(20)

From the above considerations, it is possible to write the system equations in the conventional
form.

#

9X “ rAsX ` rBsU
Y “ rCsX (21)

with vectors and matrices defined as follows, where the actual satellite attitude is considered
as an output vector.
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3.2 Modling of the satellite:

state vector: X “ rθ, η, 9θ, 9η, ψ, ζ, 9ψ, 9ζ, 9θs, 9ψssT .

input vector: U “
„

θd
ψd



.

output vector: Y “
„

θ
ψ



.

rAs “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 A4 0 A3 0 0 ´A2 0 ´A1 0
0 ´A8 0 ´A7 0 0 A6 0 A5 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 A10 0 0 A12 0 A11 0 A9

0 0 ´A14 0 0 ´A16 0 ´A15 0 A13

1 0 0 0 0 0 0 0 ´A17 0
0 0 0 0 0 0 0 0 0 ´A17

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

rBs “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0
0 0
B1 0
´B2 0

0 0
0 0
0 B3

0 ´B4

0 0
0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, rCs “
„

1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0



the resulting coefficients and nimurical values used are:

numerical values has been used
Iy 1500Kg.m2

L 10m
H0 100Nms
Iz 1800Kg.m2

Q 70Kg
G 100Nms{rad
τs 2sec

Cy “ Cz 175ˆ 102m{sec
Ky “ Kz 240ˆ 102m{sec

ωn 0.2rad{sec
ξn 0.062
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3.2 Modling of the satellite:

A1 “ G

Iyτs
A2 “ H0

Iy
A3 “ CzL

Iy

A4 “ KzL

Iy
A5 “ 2GL

Iyτs
A6 “ 2LH0

Iy

A7 “
CzIý
QIy

A8 “
KzIý
QIy

A9 “ G

Izτs

A10 “ H0

Iz
A11 “ CyL

Iz
A12 “ KyL

Iz

A13 “ 2GL

Izτs
A14 “ 2LH0

Iz
A15 “ CyIź

QIz

A16 “ KyIź
QIz

A17 “ 1

τs
B1 “ G

Iy

B2 “ 2GL

Iy
B3 “ G

Iz
B4 “ 2GL

Iz
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3.3 Control theory and application:

3.3 Control theory and application:

3.3.1 Input/output decupled control:

The problem of input-output decoupling of a system may be stated as follows. assume
that it has the same number of inputs and outputs, i.e., assume that p “ m . Determine
a pair of matrices K and F of the state feedback law tuptq “ ´Kxptq ` Frptqu, such
that every input of the closed-loop system influences only one of the systems outputs,
and vice-versa, every output of the closed-loop system is influenced by only one of its
inputs. More precisely, in an input-output decoupled system the following relation must
hold tyipsq “ gpsqii ˆ uipsqu for pi “ 1, ...,mq. The basic motivation for inputoutput
decoupling of a system is that by making each output of the system depend only upon one
input and vice versa, we convert a MIMO system to m single-input-single-output (SISO)
systems. This fact significantly simplifies and facilitates the control of the closedloop
system, since one has to deal with m scalar systems rather than a MIMO system. For
these reasons the problem of input-output decoupling is of great practical importance. It
should be pointed out that dynamic decoupling is very demanding. A signal applied to
input ui must control output yi and have no whatsoever effect on the other outputs. In
many cases this requires a complex and highly sensitive control law, and in other cases
it cannot be achieved at all (without additional compensation). We will concentrate
on dynamic decoupling and then we will apply the decupled control according to falb-
wolovich[4]

3.3.1.1 Dynamic decoupling:

Let we consider the linear time invariant system described by tsxptq “ Axptq `Buptqu
and typtq “ Cuptqu where (A P Rnˆn and B P Rnˆm, C P Rmˆn) are matrix and y “
ry1, y2, ..., xnsT , u “ ru1, u2, ..., umsT , x “ rx1, x2, ..., umsT The number of output derivatives
until the input appears with nonzero coefficient is of main interest, and a key assumption
is that this number not changes with time.

d

dt
y “ C 9xptq “ CAxptq ` CBuptq (22)

let C “

»

—

—

—

—

—

—

–

C1
C2
.
.
.

Cm

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

uR1˚n

uR1˚n

.

.

.
uR1˚n

ù CA “

»

—

—

—

—

—

—

–

C1A
C2A
.
.
.

CmA

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and CB “

»

—

—

—

—

—

—

–

C1B
C2B
.
.
.

CmB

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

let now define a operator that map (1ˆ n) time function, into (1ˆ n) time functions :

LArCis “ CiA

Lj`1
A rCis “ LArLjArCiss

L0
ArCis “ Ci

LA`BKrCis “ CirA`BKs
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3.3 Control theory and application:

Definition:(relative degree of a system). the relative degree k, m ď k ď n of a system
of the order n with m outputs yi, pi “ 1, 2, ....,mq, is tk “ Σm

i“1kiu

Note:The relative degrees are invariant under the state feedback control and the
number of poles is fixed by the relative degree ki of the output yi. Unfortunately, not
every system can be decoupled by state feedback.

If CB ‰ 0 then the relative degree is one, otherwise we continue derivation until uptq
appears in the output derivatives. In continuing this calculation the coefficient of uptq in
the jth derivative is:

Lj´1
A rCisB “ Aj´1B (23)

take the kthi derivatives of the output yi we get the following equation
»

–

yk11

9:
ykmm

fi

fl “ Γ1xptq ` Γ2uptq (24)

where:

Γ1 “

»

—

—

–

Lk1A rC1s
Lk2A rC2s

9:

LkmA rCms

fi

ffi

ffi

fl

“

»

—

—

–

C1A
k1

C2A
k2

9:
CmA

km

fi

ffi

ffi

fl

, and Γ2 “

»

—

—

–

Lk1´1
A rC1sB

Lk2´1
A rC2sB

9:

Lkm´1
A rCmsB

fi

ffi

ffi

fl

“

»

—

—

–

C1A
k1´1B

C2A
k2´1B
9:

CmA
km´1B

fi

ffi

ffi

fl

(25)
If the state feedback control u(t) is given by uptq “ ´Kxptq `Nvptq then

»

–

yk11

9:
ykmm

fi

fl “ pΓ1 ´ Γ2Kqxptq ` Γ2N

»

–

uk11

9:
ukmm

fi

fl (26)

N(t) B(t) ∫ C(t)

A(t)

K(t)

+ +

+-

V(t)

𝑑𝑥

𝑑𝑡 x(t) y(t)

Figure 4: block diagram of the state feedback
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3.3 Control theory and application:

Theorem: (Wang, Q.-G. et.al 2003) There exists a feedback control law of the form
tuptq “ ´Kxptq `Nvptqu to decouple the system if and only if the matrix Γ2 is non-
singular. If this is the case, by choosing

 

K “ Γ2
´1Γ1

(

and N “ Γ2
´1 , the resultant

feedback system has the transfer function matrix: Hpsq “ diag
 

s´k1 , s´k2 , ..., s´km
(

3.3.1.2 Decoupled Control According to Falb-Wolovich:

It is seen that the dynamic decoupling system presented previously can be used only to
decouple the multivariable system into integrator types of diagonal system, which makes
the closed-loop design difficult. If one can still assume that the decoupling law is state
feedback which can be written as tuptq “ ´Kxptq `Nvptqu, one may expect to have a
decoupled system in the form Hclpsq “ diag tHipsqu ,i “ t1, 2, ....,mu and Hcl is the
trensfer function H in closed-loop whith

Hipsq “
"

Ki

ai,0ski ` ai,1ski´1 ` ...` ai,ki´1
s` ai,ki

*

, ai,0 “ 1 (27)

The parameters ai,µ and ki with µ =( 1, 2, ... , ki) in each of the polynomials Hi (s). can
be assigned by the pole placement method. The expected polynomial can be defined as
the standard transfer function. The standard transfer function of an nth order system,
with the integral of time-multiplied absolute value of error (ITAE) optimal criterion, is
defined in (Dorf, R.C. and Bishop, R.H. et.al 2001).
Define a matrix Γ2, where each row is 2Γi “ CiA

ki´1B , and each row 1Γi in another matrix
Γ1 can be defined as

 

1Γi “ CipAki ` ai,1Aki´1 ` ....` ai,ki´1
Iq( The state feedback matrix

K “

»

—

—

–

C1A
k1´1B

C2A
k2´1B
9:

CmA
km´1B

fi

ffi

ffi

fl

´1

»

—

—

—

—

—

–

C1

řk1
µ“0 a1,µA

k1´µ

C2

řk2
µ“0 a2,µA

k2´µ

9:

Cm
řkm
µ“0 am,µA

km´µ

fi

ffi

ffi

ffi

ffi

ffi

fl

, N “

»

—

—

–

C1A
k1´1B

C2A
k2´1B
9:

CmA
km´1B

fi

ffi

ffi

fl

´1
¨

˝

K1 ˝
...

˝ Km

˛

‚

(28)
The still free parameters ai,µ can then be determined separately for each of these systems,
e.g. by pole placement, and one can impose additionally ki = ai in order to guarantee
the static accuracy of each of them.

"

9x “ Axptq `Buptq
yptq “ Cxptq (29)

Where:

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0.0187 0 0.0117 0 0 ´0.0667 0 ´0.0333 0
0 ´0.4133 0 ´0.2583 0 0 1.3333 0 0.6667 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0.0556 0 0 0.0156 0 0.0097 0 0.0278
0 0 ´1.1111 0 0 ´0.3511 0 ´0.2194 0 0.5556
1 0 0 0 0 0 0 0 ´0.5000 0
0 0 0 0 0 0 0 0 0 ´0.5000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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3.3 Control theory and application:

B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0
0 0

0.0667 0
´1.3333 0

0 0
0 0
0 0.0556
0 ´1.1111
0 0
0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, and C “
„

1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0



The order differences (relative degrees) of the two outputs, k1=2 and k2=2 , are both
equal to 2, since:

C1 ˆ AˆB “
“

1 0 0 0 0 0 0 0 0 0
‰ˆ AˆB “ r0.0667 0s ‰ 0

C2 ˆ AˆB “
“

0 0 0 0 1 0 0 0 0 0
‰ˆ AˆB “ r0 0.0556s ‰ 0

The total order difference of the plant amounts therefore to (k “ k1 ` k2), the matrix
Γ2 has the forme

Γ2 “
„

C1AB
C2AB



“
„

0.0667 0
0 0.0556



(30)

Examining the determinant of the matrix Γ2 ‰ 0 the system under control can be
decoupled using the feedback law tuptq “ ´Kxptq `Nvptqu . Let us use the eigenvalues

λ1 “ 8 and λ2 “ 7 means that H1psq “
„

8

s` 8



and,H2psq “
„

7

s` 7



To determine the

matrices K and N according to relation (28), we must first compute the matrix Γ1.
We have:

Γ1 “
„

C1pA` 8Iq
C2pA` 7Iq



“
„

8 0 1 0 0 0 0 0 0 0
0 0 0 0 7 0 1 0 0 0



Hence, the matrices K and N are given by

K “ Γ´1
2 Γ1 “

„

120 0 15 0 0 0 0 0 0 0
0 0 0 0 126 0 18 0 0 0



N “ Γ´1
2

„

8 0
0 7



“
„

120 0
0 126



The decoupled closed-loop system is the following

9x “ Ax`Bu (31)

Where
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3.3 Control theory and application:

A “

»

—

—

—

—

—

—

—

—

—

—

–

0 0 1.0000 0 0 0 0 0 0 0
0 0 0 1.0000 0 0 0 0 0 0

´8.0000 0.0187 ´1.0000 0.0117 0 0 ´0.0667 0 ´0.0333 0
160.0000 ´0.4133 20.0000 ´0.2583 0 0 1.3333 0 0.6667 0

0 0 0 0 0 0 1.0000 0 0 0
0 0 0 0 0 0 0 1.0000 0 0
0 0 0.0556 0 ´7.0000 0.0156 ´1.0000 0.0097 0 0.0278
0 0 ´1.1111 0 140.0000 ´0.3511 20.000 ´0.2194 0 0.5556

1.0000 0 0 0 0 0 0 0 ´0.5000 0
0 0 0 0 0 0 0 0 0 ´0.5000

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0
0 0
8 0

´160 0
0 0
0 0
0 7
0 ´140
0 0
0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

The transfer function matrix Hclpsq of the closed-loop system is given by:

Hclpsq “ CpsI ´ A`BKq´1BN

the m-file code is given by:

1 c l o s e a l l
2 c l e a r a l l
3 c l c
4

5 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
6 % DATA
7 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
8 s=t f ( ’ s ’ ) ;
9 Iy=1500;%kgm^2

10 I z =1800;%kgm^2
11 L=10;%m
12 H=100;%nms
13 Q=70;%kg
14 G=100;%nms/ rad
15 Tos=2;%sec
16 Cq=2.5∗10^´2;%m/ s
17 Kq=4∗10^´2;%m/ s
18 Cz=Cq∗Q;
19 Cy=Cz ;
20 Kz=Kq∗Q;
21 Ky=Kz ;
22 Wn=0.2;%rad/ s
23 Psi =0.062;
24 Iyd=Iy+2∗Q∗(L^2) ;
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3.3 Control theory and application:

25 Izd=Iz+2∗Q∗(L^2) ;
26

27 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
28 % sta t e v a r i ab l e
29 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
30

31 A1=G/( Iy ∗Tos ) ;
32 A2=H/ Iy ;
33 A3=(Cz∗L) / Iy ;
34 A4=(Kz∗L) /( Iy ) ;
35 A5=(2∗G∗L) /( Iy ∗Tos ) ;
36 A6=(2∗L∗H) / Iy ;
37 A7=(Cz/Q) ∗( Iyd/ Iy ) ;
38 A8=(Kz∗ Iyd ) /(Q∗ Iy ) ;
39 A9=G/( I z ∗Tos ) ;
40 A10=H/ Iz ;
41 A11=(Cy∗L) / I z ;
42 A12=(Ky∗L) / I z ;
43 A13=(2∗G∗L) /( I z ∗Tos ) ;
44 A14=(2∗L∗H) / Iz ;
45 A15=(Cy/Q) ∗( Izd / I z ) ;
46 A16=(Ky/Q) ∗( Izd / I z ) ;
47 A17=1/Tos ;
48 B1=G/ Iy ;
49 B2=(2∗G∗L) / Iy ;
50 B3=G/ Iz ;
51 B4=(2∗G∗L) / I z ;
52

53 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
54 % sta t e space
55 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
56

57 A=[0 0 1 0 0 0 0 0 0 0 ;0 0 0 1 0 0 0 0 0 0 ;0 A4 0 A3 0 0 ´A2 0 ´
A1 0 ; . . .

58 0 ´A8 0 ´A7 0 0 A6 0 A5 0 ;0 0 0 0 0 0 1 0 0 0 ;0 0 0 0 0 0 0 1 0
0 ; . . .

59 0 0 A10 0 0 A12 0 A11 0 A9; 0 0 ´A14 0 0 ´A16 0 ´A15 0 A13 ; . . .
60 1 0 0 0 0 0 0 0 ´A17 0 ;0 0 0 0 0 0 0 0 0 ´A17 ] ;
61

62 B=[0 0 ;0 0 ;B1 0;´B2 0 ;0 0 ;0 0 ;0 B3 ; 0 ´B4 ;0 0 ;0 0 ] ;
63

64 C=[1 0 0 0 0 0 0 0 0 0 ;0 0 0 0 1 0 0 0 0 0 ] ;
65 D=[0 0 ;0 0 ] ;
66 H1=t f ( s s (A,B,C,D) ) ;%t r a n s f e r func t i on
67 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
68 % Decoupled Control According to Falb´Wolovich
69 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
70 C1=C( 1 , : ) ;%the f i r s t l i n e o f C matrix
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71 C2=C( 2 , : ) ;%the second l i n e o f C matrix
72 L2=[C1∗A∗B;C2∗A∗B ] ;%
73 L1=[C1∗(8∗ eye (10 ,10)+A) ;C2∗(7∗ eye (10 ,10)+A) ] ;
74 K=inv (L2) ∗L1 ;
75 N=inv (L2) ∗ diag ( [ 8 7 ] ) ;
76

77 Anew=A´(B∗K) ;%s t a t e matrix A o f the new system
78 Bnew=B∗N;%s t a t e matrix B o f the new system
79 Cnew=C;%s t a t e matrix C o f the new system
80 Dnew=D;%s t a t e matrix D o f the new system
81 Gs=Cnew∗ inv ( s ∗ eye (10 ,10)´Anew) ∗Bnew+Dnew ;%t r a n s f e r func t i on o f

the c l o s ed loop sys
82 Gs=minrea l (Gs) ;
83 H=Gs ;
84 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
85 % plo t part
86 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
87 T=0.01;
88 t =[0 :T : 2 0 ] ’ ;%time vec to r
89 n=length ( t ) ;%s i z e o f t
90 u1=0.1∗ ones ( l ength ( t ) , 1 ) ;%step s i g n a l with 0 .1 i n i t i a l / f i n a l

va lue and 0 step time
91 u2=0.08∗ ones ( l ength ( t ) , 1 ) ;%step s i g n a l with 0 .08 i n i t i a l / f i n a l

va lue and 0 step time
92 F i l t e r r=t f ( 100 , [ 1 14 100 ] ) ;%f i l t e r use to the s tep s i g n a l ’ s e e

input s i g n a l i n t e r p r i t a t i o n ’
93 u1=ls im ( F i l t e r r , u1 , t ) ;
94 u2=ls im ( F i l t e r r , u2 , t ) ;
95 u=[u1 u2 ] ;
96 y =ls im (H, u , t ) ;
97 y1=y ( : , 1 ) ;
98 y2=y ( : , 2 ) ;
99 u1=u ( : , 1 ) ;

100 u2=u ( : , 2 ) ;
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3.3 Control theory and application:

3.3.2 MIMO PID controler:

3.3.2.1 Introduction:

The PID controller is the most common form of feedback , and considerably used in
industrial processes [19] , because their structure consisting on only three parameters

is very simple to implement We will start by summarizing the key features of the PID
controller. The “textbook” version of the PID algorithm is described by [20] .

uptq “ pKpeptq ` 1

Ki

ż t

0

epτqdτ `Kd
deptq
dt

q (32)

where uptq is the control signal and eptq is the control error . The reference variable is
often called the set point. The control signal is thus a sum of three terms: the P -term
(which is proportional to the error) , the I-term (which is proportional to the integral of
the error) , and the D-term (which is proportional to the derivative of the error ). The
controller parameters are proportional gain Kp , integral time Ki , and derivative time
Kd and the figure (5) will illustrated PID in parallel configuration

e(t)
Ki

şt

0
eptq

Kpeptq

`
`

`

Kd
d

dt
eptq

u(t)

Figure 5: PID in parallel configuration

where:
Kp , Ki and Kd are matrices pnˆ nq and n is number of inputs

3.3.2.2 PID Controller tuning methods:

The goal of tuning the PID controller is to determine parameters that meet closed
loop system performance specifications, and to improve the robust performance of the
control loop over a wide range of operating conditions. Practically, it is often difficult to
simultaneously achieve all of these desirable qualities. For example, if the PID controller
is adjusted to provide better transient response to set point change, it usually results
in a sluggish response when under disturbance conditions. On the other hand, if the
control system is made robust to disturbance by choosing conservative values for the PID
controller, it may result in a slow closed loop response to a set point change. A number
of tuning techniques that take into consideration the nature of the dynamics present
within a process control loop have been proposed (see Ziegler and Nichols, 1942; Cohen
and Coon, 1953; Åström and Hägglund, 1984; De Paor and O’Malley, 1989; Zhuang and
Atherton, 1993; Venkatashankar and Chidambaram, 1994; Poulin and Pomerleau, 1996;
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Huang and Chen, 1996). All these methods are based upon the dynamical behavior of
the system under either open-loop or closed-loop conditions.

3.3.2.3 Controler tuning MIMO-PID using multiobjective ant colony optimization:

Ant colony optimization algorithms are especially suited for finding solutions to difficult
optimization problems .A colony of artificial ants cooperates to find good solutions , which
are an emergent property of the ants’ cooperative interaction . Based on their similarities
with ant colonies in nature , ant algorithms are adaptive and robust and can be applied to
different versions of the same problem as well as to different optimization problems [50] .a
tuning of PID controllers method using multiobjective ant colony optimization [21] .The
design objective was to apply the ant colony algorithm in the aim of tuning the optimum
solution of the PID controllers (Kp , Ki , and Kd) by minimizing the multiobjective
function .The potential of using multiobjective ant algorithms is to identify the Pareto
optimal solution .

Figure 6: Ant colony optimization graph.

Feedback Loop of Control System A feedback is a common and powerful tool when
designing a control system. Feedback loop is the tool which take the system output into
consideration and enables the system to adjust its performance to meet a desired result
of system. or any kind of disturbance. So one signal is taken from output and is fed
back to the input. This signal is compared with reference input and then error signal
is generated. This error signal is applied to controller and output is corrected. Such a
system is called feedback system. using matlab code. this code contain matlab-file and
simulink model working to gether, the matlab-file contain the numerical value and (aco)
programe the (aco) programe run simulink model with diffirent gain value trying to get
the optimal one for this model

we have intreduced aco algorithm and the m-file code is given by:
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Figure 7: PID control system
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1 c l e a r a l l
2 c l c
3 format long
4 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
5 % model va lue
6 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
7

8 Iy=1500;%kgm^2
9 I z =1800;%kgm^2

10 L=10;%m
11 H=100;%nms
12 Q=70;%kg
13 G=100;%nms/ rad
14 Tos=2;%sec
15 Cq=2.5∗10^´2;%m/ s
16 Kq=4∗10^´2;%m/ s
17 Cz=Cq∗Q;
18 Cy=Cz ;
19 Kz=Kq∗Q;
20 Ky=Kz ;
21 Wn=0.2;%rad/ s
22 Psi =0.062;
23 Iyd=Iy+2∗Q∗(L^2) ;
24 Izd=Iz+2∗Q∗(L^2) ;
25

26 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
27 % model v a r i ab l e
28 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
29

30 A1=G/( Iy ∗Tos ) ;
31 A2=H/ Iy ;
32 A3=(Cz∗L) / Iy ;
33 A4=(Kz∗L) /( Iy ) ;
34 A5=(2∗G∗L) /( Iy ∗Tos ) ;
35 A6=(2∗L∗H) / Iy ;
36 A7=(Cz/Q) ∗( Iyd/ Iy ) ;
37 A8=(Kz∗ Iyd ) /(Q∗ Iy ) ;
38 A9=G/( I z ∗Tos ) ;
39 A10=H/ Iz ;
40 A11=(Cy∗L) / I z ;
41 A12=(Ky∗L) / I z ;
42 A13=(2∗G∗L) /( I z ∗Tos ) ;
43 A14=(2∗L∗H) / Iz ;
44 A15=(Cy/Q) ∗( Izd / I z ) ;
45 A16=(Ky/Q) ∗( Izd / I z ) ;
46 A17=1/Tos ;
47 B1=G/ Iy ;
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48 B2=(2∗G∗L) / Iy ;
49 B3=G/ Iz ;
50 B4=(2∗G∗L) / I z ;
51

52 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
53 % sta t e space
54 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ %
55

56 A=[0 0 1 0 0 0 0 0 0 0 ;0 0 0 1 0 0 0 0 0 0 ;0 A4 0 A3 0 0 ´A2 0 ´
A1 0 ; . . .

57 0 ´A8 0 ´A7 0 0 A6 0 A5 0 ;0 0 0 0 0 0 1 0 0 0 ;0 0 0 0 0 0 0 1 0
0 ; . . .

58 0 0 A10 0 0 A12 0 A11 0 A9; 0 0 ´A14 0 0 ´A16 0 ´A15 0 A13 ; . . .
59 1 0 0 0 0 0 0 0 ´A17 0 ;0 0 0 0 0 0 0 0 0 ´A17 ] ;
60

61 B=[0 0 ;0 0 ;B1 0;´B2 0 ;0 0 ;0 0 ;0 B3 ; 0 ´B4 ;0 0 ;0 0 ] ;
62

63 C=[1 0 0 0 0 0 0 0 0 0 ;0 0 0 0 1 0 0 0 0 0 ] ;
64

65 D=[0 0 ;0 0 ] ;
66

67 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
68 % ant colony opt imiza t i on
69 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
70

71 s tep=1;
72 % ´́ ´́ ´́ ´́ ´́ ´́ ´́ s t a r t i n g point ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´
73 K11=445.2325 ;
74 K12=26.6227;
75 K21=31.5737;
76 K22=512.1150;
77

78 L11=145.0960;
79 L12=47.6145;
80 L21=50.6626;
81 L22=206.2175;
82

83 M11=330.5603;
84 M12=63.3566;
85 M21=40.9493;
86 M22=408.3806;
87 %́ ´́ ´ i n i t i a l i z e s t a r t i n g po s i t i o n o f the ant´́ ´́ ´́ ´́ ´
88 s tart ingptK11=K11 ;
89 s tart ingptK12=K12 ;
90 s tart ingptK21=K21 ;
91 s tart ingptK22=K22 ;
92

93 s ta r t ingptL11=L11 ;

32



3.3 Control theory and application:

94 s ta r t ingptL12=L12 ;
95 s ta r t ingptL21=L21 ;
96 s ta r t ingptL22=L22 ;
97

98 start ingptM11=M11 ;
99 start ingptM12=M12 ;

100 start ingptM21=M21 ;
101 start ingptM22=M22 ;
102

103 e r r o r =2; %i n i t i a l i z e e r r o r with any random va lues
104 %er ro rdo t =1;
105 prev_error=2e7 ; %such that prev_error>>e r r o r
106 t imes=1;
107

108 tota l_ants =3; %g r ea t e r the number o f ants , more optimum the path
109

110 i t=0
111 whi le e r r o r (1 )<prev_error && i t <15%i f e r ro r>prev_error i t means
112

113 i f t imes>1
114 prev_error=e r r o r ; %so that t h i s does not execute f o r the
115 end %f i r s t i t e r s t i o n o f whi l e loop
116 i t=i t+1
117 t imes=times+1;
118

119 f o r i =1:1 : tota l_ants
120 s tart ingK11 ( i )=start ingptK11+rand ∗10 . 1 0 ; %each ant randomly

takes any
121 s tart ingK12 ( i )=start ingptK12+rand ∗10 . 0 ; % po s i t i o n near i t s

s t a r t i n g po int
122 s tart ingK21 ( i )=start ingptK21+rand ∗10 . 0 ;
123 s tart ingK22 ( i )=start ingptK22+rand ∗10 . 0 ;
124

125 s ta r t ingL11 ( i )=sta r t ingptL11+rand ∗10 . 0 ; %each ant randomly takes
any

126 s ta r t ingL12 ( i )=sta r t ingptL12+rand ∗10 . 0 ; % po s i t i o n near i t s
s t a r t i n g po int

127 s ta r t ingL21 ( i )=sta r t ingptL21+rand ∗10 . 0 ;
128 s ta r t ingL22 ( i )=sta r t ingptL22+rand ∗10 . 0 ;
129

130 start ingM11 ( i )=start ingptM11+rand ∗10 . 0 ; %each ant randomly takes
any

131 start ingM12 ( i )=start ingptM12+rand ∗10 . 0 ; % po s i t i o n near i t s
s t a r t i n g po int

132 start ingM21 ( i )=start ingptM21+rand ∗10 . 0 ;
133 start ingM22 ( i )=start ingptM22+rand ∗10 . 0 ;
134

135

33



3.3 Control theory and application:

136 K=[ start ingK11 ( i ) s tart ingK12 ( i ) ;%c r ea t e K gain matrix
137 s tart ingK21 ( i ) s tart ingK22 ( i ) ]
138 L=[ s ta r t ingL11 ( i ) s ta r t ingL12 ( i ) ;%c r ea t e I ga in matrix
139 s ta r t ingL21 ( i ) s ta r t ingL22 ( i ) ]
140 M=[ start ingM11 ( i ) start ingM12 ( i ) ;%c r ea t e P gain matrix
141 start ingM21 ( i ) start ingM22 ( i ) ]
142

143 sim ( ’ a t t i t ud e ’ )%run s imu la t i on in s imul ink model
144

145 e r r o r ( i )=(max(max( abs ( ( input´output ) ) ) ) )%the e r r o r between in \
out s i g n a l

146

147 best=f i nd ( e r r o r==min( e r r o r ( i ) ) )%the minimal e r r o r
148

149 i f e r r o r ( bes t )<prev_error% r e i n i t i a l i z a t i o n tak ing the best
p o s i t i o n o f the ant

150

151 s tart ingptK11=start ingK11 ( best ) ;
152 s tart ingptK12=start ingK12 ( best ) ;
153 s tart ingptK21=start ingK21 ( best ) ;
154 s tart ingptK22=start ingK22 ( best ) ;
155

156 s ta r t ingptL11=sta r t ingL11 ( bes t ) ;
157 s ta r t ingptL12=sta r t ingL12 ( bes t ) ;
158 s ta r t ingptL21=sta r t ingL21 ( bes t ) ;
159 s ta r t ingptL22=sta r t ingL22 ( bes t ) ;
160

161

162 start ingptM11=start ingM11 ( best ) ;
163 start ingptM12=start ingM12 ( best ) ;
164 start ingptM21=start ingM21 ( best ) ;
165 start ingptM22=start ingM22 ( best ) ;
166 e r r o r=e r r o r ( bes t ) ;
167 end
168 end
169 H=[K;L ;M] ;
170 end
171 sim ( ’ a t t i t ud e ’ )% run the s imul ink model with optimal PID gain
172 p lo t ( tsim , compariason_plot , ’ l i n ew id th ’ , 1 . 7 )%p lo t the in output

from the s imul ink model
173 g r id on
174 s t e p i n f o ( compariason_plot )%s i g n a l in fomat ion "Rise time ,

s e t t l i n g time , and other step´re sponse c h a r a c t e r i s t i c s "
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3.3 Control theory and application:

3.3.2.4 Controler tuning MIMO-PID using matlab System tuner Toolboxtm

Control System Toolboxtm provides algorithms and apps for systematically analyzing,
designing, and tuning linear control systems. The toolbox automatically tunes both SISO
and MIMO compensators, including PID controllers. Control System Tuner automatically
tunes the controller parameters to satisfy the must-have requirements (design constraints)
and to best meet the remaining requirements (objectives). The library of tuning goals
lets you capture your design requirements in a form suitable for fast automated tuning.
Available tuning goals include standard control objectives for reference tracking. in this
method we includ the fourth gain in PID configiration how give us the possibility of
redusing the value of the three other gain (Kp, Ki, Kd) the new parallel configuration of
the PID used is:

Kp `Ki
1

s
`Kd

s

Tfs` 1
(33)

were Tf is an filter.
the interface of the toolbox are very simple to use the next figure illustrate how to use

1 2

3

4

5

Select the tuned blocks1

2

3

5

4

Tuning method

Select the input

Select the output

Validation

Figure 8: Control System Tuner
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3.3 Control theory and application:

3.3.3 Simulation and results:

The validation of the control strategy was obtained both in simulation on the previously
described prototype. The used simulation procedures were:
Define the initial position (θd, ψd “ 0). use filter to the input step signal. it is known
that attitude maneuvering would excite appendages vibration, which is closely related to
the attitude angular acceleration. A sudden change in attitude signal, especially in the
form of step signal, may cause a serious appendages vibration. Here,in order to achieve
high performance of attitude control and attenuate the residual vibration [10] so we use
transfer function iter in the input to simulate path planning scheme based on quantic
polynomial transition is developed, which is motivated by the previous study of robot
trajectory planning in joint space [51])

0 2 4 6 8 10 12 14 16 18 20

time(second)

0

0.02

0.04

0.06

0.08

0.1

0.12
input signal

Figure 9: desired input signal

the filter transfer function is given by Tf=
1

s` 1
and input signal charactiristque:

Risetime SettlingTime SettlingMin SettlingMax Overshoot Undershoot Peak Peaktime

input1(θd) 2,197 3,912 0,090 0,099 0 0 0,099 20

input2(ψd) 2,197 3,912 0,072 0,079 0 0 0,079 20
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3.3 Control theory and application:

Next, by using this parameters in the previous control law we obtain :
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Figure 10: Trajectory tracking control using step input
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Figure 11: Trajectory tracking control using the desired input

where the PIDs parameters are :

MIMO-PID Kp Ki Kd Tf

acop˚102q
„

6.656 2.376
2.907 7.455

 „

3.516 2.856
2.786 4.361

 „

5.395 2.872
2.439 6.322



matlab, tuning

„

90.1 0
0 9.42

 „

1.14 0
0 27.9

 „

68.8 0
0 61.7

 „

0.000166 0
0 0.000118


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3.3 Control theory and application:

and the following table present the performance charactiristics of the simulationshown in
figure (11)

Risetime SettlingTime SettlingMin SettlingMax Overshoot Undershoot Peak Peaktime
valb 2.833 9.311 0.091 0.102 0.961 0 0.102 16.129

wolovich 1.243 8.876 0.067 0.082 0.921 0 0.082 16.109
aco 2.169 3.932 0.089 0.100 0.282 0 0.100 10.385
PID 2.145 3.856 0.071 0.080 0.181 0 0.080 9.088

tuning 3.077 10.345 0.092 0.103 1.063 0 0.103 16.444
PID 1.877 16.693 0.072 0.083 8.010 0 0.083 4.856

By default, the rise time is Time it takes for the response to rise from 10% to 90% of the
steady-state response, and SettlingTime Time it takes for the error [yptq - yfinal] between
the response yptq and the steady-state response yfinal to fall to within 2% of yfinal. the
Settling(Min/max) is (Minimum/maximum) value of y(t) once the response has risen.and
overshoot,undershoot are respectively the Percentage undershoot, overshoot relative to
yfinal. The following figure illustrates some of these quantities on a typical second-order
response.

3.3.3.1 Discussion Of The Results:

the effect of the input on the system behavior it’s clear and shown in figure (10) and (11)
For aco tuning PID-controller method shows a good traking to the reference input θd “ 0.1
rad and ψd “ 0.08 rad , is shown in Figure (11),(the input and the response signal are
identical) ther is no static error and the rise time and the overshoot value is the favorable
in Figure (10) we can eliminate the overshoot by changing the number of iteration in

38



3.4 Conclusion:

ACO algorithm but the gain value of PID rise this cause more energy consommation by
the controller in our case the satellite is pointed correctly, while, using the falb-wolovich
controller large oscillations appear the static error is about tow times greater than the
one obtained with the first controller, but for this method you can impose the value of
the system unstable poles,and for the PID-tuned with matlab toolbox is remarkable that
the gain value are small Comparisons with aco-PID but also we see that the settling
time are considerable the satellite take 16 seconds to point to the reference angle,and the
overshoot about 1 and 8 per cent of the input

3.4 Conclusion:

The possibility of improving the pointing accuracy of a flexible satellite, by utilizing
direct state-space methods and state feedback decoupling for the controller design, has
been shown to have a very attractive application. These methods appear powerful
and simple to apply, whatever the complexity introduced in the flexible parts model.
Simulation results also show that the sensitivity of these controllers is small as, in a case
of high flexibility, In the example treated, the actuators’ dynamics have been neglected,
considering only a unity transfer function between the commanded electrical signal and
the momentum supplied by the actuators. This fact is not relevant, as the dynamics
of the particular actuator employed can be introduced simply by augmenting the state
equations. It should be mentioned that the same results have been obtained, with both
synthesis methods, considering or neglecting the sensor time constant in equations (21).
In this study, a tuning PID method based on the multiobjective ant colony optimization
is developed for getting good performances and tunes the optimal PID parameters. In
contrast to the single-objective algorithms, which try to find a single solution of the
problem, the multiobjective technique searches for the optimal Pareto set directly. The
aim of the multiobjective ACO algorithm is to determine the optimal solutions of the
PID controller parameters by minimization the multiobjective function and to identify
the Pareto optimal solution. This method is able to ind the optimum solution of the PID
controller’s parameters (Kp, Ki, andKd) that they allow to guarantee the performance of
the system.
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Chapter 4

Free hybrid model for Satellites with
Flexible Appendages Attitude Control
4.1 Introduction:

We present here a method and some tools developed (Khalid H.M. 2008) to build
linear models of multi-body systems for space applications (typically satellites).

The multi-body system is composed of a main body (hub) fitted with rigid and flexible
appendages (solar panels, antennas, propellant tanks ... etc) and on-board angular
momentums (flywheels, control moment gyros). Each appendage can be connected to
the hub by a cantilever joint or a pivot joint. More generally, this method can be applied
to any open mechanical chain. In our approach, the rigid six degrees of freedom (three
translational and three rotational) are treated all together. That is very convenient to
build linear models of complex multi-body systems. Then, the dynamics model used
to design AOCS, i.e. the model between forces and torques (applied on the hub) and
angular and linear position and velocity of the hub, can be derived very easily. This
model can be interpreted using block diagram representation.[1] Satellites and other
spacecraft are typical multi-body mechanical systems that include both rigid and flexible
bodies. Rigid bodies have been shown to be stabilized by applying torques on them
[35], complex mechanical systems such as spacecraft are stabilized by the Attitude and
Orbit Control System (AOCS) components,The design of the AOCS requires a linear
model taking into account all the rigid and flexible couplings between the hub (where
the AOCS acts) and the various appendages. The dynamic model, which relates linear
and angular accelerations applied on a system, and the resulting the forces and torques
are assumed to be linear. This linear assumption is quite realistic for such systems
since perturbations and so motions are very small (except for very dexterous observation
satellites)[3]. This linear assumption is furthermore valid in the field of future missions
for deep space exploration involving formation flying of several spacecraft. For this kind
of formation flying mission, it is more and more accepted that the 3 rotational degrees
of freedom (d.o.f) and the 3 translational d.o.f’s must be treated all together [36]. When
deformable bodies make up a part of the multi-body system, then flexibility must be
taken into account, many formulations for handling flexible multi-body dynamics have
been investigated in [37]. Flexibility in multi-body systems, may be treated by finite
element analysis[38, 39]. In this work, the Effective Mass Representation [40, 41] has
been used in generating the flexible model of the mechanical elements in which flexibility
is present, this use was made possible by applying the Cantilever Hybrid Model [40].
Hence a 6 d.o.f. model including couplings between rotations and translations must be
developed [3] .
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4.2 Interconnected rigid bodies model:

4.1.1 Mathimatical tools:

The Antisymmetric Matrix:
Before we start building the dynamic model, we will introduce the antisymmetric matrix,
which helps us perform numerical calculations in matrix form. Let the angular velocity
in the reference frame Rc be expressed as:

~ω=ωx~i` ωy~j ` ωz~k

and let the vector from point G to point P in the same frame of reference be given by:

~rGP=x~i+y~j+z~k

Then the vector product of the two vectors expressed in the same reference frame Rc

is given by:

~ω ^ ~rGP “ pωyz ´ ωzyq~i` pωzx´ ωxzq~j ` pωxy ´ ωyxq~k (34)

This vector product can also be written in the matrix form:

~ω ^ ~rGP “ r~rPGs ~ω “
»

–

0 z ´ y
´z 0 x
y ´ x 0

fi

fl

»

–

ωx
ωy
ωz

fi

fl (35)

4.2 Interconnected rigid bodies model:

Let us consider a spacecraft composed of a rigid main body or hub (called here the
base B) with its center of mass at point
G, and an appendage cantilevered to
the base B at points P (see Figure).
Let us denote RG “ pG;x; y; zq the
reference frame rigidly attached to the
hub at G and RP “ pP ;x; y; zq )
the same frame translated to points
P. In the sequel the dynamic model
of the appendage will be obviously
given in the frame RP . Let us
consider the base B alone (without
appendage),
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4.2 Interconnected rigid bodies model:

4.2.1 Newton-Euler equations at the
center of mass:

according to the Newton’s and Euler’s equations, the dynamic model of the base B at its
center of mass G reads as follows:

„

~Fext
~Text



“ DB
G

„

~aG
9~ω



“
„

mI3ˆ3 0
0 JBG



(36)

were:
~ω: is the absolute angular velocity vector of the satellite body (i.e. the angular velocity
of the frame RG w.r.t the inertial frame Ri in (rad/s)) .

and 9~ω=
dp~ωq
dt
|RG

=
dp~ωq
dt
|Ri

since ~ω has the same coordinates in RG and Ri

4.2.2 Newton-Euler equations at any reference point:

In the above equation, the three translational accelerations and the three angular acceler-
ations are considered together. Note that for the rotation dynamics, the relation ~Text=JBG
9~ω+~ω^(JBG ~ω) were ^ is the cross product.The nonlinear term ~ω^(JBG ~ω) on the right
hand side of the equation above can be neglected if angular velocity ~ω is small enough
(linear assumption). Let us recall that the relation between the velocities at points P
and G is:

~VP “ ~VG ` ~ω ^ ~rGP “ ~VG ` rrPGs~ω (37)

where rrPGs is the antisymmetric matrix associated with the vector ~rGP , if rx; y; zsTG is
the coordinate vector of ~rSA projected in any frame RG then rrPGs reads:

rrPGs=
»

–

0 z ´y
´z 0 x
y ´x 0

fi

fl rrGP s=
»

–

0 z ´y
´z 0 x
y ´x 0

fi

fl

T

and rrGP s=rrPGsT

Rigid Body Kinematics:
Note that velocity equation allows a vector product to be transformed into a matrix-
vector product and can be projected in any frame. Then, the six DOF kinematic vectors
~VG and ~VP of the satellite body respectively at points G and P These six-component
vectors are related to each other by:

„

~VG
~ω



“ TGP
„

~VP
~ω



“
„

I3ˆ3 rrGP s
0 I3ˆ3

 „

~VP
~ω



(38)

where we have introduced the 6x6 kinematic model between the points G and P:

TGP “
„

I3ˆ3 rrGP s
0 I3ˆ3



Now let us consider theinertial acceleration at point G and P :

~aG “
∣∣∣∣d ~VG
dt

∣∣∣∣
Ri

and ~aP “
∣∣∣∣d ~Vp
dt

∣∣∣∣
Ri

(39)
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4.3 Model of a flexible appendage:

its well-known that:

~ap “ ~aG ` 9~ω ^ ~rGP ` ~ω ^
” ∣∣dd~rGP

dt

∣∣
RG
` ω ^ ~rGP

ı

(40)

for regid body,
∣∣∣∣d~rGPdt

∣∣∣∣
RG

=0;

and, as explained before, all nonlinear terms can be neglected. The acceleration at
point P is then deduced from the acceleration at point G by the linear relation:

~ap “ ~aG ` 9~ω ^ ~rGP “ r~rPGs 9~ω (41)

From the last equation one can derive the following kinematic relationship:
„

~aG
9~ω



“ TGP
„

~aP
9~ω



“
„

I3ˆ3 rrGP s
0 I3ˆ3

 „

~aP
9~ω



(42)

To obtain the relationship between the 6 DOF external force vectors at point G and at
point P, it is interesting to express the external force power computed along a virtual
velocity field :

powerext “
„

~VG
~ω

T „ ~Fext
~Text



RG

“
„

~VP
~ω

T „ ~Fext
~Text



RP

(43)

Combining (38) and (43), one can easily obtain:
„

~Fext
~Text



RP

“ TTGP
„

~Fext
~Text



RG

“ TTGPDB
G

„

~aG
9~ω



“ TTGPDB
GTGP

„

~aP
9~ω



(44)

„

~Fext
~Text



RP

“ DB
p

„

~aP
9~ω



(45)

Thus the transport of the direct dynamic model of a satellite body from a point G to a
point P reads

DB
P “ TTGPDB

GTGP “
„

mI3ˆ3 mr~rGP s
´mr~rGP s JBG ´mr~rGP s2



(46)

If ~rCP is the vector between P and the center of mass C of the appendage in the frame
RP , we can also write:

DA
P “ TTCPDA

GTCP “ TTCP
„

mAI3ˆ3 0
0 JAC



TCP “
„

mAI3ˆ3 mAr~rCP s
´mAr~rCP s JAC ´mAr~rCP s2



(47)

4.3 Model of a flexible appendage:

Flexibility of an appendage will be represented by the effective mass approach (Imbert
and Mamode [1977]). This representation is very useful when one want to study dynamic
couplings between the flexible modes of the appendage and the rigid modes of the whole
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4.3 Model of a flexible appendage:

system without analysis of internal deformations (or loads) of the appendage. The so
called "Cantilever Hybrid Model"’ (see Cumer and Chrétien [2001]) will be used: at
point P, the static-dynamic model of the appendage is now governed by the following
differential equations:

„

~FP
~TP



RP

“ DA
P

„

~aP
9~ω



`LpT :ξP “
„

mAI3ˆ3 mAr~rCP s
´mAr~rCP s JAC ´mAr~rCP s2

 „

~aP
9~ω



`

»

—

—

—

—

–

pp
..
..
..
Hp

fi

ffi

ffi

ffi

ffi

fl

:ξp

(48)

:ξp ` diagp2ξiωiq 9ξp ` diagpωi2qξp “ ´
“

pp
T , ........., Hp

T
‰

„

~aP
9~ω



(49)

were
!

Lp “
“

pp
T , ........., Hp

T
‰ “

”

L1
p
T
, L2

p
T
, ....., Lkp

T
ı)

, ωi and ξi pi “ 1, 2, ..., kq
are the modal contribution at connection point P, the frequency, and the damping ratio of
the flexible mode i respectively , for (i “ 1, . . . , k) with (k is the number of flexible modes
taken into account). ξA is the vector of flexible modal coordinates. (IP=JAC-mArrGP s2) the
moment of inertia of an appendage. To make the description more compact we denote the
following : (D “ diagp2ξiωiq) , (K “ diagpωi2q) and (Qp=-diagp2ξiωiq 9ξp) were D is called
flexible mode damping ratios , K is called flexible mode stiffness coefficients and Qp is
called generalized force of solar array . Also as a notable remark we should mention that
the modal momentum/angular-momentum coefficients pp and Hp can be calculated using
the mass matrix and mode shape obtained by NASTRAN modal analysis[22]. The direct
dynamic model of the appendage can also be described by the state-space representation:

Flexibility in state-space form:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

«

9ξP
:ξP

ff

“
„

0kˆk I3ˆ3
´Kkˆk ´Dkˆk

 „

ξP
9ξP



`

»

—

—

—

—

–

0kˆ6
..
..
..
´Lp

fi

ffi

ffi

ffi

ffi

fl

„

~aP
9~ω



«

~FP
~TP

ff

RP

“ ´ “

Lp
TKkˆk Lp

TDkˆk

‰

„

ξP
9ξP



` pDA
P ´ LpTLpq

„

~aP
9~ω



(50)
This state-space representation allows the direct transfer matrix MA

p psq
between force and acceleration of the appendage at point P (also called
dynamic mass matrix) to be computed:

«

~FP
~TP

ff

RP

“MA
p psq

„

~aP
9~ω



(51)
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4.3 Model of a flexible appendage:

MA
p psq “ ´

“

Lp
TKkˆk Lp

TDkˆk

‰

„

S Ikˆk ´ I3ˆ3

Kkˆk pS Ikˆk `Dkˆkq
´1

»

—

—

–

0kˆ6

..

..
´Lp

fi

ffi

ffi

fl

`pDA
P´LpTLpq

(52)

In the case where flexible mode damping ratios are neglected (Dkˆk “ 0),
this transfer matrix can be re-arranged in the following way:

MA
p psq “ DCGain `

k
ÿ

i“1

Mi

ˆ

ωi
2

s2 ` ωi2
˙

(53)

Where:
DCGain: is called the DC gain or residual mass matrix rigidly cantilevered
to the base B at point p and is given by:

DCGain=MA
p p8q=pDA

P ´ LpTLpq=pDA
P -
řk
i“1 l

p
i
T
lpi )

Mi=
řk
i“1 l

p
i
T
lpi : is rank-1 effective-mass matrix of the ith mode,

Remarque:

All these data (DA
P , ωi, ξi, and l

i
P ) are directly provided by the finite element

software used to model such an appendage according to the number N of
flexible modes retained in the model and are independent of the main body
characteristics.
Another well-known frequency-domain representation of MA

P psq, also called
effective mass/inertia model (Imbert,J.,1991.) can be easily derived from
(52) where flexible mode damping ratios are not neglected pDpkˆkq ‰ 0q:

MA
p psq “ DCGain `

k
ÿ

i“1

Mi

ˆ

2ξiωis` ωi2
s2 ` 2ξiωis` ωi2

˙

(54)

The appendage dynamic modelMA
P psq can also be represented by the block-

diagram depicted in Figure (12).
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4.4 Connection of Rigid Body by a Flexible Appendage:
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Figure 12: Appendage dynamic model MA

P psq: block-diagram representation

4.4 Connection of Rigid Body by a Flexible Appendage:

If we consider now that a flexible appendage A is cantilevered to the base
B at point P, the reaction forces ~FP and torque ~TP at point P between the
base and the appendage must be taken into account in the dynamic model
of the base. Thus equation (45) becomes:
„

~Fext
~Text



RP

“
„

~FP
~TP



RP

`DB
p

„

~aP
9~ω



“
„

~FP
~TP



RP

`
„

mI3ˆ3 mr~rGP s
´mr~rGP s JBG ´mr~rGP s2

 „

~aP
9~ω



(55)
The appendage A is characterized by its own dynamic model DA

P at point
P. If we assume that the only force and torque applied on the appendage A
are the reaction force and torque with the base B, then one can write:

«

~FP
~TP

ff

RP

“ DA
P

„

~aP
9~ω



and

«

~FP
~TP

ff

RG

“ DA
G

„

~aG
9~ω



(56)

Substituting (56) in (55) we get the equation of motion of the whole system
at point P:

«

~Fext
~Text

ff

RP

“ pDA
P `DB

P q
„

~aP
9~ω



“ pDA
P ` TTGPDB

GTGP q
„

~aP
9~ω



(57)
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4.4 Connection of Rigid Body by a Flexible Appendage:

It could be more interesting to express the whole dynamic model at the
center of mass G of the base B, since the external forces and torques will
correspond to the Attitude and Orbit Control System AOCS (reaction wheel
and thrust) which are mounted on the base. Then, From equations (56) and
(57) it can be shown that:

«

~Fext
~Text

ff

RG

“
«

~FP
~TP

ff

RG

`DB
G

„

~aG
9~ω



(58)

The block diagram representation of the dynamic model H(s) of the coupled
system, presented in the next Fig, shows that the direct appendage dynamic
model MA

P psq at point P interacts as a feedback on the direct main body
dynamic modelpDB

Gq. Consequently, characteristic parameters of each body
can be highlighted in such a block-diagram representation.the model of the
coupled system can be represented by the block-diagram depicted in Fig.
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Figure 13: the model of the coupled system: block-diagram representation
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4.5 Block diagram representation and simulation in simulink:

4.5 Block diagram representation and simulation in simulink:

4.5.1 Introduction:

In (4.4) we introduced the theoretical background and derived the results
that we expect to have. Here we will present that analysis in a block diagram,
and simulate it on Simulink (by Mathworks,Inc.)

4.5.2 The Dynamic Model Of a Satellite with one Flexible Appendage to a
Rigid Connection with Translation only:

Using the equations we had in (4.4), the block-diagram represented in figure
(13) can be described by the following simulink model:

Figure 14: simulink Dynamic Model with Only Translation to a Rigid Connection

main body block is the direct main body dynamic model pDB
Gq . DA

P block
is direct transfer function of the appendage at point p the signal entering
the positive side of the summation block is the [Fext;Text] vector at point
P as illustrated in the figure, thus the force and torque resulting from the
appendage can be subtracted directly from that signal because the dynamic
model of the appendage is taken at point P as well. While in figure, the
[Fext;Text] vector that enters the summation block is that at point G, hence,
the dynamic model of the appendage has to be translated to point G from
point p before it is subtracted, this is done by pre and post multiplying it
by TPGT and TPG respectively. Notice that:TPG=TGP´1

4.5.3 The Dynamic Model Of a Satellite with one Flexible Appendage to a
Rigid Connection with Translation and rotation:

In the case where the base B and the appendage A are linked by a pivot
joint (around the zP axis), the reaction torque about the zP axis is null.
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4.5 Block diagram representation and simulation in simulink:

Then (51) projected in the frame pP ;xP ; yP ; zP q becomes:
„

~Fext
~Text



RP

“MA
p psq

„

~aP
9~ω



with ~FP “
«

Fpx
Fpy
Fpz

ff

, ~TP “
«

Tpx
Tpy
0

ff

, ~aP “
«

apx
apy
apz

ff

,

~9ωp “
»

–

9ωx
9ωy

9ωz ` :θ

fi

fl

(59)
Now to introduce rotation into the system that we have built before it is
necessary to know the rotation matrix associated with the axis which rotation
is performed [6] . we mean rotating the second reference frame (Rp, x, y,
z) by certain degrees about one axis with respect to the original reference
frame (RG, x, y, z) Again we will consider a satellite main body with one
appendage attached to it through a rigid connection, but this time the local
reference frame of the appendage is located by a certain angle as discussed
before. This case was studied by equation the rotation matrix R3 between
the rotationg frame RP = pP ;xP ; yP ; zP q (in which the dynamic model will
be described) and the frame Rp1=pp, x1p, y1p, z1pq parallel to RG at point P
must be taken into account. That is illustrated in the next Figure, in the
special case where the appendage is rotated with an angle θ around z-axis:

R3=

»

–

cospθq ´ sinpθq 0
sinpθq cospθq 0

0 0 1

fi

fl

While the (6ˆ6) rotation is given by:

R6=
„

R3 03ˆ3
03ˆ3 R3


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4.5 Block diagram representation and simulation in simulink:

Now we need to introduce the transition matrix , it is simply a rotation
matrix that describes the transition from the main body reference frame to
the new reference frame at point P that was obtained after rotation [3] ,
i.e. the transition matrix will rotate the frame Rp1

1
=pp1, x1p1, y1p1, z1p1q to be

aligned with the frame RG= (G, x, y, z). in this case :

T “

»

—

–

1 0 0
0 cosp´π

2 q sinp´π
2 q

0 ´ sinp´π
2 q cosp´π

2 q

fi

ffi

fl

(60)

and thep6ˆ 6q transition matrix :

TM “
„

T 0
0 T



(61)

Figure 15: dynamic model of flexible solar array with rotation
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4.5 Block diagram representation and simulation in simulink:

the m-file programme is given by :
1 c l o s e a l l
2 c l e a r a l l
3 c l c
4 % DATA
5

6 t e t a=10∗pi /180 ;%ang le o f r o t a t i on o f s o l a r panr l 1 ( rad
)

7 alpha=́ p i /2%angle o f r o t a t i on use in t r a n s i t i o n matrix
o f s o l a r panr l 1 ( rad )

8 ma=100;%s o l a r pannel 1 ,2 mass ( kg )
9 m=2000;%main body mass ( kg )

10 lp =[0 0 5 90 0 0 ;0 0 0 0 14 0;´3 0 0 0 0 119 ;0 0 4 62 0
0 ] ;%the model c on t r i bu t i on o f beams at po int P, P1

11 wis=2∗pi ∗ [ 0 . 0 4 0 .111 0 .13 0 . 2 7 ] ;%angular f r e qu en c i e s o f
the K=4 f l e x i b l e mode

12 [ rgp ]=[0 2 0;´2 0 0 ;0 0 0 ] ;%antisymmetr ic matrix
a s s o c i a t ed with the vec to r rgp ( d i s t anc e from G to P)

13 [ rcp ]=[0 8 0;´8 0 0 ;0 0 0 ] ;%antisymmetr ic matrix
a s s o c i a t ed with the vec to r rcp ( d i s t anc e from p to c )

14 p s i s =0.001;%damping r a t i o o f the f l e x i b l e mode
15

16 t t =[1 0 0 ;0 cos ( alpha ) s i n ( alpha ) ; 0 ´s i n ( alpha ) cos (
alpha ) ]%ro ta i on matrix use in t r a n s i t i o n matrix
s o l a r panel 1

17 tm=[ t t z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) t t ] ;%t r a n s i t i o n matrix
s o l a r panel 1

18

19 i=eye (3 , 3 ) ;%i s the 3∗3 i d e n t i t y matrix
20 j a c =[7000 0 0 ;0 200 0 ;0 0 10000 ] ;%moment o f i n e r t i a

t e s o r o f the appendage with r e sp e c t to C,C1 wr i t t en
in Rp,Rp1

21 r3=[ cos ( t e ta ) s i n ( t e ta ) 0;´ s i n ( t e ta ) cos ( t e ta ) 0 ;0 0
1 ] ;%the 3∗3 r o t a t i on matrix s o l a r pannel 1

22 r31=[ cos ( t e ta1 ) s i n ( t e ta1 ) 0;´ s i n ( t e ta1 ) cos ( t e ta1 ) 0 ; 0
0 1 ] ;%the 3∗3 r o t a t i on matrix s o l a r pannel 2

23 jbg =[2000 100 50 ;100 8000 80 ;50 80 8000 ] ;%moment o f
i n e r t i a t enso r o f the main body with r e sp e c t to G
writen in RG
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4.5 Block diagram representation and simulation in simulink:

24 KS=diag ( wis . ∗ wis ) ;%f l e x i b l e mode ra t i on
25 DS=diag (2∗ p s i s . ∗ wis ) ;%f l e x i b l e s t i f f n e s c o e f f i c i e n t
26

27 %pannel 1
28

29 [ rcp2 ]=[ rcp ] ∗ [ rcp ] ;%[ rcp ] power tow
30 a=ma∗ i ;
31 b=ma∗ [ rcp ] ;
32 c=´(ma∗ [ rcp ] ) ;
33 d=jac´(ma∗ [ rcp2 ] ) ;
34 dap=[a b ; c d ] ;% s t a t i c´dynamic model o f A at po int p
35 tgp=[ eye (3 , 3 ) [ rgp ] ; z e r o s (3 , 3 ) eye (3 , 3 ) ] ;%t ranspo r t

d i r e c t dynamic model o f the hub body B from G to P
36 tpg=inv ( tgp ) ;%the i nv e r s o f tgp
37 dcgain=dap´(lp ’ ∗ lp ) ;%r e s i d u a l mass matrix r i g i d l y

c on t e l i v r e d to the base B at po int P
38 cgp=[ r3 z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) r3 ] ;%the 6∗6 r o t a t i on

matrix
39 dag=[ma∗ i z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) j a c ] ;% s t a t i c´dynamic

model o f A at po int G
40

41 %main body
42

43 dbg=[m∗ i z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) jbg ] ;% s t a t i c´dynamic
model o f B at po int G

4.5.4 The Dynamic Model Of a Satellite with [n] Flexible Appendage to a Rigid
Connection with Translation and rotation:

now we suppose that the satellite contain tow flexible solar array in this
case,it is easy to prove that the model of the main body is[6]:

«

~Fext ´
řn
i“1

~FB{pi
~Text ´

řn
i“1

~TB{pi

ff

“ DB
G

„

~aG
9~ω



(62)

and:
«

~Fext
~Text

ff

“
n
ÿ

i“1

«

~FB{pi
~TB{pi

ff

`DB
G

„

~aG
9~ω



(63)

with n is the number of appendages in this case (n=2)
befor we present the general dynamic model we need to modulate the seconde
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4.5 Block diagram representation and simulation in simulink:

appendage that has the same charactiristics ((ωi)frequency of the flexible
mode. (ξi): damping ratio of the flexible mode.,mass...) but the joint point
situate in the other side. model of the appendage is now governed by the
following differential equations:

«

~FP1

~TP1

ff

RP1

“ DA1

P1

„

~aP1

9~ω



` Lp1T :ξP1
(64)

in general case the dynamic model:
«

~FPn

~TPn

ff

RPn

“ DAn

Pn

„

~aPn

9~ω



` LpnT :ξPn
(65)

After building the model of the flexible appendage, we connect it to the
satellite system, by simply putting it in place of the block of the appendage
in the next models. Figure (16) illustrates a block diagram of a flexible
appendage.
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Figure 16: Appendage dynamic model MAn
Pn
psq: block-diagram representation

and thefollowing figure shows the Simulink model of a satellite hub with two
flexible appendages.
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4.5 Block diagram representation and simulation in simulink:

Figure 17: dynamic model of a satellite with two flexible solar array

we have introduced the transition matrix and the next figure present the
matrix angles :

Figure 18: transition matrix angels
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4.5 Block diagram representation and simulation in simulink:

and the m-file data :
1 c l o s e a l l
2 c l e a r a l l
3 c l c
4 %DATA
5

6 t e t a=10∗pi /180 ;%ang le o f r o t a t i on o f s o l a r panr l 1 ( rad
)

7 t e ta1=´10∗p i /180 ;%ang le o f r o t a t i on o f s o l a r panr l 2 (
rad )

8 alpha=́ p i /2%angle o f r o t a t i on use in t r a n s i t i o n matrix
o f s o l a r panr l 1 ( rad )

9 alpha1=pi /2 ,%ang le o f r o t a t i on use in t r a n s i t i o n matrix
o f s o l a r panr l 2 ( rad )

10 ma=100;%s o l a r pannel 1 ,2 mass ( kg )
11 m=2000;%main body mass ( kg )
12 lp =[0 0 5 90 0 0 ;0 0 0 0 14 0;´3 0 0 0 0 119 ;0 0 4 62 0

0 ] ;%the model c on t r i bu t i on o f beams at po int P, P1
13 wis=2∗pi ∗ [ 0 . 0 4 0 .111 0 .13 0 . 2 7 ] ;%angular f r e qu en c i e s o f

the K=4 f l e x i b l e mode
14 [ rgp ]=[0 2 0;´2 0 0 ;0 0 0 ] ;%antisymmetr ic matrix

a s s o c i a t ed with the vec to r rgp ( d i s t anc e from G to P)
15 [ rcp ]=[0 8 0;´8 0 0 ;0 0 0 ] ;%antisymmetr ic matrix

a s s o c i a t ed with the vec to r rcp ( d i s t anc e from p to c )
16 p s i s =0.001;%damping r a t i o o f the f l e x i b l e mode
17

18 [ rgp1 ]=[0 ´2 0 ;2 0 0 ;0 0 0 ] ;%antisymmetr ic matrix
a s s o c i a t ed with the vec to r rgp1 ( d i s t anc e from G to
P1)

19 [ rcp1 ]=[0 ´8 0 ;8 0 0 ;0 0 0 ] ;%antisymmetr ic matrix
a s s o c i a t ed with the vec to r rcp1 ( d i s t anc e from p1 to
c1 )

20

21 t t =[1 0 0 ;0 cos ( alpha ) s i n ( alpha ) ; 0 ´s i n ( alpha ) cos (
alpha ) ]%ro ta i on matrix use in t r a n s i t i o n matrix
s o l a r panel 1

22 tm=[ t t z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) t t ] ;%t r a n s i t i o n matrix
s o l a r panel 1

23 t t1 =[1 0 0 ;0 cos ( alpha1 ) s i n ( alpha1 ) ; 0 ´s i n ( alpha1 ) cos
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4.5 Block diagram representation and simulation in simulink:

( alpha1 ) ]%ro ta i on matrix use in t r a n s i t i o n matrix
s o l a r panel 2

24 tm1=[ t t1 z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) t t1 ]%t r a n s i t i o n matrix
s o l a r panel 2

25

26 i=eye (3 , 3 ) ;%i s the 3∗3 i d e n t i t y matrix
27 j a c =[7000 0 0 ;0 200 0 ;0 0 10000 ] ;%moment o f i n e r t i a

t e s o r o f the appendage with r e sp e c t to C,C1 wr i t t en
in Rp,Rp1

28 r3=[ cos ( t e ta ) s i n ( t e ta ) 0;´ s i n ( t e ta ) cos ( t e ta ) 0 ;0 0
1 ] ;%the 3∗3 r o t a t i on matrix s o l a r pannel 1

29 r31=[ cos ( t e ta1 ) s i n ( t e ta1 ) 0;´ s i n ( t e ta1 ) cos ( t e ta1 ) 0 ; 0
0 1 ] ;%the 3∗3 r o t a t i on matrix s o l a r pannel 2

30 jbg =[2000 100 50 ;100 8000 80 ;50 80 8000 ] ;%moment o f
i n e r t i a t enso r o f the main body with r e sp e c t to G
writen in RG

31 KS=diag ( wis . ∗ wis ) ;%f l e x i b l e mode ra t i on
32 DS=diag (2∗ p s i s . ∗ wis ) ;%f l e x i b l e s t i f f n e s c o e f f i c i e n t
33

34 %pannel 1
35

36 [ rcp2 ]=[ rcp ] ∗ [ rcp ] ;%[ rcp ] power tow
37 a=ma∗ i ;
38 b=ma∗ [ rcp ] ;
39 c=´(ma∗ [ rcp ] ) ;
40 d=jac´(ma∗ [ rcp2 ] ) ;
41 dap=[a b ; c d ] ;% s t a t i c´dynamic model o f A at po int p
42 tgp=[ eye (3 , 3 ) [ rgp ] ; z e r o s (3 , 3 ) eye (3 , 3 ) ] ;%t ranspo r t

d i r e c t dynamic model o f the hub body B from G to P
43 tpg=inv ( tgp ) ;%the i nv e r s o f tgp
44 dcgain=dap´(lp ’ ∗ lp ) ;%r e s i d u a l mass matrix r i g i d l y

c on t e l i v r e d to the base B at po int P
45 cgp=[ r3 z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) r3 ] ;%the 6∗6 r o t a t i on

matrix
46 dag=[ma∗ i z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) j a c ] ;% s t a t i c´dynamic

model o f A at po int G
47

48 %pannel 2
49
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4.5 Block diagram representation and simulation in simulink:

50 [ rcp21 ]=[ rcp1 ] ∗ [ rcp1 ] ;%[ rcp ] power tow
51 a1=ma∗ i ;
52 b1=ma∗ [ rcp1 ] ;
53 c1=´(ma∗ [ rcp1 ] ) ;
54 d1=jac´(ma∗ [ rcp21 ] ) ;
55 dap1=[a1 b1 ; c1 d1 ] ;% s t a t i c´dynamic model o f A at po int

p
56 cgp1=[ r31 z e ro s (3 , 3 ) ; z e r o s (3 , 3 ) r31 ] ;%the 6∗6 r o t a t i on

matrix
57 tgp1=[ eye (3 , 3 ) [ rgp1 ] ; z e r o s (3 , 3 ) eye (3 , 3 ) ] ;%t ranspor t

d i r e c t dynamic model o f the hub body B from G to P1
58 tpg1=inv ( tgp1 ) ;%the i nv e r s o f tgp1
59 dcgain1=dap1´(lp ’ ∗ lp ) ;% s t a t i c´dynamic model o f A1 at

po int G
60

61 %main body
62

63 dbg=[m∗ i z e r o s (3 , 3 ) ; z e r o s (3 , 3 ) jbg ] ;% s t a t i c´dynamic
model o f B at po int G

4.5.5 Use actuator in the pivot joint:

If the pivot joint is motorized with a motor
applying a torque Cm around Zp axis (i.e.
a torque applied by the base B on the
appendage A), the dynamic model of the
appendage at point P becomes:

»

–

~Fp
~Tp
Cm

fi

fl “MA
p psqp7ˆ 7q

»

–

~aP
9~ω
:θ

fi

fl (66)

Therefore, a new input :θ and a new output Cm
are introduced to the whole dynamic model.
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𝑭𝒆𝒙𝒕
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ሷ𝚹

Figure 19: A schematic illustration of the inputs and outputs when pivot joints are added.

The objective is to compute the augmented direct model MP
G psqp7 ˆ 7q .

Because of the revolute joint, the projection of the torque ~Tp exerted by the
base on the appendage at point G,along (Gx,Gy,Gz) axis is either: null in
case of a free revolute joint or equal to Cm in case of an actuated joint

Cm “ ~TG{A,P ˚ ~rGP
(67)

where ~rGP
is the distance from p to G . and P is the connection point

between the mian body and the appendage
Expressing the direct dynamics model of the appendage at point A in frame
Rp enables us to write that:

«

~FB{A
~TB{A,P

ff

“MA
p psq

„

~aP
9~ω ` :θRP



(68)

From (67) and (68), we can write the augmented direct model (7ˆ7) of the
appendage rMP

G psqsRG
at point P and expressed in frame RG [7] :

»

—

–

«

~FB{A
~TB{A,P

ff

Cm

fi

ffi

fl

“
„

I6
0 0 0 xrGP

yrGP
zrGP



rMA
p sRG

»

—

—

—

—

—

—

–

I6

0
0
0

xrGP

yrGP

zrGP

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

–

„

~ap
~9ω



:θ

fi

fl

(69)
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4.5 Block diagram representation and simulation in simulink:

The direct model :

rMp
GpsqsRG

“
„

I6
0 0 0 xrGP

yrGP
zrGP



rMA
p sRG

»

—

—

—

—

—

—

–

I6

0
0
0

xrGP

yrGP

zrGP

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(70)

Now we can write :
»

–

„

~FB{A
~TB{A,P



Cm

fi

fl “ rMP
G psqp7ˆ7qsRG

»

–

„

~ap
~9ω



:θ

fi

fl “
„

PA
p psq11

p6ˆ 6q PA
p psq12

p6ˆ 1q
PA
p psq21

p1ˆ 6q PA
p psq22

p1ˆ 1q


»

–

„

~ap
~9ω



:θ

fi

fl

(71)

where:

PA
p psq11p6ˆ6q=rMA

p sRa : is the transfer function between

«

~FB{A
~TB{A,P

ff

and

„

~aP
9~ω



PA
p psq12p6ˆ 1q : is the transfer function between

«

~FB{A
~TB{A,P

ff

and :θ

PA
p psq21p1ˆ 6q : is the transfer function between Cm and

„

~aP
9~ω



PA
p psq22p1ˆ 1q : is the transfer function between Cm and :θ

The block diagram of Figure represents this operation. It also shows the
connection of the first six inputs and outputs between rMA

p sRP
and the hub’s

direct model rDB
Gs in order to get the assembly model rDstellite

G s , expressed
in frame RG . Taking into account a revolute joint between the hub and an
appendage.
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Figure 20: Direct dynamics model (7ˆ7) block diagram of the assembly hub + appendage
with revolute joint, expressed in frame RG.

rGP “ rxrGP
, yrGP

, zrGP
s expresse :θ in the frame Rp

using this block diagramme the simulink model described by the following
figure

Figure 21: the augmented direct model(7ˆ7)
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4.6 Control theory and application:

4.5.6 Inverse dynamic model:

the inverse dynamic model is obtained by :
„

~aP
9~ω



“MA
p psq´1

«

~FB{A
~TB{A,P

ff

(72)

To fit into the block-diagram as many (rigid or flexible) appendages as
possible through other feedbacks on [pDB

Gq´1] ,this model was developed
in (see [3]) .

4.6 Control theory and application:

4.6.1 PID with ideal configuration:

An alternate version of the PID equation designed such that the gain (Kp)
affects all three actions is called the Ideal or ISA equation:

uptq “ Kppeptq ` 1

Ki

ż t

0

epτqdτ `Kd
deptq
dt

q (73)

Here, the gain constant (Kp ) is distributed to all terms within the parentheses,
equally affecting all three control actions. Increasing Kp in this style of PID
controller makes the P , the I, and the D actions equally more aggressive.
We may show this mathematically, by breaking the “ideal” equation up into
three different parts, each one describing its contribution to the output (∆u):

$

’

’

’

’

&

’

’

’

’

%

∆u “ Kp∆e proportional action

∆u “ Kp

Ki
∆e integral action

∆u “ KpKd
de

dt
derivative action

(74)

the transfer function is given by :

F psq “ Kpr1`Ki
1

s
`Kd

Ns

s`N s (75)

such us the integral action in s domain is realized by a filter r Ns

s`N s and N is
the filter coefficient the next figure will illustrated PID in ideal configuration
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4.6 Control theory and application:

e(t) u(t)
Ki

1

s

1

s

N

`
`

`

`
´Kd

KP

Figure 22: PID in ideal form

As you can see, all three portions of this PID equation are influenced by
the gain (Kp) owing to algebraic distribution, but the integral and derivative
tuning parameters (Ki and Kd ) act independently within their own terms
of the equation.

4.6.2 controler Tuning MIMO-PID using particale swarm optimization :

As we have defined The particle swarm optimization (PSO) algorithm, which
updates particles by considering their past momentum and current direction,
has demonstrated its power in several optimization applications[13]. However,
the updating strategy followed by the standard PSO mainly aims to learn
from the global optimum, which often leads to PSO suffering from premature
convergence. Using the past momentum can result in the overshoot problem,
which usually slows down convergence in complex optimization problems.
Inspired by the massive success of the proportional-integral-derivative (PID)
controller in automatic control,The proposed PSO utilizes the past, current,
and change in global best together to update the search direction.a concrete
design procedure to determine the design parameters pKp, Ki, Kd, Nq by
solving the optimization problem,first we establish a connection between the
PSO process and the PID controller-based control system[12].
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Figure 23: PID control system
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4.6 Control theory and application:

the pso programme are addapted to optimise the PID gain after get the
search limit (Stability area) usin matlab tuning toolbox , the most important
here is to obtain a stable search area because if y are not measurable this
will Break the process, the pso programme are given by:

1 % % ∗ Pa r t i c l e Swarm Optimizat ion ∗
2 Juml_Part ic les = 5 ; % Pa r t i c l e Number
3 MaxIt = 10 ; % I t e r a t i o n
4 Juml_Variabel = 24 ; % The number o f parameters to

be opt imized
5 c2 = 2 ; % PSO parameter C1 ( So c i a l Constant )
6 c1 = 2 ; % PSO parameter C2 ( Cogni t ive Constant )
7 w = 0 . 9 9 ; % PSO momentum or i n e r t i a
8

9

10 %Calcu la te the f i t n e s s o f each p a r t i c l e in each
i t e r a t i o n

11 %==============================================
12

13 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ %
14 % i n i t i a l i z a t i o n parameters %
15 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ %
16

17 f o r i r =1: Juml_Part ic les
18 f o r n=1:MaxIt
19 f i t n e s s =0∗ones ( i r , n ) ; % Al located Memory
20 end
21 f o r k=1: Juml_Variabel
22 R1=rand (k , i r ) ; % R1 i s Random Jum_Var and Jum_Particle
23 R2=rand (k , i r ) ; % R2 i s Random Jum_Var and Jum_Particle
24 end
25 end
26

27

28

29 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
30 % Swarm I n i t i a l i z a t i o n , Ve l o c i t i e s , and Pos i t i on

Pa r t i c l e s %
31 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
32
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4.6 Control theory and application:

33 % Search l im i t :
34 Rb(1) =0.1 ; Ra(1 ) =0.9 ;
35 Rb(2) =0.1 ; Ra(2 ) =0.9 ;
36 Rb(3) =0.1 ; Ra(3 ) =0.9 ;
37 Rb(4) =0.1 ; Ra(4 ) =0.9 ;
38 Rb(5) =0.1 ; Ra(5 ) =0.9 ;
39 Rb(6) =0.1 ; Ra(6 ) =0.9 ;
40

41 Rb(7) =0.1 ; Ra(7 ) =0.9 ;
42 Rb(8) =0.1 ; Ra(8 ) =0.9 ;
43 Rb(9) =0.1 ; Ra(9 ) =0.9 ;
44 Rb(10) =0.1; Ra(10) =0.9;
45 Rb(11) =0.1; Ra(11) =0.9 ;
46 Rb(12) =0.1; Ra(12) =0.9;
47

48 Rb(13) =0.1; Ra(13) =0.9;
49 Rb(14) =0.1; Ra(14) =0.9 ;
50 Rb(15) =0.1; Ra(15) =0.9;
51 Rb(16) =0.1; Ra(16) =0.9;
52 Rb(17) =0.1; Ra(17) =1;
53 Rb(18) =0.1; Ra(18) =0.9;
54

55 Rb(19) =0.10; Ra(19) =0.9 ;
56 Rb(20) =0.1; Ra(20) =0.9 ;
57 Rb(21) =0.1; Ra(21) =0.9;
58 Rb(22) =0.1; Ra(22) =0.9;
59 Rb(23) =0.1; Ra(23) =1;
60 Rb(24) =0.1; Ra(24) =0.9;
61

62 f o r i r =1: Juml_Part ic les
63 po s i s i_pa r t i c l e 1=Rb(1)+(Ra(1)´Rb(1) ) ∗0 .1∗ rand (1 , i r ) ; %

Sta r t i ng po s i t i o n ( Xi j )
64 po s i s i_pa r t i c l e 2=Rb(2)+(Ra(2)´Rb(2) ) ∗0 .1∗ rand (1 , i r ) ;
65 po s i s i_pa r t i c l e 3=Rb(3)+(Ra(3)´Rb(3) ) ∗0 .1∗ rand (1 , i r ) ;
66 po s i s i_pa r t i c l e 4=Rb(4)+(Ra(4)´Rb(4) ) ∗0 .1∗ rand (1 , i r ) ;
67 po s i s i_pa r t i c l e 5=Rb(5)+(Ra(5)´Rb(5) ) ∗0 .1∗ rand (1 , i r ) ;
68 po s i s i_pa r t i c l e 6=Rb(6)+(Ra(6)´Rb(6) ) ∗0 .1∗ rand (1 , i r ) ;
69

70 po s i s i_pa r t i c l e 7=Rb(7)+(Ra(7)´Rb(7) ) ∗0 .1∗ rand (1 , i r ) ;
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71 po s i s i_pa r t i c l e 8=Rb(8)+(Ra(8)´Rb(8) ) ∗0 .1∗ rand (1 , i r ) ;
72 po s i s i_pa r t i c l e 9=Rb(9)+(Ra(9)´Rb(9) ) ∗0 .1∗ rand (1 , i r ) ;
73 po s i s i_pa r t i c l e 1 0=Rb(10)+(Ra(10)´Rb(10) ) ∗0 .1∗ rand (1 , i r )

;
74 po s i s i_pa r t i c l e 1 1=Rb(11)+(Ra(11)´Rb(11) ) ∗0 .1∗ rand (1 , i r )

;
75 po s i s i_pa r t i c l e 1 2=Rb(12)+(Ra(12)´Rb(12) ) ∗0 .1∗ rand (1 , i r )

;
76

77 po s i s i_pa r t i c l e 1 3=Rb(13)+(Ra(13)´Rb(13) ) ∗0 .1∗ rand (1 , i r )
; % Sta r t i ng po s i t i o n ( Xi j )

78 po s i s i_pa r t i c l e 1 4=Rb(14)+(Ra(14)´Rb(14) ) ∗0 .1∗ rand (1 , i r )
;

79 po s i s i_pa r t i c l e 1 5=Rb(15)+(Ra(15)´Rb(15) ) ∗0 .1∗ rand (1 , i r )
;

80 po s i s i_pa r t i c l e 1 6=Rb(16)+(Ra(16)´Rb(16) ) ∗0 .1∗ rand (1 , i r )
;

81 po s i s i_pa r t i c l e 1 7=Rb(17)+(Ra(17)´Rb(17) ) ∗0 .1∗ rand (1 , i r )
;

82 po s i s i_pa r t i c l e 1 8=Rb(18)+(Ra(18)´Rb(18) ) ∗0 .1∗ rand (1 , i r )
;

83

84 po s i s i_pa r t i c l e 1 9=Rb(19)+(Ra(19)´Rb(19) ) ∗0 .1∗ rand (1 , i r )
; % Sta r t i ng po s i t i o n ( Xi j )

85 po s i s i_pa r t i c l e 2 0=Rb(20)+(Ra(20)´Rb(20) ) ∗0 .1∗ rand (1 , i r )
;

86 po s i s i_pa r t i c l e 2 1=Rb(21)+(Ra(21)´Rb(21) ) ∗0 .1∗ rand (1 , i r )
;

87 po s i s i_pa r t i c l e 2 2=Rb(22)+(Ra(22)´Rb(22) ) ∗0 .1∗ rand (1 , i r )
;

88 po s i s i_pa r t i c l e 2 3=Rb(23)+(Ra(23)´Rb(23) ) ∗0 .1∗ rand (1 , i r )
;

89 po s i s i_pa r t i c l e 2 4=Rb(24)+(Ra(24)´Rb(24) ) ∗0 .1∗ rand (1 , i r )
;

90

91 p o s i s i_p a r t i c l e =[ p o s i s i_pa r t i c l e 1 ; p o s i s i_pa r t i c l e 2 ;
p o s i s i_pa r t i c l e 3 ;

92 po s i s i_pa r t i c l e 4 ; p o s i s i_pa r t i c l e 5 ; p o s i s i_pa r t i c l e 6 ;
93 po s i s i_pa r t i c l e 7 ; p o s i s i_pa r t i c l e 8 ; p o s i s i_pa r t i c l e 9 ;
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94 po s i s i_pa r t i c l e 1 0 ; p o s i s i_pa r t i c l e 1 1 ; p o s i s i_pa r t i c l e 1 2 ;
95 po s i s i_pa r t i c l e 1 3 ; p o s i s i_pa r t i c l e 1 4 ; p o s i s i_pa r t i c l e 1 5 ;
96 po s i s i_pa r t i c l e 1 6 ; p o s i s i_pa r t i c l e 1 7 ; p o s i s i_pa r t i c l e 1 8 ;
97 po s i s i_pa r t i c l e 1 9 ; p o s i s i_pa r t i c l e 2 0 ; p o s i s i_pa r t i c l e 2 1 ;
98 po s i s i_pa r t i c l e 2 2 ; p o s i s i_pa r t i c l e 2 3 ; p o s i s i_pa r t i c l e 2 4 ] ;
99 end

100

101 % v_ij=v_min+(v_max́ v_min) ∗rand ( . )´́ ´́ > harusnya
102 v_max1=0.1∗(Ra(1 )´Rb(1) ) ;
103 v_max2=0.1∗(Ra(2 )´Rb(2) ) ;
104 v_max3=0.1∗(Ra(3 )´Rb(3) ) ;
105 v_max4=0.1∗(Ra(4 )´Rb(4) ) ;
106 v_max5=0.1∗(Ra(5 )´Rb(5) ) ;
107 v_max6=0.1∗(Ra(6 )´Rb(6) ) ;
108

109 v_max7=0.1∗(Ra(1 )´Rb(1) ) ;
110 v_max8=0.1∗(Ra(2 )´Rb(2) ) ;
111 v_max9=0.1∗(Ra(3 )´Rb(3) ) ;
112 v_max10=0.1∗(Ra(4 )´Rb(4) ) ;
113 v_max11=0.1∗(Ra(5 )´Rb(5) ) ;
114 v_max12=0.1∗(Ra(6 )´Rb(6) ) ;
115

116 v_max13=0.1∗(Ra(1 )´Rb(1) ) ;
117 v_max14=0.1∗(Ra(2 )´Rb(2) ) ;
118 v_max15=0.1∗(Ra(3 )´Rb(3) ) ;
119 v_max16=0.1∗(Ra(4 )´Rb(4) ) ;
120 v_max17=0.1∗(Ra(5 )´Rb(5) ) ;
121 v_max18=0.1∗(Ra(6 )´Rb(6) ) ;
122

123 v_max19=0.1∗(Ra(1 )´Rb(1) ) ;
124 v_max20=0.1∗(Ra(2 )´Rb(2) ) ;
125 v_max21=0.1∗(Ra(3 )´Rb(3) ) ;
126 v_max22=0.1∗(Ra(4 )´Rb(4) ) ;
127 v_max23=0.1∗(Ra(5 )´Rb(5) ) ;
128 v_max24=0.1∗(Ra(6 )´Rb(6) ) ;
129

130 v_min=0;
131

132 f o r i r =1: Juml_Part ic les
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133 kec_par t i c l e1=(v_max1́ v_min) . ∗ rand (1 , i r )+v_min ; %
s t a r t i n g Ve loc i ty ( Vi j )

134 kec_par t i c l e2=(v_max2́ v_min) . ∗ rand (1 , i r )+v_min ;
135 kec_par t i c l e3=(v_max3́ v_min) . ∗ rand (1 , i r )+v_min ;
136 kec_par t i c l e4=(v_max4́ v_min) . ∗ rand (1 , i r )+v_min ;
137 kec_par t i c l e5=(v_max5́ v_min) . ∗ rand (1 , i r )+v_min ;
138 kec_par t i c l e6=(v_max6́ v_min) . ∗ rand (1 , i r )+v_min ;
139

140 kec_par t i c l e7=(v_max7́ v_min) . ∗ rand (1 , i r )+v_min ;
141 kec_par t i c l e8=(v_max8́ v_min) . ∗ rand (1 , i r )+v_min ;
142 kec_par t i c l e9=(v_max9́ v_min) . ∗ rand (1 , i r )+v_min ;
143 kec_par t i c l e10=(v_max10́ v_min) . ∗ rand (1 , i r )+v_min ;
144 kec_par t i c l e11=(v_max11́ v_min) . ∗ rand (1 , i r )+v_min ;
145 kec_par t i c l e12=(v_max12́ v_min) . ∗ rand (1 , i r )+v_min ;
146

147 kec_par t i c l e13=(v_max13́ v_min) . ∗ rand (1 , i r )+v_min ;
148 kec_par t i c l e14=(v_max14́ v_min) . ∗ rand (1 , i r )+v_min ;
149 kec_par t i c l e15=(v_max15́ v_min) . ∗ rand (1 , i r )+v_min ;
150 kec_par t i c l e16=(v_max16́ v_min) . ∗ rand (1 , i r )+v_min ;
151 kec_par t i c l e17=(v_max17́ v_min) . ∗ rand (1 , i r )+v_min ;
152 kec_par t i c l e18=(v_max18́ v_min) . ∗ rand (1 , i r )+v_min ;
153

154 kec_par t i c l e19=(v_max19́ v_min) . ∗ rand (1 , i r )+v_min ;
155 kec_par t i c l e20=(v_max20́ v_min) . ∗ rand (1 , i r )+v_min ;
156 kec_par t i c l e21=(v_max21́ v_min) . ∗ rand (1 , i r )+v_min ;
157 kec_par t i c l e22=(v_max22́ v_min) . ∗ rand (1 , i r )+v_min ;
158 kec_par t i c l e23=(v_max23́ v_min) . ∗ rand (1 , i r )+v_min ;
159 kec_par t i c l e24=(v_max24́ v_min) . ∗ rand (1 , i r )+v_min ;
160

161 kec_par t i c l e =[ kec_par t i c l e1 ; kec_par t i c l e2 ;
kec_par t i c l e3 ;

162 kec_par t i c l e4 ; kec_par t i c l e5 ; kec_par t i c l e6 ;
163 kec_par t i c l e7 ; kec_par t i c l e8 ; kec_par t i c l e9 ;
164 kec_par t i c l e10 ; kec_par t i c l e11 ; kec_par t i c l e12 ;
165 kec_par t i c l e13 ; kec_par t i c l e12 ; kec_par t i c l e15 ;
166 kec_par t i c l e16 ; kec_par t i c l e17 ; kec_par t i c l e18 ;
167 kec_par t i c l e19 ; kec_par t i c l e20 ; kec_par t i c l e21 ;
168 kec_par t i c l e22 ; kec_par t i c l e23 ; kec_par t i c l e24 ] ;
169 end
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170

171 pos i s i_t e rba ik_ loka l=po s i s i_p a r t i c l e ; % p_best=x_ij
Local Best Pos i t i on ( Pbest )

172

173 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
174 % Evaluat ion o f Populat ion I n i t i a l i z a t i o n %
175 %́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´%
176

177 % Evaluate the f i t n e s s o f each p a r t i c l e
178

179 f o r i r =1: Juml_Part ic les
180 Kp1=po s i s i_p a r t i c l e (1 , i r ) ;
181 Kp2=po s i s i_p a r t i c l e (2 , i r ) ;
182 Kp3=po s i s i_p a r t i c l e (3 , i r ) ;
183 Kp4=po s i s i_p a r t i c l e (4 , i r ) ;
184 Kp5=po s i s i_p a r t i c l e (5 , i r ) ;
185 Kp6=po s i s i_p a r t i c l e (6 , i r ) ;
186

187 Ki1=po s i s i_p a r t i c l e (7 , i r ) ;
188 Ki2=po s i s i_p a r t i c l e (8 , i r ) ;
189 Ki3=po s i s i_p a r t i c l e (9 , i r ) ;
190 Ki4=po s i s i_p a r t i c l e (10 , i r ) ;
191 Ki5=po s i s i_p a r t i c l e (11 , i r ) ;
192 Ki6=po s i s i_p a r t i c l e (12 , i r ) ;
193

194 Kd1=po s i s i_p a r t i c l e (13 , i r ) ;
195 Kd2=po s i s i_p a r t i c l e (14 , i r ) ;
196 Kd3=po s i s i_p a r t i c l e (15 , i r ) ;
197 Kd4=po s i s i_p a r t i c l e (16 , i r ) ;
198 Kd5=po s i s i_p a r t i c l e (17 , i r ) ;
199 Kd6=po s i s i_p a r t i c l e (18 , i r ) ;
200

201 N1=po s i s i_p a r t i c l e (19 , i r ) ;
202 N2=po s i s i_p a r t i c l e (20 , i r ) ;
203 N3=po s i s i_p a r t i c l e (21 , i r ) ;
204 N4=po s i s i_p a r t i c l e (22 , i r ) ;
205 N5=po s i s i_p a r t i c l e (23 , i r ) ;
206 N6=po s i s i_p a r t i c l e (24 , i r ) ;
207
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208 % Calcu la te f i t n e s s f o r each p a r t i c l e
209 sim ( ’ oneapp ’ )
210 t=time ;
211 y=out ;
212 f o r i =1:18
213 e r r o r ( i )=abs (y ( i ) ^2)∗ t ( i ) ;
214 end
215 ITAE=sum( e r r o r ) ;
216 f i t n e s s_p a r t i c l e ( i r )=ITAE;
217 end
218 % Looking f o r the best
219 f i t n e s s_t e rba i k_ loka l=f i t n e s s_p a r t i c l e ;
220 [ f i tne s s_te rba ik_g loba l , indeks ]=min (

f i t n e s s_t e rba i k_ loka l ) ; % Look f o r the Minimum Value
221

222 f o r i r =1: Juml_Part ic les
223 pos i s i_te rba ik_g loba l ( : , i r )=pos i s i_te rba ik_ loka l ( : ,

indeks ) ;
224 end
225

226 %Veloc i ty Pa r t i c l e Update
227 kec_par t i c l e=w ∗ kec_par t i c l e+c1 ∗(R1 . ∗ (

pos i s i_te rba ik_loka l´p o s i s i_p a r t i c l e ) )+c2 ∗(R2 . ∗ (
pos i s i_te rba ik_g loba l´p o s i s i_p a r t i c l e ) ) ;

228 %Pa r t i c l e Pos i t i on Update
229 p o s i s i_p a r t i c l e = po s i s i_p a r t i c l e+kec_par t i c l e ;
230

231 % Looping PSO
232 h f i g = f i g u r e ;
233 hold on
234 t i t l e ( ’ Convergence o f PSO Algorithm Graphic ’ ) ;
235 s e t ( h f i g , ’ p o s i t i o n ’ , [ 5 0 , 4 0 , 6 00 , 300 ] ) ;
236 s e t ( h f i g , ’ DoubleBuffer ’ , ’ on ’ ) ;
237 hbes tp l o t = p lo t ( 1 : MaxIt , z e r o s (1 ,MaxIt ) , ’´ ’ ) ;
238 x l ab e l ( ’ I t e r a t i o n ’ ) ;
239 y l ab e l ( ’ F i tne s s Function ’ ) ;
240 hold o f f
241 drawnow ;
242
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243

244 I t =1;
245 whi le It<=MaxIt
246 % I t e r a t i o n=I t
247 f o r i r =1: Juml_Part ic les
248 Kp=po s i s i_p a r t i c l e (1 , i r ) ;
249 Kp1=po s i s i_p a r t i c l e (1 , i r ) ;
250 Kp2=po s i s i_p a r t i c l e (2 , i r ) ;
251 Kp3=po s i s i_p a r t i c l e (3 , i r ) ;
252 Kp4=po s i s i_p a r t i c l e (4 , i r ) ;
253 Kp5=po s i s i_p a r t i c l e (5 , i r ) ;
254 Kp6=po s i s i_p a r t i c l e (6 , i r ) ;
255

256 Ki1=po s i s i_p a r t i c l e (7 , i r ) ;
257 Ki2=po s i s i_p a r t i c l e (8 , i r ) ;
258 Ki3=po s i s i_p a r t i c l e (9 , i r ) ;
259 Ki4=po s i s i_p a r t i c l e (10 , i r ) ;
260 Ki5=po s i s i_p a r t i c l e (11 , i r ) ;
261 Ki6=po s i s i_p a r t i c l e (12 , i r ) ;
262

263 Kd1=po s i s i_p a r t i c l e (13 , i r ) ;
264 Kd2=po s i s i_p a r t i c l e (14 , i r ) ;
265 Kd3=po s i s i_p a r t i c l e (15 , i r ) ;
266 Kd4=po s i s i_p a r t i c l e (16 , i r ) ;
267 Kd5=po s i s i_p a r t i c l e (17 , i r ) ;
268 Kd6=po s i s i_p a r t i c l e (18 , i r ) ;
269

270 N1=po s i s i_p a r t i c l e (19 , i r ) ;
271 N2=po s i s i_p a r t i c l e (20 , i r ) ;
272 N3=po s i s i_p a r t i c l e (21 , i r ) ;
273 N4=po s i s i_p a r t i c l e (22 , i r ) ;
274 N5=po s i s i_p a r t i c l e (23 , i r ) ;
275 N6=po s i s i_p a r t i c l e (24 , i r ) ;
276

277 sim ( ’ oneapp ’ )
278 t=time ;
279 y=out ;
280 f o r i =1:18
281 e r r o r ( i )=abs (y ( i ) ^2)∗ t ( i ) ;
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282 end
283 ITAE=sum( e r r o r ) ;
284 f i t n e s s_p a r t i c l e ( i r )=ITAE;
285 end
286

287 % ( e ) Compare p a r t i c l e ’ s f i t n e s s eva lua t i on with
pa r t i c l e ’ s p_best

288 % I f cur r ent va lue i s b e t t e r than p_best , then s e t
p_best va lue

289 % equal to the cur rent va lue and the p_best
l o c a t i o n equal to

290 % the cur rent l o c a t i o n in j´dimens iona l space
291

292 % Lokal
293 f o r i r =1: Juml_Part ic les
294 i f f i t n e s s_p a r t i c l e ( i r )< f i t n e s s_t e rba i k_ loka l ( i r )
295 f i t n e s s_t e rba i k_ loka l ( i r )=f i t n e s s_p a r t i c l e ( i r ) ;
296 pos i s i_t e rba ik_ loka l ( : , i r )=po s i s i_p a r t i c l e ( : , i r ) ;
297 end
298 end
299

300 % Global
301 [ f i t n e s s_t e rba i k_g l oba l_pa r t i c l e ( I t ) , indeks ] = min (

f i t n e s s_t e rba i k_ loka l ) ;
302 % ( f ) Compare f i t n e s s eva lua t i on with the populat ion ’ s

o v e r a l l
303 % prev ious bes t . I t the cur rent va lue i s b e t t e r than

g_best
304 % , then r e s e t g_best to the cur rent p a r t i c l e ’ s

array indeks and value
305 i f f i t n e s s_t e rba i k_g l oba l_pa r t i c l e <

f i tn e s s_te rba i k_g l oba l
306 f i t n e s s_te rba i k_g l oba l =

f i t n e s s_t e rba i k_g l oba l_pa r t i c l e ;
307

308 f o r i r =1: Juml_Part ic les
309 pos i s i_te rba ik_g loba l ( : , i r ) = pos i s i_te rba i k_ loka l ( : ,

indeks ) ;
310 end
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311 end
312

313 % Update Ve loc i ty
314 kec_par t i c l e=w ∗ kec_par t i c l e+c1 ∗(R1 . ∗ (

pos i s i_te rba ik_loka l´p o s i s i_p a r t i c l e ) )+c2 ∗(R2 . ∗ (
pos i s i_te rba ik_g loba l´p o s i s i_p a r t i c l e ) ) ;

315

316 % (h) Update Pos i t i on Pa r t i c l e
317 p o s i s i_p a r t i c l e = po s i s i_p a r t i c l e+kec_par t i c l e ;
318

319 f p r i n t f (1 , ’ I t e r a t i o n : %d , F i tne s s : %f \n ’ , I t ,
f i t n e s s_t e rba i k_g l oba l_pa r t i c l e ( I t ) )

320 p l o t v e c t o r=get ( hbestp lot , ’Ydata ’ ) ;
321 p l o t v e c t o r ( I t )=f i t n e s s_t e rba i k_g l oba l_pa r t i c l e ( I t ) ;
322 s e t ( hbestp lot , ’Ydata ’ , p l o t v e c t o r ) ;
323 drawnow
324 I t=I t +1;
325 % f i t n e s s_g l oba l=f i t n e s s_t e rba i k_g l oba l_pa r t i c l e ( I t

)
326 end
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4.6.3 Simulation and results:

first the used simulation procedures were:
Define the initial position (ax, ay, az and ωx, ωy, ωz, :θ)=0. Define the referance
value (ax, ay, az,:θ)=0.5 (m/s2) and (ωx, ωy, ωz)=0.1 (rad/s2) and define the
rotation angel of the appendage θ=10˝«0.1745 rad use filter to the input
step signal see (3.3.3)

Simulation result for the main body with flexible solar array:
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Figure 24: time response of the 6ˆ6 PID controled system
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Risetime SettlingTime SettlingMin SettlingMax Overshoot Undershoot Peak Peaktime
pso tuning method

ax 2,204 3,929 0,454 0,499 0 0 0,499 10
ay 2,205 3,928 0,454 0,499 0 0 0,499 10
az 2,203 3,921 0,454 0,499 0 0 0,499 10
ωx 2,200 3,919 0,090 0,099 0,0002 0 0,099 9,800
ωy 2,193 3,970 0,0900 0,100 0 0 0,100 10
ωz 2,195 3,913 0,090 0,099 0 0 0,099 10

tuning matlab toolbox
ax 2,230 4,308 0,454 0,500 0 0 0,500 10
ay 2,267 4,184 0,450 0,498 0 0 0,498 10
az 2,195 3,925 0,453 0,500 0,025 0 0,500 8,500
ωx 2,196 3,910 0,090 0,099 0 0 0,099 10
ωy 2,159 3,515 0,089 0,100 1,406 0 0,100 8,100
ωz 2,214 4,020 0,090 0,100 0,138 0 0,100 9,400
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Simulation result for the main body with two flexible solar array:
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Figure 25: time response of the 6ˆ6 PID controled system
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Risetime SettlingTime SettlingMin SettlingMax Overshoot Undershoot Peak Peaktime
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ax 2,209 3,927 0,454 0,499 0 0 0,499 10
ay 2,207 3,938 0,454 0,499 0 0 0,499 10
az 2,203 3,922 0,454 0,500 0 0 0,500 10
ωx 2,206 4,006 0,090 0,099 0,024 0 0,099 8
ωy 2,197 3,889 0,090 0,100 0,060 0 0,100 9,400
ωz 2,192 3,896 0,090 0,099 0,005 0 0,099 9,400

tuning matlab toolbox
ax 4,274 7,655 0,445 0,493 0 0 0,493 10
ay 2,589 8,642 0,452 0,535 7,188 0 0,535 4,700
az 3,076 7,659 0,432 0,480 0 0 0,480 10
ωx 2,196 3,910 0,0909 0,099 0 0 0,099 10
ωy 3,067 5,167 0,090 0,100 0,512 0 0,100 9,300
ωz 1,888 9,300 0,092 0,106 4,025 0 0,106 6

75



4.6 Control theory and application:

Simulation result for the main body with actuated flexible solar
array:
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Figure 26: time response of the 7ˆ 7 PID controled system
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az 2,153 3,689 0,454 0,499 0,445 0 0,499 7,895
ωx 2,247 4,217 0,454 0,502 0 0 0,502 10
ωy 2,313 4,820 0,092 0,101 0 0 0,101 10
ωz 2,212 3,987 0,090 0,100 0 0 0,100 10
:θ 2,107 3,488 0,089 0,099 0,994 0 0,099 7,495

tuning matlab toolbox
ax 2,256 4,268 0,457 0,503 0 0 0,503 10
ay 2,169 3,759 0,449 0,499 0,277 0 0,499 7,902
az 2,186 3,860 0,449 0,499 0,079 0 0,499 8,502
ωx 2,226 4,073 0,457 0,501 0 0 0,501 10
ωy 2,460 8,740 0,092 0,102 0 0 0,102 10
ωz 2,291 4,558 0,091 0,100 0 0 0,100 10
:θ 2,198 3,920 0,091 0,100 0 0 0,100 10
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4.6.3.1 Discussion Of The Resulting:

As can be seen in the previos figures of the three controlled model the two
used methodes shows great performance in reference tracing as a result
of good choice of research domain for pso algorithm and tuning toolbox
parameters,But in gain value the pso method give the optimal one,At the
same time,the augmentation of system complexity cause the expansion in
gain value as result of increment of the flexibility affect,for this reason the
model with actuator in the pivot joint simulate the real model if we use the
PID designed for the first and the second model this last will be unstable

4.6.4 Conclusion:

to fit into the block-diagram as many (rigid or flexible) appendages as
possible through other forwards on pDB

Gq to minimize the number of occurrences
of each physical parameters of each body, to directly access to them and
finally to take easily into account their uncertainties. Finally, a last table
lists the major parameters of the pointing control system where the given
parameters are used as nominal scenario (look at Nicolas Guy et al. 2014,
Alazard et al. 2013 - Murali, H. et al. 2015)

main body data
m : hub mass(kg) 2000

JBG: moment of inertia of the body with respect to G w.r.t in RG(kg.m2).

»

–

2000 100 50
100 8000 80
50 80 8000

fi

fl

~OG : distance from one hub nook to G w.r.t in Ri (m). r2 2 2sT

~rGP : distance from center of hub G to point P w.r.t in RG(m). r0 0 2sT

r : hub radius (m). 4
ω0: angular velocity of satellite in its orbit (m /s). 7657 m/s or 27565.2 km/h
R : altitude of the satellite in its orbit (km). 420

Flexible appendage data
mA : solar array masses (kg). 100

JCA:moment of inertia of appendage with respect to C w.r.t in RP (kg.m2).

»

–

7000 0 0
0 2000 0
0 0 10000

fi

fl

~rCP1, ~rCP2: distance from point P1 & P2 to center of appendage C w.r.t in RP (m). r0 0 8sT

ωi: angular frequencies of the k =4 flexible modes. 2πr0.04 0.111 0.13 0.27s
ξi : damping ratio of the flexible mode. 0.001

LP : Modal Participation.
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0 0 ´3 0
0 0 0 0
5 0 0 4
90 0 0 62
0 14 0 0
0 0 119 0

fi
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ffi

ffi

fl

T
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5 General conclusion:

In this work , the linear dynamic model of a spacecraft composed of a
rigid base and various flexible appendages connected to the base has been
developed with two approaches. The possibility of improving the pointing
accuracy of a flexible satellite, by utilizing direct state-space methods for
the controller of simple design, which should improve the pointing accuracy
of flexible satellites–even those having a complex structure. but there is
limitation in modelisation because we take two flexible mode (two point
masses) one in each appendage, to approach to the reality we should take
more modes this cause complex model to deal with this approach is more
applicable for microsatellite where there is small effect of flexibility and
for the free hybrid approach has two main contributions useful for satellite
advanced design phase.First,it introduces a generic modeling approach for
satellites with flexible appendages.This approach allows to take easily into
account uncertainties on physical parameters and ensures to obtain a minimal
realization of the overall system. Secondly ,when tilted flexible appendages
are considered, And is built by performing basic operations which is Transpo-
rtation of a dynamic model from one point to another ,Connection of two
dynamic models ,Utilization of effective masses to handle dynamic mass
matrix for the flexible appendages ,Subdivision of the dynamic mass matrix
to take into account a pivot joint ,All these operations can be simply represe-
nted by a block diagram and can be performed recursively to model any kind
of open mechanical chain.
in large spacecraft this approach is a powerful tool in the same time

effortless in addition of appendages (simple numerical application see)and
can accept N flexible mode
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