
PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA 

Ministry of High Education and Scientific Research 

University of BLIDA1 

 

Institute of Aeronautics and Space Studies 

Navigation department 

A thesis submitted for the Master degree in 

CNS/ATM 

 

Theme: 

 

 

 

 

 

 

 

Presented by                                          Under the supervision of  

ABDELKEBIR AKRAM                                         Mm. BENCHEIKH SALIHA 

RAHIM ABDELKADER 

 

 

 

2019/2020

Study and comparison of attitude observers 
presented in the special orthogonal group 

SO (3) 
 



  

 
 

 

Acknowledgements 

 

   This thesis marks the final of our study in Aeronautical Engineering. The process of 

conducting research and writing thesis has long been a challenging one, but we are grateful to 

receive a lot of support from many people. 

   Firstly, our thanks and appreciation to our thesis advisor Dr. “SALIHA BENCHEIKH”. We 

are in debt to her for all her teachings, her advices especially for giving us support throughout 

the duration of this work. 

  We are grateful as well to all teachers and the community of Institute of Aeronautics and Space 

Studies, they were always humble and we appreciate their help, their guidance, their 

contribution, their helpful comments and their recommendations during the 5 years of studies. 

   Finally, a big thanks also to all those people whose names are not listed here for their 

assistance and help. 

 

THANK YOU



  

 
 

 Dedication 1 

 

First of all, thanks to Allah to give me all the opportunities and the courage in this life. 

I would like to acknowledge those who supported me during the completion of this thesis. 

Most importantly, I would like to thank my parents especially my mother for her love and 

kindness, all my brothers and sisters for their unlimited support, invaluable encouragements 

and unconditional love. 

All of you push me to be a better person every day. I’m very grateful to have your support. 

Special thanks to my dear friends and colleagues for their support and sincere friendship 

specially my little brother “BOUKHATEM MOHAMED EL-AMINE”. 

I would also specially thank my work partner in this thesis “ABDELKEBIR AKRAM”, and 

all of my other colleagues and friends at Institute of Aeronautics and Space Studies for their 

help and fellowship. 

Also, a deepest thank to the Dr. DEHOUCHE SIHAM and the Ph. D student “ABDALLAH 

TOUAIBIA” for their support and advices. 

Finally, thanks to everyone who helped and supported me during my life and my studies, I 

am really grateful to you. 

 

 

“RAHIM ABDELKADER” 

 

 

 

 

 

 



  

 
 

Dedication 2 

 

First, I would like to thank our God for providing me the ability and the strength that was needed 

to complete this work. 

To whom I owe what I am, 

To my dear parents and all the ABDELKEBIR family, no dedication can be fairly enough to 

express what you deserve for all the sacrifices you have done for me since my birth, your prayers 

have been of great help to me to carry out my studies and this journey would not have been 

possible without you.   

Special thanks will be given to my dear partner and friend “RAHIM ABDLKADER” for his hard 

work and support during the making of this study. 

I would like to thank my college family my friends: Dhiyae, Farouk, Djamel, Lotfi and many 

others for being there for me throughout my entire college experience making it way easier and 

more fun. 

 

 

 

“ABDELKEBIR AKRAM” 

 

 

  



  

 
 

Abstract 

In this thesis, we treated four attitude nonlinear observers, where the attitude is represented by an 

orthogonal matrix belonging to the special orthogonal group SO(3). 

First, we studied two versions of nonlinear complementary filter recently developed by Soulaimane 

Berkane, where the gains depend on the state of the system which give an amelioration of robustness 

for the perturbations of gyroscopic measures. 

Then, we studied also another two nonlinear observers namely, the invariant and the cascaded, 

developed by Minh-Duc Hua, which use INS/GPS measurements. 

Finally, we compared between the four to know which one of them gives a good accuracy at 

estimating the attitude using MATLAB for simulate the results. 

 ملخص 

، حيث يتم تمثيل السلوك بمصفوفة متعامدة تنتمي إلى المجموعة المتعامدة ين غير خطيينأربعة ملاحظ ، درسناطروحةفي هذه الأ

 . SO(3)الخاصة 

تعتمد  أرباحأولاً ، درسنا نسختين من المرشح التكميلي غير الخطي الذي طوره سليمان بركان مؤخرًا ، حيث تتمتع هذه المرشحات ب 

 .على حالة النظام التي تعطي تحسينًا في المتانة لاضطرابات القياسات الجيروسكوبية

، التي طورها  INS/GPSغير خطيين آخرين وهما: الثابت والمتسلسل اللذان يستخدمان قياسات  لاحظين بعد ذلك ، درسنا أيضًا م

Minh-Duc Hua . 

 .النتائج في محاكاة  MATLAB باستخدام السلوك لتقدير  الجيد لمعرفة الأربعة الملاحظين بين قارنا ، أخيرًا

Résumé 

Dans cette thèse, nous avons traité quatre observateurs d'attitude, où l'attitude est représentée par 

une matrice orthogonale appartenant au groupe orthogonal spécial SO(3). 

Premièrement, nous avons étudié deux versions de filtre complémentaire non linéaire récemment 

développé par Soulaimane Berkane, où ces filtres ont des gains dépendants de l’état du système et qui 

donnent une amélioration de la robustesse aux perturbations des mesures gyroscopiques. 

Ensuite, nous avons également étudié deux autres observateurs non linéaires à savoir, l'invariant et 

l’en cascade qui utilisent des mesures INS/GPS, développées par Minh-Duc Hua. 

Enfin, nous avons fait une comparaison entre les quatre observateurs pour connaître le bon pour 

l'estimation de l'attitude en utilisant MATLAB pour simuler les résultats. 
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1 | P a g e  
 

General introduction 

The theory of attitude estimation holds an increasingly important place in different 

fields such as aerospace, robotics, motion capture and automatic for both linear and 

nonlinear systems, the problem of attitude estimation of linear systems was completely 

solved in the years 1960−1970, but the case of nonlinear systems, which concerns 

most physical systems, remains a widely open and very active research subject. After 

that the attitude estimation problems were extended to uncertain, then chaotic systems 

that constitute a class of nonlinear systems with very complex behavior. 

When it is not possible to directly measure or estimate the attitude of a system, for 

physical or financial reasons, an auxiliary dynamic system, called an observer, is used, 

which is responsible for estimating the attitude of the system, based on two phases, 

namely a phase of synthesis or design, which consists in choosing the dynamics of the 

observer using the available information, namely the dynamic model of the system 

studied, its inputs and its measured outputs, and a phase of analyzing the convergence 

of the state estimated by the observer and the real state of system. 

The attitude can be estimated by several methods developed since the 1970s, like 

the dynamic methods which use the measurements of INS sensors (accelerometers 

which provide the linear acceleration, and the gyroscopes which provide the angular 

velocities), with the Kalman’s filters or the nonlinear observers, and sometimes with the 

use of a complementary GPS (Global Positioning System) information, and in this case, 

it’s called INS/GPS fusion. 

For the physical and the financial reasons, the problem of choosing the sensors is 

solved thanks to the appearance of MEMS (Micro Electro-Mechanical Systems) 

technology which has led to the design of reduced size sensors (accelerometers, 

gyroscopes) which having also a low energy consumption. 

For robust attitude estimation, we proposed the study of four state observers, and 

we structured this thesis in four chapters introduced as follows 
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The first chapter, is a general introduction and notions about the attitude, coordinate 

frames, and Attitude parameterization, then an overview on state observers defining the 

design of a state observer, then we mention some state observers for linear systems 

and nonlinear systems. 

The second chapter, is an overview about attitude estimators, we mentioned 

sensors used, and the different approaches to determine the attitude based on inertial 

sensors and based on fusion IMU/GPS 

The third chapter, is our main goal, we studied her the four attitude observers, the 

first is “smooth nonlinear complementary filter” proposed by Mr. Mahony, the second 

one is “nonsmooth nonlinear complementary filter” proposed by Mr. Berkane which is a 

Mahony’s filter modified, the third and the fourth observers are “The invariant observer” 

and “The cascaded observer” proposed by Mr. Minh-Duc Hua, the study was about the 

convergence of the state estimated by each observer to the real state of system using 

the available information from IMU/GPS fusion.  

The last chapter, contains a simulation under MATLAB will be done in order to examine 

the performance of these observers and comparing between the convergence results. 

Finally, a general conclusion about all what we mentioned in this thesis. And we 

close this work by a bibliographical reference. 
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I.1 Introduction 

The attitude is an important information in several high precision applications, 

including navigation of autonomous aerial vehicles, like unmanned airborne vehicles 

(UAVs), and mobile robotics. For such applications, a high precision navigation system 

requires expensive and light weight IMU sensors, that have long term bias stability to 

measure this attitude. But, such kind of navigation systems are not desirable because 

their cost constraint. In addition, there is no sensor to provide attitude directly. Therefore, 

to be able to have information about the attitude and obviously all system state variables 

at any time, the development of a robust state estimator called “observer” is the interest 

of researchers. 

In this chapter, the coordinate frames and the most useful attitude parameterizations 

are given. After that, a synthesis of conventional observers, defined for linear and 

nonlinear systems, is made to introduce the attitude observers proposed in chapter I. 
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I.2 Attitude concept 

The attitude is the relative orientation of body-frame with respect to inertial-frame. It 

can be estimated using accelerometer and gyroscope measurements. 

However, accelerometer and gyro measurements are referenced to inertial space, 

but velocity, position, and orientation of rigid body are needed in a system referenced to 

the Earth. Consequently, mathematical symbols, coordinate systems, and coordinate 

transformations are basic elements of the navigation system. We will then be ready to 

define the coordinate systems and coordinate transformations in the first of this section 

following by the expressions of attitude parameterization. 

I.2.1 Coordinate frames  

In order to discuss the attitude and the quantities measured by the accelerometer 

and gyroscope, a number of coordinate frames need to be introduced.  

There are many reference frames some of them are defined as follows. 

I.2.1.1 Earth centered Inertial 

The Earth centered Inertial frame (ECI), denoted by the symbol “i”, is a stationary 

frame. The IMU measures linear acceleration and angular velocity with respect to this 

frame. Its origin is located at the center of the earth, and its axes are aligned with 

respect to the stars. The frame “i” is illustrated in Figure I.1, and is defined as: 

• Origin is the Earth's center of mass, (the geo-center of Earth).  

• XECI is a Vernal equinox axis at J2000 (where equatorial & ecliptic plane intersect). 

• ZECI is Earth rotation axis at Epoch J2000 (near the pole star). 

• YECI is the axis defined as the RHR orthogonal to XECI and ZECI 



Chapter I                                       Concepts of attitude and state observers  

  

6 | P a g e  
 

 

Figure I.1 ECI axes 

I.2.1.2 Earth Centered-Earth Fixed  

Earth Centered-Earth fixed (ECEF) is a very familiar Cartesian coordinate reference 

frame [𝑥, 𝑦, 𝑧] for the Earth, denoted by the symbol “e”. It is defined as 

• Origin is at the Earth’s center of mass. 

• x-axis extends through the intersection of the prime meridian GREENWICH and the 

equator.  

• z-axis extends through the true north and south poles (coincident with the Earth’s 

spin axis). 

• y-axis completes the RH coordinate system, passing through the equator and 

+90deg East longitude, near the Maldives islands in the Indian Ocean. 

The ECEF frame is illustrated in the Figure I.2. This reference frame rotates with the 

surface of the EARTH. 

 

 

 

 

Figure I.2 ECEF axes 
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I.2.1.3 Body frame  

Body frame, denoted by the symbol “b”, is the coordinate frame of the moving IMU. 

Its origin is located in the center of the accelerometer triad, and it is aligned to the 

casing. All the inertial measurements are resolved in this frame. The x-axis is Roll (φ); 

the y-axis is the Pitch (𝜃) and the z-axis is the Yaw or heading (𝜓). The b-frame is 

illustrated in the Figure I.3. 

 

Figure I.3 Body frame (b)  

I.2.1.4 Navigation frame 

The navigation frame, denoted by the symbol “n”, is a local geographic frame in 

which we want to navigate. In other words, we are interested in the position and 

orientation of the b-frame with respect to this frame. 

The n-frame has two configurations: East-North-Up (ENU) configuration and North-

East-Down (NED) configuration. The last configuration is to be defined here. 

The North-East-Down frame (NED) is a local frame, implemented in the field of 

inertial navigation, defined relative to the Earth’s reference ellipsoid (WGS 84), usually 

as the tangent plane to the ellipsoid. Its origin is at the location of the navigation system. 

The NED frame is illustrated in Figure I.4. 

• X- axis points towards true North. 

• Y- axis points towards East. 

• Z- axis points downwards normal to the Earth’s surface. 
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Figure I.4 Local NED frame. 

I.2.2 Attitude parameterization 

Defining the rotational orientation of a rigid body requires a minimum of three 

parameters. However, many attitude representations utilize more than three parameters. 

While there are numerous attitude representations that can be used to define the 

orientation of a system, some of the more common representations include direction 

cosine matrix (DCM), Euler angles, and unit quaternion. 

I.2.2.1 Direction Cosine Matrix (DCM) 

A direction cosine matrix is a transformation matrix, which is composed of the 

direction cosine values between the initial coordinate system and the target coordinate 

system. 

Let A be the initial coordinate system, and B be the target coordinate system of a 

transformation. The base vectors of A are given by 𝑋𝑎, 𝑌𝑎 and 𝑍𝑎, and 𝑋𝑏, 𝑌𝑏, 𝑍𝑏 are the 

base vectors of system B. The direction cosine matrix which transforms a vector from 

system A to system B shall be called Ca
b and is defined by 

                                  𝐶𝑎
𝑏 = [

cos(𝜃𝑥,𝑥) cos( 𝜃𝑥,𝑦) cos(𝜃𝑥,𝑧)

cos( 𝜃𝑦,𝑥) cos(𝜃𝑦,𝑦) cos( 𝜃𝑦,𝑧)

cos(𝜃𝑧,𝑥) cos( 𝜃𝑧,𝑦) cos(𝜃𝑧,𝑧)

]                                (I.1) 

      Ca
b is an orthonormal matrix because the base vectors of A and B are orthogonal unit 

vectors. Therefore, the transpose of a DCM is the same as the DCM representing the 



Chapter I                                       Concepts of attitude and state observers  

  

9 | P a g e  
 

inverse transformation. For all transformation matrices, the transpose is equal to the 

inverse of the matrix 

                                             [𝐶𝑎
𝑏]𝑇[𝐶𝑎

𝑏] = 𝐼   𝑠𝑜   [𝐶𝑎
𝑏]−1 = [𝐶𝑎

𝑏]𝑇 = [𝐶𝑏
𝑎]                              (I.2) 

                                               and            Det [Ca
b ] = 1                                                 (I.3) 

Let 𝑟𝑥 be the position vector referenced in the x-frame. The transformation from the 

frame A to the frame B can be accomplished as follows 

                                                               𝑟𝑏=Ca
b  𝑟𝑎                                                        (I.4)  

The Transformation from a frame to another can be accomplished through an 

intermediate frame or frames. Let C be another frame, the base vectors are given by 𝑋𝑐, 

𝑌𝐶 and 𝑍𝐶. The transformation from the frame B to the frame C is then given by 

                                                          𝑟𝐶= Cb
C  Ca

b  𝑟𝑎                                                    (I.5) 

I.2.2.2 Euler angles  

The orientation of a rigid body with respect to an inertial coordinate system can be 

described by three successive transformations about the body fixed axis. The three angles 

used for the successive transformation are the Euler angles. Usually they are used for 

graphical display of the spacecraft orientation, since they are relatively easy to interpret. 

Anybody axis can be used for the first transformation. The second rotation must be 

performed by any of the two axes not taken for the first transformation. The final 

transformation is about any axes not employed by the second transformation. Therefore 

12 different transformation sequences (sets of Euler angles) exist for this scheme to 

describe the attitude of a rigid body. The transformation matrix, 𝐶𝑛
𝑏, for the transformation 

sequences is obtained by the multiplication of three elementary transformation matrices 

C1, C2 and C3 as                                                                                    

𝐶1 = [
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓 0

−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0
0 0 1

]     𝐶2 = [
𝑐𝑜𝑠 𝜃 0 −𝑠𝑖𝑛 𝜃

0 1 0
𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

]    𝐶3 = [
1 0 0
0 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜑
0 −𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜑

]    (I.6)                                             

𝐶𝑛
𝑏 = 𝐶1𝐶2𝐶3 = [

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 −𝑠𝑖𝑛 𝜃
−𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜓 +𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜓 + 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜃
𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜓 + 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜓 −𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜓 + 𝑐𝑜𝑠 𝜑 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜃

] 
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with 

Roll angle (𝜑): represent the rotations around x-axis. 

Pitch angle (𝜃): represent the rotations around the y-axis. 

Yaw angle (𝜓): represent the rotations around the axis z-axis. 

This relation is not only to express the rotation matrix according to the Euler angles, 

the reverse is also possible and is defined as 

            𝜑 = 𝑎𝑟𝑐𝑡𝑔 (
𝐶𝑛

𝑏(2,3)

𝐶𝑛
𝑏(3,3)

)        𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛(−𝐶𝑛
𝑏(1,3))        𝜓 = 𝑎𝑟𝑐𝑡𝑔 (

𝐶𝑛
𝑏(1,2)

𝐶𝑛
𝑏(1,1)

)                 (I.7) 

The transpose of the transformation matrix can be obtained using 

                                        [𝐶𝑏
𝑛] = 𝐶1(−𝛹)𝐶2(−𝜃)𝐶3(−𝜑) = [𝐶𝑛

𝑏]𝑇                                   (I.8) 

I.2.2.3 Quaternion 

The representation of relative orientation using Euler angles is easy to develop and to 

visualize, but computationally intense. Also, a singularity problem occurs when describing 

attitude kinematics in terms of Euler angles, and therefore, it is not an effective method 

for spacecraft attitude dynamics. The widely used quaternion representation is based on 

Euler's rotational theorem, which states that the relative orientation of two coordinate 

systems can be described by only one rotation about a fixed axis 𝑢⃗ , and one angle 𝛼. 

A Quaternion is a (4×1) vector, which elements consists of a scalar part 𝛼 and a vector 

part 𝑢⃗ . The scalar part is the first element of the matrix. Any rotation can be represented 

by the quaternion                                 𝑞 = (𝛼, �⃗�⃗ ) 

                                                   𝑞 = 𝛼 + 𝑢⃗𝑥𝑖 + 𝑢⃗𝑦𝑗 + 𝑢⃗𝑧�⃗�                                             (I.9) 

Let q and p be two quaternions having elements {a, b, c, d} and {e, f, g, h} respectively. 

Then quaternion multiplication is defined as follows 

                                     𝑞 ⋅ 𝑝 = (

𝑎 −𝑏 −𝑐 −𝑑
𝑏 𝑎 −𝑑 𝑐
𝑐 𝑑 𝑎 −𝑏
𝑑 −𝑐 𝑏 𝑎

)(

𝑒
𝑓
𝑔
ℎ

)                                           (I.10) 

 

The rotation matrix can be expressed according to the elements of the unitary 

quaternion using the following mathematical relation 
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              𝐶𝐵
𝐿 = [

𝑎2 + 𝑏2−𝑐2 − 𝑑² 2(𝑏𝑐 − 𝑎𝑑) 2(𝑎𝑐 + 𝑏𝑑)

2(𝑏𝑐 + 𝑎𝑑) 𝑎2 − 𝑏2+𝑐2 − 𝑑² 2(𝑐𝑑 − 𝑎𝑏)

2(𝑏𝑑 − 𝑎𝑐) 2(𝑎𝑏 + 𝑐𝑑) 𝑎2 − 𝑏2−𝑐2 + 𝑑²

]                          (I.11) 

 

The reverse is also possible and is defined as 

                                          𝑞𝐵
𝐿 =

[
 
 
 
 
1

2
√1 + 𝐶11+𝐶22 + 𝐶33

(𝐶32 − 𝐶23)/4𝑎
(𝐶13 − 𝐶31)/4𝑎
(𝐶21−𝐶12)/4𝑎 ]

 
 
 
 

                                              (I.12) 

 

The Euler angles can also be determined directly from the elements of the unitary 

quaternion such as 

                                      

𝜑 = 𝑡𝑎𝑛−1 (
2(𝑐 ⅆ−𝑎𝑏)

1−2(𝑏2+𝑐2)
)

𝜃 = 𝑠𝑖𝑛−1(−2(𝑏𝑑 + 𝑎𝑐))

𝜓 = 𝑡𝑎𝑛−1 (
2(𝑏𝑐−𝑎 ⅆ)

1−2(𝑐2+ⅆ2)
)

                                            (I.13) 
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I.3 Overview on state observers 

Availability of all state variables for direct measurement is rarely verified in practice. 

In most cases there is a real need for a reliable estimation of the unmeasured variables, 

especially when used for the synthesis of control laws or for process monitoring. Indeed, 

the state of a system may correspond to a physical quantity that cannot always be 

measured directly. The development of a command law or the determination of a failure 

of a component of a system often require access to the value of one or more of its states. 

For this, it is necessary to design an auxiliary system, called “observer”, which is in charge 

for reconstructing the non-measurable states by exploiting the available information to 

know the dynamic model of the system, its measured outputs and possibly its inputs. 

I.3.1 Observer definition 

A state observer is an auxiliary dynamical system that mirrors the behavior of a 

physical system, and it is driven by input and output measurements of the physical system 

in order to provide an estimate of internal states of the physical system. So, the primary 

consideration in the design of an observer is that the estimate of the states should be 

close to the actual value of the system states. On the other hand, the functional 

observation problem centers on the construction of an auxiliary dynamical system, known 

as the functional observer, in order to estimate a linear function or functions of the system 

states. Obviously, a functional observer is a general form of the state observer because 

when the linear functions are chosen then the problem reduces to the problem of state 

observation. 

 

 

 

 

Figure I.5 Design of a state observer 
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I.3.2 Observers for linear systems 

A simple and optimal solution to the problem of estimating the state of linear systems 

was proposed by Luenberger [2] in the deterministic framework, and by Kalman [3] in the 

stochastic framework. In both cases, the dynamic model of the linear system defined by  

                                        {
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢⃗(𝑡) + 𝑀𝑤(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣(𝑡)
                                  (I.14)                                                                     

where 𝑥(𝑡) ∈ Rn, u(t) ∈ Rm and 𝑦(𝑡) ∈ Rp are the state vector, the control input vector and 

the measurement output vector, respectively. 𝐴, 𝐵, 𝐶 and 𝑀 are constant matrices of the 

corresponding dimensions. 𝑤 and 𝑣 are independent white gaussian noises of size 𝑛 and 

𝑝, respectively having characteristics bellow    

                                     {
𝐸[𝑤] = 0

𝐸[𝑤 ⋅ 𝑤𝑡] = 𝑄
                     {

𝐸[𝑣] = 0

𝐸[𝑣 ⋅ 𝑣𝑇] = 𝑅
                                  (I.15)                                                               

where 𝑄 and 𝑅 describe the noise covariance matrices of state and measurements. 

I.3.2.1 Luenberger observer 

The deterministic observer of Luenberger makes it possible to reconstruct the state of 

an observable system from the measurement of inputs and outputs. It is used in state 

feedback commands when all or part of the state vector cannot be measured.  

Luenberger’s theory of observation is essentially based on pole placement techniques 

in the deterministic case, i.e. noise w and v are zero. 

                                            {
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢⃗(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)
                                               (I.16)                                                                          

Luenberger proposes the following observer for the system (I.16) 

                                 {
�̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑢⃗(𝑡) + 𝐿(𝑦(𝑡) − �̂�(𝑡))

�̂�(𝑡) = 𝐶�̂�(𝑡)
                                (I.17) 

The observer state estimation error is defined as follows 

                                                𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡)                                                  (I.18) 

By taking the derivative of (I.17) and substituting (I.16) and (I.17), the error dynamics can 

be obtained as follows                                                                                                                                                           
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            �̇�(𝑡) = �̇�(𝑡) − �̇̂�(𝑡)                                                                                     (I.19) 

= (𝐴𝑥(𝑡) + 𝐵𝑢⃗(𝑡)) − (𝐴�̂�(𝑡) + 𝐵𝑢⃗(𝑡) + 𝐿(𝑦(𝑡) − �̂�(𝑡))) 

= (𝐴𝑥(𝑡) + 𝐵𝑢⃗(𝑡)) − (𝐴�̂�(𝑡) + 𝐵𝑢⃗(𝑡) + 𝐿(𝐶𝑥(𝑡) − 𝐶�̂�(𝑡))) 

= (𝐴 − 𝐿𝐶)𝑥(𝑡) − (𝐴 − 𝐿𝐶)�̂�(𝑡)  

Incorporating the definition in (I.18), this collapses to the following differential equation 

                                                    �̇�(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡)                                         (I.20) 

This differential equation can be readily solved. The solution being an exponential 

function of the form 

                                                  𝑒(𝑡) = 𝑒(𝐴−𝐿𝐶)𝑡𝑒(𝑡0)                                        (I.21) 

For the estimation error to approach zero, the eigenvalues of (𝐴 −  𝐿𝐶) must have 

negative real parts, or equivalently (𝐴 − 𝐿𝐶) must be Hurwitz. 

Since the system is time-invariant, the system parameters 𝐴 and 𝐶 are constant. A 

large liberty is left to the choice of eigenvalues, but in practice we choose a dynamic of 

error faster than that of the process. However, they cannot be taken infinitely large for two 

main reasons: one can use only achievable gains and the increase in the bandwidth of 

the reconstructed no longer allows to neglect the noise that becomes principal in high 

frequencies. The matrix 𝐿 must therefore be chosen to satisfy those conditions via the 

method of pole positioning. 

 

 

 

 

 

 

Figure I.6 Schematic of a full-order state observer. 
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I.3.2.2 Kalman observer 

Kalman’s theory of observation requires the resolution of a Riccati’s equation. Kalman, 

uses the statistical properties of noise and presents the following observer structure 

                                     �̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐵𝑢⃗(𝑡) + 𝐾(𝑦(𝑡) − 𝐶�̂�(𝑡))                                (I.22) 

Minimizing the matrix’s covariance of estimation error 

                                                     𝐸[𝑒(𝑡)𝑒(𝑡)𝑇] = 𝑃                                              (I.23) 

Then, the expression of the observer’s gain is obtained by 

𝐾 = 𝑃𝐶𝑇𝑅−1                                                    (I.24) 

Where P is solution for Riccati’s equation 

𝐴𝑃 + 𝑃𝐴 − 𝑃𝐶𝑇𝑅−1𝐶𝑃 + 𝑀𝑄𝑀𝑇 = 0                                 (I.25) 

Under specific conditions [4], we can show that the matrix P tends towards a limit and 

that the filter is stable, which allow to conserve gain (K) value [5]. 

 

 

 

 

 

 

 

 

Figure I.7 Kalman filter design. 
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I.3.2.3 Observer with unknown input 

Observer theory with unknown input is applicable to linear systems (I.16). Only this 

time, the unknown inputs are involved in the system model    

                                       {
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢⃗(𝑡) + 𝐸𝑑(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)
                                             (I.26) 

Where 𝑑(𝑡) ∈ Rq unknown input and 𝐸 matrix of corresponding dimensions. 

For the system (I.26), an observer is said to have unknown input if the estimation error 

tends to zero in the presence of unknown inputs. Its structure is given by 

                                  {
�̇�(𝑡) = 𝐹𝑧(𝑡) + 𝑇𝐵𝑢⃗(𝑡) + 𝐾𝑦(𝑡)

�̇̂�(𝑡) = 𝑧(𝑡) + 𝐻𝑦(𝑡)
                                          (I.27) 

Where z(t) ∈ Rn is the observer’s state vector and x̂(t) ∈ Rn is the system’s estimated state 

vector, the matrices 𝐹, 𝑇, 𝐾 and 𝐻 that will be determined to stabilize the observer and 

decouple the unknown inputs. By posing 𝐾 = 𝐾1 + 𝐾2, the derivative of the estimation 

error relative to time will be given by                                                 

�̇�(𝑡) = �̇�(𝑡) − �̇̂�(𝑡) 

�̇�(𝑡) = (𝐴 − 𝐻𝐶𝐴 − 𝐾1𝐶)𝑒(𝑡) − [𝐹(𝐴 − 𝐻𝐶𝐴 − 𝐾1𝐶)]𝑧(𝑡) − [𝑇 − (𝐼 − 𝐻𝐶)]𝐵𝑢⃗(𝑡) −
(𝐼 − 𝐻𝐶)𝐸𝑑(𝑡) − [𝐾2 − (𝐴 − 𝐻𝐶𝐴 − 𝐾1𝐶)𝐻]𝑦(𝑡)                                                          (I.28) 

Thus, the conditions for decoupling the unknown input are 

𝐹 = 𝐴 − 𝐻𝐶𝐴 − 𝐾1𝐶             𝐾 = 𝐾1 + 𝐾2 

𝑇 = 𝐼 − 𝐻𝐶                             (𝐻𝐶 − 𝐼)𝐸 = 0 

𝐾2 = 𝐹𝐻                    

If these conditions are satisfied, then the dynamic error will be 

                                                 �̇�(𝑡) = 𝐹𝑒(𝑡)                                                         (I.29) 

In order to ensure that the estimation error asymptotically tends to zero, the 

eigenvalues of 𝐹 must be real negative. The necessary and sufficient conditions for the 

existence of such an observer for a system described by equation (I.28) are [5]. 

𝑅𝑎𝑛𝑔(𝐶𝐸) = 𝑅𝑎𝑛𝑔(𝐸) 

(𝐶, 𝐴𝑙) 𝑒𝑠𝑡 𝑠𝑡𝑎𝑏𝑙𝑒, 𝐴𝑙 = 𝐴 − 𝐴𝐸[(𝐶𝐸)𝑇𝐶𝐸]−1(𝐶𝐸)𝑇𝐶𝐴  
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The first condition means that the number of rows linearly independent of the matrix 

C must not be less than the number of columns linearly independent of the matrix, that is, 

the number of independent measurements must be greater than or equal to the number 

of unknown inputs to be decoupled. 

 

Figure I.8 Structural diagram of OUI. 

I.3.3 Observers for nonlinear systems 

The field of state estimation of non-linear systems is still largely open. Although, as 

we shall see, many methods have been developed to design non-linear observers, the 

problem remains unresolved in many cases. This is an active domain of research, as 

knowledge of the state of a system is required in multiple applications. Most physical 

systems are nonlinear. Sometimes a linearization approximation helps to find a 

satisfactory solution to the estimation problem. However, this method cannot always be 

applied, the class of non-linear systems concerned is quite small. Therefore, it is 

necessary to design specific solutions for non-linear systems. 

Since its introduction by Than in 1973, the observer for a nonlinear system has been 

a topic of interest of recent publications. Over the past 15 years, a variety of methods has 

been developed for constructing observers for some nonlinear systems. 

The dynamic model of the nonlinear system defined by 

                              {
�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢⃗(𝑡)) + 𝑀𝑤(𝑡)

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢⃗(𝑡)) + 𝑣(𝑡)
                                                (I.30) 
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Where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state vector, the control input vector and 

the measurement output vector, respectively. w and v are independent white gaussian 

noises of size n and p, respective characterized by 

                                        {
𝐸[𝑤] = 0

𝐸[𝑤 ⋅ 𝑤𝑡] = 𝑄
                     {

𝐸[𝑣] = 0

𝐸[𝑣 ⋅ 𝑣𝑇] = 𝑅
                              (I.31) 

I.3.3.1 Extended Luenberger observer 

The ELO is relatively simple and light-weight computationally. In its simplest form, it 

uses a constant feedback gain matrix that is computed at design time from the steady-

state solution of a Ricatti equation, and therefore avoids the real-time covariance update 

and computation of the system Jacobian that is necessary for the EKF. 

To review the basics of the Extended Luenberger Observer, consider the nonlinear 

system 

                                                  {

�̇� = 𝑓(𝑥, 𝑢⃗, 𝑑)

𝑦 = ℎ(𝑥)

𝑧 = 𝑔(𝑥)
                                                   (I.32) 

Where x ∈ Rn is the state, u(t) ∈ Rm is the control input, d ∈ Rq is a disturbance 

measurement, y ∈ Rr is the measured output, and z ∈ Rp is the performance output. 

The Extended Luenberger Observer takes the form: 

�̇̂� = 𝑓(�̂�, 𝑢⃗, 𝑑) + 𝐾(𝑦 − �̂�) 

                                                                �̂� = ℎ(�̂�)                                                      (I.33) 

�̂� = 𝑔(�̂�) 

Where x̂ ∈ Rn is the state estimate, ẑ ∈ Rp is the performance output estimate, and 

𝐾 is the observer gain, with the vector 𝐾(𝑦 −  𝑦̂), which is called output injection, added 

to the state equations. 

The state estimate error 𝑥 = 𝑥 − �̂� is then governed by the system 

�̇̃� = 𝑓(𝑥, 𝑢⃗, 𝑑) − 𝑓(�̂�, 𝑢⃗, 𝑑) − 𝐾(𝑦 − �̂�) 

                                                         �̃� =  ℎ(𝑥) − ℎ(�̂�)                                                 (I.34) 

𝑧 =  𝑔(𝑥) − 𝑔(�̂�) 
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We linearize (I.34) about an equilibrium 𝑥  in a neighborhood of 𝑥, defining 

                                      𝐹 =
𝜕𝑓

𝜕𝑥
|
𝑥=x 

   𝐻 =
𝜕ℎ

𝜕𝑥
|
𝑥=x 

 , and   𝐺 =
𝜕𝑔

𝜕𝑥
|
𝑥=x 

                       (I.35) 

So that the linearized error dynamics, neglecting higher-order terms, are 

�̇̃� = (𝐹 − 𝐾𝐻)�̃� 

                                                                �̃� = 𝐻�̃�                                                       (I.36) 

𝑧 = 𝐺�̃� 

There exists an observer gain K to make the origin of (I.36) locally exponentially 

stable if the pair (F; H) is detectable. In fact, more generally we can consider nonlinear 

changes of state coordinates 𝑧 = Φ(x, u, d) nonlinear changes of the output coordinates 

𝜉 = Γ(𝑦) and nonlinear output injection K(y). 

By solving the steady-state Algebraic Riccati Equation 

                                    0 = 𝐴𝑃 + 𝑃𝐴𝑇 − 𝑃𝐻𝑇𝑅−1𝐻𝑃 + Φ𝑇𝑄Φ                                (I.37) 

From which the observer gain is 𝐾 = (𝑅−1𝐻𝑃)𝑇                                                   (I.38) 

I.3.3.2 Extended Kalman Filter  

The extended Kalman filter is for estimating the state of a nonlinear system. Its design 

is based on the generalization of the filter linear Kalman (I.22) using classical techniques 

of linearization of dynamics nonlinear. Thus, the matrices 𝐴 and 𝐶 are replaced by the 

Jacobian matrices 𝑓 and ℎ, evaluated in 𝑥(𝑡). The system studied is linearized at each 

moment along estimated trajectories. We have                                                                                 

𝐴(𝑡) =
𝜕𝑓

𝜕𝑥
(�̂�(𝑡), 𝑢⃗(𝑡)) 

                                                      𝐶(𝑡) =
𝜕ℎ

𝜕𝑥
(�̂�(𝑡), 𝑢⃗(𝑡))                                             (I.39) 

The dynamic of the extended Kalman filter takes the form 

                           �̇̂�(𝑡) = 𝑓(�̂�(𝑡), 𝑢⃗(𝑡)) + 𝐾(𝑡) (𝑦(𝑡) − ℎ(�̂�(𝑡), 𝑢⃗(𝑡)))                      (I.40) 

The expression (I.24) of the gain 𝐾(𝑡) becomes 
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                                                 𝐾(𝑡) = 𝑃(𝑡)𝐶𝑇(𝑡)𝑅−1                                            (I.41) 

And Riccati equation (I.25) is also modified 

                �̇�(𝑡) = 𝐴(𝑡)𝑃(𝑡) + 𝑃(𝑡)𝐴𝑇(𝑡) − 𝑃(𝑡)𝐶𝑇(𝑡)𝑅−1𝐶(𝑡)𝑃(𝑡) + 𝑀𝑄𝑀𝑇            (I.42)  

It can be underlined that these are only local results, namely that global convergence 

cannot be guaranteed without additional hypotheses. In addition, the synthesis of this filter 

uses an approximation of Taylor in the first order, therefore the functions f and h must be 

derivable, which is not the case for all nonlinear systems. On the other hand, it can be 

assumed that by using higher order terms of Taylor’s development, performance is 

improved. 

I.3.3.3 High-gain observers 

The so-called "high gain" techniques can be applied without transforming the initial 

system. In this case, the observer’s design is done directly from the structure of the system 

for the class of nonlinear systems described by the following model  

                                    {
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑥(𝑡), 𝑢⃗(𝑡))

𝑦(𝑡) = 𝐶𝑥(𝑡)
                                      (I.43) 

The dynamics of the state consist of an uncontrolled linear part and a controlled non-

linear part, checking in general the condition of Lipschitz in relation to x. A function f is 

called k-Lipschitzienne if there exists k > 0 such as                                                      

                                            ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝑘‖𝑥 − 𝑦‖                                                   (I.44) 

The "high gain" observer has the following structure 

                                     �̇�(𝑡) = 𝐴�̂�(𝑡) + 𝑓(�̂�, 𝑢⃗) + 𝐿(𝑦 − 𝐶�̂�)                         (I.45) 

The name "high gain" comes from the structure of the observer: when the nonlinear 

function f has a great Lipschitz constant, the slightest error between the real state and the 

estimated state will reverberate and grow. Therefore, the observer’s gain L in (I.45) must 

be important to compensate for this error amplification. 

The dynamics of the estimation error e = x - x̂ is deduced from (I.43) and (I.45) as                                                                                         

                                   �̇�(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝑓(𝑥, 𝑢⃗) − 𝑓(�̂�, 𝑢⃗)                             (I.46) 
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The result is as follows 

                                                       𝑘 <
𝜆𝑚𝑖𝑛(𝑄)

2𝜆𝑚𝑎𝑥(𝑃)
                                                          (I.47) 

Where “k” is the Lipschitz constant of “f”, and “P”, “Q” are two positive symmetrical 

matrices respectively, and solutions of the Riccati’s equation 

                                     (𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶) = −𝑄                            (I.48) 

Then (I.45) is an asymptotic observer of the nonlinear system (I.43). 

The “Thau” method is not constructive, it gives no indication on the choice of a gain 

satisfying the condition (I.47).  

This is a verification technique, which guarantees asymptotic convergence from the 

estimated state x̂ to the real state x, when the gain L has already been chosen. 

If there is a small ε > 0 such as the Riccati equation 

                            𝐴𝑃 + 𝑃𝐴𝑇 + 𝑃 (𝑘2𝐼 −
1

𝜀
𝐶𝑇𝐶)𝑃 + 𝐼 + 휀𝐼 = 0                           (I.49) 

Admits a symmetrical solution defined positive P, then just choose 

                                                          𝐿 =
1

2𝜀
𝑃𝐶𝑇                                 (I.50)  

To ensure the asymptotic convergence of the observer (I.45). 

These "high gain" techniques are widely used in the literature. These are mainly 

verification techniques, which make it possible to establish sufficient conditions for 

convergence from the estimated state to the actual state. The non-linear observer 

structure is a Luenberger structure extended to the nonlinear case. The error increase of 

(I.46) uses Lipschitz’s condition, which is hardly optimal. These conditions are therefore 

more often conservative. 
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I.3.3.4 Sliding mode observers 

The principle of the sliding mode observers SMO consists in constraining, using 

discontinuous functions, the dynamics of system’s order n to converge towards a variety 

s of dimension (n-p) called sliding surface (p being the dimension of the measurement 

vector). The attractiveness and invariance of this surface are ensured by the sliding 

condition. 

In the case of SMO, the dynamics concerned are those of observation errors 

                                                                     x̃ =  x −  x̂                                        (I.51)  

From their initial values x(̃0), these errors must converge towards the equilibrium 

values on which errors between the output of the real system and the output of the 

observer �̃� = 𝑦 − �̂� become zero.  

The sliding mode observer is defined with the following structure 

                                                    �̇̂� = 𝑓(�̂�, 𝑢⃗) + ΛΓ𝑠                                            (I.52)  

Where x ∈ Rn is the state, u ∈ Rm is the control input, Λ is the matrix with corrective 

terms of gains of the observer, and Γ𝑠 is a vector with Γ𝑠 = [𝑠𝑖𝑔𝑛(�̃�1),… , 𝑠𝑖𝑔𝑛(�̃�𝑝)]𝑇. 

The Sliding surface is defined by 

                                                  𝑠 = �̃� = 𝑦 − �̂� ≅ 0                                            (I.53)  

And the dynamic errors 

                                               �̇̃� = �̇� − �̇̂� = ∆𝑓 − ΛΓ𝑠                                                    (I. 54) 

       With                                       ∆𝑓 = 𝑓(𝑥, 𝑢⃗) − 𝑓(�̂�, 𝑢⃗) 

The sliding surface, allowing the synthesis of a sliding mode observer, and it must 

satisfy the condition of attractiveness 𝑠�̇� = 0 which is ensured if the Lyapunov function 

𝑣(𝑠) =
1

2
𝑠𝑇𝑠 satisfies �̇�(𝑠) < 0 when 𝑠 ≠ 0,  and the invariance condition is satisfied 

using the corrective terms of gains Λ. 
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The correction term used is proportional to the discontinuous sign function applied to 

the output error. The study of stability and convergence for such observers is based on 

the use of Lyapunov functions. 

I.3.3.5 Observers with variable structure 

Observers with variable structure are another family of observers. In all the methods 

seen above, the dynamic model of the studied system was assumed to be perfectly 

known. Here, it is a question of developing a certain robustness vis-à-vis parametric 

uncertainty. The method used to build these observers is based on the theory of slippery 

modes. The class of systems studied is described by 

                                     {
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑓(𝑥(𝑡), 𝑢⃗(𝑡))

𝑦(𝑡) = 𝐶𝑥(𝑡)
                             (I.55) 

       The function f represents the nonlinearities and uncertainties of the system. The 

following hypotheses are made about the system (I.55): 

(i) The pair (C, A) is detectable, so there is a K matrix such that the matrix (A-KC) is stable. 

(ii) The function f is of the form 

                                      𝑓(𝑥(𝑡), 𝑢⃗(𝑡)) = 𝑃−1𝐶𝑇ℎ(𝑥(𝑡), 𝑢⃗(𝑡))                             (I.56) 

Where P is a positive symmetrical matrix, solution of the Lyapunov equation (P exists 

according to hypothesis (i)) 

                                          (1 − 𝐾𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐾𝐶) = −𝑄                 (I.57) 

And the function h is unknown but stubborn 

                                               ‖ℎ(𝑥(𝑡), 𝑢⃗(𝑡)‖ ≤ 𝜌(𝑢⃗(𝑡))                                   (I.58) 

It should be noted that nonlinearity does not occur in the observer structure proposed 

by [6] 

                        �̇̂�(𝑡) = 𝐴�̂�(𝑡) + 𝐾(𝑦(𝑡) − 𝐶�̂�(𝑡)) + 𝑘(�̂�(𝑡), 𝑢⃗(𝑡), 𝑦(𝑡))                          (I.59) 
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With 

𝑘(�̂�(𝑡), 𝑢⃗(𝑡), 𝑦(𝑡)) = {
𝑃−1𝐶𝑇(𝑦(𝑡)−𝐶�̂�(𝑡))

‖𝑦(𝑡)−𝐶�̂�(𝑡)‖
𝜌(𝑢⃗(𝑡))  𝑖𝑓  (𝑥(𝑡) − �̂�(𝑡)) ≠ 0

0   𝑖𝑓  (𝑥(𝑡) − �̂�(𝑡)) = 0
            (I.60) 

The term 𝜅(�̂�(𝑡), 𝑢⃗(𝑡), 𝑦(𝑡))  in (I.60) can be considered a variable gain, which 

becomes infinite when the estimation error is small. It is demonstrated in [7] that the 

observer (I.59) is an exponential observer of the system (I.55). 

It should be noted that the exact knowledge of the system is not necessary, it is 

enough to know an increase ρ(u) on nonlinearities or uncertainties. On the other hand, 

hypothesis (ii) imposes a structural constraint on f, which can be difficult to verify in the 

presence of model uncertainties. 

The discontinuity of the 𝜅 function (I.60) is another disadvantage of this method: a 

high frequency oscillatory regime may appear in the dynamics of the estimation error. 

I.4 Conclusion 

In this chapter we first underlined the notation of attitude, which is the orientation of a 

frame fixed in the body relative to a fixed reference frame, and we introduced some of the 

more common representations and reference frames that can be used in the next 

chapters. 

     In the second section of this chapter the notion of state observers was underlined, in 

the case of linear and nonlinear systems. This is a domain of research where there are 

still many unresolved problems, due to no general methodology for the construction of 

observers. 

The construction of observers decomposes into synthesis, and design to choose the 

dynamics of the observer and a phase of analysis of the convergence of the observed 

state to the real state of the system. The observer design for nonlinear systems is based 

on the generalization of linear system observers, using classical linearization techniques 

for nonlinear dynamic. Some of observers discussed in this chapter are the basis of the 

attitude observers, which will be studied in the next chapter.
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II.1 Introduction 

Attitude estimation, or orientation, has over time become an important scientific 

issue. Determining the attitude of a rigid body is the subject of numerous studies in 

different fields, such as aerospace (for the control of satellites), robotics (air, sea and 

land), motion capture (for medicine or the animation of avatars for video games), 

ecophysiology (for the study of behavioral responses of animals). 

The first attitude estimation methods in the 1970s were developed to find a solution 

to the Wahba problem. This is to solve an optimization problem to find the rotation 

matrix based on the knowledge of at least two vectors, expressed in a mobile frame of 

reference linked to the body and whose projections in a fixed frame (of reference) are 

known.  

A good estimation of the vehicle’s attitude is very important. In the present work we 

focus on the problem of attitude estimation based on measurements provided by a GPS 

and an IMU embarked on the vehicle. The vehicle’s position and linear velocity are 

directly measured by the GPS, but the reconstruction of its attitude poses difficulties. 

We use sensors to get information about our vehicle’s attitude, which are used to 

measure a property from which the navigation system computes its outputs; examples 

include accelerometers, gyroscopes, and radio navigation receivers. 

The output of a navigation system is known as the navigation solution. It comprises 

the position and velocity of the navigating object. Some navigation systems also provide 

some or all of the attitude (including heading), acceleration, and angular rate. Similarly, 

the position solution is just the position of the object. 
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II.2 Sensors used for attitude determination 

The ability of the ancient Egyptian surveyors to orient some of their monuments to 

the meridian with accuracy has long perplexed modern societies. Although generally 

their temples were not well placed, the pyramids, and especially the Great Pyramid, 

were oriented almost precisely to True Geographical North.  

To account for this, various methods have been proposed which range from pure 

chance to a precise star measuring system. However, the means used for orienting the 

pyramids was actually based on the movements of the sun. Many ancient cultures have 

made use of the sun's movements by measuring its shadows with an instrument called 

a gnomon, a pole placed vertically on the ground. 

Ancient pictographs show the Egyptians, too, made use of this instrument. With the 

gnomon and a notched device called a bay (once considered to be a means for sighting 

distant stars), they were able to read the shadows with precision.  

 

Figure II.1 Manner of defining tip of shadow by using a BAY. 

 

Another method to find true north by building a circular wall higher than a man 

whose top is an absolute plane. This wall would form an artificial horizon to an observer 

standing in its center. This observer, while sighting over a pole or through the slit of a 

bay, would direct another to mark the position of a star as it rose above the wall, and 

again, when the star set. True north may be obtained, he claims, with a line taken 

between the bisection of these two points and the center pole [39]. 
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II.2.1 Compass 

A compass is a navigational instrument for determining direction relative to the 

Earth's magnetic poles. It consists of a magnetized pointer (usually marked on the North 

end) free to align itself with Earth's magnetic field. The compass greatly improved the 

safety and efficiency of travel, especially ocean travel. A compass can be used to  

calculate heading, used with a sextant to calculate latitude, and with a marine 

chronometer to calculate longitude.  

It thus provides a much improved navigational capability that has only been recently 

supplanted by modern devices such as the Global Positioning System (GPS). A 

compass is any magnetically sensitive device capable of indicating the direction of 

the magnetic north of a planet's magnetosphere. The face of the compass generally 

highlights the cardinal points of north, south, east and west. Often, compasses are built 

as a standalone sealed instrument with a magnetized bar or needle turning freely upon 

a pivot, or moving in a fluid, thus able to point in a northerly and southerly direction.  

The compass was invented in ancient China , and was used for navigation by the 

11th century. The dry compass was invented in medieval Europe around 1300. This 

was supplanted in the early 20th century by the liquid-filled magnetic compass. 

II.2.2 Sun sensor and Stars trackers 

There are many devices used today on modern spacecraft to accurately determine 

their position. Magnetometers can be used in conjunction with the Earth’s magnetic 

field. Sun sensors can be used for attitude determination, but the sun must be visible to 

the spacecraft. The problem is that the sun sensor and magnetometers can only 

achieve an accuracy of 0.1 degree [12]. A solution to the accuracy problem is using a 

star tracker. 

Star trackers are the most accurate device in use for determining a spacecraft’s 

position. The star tracker is essentially a camera for the sole purpose of observing star 

patterns as observed on the celestial sphere [13]. The star tracker is attached to the 

satellite onboard computer as part of the ADCS (Attitude Determination and Control 

Subsystem) [13] The star tracker operates automatically, getting images of star patterns 



Chapter II                                           Overview of attitude estimators 

29 | P a g e  
 

within its Field of Vision (FOV). The stars observed by the camera can then be identified 

and the orientation of the spacecraft can be calculated. 

II.2.3 Magnetometer 

Magnetometers are instruments used for measuring the strength and direction of 

magnetic fields. They are used extensively in aircraft navigation, marine navigation, and 

oilfield borehole applications. The magnetometers are used to determine the vehicle 

heading, where heading is defined as the angle formed between the longitudinal axis of 

the vehicle projected onto the horizontal plane and magnetic north. In most applications, 

normally a pair of magnetometers are mounted perpendicular to each other or a triad of 

magnetometers is mounted orthogonally.  

A cluster of three magnetometers with the sensor axes mounted orthogonal and 

aligned with the body axes measures the three components vector 

𝑚𝑏 = 𝑅𝑛
𝑏𝑚𝑛                                                          (II.1) 

Where 𝑚𝑛 = [ 𝑚𝑁 𝑚𝐸 𝑚𝐷 ], represent the magnitude and direction of the Earth’s 

magnetic field. The magnetic field is different around the globe and in fact time-varying 

as well. 

II.2.3.1 Magnetometer error model 

Assuming small scale-factor errors and small misalignment errors, the 

magnetometer output can be modeled as [14] 

𝑚𝑖𝑚𝑢
𝑏 ≈ 𝑅𝑛

𝑏𝑚𝑛 + 𝑏𝑚𝑎𝑔
𝑏 + 𝑤𝑚𝑎𝑔                                       (II.2) 

Where 𝑏𝑚𝑎𝑔
𝑏 is the local magnetic disturbance, and 𝑤𝑚𝑎𝑔 is bounded unmodeled errors and 

measurement noise. The local magnetic disturbance is modeled as a slowly time-

varying disturbance. 

�̇�𝑚𝑎𝑔
𝑏 = 𝑤𝑏𝑚𝑎𝑔                                                  (II.3) 

Where 𝑤𝑏𝑚𝑎𝑔 is Gaussian white noise. 
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II.2.4 Inertial sensors 

Inertial measurement unit (IMU) combines multiple accelerometers and gyroscopes. 

Three accelerometers and tree gyroscopes together can make IMU with six degrees of 

freedom. Accelerometers measure final forces and gyroscopes measure the angular rate 

of the IMU body with respect to inertial space in body axes. These sensors are mounted 

in orthogonal sensitive axes. It also includes temperature sensor, calibration store, clock, 

power supplies and IMU processor [15, 16, and 17]. 

II.2.4.1 Gyroscopes 

Gyroscopes are devices that sense angular rate with respect to inertial space. There 

are a lot of gyroscope types [8] the main types of gyroscope are outlined below. 

Conventional gyroscope consists of a spinning wheel mounted on two gimbals which 

allow it to rotate in all three axes, as show in Figure II.2. An effect of the conservation of 

angular momentum is that the spinning wheel will resist changes in orientation. Hence 

when a mechanical gyroscope is subjected to a rotation the wheel will remain at a 

constant global orientation and the angles between adjacent gimbals will change. To 

measure the orientation of the device the angles between adjacent gimbals can be read 

using angle pick-offs. Note that a conventional gyroscope measures orientation. In 

contrast nearly all modern gyroscopes are rate-gyros, which measure angular velocity.   

The main disadvantage of mechanical gyroscopes is that they contain moving parts. 

Moving parts cause friction, which in turn causes the output to drift over time. To minimize 

friction high-precision bearings and special lubricants are used, adding to the cost of the 

device. Mechanical gyroscopes also require a few minutes to warm up, which is not ideal 

in many situations. 

A fiber optic gyroscope (FOG) uses the interference of light to measure angular 

velocity. A FOG consists of a large coil of optical fiber. To measure rotation two light 

beams are fired into the coil in opposite directions. If the sensor is undergoing a rotation 

then the beam travelling in the direction of rotation will experience a longer path to the 

other end of the fiber than the beam travelling against the rotation, this is known as the 

Sagnac effect. 
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When the beams exit the fiber, they are combined. The phase shift introduced due to 

the Sagnac effect causes the beams to interfere, resulting in a combined beam whose 

intensity depends on the angular velocity. It is therefore possible to measure the angular 

velocity by measuring the intensity of the combined beam. 

Ring laser gyroscopes (RLGs) are also based on the Sagnac effect. The difference 

between a FOG and RLG is that in a RLG laser beams are directed around a closed path 

using mirrors rather than optical fiber. 

 

Figure II.2 Conventional mechanical gyroscope [8]. 

II.2.4.2 Accelerometers  

An accelerometer can be broadly classified as a mechanical or solid state or MEMS 

device [8]. (Figure II.3) shows a simple accelerometer. A proof mass is free to move with 

respect to the accelerometer case along the accelerometer’s sensitive axis, restrained by 

springs. A pickoff measures the position of the mass with respect to the case. When an 

accelerating force along the sensitive axis is applied to the case, the proof mass will 

initially continue at its previous velocity, so the case will move with respect to the mass, 

compressing one spring and stretching the other. This alters the forces the springs 

transmit. Consequently, the case will move with respect to the mass until the acceleration 

of the mass due to the asymmetric forces exerted by the springs matches the acceleration 

of the case due to the externally applied force. The resultant position of the mass with 

respect to the case is proportional to the applied acceleration. By measuring this with a 

pickoff, an acceleration measurement is obtained [9]. 
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Figure II.3 A simple mechanical accelerometer [9]. 

An important exception is gravitational acceleration. This acts on the proof mass 

directly, not via the springs, and applies the same acceleration to all components of the 

accelerometer, so there is no relative motion of the mass with respect to the case. 

An accelerometer measures the specific force of the accelerometer case with respect 

to inertial space, which does not accelerate or rotate with respect to the rest of the 

universe. An IMU containing a triad of accelerometers with mutually-orthogonal sensitive 

axes measures the specific force vector, 𝑓𝑖𝑏
𝑏 , where the subscript “i”,”b” denotes 

measurement of the origin of the IMU body frame, “b”, with respect to an inertial frame, 

“i”, and the superscript b denotes that the components of the vector are resolved along 

the axes of the IMU body frame, which normally coincide with the sensitive axes of the 

constituent sensors .The specific force may be expressed in terms of the inertially 

referenced acceleration, 𝑎𝑖𝑏
𝑏 , and the gravitational acceleration , γ𝑖𝑏

𝑏 , using [9] 

                                𝑓𝑖𝑏
𝑏 = 𝑎𝑖𝑏 

𝑏 − γ𝑖𝑏
𝑏                                                      (II.4) 

However, it is often more convenient to express the specific force in terms of the 

Earth referenced acceleration,𝑎𝑒𝑏 
𝑏 . Thus 

                              𝑓𝑖𝑏
𝑏 = 𝑎𝑒𝑏 

𝑏 − g𝑏
𝑏                                                     (II.5) 

Where g𝑏
𝑏 is the acceleration due to gravity, the sum of the gravitational acceleration 

and the outward centrifugal acceleration due to the Earth’s rotation. 

Solid-state accelerometers can be broken into various sub-groups, including surface 

acoustic wave, vibratory, silicon and quartz devices. An example of a solid-state 

accelerometer is the surface acoustic wave (SAW) accelerometer. A SAW 

accelerometer consists of a cantilever beam which is resonated at a particular 
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frequency, A mass is attached to one end of the beam which is free to move. The other 

end is rigidly attached to the case. When an acceleration is applied along the input axis 

the beam bends. This causes the frequency of the surface acoustic wave to change 

proportionally to the applied strain. By measuring this change in frequency, the 

acceleration can be determined. 

Micro-machined silicon accelerometers use the same principles as mechanical and 

solid-state sensors. There are two main classes of MEMS accelerometer. The first class 

consists of mechanical accelerometers (devices which measure the displacement of a 

supported mass) manufactured using MEMS techniques. The second class consists of 

devices which measure the change in frequency of a vibrating element caused by a 

change of tension, as in SAW accelerometers. 

II.2.4.3 Inertial sensors errors: 

All types of accelerometer and gyro exhibit biases, scale factor and cross-coupling 

errors, and random noise to a certain extent. Higher-order errors and angular rate specific 

force cross-sensitivity may also occur, depending on the sensor type. Each of these errors 

is discussed in turn [18]. 

II.2.4.3.a Biases: 

The bias is a constant error exhibited by all accelerometers and gyros. It is 

independent of the underlying specific force and angular rate. In most cases, the bias is 

the dominant term in the overall error of an inertial instrument. 

The accelerometer and gyro biases of an IMU, following sensor calibration and 

compensation, are denoted by the vectors 𝑏𝑎  and 𝑏𝑔  respectively. It is sometimes 

convenient to split the biases into static,𝑏𝑎𝑠 and 𝑏𝑔𝑠 , and dynamic,𝑏𝑎ⅆ and 𝑏𝑔ⅆ [9], where 

  𝑏𝑎 = 𝑏𝑎𝑠 + 𝑏𝑎ⅆ                                              (II.6) 

𝑏𝑔 = 𝑏𝑔𝑠 + 𝑏𝑔ⅆ                                              (II.7) 

Where The static component comprises the run-to-run variation of each instrument 

bias plus the residual fixed bias remaining after sensor calibration. It is constant 

throughout an IMU operating period, but varies from run to run, the dynamic component, 

also known as the in-run bias variation or bias instability, varies over periods of the order 
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of a minute and also incorporates the residual temperature-dependent bias remaining 

after sensor calibration. The dynamic bias is typically about 10% of the static bias. 

II.2.4.3.b Scale Factor  

The scale factor error is the departure of the input-output gradient of the instrument 

from unity following unit conversion by the IMU. The accelerometer output error due to 

the scale factor error is proportional to the true specific force along the sensitive axis, 

while the gyro output error due to the scale factor error is proportional to the true angular 

rate about the sensitive axis. The accelerometer and gyro scale factor errors of an IMU 

are denoted by the vectors 𝑠𝑎and 𝑠𝑔 respectively. 

II.2.4.3.c Cross-Coupling Errors  

In all types of IMUs arise from the misalignment of the sensitive axes of the inertial 

sensors with respect to the orthogonal axes of the body frame due to manufacturing 

limitations. These make each accelerometer sensitive to the specific force along the axes 

orthogonal to its sensitive axis and each gyro sensitive to the angular rate about the axes 

orthogonal to its sensitive axis. The axes misalignment also produces additional scale 

factor errors, but these are typically two to four orders of magnitude smaller than the 

cross-coupling errors.  

      The scale factor and cross-coupling errors for a nominally orthogonal 

accelerometer and gyro triad may be expressed as the following matrices [9] 

𝑀𝑎 = [

𝑠𝑎,𝑥 𝑚𝑎,𝑥𝑦 𝑚𝑎,𝑥𝑧

𝑚𝑎,𝑦𝑥 𝑠𝑎,𝑦 𝑚𝑎,𝑦𝑧

𝑚𝑎,𝑧𝑥 𝑚𝑎,𝑧𝑦 𝑠𝑎,𝑧

]                                        (II.8) 

𝑀𝑔 = [

𝑠𝑔,𝑥 𝑚𝑔,𝑥𝑦 𝑚𝑔,𝑥𝑧

𝑚𝑔,𝑦𝑥 𝑠𝑔,𝑦 𝑚𝑔,𝑦𝑧

𝑚𝑔,𝑧𝑥 𝑚𝑔,𝑧𝑦 𝑠𝑔,𝑧

]                                        (II.9) 

Where: 𝑚𝑎,𝑥𝑦 is used to denote the cross-coupling coefficient of x-axis specific force 

sensed by the y-axis accelerometer. 𝑚𝑔,𝑥𝑦  is used to denote the cross-coupling 

coefficient of x-axis angular rate sensed by the y-axis accelerometer. 
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II.2.4.3.d Random noise 

All inertial sensors exhibit random noise from a number of sources. Electrical noise 

limits the resolution of inertial sensors. particularly MEMS sensors, where the signal is 

very weak. Pendulous accelerometers exhibit noise due to mechanical instabilities. 

Vibratory gyros can exhibit high-frequency resonances. In addition, vibration from RLG 

dither motors and spinning-mass gyros can induce accelerometer noise. 

The accelerometer and gyro random noise are sometimes described as random 

walks, which can be a cause of confusion. Random noise on the specific force 

measurements is integrated to produce a random-walk error on the inertial velocity 

solution. Similarly, random noise on the angular rate measurements is integrated to 

produce an attitude random-walk error. The standard deviation of a random-walk 

process is proportional to the square root of the integration time. The same random 

walk errors are obtained by summing the random noise on integrated specific force and 

attitude increment IMU outputs. The random noise on each IMU sample is denoted by 

the vectors 𝑤𝑎and 𝑤𝑔 for the accelerometers and gyros, respectively. 

II.2.4.3.e Error Models 

The following equations show how the main error sources contribute to the 

accelerometer and gyro outputs [9] 

𝑓𝑖𝑏
𝑏 = 𝑏𝑎 + (𝐼3 + 𝑀𝑎)𝑓𝑖𝑏

𝑏 + 𝑤𝑎                                  (II.10) 

ω̃𝑖𝑏
𝑏 = 𝑏𝑎 + (𝐼3 + 𝑀𝑎)ω𝑖𝑏

𝑏 + 𝐺𝑔𝑓𝑖𝑏
𝑏 + 𝑤𝑎                          (II.11) 

Where 

 𝑓𝑖𝑏
𝑏  is the IMU-output specific force vector, ω̃𝑖𝑏

𝑏   is the IMU-output angular rate vector, 

𝑓𝑖𝑏
𝑏  and ω𝑖𝑏

𝑏  are the true counterparts, and 𝐼3 is the identity matrix. 

  



Chapter II                                           Overview of attitude estimators 

36 | P a g e  
 

II.2.5 Global Positioning System (GPS) 

The Global Positioning System (GPS) is a space-based radionavigation system 

which is managed for the Government of the United States by the U.S. Air Force 

(USAF). 

The system operator GPS was originally developed as a military force enhancement 

system and will continue to play this role. However, GPS has also demonstrated a 

significant potential to benefit the civil community in an increasingly large variety of 

applications.  

In an effort to make this beneficial service available to the greatest number of users 

while ensuring that the national security interests of the United States are observed, two 

GPS services are provided.  

The Precise Positioning Service (PPS) is available primarily to the military of the 

United States and its allies for users properly equipped with PPS receivers. The 

Standard Positioning Service (SPS) is designed to provide a less accurate positioning 

capability than PPS for civil and all other users throughout the world. 

II.2.5.1 Basic GPS concept  

The position of a certain point in space can be found from distances measured from 

this point to some known positions in space. Let us use some examples to illustrate this 

point. In Figure II.4, the user position is on the x-axis; this is a one-dimensional case. If 

the satellite position S1 and the distance to the satellite x1 are both known, the user 

position can be at two places, either to the left or right of S1. In order to determine the 

user position, the distance to another satellite with known position must be measured. In 

this figure, the positions of S2 and x2 uniquely determine the user position U. 

Figure II.4 One-dimensional user position. 

Figure II.5 shows a two-dimensional case. In order to determine the user position, 

three satellites and three distances are required. The trace of a point with constant 
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distance to a fixed point is a circle in the two-dimensional case. Two satellites and two 

distances give two possible solutions because two circles intersect at two points. A third 

circle is needed to uniquely determine the user position. For similar reasons one might 

decide that in a three-dimensional case four satellites and four distances are needed. 

The equal-distance trace to a fixed point is a sphere in a three-dimensional case. Two 

spheres intersect to make a circle. This circle intersects another sphere to produce two 

points. In order to determine which point is the user position, one more satellite is 

needed. 

Figure II.5 Two-dimensional user position. 

II.2.5.2 GPS measurements 

In GPS, the position of the satellite is known from the ephemeris data transmitted by 

the satellite. One can measure the distance from the receiver to the satellite. Therefore, 

the position of the receiver can be determined. 

In the above discussion, the distance measured from the user to the satellite is 

assumed to be very accurate and there is no bias error. However, the distance 

measured between the receiver and the satellite has a constant unknown bias, because 

the user clock usually is different from the GPS clock. In order to resolve this bias error 

one more satellite is required. Therefore, in order to find the user position five satellites 

are needed. 

If one uses four satellites and the measured distance with bias error to measure a 

user position, two possible solutions can be obtained. 
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Theoretically, one cannot determine the user position. However, one of the solutions 

is close to the earth’s surface and the other one is in space. Since the user position is 

usually close to the surface of the earth, it can be uniquely determined. Therefore, the 

general statement is that four satellites can be used to determine a user position, even 

though the distance measured has a bias error. In the following discussion four satellites 

are considered the minimum number required in finding the user position. 

II.2.5.3 Basic equations for finding user position 

In this section the basic equations for determining the user position will be presented. 

Assume that the distance measured is accurate and under this condition three satellites 

are sufficient. In Figure II.6, there are three known points at locations r1 or (x1, y1, z1), r2 

or (x2 y2, z2), and r3 or (x3, y3, z3), and an unknown point at ruor (xu, yu, zu).  

If the distances between the three known points to the unknown point can be 

measured as 𝜌1, 𝜌2, and 𝜌3, these distances can be written as: 

𝜌1 = √(𝑥1 − 𝑥𝑢)2 + (𝑦1 − 𝑦𝑢)2 + (𝑧1 − 𝑧𝑢)2 

𝜌2 = √(𝑥2 − 𝑥𝑢)2 + (𝑦2 − 𝑦𝑢)2 + (𝑧2 − 𝑧𝑢)2                                  (II.12) 

𝜌2 = √(𝑥3 − 𝑥𝑢)2 + (𝑦3 − 𝑦𝑢)2 + (𝑧3 − 𝑧𝑢)2 

 

 

 

 

 

 

 

Figure II.6 Use three known position to find one unknown position. 
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In GPS operation, the positions of the satellites are given. This information can be 

obtained from the data transmitted from the satellites. The distances from the user (the 

unknown position) to the satellites must be measured simultaneously at a certain time 

instance. Each satellite transmits a signal with a time reference associated with it. By 

measuring the time of the signal traveling from the satellite to the user the distance 

between the user and the satellite can be found. 

II.2.5.4 Measurement of pseudo range 

Every satellite sends a signal at a certain time 𝑡𝑠𝑖. The receiver will receive the signal 

at a later time 𝑡𝑢. The distance between a user and the satellite, “i” is 

𝜌𝑖𝑇 = 𝑐(𝑡𝑢 − 𝑡𝑠𝑖)                                             (II.13) 

Where 𝑐 is the speed of light, 𝜌𝑖𝑇 is often referred to as the true value of pseudo range 

from user to satellite 𝑖, 𝑡𝑠𝑖 is referred to as the true time of transmission from satellite 𝑖, 𝑡𝑢 

is the true time of reception. 

From a practical point of view, it is difficult, if not impossible, to obtain the correct 

time from the satellite or the user. The actual satellite clock time 𝑡′𝑠𝑖and actual user 

clock time 𝑡′𝑢 are related to the true time as 

𝑡′𝑠𝑖 = 𝑡𝑠𝑖 + ∆𝑏𝑖                                         (II.14) 

𝑡′
𝑢 = 𝑡𝑢⃗ + 𝑏𝑢𝑡 

Where ∆𝑏𝑖 is the satellite clock error, 𝑏𝑢𝑡 is the user clock bias error, besides the clock 

error, there are other factors affecting the pseudo range measurement. The measured 

pseudo range 𝜌𝑖 can be written as [11] 

𝜌𝑖 = 𝜌𝑖𝑇 + ∆𝐷𝑖 − 𝑐(∆𝑏𝑖 − 𝑏𝑢𝑡) + 𝑐(∆𝑇𝑖 + ∆𝐼𝑖 + 𝑣𝑖 + ∆𝑣𝑖)                (II.15) 

Where ∆𝐷𝑖 is the satellite position error effect on range, ∆𝑇𝑖 is the tropospheric delay 

error, ∆𝐼𝑖  is the ionospheric delay error, 𝑣𝑖 is the receiver measurement noise error, ∆𝑣𝑖 is 

the relativistic time correction. 
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As a result, Equation (II.12) must be modified as 

𝜌1 = √(𝑥1 − 𝑥𝑢)2 + (𝑦1 − 𝑦𝑢)2 + (𝑧1 − 𝑧𝑢)2+𝑏𝑢 

𝜌2 = √(𝑥2 − 𝑥𝑢)2 + (𝑦2 − 𝑦𝑢)2 + (𝑧2 − 𝑧𝑢)2 + 𝑏𝑢                              (II.16) 

𝜌3 = √(𝑥3 − 𝑥𝑢)2 + (𝑦3 − 𝑦𝑢)2 + (𝑧3 − 𝑧𝑢)2 + 𝑏𝑢 

𝜌4 = √(𝑥4 − 𝑥𝑢)2 + (𝑦4 − 𝑦𝑢)2 + (𝑧4 − 𝑧𝑢)2 + 𝑏𝑢 

Where 𝑏𝑢 is the user clock bias error expressed in distance, which is related to the 

quantity 𝑏𝑢𝑡 by 𝑏𝑢 = 𝑐 × 𝑏𝑢𝑡 In Equation (II.16), four equations are needed to solve for four 

unknowns 𝑥𝑢, 𝑦𝑢, 𝑧𝑢, and 𝑏𝑢. Thus, in a GPS receiver, a minimum of four satellites is 

required to solve for the user position. 

II.2.5.5 Solution of user position from pseudo ranges 

It is difficult to solve for the four unknowns in Equation (II.16), because they are 

nonlinear simultaneous equations. One common way to solve the problem is to linearize 

them. The above equations can be written in a simplified form as 

𝜌𝑖 = √(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2 + 𝑏𝑢                      (II.17) 

Where i = 1, 2, 3, and 4, and 𝑥𝑢, 𝑦𝑢 𝑧𝑢, and 𝑏𝑢 are the unknowns. The pseudo range 

𝜌𝑖 and the positions of the satellites 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 are known. 

Differentiate this equation, and the result is (II.18) 

𝛿𝜌𝑖 =
(𝑥𝑖 − 𝑥𝑢)𝛿𝑥𝑢 + (𝑦𝑖 − 𝑦𝑢)𝛿𝑦𝑢 + (𝑧𝑖 − 𝑧𝑢)𝛿𝑧𝑢

√(𝑥𝑖 − 𝑥𝑢)2 + (𝑦𝑖 − 𝑦𝑢)2 + (𝑧𝑖 − 𝑧𝑢)2
+ 𝛿𝑏𝑢 

𝛿𝜌𝑖 =
(𝑥𝑖 − 𝑥𝑢)𝛿𝑥𝑢 + (𝑦𝑖 − 𝑦𝑢)𝛿𝑦𝑢 + (𝑧𝑖 − 𝑧𝑢)𝛿𝑧𝑢

𝜌𝑖 − 𝑏𝑢
+ 𝛿𝑏𝑢 

In this equation, 𝛿𝑥𝑢, 𝛿𝑦𝑢, 𝛿𝑧𝑢, and 𝛿𝑏𝑢can be considered as the only unknowns. The 

quantities 𝑥𝑢, 𝑦𝑢 𝑧𝑢, and 𝑏𝑢 are treated as known values because one can assume some 

initial values for these quantities. From these initial values a new set of 𝛿𝑥𝑢, 𝛿𝑦𝑢, 𝛿𝑧𝑢,and 

𝛿𝑏𝑢can be calculated. 
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With 𝛿𝑥𝑢, 𝛿𝑦𝑢, 𝛿𝑧𝑢,and 𝛿𝑏𝑢 as unknowns, the above equation becomes a set of 

linear equations. This procedure is often referred to as linearization. The above 

equation can be written in matrix form as 

[
 
 
 
𝛿𝜌

1

𝛿𝜌
2

𝛿𝜌
3

𝛿𝜌
4]
 
 
 
= [

𝛼11 𝛼12 𝛼13 1
𝛼21 𝛼22 𝛼23 1
𝛼31 𝛼32 𝛼33 1
𝛼41 𝛼42 𝛼43 1

] [

𝛿𝑥𝑢⃗

𝛿𝑦
𝑢⃗

𝛿𝑧𝑢⃗

𝛿𝑏𝑢⃗

]                      (II.19) 

Where 

𝛼𝑖1 =
𝑥𝑖−𝑥𝑢

𝜌𝑖−𝑏𝑢
     𝛼𝑖2 =

𝑦𝑖−𝑦𝑢

𝜌𝑖−𝑏𝑢
          𝛼𝑖3 =

𝑧𝑖−𝑧𝑢

𝜌𝑖−𝑏𝑢
            (II.20) 

The solution of Equation (II.19) is 

[

𝛿𝑥𝑢⃗

𝛿𝑦
𝑢⃗

𝛿𝑧𝑢⃗

𝛿𝑏𝑢⃗

] = [

𝛼11 𝛼12 𝛼13 1
𝛼21 𝛼22 𝛼23 1
𝛼31 𝛼32 𝛼33 1
𝛼41 𝛼42 𝛼43 1

]

−1

[
 
 
 
𝛿𝜌

1

𝛿𝜌
2

𝛿𝜌
3

𝛿𝜌
4]
 
 
 
                   (II.21) 

This equation obviously does not provide the needed solutions directly; however, the 

desired solutions can be obtained from it. In order to find the desired position solution, 

this equation must be used repetitively in an iterative way. A quantity is often used to 

determine whether the desired result is reached and this quantity can be defined as 

𝛿𝑣 = √𝛿𝑥𝑢² +  𝛿𝑦𝑢² +  𝛿𝑧𝑢² +  𝛿𝑏𝑢²                        (II.22) 

When this value is less than a certain predetermined threshold, the iteration will stop. 

Sometimes, the clock bias 𝑏𝑢 is not included in Equation (II.22). 

II.2.5.6 User position in spherical coordinate system 

The user position calculated from the above discussion is in a Cartesian coordinate 

system. It is usually desirable to convert to a spherical system and label the position in 

latitude, longitude, and altitude as the every-day maps use these notations.  

The latitude of the earth is from −90 to 90 degrees with the equator at 0 degree. The 

longitude is from −180 to 180 degrees with the Greenwich meridian at 0 degree. The 
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altitude is the height above the earth’s surface. If the earth is a perfect sphere, the user 

position can be found easily as shown in Figure II.7. From this figure.  

The distance from the center of the earth to the user is 

𝑟 = √𝑥𝑢² + 𝑦𝑢² + 𝑧𝑢²                                       (II.23) 

Figure II.7 An octet of an ideal spherical earth. 

The latitude 𝐿𝑐 is:                           𝐿𝑐 = tan−1 (
𝑧𝑢

√𝑥𝑢
2+𝑦𝑢²

)                                 (II.24) 

The longitude 𝑙 is:                              𝑙 = tan−1 (
𝑦𝑢

𝑥𝑢
)                                  (II.25) 

The altitude ℎ is:                                 ℎ = 𝑟 − 𝑟𝑒                                                 (II.26) 

II.2.5.7 GPS errors 

Ranging errors are typically grouped into six classes Figure II.8 

- Ionosphere: Errors in corrections of pseudorange measurements caused by 

ionospheric effects (free electrons in the ionosphere). 

- Troposphere: Errors in corrections of pseudorange measurements caused by 

tropospheric effects; temperature, pressure, and humidity contribute to variations in the 

speed of light. 

- Multipath: Errors caused by reflected signals entering the receiver antenna. 
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- Ephemeris: Ephemeris data errors in transmitted parameters in navigation 

messages for satellites’ true positions. 

- Satellite Clock: Clock errors in the transmitted clock data for GPS. 

- Receiver Errors: Errors in the receiver’s measurement of range caused by thermal 

noise, software accuracy, and interchannel biases. 

 

 

Figure II.8 GPS errors. 
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II.3 Different approaches to attitude estimation 

A rigid body moving inside the earth satisfies the following equation �̇� = 𝑅[𝜔]×. 

The solution of this equation is not really reliable in long term applications because 

of gyroscopic drifts and measurement noise. Then, the attitude can be reconstructed 

using estimation algorithms merging measurements from several sensors. And several 

solutions to the attitude estimation problem have been developed in the literature.  

Depending on the number of sensors used, there are two main categories of 

approaches: approaches using measurements (observations) from inertial sensors 

(accelerometers, magnetometers, gyroscopes) and approaches using a complementary 

measurement source such as GPS in addition to inertial sensor measurements. 

II.3.1 Attitude estimation based on inertial sensors  

There are two types of estimators. 

II.3.1.1 Static Attitude estimators 

Static Attitude estimation is probably the oldest systematic trend of estimating the 

attitude of a flying vehicle with an acceptable accuracy. This class of attitude estimation 

techniques takes advantage of the body vector observations to numerically determine 

the attitude without necessarily considering its kinematics. In this way, the attitude is 

merely regarded as a matrix (or quaternion) that transforms a vector 𝑥 ∈  𝑅3 in one 

frame to a vector 𝑦 ∈  𝑅3 in another frame and as a result, can be obtained by 

mathematical optimization techniques. Therefore, the information of the original 

system’s dynamics is disregarded and attitude is found on an optimization basis. 

The method, also known as deterministic solution, is characterized by finding the 

attitude estimate in a single point in time when observations of some known vectors in 

the inertial frame are available in the body frame. It has a simple estimation process 

with relatively small computational cost. However, this comes with a lower accuracy 

than the other methods that rely on additional information of the system dynamics. 
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Although the earliest deterministic solution techniques relied only on body vector 

measurements and literally put the system equations aside, the emergence of recursive 

techniques that considered system dynamics for propagation of states in late 1990s 

provided more reliable methods with remarkable resemblance to the Kalman filter 

Major development of these methods, also known as batch attitude determination 

algorithms, started with the early optimization methods proposed to solve the Wahba’s 

problem [19]. In this problem, with the assumption that two sets of simultaneously 

observed unit vectors �̂�1,..., �̂�N and �̂�1,..., �̂�N are respectively known in the inertial 

frame (i.e., the reference coordinate system) and the body frame, orthogonal matrix R, 

representing the rotation matrix, is numerically found by minimizing the loss function. 

L(R) =
1

2
∑ ai

n
1 |�̂�i − 𝑅�̂�i|²                                           (II.27) 

Where ai , 𝑖 = 1, … , 𝑁 are non-negative weights and N is the number of 

measurements. By normalizing these weights to have ∑ ai
n
1 = 1, it is straightforward to 

show that 

L(R) = 1 − ∑ ai
n
1 �̂�i

𝑇
𝑅 �̂�i = 1 − 𝑡𝑟(𝑅𝐵𝑇)                           (II.28) 

Where tr denotes the trace operator and matrix B is defined as  

𝐵 = ∑ ai �̂�i
n
1 �̂�i

𝑇
                                              (II.29) 

Equation (II.2) reduces the problem to finding the appropriate matrix R that 

maximizes the term tr (𝑅𝐵𝑇). It should be noted that Wahba’s problem addresses the 

attitude determination in a closed-form reconstruction manner. For generalizations of 

this problem readers are referred to [20] and [21]. 

Earlier solutions to the Wahba’s least squares problem included a method using 

polar decomposition of the matrix B proposed in [22], and other algorithms in [23], [24], 

and [25]. Introduction of the Q-method [26], along with these algorithms divided the 

efforts of finding the optimal matrix 𝑅𝑜𝑝𝑡 into two classes of solutions where the first 

class directly computes matrix 𝑅𝑜𝑝𝑡  and the second tries to find the optimal quaternion 

associated with the orientation matrix. Structural differences in numerous proposed 
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algorithms belonging to each class result in different computational costs and execution 

times. 

II.3.1.1.a Triad 

The earliest attitude reconstruction method, known as TRIAD [27], was designed to 

work with only two non-collinear unit reference vectors  �̂�1,  �̂�2 in inertial frame and their 

corresponding unit observation vectors �̂�1,  �̂�2 in body frame to construct a new 

orthonormal reference with bases  (�̂�1, �̂�2 , �̂�3) and observation vectors  (�̂�1 , �̂�2 , �̂�3). 

 �̂�1 =  �̂�1             �̂�2 = ( �̂�1 ×  �̂�2)/| �̂�1 ×  �̂�2|           �̂�3 = ( �̂�1 × ( �̂�1 ×  �̂�2))/| �̂�1 ×  �̂�2|  (II.30) 

 �̂�1 =  �̂�1             �̂�2 = ( �̂�1 ×  �̂�2)/| �̂�1 ×  �̂�2|      �̂�3 = ( �̂�1 × ( �̂�1 ×  �̂�2))/| �̂�1 ×  �̂�2|    (II.31) 

From which the attitude matrix can be simply found by 

𝑅 = ∑  �̂�i
n
1 �̂�i

𝑇
                                                 (II.32) 

Although this method seems to be very simple, in practice it suffers from the fact 

that parts of measurements are discarded. Therefore, the optimal attitude reconstruction 

methods were given more attention since they do not eliminate any parts of the 

observed vectors. 

II.3.1.1.b SVD and FOAM 

A descendant of the method proposed in [22], Singular Value Decomposition (SVD) 

method is a point-by-point algorithm to determine the optimal attitude matrix in the 

Wahba problem framework [28]. In this approach, similar to the other deterministic 

techniques, only sensor measurements are used and information about the system 

model is disregarded. The method consists of a direct “singular value” decomposition 

[29] of the matrix B that gives 

B = U S 𝑉𝑇                                                (II.33) 

Where U and V are orthogonal matrices and S is a singular value diagonal matrix of 

the form 

S = diag(𝑠1, 𝑠2, 𝑠3)                                         (II.34) 

With the singular values  𝑠𝑖, 𝑖 = 1,2,3, obeying the inequalities 𝑠1 > 𝑠2 > 𝑠3 > 0.  
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Proper orthogonal matrices of 𝑈+ and 𝑉+ along with the diagonal matrix  𝑆′ are 

defined as 

U+  = U[diag(1,1, det U)]                                    (II.35) 

V+  = V[diag(1,1, det V)]                                     (II.36) 

S′ = diag(s1, s2, s3(det U)(det V))                              (II.37) 

Where det denotes the determinant of a matrix and (det U) (det V) = ±1. Then, the 

matrix B is decomposed into the following form 

         𝐵 = U+S′𝑉+
𝑇                                                (II.38) 

And the optimal matrix 𝑅𝑜𝑝𝑡 , which minimizes the cost function (II.27), is found to be 

𝑅𝑜𝑝𝑡 = U+V+ = 𝑈[𝑑𝑖𝑎𝑔(1,1, (det𝑈)(det 𝑉))] 𝑉𝑇                  (II.39) 

Another version of this method, known as Fast Optimal Attitude Matrix (FOAM), 

Markley uses the properties of the matrix B to rewrite the optimal rotation matrix (II.39) 

as 

    Ropt = [(ḳ + ‖B‖2)B + λ adj BT − B BTB]/ξ                       (II.40) 

Where adj denotes the adjoint matrix and 

‖B‖2 = s1
2 + s2

2 + s3
2                                        (II.41) 

And the scalar coefficients ḳ , λ 𝑎𝑛𝑑 ξ are defined as  

ḳ = s2s3 + s3s2 + s1s2 

λ = s1 + s2 + s3                                                  (II.42) 

ξ = (s2 + s3)(s3 + s1)(s1 + s2) 

Since the values of these coefficients depend on the SVD, FOAM takes advantage 

of an iterative computation strategy to avoid finding (𝑠1, 𝑠2, 𝑠3) and instead, directly 

computing the three scalar coefficients. The coefficients ḳ 𝑎𝑛𝑑 ξ can be expressed in 

term of  λ and B as  
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ḳ =
1

2
(λ2 − ‖B‖2) 

ξ = ḳλ − det𝐵                                                   (II.43) 

Using (II.14) and the fact that  λ = tr(Ropt B
T) , λ  can be found by solving the 

following equation  

(λ2 − ‖B‖2)2 − 8λ det 𝐵 − 4‖adj B‖2 = 0                              (II.44) 

Once this equation is recursively solved to find λ, all the other scalar coefficients 

can be computed. These will determine the optimal rotation matrix from (II.40). 

In comparison to other methods. the FOAM algorithm is significantly higher in speed 

and is shown to be the most robust algorithm among the other deterministic attitude 

estimation methods. It also does not have problems in dealing with the special case of a 

180 degrees rotation [30], [31]. The SVD and FOAM do not adopt quaternion 

parameterization and work entirely with a rotation matrix. This enables them to work 

without the requirement of computing eigenvalues and eigenvectors and save some 

computational time. 

II.3.1.1.c Q-Method  

Since the four components quaternion representation and the rotation matrix are 

related to each other by simple relations, it can be shown that a search for an optimal 

matrix Ropt in Wahba’s problem leads to the computation of an optimal quaternion 

corresponding to that rotation matrix [26]. The method, known in literature as the Q-

method, simplifies the previous optimization techniques by using the 4 × 1 quaternion 

vector instead of 3 × 3 rotation matrix. 

Given the observation pairs of ( �̂�i,  �̂�i) and the positive coefficients a𝑖, let us define 

the following 3 × 3 matrix, 3 × 1 vector Z and scalar σ 

𝑆 = 𝐵 + 𝐵𝑇 = ∑  ai
n
1  �̂�i�̂�𝑖

𝑇 +  �̂�i�̂�𝑖
𝑇                                  (II.45) 

𝑍 = ∑  ai
n
1  �̂�i ×  �̂�i                                                (II.46) 

σ = tr(b) = ∑  ai
n
1 �̂�𝑖

𝑇 �̂�i                                         (II.47) 
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Defining the 4 × 4 symmetric matrix K as 

K = [
S − σ𝐼3 z

zT σ
]                                              (II.48) 

Results in (II.27) to be written into the quadratic quaternion function 

1 − 𝐿(𝑅) = 𝑔(Q) =  QT𝐾 Q                                      (II.49) 

It is then clear that the minimization of L(R) is equivalent to finding the maximum 

value of the function g(Q). It is also easy to show that the optimal quaternion that 

maximizes (II.49) is the eigenvector associated with the largest positive eigenvalue of 

the matrix K. In other words 

KQopt = λmaxQopt                                          (II.50) 

Substituting (II.50) into (II.49) and applying the quaternion norm constraint gives the 

following expression for the optimized loss function 

L(Ropt) = 1 − λmax                                        (II.51) 

II.3.1.1.d Least Squares 

Consider the following nonlinear system 

ẋ = f(x, t) + B u(t)                                           (II.52) 

y = Hx + v                                                 (II.53) 

Now define 𝜖𝑦 as the difference between the noisy measurements and the vector 

Hx̂. 

ϵy = y − Hx̂                                               (II.54) 

Where: x̂ represents the state estimates. 𝜖𝑦 is called the measurement residual. The 

most probable value of the vector x is the vector x̂ that minimizes the sum of squares 

between the observed values y and the vector Hx̂.So we will try to compute the  x̂ that 

minimizes the cost function  J = 𝜖𝑦
𝑇 𝜖𝑦                                                 

The algorithm of LS is written in the following [13] 

𝐾𝑘 = 𝑃𝑘−1𝐻𝑘
𝑇[𝐻𝑘𝑃𝑘−1𝐻𝑘

𝑇 + 𝑅]−1                                        (II.55) 
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�̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘+1[𝑌𝑘+1 − 𝐻𝑘�̂�𝑘−1]                                     (II.56) 

𝑃𝑘 = [𝐼 − 𝐾𝑘𝐻𝑘]𝑃𝑘−1[𝐼 − 𝐾𝑘𝐻𝑘]
𝑇 + 𝐾𝑘𝑅𝐾𝑘

𝑇                             (II.57) 

II.3.1.2 Dynamics estimators 

To improve the quality of attitude estimation, several research works have been 

based on adding gyroscopic measurements through the rotation equation. These 

measurements provide information on the dynamics of the vehicle and correct any 

erroneous information mainly coming from the accelerometer. Such approaches, called 

"dynamic approaches". 

Several alternative solutions have been proposed in the last decades. The surveys 

of nonlinear attitude estimation methods based on vector measurements (i.e., vector 

observations), which contain a large number of literature citations, are useful sources to 

start a research on the topic. The paper [20] by one of the pioneers in the domain is also 

interesting. The author provides many interesting stories about the history of attitude 

estimation, and especially the QUEST (i.e., QUaternion ESTimator) that he gave birth to 

and which has become one of the most widely-used spacecraft attitude estimation 

algorithms. 

Recently and because of the nonlinearities associated with the problem of attitude 

estimation, approaches from the theory of nonlinear automation have given rise to 

nonlinear attitude observers. One of the first works in this direction is that of Salcudean 

[40] where a nonlinear observer is proposed for the estimation of angular velocities of a 

rigid body. 

Recently, other nonlinear approaches have focused on the estimation of the rotation 

matrix 𝐶 ∈ 𝑆𝑂(3) [37]. The works developed in [36], [35] are very remarkable and their 

originality is due to the fact that they exploit the group of 𝑆𝑂(3) rotation matrices and the 

Lie algebra associated with it. This approach was developed in order to estimate the 

attitude and the bias present in the measurements of gyros. 

Although for nonlinear observers of the rotation matrix, it is shown that the attitude 

error converges to zero asymptotically globally. The advantage of nonlinear approaches 
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over the extended Kalman filter is that they guarantee global convergence, provided 

through analysis based on Lyapunov theory. 

A- Kalman Filter algorithm 

 

Figure II.9 Kalman filter algorithm. 
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B- Quaternion-based EKF 

 

Figure II.10 The process of the fusion algorithm. 

The quaternion was selected to present the states in the EKF rather than the Euler 

angles because it is free of singularities. 

The quaternion, which represents a rotation about a specific axis, is defined in 

terms of four parameters in a column vector as follows 

𝑞 = [𝑞0 𝑞1 𝑞2 𝑞3]𝑇                                          (II.58) 

With  

‖𝑞‖ = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1                               (II.59) 

The Euler angles can be derived as 

tan∅ =
2(𝑞0𝑞1+𝑞2𝑞3)

𝑞0
2−𝑞1

2−𝑞2
2+𝑞3

2

𝑠𝑖𝑛𝜃 = 2(𝑞0𝑞2 − 𝑞3𝑞1)

tanψ =
2(𝑞0𝑞3+𝑞1𝑞2)

𝑞0
2+𝑞1

2−𝑞2
2−𝑞3

2

                                        (II.60) 

Since the drift of gyroscope results in accumulating error, some compensation for 

the drift is needed to give reliable estimations in the EKF. In this way, the accumulating 

error of gyroscope could be made to converge to zero. The state vector is given by 

𝑥 = [
𝑞
𝑏
]                         (II.61) 

Where 𝑞 is the quaternion vector and 𝑏 is the vector that contains the estimated 

bias of each gyroscope in the body coordinate frame. The drift of the gyroscope can be 

modeled as a random walk, so the dynamic equation of 𝑏 is simply �̇�. The nonlinear 
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state transition and observation models in the EKF are represented as 𝑓(𝑥, 𝜔) and ℎ(𝑥), 

respectively, and given by 

𝑓(𝑥, 𝜔) =
1

2

[
 
 
 
 
[

−𝑞1 −𝑞2 −𝑞3

𝑞0 −𝑞3 𝑞2

𝑞3 𝑞0 −𝑞1

−𝑞2 𝑞1 𝑞0

] [
𝑝
𝑞
𝑟
]

03×1 ]
 
 
 
 

                          (II.62) 

ℎ(𝑥) =

[
 
 
 
 tan

−1 (
2(𝑞0𝑞1+𝑞2𝑞3)

𝑞0
2−𝑞1

2−𝑞2
2+𝑞3

2)

sin−1(2(𝑞0𝑞2 − 𝑞3𝑞1))

tan−1 (
2(𝑞0𝑞3+𝑞1𝑞2)

𝑞0
2+𝑞1

2−𝑞2
2−𝑞3

2)]
 
 
 
 

    (II.63) 

In this study, the vector ℎ(𝑥) is also the transformation from the quaternion to Euler 

angle representation. The process of the proposed sensor fusion algorithm is shown in 

Figure II.10. The inputs are the angular rates measured by the gyroscopes and the 

velocity with respect to ground in NED coordinates acquired from the GPS receiver, and 

the outputs are the estimated roll angle, pitch angle, and yaw angle, computed from the 

quaternion estimated in the EKF. 

C- The Unscented Kalman Filter 

The unscented Kalman filter (UKF) is an extension of the Kalman filter that reduces 

the linearization errors of the EKF. The use of the UKF can provide significant 

improvement over the EKF. 

We have an n-state discrete time nonlinear system given by 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢⃗𝑘, 𝑡𝑘) + 𝑤𝑘                    (II.64) 

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑡𝑘) + 𝑣𝑘        (II.65) 

𝑤𝑘~(0, 𝑄𝑘) 

𝑣𝑘~(0, 𝑅𝑘) 
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The UKF is initialized as follows 

�̂�0
+ = 𝐸(𝑥0)       (II.66) 

𝑃0
+ = 𝐸[(𝑥0 − �̂�0

+)(𝑥0 − �̂�0
+)𝑇]     (II.67) 

The following time update equations are used to propagate the state estimate and 

covariance from one measurement time to the next. 

To propagate from time step (𝑘 − 1) to  𝑘, first choose sigma points 𝑥𝑘−1
(𝑖)

, with 

appropriate changes since the current best guess for the mean and covariance of  𝑥𝑘   

are �̂�𝑘−1
+ ,  and  𝑃𝑘−1

+ . 

�̂�𝑘−1
(𝑖) = �̂�𝑘−1

+ + �̃�(𝑖)    𝑖 = 1, … ,2𝑛 

�̃�(𝑖) = (√𝑛𝑃𝑘−1
+ )

𝑖

𝑇

    𝑖 = 1,… , 𝑛 

�̃�(𝑛+𝑖) = −(√𝑛𝑃𝑘−1
+ )

𝑖

𝑇
    𝑖 = 1,… , 𝑛     (II.68) 

Use the known nonlinear system equation 𝑓(. ) to transform the sigma points into 

�̂�𝑘
(𝑖)

 vectors, with appropriate changes since our nonlinear transformation is 𝑓(. ) rather 

than ℎ(. ). 

�̂�𝑘
(𝑖) = 𝑓(�̂�𝑘−1

(𝑖) , 𝑢⃗𝑘 , 𝑡𝑘)     (II.69) 

Combine the �̂�𝑘
(𝑖)

 vectors to obtain the a priori state estimate at time k. 

�̂�𝑘
− =

1

2𝑛
∑ �̂�𝑘

(𝑖)2𝑛
𝑖=1      (II.70) 

Estimate the a priori error covariance. However, we should add 𝑄𝑘−1  to the end of 

the equation to take the process noise into account 

𝑃𝑘
− =

1

2𝑛
∑ (�̂�𝑘

(𝑖) − �̂�𝑘
−)(�̂�𝑘

(𝑖) − �̂�𝑘
−2𝑛

𝑖=1 )𝑇 + 𝑄𝑘−1  (II.71) 

Now that the time update equations are done, we implement the measurement 

update equations. 

Choose sigma points 𝑥𝑘−1
(𝑖)

, with appropriate changes since the current best guess 

for the mean and covariance of 𝑥𝑘   are �̂�𝑘
−,  and  𝑃𝑘

−. 
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�̂�𝑘
(𝑖) = �̂�𝑘

+ + �̃�(𝑖)    𝑖 = 1,… ,2𝑛 

�̃�(𝑖) = (√𝑛𝑃𝑘
+)

𝑖

𝑇

    𝑖 = 1,… , 𝑛 

�̃�(𝑛+𝑖) = −(√𝑛𝑃𝑘
+)

𝑖

𝑇
    𝑖 = 1,… , 𝑛     (II.72) 

Use the known nonlinear measurement equation ℎ(. ) to transform the sigma points 

into �̂�𝑘
(𝑖)

 vectors (predicted measurements). 

�̂�𝑘
(𝑖) = ℎ(�̂�𝑘

(𝑖), 𝑡𝑘)      (II.73) 

Combine the �̂�𝑘
(𝑖)

 vectors to obtain the predicted measurement at time k. 

�̂�𝑘 =
1

2𝑛
∑ �̂�𝑘

(𝑖)2𝑛
𝑖=1      (II.74) 

Estimate the covariance of the predicted measurement. However, we should add 𝑅𝑘  

to the end of the equation to take the measurement noise into account. 

𝑃𝑦 =
1

2𝑛
∑ (�̂�𝑘

(𝑖) − �̂�𝑘)(�̂�𝑘
(𝑖) − �̂�𝑘

2𝑛
𝑖=1 )𝑇 + 𝑅𝑘   (II.75) 

Estimate the cross covariance between �̂�𝑘
−  and �̂�𝑘. 

𝑃𝑥𝑦 =
1

2𝑛
∑ (�̂�𝑘

(𝑖) − �̂�𝑘
−)(�̂�𝑘

(𝑖) − �̂�𝑘
2𝑛
𝑖=1 )𝑇   (II.76) 

 

The measurement update of the state estimate can be performed using the normal 

Kalman filter equations. 

𝐾𝑘 = 𝑃𝑥𝑦𝑃𝑦
−1      (II.77) 

�̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘(𝑦𝑘 − �̂�𝑘)     (II.78) 

𝑃𝑘
+ = 𝑃𝑘

− − 𝐾𝑘𝑃𝑦𝐾𝑘
𝑇      (II.79) 
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D- Nonlinear Complementary Filter [38] 

 

Figure II.11 Block diagram of the complementary filter. 

the kinematics of the true system are given by 

�̇� = 𝑅Ω× = (𝑅Ω)×𝑅     (II.80) 

The dynamics of the filter �̂� are required to evolve on 𝑆𝑂(3) and should have a form 

similar to the kinematics of 𝑅 

�̇̂� = (𝑅Ω + �̂�𝜔(�̂�, 𝑅))×�̂� 

�̇̂� = ((𝑅Ω)× + 𝑘𝑒𝑠𝑡�̂�𝜋𝑎(�̃�)�̂�𝑇)�̂�   𝑓𝑜𝑟 �̂�(0) = �̂�0    (II.81) 

where 𝜔(�̂�, 𝑅) is a correction term that is zero when �̂� = 𝑅. And the kinematics of �̃� 

are given by 

�̇̃� = �̂�𝑇(𝑅Ω + �̂�𝜔)×
𝑇𝑅 + �̂�𝑇(𝑅Ω)×𝑅 

�̇̃� = 𝜔×
𝑇�̃� = −𝜔×�̃�      (II.82) 

 

Deriving the Lyapunov function 𝐸𝑡 

�̇�𝑡 = −
1

2
𝑡𝑟(�̇̃�)      (II.83) 

Then 

�̇�𝑡 = −2𝑘𝑒𝑠𝑡 cos2 (
𝜃

2
) 𝐸𝑡           (II.84) 
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And for any initial condition �̂�0 such that 

𝜃0 =
1

√2
‖log (�̃�0)‖ < 𝜋       (II.85) 

Then 𝐸𝑡  →  0 and �̂�(𝑡) → 𝑅(𝑡) exponentially. 

Implementing a complementary filter on SO(3) 

Given the theoretical form of the filter it is important to consider how such a filter 

may be implemented. In practice, the various inputs to the filter are replaced by 

measurements and filtered estimates of the states; There are three key inputs 

- The reference rotation 𝑅 that generates the error term �̂�𝑇𝑅. Based on an 

understanding of complementary filter design it is natural to use the estimate 𝑅𝑦  to 

generate the error term. 

- A direct measurement of the angular velocity Ω𝑦 ≈ Ω is available and used to drive 

the feedforward term in the filter. 

- Finally, an estimate of the rotation 𝑅 must be used to map the body-fixed-frame 

velocity back into the inertial frame. 

Nonlinear observers 

The algorithms are mentioned in I.3.3 
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II.3.2 Attitude estimation based on IMU/GPS fusion 

II.3.2.1 Integration Architectures 

Architecture 1 (Uncoupled Mode) 

Figure II.12. uncoupled mode. 

Figure II.12 illustrates the configuration in which GPS and an INS produce 

independent navigation solutions with no influence of one on the other. The 

integrated navigation solution is mechanized by an external integration processor that 

may be as simple as a selector or as complex as a multimode Kalman filter. All data 

busses are "simplex" (unidirectional).  

The characterization of Figure II.12 as an "uncoupled" mode is based on the 

independence of the GPS and INS navigation functions. Note that, in principle, the 

hardware could all be packaged in one physically integrated (embedded) unit; however, 

the functionality would still be that of uncoupled architecture. The potential benefits of 

integrating the navigation solutions from uncoupled GPS and inertial navigators are: 

- It is the easiest, fastest, and potentially the cheapest approach when an INS and 

GPS are both available. 

- It provides some tolerance to failures of subsystem components (except in the 

embedded configuration). 

- Using an integration processor as simple as a selection algorithm can provide “en 

route” navigation at least as accurate as available from an INS. 
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Architecture 2 (Loosely Coupled Mode) 

Figure II.13 Loosely coupled mode. 

Figure II.13 illustrates a configuration in which there are several data paths 

between the integration processor and the GPS and the INS equipment. Among these, 

the provision of the system navigation solution to the GPS is the most important for 

getting the maximum benefit from the integration filter. The inertial aiding of GPS 

tracking loops is of next greatest benefit, and feedback of error states to the INS is of 

second-order benefit. 

Reference navigation solution 

GPS generally employs a Kalman filter mechanization to compute PVT updates 

based on current tracking loop measurements. when the system navigation solution is 

fed back to perform that propagation. In effect, the GPS measurements can now be used 

to correct the system navigation solution. Over short periods of time, that solution is very 

accurate because it incorporates INS data based on acceleration sensing. The filter can 

be tuned to have a longer time constant (filter memory), thereby increasing the effective 

averaging of each noisy GPS measurement. 

Inertial aiding of GPS tracking loops 

The availability of a GPS navigation solution can be increased significantly when 

inertial aiding is used to reduce the vehicle dynamics tracked by the UE code and carrier 

loops. In principle, this aiding could be applied directly from the INS to the GPS, but it is 

shown as an output of the integration processor in Figure II.13 because of the following: 
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- GPS tracking loops must be aided by the projection of vehicle velocity along the 

line-of-sight (LOS) to each satellite being tracked. The conversion from inertial 

coordinates to GPS LOS coordinates is most appropriately done in the integration 

processor or in the GPS UE itself. In either case, INS velocity information is available 

within the processor hence aiding can be part of the data flow to the UE. This avoids the 

expense and risk of developing a custom interface from the INS to the GPS UE. 

- Executing the coordinate transformation external to the INS retains flexibility in the 

selection of INS equipment and avoids the need to develop custom GPS/INS interfaces 

for each application. However, this raises a concern for "data latency" (i.e. feeding 

delayed data to the tracking loops). 

Error-state feedback to the inertial navigation system 

Most inertial navigation systems have the means to accept external inputs to reset 

their position and velocity solutions and to adjust the alignment of their stable platform. 

The adjustment may be executed by a mathematical correction in a "strap-down" inertial 

system, or it may be realized by torqueing a gimballed platform. In either case, the use 

of feedback can maintain inertial navigation errors at a level for which their dynamics 

are accurately modeled by the error state propagation equations embodied in the 

integration filter. 

Architecture 3 (tightly Coupled Mode) 

 

Figure II.14 Tightly coupled mode. 

Figure II.14 illustrates the so-called tightly coupled integration mode. It differs from 

the loosely coupled mode in that both the GPS receiver and the inertial components are 

limited to their sensor functions. They are treated as sources of GPS code and carrier 
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measurements and inertial indications of acceleration (velocity change) and angular 

rate, respectively. These sensor outputs are then combined in one navigation processor 

that may mechanize an appropriately high-order integration filter [32-34]. 

In the tightly coupled mode, there is only one feedback from the navigation processor. 

Figure 3 illustrates the use of velocity aiding to the GPS tracking loops. Acceleration 

aiding could also be effectively used, but we are not aware of any particular 

mechanization using other than velocity aiding. The other paths used in loosely coupled 

architectures are not needed here because all computations involved in navigation 

processing are now internal to one processor. The concept of tightly coupled integration 

is often raised in connection with embedded GPS receivers. These are not necessarily 

synonymous. However, it is reasonable that we would choose to mechanize a tightly 

coupled integration algorithm if we had already taken the effort to design a GPS receiver 

that is physically and electrically integrated with an inertial sensor or with a powerful 

navigation processor. 

II.3.2.2 Implementation of the integrated system with EKF 

To implement the KF for the integrated navigation system, first we should build up 

the system model, i.e. to determine the state vector and derive the system dynamic 

equations as well as observation equations. Based on the system model. 

State vector and system dynamic equations 

The state vector contains the unknown parameters to be estimated in the Kalman 

filter. we choose 15 parameters for the state vector of the GPS/INS integrated 

navigation system. The parameters can be divided into two groups as 

x = [x1
T   x2

T]T                                                         (II.86) 

Where the first group contains three dimensional errors in position, velocity and 

orientation of the IMU 

x1 = [(δre)T   (δve)T   (εe)T]T = [δxi, δyi, δzi, δvx, δvy, δvz, εx, εy, εz]
T
         (II.87)                                          

And the second group is the sensors errors 

 x2 = [dT   bT]T                                                      (II.88) 
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The position and velocity of the vehicle can be computed 

xi = xi0 + δxi,      vx = vx0 + δvx 

                                      yi = yi0 + δyi,      vy = vy0 + δvy                                   (II.89) 

zi = zi0 + δzi,      vz = vz0 + δvz 

Where xi0, yi0, zi0 are coordinates, vx0, vy0, vz0 are velocities as delivered by IMU. 

The IMU sensors errors in the second group contain two parts 

The accelerometer’s error δa(t) consists of the constant (b) and random (WA) parts:  

δa(t) = b + WA(t)                                                  (II.90) 

Where 

      b: is the accelerometer bias, which is modelled as random constant. This bias 

gets a random value within certain limit, usually specified as bias repeatability. This bias 

must be determined after each start of IMU. 

      WA(t): is random walk noise of the accelerometer. 

Similarly, the error of the gyro can be described as  

δω(t) = d + wG(t)                                               (II.91) 

Where 

𝑑: is the gyro drift. The same remark holds as for b. 

wG(t): is random walk noise of the gyro. 

The sensor errors are defined as 

�̂� = ω̃ + δω 

                                   â = ã + δa                                                       (II.92) 

The INS errors are modelled by a linear system described generally by the following 

dynamic state equation 

ẋ(t) = F(t)x(t) + G(t)u(t)                                      (II.93) 
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And the measurement model is 

z(t) = Hx(t) + v(t)                                    (II.94) 

Where x is the state vector, F is the system dynamic matrix, G is input matrix, t is 

time, and u is a vector forcing function, whose elements are white noise. The discrete 

solution of Eq. (II.94) is 

𝑿𝑘 = 𝚽𝑘,𝑘−1 𝑿𝑘−1 + 𝑾𝑘                                (II.95) 

Where 𝚽𝑘,𝑘−1 is the transition matrix from epoch k-1 to k and, 𝑾𝑘 is the noise in the 

state vector. The Kalman filter can be applied iteratively based on this discrete solution. 

      The relationship between the transition matrix 𝚽 and dynamic matrix F can be 

expressed by 

𝚽k,k+1 = eF.Δt ≈ I + FkΔt +
1

2
Fk

2Δt2 +
1

3!
Fk

3Δt3+
1

4!
Fk

4Δt4+...            (II.96) 

It is the transition matrix between epochs k and k+1, where Δt = 𝐭k+1 − 𝐭k and 

 𝚽k,k+1 = ∫ 𝚽k+1,τ
k+1

k
Gτuτdτ                             (II.97) 

It is the driven response at epoch 𝑘 + 1 due to the presence of the white noise input 

during interval Δt. 

Differenced GPS observation equations 

In the case of differential or relative positioning, at least two GPS receivers measure 

pseudo-ranges to a set of common satellites simultaneously. Let two receivers on points 

A and B measure a satellite s and the point A is a known, reference point. The code and 

phase observation equations can be written as 

𝑃𝐴
𝑠 = 𝑃𝐴

𝑠(𝑡𝐴) − �̇�𝐴
𝑠(𝑡𝐴)𝛿𝑡�̂�𝐴 

𝜆𝜑𝐴
𝑠 = 𝜆𝜑𝐴

𝑠 − �̇�𝐴
𝑠(𝑡𝐴)𝛿𝑡�̂�𝐴                                            (II.98) 

Where 𝜑𝐴
𝑠 , 𝑃𝐴

𝑠
 is the phase difference and pseudo-range by receiver A to satellite 

s; 𝑡𝐴is the nominal time of the signal reception measured by the clock of receiver A. 
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To reduce the atmospheric effects that are common to both stations, it is useful to 

form differenced equations. The single differences can be obtained by the difference 

equations of the two receivers towards one satellite 

𝜆𝜑𝐴𝐵
𝑠 = 𝜆𝜑𝐵

𝑠 − 𝜆𝜑𝐴
𝑠 = 𝜌𝐴𝐵

𝑠 + 𝑐𝛿𝑡𝐴𝐵 + 𝜆𝑁𝐴𝐵
𝑠  

𝑃𝐴𝐵
𝑠 = 𝑃𝐵

𝑠 − 𝑃𝐴
𝑠 = 𝜌𝐴𝐵

𝑠 + 𝑐𝛿𝑡𝐴𝐵                                      (II.99) 

Where 

𝜌𝐴𝐵
𝑠 = 𝜌𝐵

𝑠 − 𝜌𝐴
𝑠  

𝛿𝑡𝐴𝐵 = 𝛿𝑡𝐵 − 𝛿𝑡𝐴                                                (II.100) 

𝑁𝐴𝐵
𝑠 = 𝑁𝐵

𝑠 − 𝑁𝐴
𝑠 

In the similar way, it is possible to form double differences between two single 

differences. Let two receivers A, B observing simultaneously two satellites s and t. For 

each of the satellites a pair of single difference equation similar to (II.99) can be formed: 

𝜆𝜑𝐴𝐵
𝑠 = 𝜌𝐴𝐵

𝑠 + 𝑐𝛿𝑡𝐴𝐵 + 𝜆𝑁𝐴𝐵
𝑠  

𝜆𝜑𝐴𝐵
𝑡 = 𝜌𝐴𝐵

𝑡 + 𝑐𝛿𝑡𝐴𝐵 + 𝜆𝑁𝐴𝐵
𝑡                                     (II.101) 

𝜌𝐴𝐵
𝑠 = 𝜌𝐵

𝑠 + 𝑐𝛿𝑡𝐴𝐵 

𝜌𝐴𝐵
𝑡 = 𝜌𝐵

𝑡 + 𝑐𝛿𝑡𝐴𝐵 

By subtracting code and phase equations, respectively, we get the following double 

difference equations 

𝜆𝜑𝐴𝐵
𝑠𝑡 = 𝜆𝜑𝐴𝐵

𝑡 − 𝜆𝜑𝐴𝐵
𝑠 = 𝜌𝐴𝐵

𝑠𝑡 + 𝜆𝑁𝐴𝐵
𝑡  

𝑃𝐴𝐵
𝑠𝑡 = 𝑃𝐴𝐵

𝑡 − 𝑃𝐴𝐵
𝑠 = 𝜌𝐴𝐵

𝑠𝑡                                            (II.102) 

Where 

𝜌𝐴𝐵
𝑠𝑡 = 𝜌𝐴𝐵

𝑡 − 𝜌𝐴𝐵
𝑠  

𝑁𝐴𝐵
𝑠𝑡 = 𝑁𝐴𝐵

𝑡 − 𝑁𝐴𝐵
𝑠                                              (II.103) 

      We can see the receiver clock errors 𝛿𝑡𝑠 are eliminated, which is the most 

important feature of the double differences. 
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System observation equations 

      In practice, there is always an offset between the GPS antenna and the IMU as 

shown in Figure II.15, which therefore is required to be compensated. 

Figure II.15 GPS antenna offset. 

      Let us denote the vector from IMU to the GPS expressed in the body coordinate 

system as oG
b , the positional vector of the antenna as pG and the positional vector of the 

IMU as pi. The offset oG
b  can be computed by 

  oG
b = Re

boG
e = Re

b(pG
e − pi

e)                                      (II.104) 

      If vector y contains coordinates of the GPS antenna determined by GPS, then 

the GPS observation equation will be as follows 

ỹ = p̂G
e − δ = p̂i

e + R̂b
e ôG

b − δ                                   (II.105) 

where 𝛿 denotes the residual vector. Taking into account the approximation 

                                                             R̂b
e = (𝐼 − 𝐸𝑒)R̃b

e  

We have                                Rb
a = [

1 θz −θy

−θz 1 θx

θy −θx 1
] = I − E 

Where E is the skew-symmetric matrix of Euler angles 

                                               E = [

0 θz −θy

−θz 0 θx

θy −θx 0
] 
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Two basic operations with skew-symmetric matrix are given as follows 

                                                  AT = −A,            a × b = Ab = −Ba                      (II.106) 

      Where 𝑨 and 𝑩 is the skew-symmetric matrices of vectors 𝒂 and 𝒃, respectively. 

The observation vector which is used in the Kalman filter is 

ỹ = p̃i
e + δp̃i

e + (I − Ee)R̃b
eoG

b − δ                               (II.107) 

L = ỹ − p̃i
e − R̃b

eoG
b = δpi

e + (oG
e ×)εe                            (II.108) 

Where the misalignment angles in the e-frame εe = [εX
e    εY

e    εZ
e]T , the vector product 

can be transferred to the skew-symmetric operation by Eq. (II.106) 

(oG
e ×) = [

0 −oz
e oy

e

oz
e 0 −ox

e

−oy
e ox

e 0
] 

      With the observation equation in the Kalman filter, i.e. Eq. (II.108), we can get the 

design matrix for the loose integration. 

𝐻𝐿𝑜𝑜𝑠𝑒 = [

1 0 0 0 0 0 0 −oz
e oy

e

0 1 0 0 0 0 oz
e 0 −ox

e

0 0 1 0 0 0 −oy
e ox

e 0
]             (II.109) 

To obtain the design matrix for the tight integration, we have 

𝜌𝐴
𝑠(𝑡 𝐴) − 𝜌𝐴0

𝑠 (𝑡 𝐴) = 𝐴𝑋                                            (II.110) 

Where           𝐴 = [𝑎𝑥
𝑠    𝑎𝑦

𝑠    𝑎𝑧
𝑠 ]         and         𝑋 = [∆𝑋   ∆𝑌    ∆𝑍  ] 

The left side of Eq. (II.110) is the observation vector for the tight integration as that 

in Eq. (II.87) i.e.  𝐿 = 𝜌𝐴
𝑠(𝑡 𝐴) − 𝜌𝐴0

𝑠 (𝑡 𝐴) . Multiplying A matrix at both sides of Eq. (II.87), 

we get 

 AL = Aδpi
e + A(oG

e ×)εe = AX + A(oG
e ×)εe                       (II.111) 

We obtain the design matrix for the tight integration 

HTight = [A      0     A(oG
e ×) ]                                  (II.112) 

We note that each of the 3 sub matrices in Eq. (II.112) is a matrix with 3×3 elements. 
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II.4 Conclusion 

This chapter describes different sensors which provide measurements in continuous 

time or at a sufficiently high frequency, with bounded measurement noise, also we 

mentioned in this chapter a different approach for attitude estimation and some known 

algorithms which are based on inertial sensors and based on IMU/GPS fusion 

measurements. 



 

 
 

 

 

Chapter III 

Study of states observers 
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III.1 Introduction 

The ability to estimate the orientation (attitude) of a rigid body is an important 

feature in many engineering applications. As such, this problem has attracted the 

attention of many researchers and industrials for several decades.  

The state observers have shown their effectiveness in different applications of many 

dynamical systems. The main drawback usually reported for most observers is their 

dependence on mathematical model of system. Therefore, the design of observers has 

faced critical challenges in practical applications due to the presence of nonlinearities, 

disturbances and dynamic uncertainties. Thus, obtaining high-performance robust 

observer design was the target of many researchers. In the last two decades, several 

advanced observer design techniques have been proposed like high gain observers, the 

invariant and the cascaded observers which are the main interest of this chapter.  
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III.2 The Complementary Filter  

In this subsection we will discuss about two versions of the nonlinear 

complementary filter where we try to find better convergence rates, the first one is 

“smooth nonlinear complementary filter” proposed by Mr. Mahony, and the second one 

is “nonsmooth nonlinear complementary filter” proposed by Mr. Berkane which is a 

Mahony’s filter modified. The goal of the attitude complementary filter, is to fuse the 

available gyro measurements together with the reconstructed attitude 𝑅𝑦 (or directly the 

inertial vector measurements) to obtain a good (filtered) attitude estimate �̂�.  

III.2.1 smooth nonlinear complementary filter 

III.2.1.1 Conception  

Let 𝑅 ∈ 𝑆𝑂(3) denote a rotation matrix from the body fixed-frame to a given inertial 

reference frame. The rotation matrix 𝑅 evolves according to the kinematic equation. 

�̇� = 𝑅[𝜔]×                                                      (III.1) 

Where 𝜔 ∈ 𝑅3 is the angular velocity expressed in the body fixed-frame. Let 𝜔𝑦(𝑡) 

denote the angular velocity measurement such that 

𝜔𝑦(𝑡) = 𝜔(𝑡) + 𝑛𝜔(𝑡)                                             (III.2) 

Where 𝑛𝜔(𝑡) is a priori bounded signal that captures the measurements noise and 

disturbances. 

Consider the following nonlinear complementary attitude filter on 𝑆𝑂(3) proposed by 

Mahony [41] 

�̇̂� = �̂�[𝜔𝑦]× − [𝜎]×�̂�                                             (III.3) 

𝜎 = −𝜓(𝐴�̃�)                                                 (III.4) 

Where �̂� ∈ 𝑆𝑂(3) is an estimate of 𝑅 with �̂�(0) =  �̂�0 ∈ 𝑆𝑂(3), 𝜎 the observer 

innovation term, �̃� =  𝑅�̂�⊤ represents the attitude estimation error and 𝐴 is a symmetric 

matrix such that �̅�: = 𝑡𝑟(𝐴)𝐼 − 𝐴 is positive definite.  
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With the composition map 𝜓 ≔ 𝑣𝑒𝑥 ∘ ℙ𝑎, the projection map ℙ𝑎(𝐴) ≔ (𝐴 − 𝐴𝑇)/2, 

𝑣𝑒𝑥[𝜔]× = 𝜔 for all 𝜔 ∈ ℝ3 , and [𝑣𝑒𝑥(Ω)]× = Ω for all Ω ∈ 𝔰𝔬(3) such that, for 

 𝐴 ≔ [𝑎𝑖𝑗]𝑖, 𝑗 = 1,2,3. We have    𝜓(𝐴) ≔ 𝑣𝑒𝑥(ℙ𝑎(𝐴)) =
1

2
[

𝑎32 − 𝑎23

𝑎13 − 𝑎31

𝑎21 − 𝑎12

]. 

The attitude estimator (III.3) falls under the category of gradient-based observers on 

Lie groups. In fact, the observer innovation term (III.4) can be directly obtained from the 

gradient of the following smooth attitude potential function 𝑉𝐴(�̃�) = 𝑡𝑟 (𝐴(𝐼 − �̃�)), Which 

is the well-known trace function on SO(3) that has been widely used in the literature for 

the design of attitude control systems. 

Another explicit formulation of the observer input 𝜎 in (III.3)-(III.4) using directly 

inertial vector measurements is given as follows 

𝜎 = −
1

2
�̂� ∑ 𝜌𝑖(𝑏𝑖 × �̂�𝑇𝑟𝑖)

𝑛
𝑖=1                                              (III.5) 

Where 𝑏𝑖 = 𝑅𝑇𝑟𝑖 are body-frame vector measurements of know inertial vectors 

𝑟𝑖, 𝑖 = 1,···, 𝑛; 𝑛 ≥ 2; thus, obviating the need for the rotation matrix reconstruction. 

III.2.1.2 Analyze and Stability   

Lemma: Let 𝑅 ∈ 𝑆𝑂(3) and 𝐴 = 𝐴⊤ ∈ 𝑅3×3 such that �̅� = 𝑡𝑟(𝐴)𝐼 − 𝐴 is positive 

definite. Then, the following hold. 

‖𝜓(𝑅)‖2 = |𝑅2|𝐼
2 = 4|𝑅|𝐼

2(1 − |𝑅|𝐼
2)                               (III.6) 

2𝜆𝑚𝑖𝑛
�̅� |𝑅|𝐼

2 ≤ 𝑡𝑟(𝐴(𝐼 − 𝑅)) ≤ 2𝜆𝑚𝑎𝑥
�̅� |𝑅|𝐼

2                            (III.7) 

𝜉²|𝑅|𝐼
2(1 − |𝑅|𝐼

2) ≤
‖𝜓(𝐴𝑅)‖2

(𝜆𝑚𝑎𝑥
�̅� )²

≤ |𝑅|𝐼
2(1 − 𝜉²|𝑅|𝐼

2)                        (III.8) 

𝜓(𝐴𝑅) =  
(𝐼−[𝒵(𝑅)]×)

1+‖𝒵(𝑅)‖2 𝐴𝒵(𝑅)                                                     (III.9) 

Where 𝒵(𝑅) = 𝑣𝑒𝑥((𝑅 − 𝐼)(𝑅 + 𝐼)−1) =
𝜓(𝑅)

2(1−|𝑅|𝐼
2)

  defines the vector of Rodriguez 

parameters, usually use the unit quaternion or the angle axis representation, and in our 
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case we used directly rotation matrices on 𝑆𝑂(3), 𝜉 = 𝜆𝑚𝑖𝑛
�̅� 𝜆𝑚𝑎𝑥

�̅�⁄  and |𝑅|𝐼 ∈ [0, 1] be the 

normalized Euclidean distance on 𝑆𝑂(3) which is given by |𝑅|𝐼
2 ∶=

1

4
𝑡𝑟(𝐼 − 𝑅).  

Proposition: Consider the attitude kinematics system (III.1) coupled with the 

attitude observer (III.3)-(III.4). Assume that 𝜔𝑦 ≡ 𝜔. Then, 

• The desired equilibrium point �̃� = 𝐼 is almost globally asymptotically stable and 

locally exponentially stable. 

• The undesired equilibria are characterized by �̃� ∈ ℛ𝑎(𝜋, ℰ(𝐴)); where ℰ(𝐴) is the 

set of all unit eigenvectors of 𝐴, and ℛ𝑎(𝜃, 𝑢⃗) = 𝐼 + 𝑠𝑖𝑛(𝜃)[𝑢⃗]× + (1 − cos (𝜃))[𝑢⃗]×
2  is the 

representation of the attitude by the angle of rotation 𝜃 and the unit vector axis 𝑢⃗. 

The attitude estimator (III.3)-(III.4) proposed in [41] has been used in many 

applications due to its proven almost global asymptotic stability and its nice filtering 

properties. 

Theorem 1: Consider the attitude kinematics system (III.1) coupled with the attitude 

observer (III.3)-(III.4). Assume that 𝜔𝑦 ≡ 𝜔. Then, the set 𝛱 = {�̃� ∈ 𝑆𝑂(3) ; |�̃�|
𝐼
= 1} is 

forward invariant and non-attractive. Moreover, for any �̃�(0) ∈ 𝑆𝑂(3)\𝛱 one has  

�̃�(𝑡) = ℛ𝑟 (𝑒−
�̅�

2
𝑡𝒵 (�̃�(0)))  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0.                             (III.10) 

With  ℛ𝑟(𝑧) = (𝐼 + [𝑧]×)(𝐼 − [𝑧]×)−1 =
1

1+‖𝑧‖2 ((1 − ‖𝑧‖2)𝐼 + 2𝑧𝑧𝑇 + 2[𝑧]×  often 

known as Cayley’s formula. In view of (III.1) and (III.3)-(III.4), one obtains 

�̇̃� = �̇��̂�𝑇 − 𝑅�̂�𝑇 �̇̂��̂�𝑇 

                              = 𝑅[𝜔]×�̂�𝑇 − 𝑅[𝜔𝑦]
×
�̂�𝑇 + 𝑅�̂�𝑇[𝜎]× 

= �̃�[𝜎 − �̂�𝑛𝜔]
×
                                               (III.11) 

This theorem provides an explicit solution for the attitude estimator of Mahony et al. 

[41] given by equations (III.3)-(III.4). Equation (III.10) shows that the Rodrigues vector 

associated to the attitude estimation error decays exponentially fast. The corresponding 

attitude error matrix is subsequently obtained via the Cayley’s formula. It is worth 
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pointing out that, although the Rodrigues vector is converging exponentially to zero, the 

attitude estimation error does not necessary converge exponentially fast as well. And 

the attitude estimation error satisfies 

𝛽 (|�̃�(𝑡)|
𝐼
, 𝑡) ≤ |�̃�(𝑡)|

𝐼
≤ 𝛽 (|�̃�(𝑡)|

𝐼
, 𝑡)                            (III.12) 

For all 𝑡 ≥ 0,such that 𝛽  and 𝛽  are given by 

𝛽 (s, t) =
𝑠𝑒−𝜆𝑚𝑖𝑛

�̅� 𝑡 2⁄

√1−𝑠2(1−𝑒−𝜆𝑚𝑖𝑛
�̅� 𝑡)

                                        (III.13) 

𝛽 (s, t) =
𝑠𝑒−𝜆𝑚𝑎𝑥

�̅� 𝑡 2⁄

√1−𝑠2(1−𝑒−𝜆𝑚𝑎𝑥
�̅� 𝑡)

                                        (III.14) 

Consider the following Lyapunov function candidate 

𝑉 (𝒵(�̃�)) = ‖𝒵 (�̃�(𝑡))‖
2

                                        III.15) 

The time derivative of 𝑉 is 

�̇� (𝒵(�̃�)) = −𝒵(�̃�)
𝑇
𝐴𝒵(�̃�) + (1 + ‖𝒵(�̃�)‖

2
)𝒵(�̃�)

𝑇
�̂�𝑛𝜔 

�̇� (𝒵(�̃�)) ≤ −𝜆𝑚𝑖𝑛
�̅� (1 − 휀)‖𝒵(�̃�)‖

2
                                                   (III.16) 

With 0 < 휀 < 1 

And this is shows that the attitude filter of [41] is locally input-to-state stable. 
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III.2.2 Non-smooth nonlinear complementary filter 

III.2.2.1 Conception  

In the previous section, we have shown that the attitude estimator (III.3)-(III.4) 

suffers from slow convergence for large attitude errors, so in a tentative to improve the 

convergence rate of this class of attitude observers, we introduce a state-dependent 

scalar gain function 𝑘: 𝑆𝑂(3) → 𝑅+ , into the observer innovation term, which is strictly 

positive on 𝑆𝑂(3). We consider, therefore, the following attitude estimation 

�̇̂� = �̂�[𝜔𝑦]
×

− [𝜎]×�̂�                                            (III.17) 

𝜎 = −𝑘(�̃�)𝜓(𝐴�̃�)                                                        (III.18) 

Where �̂� ∈ 𝑆𝑂(3) is an estimate of 𝑅 with �̂�(0) =  �̂�0 ∈ 𝑆𝑂(3), 𝜎 the observer 

innovation term, �̃� =  𝑅�̂�⊤ represents the attitude estimation error and 𝐴 is a symmetric 

matrix such that �̅�: = 𝑡𝑟(𝐴)𝐼 − 𝐴 is positive definite. the attitude estimation scheme 

(III.17)-(III.18) has been proposed with the following gain function 

𝑘(�̃�) =
1

√1−𝑉𝐴(�̃�)/2𝜆𝑚𝑖𝑛
�̅�

                                          (III.19) 

Where 𝑉𝐴 is given by  𝑉𝐴(�̃�) = 𝑡𝑟 (𝐴(𝐼 − �̃�)). 

In this work, we consider the following gain function 

𝑘(�̃�) =
1

√1−|�̃�|𝐼
2
                                                (III.20) 

The proposed attitude estimator, using solely vector measurements, is given by 

�̇̂� = �̂�[𝜔𝑦]
×

− [𝜎]×�̂�                                            (III.21) 

𝜎 = −
1

2
�̂�

∑ 𝜌𝑖(𝑏𝑖×�̂�𝑇𝑟𝑖)
𝑛
𝑖=1

√1−
1

8
∑ ‖𝓌𝑖−�̂�𝑇𝑢𝑖‖²3

𝑖=1

                                      (III.22) 
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III.2.2.2 Analyze and Stability   

In view of (III.7), one has 𝑘(�̃�) ≥
1

√1−|�̃�|𝐼
2
, which in view of (III.8), implies that 

(𝜆𝑚𝑖𝑛
�̅� )²|�̃�|

𝐼

2
≤ 𝑘(�̃�)²‖𝜓(𝐴�̃�)‖²                                   (III.23) 

And therefore, the observer innovation term 𝜎 in (36) has a lower bound which 

increases as the attitude error increases. This guarantees a faster convergence of the 

attitude estimator (III.17)-(III.18) compared to the estimation proposed in [1]. 

 Another advantage of considering 𝑘(·) as defined in (III.19) is that the overall 

observer innovation term 𝜎 in (III.18) can be directly written in terms of vector 

measurements, by considering 𝐴 = ∑ 𝜌𝑖𝑟𝑖𝑟𝑖
𝑇𝑛

𝑖=1    such that 𝜌𝑖, 𝑖 = 1,· · · 𝑛 are positive 

scalars, as follows  

𝜎 = −
1

2
�̂�

∑ 𝜌𝑖(𝑏𝑖×�̂�𝑇𝑟𝑖)
𝑛
𝑖=1

√1−∑ 𝜌𝑖‖𝑏𝑖−�̂�𝑇𝑟𝑖‖
2
/4𝜆𝑚𝑖𝑛

�̅�𝑛
𝑖=1

                                      (III.24) 

Where 𝑏𝑖 = 𝑅𝑇𝑟𝑖 are body-frame vector measurements of know inertial vectors  

𝑟𝑖, 𝑖 = 1,···, 𝑛; 𝑛 ≥ 2; thus, obviating the need for the rotation matrix reconstruction. 

With this choice of the gain function 𝑘 in (III.20), the bound (III.23) is also satisfied 

thus guaranteeing the improvement of the convergence speed for large attitude errors. 

The drawback of our choice of 𝑘(·) in (III.20) is that an explicit expression of 𝑘(�̃�) in 

terms of an arbitrary number of vector measurements 𝑏𝑖 may not exist. Since the scalar 

function 𝑘(�̃�) serves only as a gain to compensate for the decrease in the norm of 

𝜓(𝐴�̃�) near large attitude errors, we can compute the term |�̃�|𝐼 using directly any two 

vector measurements available without the need to reconstruct the whole attitude matrix 

as follows: 

Let 𝑏1 and 𝑏2 be two (non-collinear) body-frame vector measurements 

corresponding to the inertial unit vectors 𝑟1 and 𝑟2 such that 𝑏1 = 𝑅𝑇𝑟1 and 𝑏2 = 𝑅𝑇𝑟2. 

Let us define the vectors 𝑢⃗1 =
𝑟1

‖𝑟1‖
, 𝑢⃗2 =

𝑟1 × 𝑟2

‖𝑟1× 𝑟2‖
 and 𝑢⃗3 =

𝑢1 × 𝑢2

‖𝑢1× 𝑢2‖
 along with their 

corresponding body frame vectors 𝓌1 = 𝑏1, 𝓌2 = (𝑏1 × 𝑏2) and 𝓌3 = (𝑏1 × 𝑏2) × 𝑏1. 

Then, one can verify that 
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|�̃�|
𝐼

2
=

1

8
∑ ‖𝓌𝑖 − �̂�𝑇𝑢⃗𝑖‖²3

𝑖=1                                       (III.25) 

Which is a quite convenient formula for the computation of 𝑘(�̃�) in (III.20) without 

the need for the reconstruction of the rotation matrix. 

Theorem 2: Consider the attitude kinematics system (III.1) coupled with the attitude 

observer (III.21)-(III.22). Assume that 𝜔𝑦 ≡ 𝜔. for any �̃�(0) ∈ 𝑆𝑂(3)\𝛱 one has 

𝛽 (|�̃�(0)|
𝐼
, 𝑡) ≤ |�̃�(𝑡)|

𝐼
≤ 𝛽 (|�̃�(0)|

𝐼
, 𝑡)                            (III.26) 

For all 𝑡 ≥ 0,such that 𝛽  and 𝛽  are given by 

                                    𝛽 (s, t) =
𝑠

cosh(𝜆𝑚𝑖𝑛
�̅� 𝑡)+√(1−𝑠2) sinh(𝜆𝑚𝑖𝑛

�̅� 𝑡)
   

𝛽 (s, t) =
𝑠

cosh(𝜆𝑚𝑎𝑥
�̅� 𝑡)+√(1−𝑠2) sinh(𝜆𝑚𝑎𝑥

�̅� 𝑡)
                                  (III.27) 

it follows that the attitude error |�̃�(𝑡)|2 satisfies 

|�̃�(𝑡)|
2

≤ 𝑓−1 (𝜆𝑚𝑎𝑥
�̅� 𝑡 + 𝑓 (|�̃�(0)|

𝐼

2
)) 

                                                ≤
|�̃�(0)|𝐼

2

[cosh(𝜆𝑚𝑖𝑛
�̅� 𝑡)+√(1−|�̃�(0)|𝐼

2) sinh(𝜆𝑚𝑖𝑛
�̅� 𝑡) ]

2 

                                                       = (𝛽 (|�̃�(0)|
𝐼
, 𝑡))

2

                                                

(III.28) 

According to Theorem 2, it is straightforward to conclude almost global exponential 

stability of the equilibrium point |�̃�|𝐼 = 0. The convergence rate of the attitude estimator 

(III.21)-(III.22) is improved for large attitude errors as compared to the smooth attitude 

estimator (III.3)-(III.4). It is worth pointing out that the choice of the innovation term σ in 

(III.22), which corresponds to  

𝜎 = −
𝜓(𝐴�̃�)

√1−|�̃�|𝐼
2
                                                                (III.29) 

Does not correspond, as far as we know, to any gradient of a potential function on 

𝑆𝑂(3). In fact, this observer was designed by inspection of the dynamics of the attitude 

error and the desirable performance instead of the traditional systematic gradient-based 

method where the designer starts from a given potential function, which is typically 
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taken as a Lyapunov candidate, and then designs the observer based on the gradient of 

this potential function. 

non-smooth attitude estimation schemes, evolving on 𝑆𝑂(3), exhibiting faster 

convergence rates, compared to the smooth observer of [41]. 

The non-smooth attitude observer guarantees Locally-Input-to-State-Stable (LISS) 

with a robustness region being independent from the attitude estimation error, i.e., 

starting from any initial condition and for all disturbances, the filter is robust to external 

gyro disturbances. 
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III.3 The invariant observer 

In this subsection we will discuss about an observer ensures semi-global 

exponential convergence and stability and suggests that a high-gain observer is the 

price to pay for a large basin of attraction.  

III.3.1 Conception   

Consider the system  

                                                  {
�̇� = 𝑔𝑒3 + 𝑅𝑎𝐵

�̇� = 𝑅𝑆(𝜔)
                                         (III.30) 

where 𝑉 ∈ ℝ3 is the body’s linear velocity expressed in the inertial frame I; 𝑅 ∈

𝑆𝑂(3) is the matrix of rotation representing the orientation of the body frame 𝐵 with 

respect to (w.r.t.) the inertial frame I; 𝜔 is the angular velocity of the body frame B, 𝑎𝐵 is 

the so-called “specific acceleration” representing the sum of all non-gravitational forces 

applied to the body divided by its mass, expressed in the body frame B; 𝑔 is the 

gravitational acceleration expressed in the inertial frame I, with 𝑒3 = [0; 0; 1]; and 𝑆(·) is 

the skew-symmetric matrix.  

Supposing that the embedded GPS and IMU are well calibrated, and the following 

measurements are available: 

• GPS-velocity: measures the linear velocity 𝑉. 

• Gyroscopes: measure the angular velocity 𝜔. 

• Accelerometers: measure the specific acceleration 𝑎𝐵. By defining  

                                                      𝑎𝐼 ≜ �̇� − 𝑔𝑒3                                           (III.31) 

one has 𝑎𝐵  =  𝑅𝑇𝑎𝐼, with the 𝑇 transpose operator. 

• Magnetometers: whose measurements are normalized to obtain 𝑚𝐵, the 

normalized earth’s magnetic field expressed in the body frame B. One has 𝑚𝐵 = 𝑅𝑇𝑚𝐼, 

with 𝑚𝐼 the normalized earth’s magnetic field expressed in the inertial frame I. 

Let �̂� and �̂� denote estimates of 𝑉 and 𝑅 respectively. Define the error variables 

                                                �̃� ≜ 𝑉 − �̂� and �̃� = 𝑅�̂�𝑇 (III.32) 
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Assumption 1: There exist four positive constants 𝐶𝑎 , 𝐶𝑎 , 𝐶𝑣 and 𝐶𝜔 such that ∀𝑡 ∈

ℝ+ ≜ [0,+∞]. 

𝐶𝑎 ≤ |𝑎𝐼(𝑡)| ≤  𝐶𝑎 , |�̈�(𝑡)| ≤ 𝐶𝑣, |𝜔(𝑡)| ≤ 𝐶𝜔 

Assumption 2: (Observability condition) There exists a constant 𝐶𝑜𝑏𝑠 > 0  

Such that ∀𝑡 ∈ ℝ+ 

|𝑚𝐼(𝑡) ×
𝑎𝐼(𝑡)

|𝑎𝐼(𝑡)|
| ≥ 𝐶𝑜𝑏𝑠                                            (III.33) 

Assumption 1 indicates that the body’s acceleration is bounded and different from 

ge3, and that the time-derivative of the body’s acceleration is bounded. These 

properties are satisfied in “normal” flight conditions. As for Assumption 2, it indicates 

that the earth’s magnetic field direction and the direction given by 𝑎𝐼 are never collinear, 

to guarantee the system’s observability. 

Consider System (1) and the observer system 

V̇̂ = k1(V − V̂) + 𝑔𝑒3 + �̂�𝑎𝐵 

�̇̂� = �̂�𝑆(𝜔 + 𝜎)                                                  (III.34) 

𝜎 = 𝑘2𝑚𝐵 × �̂�𝑇𝑚𝐼 + 𝑘3𝑎𝐵 × �̂�𝑇(𝑉 − �̂�) 

With 𝑘1, 𝑘2, 𝑘3 are positive constant gains. 

Suppose that Assumptions 1 and 2 are satisfied. Then, for any 𝑘2, 𝑘3 > 0. 

1.For any  𝑘1 > 0 , the equilibrium (�̃�, �̃�)=(0,𝐼3) is locally exponentially stable. 

2.For any closed neighborhood 𝕍 𝑜𝑓 (0, 𝐼3) ℝ
3 , with 𝕍 ⊂ ℝ3 × 𝑆𝑂(3)\ 𝕌 , and 𝕌 

defined by      

𝕌 ≜ {𝑅 ∈ 𝑆𝑂(3): 𝑡𝑟(𝑅) = −1}                                             (III.35) 

There exists a constant 𝕂1 > 0 such that for all 𝑘1 > 𝕂1 and (�̃�(0), �̃�(0)) ∈ 𝕍 the set 

point (�̃�(𝑡), �̃�(𝑡))exponentially converges to the equilibrium (0,𝐼3). 
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III.3.2 Analyze and stability 

Let us first prove the second statement of Theorem 1. From Eqs. (III.31), (III.34), 

and (III.32) one obtains the error system: 

�̇̃� = −𝑘1�̃� + (𝐼3 − �̃�𝑇)𝑎𝐼 

�̇̃� = −𝑘2𝑆(𝑚𝐼 × �̃�𝑚𝐼)�̃� − 𝑘3𝑆(𝑎𝐼 × �̃��̃�)�̃�                              (III.36) 

Consider the following candidate Lyapunov function  

ℒ ≜
1

2
𝑡𝑟(𝐼3 − �̃�) +

𝑙1

2
|�̃�|

2
−

𝑘3

𝑘1
�̃�𝑇𝑃𝑎(�̃�)�̃�𝑇𝑎𝐼                              (III.37) 

With 𝑙1 some positive constant specified hereafter. 

Denote �̃� ≜ (𝑠 , 𝑟 ) the quaternion associated with the matrix of rotation �̃�, Where 𝑠  

and 𝑟  are the real part pure part of the �̃� respectively [46,47 and 48] they verify 

𝑠 2 + |𝑟 |2 =1                                                        (III.38) 

Note that 𝑟 = 0 dorresponds to �̃� = 𝐼3 And  𝑠 = 0 correspends to 

tr(�̃�) = −1 (i.e  �̃�  ∈ 𝕌) 

From Rodrigue’s formula    �̃� = 𝐼3 + 2𝑠 𝑆(𝑟 ) + 2𝑆(𝑟 )²  one obtains  

tr(𝐼3 − �̃�) = 4|𝑟 |²  ,   𝑃𝑎(�̃�) = 2𝑠 𝑆(𝑟 )  ,   𝐼3 − �̃�𝑇 = 2𝑠 𝑆(𝑟 ) − 2𝑆(𝑟 )²              (III.39) 

Then , one verifies that ℒ defined by ( eqt number) can be rewritten as  

ℒ = 2|𝑟 |2 +
𝑙1

2
 |�̃�|

2
+

2𝑘3

𝑘1
𝑠 (�̃�𝑇𝑎𝐼)

𝑇
(𝑟 × �̃�)                                 (III.40) 

Using eq (III.40) and the assumption 1 one deduces that 

2|𝑟 |2 +
𝑙1

2
 |�̃�|2 +

2𝐶𝑎𝑘3

𝑘1
|�̃�||𝑟 | ≥ ℒ ≥ 2|𝑟 |2 +

𝑙1

2
 |�̃�|2 −

2𝐶𝑎𝑘3

𝑘1
|�̃�||𝑟 | ≥ 2 (1 −

𝐶𝑎
2
𝑘3

2

𝑙1𝑘1
2 ) |𝑟 |²   

(III.41) 

The candidate Lyapunov function ℒ is positive and proper with respect to �̃� and 𝑟  if     

𝑘1 ≥ 𝐶𝑎𝑘3/√𝑙1 . Now, let us calculate the time-derivative of ℒ. To this purpose and the 
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clarity of the calculation, we first calculate the time derivative of intermediary terms 

using (III.36) one verifies that  

ⅆ

ⅆ𝑡
𝑡𝑟(𝐼 − �̃�) = −2𝑘2|𝑃𝑎(�̃�)𝑚𝐼|

2
− 2𝑘3�̃�

𝑇𝑃𝑎(�̃�)�̃�𝑇𝑎𝐼                            (III.42) 

And                                           
ⅆ

ⅆ𝑡
|�̃�|2 = −2𝑘1|�̃�|2 + 2�̃�𝑇(𝐼3 − �̃�𝑇)𝑎𝐼                 (III.43) 

And                                            �̃�𝑇𝑃𝑎(�̃�)�̃�𝑇�̇�𝐼 = �̃�𝑇𝑃𝑎(�̃�)�̃�𝑇�̈�𝐼                           (III.44) 

�̃�𝑇
𝑑

𝑑𝑡
(𝑃𝑎(�̃�)�̃�𝑇)𝑎𝐼 =

𝑘2

2
𝑎𝐼

𝑇𝑆 ((�̃� + 𝐼3)(𝑚𝐼 × �̃�𝑚𝐼)) �̃�2�̃� +
𝑘3

2
𝑎𝐼

𝑇𝑆 ((�̃� + 𝐼3)(𝑎𝐼 × �̃��̃�)) �̃�2�̃� 

(III.45) 

One has  

(�̃� + 𝐼3)(𝑚𝐼 × �̃�𝑚𝐼) = 2𝑚𝐼 × 𝑃𝑎(𝑅)̃𝑚𝐼 + 2𝑃𝑎(𝑅)̃(𝑚𝐼 × �̃�𝑚𝐼)                (III.46) 

Using Eqs. (III.45), (III.46) and the fact that |𝑚𝐼| = 1 one deduces that  

|�̃�𝑇 ⅆ

ⅆ𝑡
(𝑃𝑎(�̃�)�̃�𝑇)𝑎𝐼| ≤ 𝑘2|𝑎𝐼||�̃�| (|𝑃𝑎(𝑅)̃𝑚𝐼| + |𝑃𝑎(𝑅)̃(𝑚𝐼 × �̃�𝑚𝐼)|) + 𝑘3|𝑎𝐼|

2|�̃�|2      

(III.47) 

From relations (III.38), (III.41), (III.42), (III.43), (III.45), (III.46), and (III.47) one 

verifies that 

ℒ̇ ≤ −(𝑘1𝑙1 −
𝑘3

2|𝑎𝐼|
2

𝑘1
) |�̃�|2 − 𝑘2|𝑃𝑎(�̃�)𝑚𝐼|

2
−

𝑘3

𝑘1
|𝑃𝑎(�̃�)𝑎𝐼|

2
+ 𝑙1�̃�

𝑇(𝐼3 − �̃�𝑇)𝑎𝐼 

+
𝑘3

𝑘1
|�̃�||𝑃𝑎(�̃�)�̃�𝑇 �̈�𝐼| +

𝑘2𝑘3

𝑘1
|𝑎𝐼||�̃�|(|𝑃𝑎(�̃�)𝑚𝐼| + |𝑃𝑎(𝑅)̃(𝑚𝐼 × �̃�𝑚𝐼)|)              (III.48) 

Using (III.48), the quaternion notation, Assumptions 1 and 2, and the last 

mathematical property in Section 2 one deduces 

ℒ̇ ≤ −(𝑘1𝑙1 −
𝐶𝑎

2
𝑘3

2

𝑘1
) |�̃�|2 −

4𝐶𝑎
2𝐶𝑜𝑏𝑠

2 𝑘2𝑘3

𝑘1𝑘2 + 𝐶𝑎
2𝑘3

𝑠 2|𝑟 |2 + 2√2 𝐶𝑎 (𝑙1 +
𝑘3(𝐶𝑣 + 2𝑘2𝐶𝑎)

√2 𝐶𝑎𝑘2

) |�̃�||𝑟 | 

(III.49) 
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Define 

𝛼1 ≜
𝑘3(𝐶𝑣 + 2𝑘2𝐶𝑎)

√2 𝐶𝑎

,   𝛼2 ≜
2𝐶𝑎

2 𝐶𝑜𝑏𝑠
2 𝑘3

𝐶𝑎

2 ,   𝛼3 ≜
𝐶𝑎

2𝑘3

𝑘2
 

Choosing 𝑘1 > 𝐶𝑎𝑘3/ √𝑙1 , and using inequality (III.49) one obtains  

ℒ̇ ≤ −2√2 𝐶𝑎 (√
𝛼2(𝑘1

2 𝑙1−𝐶𝑎
2
 𝑘3

2)

𝑘1(𝑘1+𝛼3)
|𝑠 | −

𝑘1𝑙1+𝛼1

𝑘1
) |�̃�||𝑟 |                              (III.50) 

Define 

휀 ≜ min (1 − |𝑟 (0)|,
1

2
)                                                  (III.51) 

Since �̃�(0) ∉ 𝕌 with 𝕌 defined by (III.35),|𝑟 (0)| < 1. Therefore, 휀 is strictly positive. 

One verifies that 

|𝑟 (0)| ≤ 1 − 휀. Now let us choose 𝑙1as follows  

𝑙1 ≜ 𝑚𝑖𝑛 (
4𝜀(1−𝜀)(√

3

2
−𝜀−√1−𝜀)

2

|�̃�(0)|2
,
𝛼2𝜀

2
)                                         (III.52) 

Note that 𝑙1 is well-defined and strictly positive even in the case|𝑣 ̃(0)| = 0. It follows 

from Eq. (III.52) that 𝛼2휀𝑙1 > 𝑙1
2, so that there exists 𝑘1(𝑙1, 휀) > 0 such that for all 𝐾1 >

𝑘1(𝑙1, 휀) the following inequality is satisfied: 

(𝛼2휀 𝑙1−𝑙1
2)𝑘1

3 − (2𝛼1𝑙1 + 𝛼3𝑙1
2)𝑘1

2 − (𝛼1
2 + 2𝛼1𝛼3𝑙1 + 𝐶𝑎

2
 𝑘3

2𝛼2휀) 𝑘1 − 𝛼1
2𝛼3 > 0 

which is equivalent to  

휀𝛼2𝑙1 (𝑘1
2 𝑙1 − 𝐶𝑎

2
 𝑘3

2) > (𝑘1𝑙1 + 𝛼1)²(𝑘1 + 𝛼3)                                   (III.53) 

Therefore, with the choice of 𝑘1 satisfying  

𝑘1 > 𝕂1 ≜ max (
√2 𝐶𝑎𝑘3

√𝜀𝑙1
, 𝑘1(𝑙1, 휀))                                   (III.54) 

Inequality (III.53) holds. Note that the choice of 𝑘1in (III.54) verifies the inequality 
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𝑘1 > 𝐶𝑎𝑘3/ √𝑙1 

From (III.41) and (III.54) one verifies that 

ℒ(0) ≤ 2(1 − 휀)2 +
|�̃�(0)|2

2
𝑙1 + 2√휀(1 − 휀)|�̃�(0)|√𝑙1                  (III.55) 

Now consider the following equation (with s the variable) 

|�̃�(0)|²

2
𝑠2 + 2√휀(1 − 휀)|�̃�(0)|𝑠 − 휀(1 − 휀) = 0 

Note that 𝑆𝑚𝑎𝑥 tends to +∞ when �̃�(0) tends to zero. Thus,∀𝑠 ∈ [0, 𝑆𝑚𝑎𝑥] 

|�̃�(0)|2

2
𝑠2 + 2√휀(1 − 휀)|�̃�(0)|𝑠 + 2(1 − 휀)2 ≤ 2 (1 −

휀

2
) (1 − 휀) 

This relation and inequality (III.55) and the definition of 𝑙1 in (III.52) imply that 

ℒ(0) ≤ 2 (1 −
𝜀

2
) (1 − 휀)                                                          (III.56) 

As a consequence of (III.53) and (III.54) one has 

1 −
(𝑘1𝑙1+𝛼1)2(𝑘1+𝛼3)

𝛼2𝑘1(𝑘1
2𝑙1−𝐶𝑎

2
 𝑘3

2)
> 1 − 휀                                         (III.57) 

And 

1 −
𝐶𝑎

2
 𝑘3

2

𝑘1
2 𝑙1

≥ 1 −
𝜀

2
                                                     (III.58) 

Then, one deduces from inequalities (III.58), (III.57), and (III.56) that 

ℒ(0) ≤ 2 (1 −
𝐶𝑎

2
 𝑘3

2

𝑘1
2 𝑙1

)(
(𝑘1𝑙1+𝛼1)2(𝑘1+𝛼3)

𝛼2𝑘1(𝑘1
2𝑙1−𝐶𝑎

2
 𝑘3

2)
)                                        (III.59) 

Using inequalities (III.59) and (III.41) one deduces that 

𝑠 (0)² > 𝛿 ≜
(𝑘1𝑙1 + 𝛼1)²(𝑘1 + 𝛼3)

𝛼2𝑘1 (𝑘1
2𝑙1 − 𝐶𝑎

2
 𝑘3

2)
 

Let us prove (by contradiction that ∀𝑡 ∈ ℝ+, 𝑠 (𝑡)2 > 𝛿.Assume that there exists 𝑇 >

0 such that 𝑠 (𝑇)² ≤ 𝛿 and ∀𝑡 ∈ [0, 𝑇], 𝑠 (𝑡)2 > 𝛿. This supposition and inequality (III.41) 

imply that  
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ℒ(𝑇) > 2(1 −
𝐶𝑎

2
 𝑘3

2

𝑘1
2 𝑙1

)(
(𝑘1𝑙1 + 𝛼1)

2(𝑘1 + 𝛼3)

𝛼2𝑘1 (𝑘1
2𝑙1 − 𝐶𝑎

2
 𝑘3

2)
) 

Then, this relation and inequality (III.59) imply that ℒ(𝑇) > ℒ(0) so that there exists 

a time-instant 𝜏 ∈ (0, 𝑇) such that ℒ̇(𝜏) > 0. But this contradicts inequality (III.50) since 

𝑠 (𝜏)² > 𝛿. This result and inequality (III.50) imply the existence of a positive constant 

𝑘𝑣, 𝑘𝑟 , 𝑘 such that                         ℒ̇ ≤ −𝑘𝑣|�̃�|² − 𝑘𝑟|𝑟 |² ≤ −𝑘ℒ                                   

(III.60) 

From here the exponential convergence of ℒ to zero follows. The exponential 

convergence of (�̃�, 𝑟 ) to zero, i.e., of (�̃�, �̃�) to (0,𝐼3), then directly follows. The stability of 

the equilibrium (�̃�, �̃�) = (0, 𝐼3) is a direct consequence of relation (III.37) and (III.60). 

Now, to prove the first statement of the theorem let us consider the linearized system of 

System (III.36) about the equilibrium (�̃�, 𝑟 ) = (0,0) which is given by (using (III.36) and 

the fact that (�̃� − 𝐼3 ≈ 2𝑆(𝑟 ) ≈ 𝐼3 − �̃�𝑇) 

�̇̃� = −𝑘1�̃� + 2𝑟 × 𝑎𝐼 

𝑟 ̇ = −𝑘2𝑚𝐼 × 𝑆(𝑟 )𝑚𝐼 −
𝑘3

2
𝑎𝐼 × �̃�                                     (III.61) 

Consider the candidate Lyapunov function  

ℒ1 ≜
1

2
|�̃�|2 +

𝛾1

2
|�̃�|2 −

𝑘3.−𝛾1

2𝑘1
�̃�𝑇(𝑟 × 𝑎𝐼)                                                  (III.62) 

With 0 < 𝛾
1

< 𝑘3/4, 𝑘1 > (𝑘3 − 4𝛾1)𝐶𝑎/(2√𝛾1 )(to ensure that ℒ1is positive and proper with 

respect to 𝑟  and �̃�). The time derivative of ℒ1 along the solution to (III.61) satisfies (proceeding 

majorations like in (III.48) and (III.49))  

ℒ̇1 ≤ −
4𝑘1

2𝛾1 − 𝑘3(𝑘3 − 4𝛾1)𝐶𝑎

2

4𝑘1

|�̃�|2 −
𝐶𝑎

2 𝐶𝑜𝑏𝑠
2 𝑘2(𝑘3 − 4𝛾1)

𝑘1𝑘2 + 𝐶𝑎
2(𝑘3 − 4𝛾1)

|𝑟 |2 +
(𝑘3 − 4𝛾1)(𝐶𝑣 − 𝑘2𝐶𝑎)

2𝑘1

|�̃�||𝑟 | 

(III.63) 

Denote 𝜅0(𝛾1) ∈ ℝ+ the largest positive solution to the equation  

0 = 𝑓(𝜅) ≜ 𝜅3 − (𝑘3𝐶𝑎

2
+

(𝐶𝑣 + 𝑘2𝐶𝑎)
2

𝐶𝑎
2𝐶𝑜𝑏𝑠

2 )
𝑘3 − 4𝛾1

4𝛾1
𝜅 −

(𝐶𝑣 + 𝑘2𝐶𝑎)
2
(𝑘3 − 4𝛾1)²

16 𝐶𝑜𝑏𝑠
2 𝑘2𝛾1
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The existence of 𝜅0(𝛾1) is a direct consequence of 𝑓(0) < 0 and lim
κ→+∞

𝑓(κ) = +∞. From 

here choosing 𝑘1satisfying  𝑘1 > 𝕂0(𝛾1) ≜ 𝑚𝑎𝑥(
(𝑘3−4𝛾1)𝐶𝑎

2√𝛾1
, 𝜅0(𝛾1))                               (III.64) 

One ensures that 𝑓(𝑘1) > 0 or, equivalently  

√
(4𝑘1

2𝛾1 − 𝑘3(𝑘3 − 4𝛾1)𝐶𝑎

2
)𝐶𝑎

2
𝐶𝑜𝑏𝑠

2 𝑘2(𝑘3 − 4𝛾1)

𝑘1 (𝑘1𝑘2 + 𝐶𝑎
2(𝑘3 − 4𝛾1))

>
(𝑘3 − 4𝛾1)(𝐶𝑣 + 𝑘2𝐶𝑎)

2𝑘1
 

This inequality, relations (III.62) and (III.63), and Young’s inequality ensure the existence of 

three positive constants 𝛾𝑟 , 𝛾𝑣 , 𝛾ℒ such that ℒ̇1 ≤ −𝛾𝑟|𝑟 |
2 − 𝛾𝑣|�̃�|2 ≤ 𝛾ℒℒ1.Then , the letter 

inequality and the definition of ℒ1 imply the exponential stability of the equilibrium (�̃�, 𝑟 ) =

(0,0), i.e. of (�̃�, �̃�) = (0, 𝐼3), Now, it’s important to prove that for any 𝑘1(> 0)there exists 

a positive constant 𝛾1such 𝑘1 > 𝕂0(𝛾1). One verifies from (III.64) that 𝛾1(< 𝑘3/4) tends to 

𝑘3/4, 𝜅0(𝛾1) and 𝕂0(𝛾1) tend to zero. Therefore, by continuity of the function 𝜅0(𝛾1) and 𝕂0(𝛾1) 

one deduces that for any  𝑘1 > 0 there exists a positive value of 𝛾1(< 𝑘3/4) such that 

𝜅0(𝛾1) < 𝑘1 and 𝕂0(𝛾1) < 𝑘1. This concludes the proof. 

A sufficient condition for the gain 𝑘1is provided (i.e., inequality (III.53)) ensuring the 

convergence and stability results. In view of (III.51) and (III.52), one deduces that 

𝑘1must tend to +∞ to guarantee the satisfaction of (III.53) when |𝑟 (0)| tends to one (the 

value for which �̃�(0) ∈ 𝕌). One also remarks that the size of 𝑘1is proportional to the size 

of the domain of initial estimation error for which (III.53) is satisfied. 

The main interest of this section related to Observer (III.34) is to yield a semi-global 

exponential convergence proof which was not achieved before. In fact, Property 1 of 

Theorem 1 concerning the local exponential stability is similar to the stability property 

proved in [45], but the present assumptions upon the reference trajectory (Assumptions 

1 and 2) are more explicit and less restrictive than those given [45]. As for Property 2, it 

ensures the semi-global stability property under a “high-gain”-like condition on 𝑘1 This 

condition indicates that the size of the basin of attraction is proportional to the size of 𝑘1, 

but 𝑘1 tends to infinity only when the initial estimated rotation makes a π angle with the 

true rotation. In practice it should never happen as the initial guess of the body’s attitude 

is never that bad. 
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III.4 The Cascaded observer 

In this subsection we will discuss about an observer for which the associated 

convergence and stability analyses do not rely on “high-gain” conditions proposed by 

Minh-Duc Hua. 

The design of this observer shows how 𝑎𝐼 can be estimated from the measurements 

of 𝑉,𝜔, and 𝑎𝐵. 

III.4.1 Conception   

And the observer is given by 

�̇̂� = 𝑘1(𝑉 − �̂�) + 𝑔𝑒3 + 𝑄𝑎𝐵 

                                            �̇� = 𝑄𝑆(𝜔) + 𝑘𝑉(𝑉 − �̂�)𝑎𝐵
𝑇                              (III.65) 

With 𝑘1, 𝑘𝑉 positive constant gains, and 𝑄 ∈ 𝑅3×3 a virtual matrix.  

Suppose that ∀𝑡 ∈ 𝑅+, 𝜔(𝑡), �̇�(𝑡), 𝑎𝑛𝑑 �̈�(𝑡) are bounded. Then; the assumptions 

are: 

1. ∀(�̂�(0), 𝑄(0)) ∈ ℝ3 × ℝ3×3, (�̃�(𝑡), (𝑎𝐼  −  𝑄𝑎𝐵)(𝑡)) converges to zero; 

2. Furthermore, if the acceleration �̇�(𝑡) is constant and |𝑎𝐼(𝑡)| > 0, then the 

equilibrium (�̃�, 𝑎𝐼 − 𝑄𝑎𝐵) = (0, 0) is globally exponentially stable. 

Since (�̃�, 𝑄𝑎𝐵) converges to (0, 𝑎𝐼), one can view either 𝑄𝑎𝐵 or �̂� − 𝑔𝑒3 (= 𝑘1�̃� +

𝑄𝑎𝐵) as the estimate of 𝑎𝐼. 

Consider System (III.30) and the observer system (III.65) complemented with the 

following attitude estimator 

𝑅 = 𝑅𝑆(𝜔 + 𝜎) 

                                      𝜎 = 𝑘2𝑚𝐵 × 𝑅𝑚𝐼 + 𝑘3𝑎𝐵 × �̂�𝑇(𝑄𝑎𝐵 + 𝑘1(𝑉 − �̂�))        (III.66) 

With 𝑘2, 𝑘3 some positive gains, and 𝑄, �̂� given by System (III.65).  

Define 𝜉 = 𝑎𝐼 − 𝑄𝑎𝐵. Suppose that Assumptions 1 and 2 are satisfied. Then 
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1. For any initial condition (�̂�(0), 𝑄(0), �̂�(0)) ∈ ℝ3 × ℝ3×3 × 𝑆𝑂(3), (𝜉, �̃�, �̃�) 

asymptotically converges to the set 𝐸 = 𝐸1 ∪ 𝐸2 with 𝐸1 = {0} × {0} × 𝕌, 𝐸2 = (0, 0, 𝐼3), 

and 𝕌 ∈ 𝑆𝑂(3) defined by  

                                         𝕌 ≜ {𝑅 ∈ 𝑆𝑂(3): 𝑡𝑟(𝑅) = −1}                            (III.67) 

2. furthermore, if the acceleration �̇� is constant, then 𝐸 is an equilibrium set with the 

subset 𝐸1 unstable and the subset 𝐸2 stable. 

III.4.2 Analyze and Stability   

This observer uses an auxiliary matrix 𝑄 which (surprisingly) is not a rotation matrix. 

But this matrix is such that 𝑄𝑎𝐵  −  𝑅𝑎𝐵 tends to zero. Thus, 𝑄 allows an estimation of 

the specific acceleration in the inertial frame I 𝑎𝐼 . 

Once this is done, the mathematical problem is very close to the case where the 

approximation 𝑎𝐼 ≈ −𝑔𝑒3 is made. Indeed, the images by the rotation 𝑅 of two distinct 

vectors of the body frame are now known. The form of the attitude observer (III.66) is 

close to the nonlinear observers already proposed in the literature (e.g. [41] [42]) for the 

attitude estimation problem under the approximation 𝑎𝐼 ≈ −𝑔𝑒3. Note that (III.65) also 

defines an invariant observer [43] [44]. Note that there does not exist any smooth 

globally asymptotically stable observer due to the topology of the Lie group 𝑆𝑂(3). The 

simultaneous achievement of these stability and convergence properties in the case of 

constant accelerations is a new result. Additionally, let me remind that for observer [45] 

specifying the domain of attraction is not easy to achieve, even in the case of constant 

accelerations. 

In view of the proof of the cascaded observer one ensures that ||𝑄|| remains 

bounded in the case of perfect measurements. In practice, however, sensor noises and 

drifts and numerical errors can drive ||𝑄|| arbitrarily large which possibly yields large 

estimation errors. This suggests to replace the expression of 𝑄̇̇  in (III.65) by the 

following 

�̇� = 𝑄𝑆(𝜔) + 𝑘𝑉(𝑉 − �̂�)𝑎𝐵
𝑇 − 𝜌𝑄 

                                    𝜌 = 𝑘𝑞 max(0, ‖𝑄‖ − √3) ,𝑤𝑖𝑡ℎ 𝑘𝑞 > 0 (III.68) 
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Since 𝑎𝐼  =  𝑅𝑎𝐵 can be estimated via the vector 𝑄𝑎𝐵, ||𝑄|| can be theoretically 

bounded by √3 (i.e. the value of the Frobenius norm of any rotation matrix 𝑅). The term 

−𝜌𝑄 in the expression of 𝑄̇̇  in (III.67) creates a dissipative effect when ||𝑄|| becomes 

larger than √3, allowing it to be driven back to this threshold and thus avoiding 

numerical drifts of 𝑄. This astute of robustification does not destroy the convergence 

properties.  

Observer  

From (III.30) and (III.65) one obtains  

                                           �̇̃� = −𝑘1�̃� + (𝑅 − 𝑄)𝑎𝐵                               (III.69) 

Along the solutions of the closed-loop system, the time-derivative of the candidate 

Lyapunov function  

                                          𝒲 ≜
1

2
|�̃�|

2
+

1

2𝑘𝑉
‖𝑅 − 𝑄‖2                          (III.70) 

Satisfies  

�̇� = −𝑘1|�̃�|
2
+ �̃�𝑇(𝑅 − 𝑄)𝑎𝐵 − 𝑡𝑟((𝑅 − 𝑄)𝑇�̃�𝑎𝐵

𝑇) +
1

𝑘𝑉
𝑡𝑟((𝑅 − 𝑄)𝑇(𝑅 − 𝑄)𝑆(𝜔)) 

�̇� = −𝑘1|�̃�|
2
                                                                                             (III.71) 

The time-derivative of 𝒲 is negative semi-definite, so that �̃� and 𝑄 are bounded. In 

view of (III.69) and the boundedness of �̃�, 𝑄, 𝑎𝐵 (since �̇� is bounded from assumption), 

one deduces the boundedness of �̇̃�. Then, one deduces from (III.71) the boundedness 

of �̈�, i.e., �̇� is uniformly continuous along every system’s solution. Then, the 

application of Barbalat’s lemma ensures the convergence of �̇� to zero which implies 

the convergence of �̃� to zero. The boundedness of �̈�𝐼 and 𝜔 from Assumption 1 implies 

the boundedness of  �̇�𝐵 since 𝑎𝐵 = 𝑅𝑇(�̇� − 𝑔). This along with (III.69) and the properties 

obtained previously (i.e., the boundedness of  �̃�, �̇̃�, 𝑄, �̇�, �̇�) implies that �̈̃� is bounded, 

i.e., �̇̃� is uniformly continuous. Since �̃� converges to zero and  �̇̃� is uniformly 

continuous, the application of Barbalat’s lemma ensures the convergence of  �̇̃� to zero 
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which implies the convergence of 𝑄𝑎𝐵 to 𝑎𝐼. It remains to show the last statement of the 

lemma. If �̇� is constant, one has  

                                      
ⅆ

ⅆ𝑡
((𝑅 − 𝑄)𝑎𝐵) = −𝑘𝑉|𝑎𝐼|

2 �̃�                                 (III.72) 

From (III.69) and (III.72), the exponential stability of (�̃�, 𝑎𝐼 − 𝑄𝑎𝐵) to zero is 

straightforward. 

Estimator  

One verifies that  

�̇̃� = −𝑆(𝑘2𝑚𝐼 × �̃�𝑚𝐼 + 𝑘3𝑎𝐼 × �̃�𝑎𝐼)�̃� + 𝐸                          (III.73) 

With  

𝐸 ≜ 𝑘3𝑆(𝑎𝐼 × �̃�(𝑎𝐼 − 𝑄𝑎𝐵 − 𝑘1�̃�))�̃�                              (III.74) 

Along the solutions to the closed-loop system, the time-derivative of the candidate 

Lyapunov function where �̃� ∈ 𝕌  

𝒱 ≜ 𝑡𝑟(𝐼3 − �̃�) = 4𝑠𝑖𝑛2(
�̃�

2
)                                     (III.75) 

Satisfies 

                               �̇� = 𝑡𝑟(𝑘2𝑆(𝑚𝐼 × �̃�𝑚𝐼)�̃� + 𝑘3𝑆(𝑎𝐼 × �̃�𝑎𝐼)�̃� − 𝐸)                  

(III.76) 

                                                     �̇� ≤ −𝑘𝑠𝑖𝑛2(�̃�) − 𝑡𝑟(𝐸)                                      (III.77) 

The boundedness of �̇� which implies the uniform continuity of 𝒱 and therefore of �̃�. 

When the body’s acceleration  �̇�𝐼 is constant, as a consequence of (III.69) and 

(III.72) one has  

�̇̃� = −𝑘1�̃� + 𝜉 

                                                            �̇� = −𝑘𝑉|𝑎𝐼|
2�̃�                                              (III.78) 

With        𝜉 = 𝑎𝐼 − 𝑄𝑎𝐵 
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Defines 𝑦 ≜ 1 + cos(�̃�); 𝑧 ≜ 1 − cos(�̃�) and verifies that �̃� = 𝜋 and �̃� = 0 

corresponds to 𝑦 = 0 and 𝑧 = 0 respectively. Note that 𝑦 = 2 −
𝒱

2
 And 𝑧 =

𝒱

2
. Using 

(III.76) one obtains  

�̇� = (𝑘2|�̃� × 𝑚𝐼|
2 + 𝑘3|�̃� × 𝑎𝐼|

2) (1 −
𝑦

2
)𝑦 +

1

2
𝑡𝑟(𝐸) 

                               �̇� = −(𝑘2|�̃� × 𝑚𝐼|
2 + 𝑘3|�̃� × 𝑎𝐼|

2) (1 −
𝑧

2
) 𝑧 −

1

2
𝑡𝑟(𝐸)                 (III.79) 

From (III.78), (III.79), it is straightforward to verify that (𝜉, �̃�, 𝑦) = (0, 0, 0) and 

(𝜉, �̃�, 𝑧) = (0, 0, 0) are equilibrium points. This implies that 𝐸 is an equilibrium set of 

(𝜉, �̃�, �̃�). From the definition of y and z, Therefore, the linearization of system (III.79) 

about the equilibriums (𝜉, �̃�, 𝑦) = (0, 0, 0) and (𝜉, �̃�, 𝑧) = (0, 0, 0) are  

�̇� = (𝑘2|�̃� × 𝑚𝐼|
2 + 𝑘3|�̃� × 𝑎𝐼|

2)𝑦 

                                            �̇� = −(𝑘2|�̃� × 𝑚𝐼|
2 + 𝑘3|�̃� × 𝑎𝐼|

2)𝑧                             (III.80) 

From (III.80) one directly deduces that the equilibrium (𝜉, �̃�, 𝑦) = (0, 0, 0) of the 

linearized system is unstable. This implies that the equilibrium set 𝐸1 of (𝜉, �̃�, �̃�) is 

unstable. 

The stability property established in this observer is weaker than that of invariant 

observer but the convergence result, being independent of the gain values, is stronger. 

Furthermore, when �̇� is constant, one obtains the strongest possible result, i.e., stability 

of the desired equilibrium 𝐸2 = (0, 0, 𝐼3), instability of the “undesired” equilibrium set 𝐸1, 

and convergence to 𝐸1 ∪ 𝐸2.  
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III.5 Conclusion 

In this chapter, four observers were discussed, for the two first are from a class of 

smooth nonlinear observers guarantees, in general, almost global asymptotic stability 

(AGAS), i.e., convergence to the actual attitude is guaranteed from any initial condition 

except from a set of Lebesgue measure zero, and two other attitude observers with 

associated Lyapunov-based convergence and stability analyses were discussed.  

The first observer ensures semi-global exponential convergence and stability and 

suggests that a high-gain observer is the price to pay for a large basin of attraction. In 

turn, the second observer ensures almost global convergence without the “high-gain 

assumption”.  

An inconvenience, however, is that its stability has yet to be derived for the case 

when the vehicle’s linear acceleration is non-constant. Which of these observers is best 

in practice may depend on sensor characteristics.



 

 
 

 

 

 

 

 

 

 

 

 

 

Chapter IV 

Simulations and 

interpretations 
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IV.1 Introduction 

In this chapter we will illustrate through simulation results the performance and 

robustness of each one from the four observers discussed in the previous chapter. 

In order to compare between the four observers, we will decompose them into two 

pairs, the first pair is the smooth and non-smooth observers, while the second is the 

invariant and the cascaded observers, then three simulations will be done. 

The first will be multiple simulations of the smooth and the non-smooth observers 

under a different initial conditions and disturbances in order to illustrate their effect on 

the attitude estimated values. 

Then we will do the same kind of simulations for the second pair, to finally choose 

the ones that give a good performance and accuracy, to do a third simulation and 

compare between them. 
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IV.2 Simulation 1 

This subsection presents numerical examples and comparisons between the 

smooth and non-smooth complimentary attitude observers introduced and discussed in 

the previous chapter. 

IV.2.1 Initial data  

The angular velocity is given by  

𝜔(𝑡) = [

0.5 sin(0.1𝑡)

0.2 sin(0.2𝑡 + 𝜋)

sin(0.3𝑡 + 𝜋/3)
] (𝑟𝑎𝑑/𝑠) 

And the initial condition 𝑅(0)  =  𝐼3, consider body-frame measurements 𝑏1 and 𝑏2 of 

two non-collinear inertial vectors given by 

𝑟1 =
1

√3
[1, −1,1]𝑇 and  𝑟2 = [0,0,1]𝑇 

With the gains are given by  

𝜌1 = 1  and  𝜌2 = 2 

Therefore, the corresponding weighting matrix is given by  

𝐴 = 𝜌1𝑟1𝑟1
𝑇 + 𝜌2𝑟2𝑟2

𝑇 =
1

3
[

1 −1 1
−1 1 −1
1 −1 7

] 

IV.2.2 Results 

a- For the first simulation we chose the observer initial conditions so that we start 

from a large initial attitude error and the result is shown in Figure IV.1 
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Figure IV.1 Comparison between the smooth and the non-smooth observers 

starting from a large attitude error. 

The smooth attitude observer has a slow convergence rate for the large attitude 

estimation errors, where the non-smooth attitude observers exhibit faster convergence 

rate for large attitude errors as expected from the theoretical results obtained in the 

previous chapter. 

b- For the second simulation, we will verify the convergence of the two observers 

with the presence of vanishing angular velocity disturbance. 

�̂�𝑛𝜔(𝑡) = −3(3𝑡 + 1)−
1
2[1, 1, 0]𝑇 
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Figure IV.2 Comparison between the smooth and the non-smooth attitude 

observers in the presence of a vanishing disturbance.  

The Figure IV.2 shows the results of the second simulation in the presence of the 

vanishing disturbance, it can be seen that, as proved the smooth attitude observer has 

diverged to the undesired manifold angle even though the disturbance signal is 

vanishing as, t goes to infinity. 

c- In the third simulation, we consider a sinusoidal-type disturbance of two different 

frequencies   𝑛𝜔(𝑡) = (2 sin(𝑡) − 0.5 sin(10𝑡))[1, −1, 0]𝑇 

 

 

 

 

 

 

 

Figure IV.3 Comparison between the smooth and the non-smooth attitude 

observers in the presence of a bounded disturbance. 

As it is shown, we used the sinusoidal signal to test the “attenuation” capacity of 

each one of the attitude observers. In the Figure IV.3, even though, both of the attitude 

observers have bounded states, it is seen that the non-smooth attitude observer allows 

to obtain a better disturbance attenuation level. 
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IV.3 Simulation 2 

This subsection presents numerical examples and comparisons between the 

invariant and cascaded attitude observers introduced and discussed in the previous 

chapter. 

IV.3.1 Initial data  

The linear velocity of the vehicle in both observer’s simulations is given by 

𝑣 = [−15𝛼 sin(𝛼𝑡) ; 15𝛼 cos(𝛼𝑡) ; 0]  with   𝛼 = 2√30/15 

The normalized earth’s magnetic field is taken as  

𝑚𝐼 = [0.434; −0.0091; 0.9008] 

Data for the invariant observer 

The gains we have chosen as  

𝑘1 = 3, 𝑘2 = 3, 𝑘3 = 0.03 

The initial velocity estimate error is given as 

�̃�(0) = [−19.7; −14.1; −10](m/s)  

The initial rotation matrix estimate error is given as 

�̃�(0) = 𝑑𝑖𝑎𝑔([1;−1;−1]) 

Data for the cascaded observer  

The gains have been chosen as  

𝑘1 = 3, 𝑘2 = 3, 𝑘3 = 0.03,       𝑘𝑣 = 0.12, 𝑘𝑞 = 1 

The initial conditions are given by �̃�(0) = 𝐼3 

The initial velocity estimate error is given as 

�̃�(0) = [−19.7; −14.1; −10](m/s)  

The initial attitude estimate error is given as: 

�̃�(0) = 𝑑𝑖𝑎𝑔([1;−1;−1]) 
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IV.3.2 Results 

For this simulation, the initial values of the invariant and cascaded observers are 

chosen very far from the real values, so as to test the extent of the associated domains 

of convergence.  

Note that the gains 𝑘2, 𝑘3 of the invariant Observer and the cascaded are chosen 

so that they possess “similar performance” when �̇� ≈ 0, in the case of perfect 

measurements: 

Figure IV.4 The estimated errors of the Euler angles (𝑘1 = 3). 

The Figure IV.4 shows the estimated errors of the Euler angles (roll, pitch, and 

yaw). Both the invariant and the cascaded observers ensure an asymptotic 

convergence of the estimated attitude to the real one despite the very large initial 

estimation errors. 

Note that with the initial given conditions, the gain 𝑘1 involved in the invariant 

observer does not correspond to the limit provided by the statement. Furthermore, the 
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simulations results tend to indicate that the domain of attraction is global for any positive 

value of the gain 𝑘1.The closed-loop stability of invariant is quite sensitive and exhibit 

poor performance compared to cascaded. 

 

Figure IV.5 The estimated errors of the Euler angles (𝑘1 = 0.03). 

An example case with 𝑘1 = 0.03 (a very small value) is illustrated in the Figure IV.5. 

It shows that the convergence rate of the invariant observer is rather slow while the 

cascaded observer still provides a good performance it also implies that in the case 

where GPS velocity measurement is rather erroneous the cascaded observer can be 

more advantageous than the one in the invariant observer, because the small gain 𝑘1 

can be used to limit the influence of GPS velocity measurement noise.  
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IV.4 Simulation 3  

This subsection presents comparison between the non-smooth and the cascaded 

attitude observers, which showed a better convergence rate in the previous simulations. 

a- For the first simulation, we chose the observer initial conditions so that we start 

from a large initial attitude error to see which one will converge faster from the two 

observers, and the result is shown in Figure IV.6. 

 

 

Figure IV.6 Comparison between the non-smooth and the cascaded attitude 

observers starting from a large attitude error. 

the non-smooth attitude observer has a fast convergence rate for large attitude 

estimation errors, but the cascaded attitude observer exhibits faster convergence rate. 

b- For the second simulation, we will verify the convergence of the two observers 

with the presence of vanishing angular velocity disturbance  

�̂�𝑛𝜔(𝑡) = −9(3𝑡 + 9)−
1
2[1, 1, 0]𝑇 
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Figure IV.7 Comparison between the non-smooth and the cascaded attitude 

observers in the presence of a vanishing disturbance. 

In the presence of the vanishing disturbance, the Figure IV.7 illustrates that, the 

cascaded observer converges faster than the non-smooth attitude observer for the first 

10 seconds, after that, the non-smooth observer shows a good convergence rate.  

c- In the third simulation, we consider a sinusoidal-type for high disturbances of two 

different frequencies to test the “attenuation” capacity of each one of the attitude 

observers, the signal is given by 

𝑛𝜔(𝑡) = (8 sin(5𝑡) − sin(10𝑡))[1, −1, 0]𝑇 
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Figure IV.8 Comparison between the non-smooth and the cascaded attitude 

observers in the presence of a bounded disturbances. 

In Figure IV.8, even though, both attitude observers have bounded states, it is seen 

that the cascaded observer shows a better disturbance attenuation level compared with 

the non-smooth attitude observer who suffer from high disturbances. 

IV.5 Conclusion 

As a result, and after doing these multiple simulations and comparisons between 

the observers. 

We deduce from the comparison between the first pair, that the non-smooth 

observer converges faster than the smooth observer and gives more accuracy and 

stability against the low disturbances and gyro noises. 

And from the comparison between the second pair, we deduce that the stability of 

invariant is quite sensitive and exhibit poor performance compared to cascaded, 

because it relies on high gain condition and that is a disadvantage compared to the 

cascaded observer that does not get affected from the gain. 

At the end, and after comparing between the non-smooth and the cascaded 

observers which gave a good performance in the first simulations, we deduce that, the 

cascaded performs better and converges faster in the case of high disturbances. 
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General conclusion 

The attitude estimation has been an interesting field of study for many researchers 

over the years. The Efficient control strategies for flying vehicles rely heavily on a good 

estimation of the attitude. Moreover, in many applications such as surveillance, 

infrastructure inspection, and aerial photography, the estimation of the aircraft position 

and velocity is important as well. Therefore, powerful and reliable estimation tools are 

required to generate good estimations under real time conditions such as noisy sensor 

measurements and unknown system parameters. 

For many decades, conventional techniques such as Extended Kalman Filters were 

the work horses of the attitude estimation field. With the emergence of new methods, it 

is believed that new generations of estimation tools may be able to replace the existing 

methods due to their superior reliability, accuracy, and domain of convergence. Among 

these techniques, nonlinear attitude observers have gained huge attention among the 

scientific community during the last decade. 

All the attitude estimation techniques require measurements provided by a range of 

sensors attached to the rigid body system. These provide information on the vehicle’s 

angular velocity and vectorial measurements in the body frame and sometimes and for 

more accuracy they can be aided by another external systems such as the GPS.  

A theoretical study of the different classes of attitude estimation techniques and 

algorithms was performed. The basics of static attitude determination and various 

methods of this kind are presented and discussed. Also, various dynamic methods were 

briefly introduced and discussed with detailed algorithms. 

In this thesis, the objective was to look closely on the evolution and application of 

the nonlinear attitude observers, A deep studies on some of the latest developed 

observers were performed to provide readers with details on the design and 

convergence properties, these nonlinear attitude observers were followed with 

different types of simulations to show the performance of each observer under 

different kinds of disturbances. Then we finished the work with a comparison between 

these observers.  
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