الجمهورية الجزائرية الديمقراطية الشعبية

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التعليم العالي والبحث العلمي

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

جامعة سعد دحلب-البليدة-1-

Université SAAD DAHLAB-BLIDA -1-

معهد الطيران و الدراسات الفضائية

INSTITUT D'AERONAUTIQUE ET DES ETUDES SPATIALES

قسم الملاحة الجوية

DEPARTEMENT DE NAVIGATION AERIENNE

Mémoire De fin d'études

En Vue de L'obtention du diplôme de MASTER En aéronautique

Option: Opérations aériennes

Thème:

Elaboration d'une application pour la préparation des vols « Accessibilité des aérodromes »

Réaliser par :

Mlle Belkram Amel

Mlle Hamadi Sofia

<u>Encadreur</u>: <u>Promoteurs:</u>

Mr. TERMELIL Mme. SACI

Mr. R.BENAISSA

Année: 2019/2020

RESUME

En raison de la diversité des avions, chaque aérodrome est exigé de doter des ressources adéquates d'accueil pour qu'il soit conforme aux normes et aux recommandations de l'OACI. Et pour répondre à cette diversité plusieurs critères doivent être contrôlés et vérifiés par les ingénieurs d'opérations aériennes.

Dans ce contexte, l'échange de plus grand nombre d'informations dans un délai plus court et à distance plus grandes constitue un objet à atteindre.

Pour traiter ce travail on élabore une application permettant à faciliter les taches à la compagnie d'AIR ALGERIE

Mots clés : diversité des avions, aérodrome, contraintes opérationnelles, adéquates, base de données, application

ملخص

نظرًا لتنوع الطائرات، يُطلب من كل مطار توفير موارد مناسبة لاستقبالها تكون كافية للامتثال لمعايير وتوصيات منظمة الطيران المدني الدولي. ولتلبية هذا التنوع، يجب فحص العديد من المعابير والتحقق منها من طرف مهندسي العمليات الجوية.

في هذا السياق، يعد تبادل المزيد من المعلومات في وقت أقصر وعلى مسافة أكبر شيئًا يجب تحقيقه.

لمعالجة هذا العمل يتم تطوير تطبيق لتسهيل مهام شركة طيران الخطوط الجوية الجزائرية.

الكلمات المفتاحية: تنوع الطائرات، المطارات، المعابير، ملائمة، قاعدة البيانات، تطبيق

ABSTRACT

Due to the diversity of aircraft, each aerodrome is required to have adequate reception resources

to comply with ICAO standards and recommendations. To meet this diversity, several criteria must

be monitored and verified by flight operations engineers.

In this context, the exchange of more information in a shorter time frame and over greater

distances is an objective to be achieved.

In order to process this work, an application is being developed to facilitate the tasks at the AIR

ALGERIA Company.

Keywords: diversity of aircraft, aerodrome, adequate, criteria, database, application

Remerciements

Nous remercions en premier lieu **ALLAH**, le tout puissant, la source de notre vie et la solution à tous nos problèmes, de nous avoir donné la force, la volonté, le courage et la patience, pour affronter toutes les difficultés et les obstacles, qui sont hissées au travers de nos chemin, durant toutes les années d'études.

Nous tenons à saisir cette occasion et adresser nos profonds remerciements et nos profondes reconnaissances à:

Mme. SACI et **Mr. BENAISSA**, nos promoteurs pour tous leurs aides et leur orientation ficelée tout au long de notre recherche, ainsi que leurs précieux conseils, ce qui nous a donné la force d'accomplir ce projet

Mr. TERMELILI, notre promoteur externe et **Mr. MERGHID** et **Mr. ALILI** pour leurs aides et disponibilités.

Tous les membres du **jury pour l'intérêt qu'ils ont porté à notre travail en acceptant de l'examiner et de l'enrichir par leurs propositions et remarques**qui vont certainement le rendre plus performant.

Tous les enseignants durant notre parcours d'étude pour leur patience, persévérances et efforts.

Enfin, nous tenons à exprimer nos vifs remerciements à tous ceux qui, de prés ou de loin, ont contribué à la réalisation de ce travail.

DÉDICACE

Du fond de mon cœur, je dédie ce travail à tous ceux qui me sont chers,

A Ma chère mère, mon soleil qui ne s'arrête jamais de briller, ma lumière et ma raison de vivre, « tout au long de ma vie, j'ai essayé de chercher des solutions face aux troubles de cette vie, mais à chaque fois mes pas me guident toujours vers toi, tu es mon guide dans l'existence».

A Mon **cher père**, le symbole de la force, l'épaule solide, l'homme de ma vie et l'exemple que je veux suivre, « tout ce que tu fais devient l'étendard de mes actions, je suis si fière d'être ta fille ».

Chers parents, vous comptez à mes yeux bien plus que tout au monde, aucune dédicace ne saurait exprimer mon amour éternel, mon respect, ma fierté, et ma considération pour les sacrifices que vous avez consenti pour nous.

A Mes Chères Sœurs: Chourouk, Ikram, Imene, Ines, Haya et mon cher frère Sohaib

Ma source de bonheur et ma joie de vivre. Ma vie ne serait jamais aussi spéciale et extraordinaire sans votre présence et votre amour. Je suis si chanceuse de vous avoir à mes cotés.

A ma deuxième famille : Mon cher **oncle,** Ma chère **tante**, Mes cousines adorées **Maha**, **Hadjer, Hiba**, mon petit cousin **Alaa** et mon grand frère **Hani**

Aucun langage ne saurait exprimer mon respect et ma considération pour votre soutien et encouragements. Que Dieu le Tout Puissant vous garde et vous procure santé et bonheur.

A Mes meilleures amies **Amina**, **Amina**, **Dalal**, et **Ahlem**, en témoignage de l'amitié qui nous unit et des souvenirs de tous les moments que nous avons passés ensemble, je vous dédie ce travail et je vous souhaite une vie pleine de santé et de bonheur.

Aussi à ma binôme Sofia et sa famille.

BELKRAM AMEL

Dédicace

Du fond de mon cœur, je dédie ce travail à :

Mes chers parents

Nulle dédicace n'est susceptible de vous exprimer mes profondes affections et mes immenses gratitudes pour tous les sacrifices que vous avez consentis pour mes études et mon bien être

Puisse dieu, le très haut, vous accorder la santé, bonheur et longue vie

Mes frères:

Aucune dédicace ne saurait exprimer tout l'amour que j'ai pour vous

Puisse dieu vous garder, éclairer votre route et vous aider à réaliser vos vœux

les plus chers

Mes chères amies et ma binôme Amel À tous les personnes qui ont participé à l'élaboration de ce travaille

Hamadi sofia

Tables des matières

Résume

Remerciements et dédicaces

Tables des matières

Listes des figures

Listes des tableaux

Listes des abréviations

Introduction générale	20
Chapitre I : généralité et réglementations sur les aérodromes et les aéronefs	
Introduction	21
I.1 présentation de la compagnie	21
I.2 généralité sur les aérodromes	23
I.2.1 définitions	23
I.2.2 le code de référence de l'aérodrome	25
I.2.3 les caractéristiques physiques de piste	27
I.3 généralité sur les aéronefs	30
I.3.1 descriptions générale du B737-600	30
I.3.2 descriptions générale du B737-700c	34
I.3.3 descriptions générale du B737-800	37
I.3.4 description générale de A330-202	41
I.3.5 descriptions générale de l'ATR72-212A	45
Conclusions	48
Chapitre II : préparation et suivi du vol	
Introduction	49
II.1 accessibilité des aérodromes	49
II.2 le choix des aérodromes	50

II.2.1 aérodromes de destination	50
II.2.2 aérodromes de dégagement au décollage	50
II.2.3 aérodromes de dégagement à destination	50
II.3 les minima pour la sélection des aérodromes	51
II.3.1 minima pour la planification d'un aérodrome de dégagement en route	51
II.3.2 minima pour la planification d'un aérodrome de destination	52
II.4 dossier de vol	52
II.4.1 plan de vol exploitation	52
II.4.2 données de plan de vol	53
II.4.3 procédures de dépôt d'un plan de vol ATC	55
II.4.4 demande de modification au plan de vol	55
II.4.5 dossier météo	56
II.4.5.1 cartes graphiques	56
II.4.5.2 les messages météorologiques	57
II.4.6 dossier NOTAM	58
II.4.6.1 classification	58
II.4.6.2 types NOTAM's	59
II.4.7 devis de poids et de centrage	60
II.4.8 feuille d'instruction et de statistique	61
II.4.9 les cartons des paramètres	61
II.4.10. Documentations à bord	61
Conclusion	62
Chapitre III : contraintes opérationnelles liées aux caractéristiques des aéronefs	
Introduction	63
III.1 largeur minimale de piste	63
III.2 la largeur minimale de voies de circulation	64

III.2.1 partie rectiligne	64
III.2.2 virage des voies de circulation	66
III.2.3 distances minimales de séparation pour les voies de circulation	67
III.2.4 la résistance des voies de circulation	68
III.3 la résistance de chaussée	68
III.3.1 explications des divers termes utilisé dans ces méthodes	69
III.3.2 méthode ACN/PCN	72
III.3.3 méthode LCN/LCG	77
III.3.4 méthode atterrisseur-type	81
III.4 service de sauvetage et lutte contre incendie	84
III.4.1 définitions	84
III.4.2 généralités sur le service SSLIA	85
III.4.3 la méthode d'évaluation de niveau de protection de l'aérodrome	85
III.4.4 emploi et niveau de protection	86
III.4.5 les moyens personnel et matériel des SSLIA	88
Conclusion	89
Chapitre IV : étude de cas d'adéquation pour le vol « ALG/TMR »	
Introduction	90
IV.1 le briefing de la préparation de vol	90
IV.1.1 étude d'accessibilité	91
IV.1.1.1 présentation des aérodromes	91
IV.1.2 description d'aéronef	95
IV.1.2.1 les performances maximales	96
IV.1.2.2 les vitesses caractéristiques	96
IV.1.2.3 limitation structurales	96
IV.1.2.4 limitations pistes	97.
IV.1.3 bilan météorologiques	97

IV.1.4 bilan carburant	98
IV.1.5 Documentations à bord	99
IV.2 vérifications d'adéquation	100
IV.2.1 aérodrome de Tamanrasset	100
IV.2.2 aérodrome d'Oran	103
IV.2.3 aérodrome d'Adrar	104
IV.2.4 aérodrome de Djanet	106
Conclusion	107
Charitus V. álabovstian de la Rese de Données et validati	: d «ć-» (b-b-
Chapitre V : élaboration de la Base de Données et validation	
Introduction	
V.1.Description de langage de programmation Delphi	
V.2.Desciption de l'application	
V.2.1 L'interface d'utilisation	
V.3.Base de données	114
V.3.1 Table aérodromes	115
V.3.2 Table aéronef	116
V.3.3 Table ACN	116
V.3.4 Table pistes	118
V.4. Validation des résultats	119
V.4.1 Exemple « Aérodrome accessible »	119
V.4.2 Exemple « Aérodrome non accessible »	121
V.4.3 Cas particulier	122
Conclusion	123
Conclusion générale	124
Bibliographie	

Annexes

LISTE DES FIGURES

Chapitre I : généralité sur les aérodromes et les aéronefs
Figure I.1: l'empattement d'un avion
Figure I.2 : les caractéristiques du code lettre
Figure I.3: la répartition de la charge sur une chaussée en béton et en asphalte
Figure I.4: les dimensions de Boeing 737/600
Figure I.5: les dimensions de Boeing 737/700 C
Figure I.6: les dimensions de Boeing 737/800
Figure I.7: les dimensions de Boeing 737/800
Figure I.8: les dimensions de l'Airbus 303-202
Figure I.9: les dimensions de l'Airbus 303-202
Figure I.10: les dimensions de l'ATR72-212A
Chapitre III : contraintes opérationnelles liées aux caractéristiques des aéronefs
Figure III.1: voie de circulation
Figure III.2: détermination de l'ACN pour une roue simple
Figure III.3: détermination de PCN
Figure III.4 : détermination de PCN et LCN utilisé pour un même aérodrome
Figure III.5: l'échelle pour déterminer LCN et LCG
Figure III.6: configuration de train d'atterrissage

Chapitre V : élaborations de la base de donnée et validation des résultats

Figure V.1 : icone de démarrage de l'application	110
Figure V.2: l'interface d'utilisation	110
Figure V.3 : label pour sélectionner l'aérodrome	111
Figure V.4 : label pour sélectionner l'aéronef	111
Figure V.5 : label pour sélectionner la piste	111
Figure V.6 : affichage des caractéristiques des aérodromes, aéronef et piste	. 111
Figure V.7: le menu de l'application	112
Figure V.8: ajout d'un aérodrome	112
Figure V.9: ajout d'un aéronef	113
Figure V.10 : base de données de l'application	114
Figure V.11 : Affichage de l'accessibilité d'aérodrome d'Oran pour accueillir le A330-202	sur
La piste 07L/25R	120
Figure V.12: Affichage de l'accessibilité d'aérodrome d'Oran pour accueillir le A330-202 s	sur
La piste 07R/25L	120
Figure V.13 : Affichage du non accessibilité d'aérodrome de Tlemcen pour accueillir	
L'A330-202 sur la piste 07/25	121
Figure V.14 : Affichage du non accessibilité d'aérodrome de Tamanrasset pour accueillir	
Le B737/800 sur la piste 08/26	122

LISTE DES TABLEAUX

Chapitre I : généralité sur les aérodromes et les aéronefs

Tableau I.1 : la flotte de la compagnie Air Algérie	22
Tableau I.2: les appareils de la compagnie Air Algérie et leurs immatriculations	22
Tableau I.3 : code chiffre de l'aérodrome	26
Tableau I.4 : code lettre de l'aérodrome	26
Tableau I.5: masses limitatives de B737/600	31
Tableau I.6: dimensions de B737/600	31
Tableau I.7: les performances de B737/600	33
Tableau I.8: les vitesses de B737/600	33
Tableau I.9: motorisation de Boeing 737/600	33
Tableau I.10 : spécificités de B737/600	34
Tableau I.11: masses limitatives de B737/700 c	34
Tableau I.12 : dimensions de B737/700 c	35
Tableau I.13: les performances de B737/700 c	36
Tableau I.14: les vitesses de B737/700 c	36
Tableau I.15: motorisation de Boeing 737/700 c	36
Tableau I.16 : spécificités de B737/700 c	37
Tableau I.17: masses limitatives de B737/800	37
Tableau I.18: dimensions de B737/800	38
Tableau I.19 : les performances de B737/800	39

Tableau I.20 : les vitesses de B737/800	40
Tableau I.21: motorisation de Boeing 737/800	40
Tableau I.22 : spécificités de B737/8004	40
Tableau I.23: les masses limitatives de l'A330-202	41
Tableau I.24: les dimensions de l'A330-202	41
Tableau I.25: les performances de l'A330-202	14
Tableau I.26 : les vitesses associées de l'A330-202	14
Tableau I.27: motorisation de l'A330-202	14
Tableau I.28 : spécificité de l'A330-202	45
Tableau I.29: les masses limitatives de l'ATR72-212A	45
Tableau I.30 : les dimensions de l'ATR72-212A	46
Tableau I.31 : les vitesses associées de l'ATR72-212A	ļ 7
Tableau I.32: les performances de l'ATR72-212A	47
Tableau I.33: motorisation de l'ATR72-212A	47
Tableau I.34 : spécificité de l'ATR72-212A4	18
Chapitre II : préparation et suivie du vol	
Tableau II.1: minima de planification 5	51
Tableau II.2 : indicateur du phénomène en question allant de 0 à 9	58
Chapitre III : contraintes opérationnelles liées aux caractéristiques des aéronefs	
Tableau III.1 : la largeur de piste en fonction des codes de références	3

Tableau III.2: la largeur minimale de piste	64
Tableau III.3: largeur de voie de circulation en fonction de code lettre	. 65
Tableau III.4: largeur minimale de voie de circulation	. 66
Tableau III.5 : distance minimales de séparation pour les voies de circulation	. 68
Tableau III.6 : les différents types de charge	71
Tableau III.7 : la capacité portante d'une chaussée souple et rigide	75
Tableau III.8 : la capacité de chaussée en un seul chiffre	. 78
Tableau III.9 : les caractéristiques des atterrisseurs –types	. 80
Tableau III.10 : catégorie d'aérodrome pour le sauvetage et lutte contre incendie	. 86
Tableau III.11: la catégorie SSLIA requise par chaque type d'avion en fonction des divers	
Paramètres	. 86
Tableau III.12 : Quantités minimales d'agents extincteurs utilisables	87
Tableau III.13 : Nombre minimum de véhicules et personnels par poste d'incendie implanté sur	
L'aérodrome requis	. 88
Chapitre IV : étude de cas d'adéquation pour le vol « ALG/TMR »	
Tableau IV.1: présentation de l'aérodrome d'Alger « Houari Boumediene »	91
Tableau IV.2: présentation de l'aérodrome international de Tamanrasset « Aguenar-hadj bey	
Akhamok »	. 92
Tableau IV.3: présentation de l'aérodrome d'Oran « Ahmed Ben Bella »	. 93
Tableau IV.4: présentation de l'aérodrome d'Adrar « Touti-cheikh Sidi Mohamed Belkebir »	. 94
Tableau IV.5 : présentation de l'aérodrome de Djanet « Tiska »	. 95

Tableau IV.6 : les performances maximales de B737/800	
Tableau IV.7 : les vitesses caractéristiques de B737/800	
Tableau IV.8: les limitations structurales de B737/800 96	
Tableau IV.9: les valeurs de l'ACN du B737/800	
Tableau IV.10 : caractéristiques physiques de piste pour l'accueil du b737/800 97	
Tableau IV.11: la vérification des largeurs et résistance des voies de circulation pour DAAT 101	
Tableau IV.12 : la vérification des dimensions et résistance de la piste pour DAAT 101	
Tableau IV.13: vérification SSLIA pour DAAT 102	
Tableau IV.14 : la vérification des largeurs et résistance des voies de circulation pour DAOO 103	
Tableau IV.15 : la vérification des dimensions et résistance de la piste pour DAOO 103	
Tableau IV.16: vérification SSLIA pour DAOO	
Tableau IV.17 : la vérification des largeurs et résistance des voies de circulation pour DAUA 104	
Tableau IV.18 : la vérification des dimensions et résistance de la piste pour DAUA 105	
Tableau IV.19: vérification SSLIA pour DAUA	
Tableau IV.20 : la vérification des largeurs et résistance des voies de circulation pour DAAJ 106	
Tableau IV.21 : la vérification des dimensions et résistance de la piste pour DAAJ	
Tableau IV.22 : vérification SSLIA pour DAAJ	
Chapitre V : élaborations de la base de donnée et validation des résultats	
Tableau V.1 : table aérodrome	
Tableau V.2: table aéronef	
Tableau V.3: table ACN	
Tableau V.4: table des pistes	

Tableau V.5 : table de type de chaussée	119
Tableau V.6 : table de résistance de chaussée	119
Tableau V.7 : table de type d'évaluation	119

ABREVIATIONS

Abréviation	Le terme en français	Le terme en anglais
ACN	Le numéro de classification des aéronefs	Aircraft Classification Number
AIC	Circulaire d'information aéronautique	An aeronautical information circular
AIP	Publication d'information aéronautique	Aeronautical information publication
ARINC	Une interface électrique pour le transfert des données aéronautiques	Aeronautical Radio, Incorporated
ATC	Le service de contrôle de la circulation aérienne	Air Traffic control
ATS	Le service de la circulation aérienne	Air Traffic Service
CDB	Commandant de bord	
CGT	Compagnie général de transport	
DACM	Direction de l'aviation civile et de la météorologique	
DHL	Société de transport des colis et courriers	Dalsey , Hillbom and lynn
ETA	L'heure prévue d'arrivée	Estimated Time of Arrival
ETOPS	Est règlement de l'organisation de l'aviation civile international	Extended-range Twin-range Operation Performance Standards
FAA	Une agence gouvernementale chargée des réglementations et des contrôles pour l'aviation civile	Federal Aviation Administration
FEDEX	Une entreprise aérienne et compagnie aérienne spécialité dans le transport international de fret	Federal Express
FIR	Une région d'information de vol	Flight Information Region
FPL	Plan de vol disposé	Filed Flight Plan
IATA	Association internationale du transport aérienne	International civil aviation organization
IFR	Règle de vol aux instruments	Instrument Flight Rules
LCN		Load0 Classification Number
LCG		Load Classification Group

MDA		Minimum Descent Altitude
MDH		Minimum Descent Height
METAR	Rapport d'observation météorologique pour l'aviation	Meteorlogical Aerodrome Report
MLW	Masse d'atterrissage	Maximum landing wheight
MSA		Minimum Safe Altitiude / Minimum Sector Altitiude
MTOW	Masse au décollage	Maximum takeoff weight
MZFW	Masse sans carburant	Maximum zéro fuel wheight
NOTAM	Message publiés pour informer les pilotes d'évolution sur les infrastructures	Notice To Airmen
OACI	L'organisation de l'aviation civil internationale	International civil aviation organization
OMN	Officier Mécanicien Navigant	
PCN		Pavement classification number
PNT	Personnel Navigant Technique	
RPL	Plan de vol répétitif	Repetitive Flight Plan
RSFTA	Réseau du service fixe des télécommunications aéronautiques	
RVR	La portée visuelle de piste	Runway Visual Range
SIGMET	Est un message destiné aux aéronefs en vol signalant des phénomènes météorologiques très dangereux observés et /ou prévues	Signification Meteorological Information
SITA	Société internationale de télécommunication aéronautique	
SSLIA	Service de sauvetage et lutte contre incendie	
SPECI		Aviation Selected Special Weather Report
TAF	Prévision météorologique pour un aérodrome	Terminal Aerodrome Forecast
TEMSI	Temps Significatif Prévision météorologique général destinées à la circulation aérienne	French Weather Forceasting map
TNA/O	Technicien de la navigation aérienne et des opérations	
TWY	Voie de circulation	Taxi way
USPS	Service postal gouvernemental des États- Unis	United state postal service

VFR	Vol à vue	View flight rules
VMO		Maximum operating speed
BBD	Base de donnée	Data base
EDI	Environnement de développement intégré	

INTRODUCTION GENERALE

INTRODUCTION GENERALE

Pour exploiter l'aéronef en toute sécurité l'aérodrome doit répondre aux exigences applicables matière de performances, des caractéristiques de la piste et le dimensionnement des infrastructures, il doit s'assurer aussi que les performances exigées à l'atterrissage sont compatibles avec l'avion considéré comme « l'avion critique ». Afin qu'il soit conforme aux normes et aux recommandations de l'Organisation de l'aviation civile internationale (OACI).

La sécurité, la régularité et l'efficacité en ce qui concerne les installations, les procédures d'exploitation, l'organisation et la gestion des services d'aérodromes sont d'une importance capitale, donc l'aérodrome doit être équipé des moyens et équipements nécessaires tels que : Service CA, éclairage suffisant, systèmes de communication, bulletin MTO, aides à la navigation aérienne et les services de secours.

Un tel sujet nous pousse à aborder plusieurs contraintes. En effet, il ne suffit pas de baser sur les caractéristiques physiques de piste pour justifier l'adéquation d'un aérodrome, il est également indispensable de toucher le côté technique de l'aérodrome concerné et d'étudier la faisabilité opérationnelle de celui-ci. Cependant quel sont ces contraintes qui nous permettent de vérifier l'adéquation ? Et quel est l'impact de cette étude sur un aéronef ?

Pour répondre à cette problématique nous avons mené une étude structurée en cinq chapitres principaux de travail qui sont :

- Premier chapitre sera consacré aux généralités sur les aérodromes et les aéronefs
- > Deuxième chapitre destiné pour définir les différentes étapes nécessaires avant chaque préparation de vol
- Troisième chapitre a pour but de présenter les contraintes opérationnelles liées aux avions exploités par la compagnie « le B737-600/700C/800, l'A330/202 et l'ATR72-212A »
- ➤ Quatrième chapitre représente une étude opérationnelle de vol « Alger-Tamanrasset » qui regroupe l'étude de performance, l'étude d'adéquation, le choix de la route afin de vérifier l'accessibilité des aérodromes pour accueillir un aéronef de type B737-800.
- ➤ Cinquième chapitre, nous allons décrire les différentes étapes utilisées pour la mise en pratique de cette application.

Chapitre I:

Généralité et réglementation sur les aérodromes et les

Introduction:

Afin de pouvoir accueillir convenablement les avions, chaque aérodrome doit doter d'infrastructures conventionnelles destinées à faciliter les différents manouvres comme les pistes de décollage, d'atterrissage et les voies de circulation...etc. Il est aussi également important de prendre les caractéristiques d'un aéronef en considération pour vérifier l'adéquation de cet aérodrome.

Le présent chapitre vise à fournir une vue d'ensemble sur les aménagements des aérodromes et les caractéristiques techniques des avions exploités par la compagnie nationale AIR ALGERIE, mais avant d'entamer les généralités des aérodromes et des aéronefs, nous procéderons à une brève présentation de la compagnie.

I.1 présentation de la compagnie :

Air Algérie (code IATA : AH ; code OACI : DAH), est la compagnie aérienne nationale algérienne, quand fut constituée la Compagnie générale de transport (CGT), dont le réseau était principalement orienté vers la France.

Air Algérie opère depuis l'aérodrome d'Alger - Houari-Boumediene des vols vers 28 pays en Europe, en Afrique, en Asie, en Amérique du Nord et au Moyen-Orient. Elle dessert également 32 destinations sur le territoire algérien. Elle est membre de l'Association internationale du transport aérien, de l'ArabAir Carriers Organisation et de l'Association des compagnies aériennes africaines.

Air Algérie possède aujourd'hui une flotte de divers types qui permet de répondre, de façon adaptée, à la demande du marché aérien en Algérie, cette flotte est distribuée comme suit :

Tableau I.1: La flotte de la compagnie d'AIR ALGERIE. [1]

Type d'avion	Le nombre
Boeing 737-800	25
Boeing 737-600	05
Boeing 737-700 c	02
ATR 72-500	12
ATR 72-600	03
AIRBUS 330-202	08
L382G	01

Tableau I.2: Les appareils de la compagnie et leurs immatriculations. [1]

Type d'avion	Immatriculation
A330-202	7T-VJV /7T-VJW / 7T-VJX / 7T-VJY
	7T-VJZ 7T-VJA / 7T-VJB / 7T-VJC.
B737-800 (B27)	7T-VKA /7T-VKB /7T-VKC /7T-VKD /7T-VKE 7T-
	VKF /7T-VKG / 7T-VKH /7T-VKI /7T-VKK
	7T-VKL /7T-VKM / 7T-VKN /7T-VKO
	7T-VKP / 7T-VKQ / 7T-VKR.
B737-800 (B26)	7T-VJJ / 7T-VJK / 7T-VJL
B737-800 (B24)	7T-VJM / 7T-VJN / 7T-VJO / 7T-VJP / 7T-VJQ
	7T-VJR / 7T-VJS / 7T-VJT / 7T-VJU
B737-600	7T-VJQ / 7T-VJK / 7T-VJS /7T-VJT
B737-700 C	7T-VKT / 7T-VKS
ATR72-212A (version 500)	7T-VUI / 7T-VUJ / 7T-VUK / 7T-VUL
	7T-VUM / 7T-VUN / 7T-VUN /7T-VUO
	7T-VUP / 7T-VUQ / 7T-VUS / 7T-VUR
	7T-VVQ
ATR72-212A (version 600)	7T-VJQ / 7T-VJR / 7T-VJS / 7T-VJT
L382G	7T-VHL

I.2. Généralité sur les aérodromes :

I.2.1 Définitions :

- Aérodromes :

Surface définie sur terre ou sur l'eau (comprenant, éventuellement, bâtiments, Installations et matériel), destinée à être utilisée, en totalité ou en partie, pour l'arrivée, ledépart et les évolutions des aéronefs à la surface.

- Aéroport :

Est l'ensemble des bâtiments et des installations d'un aérodrome qui servent au trafic aérien d'une ville ou d'une région. Ces bâtiments et installations sont conçus pour que des avions puissent décoller et atterrir, que le fret et les passagers puissent embarquer et débarquer

Distance de référence de l'aérodrome :

Longueur minimale nécessaire pour le décollage à la masse maximale certifiée au décollage, au niveau de la mer, dans les conditions correspondant à l'atmosphère type, en air calme, et avec une pente de piste nulle, comme l'indiquent le manuel de vol de l'avion prescrit par les services chargés de la certification ou les renseignements correspondants fournis par le constructeur de l'avion. La longueur en question représente, lorsque cette notion s'applique, la longueur de piste équilibrée pour les avions et, dans les autres cas, la distance de décollage.

- Largeur hors tout du train principal: Distance entre les bords extérieurs des roues du train principal
- L'empattement : C'est la distance entre la roue de nez ou la queue et l'axe imaginaire reliant les roues principales.

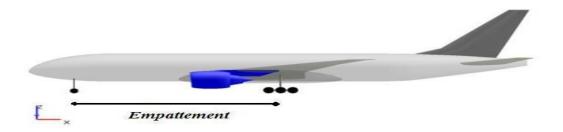


Figure I.1: l'empattement d'un avion

- L'envergeure : C'est la distance entre les deux extrémités des ailes

Figure I.2 : caractéristique du code lettre

- Numéro de classification d'aéronef ACN : exprime l'effet relatif d'un aéronef sur une chaussée pour une catégorie type spécifiée du terrain de fondation.

Note:

Le numéro de classification d'aéronef est calculé en fonction de la position du centre de gravité qui fait porter la charge critique sur l'atterrisseur critique. On utilise normalement, pour calculer l'ACN, le centrage extrême arrière correspondant à la masse maximale brute sur l'aire de trafic. Dans des cas exceptionnels, le centrage extrême avant peut avoir pour effet que la charge appliquée sur l'atterrisseur avant sera plus critique.

- Numéro de classification de chaussée PCN : exprime la force portante d'une chaussée pour une exploitation sans restriction.
- Voie de circulation : Définie, sur un aérodrome terrestre, aménagée pour la circulation à la surface des aéronefs et destinée à assurer la liaison entre deux parties de l'aérodrome, notamment :
 - a. Voie d'accès de poste de stationnement d'aéronef :

Partie d'une aire de trafic désignée comme voie de circulation et destinée seulement à permettre l'accès à un poste de stationnement d'aéronef.

b. Voie de circulation d'aire de trafic :

Partie d'un réseau de voies de circulation qui est située sur une aire de trafic et destinée à matérialiser un parcours permettant de traverser cette aire.

c. Voie de sortie rapide :

Voie de circulation raccordée à une piste suivant un angle aigu et conçue de façon à permettre à un avion qui atterrit de dégager la piste à une vitesse plus élevée que celle permise par les autres voies de sortie, ce qui permet de réduire au minimum la durée d'occupation de la piste.

1.2.2 Le code de référence de l'aérodrome :

L'Annexe 14 à la Convention relative à l'Aviation Civile Internationale définit à cette fin un code de référence d'aérodrome à caractéristiques normales comportant deux éléments liés aux caractéristiques de performances et aux dimensions des avions appelés à utiliser cet aérodrome. [2]

- Le premier de ces deux éléments :

Est un chiffre fondé sur la distance de référence de l'avion définie par l'Annexe 14 comme étant la longueur minimale, indiquée par son manuel de vol approuvé par l'autorité compétente ou dans une documentation équivalente du constructeur de l'avion, nécessaire pour son décollage à la masse maximale certifiée au décollage, au niveau de la mer, dans les conditions correspondant à l'atmosphère standard, en air calme et avec une pente de piste nulle.

Un Chiffre (1-4)

Le chiffre de code correspondant à l'élément 1 est déterminé en fonction de la plus grand Distances de référence des avions auxquels la piste est destinée.

- Le second élément :

Du code de référence est une lettre fondée sur les valeurs maximales des envergures et des largeurs hors tous des trains principaux des avions auxquels l'installation est destinée.

Une Lettre (A-F):

La lettre de code relevant de deux critères, celle devant être choisie sera, lorsque L'envergure et la largeur hors tout du train principal de l'avion le plus exigeant placent Celui-ci sur de Lignes différentes, la lettre commandant celle de ces deux lignes qui Correspond aux caractéristiques les plus élevées.

Tableau I.3 : code chiffre de l'aérodrome. [2]

Élément de code 1	
Chiffre de code	Distance de référence de l'avion
1	moins de 800 m
2	de 800 m à 1200 m exclus
3	de 1200 m à 1800 m exclus
4	1800 m et plus

Tableau I.4 : code lettre de l'aérodrome. [2]

Elément de code 2

Lettre de code	Envergure	Largeur hors tout du train principal
Α	moins de 15 m	moins de 4,5 m
В	de 15 m à 24 m exclus	de 4,5 m à 6 m exclus
С	de 24 m à 36 m exclus	de 6 m à 9 m exclus
D	de 36 m à 52 m exclus	de 9 m à 14 m exclus
E	de 52 m à 65 m exclus	de 9 m à 14 m exclus
F	de 65 m à 80 m exclus	de 14 m à 16 m exclus

I.2.3 Les caractéristiques physiques de piste :

1. Longueur de piste :

La longueur réelle à donner à une piste principale/secondaire devait être suffisante pour répondre aux besoins opérationnels des avions auxquels la piste est destinée et ne devait pas être inférieur à la plus grande longueur obtenue en appliquant aux vols et aux caractéristiques de performance de ces avions les corrections correspondant aux conditions locales.

Les facteurs influant sur la longueur des pistes sont :

- **a.** Les caractéristiques de performance et les masses opérationnelles des avions aux quels Piste est destinée
- **b.** Les conditions météorologiques, particulièrement le vent et la température au sol ;
- c. Les caractéristiques de la piste telles que la pente et l'état de surface ;
- **d.** Les facteurs relatifs à l'emplacement de l'aéroport, tel que l'altitude de L'aéroport et les contraints topographique

2. Accotement de piste :

Band de piste bordant une chaussée et traitée de façon à offrir une surface de raccordement entre cette chaussée et le terrain environnent.

3. Pente longitudinale:

Lorsqu'il est impossible d'éviter les changements de pente longitudinale, le changement de pente entre deux pentes consécutives ne devait jamais excéder :

- 1.5 % lorsque le chiffre de code est 3 ou 4.
- 2 % lorsque le chiffre de code est 1 ou 2
 Le passage d'une pente à une autre devait être réalisé par des courbes de raccordement le
 Long desquelles la pente ne varie pas de plus de :
 - 0.1 % par 30 m (rayon de courbure minimal de 30 000 m) lorsque le chiffre de code est 4;
 - 0.2 % par 30 m (rayon de courbure minimal de 15 000 m) lorsque le chiffre de code est 3;
 - 0.4 % par 30 m (rayon de courbure minimal de 7500 m) lorsque le chiffre de code est 1 ou 2

Chapitre I : Généralité et réglementation sur les aérodromes et les aéronefs

4. Changement de pente longitudinale :

Lorsqu'il est impossible d'éviter les changements de pente longitudinale, le changement de

pente entre deux pentes consécutives ne devait jamais excéder :

- 1.5 % lorsque le chiffre de code est 3 ou 4.

- 2 % lorsque le chiffre de code est 1 ou 2.

Le passage d'une pente à une autre devait être réalisé par des courbes de raccordement le long

Desquelles la pente ne varie pas de plus de :

- 0.1 % par 30 m (rayon de courbure minimal de 30 000 m) lorsque le chiffre de

code est 4;

- 0.2 % par 30 m (rayon de courbure minimal de 15 000 m) lorsque le chiffre de

code est 3;

- 0.4 % par 30 m (rayon de courbure minimal de 7500 m) lorsque le chiffre de code

est 1 ou 2

5. Résistance de chaussée :

Une piste devait pouvoir supporter la circulation des avions auxquels elle est destinée, la force

portante d'une chaussée destinée à des aéronefs dont la masse sur l'aire de trafic est

supérieur à 5700 kg sera communiquée au moyen de la méthode ACN-PCN en indiquant tous

les renseignements suivants :

Numéro de classification de chaussée (PCN)

Type de chaussée considéré la détermination des numéros AC N-PCN

• Catégorie de résistance du terrain de fondation

Catégorie de pression maximale des pneus ou pression maximale admissible

des pneus

Méthode d'évaluation

Ces renseignements seront communiqués au moyen des lettres de code ci-après :

a) Type de chaussée :

R: chaussée rigide

F: chaussée flexible

28

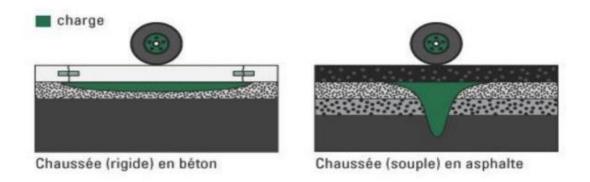


Figure I.4 : La répartition de la charge sur une chaussée en béton et en asphalte.

b) Catégorie de résistance du terrain de fondation :

A: résistance élevée

B: résistance moyenne

C: résistance faible

D: résistance ultra faible

c) Catégorie de pression maximale admissible des pneus :

W: illimité: pas de limite de pression

Y: pression limité à 1.75 MPA

X: pression limité à 1.25 MPA

Z: pression limité à 0.5 MPA

d) Méthode d'évaluation :

T: évaluation technique : étude spécifique des caractéristiques de la chaussée et utilisation de technique d'étude du comportement des chaussées

U : évaluation par expérience : connaissance du type et de la masse spécifique des avions utilisé régulièrement et que la chaussée supporte de façon satisfaisante.

I.2. Généralité sur les aéronefs :

Les avions utilisés pour réaliser notre étude sont :

- B737-600
- B737-700C
- B737-800
- A330-202
- ATR72-212A

Pour un bon choix de l'appareil, il faut prendre en considération de plusieurs paramètres :

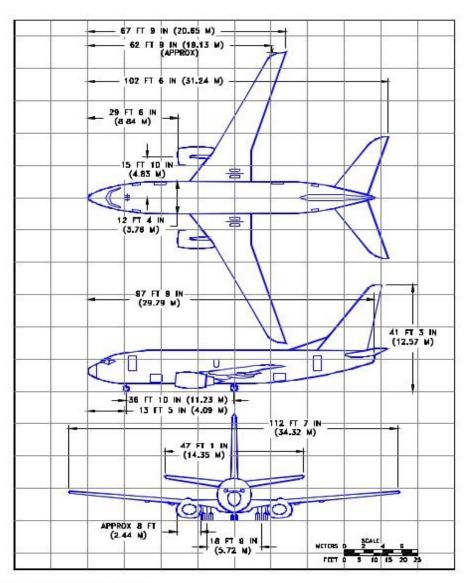
- Performance de l'avion ;
- La consommation du carburant ;
- Le réseau (court, moyen, long courrier)
- La demande (nombre de passagers)

I.2.1 Description général de B737-600 :

La Boeing est un avion de ligne construit par la société Boeing depuis 1965, il s'agit d'un biréacteur court à moyen-courrier. Il a effectué son premier vol le 9 avril 1967.

Boeing 737-600, se réfère à une série de 737 nouvelle génération et développé par Boeing commercial Airplane pour remplacer le B737-500, équipée de réacteur CMF56-7B et d'un cockpit moderne entièrement numérique. [4]

• Les masses limitatives :


Tableau I.5: Masses limitatives de B737/600. [3]

Les masses limitatives de B737-600	
Masse maximale au décollage	65090 kg
Masse maximale à l'atterrissage	54657 kg
Masse sans carburants	51482 kg
Capacité réservoir	20894 kg
Charge utile	15585 kg
Poids à vide opérationnelle	36378 kg

• Dimensions:

Tableau I.6: Les dimensions de B737/600. [3]

Les Dimensions		
Envergure	35.79 m	
Hauteur	12.6 m	
Longueur hors tout	31.24 m	
Longueur de fuselage	29.79 m	
Empattement	11.23 m	
Surface alaire	149m²	
Largeur	3.76 m	

2.2.7 GENERAL DIMENSIONS MODEL 737-600

D6-58325-6

34 JULY 2007

Figure 1.5: Les dimensions de Boe737/600. [3]

• Performances:

Tableau I.7: les performances de B737/600. [3]

Performance	
Vitesse vrai TAS	230 kt /0.785 Mach
Vitesse indiquée IAS	450 kt
VMO	340 kt / 0.82 Mach
Distance d'atterrissage	1340m
Distance de décollage	1878m
Plafond	41000 ft

• Les vitesses de B737/600 :

Tableau I.8: les vitesses de B737/600. [3]

Vitesses de B737/600	
Vitesse de croisière	340 kt
Mach de croisière	0.82

• Motorisation :

Tableau I.9: Motorisation de Boeing 737/600. [3]

Motorisations	
Nombre	2 turbofane
Moteur	Général Electric-SNECMA CF56-78
Poussée	2 x 100 kN

• Spécificités :

Tableau I.10: spécificités de B737/600. [3]

Spécificités	
Équipage	2
Nombre maximal de passagers	102

I.2.2 Description général de B737-700C :

Le Boeing 737-700 /700 ce fait partie de la 3éme génération de B737 (NG737), lancé en 1996.il connait un fort succès, contrairement à le B737-600 .il est équipé de réacteur CFM56-7B et d'un cockpit très moderne entièrement numérique, sa cabine peut accueillir entre 120 et 149 passagers selon les configurations. [3]

• Les masses limitatives :

Tableau I.11: Masses limitatives de B737/700C. [3]

Masses limitative B737/700 c	
Masse maximale au décollage	60328 kg
Masse maximale à l'atterrissage	58060 kg
Masse sans carburants	48658kg
Capacité réservoir	17554 kg
Poids à vide opérationnelle	37648 kg

• Dimensions:

Tableau I.12: dimensions de B737/700C. [4]

Les Dimensions	
Envergure	34.32 m
Hauteur	12.5 m
Longueur hors tout	32.18 m
Longueur de fuselage	28.08 m
Empattement	12.6 m
Surface alaire	125 m²
Largeur cabine	3.76 m

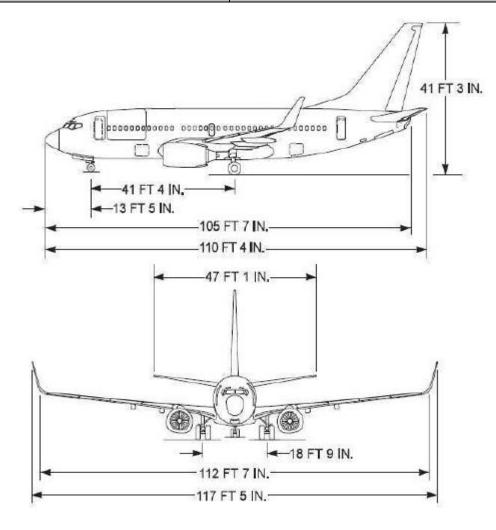


Figure I.6: Les dimensions de B737/700C. [4]

• Performances:

Tableau I.13: les performances de B737/700C. [4]

Performances	
Vitesse croisière maximale	935 km/h (Mach 0.76)
Vitesse maximale	876 km/h
VMO	340 kt
Autonomie à plein charge	4600 km
Distance de décollage à pleine charge	2300 m
Plafond	12500 m

• Les vitesses de B737/700c :

Tableau I.14: les vitesses associées de B737/700C. [4]

Vitesses de B737/700c	
Vitesse de croisière	950 km/h
Mach de croisière	0.785

Motorisation :

Tableau I.15: Motorisation de B737/700C. [4]

Motorisations	
Nombre	2
Moteur	CFM international CFM56-7
Poussée	2x117 kN

Spécificités :

Tableau I.16: spécificités de B737/700C. [4]

Spécificités	
Équipage	2
Nombre maximal de passagers	112

I.2.3 Description général de B737-800 :

Le Boeing 737-800 est un avion de ligne, biréacteur (deux moteurs de type CFM56-7b, un sous chaque aile), court ou moyen Courier, construit par la société Boeing commercial air plaine company (usa).

Le premier vol de cet avion a eu lieu le 31 juillet 1997, il a été mis en service en 1998 et peut transporter jusqu'à 189 passagers.

Les masses limitatives :

Tableau I.17: les masses limitatives de B737/800. [4]

Les masses limitatives de B737/800	
Masse maximale au décollage	79015 Kg
Masse maximale à l'atterrissage	65317 Kg
Masse maximale sans carburant	62731 Kg
Capacité réservoirs	26020 kg
Charge utile	21319 Kg
Poids à vide opérationnel	41720 Kg
Masse maximale de roulage	70760 Kg

• Dimensions :

Tableau I.18: les dimensions de B737/800. [4]

Dimensions	
Envergure	35.79 m
Hauteur	12.50 m
Longueur hors tout de l'avion	39.50 m
Longueur du fuselage	38.00 m
Empattement	05.70 m
Aire alaire	124.6m²

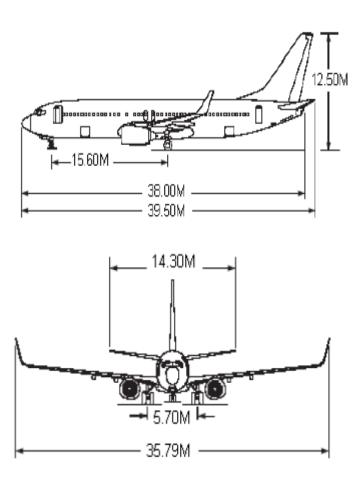


Figure I.7: Les dimensions de B737/800. [4]

Figure I.8: les dimensions de B737/800. [4]

• Performance:

Tableau I.19: performances de B737/800. [4]

Performances	
Vitesse de croisière	Mach 0.78 (828km/h)
Vitesse maximale	Mach 0.82 (876 Km/h)
VMO	340 Knots
Autonomie à pleine charge	3115 NM (5765 Km)
Distance de décollage à pleine	2400 m (au niveau de la mer)
Plafond opérationnel	12500 m (FL 410)

• Les vitesses de B737-800 :

Tableau I.20: vitesses associées de B737/800. [4]

Vitesses de B737-800	
Vitesse de décollage	290 km/h
Vitesse d'atterrissage	283 km/h
Vitesse de croisière	880 km/h
Mach de croisière	0.82

• Motorisation :

Tableau I.21: motorisation de B737/800. [4]

Motorisation	
Nombre	2
Moteur	CFM international CFM56-7B27
Poussée	121.4 KN
Diamètre turbine	1.55 m

• Spécificités :

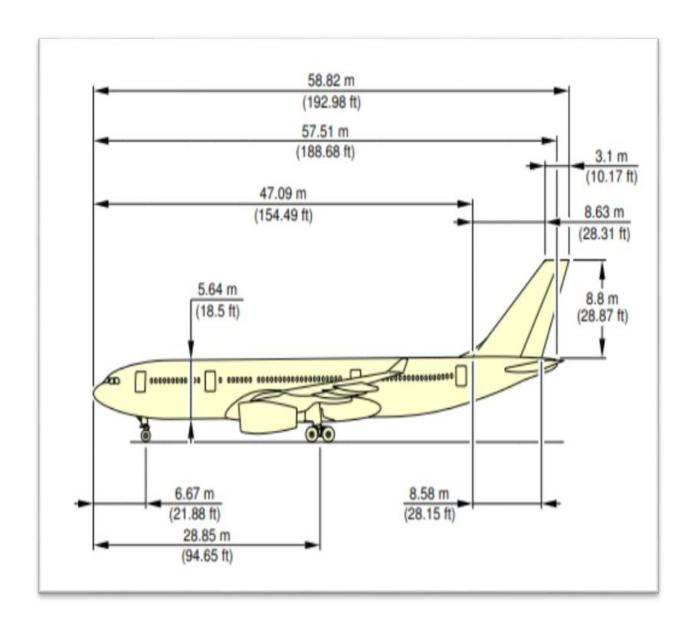
Tableau I.22: spécificités de B737/800. [4]

Spécificités	
Équipage	Deux pilotes
Nombre maximal de passagers	148

I.2.4 Description d'Airbus330-202 :

L'Airbus A330 est un avion de ligne long-courrier de moyenne capacité. Il partage son programme de développement avec L'Airbus A340 avec la différence qu'il s'attaque directement au marché des avions biréacteurs. L'A330 partage avec cet appareil le fuselage et les ailes, fuselage qui lui-même est en grande partie emprunté à l'Airbus A300 tout comme le cockpit dont la conception est partagée avec l'A320. [5]

• Les masses limitatives :


Tableau I.23: les masses limitatives de l'A330-202. [5]

Les masses limitatives du l'A330-202	
Masse maximale au décollage	230 000 Kg
Masse maximale à l'atterrissage	180 000 Kg
Masse maximale sans carburant	164 000Kg
Capacité réservoirs	139 100 L
Charge utile	49 500 Kg

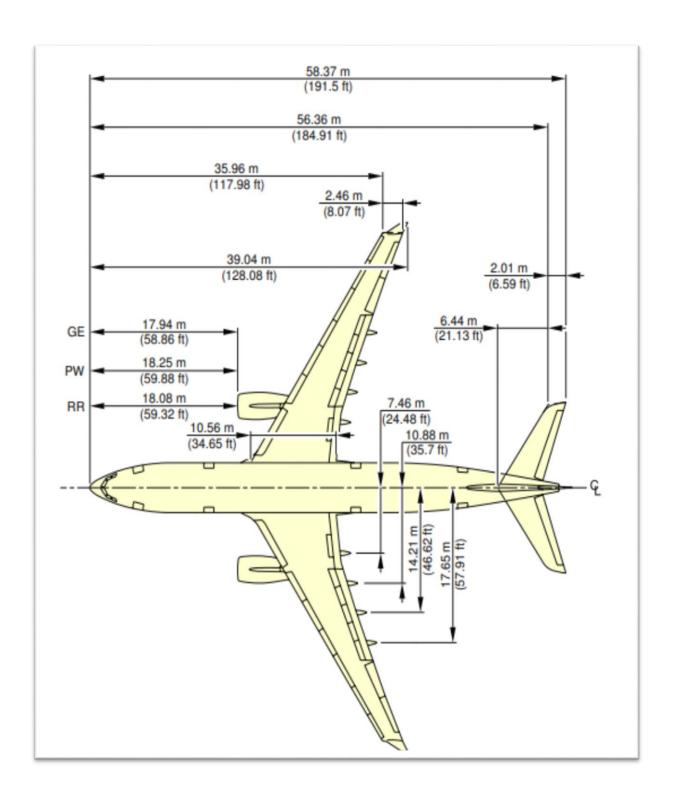

• Dimensions :

Tableau I.24: les dimensions de l'A330-202. [5]

Dimensions	
Envergure	60.3 m
Hauteur	17.4 m
Longueur totale	62.8 m
Longueur du fuselage	58.5 m
Empattement	23.3 m
Aire alaire	361.6 m²

Figure I.9: les dimensions de l'A330-202. [5]

Figure I.10: les dimensions de l'A330-202. [5]

• Performance:

Tableau I.25: les performances de l'A330-202. [5]

Performances	
Vitesse de croisière	Mach 0.82 (860km/h)
Vitesse maximale	Mach 0.86
VMO	350 Kts
Autonomie à pleine charge	11 900 Km
Distance de décollage à pleine	2 600 m
Plafond opérationnel	12 500 m

• Les vitesses :

Tableau I.26 : les vitesses associées de l'A330-202. [5]

Les vitesses de L'A330-202	
Vitesse d'atterrissage	250km/h
Vitesse de croisière maximale	860km/h
Mach de croisière	0.82

Motorisation :

Tableau I.27: Motorisation de l'A330-202. [5]

Motorisation	
Nombre	2
Moteur	Turbofan double flux CF6- 80E1 ou PW 4000
	Ou Rolls Royce Trent 772
Poussée	2*315.8 KN

• Spécificités :

Tableau I.28 : spécificités de l'A330-202. [5]

Spécificités	
Équipage	8
Nombre maximal de passagers	295 en 3 classes

I.2.5 Description de l'ATR 72-212 :

L'ATR 72 est un avion de transport de passagers à turbopropulseurs construit par la société italoeuropéenne ATR, (Aviation Transport Régional), spécialisé dans la conception d'avion pouvant transporter de 40 à 78 passagers.

Cet appareil existe aussi en version cargo. Doté d'un large porte cargo à l'avant du fuselage, l'ART 72 a très vite intéressé les compagnies de transport de fret et cela très tôt. ATR a donc développé plusieurs versions dédiées au transport de fret. Ainsi l'avion est aujourd'hui utilisé par des grands transporteurs tels que FEDEX, USPS ou DHL.

• Les masses limitatives :

Tableau I.29: les masses limitatives de l'ATR72-212A. [4]

Les masses limitatives	
Masse maximale au décollage	22500 Kg
Masse maximale à l'atterrissage	21850 Kg
Masse maximale sans carburant	19700 Kg
Capacité réservoirs	6250 kg
Charge utile	6181 Kg
Poids à vide opérationnel	13519 Kg

• Dimensions :

Tableau I.30: Les dimensions de l'ATR72-212A. [4]

Dimensions	
Envergure	27.05 m
Hauteur	7.65 m
Longueur totale	27.16 m
Longueur du fuselage	17.95 m
Empattement	10.77 m
Aire alaire	61 m²

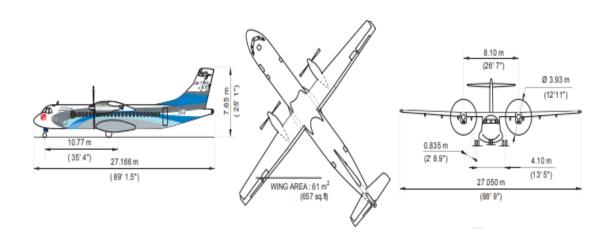


Figure I.11: les dimensions de l'ATR72-212A.

• Vitesses associées :

Tableau I.31: les vitesses associées de l'ATR72-212A. [4]

les vitesses d'ATR72-212A	
Vitesse de décollage	211km/h
Vitesse d'atterrissage	209km/h
Vitesse de croisière maximale	460 km/h
Mach de croisière	0.55

• Performances:

Tableau I.32: les performances de l'ATR72-212A. [4]

Performances	
Vitesse de croisière	490 Km/h
Vitesse maximale	526 Km/h
VMO	250 kts
Autonomie à pleine charge	2300 Km
Distance de décollage	1290m
Plafond opérationnel	7620m

• Motorisation :

Tableau I.33: Motorisation de l'ATR72-212A. [4]

Motorisation	
Nombre	2
Moteur	TVS PW124B, PW127F
Poussée	2*1850 kW
Diamètre de l'hélice	3.96 m

Spécificité :

Tableau I.34: les spécificités de l'ATR72-212A. [4]

Spécificités		
Équipage	2	
Nombre maximal de passagers	66	

Conclusion:

Dans ce chapitre, nous avons pu définir d'une façon générale les caractéristiques des aérodromes qui sont clairement une condition importante pour la planification aéroportuaire. C'est ainsi qu'en seconde partie de ce chapitre nous apporterons une étude de performances des différents appareils exploités par la compagnie AIR ALGERIE, qu'elle est également une étape principale avant chaque préparation des vols.

Chapitre II: Préparation et suivi du vol

Introduction:

Au sein d'une compagnie aérienne, avant chaque **préparation du vol**. Des multiples fonctions seront mises en place afin d'effectuer un vol sûr et efficace. Cette opération va toucher également les deux coté opérationnel et sécurité, tout en commençant par l'initialisation du vol en établissant un plan de vol technique qui sera approuvé par le commandant de bord tout en tenant compte des différents paramètres tels que les conditions météorologiques prévues, la route choisie, les performances de l'aéronef et la quantité de carburant .En complément de **l'aspect sécurité du vol** par le bon choix de la route, l'utilisation des procédures particulières au regard de la politique carburant et également l'assistance de l'équipage de conduite dans le suivi et l'exécution du vol en cas de déroutement lié aux mauvaises conditions météorologiques, panne moteur... etc.

Et ce chapitre va traiter les **éléments nécessaires** pour effectuer une préparation qui garantit une exécution du vol simplifiée.

II.1. Accessibilité des aérodromes :

Aérodrome Utilisable :

Les aérodromes envisagés pour l'exploitation doivent être adéquats. De plus ils doivent être accessibles au moment de l'opération.

Aérodrome adéquat :

Un aérodrome adéquat est un aérodrome que l'exploitant considère comme satisfaisant compte tenu des exigences applicables en matière de performances et des caractéristiques de la piste. On devrait de plus vérifier qu'à l'heure d'utilisation prévue, l'aérodrome sera ouvert et pourvu des moyens et équipements nécessaires, tels que services de la circulation aérienne, éclairage suffisant, systèmes de communication, bulletins météorologiques, aides à la navigation et services de secours.

Aérodrome accessible :

Un aérodrome accessible est :

- Un aérodrome adéquat pour l'opération envisagée où ;
- Les conditions météorologiques qui y sont prévues au moment de l'atterrissage satisfont les critères de planification donnés plus loin et satisfont aux performances de l'avion ainsi qu'aux minima opérationnels de l'équipage.

L'avion une fois en vol, à l'exclusion des cas de modification de plan de vol, tout aérodrome retenu comme déroutement ou dégagement doit, à l'heure prévisible de son utilisation éventuelle, être accessible.

II .2. Le choix des aérodromes :

II .2.1. Aérodrome de destination :

Un aérodrome peut être sélectionné comme aérodrome de destination s'il est adéquat pour cette opération.

II .2.2. Aérodrome de dégagement au décollage :

Quand les conditions météorologiques ou les performances empêchent un retour éventuel sur le terrain de départ, un aérodrome de dégagement au décollage doit être sélectionné [6]. Ce terrain doit être accessible et situé :

1. Pour les avions bi réacteurs :

 Soit à une heure de vol sans vent en régime N-1 en condition de température standard et à la masse réelle au décollage;

2. Pour les avions tri ou quadri réacteurs :

 Deux heures de vol sans vent en régime N-1 en condition de température standard et à la masse réelle au décollage.

II .2.3. Aérodrome de dégagement à destination :

Il faut qu'il y est au moins un aérodrome accessible de dégagement à destination doit être sélectionné pour tout vol IFR sauf si :

- La durée prévue du vol du décollage à l'atterrissage n'excède pas 6 heures et deux pistes séparées sont disponibles à destination et les conditions météorologiques permettent une approche à vue et l'atterrissage à partir de l'altitude minimale du secteur (MSA) dans la période allant d'ETA moins 1 heure à ETA plus 1 heure. [6]

Remarque: Les pistes d'un aérodrome sont considérées comme séparées si :

Il existe des surfaces d'atterrissage séparées qui peuvent se superposer ou se croiser de telle sorte que si une piste était bloquée il serait toujours possible d'utiliser l'autre,

- Chaque piste est dotée d'une trajectoire d'approche qui lui est propre et basée sur une aide radio propre. [6]

Ou le terrain de destination est isolé et qu'aucun terrain accessible envisageable comme terrain de dégagement n'existe. En ce cas le carburant normalement requis pour relier le terrain de dégagement est remplacé par la quantité de carburant nécessaire à effectuer deux heures de vol à la vitesse de croisière. [6]

Au moins deux aérodromes accessibles de dégagement à destination doivent être prévus si :

- Les bulletins météorologiques et les prévisions pour le terrain de destination indiquent que durant la période allant d'ETA moins 1 heure à ETA plus 1 heure les conditions météorologiques seront inférieures aux minima applicables ou les informations météorologiques ne sont pas disponibles. [6]

II .3. Les Minima Pour la sélection des aérodromes :

II.3.1. Minima pour la planification d'un aérodrome de dégagement en route :

Un aérodrome adéquat pourra être considéré comme accessible en tant que terrain de déroutement en route ou de dégagement à destination ou aérodrome de destination isolé si les bulletins météorologiques ou les prévisions d'aérodrome indiquent que pour la période allant de ETA moins 1 heure à ETA plus 1 heure les conditions météorologiques sont supérieurs aux minima de planification tels que décrits dans le tableau ci-dessous :

Tableau II.1: Minima de planification. [6]

Type d'approche	Minima de planification	
Cat II et Cat III	Minima CAT I	
CAT I	Minima d'approche	
	classique (Plafond/RVR)	
Approche	MDH/MDA +200 ft	
Classique	et RVR + 1000 m	
Circling	Minima de Circling	

II.3.2. Minima pour la planification d'un aérodrome de destination :

Un aérodrome adéquat pourra être considéré comme accessible en tant que destination si les bulletins météorologiques ou les prévisions d'aérodrome indiquent que pour la période allant de ETA moins 1 heure à ETA plus 1 heure les conditions météorologiques (RVR/visibilité et pour les approches classiques ou les approches indirectes, plafond supérieur ou égal à la MDH), seront supérieures ou égales aux minima d'atterrissage applicables. Si les critères de planification à l'aérodrome de destination ne sont pas satisfaits, deux aérodromes de dégagement à destination doivent être prévus.

II.4. Dossier de vol:

Le dossier de vol contient la liste des tâches à réaliser et les documents à compiler lors de la préparation de vol afin de pouvoir établir un briefing de vol destiné aux PNT.

Il comprend en général les éléments suivants :

- ✓ Le plan de vol technique ;
- ✓ Le carton de décollage/atterrissage ;
- ✓ Les NOTAMs et FIR;
- ✓ Le dossier MTO;
- ✓ Le plan de vol ATC ;
- ✓ La feuille de centrage ;
- ✓ Le devis de poids ;
- ✓ Feuille d'instruction et statistique ;

II.4.1. Plan de vol exploitation :

Les plans de vol techniques sont établis en temps réel par ordinateur et donnent lieu à un document préparation / suivi de vol édité sur imprimante et appelé JETPLAN.

Avant chaque vol, l'ATE (DOS) en service doit garder une copie du plan de vol technique au sol, pour archivage.

Le plan de vol exploitation utilisé et les données consignées pendant le vol renferment les éléments suivants :

- 1. -immatriculation de l'avion;
- 2. Type et variante de l'avion;
- 3. Date du vol;

- 4. Identification du vol;
- 5. Lieu de départ ;
- 6. Heure de départ (heure bloc et heure de décollage réelles);
- 7. Lieu d'arrivée (prévu et réel);
- 8. Heure d'arrivée (heure bloc et heure d'atterrissage réelles) ;
- 9. Type d'exploitation (ETOPS, VFR, IFR, etc.);
- 10. Route et segments de route avec les points de report ou les points de cheminement, distances, temps et routes ;
- 11. Vitesse de croisière et durée de vol prévues entre les points de report ou les points de cheminement.
- 12. Heures estimées et réelles de survol;
- 13. Altitudes de sécurité et niveaux de vol minimums ;
- 14. Altitudes et niveaux de vols prévus ;
- 15. Calculs carburant (relevés carburant en vol);
- 16. Carburant à bord lors de la mise en route des moteurs ;
- 17. Dégagements et, selon le cas, déroutement au décollage et en route.
- 18. Clairance initiale du plan de vol circulation aérienne et clairances ultérieures;
- 19. Calculs de déplanification en vol;
- 20. Informations météorologiques pertinentes.

II.4.2. Données de plan de vol :

Les vols sont normalement exploités par un plan de vol aux instruments. Certains vols de courts courriers (non-commerciaux) peuvent être accomplis selon des règles de vol à vue. Pour des raisons de sûreté, l'ATC doit être au courant de l'exploitation prévue avant chaque vol, et un plan de vol ATC doit être prévu pour chaque vol (IFR et VFR), et des procédures spéciales ou la limitation de manœuvrabilité doit être indiquée

Plan de vol ATC :

L'un des buts des plans de vol ATC est de pouvoir assurer les opérations de recherche et de sauvetage, si l'avion a trop de retard à destination. La commande de bord doit s'assurer que le plan de vol ATC a bien été déposé. Les règles qui sont imposés lors du dépôt d'un plan de vol ATC du type requis par l'OACI, ainsi que les détails relatifs aux RPL, sont publiés dans les Manuels Jepesen dans la partie AIR Traffic Control, et dans le document de l'OACI Doc 4444.

Il peut être déposé de trois façons :

✓ Plan de vol répétitif RPL :

Utilisé par les compagnies aériennes pour décrire des vols réguliers. Les RPL ne seront pas utilisés pour d'autres vols que les vols IFR exploités régulièrement les mêmes jours de plusieurs semaines consécutives, et se reproduisant dix fois au moins ou chaque jour pendant au moins dix jours consécutifs.

Un RPL comprendra les renseignements ci-dessous que l'autorité ATS compétente juge

Pertinents:

- 1. Période de validité du plan de vol;
- 2. Jours d'exploitation;
- 3. Identification de l'aéronef;
- 4. Type de l'aéronef et catégorie de turbulence de sillage ;
- 5. Aérodrome de départ ;
- 6. Heure de départ du poste de stationnement ;
- 7. Vitesses de croisière ;
- 8. Niveaux de croisière ;
- 9. Route à suivre ;
- 10. Aérodrome de destination;
- 11. Durée totale estimée;
- 12. Emplacement où peuvent être obtenus immédiatement les renseignements suivants :
 - a. Aérodromes de dégagement ;
 - b. Autonomie;
 - c. Nombre total de personnes à bord ;
 - d. Équipement d'urgence;
 - e. Renseignements divers.

✓ Plan de vol déposé FPL :

Formulaire déposé avant le vol décrivant la totalité du vol. C'est le plus souvent à ce type de plan de vol auquel on fait référence quand on parle de « plan de vol », sous

forme spécifiée auprès d'un Organisme de la circulation aérienne par le pilote ou son représentant désigné, ne comportant pas les éventuelles modifications ultérieures.

✓ Plan de vol réduit :

Déposé en vol par radiotéléphonie à un organisme de la circulation aérienne, sous forme d'éléments, sous la forme d'éléments intéressant une partie du vol.

II.4.3. Procédures de dépôt d'un plan de vol ATC :

Sauf lorsque d'autres dispositions ont été prises en vue du dépôt de plans de vol ATC, un plan de vol déposé avant le départ devrait être remis par le TNA/O ou transmis par téléphone au bureau de piste des services de la circulation aérienne sur l'aérodrome de départ. Si un tel bureau n'existe pas à l'aérodrome de départ, le plan de vol devrait être transmis par téléphone ou téléimprimeur ou, à default de ces moyens, par radio à l'organe des services de la circulation aérienne desservant ou chargé de desservir l'aérodrome de départ.

II.4.4. Demande de modifications au plan de vol :

Les demandes de modifications au plan de vol comporteront les renseignements ci-après :

• Changement de niveau de croisière :

Identification de l'aéronef, niveau de croisière demandé et vitesse de croisière à ce niveau, et le temps estimé révisés s'il y a lieu.

Changement de route :

On distique deux cas:

- Sans changement de destination : identification de l'aéronef, règles de vol, indication de la nouvelle route avec données de plan de vol correspondantes à partir du lieu où l'aéronef doit changer de route, temps estimés révisés, tous autres renseignements appropriés;
- Avec changement de destination : identification de l'aéronef, règles de vol, indication de la route révisée jusqu'à l'aérodrome de destination avec données de plan de vol correspondantes à partir du lieu où l'aéronef doit changer de route, temps estimés révisés, aérodrome de dégagement, et tous autres renseignements appropriés.

II.4.5. Dossier Météo:

Le dossier météorologique est une composante essentielle de la préparation du vol effectuée par l'équipage. Ce dossier est remis aux pilotes à une heure aussi proche que possible du départ. Il couvre l'ensemble de la durée du vol et l'étendue géographique du trajet.

L'étude de ce dossier permet aux pilotes de se forger une bonne représentation de la situation météorologique qu'ils rencontrer lors de leur vol, aussi bien en route qu'aux aéroports de départ, d'arrivée, et de dégagement.

Ce dossier doit comprendre au moins :

- ✓ Carte du temps significatif correspondant au vol.
- ✓ Carte de vents des différents niveaux de vol durant le vol
- ✓ Les derniers METAR, TAF, TEMSI et SIGMET sur la route.

II.4.5.1. Cartes graphiques:

a. TEMSI: Haute et basse altitude:

La carte TEMSI est une représentation du temps significatif prévu sur une zone géographique donnée ainsi que les fronts et des principaux courants des vents.

b. Cartes de vents et températures :

Le modèle informatique travaille sur un découpage de l'atmosphère correspondant à un maillage qui permet de restituer 7 niveaux isobariques : 850,700, 500, 300, 250, 200, 150 mb qui correspondent aux altitudes : 5000, 9000, 18300, 30100, 34000, 38000, 45000 ft respectivement.

JEPPESEN fournit 04 fois par jour 04 prévisions des cartes des vents et températures valables pour l'heure d'observation + 06 H, + 12 H, + 18 H et + 24H disponibles à partir de 21H30, 02H00, 09H30 et 14 H00 respectivement.

II.4.5.2. Les messages météorologiques :

Les messages météorologiques sont obtenus sous le format fourni par NWS (National Weather Service/ Washington). Les messages textuels 'METAR, TAF, SIGMET, et SPECI' sont disponibles via SITA, ARINC et PC. Ces derniers sont des informations supplémentaires auprès des services météo qui vont permettre de prendre la décision finale d'entreprendre ou d'annuler le vol.

Le METAR :

Le METAR est un message d'observation météorologique régulière pour l'aviation. Ces observations sont faites sur les terrains soit par un météorologue soit pour une station automatique (dans ce cas il sera marqué AUTO avant le METAR). Le METAR est rédigé toutes les heures en général (toute les demi-heures pour les gros aéroports).

➤ Le TAF :

Le TAF est un message de prévision météorologique pour l'aviation. Ces prévisions sont faites pour un terrain donné. Le TAF est rédigé toutes les 3 heures et est disponible une heure avant la prévision. Il existe deux types de TAF, les longs (prévision sur 18 heures) et les courts (prévision sur 9 heures). Le TAF emploie les mêmes codes que les METARs.

> Le SIGMET:

Le SIGMET est rédigé lorsqu'il y a un phénomène dangereux (prévus ou pas). Un SIGMET est établi par des services spéciaux météorologie sur le plan régional ou national.

➤ Le SPECI :

Le SPECI est un message spécial rédigé occasionnellement en cas de changement rapide des conditions météo 'aggravation ou amélioration'.

Le SPECI reprend la forme d'un METAR et se termine par M* pour une dégradation ou B* pour une amélioration.

Tableau II.2: indicateur du phénomène en question allant de 0 à 9

0	Vitesse maximale du vent
1	Direction et/ou vitesse moyenne du vent
2	Visibilité
3	Nuages bas
4	Précipitations
5	Non utilisé
6	Non utilisé
7	Tempête de poussière chasse-neige
8	Orage
9	Grains ou trombe

Des exemples sur les messages METAR, TAF, SIGMET et SPECI sont représentés en ANNEXE 3.

II.4.6. Dossier NOTAM:

> Définition :

Notice To AirMen : avis aux navigateurs aériens. C'est un avis diffusé par télécommunication donnant une information essentielle sur l'état ou la modification d'un moyen ou d'un service ou d'un danger pour la navigation aérienne. Les NOTAMs complètent et actualisent les AIP. L'information émise est de caractère temporaire et de courte durée (de 12 heures à 90 jours voire 1 an).

II.4.6.1. Classification:

Les NOTAMs sont numérotés par série, numéro à 4 chiffres puis année (ex A1025/97).

> Série :

- a. : infos à caractère international (vols long-courriers) : diffusion mondiale ;
- b. : infos à caractère international restreint (vols moyens courriers) : diffusion en
 Europe ;
- c. Infos à caractère national : diffusion nationale ; (remplacé par la série D en août 2002)

- d. Infos à caractère « Schengen » : diffusion aux pays Schengen ; (a remplacé la série C en août 2002) M : infos militaires ;
- **s.** Série spéciale : snowtam ; à ne pas confondre avec les séries des AIC (A : internationale ; B : nationale).

Identificateur:

- NOTAMN (new) : nouvelles infos ;
- NOTAMR (replace): remplace un NOTAM qui sera archivé pendant 5 ans;
- NOTAMC (cancel): annule un NOTAM(les deux NOTAM seront archivés pendant 5 ans).

II.4.6.2. Type NOTAM'S:

- **Birdtam:** NOTAM sur le péril aviaire, n'existe pas en France.
- Milnotam : NOTAM émis par les militaires.
- Trigger: Le NOTAM Trigger (ou de rappel ou déclencheur) est émis lors de la publication d'un amendement ou d'un supplément d'AIP AIRAC (en vigueur 14 jours après la date d'effet).
- D'accompagnement : Le NOTAM accompagnant tout supplément à l'AIP pendant toute sa validité ; ce supplément est une annexe au « NOTAM d'accompagnement ».
- Multipart : Le NOTAM multipare (en plusieurs parties car le texte est trop long pour tenir sur un seul message RSFTA de 1 200 caractères) auront une numérotation spéciale dite « sub-numbering ». Elle consiste en l'ajout de trois digits après le numéro de NOTAM servant à identifier la partie du NOTAM en question (A, B ou C...) ainsi que le nombre de parties (04 par exemple).

Exemple:

B2204/03A04 désigne la partie 1 (A = 1ère lettre de l'alphabet) d'un NOTAM en 4 parties (04), et B2204/97D04 la 4ème partie (D = 4ème lettre de l'alphabet) d'un NOTAM en 4 parties.

Il sera ajouté après le champ E) et après la dernière parenthèse du NOTAM une mention : //END OF PART 01//

NOTAM particuliers :

Snowtam:

- ✓ Plan neige : Le plan neige publié est perpétuel et contient les mesures à prendre, les consignes d'utilisation des Snowtam (Pour les petits terrains).
- ✓ Le plan neige saisonnier : concerne les grands terrains et est publié chaque année avant l'hiver en supplément à l'AIP ; c'est un complément aux consignes qui se présente sous forme d'une liste d'aérodromes avec les opérations effectuées et le matériel mis en œuvre (pour les gros terrains).

II.4.7. Devis de poids et de centrage :

Élément critique de la sécurité des vols, la gestion de la masse et du centrage des aéronefs est une opération relativement importante lors de la préparation d'un vol car un avion mal chargé et mal centré peut tout simplement ne pas réussir à décoller. En effet, un chargement mal fait peut vite tourner à l'incident voire à l'accident donc il est nécessaire de vérifier le centrage correct de l'avion. Contrairement aux idées reçues, aucun avion n'est automatiquement chargé correctement. Toutefois, le simple bon sens permet de comprendre pourquoi un avion ne doit pas être chargé audelà de la masse maximale. Il en est de même pour la répartition des passagers et du fret.

Le chargement correct de l'avion est la responsabilité légale du commandant. Dans la pratique, les TNA/O accomplissent la préparation de la feuille de chargement et centrage. La personne établissant la feuille de chargement et centrage confirme la répartition correcte de la charge avec sa signature sur le formulaire.

Le commandant de bord personnellement responsable de :

- Vérifier que des quantités suffisantes de carburant et de lubrifiant, avec la catégorie voulue, sont à bord, et sont chargées et distribuées correctement.
- Vérifier le calcul de la feuille de chargement et centrage.
- Accepter et signer la feuille de chargement et centrage.

II.4.8. Feuille d'instruction et de statistiques :

La feuille d'instructions contient les Items suivants :

- 1. Immatriculation de l'appareil;
- 2. Date;
- 3. N° de vol;
- 4. Nom du CDB;
- 5. Nom du F/O;
- 6. Nom de l'OMN:
- 7. Nom du chef de cabine et des autres membres d'équipage de cabine ;
- 8. Aéroports de départ et d'arrivée ;
- 9. Heures prévues et réelles de départ et d'arrivée ;
- 10. Consignes particulières;
- 11. Compte rendu (réservé au CDB);

Remarque : Les données prévues du vol doivent être remplies par l'agent de Check-In PN, quant aux données réelles doivent être renseignées par le CDB

II.4.9. Les cartons des Paramètres :

C'est un carton qui est utilisé pour mentionner les vitesses de décollage d'atterrissage prévu et réel.

Un extrait d'un carton de décollage et d'atterrissage est représenté en ANNEXE 2

II.4.10. Documentations à bord :

- Carnet de route: Document sur lequel sont portés les renseignements relatifs à l'aéronef, à l'équipage et à chaque voyage. Il doit être rempli et signé par le commandant de bord à l'issue de chaque vol et son emport est obligatoire si l'atterrissage est prévu sur un aérodrome extérieur.
- Certificat immatriculation (CL): Pièce d'identité de l'avion, sur ce document figure le nom du propriétaire de l'appareil, il prouve la nationalité de l'avion inscrit au registre national. Les règles d'immatriculations sont définies par l'OACI. L'immatriculation se compose de lettres qui identifient le pays d'immatriculation, suivies de lettres ou de chiffres distinctifs pour chaque avion. L'immatriculation est l'inscription officielle.

Exemple: TJ-DERF, le "TJ" indique l'immatriculation au Cameroun

- Certificat de navigabilité (CND). Tout aéronef employé à la navigation internationale doit être muni d'un certificat de navigabilité délivré ou validé par l'Etat dans lequel il est immatriculé.
- Certificat de Limitation de Nuisance (CLN): La convention de Chicago classe les aéronefs en fonction du bruit produit. Chaque aéronef doit disposer d'un certificat individuel de limitation des nuisances sonores et d'un deuxième certificat constatant le respect effectif à chaque visite d'entretien.
- Licence de Station d'Aéronef (LSA): Si appareils radioélectriques à bord: permet l'utilisation des émetteurs radio à bord de l'avion
- Carnet de vol : Document sur lequel sont inscrites la nature et la durée des vols effectués par le pilote. Il est indispensable tout au long de la carrière de pilote pour :
 - Le renouvellement de la licence de pilote ;
 - Les nouvelles qualifications

Conclusion:

Le but de la planification et le suivi d'un vol est de chercher, pour un avion donné dans l'espace aérien, une trajectoire optimale évitant les obstacles, en tenant compte d'une métrique donnée « temps, distance, consommation de carburant, etc... », aussi cette trajectoire devra prendre en compte un ensemble de contraintes opérationnelles « respect des limites de vitesse, taux de virage, les conditions météorologiques de jour j etc... » Afin que le vol soit sûr et efficace.

Chapitre III:

Contraintes opérationnelles liées aux caractéristiques des aéronefs

Introduction:

Dans le présent chapitre, nous avons présenté la problématique abordée dans cette thèse basée sur un ensemble des contraintes opérationnelles liées aux différents type d'aéronefs. Nous avons abordé d'une façon globale l'analyse des problèmes liés à ces contraintes qui se posent aux exploitants lors de la planification des vols par le contrôle de la faisabilité opérationnelle de chaque aérodrome. En prenant en considération des différents critères tels que, les dimensions pistes, les différentes méthodes utilisées pour calculer la résistance de chaussée et aussi le service de sauvetage et lutte contre incendie, dans le but d'assurer la conformité aux règlements de l'OACI et la sécurité en premier lieu.

III.1 Largeur minimale de piste :

La largeur minimale d'une piste doit être suffisante pour permettre la commande sécuritaire de l'avion lors du décollage et de l'atterrissage selon des procédures pouvant être exécutées de façon régulière par des équipages moyennement habiles, il est recommandé que la largeur de piste ne soit pas inférieure à la dimension spécifiée [2] dans le tableau suivant :

Tableau III.1: la largeur de piste en fonction des codes de références. [2]

	Lettre de code					
Chiffre de code	Α	В	С	D	Е	F
1ª	18 m	18 m	23 m	_	_	_
2ª	23 m	23 m	30 m	_	_	_
3	30 m	30 m	30 m	45 m	_	_
4	_	_	45 m	45 m	45 m	60 m
a. La largeur d'une piste avec approche de précision ne devrait pas être inférieure à 30 m lorsque le chiffre de code est 1 ou 2.						

La valeur d'une largeur **de piste pour accueillir les types d'avion étudiés** ne doit pas être inférieure à la dimension spécifiée dans le tableau ci-dessous, en fonction des codes de référence.

Tableau III.2 : la largeur minimale de piste. [2]

Type d'avion	Classification	Largeur minimale de RWY
A330-202	4 ^E	45m
B737-600	4C	30m
B737-700C	4C	45m
B737-800	4C	45m
ATR72-212A	3C	30 m

Autant que possible, toute bande à l'intérieur de laquelle s'inscrit une piste avec approche de précision s'étendra latéralement, sur toute sa longueur, jusqu'à au moins :

• 50 m lorsque le chiffre de code est 3 ou 4de part et d'autre de l'axe de la piste et du prolongement de cet axe.

Il est recommandé que toute bande à l'intérieur de laquelle s'inscrit une piste avec approche classique s'étende latéralement, sur toute sa longueur, jusqu'à au moins :

• 150 m lorsque le chiffre de code est 3 ou 4 de part et d'autre de l'axe de la piste et du prolongement de cet axe.

Il est recommandé que toute bande à l'intérieur de laquelle s'inscrit une piste à vue s'étende latéralement, sur toute sa longueur, de part et d'autre de l'axe de la piste et du prolongement de cet axe, jusqu'à une distance, par rapport à cet axe, au moins égale à :

• 75 m lorsque le chiffre de code est 3 ou 4;

III.2 La largeur minimale de voie de circulation :

III.2.1 Partie rectiligne:

Les voies de circulation doivent être aménagées d'une manière à assurer les manœuvres des aéronefs en toute sécurité, donc il recommandé de doter les pistes de voies d'entrée et de sortie en nombre suffisant pour accélérer le mouvement des avions à destination et en provenance de ces pistes et d'aménager des voies de sortie rapide lorsque la circulation est dense.

Il est recommandé que largeur d'une partie rectiligne de voie de circulation ne devrait pas être inférieure à la valeur indiquée [2] dans le tableau (III.2) :

Tableau III.3: Largeur de voie de circulation en fonction de code lettre. [2]

Code Lettre	Largeur de voie de code de circulation	
А	7,5 m	
В	10,5 m	
	15 m si la voie de circulation est destinée aux	
	avions dont l'empattement est inférieur à 18 m ;	
С	18 m si la voie de circulation est destinée aux	
	avions dont l'empattement est égal ou supérieur	
	à 18 m.	
	18 m si la voie de circulation est destinée aux	
	avions dont la largeur hors tout du train	
D	principal est inférieure à 9 m ; 23 m si la voie de	
	circulation est destinée aux avions dont la	
	largeur hors tout du train principal est égale ou	
	supérieure à 9 m.	
E	23 m	
F	25 m	

Pour les types d'avions exploités par AIR Algérie largeur de voie de circulation ne devrait pas être inférieure à la valeur indiquée dans le tableau (III.3) tout en respectant les valeurs d'empattement et la largeur hors tout du train d'atterrissage de chaque aéronef :

Tableau III.4: largeur minimale de voie de circulation

Type d'avion	Empattement	Largeur hors tout	Largeur de TWY
A330-202	22.18 m	12.61 m	23m
B737-600	11.23m	5.72 m	15 m
B737-700C	11.23m	5.72 m	15m
B737-800	11.23m	5.72 m	15m
ATR72-212A	10.79 m	4.10 m	15 m

III.2.2 Virages des voies de circulation :

Les rayons de virage devraient être compatibles avec les possibilités de manœuvre et les vitesses normales de circulation des avions auxquels la voie de circulation est destinée.

Les virages devraient être conçus de telle façon que, lorsque le poste de pilotage des avions reste à la verticale des marques axiales de la voie de circulation, la marge minimale entre les roues extérieures de l'atterrisseur principal de l'avion et le bord de la voie de circulation ne devrait pas être inférieure aux marges spécifiées. [2]

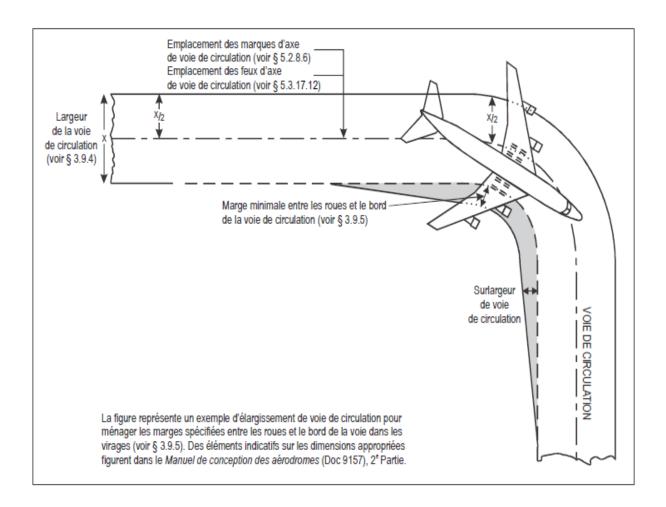


Figure III.1: voie de circulation. [2]

III.2.3 Distances minimales de séparation pour les voies de circulation :

L'objectif des distances minimales de séparation est de permettre l'utilisation, en sécurité, des voies de circulation, d'éviter de possibles collisions avec d'autres avions opérant sur des pistes ou voies de circulation adjacentes ou des collisions avec des objets adjacents.

La distance de séparation entre l'axe d'une voie de circulation, d'une part, et l'axe d'une piste ou l'axe d'une voie de circulation parallèle ou un objet, d'autre part, soit au moins égale à la distance spécifiée dans le tableau ci-dessous :

Tableau III.5 : Distance minimales de séparation pour les voies de circulation. [2]

Lettre de		Chiffre	de c	irculation	ntre l'axe d'u et l'axe d'un	Pi Chif	(m) stes à vu	ode	Distance entre l'axe d'une voie de circulation et l'axe d'une autre voie de circulation (m)	circulation autre qu'une voie d'accès de poste de	Distance entre l'axe d'ume voie d'accès de poste de stationnement et l'axe d'ume autre voie d'accès de poste de stationnement (m)	Distance entre l'axe d'une voie d'accès de poste de stationnement et un objet (m)
code	1	2	3	4	1	2	3	4				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
A	77,5	77,5	-	-	37,5	47,5	-	-	23	15,5	19,5	12
В	82	82	152	-	42	52	87	-	32	20	28,5	16,5
C	88	88	158	158	48	58	93	93	44	26	40,5	22,5
D	-	-	166	166	-	-	101	101	63	37	59,5	33,5
E	-	-	172,5	172,5	-	-	107,5	107,5	76	43,5	72,5	40
F	-	-	180	180	-	-	115	115	91	51	87,5	47,5

Note 1.— Les distances de séparation indiquées dans les colonnes (2) à (9) s'appliquent aux combinaisons habituelles de pistes de voies de circulation. Les critères de calcul de ces distances sont donnés dans le Manuel de conception des aérodromes (Doc 9157), Partie 2.

Note 2.— Les distances indiquées dans les colonnes (2) à (9) ne garantissent pas une marge suffisante derrière un avion en attente pour le passage d'un autre avion sur une voie de circulation parallèle. Voir le Manuel de conception des aérodromes (Doc 9157), Partie 2.

III.2.4 La résistance des voies de circulation :

Il est recommandé que la résistance d'une voie de circulation soit au moins égale à celle de la piste qu'elle dessert, compte tenu du fait que la densité de la circulation est plus grande sur une voie de circulation que sur une piste et de ce que les avions immobiles ou animés d'un mouvement.

III.3 La résistance de chaussée :

Parmi les méthodes utilisée pour indiquer la résistance de chaussée on peut distinguer trois méthodes sont :

- Méthode ACN/PCN
- Méthode LCN/LCG
- Méthode atterrisseur par type « antienne méthode française »

III.3.1 Explication des divers termes utilisés dans ces méthodes :

• Indice C.B.R:

Exprimée sous la forme d'un rapport en pourcentage entre la force nécessaire pour produire, à l'aide d'un piston cylindrique à force plate normalisé, une certaine pénétration du sol étudié, et la force nécessaire pour produire la même pénétration dans un calcaire concassé normalisé. Son but est de préciser la force portante d'un sol compacté destiné à des pistes d'aérodrome

• Module de réaction K :

Exprimés en MN/m3 "méga newton par mètre cube" ou en MPA/m "méga pascal par mètre" utilisé dans la méthode ACN/PCN, caractérisant la portance du terrain de fondation pour les chaussées rigides.

• Catégorie de résistance du terrain de fondation :

A : Résistance élevée :

Chaussée souples : caractérisée par un CBR=15 et représentant toutes les valeurs CBR Supérieures à 13

B : Résistance moyenne :

Chaussée souples : caractérisée par un CBR=10 et représentant une gamme de valeurs de CBR de 8 à 13

Chaussée rigides : caractérisée par un K=80MN/m3 et représentant une gamme de Valeurs de K de 60 à 120 MN/m3

C : Résistance faible

Chaussée souples : caractérisée par un CBR=6 et représentant une gamme de valeurs de CBR de 4 à 8

Chaussée rigides : caractérisée par un K=40MN/m3 et représentant une gamme de Valeurs de K de 25 à 60 MN/m3

D : Résistance ultra faible

 Chaussée souples: caractérisée par un CBR=6 et représentant toutes les valeurs Inférieures à 4 Chaussée rigides : caractérisée par un K=20MN/m3 et représentant toute les valeurs de K inferieures à 25MN/m3

• Méthode d'évaluation :

- ✓ T : Évaluation technique : est une étude spécifique des caractéristiques de la chaussée et utilisation de technique d'étude du comportement des chaussées.
- ✓ U : Évaluation faisant appel à l'expérience acquise sur les avions connaissance du
 type et de la masse spécifique des avions utilisés régulièrement et que la chaussée
 supporte de façon satisfaisante.

RSE

Une roue simple équivalente à un atterrisseur : charge sur une roue simple qui produit à une profondeur donnée de la chaussée les mêmes contraintes que l'atterrisseur considéré.

RSI

C'est la charge sur une roue simple isolée gonflée à 0,6 MPA, caractéristique de la portance de la chaussée considérée.

CHARGES

- Charge réelle P : Charge effectivement appliquée par un mouvement d'avion a n mouvements par jour pendant 10 ans.
- Charge réelle pondérée P' : Charge réelle P pondérée selon la fonction de la chaussée é étudiée (en règle générale, les coefficients de pondération des charges réelles sont pris égaux à 1,2 pour les aires de stationnement et à 1 pour les aires de manœuvre.
- Charge normale de calcul Pn: charge à 10 mouvements par jour pendant 10 ans utilisée dans les formules et abaques pour le calcul de dimensionnement des chaussées, associée à la charge P'.
- Charge admissible P0 : charge admissible associée à un atterrisseur donné pour une chaussée donnée selon les règles de dimensionnement pour le trafic normal (trafic

constitué par dix mouvements par jour de l'avion produisant la charge normale de calcul pour une durée de vie normale).

• Charge admissible déduite des publications Pa : charge maximale admissible à laquelle un atterrisseur peut être reçu sur une chaussée à 10 mouvements par jour pendant 10 ans. Les charges définies ci-dessus désignent une charge sur un atterrisseur. Toutefois, certaines données sont fournies sous la forme de charge totale par avion. Afin d'éviter toute confusion, il est recommandé d'employer les notations suivantes :

Tableau III.6: les différents types de charge

Type de charge	Sur atterrisseur	Totale
Charge réelle	Р	Pt
Charge réelle pondérée	Р′	P't
Charge normal de calcul	P "	P"t
Charge admissible	PO	Pt0
Charge admissible déduite des publications	Pa	Pta

PRESSION DE GONFLAGE DES PNEUMATIQUES

- ✓ q : Pression standard de gonflage des pneumatiques des atterrisseurs de l'avion considéré.
- √ q': Pression réelle de gonflage des pneumatiques des atterrisseurs de l'avion.
- √ q 0 : Pression limite de gonflage des pneumatiques publiée pour la chaussée.

III.3.2 Méthode ACN/PCN:

La méthode ACN /PCN est un système international normalisé élaboré par l'organisation de l'aviation civile internationale OACI qui vise à fournir des renseignements sur la résistance des chaussées aéronautique et qui permet de ce fait de juger de l'admissibilité de chaque avion en fonction de sa charge et de la résistance de chaussée

Chapitre III : Contraintes opérationnelles liées aux caractéristiques des aéronefs

Cette méthode est applicable depuis 1983 par l'ensemble des états membre de l'OACI. La détermination des PCN est laissée à l'appréciation de chaque État selon ses propres méthodes de dimensionnement. [2]

- ACN: « Aircraft Classification Number » est un nombre exprimant l'effet relatif d'un avion sur une chaussée pour une catégorie spécifiée de sol support. La détermination des ACN obéit à un calcul normalisé imposé par l'OACI.
- **PCN**: « Pavement Classification Number » est un nombre exprimant la force portante de la chaussée pour une exploitation sans restriction.

Les spécifications de l'OACI sur les renseignements à communiquer sur la résistance des chaussées résident dans les huit points suivants :

- 1. La force portante d'une chaussée devra être déterminée.
- 2. La force portante d'une chaussée destinée à des aéronefs dont la masse sur l'aire de trafic est supérieure à5 700 kg sera communiquée au moyen de la méthode ACN-PCN en indiquant tous les renseignements suivants :
 - a. Numéro de classification de chaussée (PCN);
 - b. Type de chaussée considéré pour la détermination des numéros ACN-PCN
 - c. Catégorie de résistance du terrain de fondation ;
 - d. Catégorie de pression maximale des pneus ou pression maximale admissible des pneus.
 - e. Méthode d'évaluation
- 3. Le numéro de classification de chaussée (PCN) communiqué indiquera qu'un aéronef dont le numéro de classification (ACN) est inférieur ou égal à ce PCN peut utiliser la chaussée sous réserve de toute limite de pression des pneumatiques
- 4. Le numéro ACN d'un aéronef sera déterminé conformément aux procédures normalisées qui sont associées à la méthode ACN-PCN.
- 5. Pour déterminer l'ACN, le comportement d'une chaussée sera classé comme équivalent à celui d'une construction rigide ou souple.
- 6. Les renseignements concernant le type de chaussée considéré pour la détermination :
- Des numéros ACN et PCN
- La catégorie de résistance du terrain de fondation
- La catégorie de pression maximale admissible des pneus et la méthode d'évaluation

Chapitre III : Contraintes opérationnelles liées aux caractéristiques des aéronefs

- 7. Il est recommandé d'établir des critères pour réglementer l'utilisation d'une chaussée par un aéronef dont l'ACN est plus élevé que le PCN communiqué pour cette chaussée
- 8. La force portante d'une chaussée destinée à des aéronefs dont la masse sur l'aire de trafic est inférieure ou égale à5 700 kg sera communiquée sous la forme des renseignements suivants :
 - Masse maximale admissible de l'aéronef ;
 - Pression maximale admissible des pneus.

✓ Principe général :

La méthode ACN/PCN, dont le mode et les conditions d'applications sont spécifiés dans les **huit points** précédents, peut en résumé être régie par le principe général suivant :

« Le PCN indique qu'un avion dont l'ACN est inférieur ou égale peut utiliser sans restriction la chaussée sous réserve de limitation due à la pression des pneumatique »

D'une manière plus explicite, un avion peut utiliser sans restriction une chaussée si les deux Conditions suivantes sont simultanément vérifiées. [7]

ACN de l'avion, détermine pour le type de chaussée et la catégorie de sol support publiées pour La chaussée, est inférieur ou égal au PCN de celle-ci. [7]

La pression des pneumatiques de l'avion n'excède pas la pression maximale admissible publiée Pour la chaussée.

✓ Détermination des valeurs ACN :

L'ACN est déterminé par les fabricants d'avions selon une procédure prescrite par l'OACI et est publié dans des listes des fabricants ou de différentes organisations (p.ex. OACI, FAA)

L'ACN est exprimé comme étant égal à 2 fois la charge admissible en tonnes sur une roue simple équivalente (RSE) gonflée à 1,25 MPA, exprimée en milliers de kilos. [7]

La détermination de l'ACN d'un avion consiste à calculer cette roue simple équivalente produisant les mêmes effets que l'atterrisseur principal de l'avion en question tel que détaillé en figure (III.2):

- L'ACN d'un avion varie selon le type de structure (souple ou rigide) et la catégorie du support.
- L'ACN est également dépendant de la pression des pneumatiques. Toutefois, les ACN sont généralement fournis sans limitation de pression.

Par la suite, l'ACN est également une fonction linéaire de la masse Pt de l'avion, selon la formule suivante :

ACN = ACN min + (ACN max - ACN min) *(Pt - m/M - m)

Avec:

Pt: Masse réelle de l'avion

M : Masse de l'avion a charge maximale

m : masse de l'avion a charge minimale

ACN min : ACN a la charge minimale de l'avion

ACN max : ACN a la charge maximale de l'avion

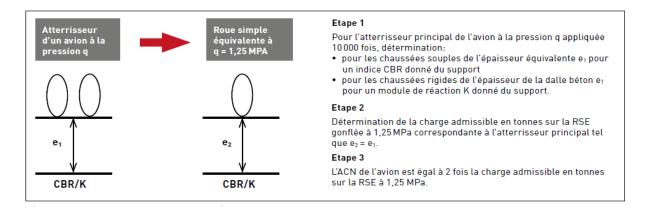


Figure III.2 : Détermination de l'ACN pour une roue simple.

Des exemples sur les tables caractéristiques des ACN sont représentés en ANNEXE 1

Détermination des valeurs PCN :

Une multitude de facteurs influencent la portance. Ces derniers ne peuvent souvent pas être saisis de manière suffisante sur le plan analytique. C'est pourquoi des simplifications doivent être effectuées pour chaque méthode de calcul. Aucun pronostic théorique ne peut prédire de manière absolue les conditions cadres qui surviendront effectivement. Représenter la portance avec uniquement un chiffre est par conséquent obligatoirement imprécis. L'imprécision des valeurs de départ conduit ainsi à une fourchette de résultats et non pas à une vraie valeur absolue. En raison des différentes méthodes de calcul et de la

Chapitre III : Contraintes opérationnelles liées aux caractéristiques des aéronefs

multitude de facteurs d'influence, il est recommandé, le cas échéant, de déterminer un ordre

de grandeur de la valeur PCN avec plus qu'une seule méthode de calcul possible. Des facteurs

d'influence ainsi que des interprétations erronées peuvent ainsi être évités. Des calculs avec

une exactitude de plus ou moins 5 valeurs PCN sont jugés comme suffisamment précis. La

mise en œuvre et l'interprétation de différentes méthodes pour déterminer la portance.

L'annexe 14 de l'OACI impose aux gestionnaires d'aérodromes de déclarer la capacité

portante des chaussées aéronautiques en termes d'indices PCN, sans cependant soumettre

une méthode pour leur détermination.

L'indice PCN est un nombre sans unités, affecté d'un code de 4 lettres apportant les

renseignements suivants:

Tableau III.7 : la capacité portante d'une chaussée souple et rigide.

Type de chaussée Catégorie du support Pression pneumatique Méthode d'évaluation CBR Code (chaussée souple) (chaussée rigide) [MN/m²][-] [-] [%] [MPa] [-] R = rigide A: élevé > 13 > 120 W: pas de limitation U: Expérience B: moyenne 8 .. 13 60 ... 120 X: ≤1.5 F = flexible C: bas 4..8 25 60 Y: ≤ 1.0 T: Technique < 25 D: très bas < 4 Z: ≤ 0.5

• Exemple :

Si la capacité **portante d'une chaussée souple** reposant sur un support d'une basse classe

été déterminée à 49 par une évaluation technique et sans limitation de pression des

pneumatiques, alors l'information reportée doit être

PCN 49/F/C/W/T.

Avec:

PCN: 49

F: Chaussée flexible

75

C: Catégorie de support bas

W: pression pneumatique sans limitation de pression

T : Mode d'évaluation technique

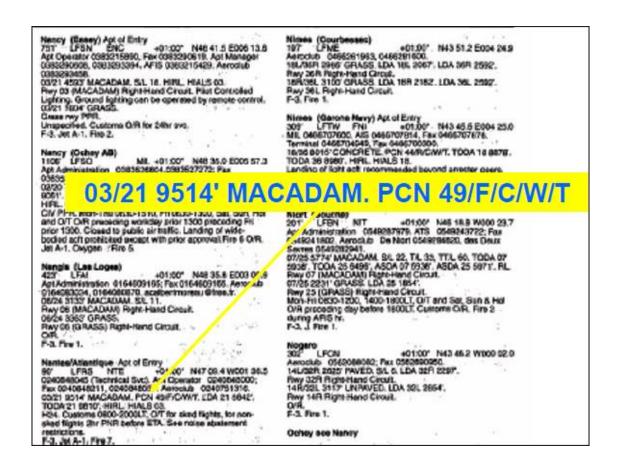
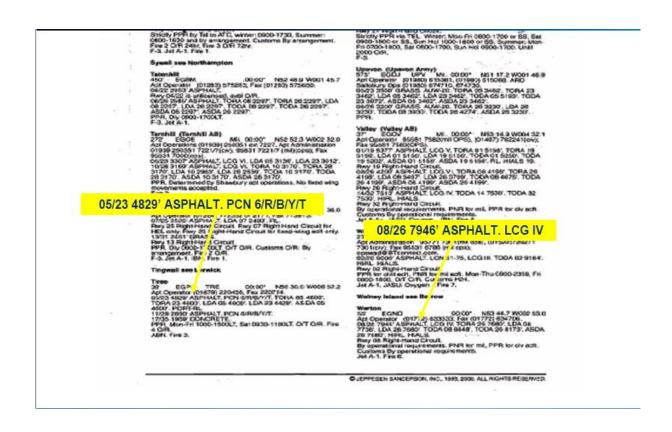


Figure III.3 : Détermination de PCN. [8]

III.3.3 Méthode LCN/LCG:

Certains aéroports utilisent un système britannique d'évaluation des chaussées pour les rapports sur la résistance des pistes, dénommé :


- a. Groupe de classification de charge (LCG) suivi d'un chiffre romain (de I à VII)
- b. Numéro de classification de charge (LCN) basé sur le Système LCG (Load Classification Group).

LCN : « Load classification number » est un nombre exprimant l'effet relatif d'un aéronef sur une chaussée ou la force portante d'une chaussée. Le nombre est obtenu en effectuant des tests de

roulement de plaque sur la chaussée. De même, la charge équivalente sur une seule roue d'un avion peut être exprimée en termes de LCN.

Les aéroports qui utilisent cette méthode se trouvent principalement dans les pays suivants : Mongolie, Myanmar (Birmanie), Nigéria, Afrique du Sud, Turquie, Royaume-Uni et Zimbabwe. [8]

Le système de classification LCG / LCN britannique est basé sur le système LCN original qui a été développé par l'OACI en 1965, avec aucune distinction entre les chaussées en asphalte (flexible) et en béton (rigide). Étant donné que ces deux surfaces réagissent différemment aux charges, les LCN de type LCG ne sont pas considérés comme une mesure très précise de la résistance des chaussées, en particulier pour les chaussées flexibles. [8]

Figure III.4 : Détermination de PCN et LCN utilisée pour un même Aérodrome. [8]

Le nombre LCN/LCG doit être déterminé pour un type d'appareil et comparé à celui de la piste, si le LCN d'une chaussée d'aérodrome est plus grand que le LCN de l'aéronef, l'aéronef peut utiliser la

chaussée en toute sécurité, sinon il doit demander une autorisation aux autorités de l'aérodrome.
[8]

Pour exprimer la capacité de la chaussée en un seul chiffre, la classification de charge standard est présentée comme suit (indiquée dans le **tableau III.7)** :

Tableau III.8: la capacité de chaussée en un seul chiffre. [8]

WHEEL LOADING		TIRE	PRESSUR	
(Lb)	(Kg)	(Psi)	(Kg/cm2)	LCN
10.000	4.500	75	5.27	10
20.000	9.100	80	5.62	20
30.000	13.600	85	5.98	30
40.000	18.600	90	6.33	40
50.000	22.700	95	6.68	50
60.000	27.200	100	7.03	60
70.000	31.800	105	7.38	70
80.000	36.300	110	7.74	80
90.000	40.800	115	8.09	90
100.000	45.400	120	8.44	100

• Exemple:

Pour Déterminer le nombre LCN/LCG pour un avion donné les étapes à suivre sont comme suit :

- ✓ Calculer le poids par roue simple isolée (t/RSI) et le situer sur l'échelle de gauche.
- ✓ Situer la pression des pneumatiques sur l'échelle de droite.
- ✓ Joindre ces deux points. L'intersection avec l'échelle centrale détermine le nombre LCN/LCG.
- ✓ Ce chiffre LCN/LCG ne doit pas être supérieur à celui publié pour la piste.
- ✓ Données :

Le poids par roue simple isolée : 36.5 Lbs ou 16.5t

La pression des pneumatiques : 70 Psi ou 4.5kg/cm²

Donnent: LCN 32 ou LCG IV.

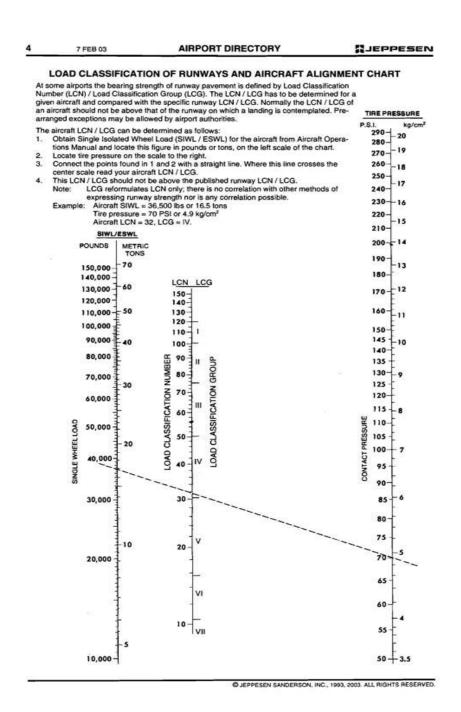


Figure III.5: l'échelle pour déterminer LCN et le LCG. [8]

III.3.4 Méthode atterrisseur-type :

L'ensemble des atterrisseurs constitue le train d'atterrissage. On introduit la fiction de « L'atterrisseur-type » représentatifs de chacun des trois catégories d'atterrisseurs les plus répandus (roue simple, jumelage, bogie) dont l'atterrisseur est l'ensemble des roues montées sur une même jambe. [9]

Les caractéristiques des atterrisseurs-types sont les suivants :

Tableau III.9: Les caractéristiques des atterrisseurs-types. [9]

	Voie	Empattement	Pression des
Atterrisseur type	(cm)	(cm)	pneumatiques
Roue simple			0.6 MPa
jumelage	70		0.9 MPa
Bogie	75	140	1.2MPa

Répartition de la masse sur les atterrisseurs :

- Répartition statique :

La répartition totale de la masse d'un avion entre l'atterrisseur avant et les atterrisseurs principaux est fonction du centrage de l'avion, c'est à dire de la position du contre de gravite, et elle varie peu. En l'absence d'indications, on admettra que la répartition est de 10% sur l'atterrisseur avant (centrage avant maximum) et 95% sur les atterrisseurs principaux (centrage arrière maximum) pour le train d'atterrissage classique. [9]

Effet du freinage :

Les effets dus au freinage ne sont pas pris en compte pour le dimensionnement des chaussées. Ils n'interviennent que pour les études particulières.

• Charge utilisée dans les calculs :

L'atterrisseur principal fournit en général les sollicitations les plus sévères. Dans certains cas, l'atterrisseur secondaire risque d'être le plus critique pour la chaussée (exemple : L'atterrisseur de nez du B-747, l'atterrisseur ventral du DC 10-30). La charge intervient dans les calculs sous forme d'une charge par atterrisseur.

• Charges dues aux avions :

La masse de l'avion est transmise à la chaussée par l'intermédiaire du train d'atterrissage. Le nombre des roues, leur espacement, la pression et les dimensions des pneus déterminent la répartition de la charge de l'avion sur la chaussée [13], cette dernière doit être assez résistance pour supporter les charges appliquées par les roues individuelles. Lorsque les roues sont très rapprochées, comme dans le cas des atterrisseurs à roues jumelées ou à bogies, ou même des jambes adjacentes d'atterrisseurs complexes, les effets des charges appliquées par les roues adjacentes se superposent au niveau du terrain de fondation et aux niveaux intermédiaires. Dans ce cas, la pression réelle est égale à la pression combinée de deux ou plusieurs roues et elle doit être suffisamment atténuée par la structure de la chaussée. Étant donné que celle-ci répartit la charge sur une surface beaucoup plus réduite lorsque la résistance du terrain de fondation est élevée que lorsque cette résistance est faible, l'effet combiné des roues adjacentes est beaucoup moins important pour la chaussée dans le premier cas que dans le second.

• Qualités des chaussées :

Les chaussées doivent résister aux carburants (agressivité des produits) et au souffle (effet dynamique de l'aspiration des réacteurs et effet thermique du souffle chaud des réacteurs). Deux types de qualités sont envisagés :

- Qualités structurelles: conditionnant la portance de la chaussée (capacité à supporter une charge);
- Qualités fonctionnelles : concernant l'état de surface :

• Défauts :

- ✓ Les déformations : flaches (« plaque » arrachée), affaissements, profil en W, ornières...
- ✓ Les fissures dont les bords peuvent s'effriter ou s'épaufrer (épaufrures = arêtes écornées) et le faïençage ;
- ✓ La désagrégation de surface (s'appelant dés enrobage pour un enrobé, plumage pour un enduit, et écaillage pour une dalle en béton ou en ciment) ; peuvent provoquer des éclatements de pneus et des ingestions de débris par les réacteurs ;
 - Uni du profil en long : peut provoquer des accélérations verticales éclatant les pneus ;
 - **Rugosité et d'aliénabilité** : influe sur la capacité à freiner des avions (cf. glissance).

Exemple :

Avion: Le GulfStream

Les limites de poids pour la piste 07/25 pour l'aérodrome de NIORT, France, sont exprimées en milliers de livres pour chaque train principal pour les différentes configurations de roues :

- S / L 22 = 22,000 lb pour une seule roue par jambe (MLG)
- T / L 33 = 33 000 lb pour un pied de roue jumelé ou tandem (MLG)
- TT / L 60 = 60 000 lb pour un pied de roue tandem double (MLG

Étant donné que toutes les limites de charge sur la chaussée publiée supposent que le train D'atterrissage prend en charge 95% de la masse brute de l'avion et que le MLG des avions GulfStream prend en charge 91% de la masse de l'avion, le poids bruts maximum de l'avion Dans l'exemple ci-dessus serait :

- S / L 22 = 44 000 lb + 4% ou 1 760 lb = 45 760 lb
- T / L 33 = 66 000 lb + 4% ou 2 640 lb = 68 640 lb
- TT / L 60 = 120 000 lb + 4% ou 4 800 lb = 124 800 lb

Figure III.6: Configuration de train d'atterrissage. [8]

III.4 Service de sauvetage et lutte contre incendie :

III.4.1 Définitions :

- Mouvement : Chaque décollage et chaque atterrissage
- Trois mois consécutifs de plus fort trafic : La période de trois mois durant laquelle l'aérodrome est fréquenté par les aéronefs des classes les plus élevées.
- Classe d'avions la plus élevée : La classe la plus élevée dont le nombre de mouvement d'aéronefs, cumulé avec celui des classes supérieures dépasse 24 pendant les trois mois consécutifs de plus fort trafic sur l'aérodrome.
- Aéronefs fréquentant normalement l'aérodrome : Trafic constitué par des vols dument programmés transportant des passagers et supérieur à 24 mouvements pendant les trois mois consécutifs de plus fort trafic.

III.4.2 Généralité sur le service SSLIA :

Le Service de Sauvetage et de lutte contre l'incendie des aéronefs a pour objet principal de sauver des vies humaines en cas d'accident ou d'incident d'aéronefs survenant sur l'aérodrome ou à son voisinage, par la mise en place sur les plates-formes aéroportuaires de moyens et d'une organisation adaptés au niveau de protection requis déterminé selon les classes d'aéronefs desservant l'aéroport. Il peut être appelé à participer à la prévention et à la lutte contre les incendies ou autres catastrophes survenant dans les services et installations de l'Aérodrome et à son voisinage.

Le service de sauvetage et de lutte contre l'incendie d'aéronefs dénommé communément sur un aérodrome « Service de Sécurité Incendie et Sauvetage » ou SSIS est assuré sur les aérodromes ouverts à la circulation aérienne publique. Il est placé sous l'autorité du Commandant d'aérodrome.

III.4.3 La méthode d'évaluation de niveau de protection de l'Aérodrome :

D'après la DACM, le niveau de protection a assuré à un aérodrome en ce qui concerne le sauvetage et la lutte contre l'incendie correspondra à la catégorie d'A\D en tenant compte de :

- La longueur hors tout et de la largeur du fuselage des avions.
- La fréquence de leurs mouvements sur l'aérodrome.

Ce niveau de protection est publié dans le manuel d'information aéronautique AIP Algérie Les classes des avions permettant de déterminer les catégories d'aérodromes qui sont au nombre de 10 et regroupent par ordre croissant les avions en fonction de leur longueur hors tout et de la largeur du fuselage conformément au tableau 1 de l'Annexe 5.

Si après avoir établi la classe correspondante à la longueur hors tout d'un avion, il apparait que la largeur du fuselage est supérieure à la largeur maximale indiqué pour cette classe, l'Avion est classé dans la classe immédiatement supérieure.

Lorsque le nombre de mouvements d'avion prise en compte de la classe la plus élevée est égale à 700 mouvements pendant les trois mois consécutifs de plus fort trafic, la catégorie correspondante à cette classe est adoptée. [10]

Lorsque le nombre est inférieur à 700, la catégorie adoptée est la catégorie inférieure à celle qui correspond à la classe des avions les plus longs pris en compte et fréquentant normalement l'aérodrome.

Occasionnellement, lorsque le nombre de mouvements de l'avion qui fréquente normalement l'aérodrome est inférieur ou égale à 24 mouvements, la catégorie adoptée est la catégorie inférieure à deux catégories à celle qui correspond à la classe de cet avion. [10]

Est rangé dans la classe d'avion qui correspond à sa longueur hors tout divisés par trois, tous avions effectuant un mouvement dans le cadre d'une des opérations aériennes suivantes :

- Transport de fret ou de courrier exclusivement ;
- Vol d'essai ou vol de réception ;
- Vol de travail aérien, vol d'entraînement et de mise en place.

Le niveau de protection et ses éventuelles modulations programmées en fonction des variations de Traffic sur l'aérodrome sont portés à la connaissance des usagers de notre espace aérien par voie d'information aéronautique. [10]

III.4.4 Emploi et niveau de protection :

Les aérodromes doivent être dotés de service de matériel de sauvetage et de lutte contre Incendie. Les aérodromes situés près d'étendues d'eau ou de marécages ou en terrain difficile audessus desquels s'effectue Une portion appréciable des approches ou des départs disposeront de services de sauvetage et de matériel d'incendie Spécialisés appropriés au danger ou au risque.

Il n'est pas indispensable de mettre en œuvre un matériel spécial de lutte contre incendie dans le cas des entendus d'eau ; néanmoins, ce matériel peut être mis en œuvre là où il pourrait être d'une utilisé pratique. En effet, l'objectif est de prévoir et de mettre en œuvre le plus rapidement possible le nombre de dispositifs de flottaison nécessaire compte tenu de l'avion le plus gros qui utilise normalement l'aérodrome.

La catégorie d'aérodrome doit être déterminée à l'aide du tableau (III-9) et doit être fondée sur la longueur et la largeur du fuselage des avions les plus longs qui utilisent normalement l'aérodrome. En effet, pour classer les avions qui utilisent l'aérodrome, il faut évaluer premièrement leur longueur hors tout et, deuxièmement, la largeur de leur fuselage.

Tableau III.10 : catégorie d'aérodrome pour le sauvetage et lutte contre incendie. [2]

Catégorie SSLIA	Longueur avion	Largeur maximum fuselage
1	0 à 9 m non inclus	2
2	9 à 12 m non inclus	2
3	12 à 18 m non inclus	3
4	18 à 24 m non inclus	4
5	24 à 28 m non inclus	4
6	28 à 39 m non inclus	5
7	39 à 49 m non inclus	5
8	49 à 61 m non inclus	7
9	76 à 90 m non inclus	7
10	76 à 90 m non inclus	8

La catégorie SSLIA requise pour chaque type d'avion exploitée par AIR ALGERIE est classée comme suit :

Tableau III.11: la catégorie SSLIA requise par chaque type d'avion en fonction des divers Paramètres.

Type avion	Longueur hors tout	Largueur maxi du	Catégorie SSLIA
	d'avion	fuselage	
A330-202	58.82 m	5.64 m	8
B737-600	31.24 m	3.76 m	6
B737-700C	33.63 m	3.76 m	6
B737-800	39.5 m	3.65 m	7
ATR72-212A	27.16 m	4.5 m	5

III.4.5 Les moyens personnel et matériel des SSLIA :

Le Service de Sécurité Incendie et Sauvetage est doté sur un aérodrome d'infrastructures, de moyens en personnel, en produits extincteurs, en véhicules de lutte contre l'incendie et en matériels [3] conformément aux tableaux (III.11) et (III-12) suivants :

Tableau III.12: Quantités minimales d'agents extincteurs utilisables. [2]

Catégorie d'aérodrome	Eau (Litres)	Débit solution de mousse / minute (litres)	Poudres (KG)
1	230	230	45
2	670	550	90
3	1200	900	135
4	2400	1800	135
5	5400	3000	180
6	7900	4000	225
7	12100	5300	225
8	18200	7200	450
9	24300	9000	450
10	32300	11200	450

NOTE:

- Les quantités d'eau indiquées dans les colonnes 2 et 3 sont fondées sur la longueur hors toute moyenne des avions d'une catégorie donnée. Dans les cas où il est prévu des opérations faisant appel à un avion de taille supérieure à la moyenne, il faudrait recalculer les quantités d'eau. On peut utiliser tout autre agent complémentaire offrant un pouvoir extincteur équivalent.
- Les moyens en personnels et véhicules figurant dans le tableau ci-dessous doivent être mis en place dans au moins un des postes d'incendie dont peut être dote l'aérodrome.

Tableau III.13 : Nombre minimum de véhicules et personnels par poste d'incendie implanté sur l'aérodrome requis. [2]

Niveau SSLIA	Nombre de véhicules	Nombre de personnels
1		l agent SSLIA
2	1	1 conducteur
3	1	1agent SSLIA + 2 conducteurs+ 1 chef d'équipe
4	1	lagent SSLIA + 2 conducteurs+ 1 chef d'équipe
5	1	1agent SSLIA + 2 conducteurs+ 1 chef d'équipe
6	2	2 agents SSLIA + 2 conducteurs+ 1 chef d'équipe
7	2	2 agents SSLIA + 2 conducteurs+ 1 chef d'équipe
8	3	3 agents SSLIA + 3 conducteurs+ 1 chef d'équipe
9	3	3 agents SSLIA + 3 conducteurs+ 1 chef d'équipe
10	3	3 agents SSLIA + 3 conducteurs+ 1 chef d'équipe

Conclusion:

Dans le but d'assurer un déroulement optimal du vol, l'étude d'accessibilité des aérodromes concernés doit passer d'abord par une bonne connaissance des différentes contraintes. Cette connaissance permet également de confirmer ou d'infirmer l'adéquation d'un aérodrome.

Introduction:

La préparation d'un vol, consiste à partir des grandes lignes comme nous l'avons vu dans le

chapitre précédent, puis à progressivement entrer dans le détail de la navigation. En

conséquence certaines questions vont se poser concernant l'avion utilisé pour une telle

destination, les aérodromes de dégagement sur le trajet, la distance à parcourir, les obstacles

sur le trajet, les exigences correspondantes, moyens radio et de navigation disponibles et

également les cheminements possibles...etc.

Dans ce chapitre nous allons répondre à ces questions tout en étudiant le cas pour le vol Alger

Tamanrasset « ALG-TMR ».

IV.1 le briefing de préparation de vol :

Dans notre cas, le briefing de préparation de vol est destiné pour un vol régional « IFR », le

12/07/20 d'Alger vers Tamanrasset et l'aéronef utilisé pour effectuer ce vol est le B737-

800 sous l'immatriculation « 7T-Vkk ».

Toutes les informations nécessaires pour effectuer ce vol sont représentées dans les annexes

1, 3,4, et 5.

L'action préalable du vol est de choisir les aérodromes de départ, d'arrivée, ainsi que les

aérodromes de dégagement qui sont :

Aérodrome de départ : l'aérodrome d'Alger « Houari Boumediene »

Aérodrome d'arrivée : l'aérodrome de Tamanrasset « Aguenar – Hadj Bey Akhamok »

Aérodromes de dégagement :

1. Aérodrome d'Oran « Ahmed Ben Bella »

2. Aérodrome d'Adrar « Touati-cheikh Sidi Mohamed Belkebir »

3. Aérodrome de Djanet « Tiska »

90

IV.1.1 Étude d'accessibilité :

IV.1.1.1 présentation des aérodromes :

• Aérodrome de départ : Aérodrome d'Alger « Houari Boumediene »

Tableau IV.1 : Présentation de l'aérodrome international d'Alger « **Houari Boumediene ».** [11]

Aéroport international d'Alger Houari Boumediene					
	Informations générales				
	Localisa	tion : Alger			
	Code OACI/IA	ATA: DAAG/ALG			
	Coordonnées géographiq	ues : N36° 41.7′, E003° 13.0′			
	Altitude / température d	e référence : 25 M / 30,6°C.			
	Usage de l'a	éroport : public			
	Type de l'aéı	oport : IFR/VFR			
	Niveau de prot	ection du SSLIA : 9			
	Caractéristic	ques de la piste			
Numéro de piste	09/27	05/23			
Longueur*largeur	3500 m * 45 m	3500 m*60 m			
Type de surface	Asphalte	Béton bitumineux			
PCN	75 F/D/W/T	78 f/D/W/T			
Heures de fonctionnement					
Service de la c	irculation aérienne	H24			
Avitailleme	nt de carburant	H24			

• Aérodrome d'arrivée : Aérodrome de Tamanrasset « Aguenar – Hadj Bey Akhamok »

Tableau IV.2 : Présentation de l'aérodrome international de Tamanrasset « Aguenar – Hadj Bey Akhamok ». [11]

Aérodrome de Tamanrasset Aguenar-Hadj Bey Akhamok					
	Informations générales				
	Localisation :3,6 NM	au Sud-oues	t de la ville.		
	Code OACI/IA	NTA: DAAT/T	MR		
	Coordonnées géographi	ques : 22484	ON 005 27 03 ^E		
A	Altitude / température de r	éférence : 13	377 Mètres / 29°C		
	Usage de l'aéroport : Public				
Type de l'aéroport : IFR/VFR					
Niveau de protection du SSLIA : 8					
Caractéristiques de la piste					
Numéro de piste	02/20		08/26		
Longueur*largeur	3600 m * 45 m	1	3150 m*45 m		
Type de surface	Béton bitumine	ıx	Béton bitumineux		
PCN 33 F/B/W/T		50 F/B/W/T			
Heures de fonctionnement					
Service de la c	irculation aérienne		H24		
Avitailleme	ent de carburant		H24		

• Aérodromes de dégagement : Aérodrome d'Oran « Ahmed Ben Bella » :

Tableau IV.3 : présentation de l'aérodrome d'Oran « Ahmed Ben Bella ». [11]

Aérodrome d'Oran Ahmed Ben Bella					
	Informations générales				
	Localisation: 4,7	NM au sud o	de la ville		
	Code OACI/IA	TA: DAOO/	ORN		
	Coordonnées géographi	ques : 35373	38N 0003641W		
	Altitude / température	de référenc	e :91 M /32°C		
	Usage de l'a	éroport : Pu	blic		
Type de l'aéroport : IFR/VFR					
	Niveau de prot	ection du SS	LIA : 8		
	Caractéristic	ques de la pi	ste		
Numéro de piste	07 L /25 R		07 R/25 L		
Longueur*largeur	3600 m * 45 m	١	3000 m*45 m		
Type de surface	Béton bitumine	ıx	Béton bitumineux		
PCN	62 F/B/W/T		113 F/A/W/T		
Heures de fonctionnement					
Service de la c	irculation aérienne		H24		
Avitailleme	ent de carburant		H24		

✓ Aérodrome d'Adrar « Touati-cheikh Sidi Mohamed Belkebir » :

Tableau IV.4 : présentation de l'aérodrome d'Adrar « Touati-cheikh Sidi Mohamed Belkebir ». [11]

Aérodrome d'Adrar Touat-Cheikh Sidi Mohamed Belkebir					
	Informations générales				
	Localisation : 6NM	au Sud Est de la ville.			
	Code OACI/IA	ATA: DAUA /AZR			
	Coordonnées géographi	ques : 275021N 0001107W			
	Altitude / température	de référence : 280 M/ 40°C			
	Usage de l'a	éroport : Public			
	Type de l'aéroport : IFR/VFR				
	Niveau de prot	ection du SSLIA : 7			
	Caractéristiques de la piste				
Numéro de piste		04/22			
Longueur*largeur		3000 m * 45 m			
Type de surface		Béton bitumineux			
PCN	PCN 60 F/A/W/T				
Heures de fonctionnement					
Service de la c	irculation aérienne	H24			
Avitailleme	nt de carburant	H24			

✓ Aérodrome de Djanet« Tiska » :

Tableau IV.5 : présentation de l'aérodrome de Djanet « Tiska ». [11]

Aérodrome de Djanet Tiska					
	Informations générales				
	Localisation: 19 N	NM au Sud c	de la ville		
	Code OACI/IA	ATA:DAAJ/	DGJ		
	Coordonnées géographi	ques : 2417	35N 0092707 E		
	Altitude / température o	le référence	: 966 M / 38°C		
	Usage de l'a	éroport : Pu	blic		
	Type de l'aér	oport : IFR/	VFR		
	Niveau de protection du SSLIA : 8				
	Caractéristiques de la piste				
Numéro de piste	Numéro de piste 12/30 02/20				
Longueur*largeur	3000 m * 45 m 2400 m		2400 m*45 m		
Type de surface	Type de surface Béton bitumineux Béton bitumineux				
PCN 54 F/B/W/T			51 F/B/W/T		
Heures de fonctionnement					
Service de la circulation aérienne			H24		
Avitaillement de carburant 0600/1800			0600/1800		

IV.1.2 Description d'aéronef :

Avant chaque vol l'aéronef concerné doit répondre aux différentes contraintes concernant le vol quel que soit les circonstances. Donc certains paramètres doivent être déterminés tels que :

- ✓ Les performances maximales
- ✓ Vitesses caractéristiques
- ✓ Limitations structurales
- ✓ Limitations pistes

L'aéronef utilisé pour effectuer cette étude est le B737-800 sous l'immatriculation 7T-VKK

> La route choisie dans ce vol :

DAAG RWY 27 BSA1B BSA UM989 GHA UA615 DAAT

IV.1.2.1 Les performances maximales :

Tableau IV.6: Les performances maximales de B737/800. [4]

Performances maximales				
Vitesse de croisière	Mach 0.78 (828km/h)			
Vitesse maximale	Mach 0.82 (876 Km/h)			
VMO	340 Knots			
Autonomie à pleine charge	3115 NM (5765 Km)			

IV.1.2.2Les vitesses caractéristiques :

Tableau IV.7: Les vitesses caractéristiques de B737/800. [4]

Vitesses caractéristiques de B737-800			
Vitesse de décollage 290 km/h			
Vitesse d'atterrissage	283 km/h		

IV.1.2.3 limitations structurales:

Les limitations structurales sont définies par le constructeur de l'avion en fonction des calculs de résistance des matériaux qui ont été élaborés lors de la conception de l'avion.

Tableau IV.8: Les limitations structurales de B737/800. [4]

Poids	Kg
MTW	7060
MTOW	79015
MLW	65317
MZFW	62731

IV.1.2.4 limitations pistes:

Le premier impératif est de vérifier que l'on pourra arrêter l'avion avant le bout de la piste sur laquelle on envisage d'atterrir. Et pour cette limitation, la panne d'un moteur aura peu d'influence. Néanmoins, sur B737-800, pour l'atterrissage avec un moteur en panne, c'est la configuration volets 15 qui sera préconisée par la check-list secours, ce qui pourra avoir une incidence sur une piste particulièrement courte. Donc il faut vérifier les conditions dans lesquelles sont établies les performances qui vont nous permettre de déterminer la limitation liée à la piste, c'est-à-dire sa longueur, son altitude, et les conditions météorologiques du jour

Tableau IV.9: Les valeurs de l'ACN du B737-800

		Pression	Piste	rigide	2		Piste	flexib	le	
	Masse AC	pneumatique								
Type d'aéronef	En Kg	kg/cm2	А	В	С	D	А	В	С	D
B737-800 (B27)	79333	14.38	49	52	54	56	43	45	50	55
	41413		23	24	25	27	20	21	22	26

Tableau IV.10: Caractéristique physiques de piste pour l'accueil du B737/800

Largeur minimale de la piste	Largeur minimale de voie de circulation	
45m	15m	

IV.1.3 Bilan météorologiques :

Le pilote doit prendre connaissance des dernières informations météorologiques pendant être :

- Pendant la préparation du vol
- Avant le départ de la porte d'embarquement
- Pendant le vol en croisière

• Avant la procédure d'arrivée

Il faut lire toutes les données météorologiques proposées et vérifier la période de validité des cartes à chaque fois :

- METAR / SPECI
- TAF
- TEMSI
- SIGMET
- Cartes des Vent en Route
- Cartes facultatives :
 - ✓ Cartes synoptiques (analyse de surface)
 - ✓ Météorologie Satellite (visible, infrarouge)
 - ✓ Cartes Radar

IV.1.4 Bilan carburant:

La règlementation impose que le carburant embarqué comprend :

- DEST : Délestage carburant au lâcher les freins jusqu'à l'atterrissage
- R.R: Reserve de route, un pourcentage (5% DEST)
- ALT XXXX : Code OACI du terrain et la quantité de carburant pour le dégagement
- **HOLD**: Attente de 30 minutes au niveau de 1500 ft dans les conditions standard pour la masse maximale à l'atterrissage ;
- XTR : Carburant supplémentaire pour l'étape de retour (FUEL TAKERING)
- **TOF** : Quantité de carburant au lâcher des freins

TOF=DEST+R.R+ALT+HOLD+XTR

- TAXI : Quantité de carburant pour le roulage
- BLOCK : Quantité de carburant emporté

BLOCK=TOF+TAXI

Dans notre cas, la quantité estimée de carburant est distribuée comme suite : « donner par le système JETPLAN »

✓ **DEST**: 5317Kg

✓ **R.R**: 266 kg

✓ ALT DAUA : 2633 Kg

✓ **HOLD**: 1200 kg

✓ XTR: 0000 Kg

✓ **TOF**: 9416 Kg

✓ TAXI: 150 Kg

✓ **BLOCK**: 9566 Kg

Remarque : La cartouche de bilan fuel estimé donner par le système JETPLAN (voir Annexe

6)

IV.1.5 Documentations à bord :

Carnet de route :

Document sur lequel sont portés les renseignements relatifs à l'aéronef, à l'équipage et à chaque voyage. Il doit être rempli et signé par le commandant de bord à l'issue de chaque vol et son emport est obligatoire si l'atterrissage est prévu sur un aérodrome extérieur

Certificat immatriculation (CL) :

Pièce d'identité de l'avion, sur ce document figure le nom du propriétaire de l'appareil, il prouve la nationalité de l'avion inscrit au registre national. Les règles d'immatriculations sont définies par l'OACI. L'immatriculation se compose de lettres qui identifient le pays d'immatriculation, suivies de lettres ou de chiffres distinctifs pour chaque avion. L'immatriculation est l'inscription officielle.

Exemple: TJ-DERF, le "TJ" indique l'immatriculation au Cameroun

Certificat de navigabilité (CND).

Tout aéronef employé à la navigation internationale doit être muni d'un certificat de navigabilité délivré ou validé par l'État dans lequel il est immatriculé.

Certificat de Limitation de Nuisance (CLN) :

La convention de Chicago classe les aéronefs en fonction du bruit produit. Chaque aéronef doit disposer d'un certificat individuel de limitation des nuisances sonores et d'un deuxième certificat constatant le respect effectif à chaque visite d'entretien.

- Licence de Station d'Aéronef (LSA): Si appareils radioélectriques à bord : permet
 l'utilisation des émetteurs radio à bord de l'avion
- Carnet de vol : Document sur lequel sont inscrites la nature et la durée des vols effectués par le pilote. Il est indispensable tout au long de la carrière de pilote pour :
 - Le renouvellement de la licence de pilote ;
 - Les nouvelles qualifications

IV.2 Vérification d'adéquation

À partir des données précédentes mentionnées dans ce chapitre, nous allons vérifier la faisabilité de vol et donc l'accessibilité de chacun des aérodromes de destination et de dégagement, dans le but d'assurer la sécurité pour garantir le succès de vol.

La vérification de cette accessibilité se fait par rapport à l'aéronef un « B737-800 », et elle se résume dans les tableaux ci-dessous :

IV.2.1 Aérodrome de Tamanrasset :

Avant de commencer la vérification et à partir de données du plan de vol de jour j, nous avons considéré que la quantité requise de carburant est vérifiée durant toute la période du vol, ainsi les conditions météorologie « vérifier les NOTAM's et les TAF's ». (Voir Annexe 1 et 6)

Vérification des caractéristiques liées à l'infrastructure :

Tableau IV.11 : la vérification des largeurs et résistance des voies de circulation pour DAAT

Largeur des voies de	25 m	Adéquat	
circulation			
La résistance des voies de	PCN 56 F/B/W/T	Adéquat ACN 45 F/B	
circulation			

Tableau IV.12 : la vérification des dimensions et résistance de la piste pour DAAT

Piste			Adéquation
02/20	Longueur	3600 m	Adéquat
	Largeur	45 m	Adéquat
	PCN	56 F/B/W/T	Adéquat ACN 45 F/B
08/26	Longueur	3150 m	Adéquat
	Largeur	45 m	Adéquat
	PCN max	48 R/A/W/T	Non adéquat ACN 49 R/A

Remarque:

D'après les deux tableaux précédents on constate que :

- ✓ La largeur des voies de circulation de DAAT «25 m » est supérieur à la largeur minimale de voie de circulation du B737-800 qu'a une valeur de 15 m
- ✓ Le PCN max des voies de circulation de l'aérodrome de DAAT est nettement supérieur à l'ACN du B737-800
- ✓ Le PCN max de la piste 02/20 de l'aérodrome de DAAT est nettement supérieur à l'ACN du B737-800
- ✓ Le PCN max de la piste 08/26 de l'aérodrome de DAAT est inférieur à l'ACN du B737-800 donc il faut calculer la masse admissible :

$$Pt = m - (M-m) x (PCN-ACN min) / (ACN max - ACN min)$$

Avec:

Pt = la masse admissible

M = la masse maximale de l'avion en kg

m = la masse minimale de l'avion en kg

$$Pt = 41.413 + (79333 - 41.413) \times (48-23) / (49-23)$$

Pt = 77810 kg

Vérification de service de sauvetage et lutte contre incendie :

Tableau IV.13: Vérification de SSLIA pour DAAT

	DAAT	B737-800
Catégorie d'aérodrome	CAT 8	Adéquat CAT 7
Les équipements Oui, CAT 8		Adéquat

Remarque:

D'après le tableau IV.13 on constate que :

✓ Le service SSLIA de DAAT à un niveau de protection nettement supérieur à celui requis pour un B737/800 qu'a une valeur égale à 7 tandis que l'aérodrome de DAAT à une catégorie égale à 8.

IV.2.2 Aérodrome d'Oran:

Vérification des caractéristiques liées à l'infrastructure :

Tableau IV.14 : la vérification des largeurs et résistance des voies de circulation pour DAOO

Largeur des voies de	25 m	Adéquat	
circulation			
La résistance des voies de	PCN 113 F/A/W/T	Adéquat ACN 43 F/A	
circulation			

Tableau IV.15 : la vérification des dimensions et résistance de la piste pour DAOO

Piste			Adéquation
07 L/25 R	Longueur 3600 m		Adéquat
	Largeur	45 m	Adéquat
	PCN	62 F/B/W/T	Adéquat ACN 45 F/B
07 R /25 L	Longueur	3000 m	Adéquat
	Largeur	45 m	Adéquat
	PCN max	113 F/A/W/T	Adéquat ACN 43 F/A

Remarque:

D'après les deux tableaux précédents on constate que :

- ✓ La largeur des voies de circulation de DAAO «25 m » est supérieur à la largeur minimale de voie de circulation du B737-800 qu'a une valeur de 15 m
- ✓ Le PCN max des voies de circulation de l'aérodrome de DAAO est nettement supérieur à l'ACN du B737-800
- ✓ Le PCN max de chaque piste de l'aérodrome de DAAO est nettement supérieur à l'ACN du B737-800

- Vérification de service de sauvetage et lutte contre incendie :
 - ➤ Tableau IV.16 : Vérification de SSLIA pour DAOO

	DAOO	B737-800
Catégorie d'aérodrome	CAT 8	Adéquat CAT 7
Les équipements	Oui, CAT 8	Adéquat

Remarque:

D'après le tableau IV.16on constate que :

✓ Le service SSLIA de DAOO à un niveau de protection nettement supérieur à celui requis pour un B737/800 qui est d'une valeur de 7 tandis que l'aérodrome de DAAT à une catégorie égale à 8

IV.2.3 Aérodrome d'Adrar:

Vérification des caractéristiques liées à l'infrastructure :

Tableau IV.17 : la vérification des largeurs et résistance de voies de circulation pour DAUA

Largeur de voies de circulation	25 m	Adéquat
La résistance de voies de circulation	PCN 60 F/A/W/T	Adéquat ACN 43 F/A

Chapitre IV : Étude de cas d'adéquation pour le vol « ALG/TMR »

Tableau IV.18: la vérification de la résistance et les dimensions de la piste pour DAUA

	Piste	Adéquation	
	Longueur	3000 m	Adéquat
	Largeur	45 m	Adéquat
04/22	PCN	0 à 300 m 58 R/B	Adéquat ACN 52 R/B
		300 à 2700 m 60 F/A	Adéquat ACN 43 F/A
		2700 m à 3000 m 58 R/B	Adéquat ACN 52 R/B

Remarque:

D'après les deux tableaux précédents on constate que :

- ✓ La largeur de voie de circulation de DAUA « 25m » est supérieure à la largeur minimale de voie de circulation du B737-800 qu'a une valeur de 15 m.
- ✓ Le PCN max des voies de circulation de l'aérodrome de DAUA est nettement supérieur à l'ACN max du B737-800.
- ✓ Le PCN max De la piste de l'aérodrome de DAUA est nettement supérieur à l'ACN du B737-800.

Vérification de service de sauvetage et lutte contre incendie :

Tableau IV.19: Vérification de SSLIA pour DAUA

	DAUA	B737-800
Catégorie d'aérodrome	CAT 7	Adéquat CAT 7
Les équipements	Oui, CAT 7	Adéquat

Chapitre IV : Étude de cas d'adéquation pour le vol « ALG/TMR »

Remarque:

D'après le tableau IV.19 on constate que :

✓ Le niveau de protection de DAUA est adéquat avec celui requis pour un B737-800 d'une catégorie égale à 7 pour chacun.

IV.2.4 Aérodrome De Djanet :

➤ Vérification des caractéristiques liées à l'infrastructure :

Tableau IV.20 : la vérification des largeurs et résistance de voies de circulation pour DAAJ

Largeur de voies de circulation	B1 C1	25 m	Adéquat
	A1 A2		
La résistance de voies de circulation	B1 C1	PCN	Adéquat
		54 F/B/W/T	ACN 45 F/B
	A1 A2	PCN	Adéquat
		54 F/B/W/T	ACN 45 F/B

Tableau IV.21 : la vérification de la résistance et les dimensions de la piste pour DAAJ

	Piste	Adéquation	
12/30	Longueur 3000 m		Adéquat
	Largeur	45 m	Adéquat
	PCN	54 F/B/W/T	Adéquat ACN 45 F/B
02/20	Longueur	2400m	Adéquat
	Largeur	45 m	Adéquat
	PCN	51 F/B/W/T	Adéquat ACN 45 F/B

Remarque:

D'après les deux tableaux précédents on constate que :

- ✓ La largeur des voies de circulation de DAAJ «25 m » est supérieur à la largeur minimale de voie de circulation du B737-800 qui d'une valeur de 15 m
- ✓ Le PCN max des voies de circulation de DAAJ est nettement supérieur à l'ACN max du B737-800
- ✓ Le PCN max de chaque piste de l'aérodrome de DAAJ est nettement supérieur à l'ACN max du B737-800
- Vérification de service de sauvetage et lutte contre incendie :

Tableau IV.22 : Vérification de SSLIA pour DAAJ

	DAAJ	B737-800
Catégorie d'aérodrome	CAT 8	Adéquat CAT 8
Les équipements	Oui, CAT 8	Adéquat

Remarque:

D'après le tableau IV.22 on constate que :

✓ Le service SSLIA de DAAJ à un niveau de protection nettement supérieur à celui requis pour un B737/800 qui est d'une valeur de 7 tandis que l'aérodrome de DAAJ à une catégorie égale à 8

Conclusion:

Dans ce chapitre, nous avons pu appliquer nos connaissances théoriques à fin d'étudier la faisabilité opérationnelle de vol ALG/TMR, cette étude a été accompagné par une étude de performance de l'appareil B737/800utilisé dans ce vol. Après cette étude opérationnelle, on peut confirmer l'adéquation des aérodromes concernés DAAT, DAOO, DAUA et DAAJ.

Chapitre V:

Élaboration de la base de données et validation des résultats

Introduction:

Les agents techniques d'opérations aériennes au niveau de la compagnie **AIR ALGERIE** supervisent l'ensemble des vols de la flotte exploitée par la compagnie, leur rôle est d'assurer la préparation et la faisabilité des vols tout en assurant la **sécurité**, et donc cette opération va prendre du temps. Pour arriver à solutionner un problème de ce genre, nous avons proposé **un outil informatique** qui leur permettra de mieux préparer les vols d'une manière **sûre** et **efficace**.

L'objectif de ce chapitre est la présentation de notre application ainsi son fonctionnement. Pour cela nous allons entamer des exemples sur la vérification d'accessibilité des divers aérodromes en fonction des contraintes qui nous devons prendre en compte avant chaque étude d'adéquation pour n'importe quel aéroport tels que : la piste, la résistance de chaussée, le nombre ACN, catégorie SSLIA et performances aéronefs.

V.1.Description de langage de programmation Delphi :

Le Delphi est d'abord un langage de programmation de haut niveau orienté objet, mais aussi un environnement de développement intégré (EDI) fonctionnant sur Windows. C'est une interface qui aide les programmeurs dans leur développement de logiciels exécutables. Ce langage a su se démarquer des autres langages comme C ou C++ par son effort de simplicité et de gain de productivité pour le développeur. Avec des temps de compilation record et une absence de séparation entre l'implémentation et l'interface

Delphi est un langage qui permet la programmation modulaire, c'est aussi un générateur de programme à partir de dépôt de composants visuel prêt, facilitant ainsi la création, la modulation et le control des applications.

Un projet en Delphi comporte deux structures :

- ✓ La partie visuelle du programme ;
- ✓ La partie code du programme avec les procédures et les fonctions du programme.

V.2 Description de l'application :

Une application simple de conception qui permet aux agents des opérations aériennes d'AIR ALGERIE de vérifier l'adéquation des aérodromes par rapport aux aéronefs exploités tout en respectant les différentes contraintes opérationnelles.

L'application comporte une interface et une base de données.

V.2.1 L'interface d'utilisation :

Il suffit de faire un clic sur une icône qui comporte le logo d'AIR ALGERIE pour accéder à l'application.

Figure V.1 : Icone de démarrage de l'application

Une interface principale de calcule des accessibilités apparait ci-dessous « Figure V.2 »

Figure V.2: L'interface d'utilisation

- L'application contient aussi trois LABEL principale :
 - ✓ Label pour sélectionner l'aérodrome :

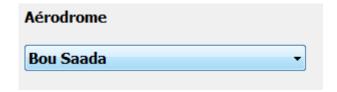


Figure V.3: Label pour sélectionner l'aérodrome

✓ Label pour sélectionner la Piste :

Figure V.4: Label pour sélectionner la piste

✓ Label pour sélectionner l'aéronef :

Figure V.5: Label pour sélectionner l'aéronef

L'interface pour l'affichage des données aérodromes, aéronefs et pistes « voire la figure V.6 »

Figure V.6 : Affichage des caractéristiques des aérodromes, aéronefs et pistes.

> La barre de menu :

Figure V.7: Le menu de l'application

Contient les éléments suivants :

✓ Fichier :

Partie aérodrome :

Permet d'ajouter ou supprimer un aérodrome ou une piste. (Voir figure V.8)

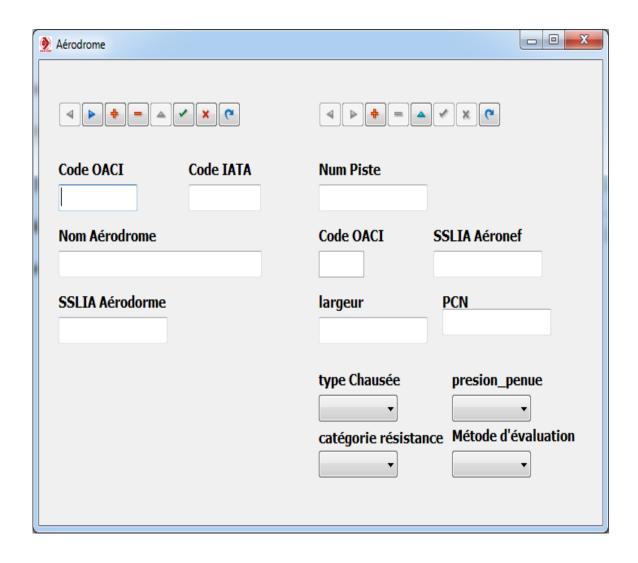


Figure V.8: ajout d'un aérodrome

• Partie aéronef :

Permet d'ajouter ou supprimer un aéronef ou un ACN. (Voir figure V.9)

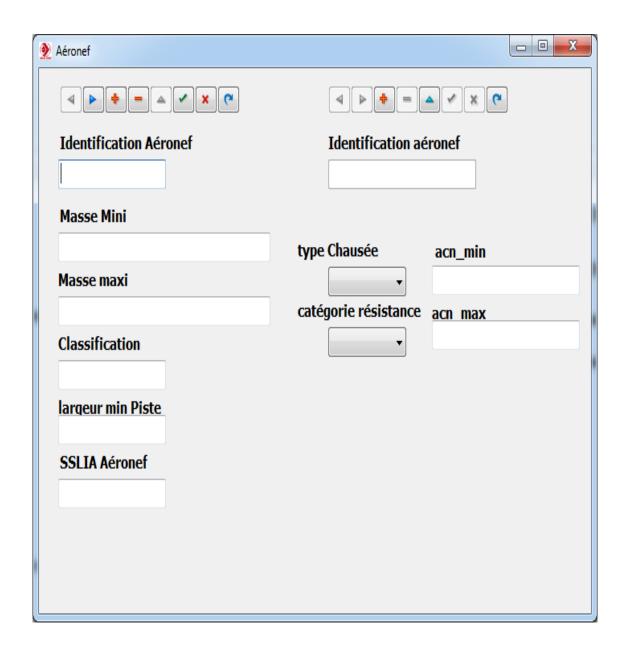


Figure V.9: ajout d'un aéronef

✓ TAF/METAR:

Permet de vérifier les messages d'observations ou de prévisions par l'accès du site

V.3.Base de données:

Base de données (que nous nommerons BDD par commodité) est une collection d'informations organisées afin d'être facilement consultables, gérables et mises à jour. Au sein d'une data base, les données sont organisées en lignes, colonnes et tableaux. Elles sont indexées afin de pouvoir facilement trouver les informations recherchées à l'aide d'un logiciel informatique. Chaque fois que de nouvelles informations sont ajoutées, les données sont mises à jour, et éventuellement supprimées.

La base de données de l'application est sous le format ACCESS, contient les informations suivantes :

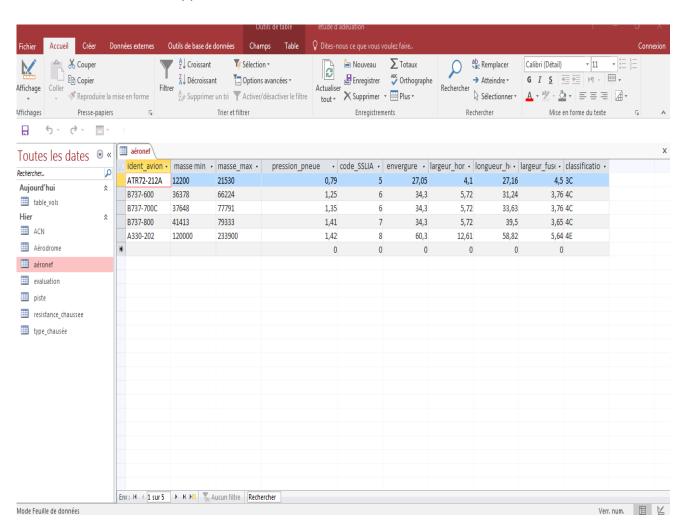
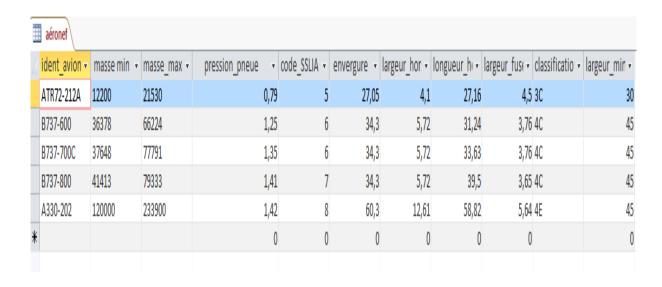


Figure V.10 : Base de données de l'application

V.3.1 Table aérodromes :

Contient tous les aérodromes algériens exploités par Air Algérie et peut être modifiée :

Tableau V.1: Table d'aérodrome


code_oaci 🔻	code_lata +	nom_aéroport -	horaire_foncti -	fuel +	code_sslia 🕶
DAAD	BUJ	Bou Saada	7 h à 16 h	non	5
DAAE	BJA	Abane Ramdane	24 h	24 h	7
DAAG	ALG	Houari Boumediene	24 h	24 h	9
DAAJ	DjG	Tiska	24 h	6 h à 18 h	8
DAAP	VVZ	takhamalt	8 h à 16 h	7 h à 15 h	7
DAAS	QSF	8 mai 1945	24 h	24 h	6
DAAT	TMR	hadj bey akhamok	24 h	24 h	8
DAAV	GJL	Ferhat Abbas	6 h à 18 h	non	6
DABB	AAE	Rabah Bitat	24 h	24 h	9
DABC	CZL	Mohamed boudiaf	24 h	24 h	8
DABS	TEE	cheikh larbi tebssi	6 h à 18 h	6h à 18 h	5
DABT	BLJ	Moustepha ben boulaid	24 h	oui	7
DAOB	TID	abdelhafid boussouf bou cheikh	6 h à 18 h	6 h à 15 h	5
DAOF	TIN	tindouf	24 h	24 h	8
DAOI	CFK	chlef	6 h à 18 h	selon le programme	6
DAON	TLM	zenata messali el hadj	24 h	24 h	7
DAOO	ORN	Ahmed benbella	24 h	24 h	8
DAOR	CBH	Boudghene Ali Lotfi	24 h	24 h	7
DAOV	MUW	GHRISS	7 h à 15h	non	3
DAOY	EBH	El baydh	8 h à 16 h	non	4
DATG	INF	In Guezzam	6 h à 15 h	non	5
DATM	BMW	Bordj mokhtar	6 à 18 h	pendant les heurs de	5

	ļ	Aérodrome					
4		code_oaci 🔻	code_lata 🔻	nom_aéroport →	horaire_foncti -	fuel +	code_sslia 🕶
	+	DAUE	ELG	El Golea	7 h à 18h	24 h	5
	+	DAUG	GHA	Noumérat_moufdi zakaria	24 h	24 h	7
	+	DAUH	HME	krim belkacem	24 h	24 h	7
	+	DAUI	INZ	IN Salah	24 h	6 h à 18 h	6
	+	DAUK	TGR	Sidi mahdi	6 h à 18 h	non	5
	+	DAUO	ELU	Guemar	6h à 18 h	6 h à 18 h	7
	+	DAUT	TMX	TIMIMOUN	6 h à 18 h	sur demande	6
	+	DAUU	UGX	Ain beida	24 h	24 h	7
	+	DAUZ	IAM	ZARZAITINE	24 H	24 h	7
*							0

V.3.2 Table aéronef:

Contient les cinq aéronefs exploités par la compagnie AIR Algérie aves leurs caractéristiques

Tableau V.2 : Table d'aéronef

V.3.3 Table ACN:

Contient la liste des ACN min et max des aéronefs d'Air Algérie selon le type de chaussée et le code de résistance

Tableau V.3: Table ACN

	ACN							
_	identif_aéronef	~	code_type -	code_résistance -	acn_min	Ŧ	acn_max	¥
	B737-600		R	Α		18		37
	B737-600		F	Α		17		33
	B737-700C		R	Α		20		46
	B737-700C		F	Α		18		41
	B737-800		R	A		23		49
	B737-800		F	A		20		43
	A330-202		R	A		20		54
	A330-202		F	A		26		58
	ATR72-212A		R	A		6		13
	ATR72-212A		F	A		5		11
	B737-600		R	В		19		39
	B737-600		F	В		17		34
	B737-700C		R	В		21		49
	B737-700C		F	В		18		43
	B737-800		R	В		24		52
	B737-800		F	В		21		45
	A330-202		R	В		27		62
	A330-202		F	В		27		63
	ATR72-212A		R	В		7		13
	ATR72-212A		F	В		6		12
	B737-600		R	С		21		41
	B737-600		F	С		18		38
	B737-700C		R	С		22		51

	ACN				
/	identif_aéronef -	code_type 🕶	code_résistance -	acn_min 🕝	acn_max -
	B737-700C	F	C	19	48
	B737-800	R	C	25	54
	B737-800	F	C	22	50
	A330-202	R	C	30	74
	A330-202	F	C	30	73
	ATR72-212A	R	С	7	14
	ATR72-212A	F	C	7	18
	B737-600	R	D	22	43
	B737-600	F	D	25	43
	B737-700C	R	D	23	53
	B737-700C	F	D	22	53
	B737-800	R	D	27	56
	B737-800	F	D	26	55
	A330-202	R	D	35	86
	A330-202	F	D	36	98
	ATR72-212A	R	D	8	15
	ATR72-212A	F	D	8	15
*				0	0

V.3.4 Table pistes:

Contient:

- Les numéros de pistes
- Les largeurs minimales pour chaque piste
- La catégorie SSLIA requise pour chaque piste
- Le numéro PCN en fonction des caractéristiques de chaque piste

Tableau V.4: Table des pistes

piste								
num_piste		largeur_pist →	code_SSLIA 🕶	Nnb_pcn →	code_type 🕶	code_résistance 🔻	presion_penue 🔻	code_évalu
04/22	DAAD	30	5	34	F	В	W	T
08/26	DAAE	45	7	46	F	C	W	T
09/27	DAAG	45	9	75	F	D	W	T
05/23	DAAG	60	9	78	F	D	W	T
12/30	DAAJ	45	8	54	F	В	W	T
02/20	DAAJ	45	8	51	F	В	W	T
09/27	DAAP	45	7	45	F	А	X	T
09/27	DAAS	45	6	53	F	C	W	T
02/20	DAAT	45	8	56	F	В	W	Т
08/26	DAAT	45	8	48	R	А	W	Т
05/23	DABB	45	9	46	F	D	W	T
36/18	DABB	45	9	65	F	D	W	Т
13/31	DABC	45	8	54	F	С	W	Т
16/34	DABC	45	8	93	F	D	W	Т
11/29	DABS	45	5	59	F	D	W	Т
12/30	DABS	30	5	31	F	D	W	Т
05/23	DABT	45	7	58	F	С	X	Т
08/26	DAOB	45	5	69	F	С	W	T
08/26	DAOI	45	6	66	F	С	W	Т
07/26	DAOI	30	6	27	/	/	/	Т
07/25	DAON	45	7	75	F	Α	W	T
07 L / 25R	DAOO	45	8	62	F	В	W	T
07R / 25L	DAOO	45	8	113	F	Α	W	Т

Tableau V.4: Table des pistes

Tableau V.6: Table de Résistance de chaussée

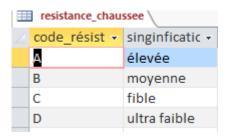
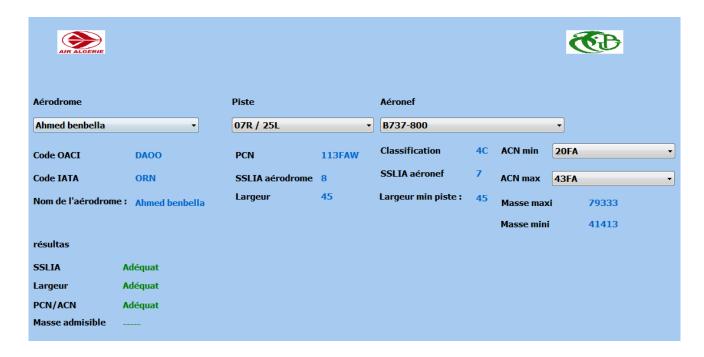


Tableau V.7: Table de Type d'évaluation

V.4. Validation des résultats :

Pour montrer le fonctionnement de notre application, nous allons prendre quelques exemples pour monter la confirmation ou l'infirmation des aérodromes pour accueillir les différents types d'aéronefs exploités.

V.4.1 Exemple « Aérodrome accessible » :


✓ Aéroport : d'Oran « DAOO »

✓ **Aéronef exploité** : Boeing 737/800

✓ **Piste**: 07L/25R et 25R/07L

Figure V.11 : Affichage de l'accessibilité d'aérodrome d'Oran pour accueillir le A330-202 sur la piste 07L/25R

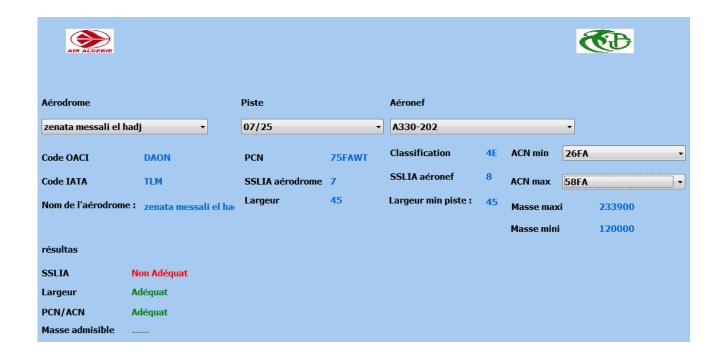
Figure V.12 : Affichage de l'accessibilité d'aérodrome d'Oran pour accueillir le A330-202 sur la piste 07R/25

Résultats :

L'aérodrome d'Oran est accessible pour accueillir le B737-800sur les deux piste 07L/25R et 07R/25L « voir figure V.11 et figure V.12 ».

Paramètres vérifiés :

✓ Catégorie SSLIA : Adéquat


✓ Largeur : Adéquat✓ PCN/ACN : Adéquat

V.4.2 Exemple « Aérodrome non accessible » :

✓ Aéroport : Zenata « Messali el Hadj » de Tlemcen « DAON »

✓ **Aéronef exploité** : Airbus A330-202

✓ **Piste**: 07/25

Figure V.13 : Affichage du non accessibilité d'aérodrome de Tlemcen pour accueillir l'A330-202 sur la piste 07/25

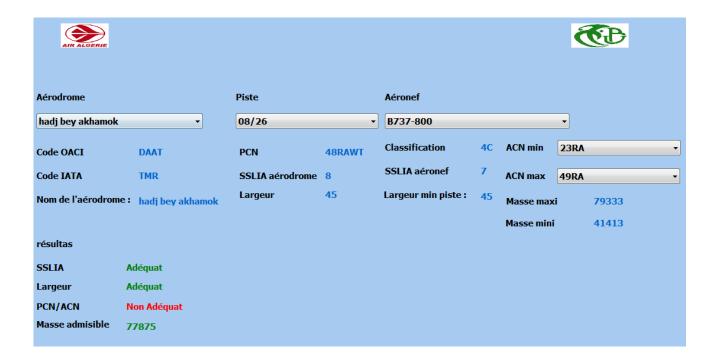
> Résultats:

L'aérodrome de Tlemcen n'est pas accessible pour accueillir l'A330.202 sur la piste 07/25 « voir la figure V.13 »

Paramètres vérifiés :

✓ Catégorie SSLIA : Non Adéquat

✓ Largeur : Adéquat


✓ PCN/ACN : Adéquat

V.4.3 Cas particulier:

✓ Aéroport : Aguenar-Hadj Bey Akhamok de Tamanrasset « DAAT »

✓ **Aéronef exploité** : Le B737/800

✓ **Piste**: 08/26

Figure V.14 : Affichage du non accessibilité d'aérodrome de Tamanrasset pour accueillir le B737/800 sur la piste 08/26

Résultats :

L'aérodrome de Tamanrasset n'est pas accessible pour accueillir le B737-800 pas accessible sur la piste 08/26 car le PCN max « 48 » est inférieur à l'ACN de B737/800 « 49 » « voir la figure V.14 »

Paramètres vérifiés :

✓ Catégorie SSLIA: Non Adéquat

✓ Largeur : Adéquat

✓ PCN/ACN : Non adéquat

Donc l'application passe automatiquement au calcul de la masse admissible :

✓ La masse admissible : 77875 kg

Conclusion:

Nous avons présenté dans ce chapitre une application pour l'étude d'adéquation des aérodromes.

Tout en respectant les mesures nécessaires qui doivent être prises pour son bon fonctionnement et

les contraintes rencontrées pour sa réalisation, en vue d'étudier l'accessibilité des aérodromes pour

les aéronefs exploités par AIR ALGERIE, par rapport à des contraintes spécifiées.

123

CONCLUSION GENERALE

CONCLUSION GENERALE

La vérification de l'accessibilité des aérodromes est une étape essentielle lors de chaque planification du vol et notre étude a pour objet de rendre cette opération rapide avec un traitement de grandes quantités d'information, pour cela il était nécessaire d'étudier toutes les contraintes possibles.

Pour assurer la réussite opérationnelle de vol nous avons étudié en premier lieu, l'ensemble des moyens, outils et réglementation imposés ainsi que les performances des appareils pour pouvoir vérifier et puis confirmer la faisabilité de l'aérodrome et donc son adéquation.

Par rapport à cette étude et à l'aide d'une application nous avons présenté et vérifier les mesures nécessaires et les contraintes rencontrées qui doivent être prises pour un bon accueil des aérodromes, mais le but principal de ce travail est d'assurer la sécurité et la conformité aux normes et réglementations de l'Organisation de l'aviation civile internationale OACI lors de l'exploitation des aérodromes tout en utilisant la touche informatique.

Nous espérons que dans un futur proche, notre travail va apporter une aide pour la compagnie, et qu'elle utilisera cette application pour faciliter les diverses taches lors de la planification du vol.

REFERENCES

REFERENCE

- [1]. Manexe C de la compagnie nationale AIR ALGERIE, édition 02, révision 24. Février.2019.
- [2]. Annexe 14 de l'OACI: Aérodromes, volume1 « conception et exploitation techniques des aérodromes », huitième édition, juillet 2018.
- [3]. Boeing-Commercial-Airplanes-737, October.2005
- [4]. Manuel d'exploitation partie B édition 02, révision 03, décembre 19. De la compagnie nationale AIR AGERIE.
- [5]. Airbus-Commercial-Aircraft-AC-A330-Aug.19
- [6]. Manexe A de la compagnie nationale AIR Algérie édition 02, révision 05, AUG 10
- [7]. Instruction techniques sur les aérodromes civils, « chapitre 8 : Méthodes ACN-PCN», édition juin1999.
- [8]. E-Link (Airport Directory).
- [9]. **Doc 9157 « Manuel De Conception Des aérodromes »** partie3 : Chaussées. Deuxième édition 1983.
- [10]. Instruction N 094 de la DACM « service sauvetage et lutte contre l'incendie »
- [11]. AIP, Publication information aéronautique. Algérie, partie aérodromes. Edition janvier 2010

ANNEXES

ANNEXES

Annexe 1 : Les tableaux des ACN caractéristiques

Aircraft Type		Mass ¹	Load	Stan	dard Aircra					ACN relativ	e to			
	Mass) (C	m Apron Operating Empty)	on one main		Pressure		Riç	jid Paveme	ent Subgra	des	Flexib	le Paveme	nt Subç	rades
			gear leg (%)				High K = 150 MN/m ³	Medium K = 80 MN/m ³	Low K = 40 MN/m ³	Ultralow K = 20 MN/m ³	High CBR = 15%	Medium CBR = 10%	Low CBR = 6%	Very low CBR = 3%
	lbs	kgs		psi	kg/cm²	mPa	A	В	С	D	A	В	С	D
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Airbus A300-B2	304014 192371	137900 87259	47.0	174	12.2	1.20	34 19	41 22	49 26	57 31	35 20	39 21	47 24	62 32
Airbus A300-B2	315037 193676	142900 87851	47.0	186	13.1	1.28	37 20	44 23	53 27	60 31	37 20	41 22	50 25	65 33
Airbus A300-B4	332674 202858	150900 92016	47.0	203	14.3	1.40	41 22	49 25	58 29	66 34	41 22	45 23	54 26	70 35
Airbus A300-B4	339288 197052	153900 89382	47.0	203	14.3	1.40	43 21	51 24	59 28	68 33	42 21	46 22	56 25	72 34
Airbus A300-B4	349209 200848	158400 91104	47.0	215	15.1	1.48	45 22	54 25	63 29	71 34	43 22	48 23	59 26	75 35
Airbus A300-B4	349209 200848	158400 91104	47.0	177	12.4	1.22	42 20	51 23	60 28	69 33	43 21	48 23	58 26	75 35
Airbus A300-B4	349209 200848	158400 91104	47.0	160	11.2	1.10	40 19	49 23	59 27	68 32	42 21	47 22	58 26	75 35
Airbus A300-B4	365743 200667	165900 91022	47.0	212	14.9	1.46	48 22	57 25	67 29	75 34	46 22	51 23	63 26	80 35
Airbus A300-B4	365743 200667	165900 91022	47.0	186	13.1	1.28	46 21	55 24	65 28	74 33	45 21	51 23	63 26	80 35
Airbus A300-B4	365743 200667	165900 91022	47.0	168	11.8	1.16	44 20	53 23	64 27	73 32	45 21	51 22	62 26	79 35
Airbus A300-600 B4	365743 201840	165900 91554	47.5	186	13.1	1.28	46 21	56 24	66 29	75 34	46 22	52 23	64 27	81 35

Aircraft Type		Mass ¹	Load	Stan	dard Aircra					ACN relativ	e to			
	Mass) (0	ım Apron Operating Empty)	on one main		Pressure		Ri	gid Paveme	ent Subgra	des	Flexib	le Paveme	nt Subç	rades
	Plass	cmpty)	gear leg (%)				High K = 150 MN/m ³	Medium K = 80 MN/m ³	Low K = 40 MN/m ³	Ultralow K = 20 MN/m ³	High CBR = 15%	Medium CBR = 10%	Low CBR = 6%	Very low CBR = 3%
	lbs	kgs		psi	kg/cm²	mPa	A	В	С	D	A	В	С	D
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Airbus A300-600R B4	380514 204532	172600 92775	47.5	175	12.3	1.21	48 21	58 24	69 29	78 34	48 22	55 23	67 27	85 36
Airbus A310-300F	277559 176108	125900 79882	46.7	170	11.9	1.17	30 17	36 19	43 23	50 27	31 18	34 19	41 21	55 28
Airbus A310-200F	292991 178288	132900 80871	46.7	178	12.5	1.23	33 17	39 20	47 24	54 28	34 18	37 19	45 22	59 29
Airbus A310-200F	292991 178288	132900 80871	46.7	148	10.4	1.02	30 16	37 19	45 22	52 26	33 18	36 19	44	59 29
Airbus A310-300F	299605 170012	135900 77117	46.7	178	12.5	1.23	34	40	48	55 26	35 17	38	46	61
Airbus A310-300F	307542 176013	139500 79839	47.2	189	13.3	1.30	36 18	43 20	51 24	59 28	37 18	40 19	49 22	64 29
Airbus A310-300F	307542 176013	139500 79839	47.2	157	11.0	1.08	34 17	41 19	49 23	57 27	36 18	40 19	49 22	64 29
Airbus A310-200	315037 178837	142900 81120	46.7	193	13.6	1.33	37 18	45 21	53 24	60 28	37 18	41 20	50 22	65 29
Airbus A310-200	315037 178837	142900 81120	46.7	160	11.2	1.10	35 17	42 19	50 23	58 27	37 18	41 19	50 22	65 29
Airbus A310-300	339288 181849	153900 82486	47.2	212	14.9	1.46	44 19	52 22	60 26	69 30	42 19	47 20	57 23	73 30
Airbus A310-300	339288 181849	153900 82486	47.2	174	12.2	1.20	40 18	49 21	58 24	66 29	41 19	46 20	56 23	73 30
	202019	02 100												

Aircraft Type	All-up (Maximu		Load	Stan	dard Aircra					ACN relativ	e to			
	Mass) (0 Mass E	perating	on one main		Pressure	•	Rig	gid Paveme	ent Subgra	des	Flexib	le Paveme	nt Subg	rades
	71033		gear leg (%)				High K = 150 MN/m ³	Medium K = 80 MN/m ³	Low K = 40 MN/m ³	Ultralow K = 20 MN/m ³	High CBR = 15%	Medium CBR = 10%	Low CBR = 6%	Very low CBR = 3%
	lbs	kgs		psi	kg/cm²	mPa	A	В	С	D	A	В	С	D
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Airbus A320 Neo	175045	79400	46.3	210	14.8	1.45	48	50	53	55	41	44	48	54
	92593	42000					22	24	25	26	20	20	22	25
Airbus A321-100	172841	78400	47.8	186	13.1	1.28	47	50	52	54	42	44	49	55
	103526	46959					25	27	29	30	23	24	26	30
Airbus A321-100	183864	83400	47.8	197	13.9	1.36	51	54	57	59	45	48	53	59
	103526	46959					26	28	29	31	23	24	26	30
Airbus A321-100	188273	85400	47.8	202	14.2	1.39	53	56	59	61	47	49	55	61
	103526	46959					26	28	29	31	23	24	26	30
Airbus A321-100	197091	89400	47.4	212	14.9	1.46	56	59	62	64	49	52	58	63
	103526	46959					26	28	29	31	23	24	26	30
Airbus A321-200	172841	78400	47.8	186	13.1	1.28	47	50	52	54	42	44	49	55
	103526	46959					25	27	29	30	23	24	26	30
Airbus A321-200	177250	80400	47.8	197	13.9	1.36	49	52	54	57	43	45	51	56
	103526	46959					26	28	29	31	23	24	26	30
Airbus A321-200	183864	83400	47.7	197	13.9	1.36	51	54	57	59	45	47	53	59
	103526	46959					26	27	29	30	23	24	26	30
Airbus A321-200	188273	85400	47.6	202	14.2	1.39	53	56	58	61	46	49	54	60
	103526	46959					26	28	29	30	23	24	26	30
Airbus A321-200	197091	89400	47.5	212	14.9	1.46	56	59	62	64	49	52	58	63
	103526	46959					26	28	29	31	23	24	26	30
Airbus A321-200	205910	93400	47.6	218	15.3	1.50	60	63	66	68	52	55	61	67
	103526	46959					27	28	30	31	24	24	26	30

Aircraft Type		Mass ¹ m Apron	Load	Stan	dard Aircra Pressure					ACN relativ	e to			
	Mass) (C	m Apron Operating Empty)	on one main		Pressure		Riç	gid Paveme	ent Subgra	ides	Flexib	le Paveme	nt Subç	ırades
	7,022		gear leg (%)				High K = 150 MN/m ³	Medium K = 80 MN/m ³	Low K = 40 MN/m ³	Ultralow K = 20 MN/m ³	High CBR = 15%	Medium CBR = 10%	Low CBR = 6%	Very low CBF = 3%
	lbs	kgs		psi	kg/cm²	mPa	A	В	С	D	A	В	С	D
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Airbus A330-200	487001 264555	220900 120000	47.4	206	14.5	1.42	49 28	58 27	68 31	80 35	54 26	58 27	67 30	91 36
Airbus A330-200	509047 264555	230900 120000	47.3	206	14.5	1.42	53 28	61 27	72 30	85 35	57 26	62 27	71 30	97
Airbus A330-200	515661 264555	233900	47.3	206	14.5	1.42	54 28	62 27	74 30	86 35	58 26	63 27	73 30	98
Airbus A330-200	522275 264555	236900 120000	46.7	206	14.5	1.42	54 27	62 27	74 30	86 34	58 26	63 27	73 29	98
Airbus A330-200	526684 264555	238900 120000	46.3	206	14.5	1.42	54 27	62 26	74 30	86 34	58 25	63 26	73 29	98
Airbus A330-200	526684 264555	238900 120000	46.8	213	15.0	1.47	55 28	64 27	75 30	88 35	59 26	64 27	74 29	10
Airbus A330-200	531094 264555	240900 120000	46.5	213	15.0	1.47	55 28	64 27	76 30	88 35	59 26	64 27	74 29	10
Airbus A330-200	535503 264555	242900 120000	46.3	213	15.0	1.47	56 27	64 27	76 30	89 34	59 26	64 27	74 29	10
Airbus A330-200F	502434 264555	227900 120000	47.3	206	14.5	1.42	52 28	60 27	71 30	83 35	56 26	61 27	70 30	9:
Airbus A330-200F	515661 264555	233900 120000	47.3	206	14.5	1.42	54 28	62 27	74 30	86 35	58 26	63 27	73 30	9:
Airbus A330-300	407635 275578	184900 125000	47.9	190	13.4	1.31	40	45 28	53 32	62	44 28	47 29	53	7

Aircraft Type		Mass ¹ m Apron	Load	Stan	dard Aircra					ACN relativ	e to			
	Mass) (0 Mass E	perating	one main		Picsauro		Rig	gid Pavem	ent Subgra	ides	Flexit	le Paveme	nt Subç	rades
	, , , , , , , , , , , , , , , , , , ,		gear leg (%)				High K = 150 MN/m ³	Medium K = 80 MN/m ³	Low K = 40 MN/m ³	Ultralow K = 20 MN/m ³	High CBR = 15%	Medium CBR = 10%	Low CBR = 6%	Very low CBR = 3%
	lbs	kgs		psi	kg/cm²	mPa	A	В	С	D	A	В	С	D
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Antonov An-225	1433000 595200	650000 270000	46.1	178	12.54	1.23	46 16	61 17	92 20	132 27	51 15	59 16	77 19	110 27
ATR 42 Basic Tires	36861 22675	16720 10285	46.2	109	7.66	0.75	9 5	10 5	10 6	11 6	8 4	9 5	10 5	11 6
ATR 42 Low Pressure Tires	36861 22758	16720 10323	46.2	75	5.27	0.52	8	9 5	9 6	10 6	6	8	9 5	11 6
ATR 72 Basic Tires	47466 26896	21530 12200	47.8	114	8.01	0.79	13 6	13 7	14 7	15 8	11 5	12 6	14 7	15 8
Avro RJ70 ² Standard Tires	84500 49500	38329 22453	46.0	119	8.17	0.82	18.9 10.0	20.5 10.9	22.0 11.8	23.3 12.6	17.1 9.3	18.7 10.1	21.2 10.9	24.8 12.9
Avro RJ70 ² Low Pressure Tires	84500 49500	38329 22453	46.0	81	5.59	0.56	16.4 8.6	18.3 9.7	20.1 10.7	21.6 11.6	14.3 7.5	17.5 9.0	20.2 10.4	24.4 12.7
Avro RJ70 ² Low Pressure Tires	84500 49500	38329 22453	46.0	76	5.23	0.52	15.9 8.4	18.0 9.5	19.8 10.5	21.3 11.4	13.7 7.1	16.8 8.9	20.1 10.3	24.4 12.6
Avro RJ85 ² Standard Tires	93500 51300	42411 23269	47.1	135	9.32	0.93	22.7 11.2	24.4 12.1	26.0 13.0	27.3 13.8	20.6 10.3	21.9 10.9	24.9 11.9	28.5 13.9
Avro RJ85 ² Low Pressure Tires	93500 51300	42411 23269	47.1	99	6.81	0.68	20.4 10.0	22.4 11.0	24.2 12.0	25.7 12.9	18.2 8.9	21.5 10.4	23.8 11.4	28.2 13.8
Avro RJ100 ² Standard Tires	98000 53700	44452 24358	47.2	143	9.89	0.99	24.7 12.2	26.5 13.1	28.1 14.0	29.4 14.8	22.5 11.1	23.6 11.6	26.8 12.7	30.4 14.8
Avro RJ100 ² Low Pressure Tires	98000 53700	44452 24358	47.2	108	7.42	0.74	22.5 11.0	24.5 12.0	26.4 13.0	27.9 13.9	20.4 10.0	23.0 11.4	26.1 12.2	30.2 14.7
BAe ATP	50550 32000	22929 14515	46.5	86	6.02	0.59	8.8 4.9	10.7 5.9	12.5 6.7	14.7 8.1	10.5 5.9	11.6 6.5	12.5 7.1	13.4 7.7
BAe 1-11 Series 400	87500 49600	39600 22498	47.5	135	9.48	0.93	25 13	26 13	28 14	29 15	22 11	24 12	27 13	29 15

Aircraft Type		Mass ¹ m Apron	Load on	Stan	dard Aircr Pressure					ACN relativ	e to			
	Mass) (C Mass E	perating	one main				Ri	gid Paveme	ent Subgra	ides	Flexib	le Paveme	nt Sub	gra
			gear leg (%)				High K = 150 MN/m ³	Medium K = 80 MN/m ³	Low K = 40 MN/m ³	Ultralow K = 20 MN/m ³	High CBR = 15%	Medium CBR = 10%	Low CBR = 6%	
	lbs	kgs		psi	kg/cm²	mPa	A	В	С	D	A	В	С	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	
B737-200 (Advanced) (Low Pressure Tires)	117500 64500	53297 29257	46.4	96	6.75	0.66	25 12	27 13	30 15	32 16	22 11	27 13	30 14	
B737-200/200C /200QC (Advanced)	128600 65700	58332 29801	46.0	182	12.8	1.25	34 15	36 16	38 17	39 18	30 14	31 14	35 15	
B737-300 (Low Pressure Tires)	139000 72600	63049 32931	45.8	169	11.88	1.17	36 17	39 18	41 19	42 20	33 16	34 16	38 17	
B737-300	140000 72600	63503 32931	45.4	201	14.13	1.39	38 18	40 19	42 20	44 21	33 16	35 16	39 17	
B737-400 (Option 1)	144000 74200	65317 33657	47.0	211	14.83	1.45	41 19	43 20	45 21	46 22	35 16	37 17	41 18	
B737-400 (Option 2)	150500 74200	68266 33657	46.9	185	13.01	1.28	42 18	45 19	47 21	48 21	37 16	39 17	44 18	
B737-500	136500 69100	61915 31343	46.1	196	13.78	1.35	37 17	39 18	41 19	43 20	33 15	34 15	38 16	
B737-600	146000 80200	66224 36378	45.3	182	12.8	1.25	37 18	39 19	41 21	43 22	33 17	34 17	38 18	
B737-700	155000 83000	70307 37648	45.8	197	13.85	1.36	41 20	43 21	46 22	47 23	36 18	38 18	42 19	
B737-700C	171500 83000	77791 37648	45.8	196	13.78	1.35	46 20	49 21	51 22	53 23	41 18	43 18	48 19	
B737-800	174900 91300	79333 41413	46.6	205	14.38	1.41	49 23	52 24	54 25	56 27	43 20	45 21	50 22	

Annexe 2 : le carton des paramètres

	TAKE	- OFF	
			21
AIRPORT	DAT	Έ	AIRCRAFT
N° FLIGHT	RWY		ACC. ALT
TOW	TOR	QUE	FLAPS
	NTOP	REDUCED	
FUEL	V ₁		w/v
ZFW	V		vis
C,G	V ₂	110,711	T°/DP
Holding Time	V _{FRI}		QNH
	V _{CLIMB}		
ATC (SID):		141	•

AIRPORTRWY	
W/V	
Vref BUG ZFW	
VGA FUEL LDG WT	
DH MDA G /A TOR	QUE

Annexe 3: Les METAR et TAF

• L'exemple est pour un B737-800, étape ALG-TMR

<u>Départ</u>

- DAAG:
- > TAF

TAF DAAG 121100Z 1212/1312 06010KT 9999 FEW023 SCT040 PROB40 TEMPO 1212/1217 FEW026TCU BECMG 1217/1220 VRB02KT BECMG 1310/1312 02012KT=

> METAR

METAR DAAG 121230Z 06010KT 9999 FEW023 SCT040 30/23 Q1016=
METAR DAAG 121130Z 06010KT 9999 FEW023 SCT040 29/23 Q1017=
METAR DAAG 121030Z 04010KT 010V070 9999 FEW023 SCT040 30/22 Q1017=

<u>Destination</u>

- DAAT :
- > TAF

TAF DAAT 121100Z 1212/1312 14010KT 9999 SCT046 PROB40 TEMPO 1212/18

FEW040CB BECMG 1221/1224 04010KT PROB40 TEMPO 1307/1311 06015G30KT FEW046TCU=

> METAR

METAR DAAT 121230Z 36005KT 330V070 9999 SCT046 36/M02 Q1020= METAR DAAT 121130Z 23008KT 170V250 9999 SCT046 35/M02 Q1021= METAR DAAT 121030Z 30003KT 9999 SCT046 34/M03 Q1021=

Dégagements en route :

- DAUA :
- > TAF

TAF DAUA 121100Z 1212/1312 12012KT 6000 NSC TEMPO 1212/1217 3000 HZ

PROB40 TEMPO 1214/1220 FEW040CB BECMG 1214/1217 26010KT BECMG 1221/1224 04010KT BECMG 1308/1311 14012KT=

> METAR

METAR DAUA 121200Z 16009KT 6000 NSC 44/05 Q1011=
METAR DAUA 121100Z 10008KT 6000 NSC 41/06 Q1012=
METAR DAUA 121000Z 10011KT 4000 SA NSC 40/07 Q1012=

- DAAJ :
- > TAF

TAF DAAJ 121100Z 1212/1312 08010KT CAVOK PROB30 1212/1218 4000 HZ

PROB30 TEMPO 1218/1222 04015G25KT 4000 DRSA=

> METAR

METAR COR DAAJ 121200Z 10011KT 9999 FEW046 38/03 Q1018=
METAR DAAJ 121100Z 07009KT CAVOK 36/02 Q1018=
METAR DAAJ 121000Z 06004KT CAVOK 35/02 Q1019=

Annexe 4: LES NOTAM's

<u>Départ</u> <u>DAAG</u>:

> DAAG APT 20200715991V01 A1546/20

- DAAG B)202007100835 C)202009100800 EST
- ONLY TRACT AIRPLANES ARE AUTHORIZED FOR THE CIRCULATION OF PARKING E1, E2, E3. E4, E5, E11 AND E12 BY TWY E3

DAAG APT 2020070A1A5V01 A1521/20

- DAAG B)202007060816 C)202008060800 EST
- ALS RWY 23 NOT AVBL

> DAAG APT 20200708E9DV01 A1520/20

• DAAG B)202007050736 C)202008050900 EST
LGT ACFT STAND C1 C2 C3 C4 C5 C6 C7 C8 C9 UNSERVICEABLE

> DAAG APT 20200707D22V01 A1517/20

- DAAG B)202007040901 C)202008031100 EST
- AD OPERATING MINIMA CAT II PROC DVOR/DME-ILS RWY 23

TEMPO SUSPENDED

REF AD2 DAAG-IAC4

> DAAG APT 20200707D1BV01 A1516/20

- DAAG B)202007040858 C)202009150900 EST
- ACFT STAND W5 OF P10 CLOSED DUE TO WORK IN PROGRESS

DAAG APT 20200707D0FV01 A1514/20

- DAAG B)202007040853 C)202009041000 EST
- OBST ERECTED (CRANE)

PSN: 364158.83N 0031155.65E

ALT: 58,33M RADIUS:50,3M

DAY MARKED AND NGT LGTD

- DAAG B)202007010915 C)202008010900 EST
- ILS GP23 335 MHZ UNSERVICEABLE

> DAAG APT 202007005E1V01 A1487/20

- DAAG B)202007010900 C)202008020800 EST
- FLARING ABOVE FLARE POT (OBSTACLE) OF GAS REFINER WITH SMOKE GAZ

PROPAGATION

CHARACTERISTICS AS FLW:

WGS84 COOR 364051.89N0030724.03E

> DAAG APT 202006447D7V01 A1472/20

- DAAG B) 202006280715 C) 202008290800 EST
- ACFT STANDS E6 E7 E8 E9 AND E10 OF PARKING AREA P5 CLOSED DUE TO WIP,

MEN AND EQPT PRESENCE.

> DAAG APT 2020064308BV01 A1467/20

- DAAG B) 202006270715 C) 202007270800 EST
- ACFT STAND W11B OF PARKING P10 LIMITED FOR ACFT CAT C

> DAAG APT 2020063D4C0V01 A1460/20

- DAAG B) 202006250731 C) 202007250900 EST
- OBST ERECTED BY CRANE IN THE VICINITY OF AD WI AREA LIMITED BY FLW

POINTS

364053.50N 0030713.02E

364040.50N 0030743.40E

364058.02N 0030740.02E

364053.02N 0030710.02E

HGT:120M

ALT ON TOP:145M

- DAAG B)202006230825 C)202007230830 EST
- LOCALIZER 23 AG FREQ 110.3 MHZ UNSERVICEABLE

> DAAG APT 2020063729BV01 A1445/20

• DAAG B)202006230824 C)202008230825 EST

• OBST (CRANE) ERECTED WITH FLW CHARACTERISTICS :

PSN: 364408.93N 0030816.93E

ALT: 305M

DAY MARKED AND NGT LGTD

> DAAG APT 20200637165V01 A1444/20

• DAAG B) 202006230743 C) 202007230745 EST

• ALL LGT FACILITIES OF RWY 05/23 UNSERVICEABLE

> DAAG APT 2020063438BV01 A1436/20

- DAAG B) 202006220750 C) 202008220900 EST
- TWY B3 C3 D2 D4 E2 F1 F2 AND G CLOSED DUE TO WORK IN PROGRESS MEN AND EQPT PRESENCES

> DAAG APT 2020062EE04V01 A1423/20

• DAAG B)202006190610 C)202009190830 EST
RWY 05/23 CLOSED DUE TO WORK IN PROGRESS. MEN AND EQPT PRESENCES

> DAAG APT 2020062204CV01 A1397/20

- DAAG B)202006140750 C)202008140800 EST
- OBST (CRANE) ERECTED PSN:36414837N 003112157E

RADIUS 45M

HGT:38.60 M

DAY MARKED AND NGT LGTD

> DAAG APT 202005322A1V01 A1199/20

• DAAG B)202005230900 C)202007230800 EST

• OBST ERECTED PSN: 36414082N 0031108E

ALT : 39 M

MARKED BY DAY AND NIGHT

> DAAG APT 20190225D9CV02 Z0601/19

• DAAG B)201902280001 C) UFN

(JEPPESEN TERMINAL CHART CHANGE NOTICE)

(10-3F/3G) SIDS LABRO 1A, 1B, 1C AND 1D UNDER

CLARIFICATION.

Destination

• DAAT :

> DAAT APT 202007128CFV01 A1539/20

• DAAT B)202007090724 C)202009090850 EST

• DUE TO OPR REASONS TAKE-OFF AND LANDING RWY 02 WILL BE EXECUTED 100M FM THR 02

NEW DECLARED DISTANCES:

RWY 02:

TORA TODA ASDA LDA

3500M 3500M3500M3500M

RWY 20:

TORA TODA ASDA LDA

3500M 3500M 3600M 3500M

> DAAT APT 20200707D29V01 A1518/20

- DAAT B)202007040904 C)202008200900 EST
- WORK IN PROGRESS ON LEFT SIDE RWY 08. 800M FM THR 08 AND 30M TO

RCL. MEN AND

EQPT PRESENCE

> DAAT APT 20200703372V01 A1500/20

- DAAT B)202007020807 C)202008021000 EST
- WORK IN PROGRESS (CLOGGING) ON RWY 02/20 AT 300M FROM THR 20. MEN

AND EQPT

PRESENCE

FLW TWR INSTRUCTIONS

- DAAT B) 202006200617 C) 202007210700 EST
- TWY JOINING RWY 08/26 CLOSED

> DAAT APT 2020061E457V01 A1392/20

- DAAT B)202006120715 C)202009100800 EST
- DUE TO WORK IN PROGRESS TEMPO OBST (PYLON PRKG) WITHDRAWN
- -PYLON N2 SOUTH SIDE OF PARKING

HGT: 24M

ALT ON TOP: 1401M

-PYLON N3 SOUTH SIDE OF PARKING

DAAT APT 2020040A899V01 A0909/20

- DAAT B)202004050752 C)202007300800 EST
- WORK IN PROGRESS ON RWY 02 EDGES. AT 50M RIGHT SIDE INT BETWEEN

RWY 02/20 AND 08/26. MEN AND EQPT PRESENCE.

DAAT APT 2020040A895V01 A0908/20

- DAAT B)202004050751 C)202007300800 EST
- OBST MOBILE TWR LOCATED AT 120M RIGHT SIDE RCL 26 AND 300M FM ARP. ALT ON TOP 1387M. HGT 10M. DAY MARKED AND NGT LGTD.

DAAT APT 20191141703V01 A2901/19

- DAAT B)201911201044 C)PERM
- AERODROME OBSTACLES

WATER TOWER

READ:

COORD 224855.1N 0052651.6E INSTEAD OF 224911N 0052641.4E

HGT:17M INSTEAD OF 30M

ALT:1372M
ANTENNA HF

READ:

COORD 224901.5N 005 26 52.9E

Dégagements en route :

• DAUA:

> DAUA APT 2020070FAC2V01 A1536/20

- DAUA B)202007080748 C)202008090830 EST
- JET A1 INSURED BY HYDRANT SYSTEM AT ACFT STAND POSITION 1,2 AND 3

IS NOT AVBL

DAUA APT 2020063D602V01 A1461/20

- DAUA B) 202006250819 C) PERM
- PROCEDURES D'APPROCHE VOR/DME RWY04

IAP VOR/DME RWY04

PROFIL VUE

READ ELEVATION/(HIGH) MAPT 364/(84) INSTEAD OF 378/(98)

REF AIP DAUA-IAC1

> DAUA APT 2020063743AV01 A1448/20

• DAUA B)202006230918 C)202007230920 EST

• OBST ERECTED (ANTENNA GP LEFT SIDE RWY 04)

PSN: 274948.20N 0001142.70W

HGT:10M ALT:290M

DAY MARKED AND NGT LGTD

> DAUA APT 2020063732BV01 A1447/20

• DAUA B)202006230847 C)202008230850 EST

• CRANE ERECTED:

PSN: 274428.95N 0000834.90W

HGT: 47.00M

ALT ON TOP: 334M

NOT LGTD

• DAUA B)202006150618 C)202007160800 EST

• CRANE ERECTED :

PSN : 274703.83N 0001054.40W

HGT: 47.00M

ALT ON TOP: 327M

NOT LGTD

• DAUA B)202006020818 C)202008020810 EST

ABN UNSERVICEABLE

• DAAJ :

> DAAJ APT 20200700706V01 B0456/20

- DAAJ B)202007010932 C)202008021130 EST
- CTN WORK IN PROGRESS ON NEAR TWY A2, NORTH-EAST QFU 20 MEN AND ENGINES PRESENCE.

> DAAJ APT 202007006A6V01 B0451/20

- DAAJ B)202007010924 C)202009021100 EST
- FIREFIGHTING AND RESCUE DOWNGRADED TO CAT 7.

> DAAJ APT 20200632E5FV01 B0426/20

- DAAJ B)202006210805 C)202007220800 EST
- DOGS PRESENCE ON AD

> DAAJ APT 202004412BDV01 B0325/20

- DAAJ B)202004280823 C)202007240810 EST
- SWY RWY12 CLOSED.

Annexe 5 : EXEMPLE DE PLAN DE VOL

Ν°	DESCRIPTIONS
1	Numéro du plan de vol unique, qui est assigné pour chaque plan de vol et sauvegardé sur le serveur pour une durée de 24 heures, et permet aussi au Flight Dispatcher de recharger le plan de vol afin de changé les données de dernières minutes.
2	Code OACI en 4 lettres de l'aéroport de départ et de destination.
3	Code type d'avion.
4	Régime de croisière et conditions de vol (Mach .78, Vol IFR).
5	Date du plan de vol établi.
6	Heure de calcul en UTC.
7	Heure estimée de départ en UTC.
8	« PROGS 1806 UK» la date du programme et l'heure de validité des bases de données météo, vent et température utilisé pour le calcul du plan de vol.
	Exemple: PROGS 1806 UK: 26 JULY 2011 valide jusqu'à 06:00 UTC.
9	Immatriculation de l'avion.
10	Unité utilisée le Kg.
11	Cartouche bilan fuel estimé donner par le système JETPLAN. DEST: Délestage carburant au lâcher des freins jusqu'à l'atterrissage; R.R: Réserve de route, un pourcentage du délestage (5% DEST); ALT XXXX: Code OACI du terrain et la quantité de carburant pour le dégagement HOLD: Attente de 30 minutes au niveau de 1500 ft dans les conditions standard pour la masse maximale à l'atterrissage; XT R: Carburant supplémentaire pour l'étape de retour (FUEL TANKERING) TOF: Quantité de carburant au lâcher des freins TOF = DEST + R.R + ALT + HOLD + XTR TAXI: Quantité de carburant pour le roulage BLOCK: Quantité de carburant emporté BLOCK = TOF + TAXI.
12	Cartouche bilan fuel réel qui doit être rempli par l'équipage de conduite.
13	E. TME: Temps de vol estimé NM: Distance sol total pour la route planifiée, exprimé en Nautical Miles (NM) NAM: Distance air total pour la route planifiée exprimé en Nautical Air Miles (NAM), Déterminer en appliquant la formule pour chaque segment de route sur le plan de vol. NAM = TAS x DISTANCE (NM) FL: Niveau de croisière planifié
	VISA CDB : Signature du commandant de bord Après vérification BLOCK FUEL : Quantité de carburant réelle dans les réservoirs

Ν°	DESCRIPTIONS (Suite)
14	Niveau de vol
15	Première ligne: Niveau de vol Correction de la consommation de carburant en fonction du changement de niveau de vol planifiée au départ: FL planifié + 4000 ft augmenter la consommation de carburant de KGS
	Deuxième ligne : Masse au décollage Correction de la consommation du carburant en fonction du changement de masse au décollage estimée au départ : Masse au décollage + 1000 KGS augmenter la consommation de carburant de 0027 KGS.
16	ALT AIRPORT: Altitude de l'aérodrome de départ BLOCK : carburant embarquer avant la mise en route des moteurs CMD (-) : Quantité de carburant = Carburant de dégagement (ALT) + Attente (HOLD) : Quantité de carburant pour l'Attente MAX B/O : maximum de carburant à consommer = BLOCK - CMD CIE NIAME : nom de la compagnie qui fourni le carburant NUMERO B/L: Numéro du bon de livraison carburant QUANTITY : Quantité carburant livrée COST INDEX : Index du coût de l'étape à introduire dans le FMC
17	Bilan des masses : BASIC = masse de base de l'avion. EPLD = Charge marchande estimée. EZFW = Masse sans carburant estimée = BASIC + EPLD TOF = Carburant embarqué au lâcher des freins ETOW = Mass au décollage estimée = EZFW + TOF EB/O = Carburant nécessaire pour l'étape ELAW = Masse à l'atterrissage estimée = ETOW - EB/O
18	Les limitations structurales certifiées : ZFW = Masse maximale structurale sans carburant. OTOW = Masse maximale structurale au décollage. LAW = Masse maximale structurale à l'atterrissage.
19	Les limitations opérationnelles
20	Route ATC, résumé de la route planifiée avec les points de report et les désignations des routes. Cette représentation est utilisée pour intégrer la route dans le FMC dans la page FMC RTE.
21	A remplir par l'équipage : BLOCK OFF : Heure à la mise en route des moteurs. BLOCK ON : Heure d'arrivée au parking et les moteurs coupés. TIME: Temps de vol block = BOCK ON - BLOCK OFF. LANDING : heure à l'atterrissage à l'aéroport de destination. TAKE OFF : Heure de décollage. TIME: Temps de vol (LANDING -TAKE OFF). FOB TO : Carburant à bord au décollage. FOB. LAW : Carburant restant à l'atterrissage à destination. CODE DELAI : Code de retard.

	DWPT	Waypoint	Point de cheminement.				
	FREQ	Frequence navaids	Fréquence du moyen radio.				
	LAT/LONG	Latitude/Longitude	Coordonnées géographiques des points				
			de reports.				
	FL	Flight level	Niveau de vol				
	TP	Tropopause	Tropopause				
	OAT	Outside Air Temperature	Température extérieure				
	DEV	Deviation temperature	Variation de température par rapport au				
		from ISA	STD				
	WIND	Wind	Le vent				
	S	windshear component	Composante du vent de cisaillement				
	MCS	Magnetic course	Route magnétique				
	MH	Magnetique heading	Cap magnétique				
	COMP	Wind component	Composante du vent				
25	TCS	True course	Route vraie				
	TAS	True Air Speed	Vitesse vraie				
	G/S	Ground speed	Vitesse sol				
	ZDST	Zone distance	Distance par segment de route				
	DSTR	Distance remaining	Distance restante avant l'arrivée à				
			destination				
	ZT	Zone time	Temps de vol par segment de route				
	CT	Cumulative time	Temps de vol cumulé				
	E.T.A	Estimated Time of Arrival	Temps estimé d'arrivée				
	A.TA Actual Time of Arrival		Temps réel d'arrivée				
	ZFU	Zone fuel	Consommation de carburant par segment				
	CFU	Cumulative fuel used	Consommation de carburant cumulée				

26	Terrains de dégagement MSA: Altitude minimal de sécurité (Minimum Safe Altitude). TTK: Route vraie (True Track). DIST: Distance en NM. TIME: Temps de vol (h.mn). ETA: Heure estimée d'arrivée. FUEL: Consommation de carburant.
27	Route ATC pour le dégagement.
28	Plan de vol de dégagement
29	Détails du plan de vol ATC présenté dans le format OACI.

ANNEXE 6 : Exemple calculé pour un B737-800, étape ALG-TMR

```
1
                                             3
                                                                5
                                   2
     PLAN 3175
                             DAAG TO DAAT B738
                                                   30/FIFR
                                                           12/07/20
NONSTOP COMPUTED 1149Z FOR ETD 1200Z
                                      PROGS 1206UK
                                                      7TVKK
                                                               KGS
                  6
                                 7
                                            8
                                                         9
                                                                10
E.FUEL
        A.FUEL
                   E.TME NM
                                 NAM
                                      FL
             005317
                                  02/01
                                        0875 0871
                                                     360
DEST
      DAAT
             000266
                                  00/10
R.R.
                                  01/04
ALT
       DAUA
             002633
                                         0429 0418
                        12
                                                        13
              001200
                                  00/30
F.R.
                                  00/00
XTR
              000000
                                         SIGN
                                                CDB
        11
TOF
              009416
                                  03/45
TAXI
              000150
                      CORR.
                                  + / -
                                  03/45 BLOCKFUEL .....
BLOCK
              009566
FL 360
          14
FUEL BURN ADJUSTMENT FOR 4000 FT DECREASE IN CRZ ALTITUDE:0181KGS
                                                                    15
FUEL BURN ADJUSTMENT FOR 4000 FT INCREASE IN CRZ ALTITUDE:
FUEL BURN ADJUSTMENT FOR 1000KGS INCREASE/DECREASE IN TOW:0052KGS
                                 . . . . . COST INDEX
ALT AIRPORT . . . . . CIE NAME
BLOCK
           . . . . . NUMERO B/L. . . . .
                                                            16
CMD
       (-) . . . . . . QUANTITY
MAX B/O
           . . . . . .
      E. WT
              CORR.
                          OP. LIMIT STRUC. REASONS FOR OP. LIMIT
BASIC 044031 . . .
      012000 . . .
EPLD
       056031 .
                          ZFW . . . . . 061688 / . . . . . . . .
EZFW
       009416 .
TOF
                17
                                  18
                                                       16
ETOW
      064489 .
                          OTOW.
                                       . 079015 / . .
      005317 . . .
EB/O
ELAW
      059172 . . .
                          LAW . . . . . 065317 / . . . . . . . . .
DAAG RWY 27 BSA1B BSA UM989 GHA UA615 DAAT
                                            20
BLOCK OFF
           . . . . . LANDING
                                  . . . . . . FOB. TO
BLOCK ON
            . . . . . TAKE OFF
                                 . . . . . FOB. LAW
                                                                  21
                                              CODE
TIME
            . . . . . . TIME
                                  . . . . . DELAI . . . . .
WIND M000
          MXSH 2/GHA
                          22
MET /
        23
CLEARANCE /
              24
```

DISPATCH BRIEFING INFO
CURRENT IPAD AIR IOS 12.4.7 AND IPAD AIR 2 IOS 13.5.1 / LAST
PACKAGE UPDATE BOEING OPT 17.06.2020 / OPT VERSION 4.50 / FOR MORE
INFORMATION, CONSULT PORTAIL.AIRALGERIE.DZ, SECTION ELECTRONIC
FLIGHT BAG / DO NOT USE YOUR EFB IF IT IS NOT UPDATED WITH THIS
PACKAGE

PLAN VALID FOR DEPTR UNTIL 1800Z 12/07/20

:: :MEL/ : :MEL/MDB MEL NONE : :												
DAAG ELEV 00	82FT				ETA	A 140)1z					
WPT AWY FREQ MORA LAT/LONG	TP	DEV	S	МН	TCS	G/S	DSTR	CT	ATA	CFU	AFR	
SMR 370.0 083 N36416E003054	CLB			268 270	269		0006 0869	0/02	2	003 003	0091	
BNA 353.0 083 N36391E003355	CLB			086 086	087		0028 0841	0/04	ł	005	0086	
				158 164	 159		0083 0758	0/19				
BSABSA1B 360 115.9 099 N35199E004125	54	P14	7 158 I 1	P10 164	462 (159	0002 472	0/01 0756	0/20)			
KAHIL UM989 085 55 P14 N34059E004016	360 0	-42	26648	186	M12	463	0074	0/09			0073	
BERIA UM989 078 56 P14 N33019E003522	1	191	187	456	0618						0069	
GHA UM989 114.9 049 N32236E003467	360 55	-42 P14	27429 2	186 190	M02 187	460		0/43	3	027		
ATCHA UA615 038 55 P14 N29427E004156	360 0	-42	29113	170	P06	461	0162	0/21		008		

```
TIFOU UA615 360 -42 02708 170 P06 461 0073 0/09 ... 004 0055 ... 036 56 P14 1 169 171 467 0344 1/13 ... 039 ... ... N28300E004285

TOD UA615 360 -43 08414 170 M01 460 0241 0/32 ... 012 0043 ... 122 55 P13 2 168 171 459 0103 1/45 ... 051 ... ... N24306E005102

DAAT DSC ... ... 170 ... ... 0103 0/16 ... 002 0041 ... 122 ... ... 168 171 ... 0000 2/01 ... 053 ... ... N22487E005271

T/O ALTERNATE DAOO 083 252 0228 240 0.43 1243 26
```

-N0330F240

-N0000F240 CHE1B CHE UA411 ORA DCT

27

 CPT
 LAT
 LONG
 MSA
 TTK
 DIST

 CELBA
 N37069
 E002531
 83
 328
 31

 CHE
 N36361
 E002116
 83
 227
 45

 DAHRA
 N36219
 E001300
 76
 247
 36

 MOS
 N35539
 E000082
 53
 248
 72

 ORA
 N35368
 W000393
 53
 246
 42

 DAOO
 N35376
 W000367
 47
 68
 2

MSA TTK DIST TIME ETA FUEL

ALTERNATE - 1 DAAJ 122 067 0240 0.39 1441 001675

ALTERNATE - 2 DAUA 122 316 0429 1.04 1506 002633

-N0381F250 DCT TMS DCT MELOG DCT DJA DCT

CPT LAT LONG MSA TTK DIST
TMS N22485 E005268 ... 360 0001
MELOG N23305 E007203 122 068 0113
DJA N24173 E009272 100 068 0125
DAAJ N24176 E009271 ... 360 0001

(FPL-7TVKK-IS

- -B738/M-SDE1FGHIJ1M1RWY/LB1
- -DAAG1200
- -N0462F360 BSA1B BSA UM989 GHA UA615
- -DAAT0201 DAAJ
- -PBN/B1C1D1O1S2 DOF/200712 REG/7TVKK SEL/CGJP CODE/0A008A TALT/DAOO RMK/TCAS EOUIPPED RVR175
- -E/0345 P/TBN R/V S/MD J/F A/RED/WHITE)

WINDS/TEMPERATURES ALOFT FORECAST FD DATA BASED ON 1206UK 30000 34000 39000 41000

```
SMR2539M352658M402663M472658M51BNA2539M352658M402662M472657M51BSA2539M332655M392657M472652M51KAHIL2637M312748M382647M472642M51BERIA2734M292738M382735M472632M52GHA2827M292831M382727M482625M52ATCHA3015M282913M372912M482611M53TIFOU0213M280207M380514M491122M53DAAT0611M280811M381018M501021M54
```

FL / 3000 6000 9000 12000 15000 18000 21000 24000 DAAG 01009+23 00010+21 31015+15 29017+08 28015+01 26013-09 25014-16 24017-22

FL / 3000 6000 9000 12000 15000 18000 21000 24000 DAAT 10005+23 01004+14 01006+07 02009-01 04011-10 09010-14 11009-19 11007-25

ALTERNATE SIDS TO TRANSITION POINT

SID		RWY	DIST	<u>r</u> +/-	Ι	'IME +/-	FUEI	+/-		
BSA1A	23	_	3		00	_	14			
BSA1B	27		0		00		0	Planned	RWY	27
BSA1C	05	+	3		00	+	14			
BSA1D	09	+	5	+	01	+	23			
BSA1E	23	+	2		00	+	9			
BSA1F	27	+	1		00	+	5			
BSA1G	05		0		00		0			
BSA1H	09	+	2		00	+	9			

____ CALCULATED LANDING DISTANCE =

AUGMENTED BY 15% =

AVAILABLE LANDING DISTANCE =

Category B Aerodrome(s)briefing completed

RVSM REPORT

PFD1 STBY PFD2

.....