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      Abstract 

 
he use of  robotic technology is essentially very helpful in every area. 
Robotics and autonomous systems are already extensively used in many 
civil domains, especially since technological progress render them less 

expensive and bulky while, at the same time, more flexible and easier to interact with. As 
such, robots and multi-robots systems also have the potential to play, in the foreseeable 
future, a disruptive role in military operations in the sense that they will allow to perform 
tasks that today are considered too risky, complex or even impossible for humans. But these 
systems not only have the potential to perform conventional dirty, dull and dangerous 
military tasks like surveillance and counter mining; they are also likely to change the way 
military operations are conducted in the future, and even to make it possible to envisage 
new type of  missions. In our project we will obtain the dynamic model of  massive gun 
applying robotic laws, therfore using classical control theory based on feedback control 
including a study of  different feedback configurations and the development of  the 
associated compensator equations, and then optimizing the controller, we will be able to 
control the obtained model. In the last chapter we will show all the steps to design a fully 
functionnal scale model of  a turret cannon, equipped with a laser as an aiming device, 
controlled by computer, and precise instructions will be given as well as tests in clear images.  

 

إن استخدام التكنولوجیا الآلیة مفید للغایة في كل مجال. تستخدم الروبوتات والأنظمة المستقلة بالفعل على نطاق 
واسع في العدید من المجالات المدنیة ، خاصة وأن التقدم التكنولوجي یجعلھا أقل تكلفة وضخمة بینما في نفس 
الوقت أكثر مرونة وأسھل في التفاعل معھا. على ھذا النحو ، فإن الروبوتات وأنظمة الروبوتات المتعددة لدیھا 

أیضًا القدرة على لعب دور مدمر في العملیات العسكریة في المستقبل المنظور ، بمعنى أنھا ستسمح بأداء المھام 
التي تعتبر الیوم محفوفة بالمخاطر أو معقدة أو حتى مستحیلة للبشر . لكن ھذه الأنظمة لا تملك فقط القدرة على أداء 

المھام العسكریة التقلیدیة القذرة والباھتة والخطیرة مثل المراقبة والتعدین المضاد ؛ من المحتمل أیضًا أن یغیروا 
طریقة إجراء العملیات العسكریة في المستقبل ، وحتى لیتمكنوا من تصور نوع جدید من المھام. في مشروعنا ، 

سنحصل على النموذج الدینامیكي للبندقیة الضخمة التي تطبق القوانین الروبوتیة ، ثم باستخدام نظریة التحكم 
المختلفة وتطویر  الكلاسیكیة القائمة على التحكم في التغذیة الراجعة بما في ذلك دراسة تكوینات التغذیة الراجعة

معادلات المعادلة المرتبطة بھا ، ثم تحسین وحدة التحكم ، سیكون قادراً  على التحكم في النموذج الذي تم الحصول 
علیھ. في الفصل الأخیر سنعرض جمیع الخطوات لتصمیم نموذج مقیاس كامل الوظائف لمدفع برج ، مجھز 

باللیزر كجھاز تصویب ، یتم التحكم فیھ بواسطة الكمبیوتر ، وسیتم إعطاء تعلیمات دقیقة بالإضافة إلى الاختبارات 
 .في صور واضحة
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1,..., nq q : generalized coordinates that completely locate the n-Degree of  freedom (DOF) 

manipulator arm 

K : The Kinetic Energy 

U : The Total Potential Energy 

L : Lagrangian 

( , )C q q :  The Coriolis/Centripetal vector 

( )G q : The Gravity Vector. 

 : The Generalized Applied Torque Vector 

( )F q : The Additional Friction Term 

vF : The Coefficient Matrix of  Viscous Friction 

dF : Dynamical Friction Term 

d : Disturbance Term 

nI : The n n  Identity Matrix. 

 nx   : The State Vector  

H : The Hamiltonian Matrix 

1m : The Mass of  The Turret Load 

2m : The Mass of  The Barrel Load 

1R : The Radius of  The Turret Load 

2R : The Length of  The Barrel Load 

1 : The Angular Position of  The Turret Load (Horizontal Rotation) 

2 : The Angular position of  The Barrel Load (Vertical Rotation) 

C: Center of  The Rod 

d : The perpendicular distance from turret’s axis of  rotation and The Center of  The Rod 

I : The Moment of  Inertia of  the Rod About an Axis that Passes Through its End 

parallelI : The moment of  inertia about any axis parallel to that axis through the center of  

mass 

0U : The Potential Energy at Some Reference Level 

N 



 
 

  

 : Vector of  the External Torques 

iV : Voltages applied to the motor 

dq : Desired Position 

dq : Desired Velocity  

dq : Desired Acceleration   

q : Position Tracking error 

q : Velocity Tracking error 

q : Acceleration Tracking error 

k
iv : Speed of  the agent i  at the iteration k  . 

w : weighting function. 

jc : weighting factor. 

rand : random number between 0 and 1 . 

k
is : Position of  the agent i  at the iteration k . 

ipbest : Best position of  the agent i . 

gbest : Best global value of  the group. 
 

maxw : Final weight. 

minw : Initial weight. 

maxiter : Maximum number of  iterations. 

iter : Current number of  iteration.  

k
is : Current position of  the agent. 

1k
is
 : Actualized position of  the agent. 

1k
iv
 : Actualized speed of  the agent.     

dq : desired position 

0 : an auxiliary control input to be designed.  
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he weapons are the contemporaries of  the man, his closest 
companions, they were born grew up together and discovered the 
world, They forged a destiny and charted the way which leads to today. 

Whether bronze or iron, they are the ones who have always given their names to the ages 
of  man. 
 
Before spouting in the concrete, they spurt out of  the mind, they are an idea, which takes 
strength in the imagination and the memory, a sparkle of  the mists of  time, which is 
rooted deeply in human’s nature, and suddenly appears in the light this form is part of  
gestures and shapes the material in its image. 
It is an alliance of  incandescence and patience. It is the whole life of  a country, the history 
and the present of  a nation, which converges, concentrates and merges in weapons. 
Dressed in old materials they reconnect with their ancestors, dressed in carbon fiber they 
embody the present. Alloy of  the forge and the laser, of  the hand and the machine, of  
the know-how and the technology these weapons are projected towards the future, they 
have a stem that crosses time a symbol of  freedom a witness that is passed on from 
generation to generation a heritage of  the future and a sign of  recognition. 
 
In the dawn of  history, war engines were performing the function of  artillery (which may 
be loosely defined as a means of  hurling missiles too heavy to be thrown by hand), and 
with these crude weapons the basic principles of  artillery were laid down. Eight centuries 
B.C.--machines that were probably predecessors of  the catapult and ballista, getting 
power from twisted ropes made of  hair, hide or sinew. The ballista had horizontal arms 
like a bow. The arms were set in rope; a cord, fastened to the arms like a bowstring, fired 
arrows, darts, and stones. Like a modern field gun, the ballista shot low and directly 
toward the enemy. 
The catapult was the howitzer, or mortar, of  its day and could throw a hundred-pound 
stone 600 yards in a high arc to strike the enemy behind his wall or batter down his 
defenses. 
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Figure 0.1 Roman Catapult 
 
 In early times the weapon was called a "scorpion," for like this dreaded insect it bore its 
"sting" erect. These weapons could be used with telling effect, as the Romans learned 
from Archimedes in the siege of  Syracuse (214-212 B.C.). As Plutarch relates, 
"Archimedes soon began to play his engines upon the Romans and their ships, and shot 
stones of  such an enormous size and with so incredible a noise and velocity that nothing 
could stand before them. At length the Romans were so terrified that, if  they saw but a 
rope or a beam projecting over the walls of  Syracuse, they cried out that Archimedes was 
leveling some machine at them, and turned their backs and fled." Long after the 
introduction of  gunpowder, the old engines of  war continued in use. Often they were 
side by side with cannon. 
Chinese "thunder of  the earth" (an effect produced by filling a large bombshell with a 
gunpowder mixture) sounded faint reverberations amongst the philosophers of  the 
western world as early as A.D. 300. Though the Chinese were first instructed in the 
scientific casting of  cannon by missionaries during the 1600's, crude cannon seem to have 
existed in China during the twelfth century and even earlier. 
The Arabian madfaa, which in turn had doubtless descended from an eastern predecessor, 
was the original cannon brought to western civilization. This strange weapon seems to 
have been a small, mortar-like instrument of  wood. Like an egg in an egg cup, the ball 
rested on the muzzle end until firing of  the charge tossed it in the general direction of  
the enemy.Arabic accounts report that Muslims introduced firearms into Islamic Spain, 
from where they passed to Italy, going from there to France, and finally Germany. 
Muslims also developed and refined gunpowder and acquired rocket-making technology. 
In the 13th century a Syrian scholar, Hassan Al-Rammah (d. 1294-1295), wrote a 
remarkable book on military technology, which became very famous in the west. The first  
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documented rocket is included in the book, a model of  which is exhibited at the National 
Air and Space Museum in Washington D.C (BEKHITI B. Dynamic Modeling & control 
of  Large Space Structures : Part 1 Missiles & Aircrafts). 
At the beginning of  the 1400's cast-iron balls had made an appearance. The greater 
efficiency of  the iron ball, together with an improvement in gunpowder, further 
encouraged the building of  smaller and stronger guns.By the middle 1400's the little 
popguns that tossed one-or two-pound pellets had grown into enormous bombards After 
1470 the art of  casting greatly improved in Europe. Lighter cannon began to replace the 
bombards. Throughout the 1500's improvement was mainly toward lightening the 
enormous weights of  guns and projectiles, as well as finding better ways to move the 
artillery.  
Before 1500 the siege gun had been the predominant piece. Now forged-iron cannon for 
field, garrison, and naval service--and later, cast-iron pieces--were steadily developed 
along with cast-bronze guns, some of  which were beautifully ornamented with 
Renaissance workmanship and straight grooving of  musket bores was extensively 
practiced. It was during the sixteenth century that the science of  ballistics had its 
beginning. In 1537, Niccolo Tartaglia published the first scientific treatise on gunnery. 
Principles of  construction were tried and sometimes abandoned, only to reappear for 
successful application in later centuries. Breech-loading guns, for instance, had already 
been invented. They were unsatisfactory because the breech could not be sealed against 
escape of  the powder gases, and the crude, chambered breechblocks, jammed against the 
bore with a wedge, often cracked under the shock of  firing. 
Many of  the vital changes took place during the latter years of  the 1800's, as rifles 
replaced the smoothbores. Steel came into universal use for gun founding; breech and 
recoil mechanisms were perfected; smokeless powder and high explosives came into the 
picture. Hardly less important was the invention of  more efficient sighting and laying 
mechanisms. The changes did not come overnight. In Britain, after breechloaders had 
been in use almost a decade, the ordnance men went back to muzzle-loading rifles; faulty 
breech mechanisms caused too many accidents. 
Prior to 1800, there was no need for elaborate gun sighting systems, because the guns 
themselves were inaccurate except at close range. Guns were simply pointed at the target 
by eye. Gun sights introduced early in the nineteenth century consisted of  fixed front and 
rear sights mounted so that the line of  sight across their tips was parallel to the bore of  
the gun. Toward the end of  the nineteenth century, a simple sight telescope was developed 
by a Navy Lieutenant.  
Despite their post-Civil War development, modern machine guns did not begin to exhibit 
their full potential in battle until World War I. The effects on employment of  these new 
weapons systems altered the doctrinal way of  waging war for both Allied and Axis powers. 
Properly employed machine guns proved to be devastating to massed infantry formations 
and paved the way for the creation of  a completely new methodology of  war fighting. 
The machine gun became the keystone of  the infantry defense and a major supplier of  
organic firepower in the offense. New tactics were developed by both sides to not only 
exploit the effects of  the machine gun, but to counter the enemy’s machine gun 
employment capabilities. The machine gun changed the face of  modern warfare just as  
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surely as the development of  aircraft and precision indirect fire artillery. The impact of  
this weapon can be seen not only in military writings of  that period, but also in the 
principles of  employment still in use today (Carlucci, Donald E. Ballistics : theory and  
of  guns and ammunition / Authors, Donald E. Carlucci, Sidney S. Jacobson. --2nd 
edition). 
 
Guns must be mounted on tank or aboard ship in such a manner that they can be rotated 
horizontally (trained)  and vertically (elevated). By means of  these two motions, a gun can 
be pointed in any direction. The mechanism which supports the gun and moves it in 
elevation and train is called the gun mount. The major components of  a typical gun 
mount are the elevating mechanism, the traversing mechanism, the recoil mechanism, the 
trunnions, the carriage and the stand. The  elevating  mechanism  may  be  power  or  
hand  driven  and  moves  the  gun  in  elevation;  the  traversing  mechanism,  also power 
or manually operated, traverses (trains) the weapon. The recoil mechanism absorbs the  
forces resulting from the explosion of  the propelling charge and allows the gun to recoil 
(move to the rear). The stand supports the entire gun, mounts, and is rigidly attached to 
the deck; the carriage rests and rotates on the stand so that the weapon can be traversed. 
The trunnions provide a pivot support between gun and carriage so that the gun can be 
elevated (BEKHITI B. Dynamic Modeling & control of  Large Space Structures : Part 1 
Missiles & Aircrafts). 

 
Figure 0.2 Major Gun Mount Components 

 
Most major-caliber guns (8" and up) are mounted in heavily armored structures called 
"turrets." Intermediate caliber guns (over 4" and less than 8") are mounted in unarmored 
gun houses, or are provided with shields; minor-caliber guns (over 0.60" to 4") are 
shielded or simply mounted in the open. 

G 



 
 

  

General Introduction 

 
 
 

 

  

 
 

Figure 0.3 Some Configurations Of  Turret Guns 
 

In accordance with the program of  Algerian Army Force commander, who has 
performed modernization and rejuvenation of  the main tools of  Algerian defense system, 
on both of  Army, Navy and Air Force, so that a few examples of  such numerous defense 
equipments bought by Algerian from abroad, are tanks, warships, military  aircraft and so 
forth. This made researchers and  scientists encouraged to  make examination, 
exploration and  developments  in  major  defense  system  appliance  technologies,  
especially  on  its  gun  turret  used  on  military  vehicles. The military vehicle itself  is 
composed of  ground vehicles, navy vehicles and air military vehicle that has its own 
characteristics, so the gun turret itself  has flexibility because it can be placed on all military 
vehicles on land, sea or air. Gun turret can be manned by humans can also be controlled 
remotely, can then also move automatically (BEKHITI B. Dynamic Modeling & control 
of  Large Space Structures : Part 1 Missiles & Aircrafts). 
 
 

 
 

Figure 0.4 Battleship Guns 
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In this chapter, we try to review the necessary mathematical tools that are needed 

in robotic systems. We review some mathematical results on norms, matrices and 
function that are necessary in analysis of such systems. Then we present the Lyapunov 
stability concept that will be used in this thesis to design nonlinear control systems for 
Turret Dynamics. Additional stability results that are particular cases of the Lyapounov 
tchnique or are based on input-output concepts are discussed. 
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1.1  Introduction : 

 
    The major interest of  control engineers is to design a control system to guarantee that 
a specific plant present a desired performance objective. It is with no doubt that, the 
most important objective is the stability of  the system in question. 
 
    Intuitively, we think of  stability as; suppose that a system is operating under some 
conditions, what effect a slight change of  conditions has on the system's operation. The 
answer to this is complex because there exist many different variants of  the basic 
problem. 
 
   The main objective of  this chapter is to present the Lyapunov stability theory with all 
the necessary mathematical tools that permit us to perform the analysis and design of  
control systems for Turret guns. 
 
   Since the stability analysis leads to perform some operations on the size of  some 
vectors and matrices, we start by review on definitions and properties of  norms matrices. 
 
    Then in order to introduce the Lyapunov stability theory, some fundamental 
definitions are given. The stability theory is presented next through several definitions 
and theorems. All proofs are omitted but reference are made to books that are more 
specialized where proofs are provided. 
 
    Finally, we gives some important advanced stability results that are based on input-
output stability concept and will be used to design robust controllers. 
 

1.2 Norms: 

A “norm” is a generalization of  the idea of  distance and length. As we are to  perform  
a stability analysis on the size of  some vectors and matrices, we give a brief 
description of some useful norms found in the literature and will be used in this  
work. 

        1.2.1. Vector Norms 

Definition 1.1 -(Lewis et al.,1993) A norm f(.): n   of  a vector x is a real-valued 
function defined on the vector X such that  
 
(a) || ||X    for all x X  with || || 0x   if  and only if  0x   
 
(b) || || | | . || || 0ax a x  , for all x X  and any scalar a  
 
(c) || || || || || ||x y x y     , for all ,x y X
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Note that | |a  denotes the absolute value of  a  for a real a , or the magnitude of  a  if  
it is complex. 

In case where nX   ,the following are important norms on n ; 

1-norm:                       1
1

|| || | |,
n

i
j

x x


                                                                (1.2.1) 

2-norm:                      2 1/2
2

1

|| || ( ) ,
n

j
j

x x


                                                             (1.2.2) 

This norm is also known as Euclidian norm. 

p-norm:                      1/

1

|| || ( ) ,
n

p p
p j

j

x x


                                                            (1.2.3) 

∞-norm:  
1

|| || max | |,j
j n

x x
 

                                                             (1.2.4) 

 

1.2.2. Matrix Induced Norms  

In robotic application, a particular vector x may be operated by a matrix A to obtain 
another vector y Ax . To relate the sizes x of  y, we define the induced matrix norms 
as follows; 

Definition 1.1 -(Lewis et al.,1993) let || ||x be a given norm of  the vector nx   . 

Then, each n n  matrix A has an induced norm defined by  

                                  
|| || 1

|| || max || ||i
x

A Ax


                                                             (1.2.5) 

 For this, we can show that these induced matrix norms satisfy the condition of  
definition1.1. It is also possible to show that the matrix induced norm satisfy 

                                  || || || || || ||i i iA B A B                                                            (1.2.6) 

  For all A, B matrices of  appropriate dimensions. 

Important norms in n are then given as, with ( ),ijA a  

                                  ,|| || max | |i ij
i

j

A a                                                           (1.2.7) 

                                  ,1|| || max | |i ij
j

i

A a                                                           (1.2.8) 

                                  
,2 max|| || ( )T

iA A A                                                           (1.2.9) 

With  
m ax (.)  is the maximum eigenvalue of  (.).  
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1.2.2. Function Norms 

Next, we consider an important class of  signals that will be encountered in this work, 
which are the time dependent functions and vector functions. 

Definition 1.3-(Lewis et al.,1993) A function (.) :f     is uniformly continuous 

if  for any    , there is a ) such that  

                                  
0| | )t t    implies that 

0| ( ) ( ) |f t f t                         (1.2.10)    

Then, f  is said to belong to pL  if  for [1, ),p    

                                  
0
| ( ) |pf t dt



                                                             (1.2.11) 

f  is said to belong L
if  it is bounded, means that, if 

                                  
[1, )

sup (| ( ) |)
t

f t B
 

                                                              (1.2.12) 

Note that sup(| ( ) |)f t  is the smallest number that is larger than or equal to the 
maximum value of  ( )f t . The following definition of  the norm of  vector function is 
not unique. 

Definition 1.4-(Lewis et al.,1993) let pL denote the set of  1n  vectors of  functions,

if , each of  which belong to pL . The norm of  pf L is 

                                   
1/

0
0

|| (.) || | ( ) | )

pn
p

p if f t dt
 

  
 

                                        (1.2.13) 

1.3 Matrix properties: 

    In this section, we collect some matrix properties that play an important role in 
the study of  the stability of  robot systems. Let A be a real n n  matrix of  elements 
( )ija . 

Consider the following definitions. 

Definition 1.5-(Lewis et al.,1993) 

Positive Definite: Matrix A is positive definite if  0Tx Ax  for all nx   , 0x  . 
Positive Semi-definite: Matrix A is positive semi-definite if  0Tx Ax  for all nx   . 
Negative Definite: Matrix A is negative definite if  0Tx Ax   for all nx   , 0x  . 
Negative Semi-definite: Matrix A is negative semi-definite if 0Tx Ax  for all nx   . 
Non-Definite: A matrix A is not definite if  is none of  the above definitions. 
Note that any n n  matrix A can be composed into two parts: symmetric and 
asymmetric (skew-symmetric) part. 
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1 2

1 1
( ) ( )
2 2

T TA A A A A A A                                       (1.3.1) 

Where   

                                  
1 1

1
( )
2

T TA A A A    and 
2 2

1
( )

2
T TA A A A     

 Also, we can study the definiteness of  a matrix by considering its symmetric part.  

Notice that quadratic forms (energy like function) are scalars means that 

1 1 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )T T T T T T T T TE x Ax x Ax x A x x A A x x A A x x A A x           

                                                                       1 2 1 2( ) ( )T T T Tx A A x x A A x     

                                                                       1 2
T T T T Tx Ax x A x x A x                                           (1.3.2)     

Also, we know from (1.3.1) 

                                  1 2 1 2
T T T T T T TE x Ax x A x x A x x A x x A x        (1.3.3) 

Now, from equations (1.3.2) and (1.3.3) we can deduce that: 

               
1

1 2 1 2

2 0

T T T

T T T T T T T

T T

E x Ax x A x
E x Ax x Ax x A x x A x x A x

x A x

  
     


         (1.3.4) 

Now, as a conclusion, we can study the definiteness of  a matrix by considering its 
symmetric part. 

                                               
2

T
T T T

s

A A
x Ax x x x A x

 
  

 
                             (1.3.5) 

With 
sA is the symmetric part of  A. 

In case where A is a symmetric n n  matrix, the following theorem states some results 
relating the definiteness of  A with its eigenvalues. 
Theorem 1.1-(Lewis et al.,1993) let A be a symmetric n n  matrix, we have the 
following: 
  
 
Positive Definite: Matrix A is positive definite if  all eigenvalues are positive. 
Positive Semi-definite: Matrix A is positive semi-definite if  all eigenvalues are non-
negative. 
Negative Definite: Matrix A is negative definite if  all eigenvalues are negative. 
Negative Semi-definite: Matrix A is negative semi-definite if  all eigenvalues are 
non-positive. 
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Theorem 1.2 (Rayleigh-Ritz)-(Lewis et al.,1993) let A be a real symmetric n n  
positive definite matrix, let 

m in ( .)  and 
m ax (.)  denote the minimum and maximum 

eigenvalues of  the associated variable respectively. Then for any nx   , we have 

                              2 2
min max( ) || || ( ) || ||TA x x Ax A x                                            (1.3.6) 

 

Theorem 1.3 (Gershgorin)-(Lewis et al.,1993) let A be a real symmetric n n  matrix 
of  elements ( )ija . Suppose that 

                              
1

| |
n

ij ij
j

a a


  ,              for  1, ..,i n      j i                           (1.3.7)   

If  all the diagonal elements are positive, then the matrix A is positive definite. 

1.4 Function properties: 

  We review certain classes of  functions, and some concepts, that are used in the 
proof  of  the fundamental results exposed in this work. 

  Consider a continuous function (.) : nf   , the following lemma tells about 
definiteness of  the function f . 

Lemma 1.1-(Vidyasagar, 1992; Hariche, lectures 2008 INELEC) the continuous 
function (.) : nf   is locally positive definite if  the following two conditions are 
verified; 

(a) (0) 0f  ; 

(b) There exists a constant 0r  such that ( ) 0f x  for all x  belong to some ball 

                                                 :|| || ,rB x x r   0x                                       (1.4.1) 

f  is positive definite function if   
(a) (0) 0f  ; 

(b) ( ) 0f x   for all  0nx  ; 

(c) f  there exists a constant 0r  such that 
|| ||
inf ( ) 0
x r

f x


  

f  is radially unbounded if  and only if 

(a) ( )f x    as || ||x   , uniformly in x  
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 Definition 1.6-(Lewis et al.,1993) let the function (.) : nf    be a continuous 
function, f  isa class k function if 
(a) (0) 0f  ; 
(b) ( ) 0f x   for all 0x  ; 
(c) f  nondecreasing, i.e. 

1 2( ) ( )f x f x  for all 
1 2x x . 

Note that some authors replace (c) above by the more stringent requirements that 
(.)f  is strictly increasing. It turns that both definitions are equally good in proving 

stability theorems. 
 

Definition 1.7-(Lewis et al.,1993) A continuous function (.) : nf      is locally 

decrescent if  there exists a class k function (.) and a neighborhood N of  origin of  
n such that  

                                        ( , ) (|| ||)f t x x                                                          (1.4.2) 
 
For 0t  and all x N  if  nN   , then we say that f  is decrescent. 
It is important to note that the above definitions are stated in terms of  continuous 
nonlinear systems, keeping in mind that discrete and nonlinear systems admit similar 
results and linear systems are no more than a special case of  nonlinear systems. 
 

1.5 Stability Definitions 

 In this section, various types of  stability are defined. Through this section, we 
consider the unforced system 

                                               ( , )x f t x                                                           (1.5.1) 

Where ( ) nx t   and (.) : nf       is continuous. Then the vector 
ex is an 

equilibrium of  the system (1.5.1) if   
 
                                                    ( , ) 0ef t x  ,  0t    (1.5.2)  

 
Definition 1.8-(Lewis et al.,1993) the vector 

ex is stable at 
0t , if  starting close enough 

to
ex at 

0t , the state will always stay close to 
ex at 

0t t . More precisely, 
ex  is stable at 

0t  if  0  , 
0( , )t   such that if 

 
               

0 0|| || ( , )ex x t   ,   then || ( ) ||ex t x    for all 
0t t                           (1.5.3) 

 

ex is stable, if  it is stable for any
0t . Moreover, 

ex is uniformly stable if  
0( , )t   does 

not depend on 
0t . 
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Definition 1.9-(Vidyasagar, 1992) 
ex is attractive if  for each 

0t   , there exist an 

0( ) 0t  such that  

                           
0|| || ,ex x    then || ( ) || 0ex t x  as t                                (1.5.4) 

 

ex  is uniformly attractive if  there is a number 0   such that 

 
                           

0|| || ,ex x      
0 0,t   then || ( ) || 0ex t x                                   (1.5.5) 

 
        As t   uniformly in  

0x  and 
0t . 

 
Definition 1.10-(Vidyasagar, 1992) The equilibrium 

ex  is asymptotically stable if  

states starting sufficiently close to 
ex will eventually converge to it. In other words, if  

it is stable and attractive. 

ex  is uniformly asymptotically stable if  it is uniformly stable and uniformly attractive. 

 
Definition 1.11-(Vidyasagar, 1992) the equilibrium is exponentially stable if  there 
exist , , 0r    such that  
 
                                   

0 0 0|| ( ) || || || exp( ), ,e rx t x x t t t x B                            (1.5.6) 

 
 
Definition 1.12-(Vidyasagar, 1992) 

ex is globally asymptotically stable if  any initial 

state 
0x  will stay close to 

ex and will eventually converge to it. In other words, 
ex  is 

globally asymptotically stable if  it is stable and if  every ( )x t  converges to 
ex as time 

grows to infinity. 
 
Definition 1.13-(Vidyasagar, 1992) 

ex is globally uniformly asymptotically stable if 

(a) It is uniformly stable 
(b) if  for each pair of  positive numbers ,M   with Marbitrary large and  arbitrary 
small, there exist a finite number ( , )T T M  such that if  || ( ) ||ex t x M   

0 0,t  then  

 
                                   || ( ) || , ( , )ex t x t T M                                                  (1.5.7) 

 
Definition 1.13-(Vidyasagar, 1992) 

ex is globally exponentially stable if  there exist 

constant , 0    such that  
 

                                   0 0 0|| ( ) || || || exp( ), , n
ex t x x t t t x                          (1.5.8) 
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1.6 Lyapunov Direct Method 

    Lyapounov stability theory deals with the behavior of  unforced nonlinear system 
described by the differential equations  
 
                                                ( , ( )),x f t x t                                                    (1.6.1)  

0, , ( )n nt x x t     and (.,.) : nf  

   is continuous  

  
 
 The idea behind this theory is that if  we consider an “isolated” system in the sense 
that there are no external forces acting on it, as equation (1.6.1), where without loss 
of  generality, the origin is an equilibrium point. Then we suppose it is possible to 
define a function, so that it is zero at the origin and positive everywhere else. And 
describes, in some sense, the total energy of  the system. If  the system, originally at 
equilibrium, is perturbed to a new nonzero initial state, then there are several 
possibilities. If  the system dynamics are such that the energy of  the system is non- 
increasing with time, then depending on the energy function, this may be sufficient 
to conclude that the origin is stable. If  the dynamics are such that the energy reduces 
to zero with time, then it may be sufficient to decide that the equilibrium point is 
asymptotically stable. Finally, if  the dynamics are such that the energy increases 
beyond its initial values, then it is possible to conclude that the system is unstable. 
 
From this reasoning, Lyapunov was able to extract a general theory that is applicable 
to any differential equation. This theory requires one to search for a function that 
satisfies some prespecified properties. This function is a generalization of  the energy 
of  mechanical systems, and is now commonly known as Lyapunov function. 
 
Lyapunov theory will allow us to determine the stability of  particular equilibrium 
point without actually solving the differential equation (1.6.1). Moreover, it will 
provide us with qualitative results of  the stability questions, which may be used in 
designing stabilizing controllers for nonlinear systems. 
 
In this section, we shall give the basic Lyapunov's theorems that deal mainly with 
stability, asymptotic stability and exponential stability.  
 

Theorem 1.4-(Vidyasagar, 1992) the origin of  the system (1.6.1) is stable, if  there 
exist a continuously differential function ( 1C function) and locally positive definite 

(1pdf), : nV       and a constant 0r  such that 

 

                                  0( , ) 0,V t x t t    and 
rx B                                           (1.6.2) 

 
Where is x is evaluated along the trajectories of  (1.6.1) 
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Theorem 1.5-(Vidyasagar, 1992) the origin of  the system (1.6.1) is uniformly stable, 

if  there exist a 1C , decrescent, locally positive definite function : nV       and 

a constant 0r   such that  

                                   0( , ) 0,V t x t t    and 
rx B      (1.6.3)  

 
Theorem 1.6-(Vidyasagar, 1992) the origin of  the system (1.6.1) is asymptotically 

stable, if  there exist a scalar function : nV       such that 

(a) ( , )V t x  is positive definite 
(b) ( , )V t x  is negative definite 
In addition, if  is decrescent, then the origin is uniformly asymptotically stable. 
 
Theorem 1.7-(Vidyasagar, 1992) the origin of  the system (1.6.1) is globally uniformly 

asymptotically stable, if  there exist a 1C , scalar function : nV      such that 

(a) ( , )V t x  is positive definite 
(b) ( , )V t x  is decrescent and radially unbounded   
(c) ( , )V t x  is negative definite 
 
Theorem 1.8-(Vidyasagar, 1992) Suppose there exist constant , ,   and 0r  , 1p   

and a 1C function : nV       such that 

 
                                         || || ( , ) || ||p px V t x x                                             (1.6.4)       
        

                                     ( , ) || || 0p
rV t x x t x B                                           (1.6.5)     

 
Then the equilibrium point is exponentially stable   
 
 
Theorem 1.9-(Vidyasagar, 1992) the origin of  the system (1.6.1) is globally uniformly 
exponentially stable, if  there exist constant , ,   and 0r  , 1p   and a 1C function 

: nV       such that 

 
                                         || || ( , ) || ||p px V t x x                                             (1.6.6)   
            

                                     ( , ) || || 0p
rV t x x t x R                                           (1.6.7)     

 
Remark 1.1 -the function is commonly known as Lyapunov function or a candidate 
if  it satisfies the hypothesis in theorem 1, i.e. V is 1C and locally 
positive definite, if  for a particular system (1.6.1) the condition imposed to ̇V  is also 
satisfied, then V is referred to as a Lyapunov function. 
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Remark 1.2 -from the above theorems, one is able to draw conclusion about the 
stability status of  the equilibrium without solving the system equations. 
Moreover, the Lyapunov function V has an intuitive appeal as the total energy of  
the system. On the other hand, they represent only sufficient conditions for the 
various forms of  stability. Thus if  a particular Lyapunov function candidate V  fails 
to satisfy the hypothesis on  V  , then no conclusion can be made, and one has to 
find another Lyapunov function candidate. 
 
 
Remark 1.3 -the above theorems may be used to design controller that will stabilize 
a nonlinear system such as a Turret manipulator. In fact, if  one select a Lyapunov 
function candidate ( , )V t x , then finding its total derivative ̇ ( , )V t x  will exhibit an 
explicit dependence on the control signal. By choosing the control signal to make
( , )V t x negative definite, stability of  the closed loop system is guaranteed. 

Unfortunately, in some cases ̇ ( , )V t x  may be shown to be negative, but not necessarily 
negative definite. In this case a useful theorem, in case the open loop system is 
autonomous, may be used to guarantee the global stability results as stated in the 
following theorem. 
              

Theorem 1.10-(LaSalle’s theorem)-(Lewis et al.,1993) given the autonomous 
system 
                                                             ( ),x f t                                                (1.6.8) 
 
With and let the origin be an equilibrium point. Suppose that a Lyapunov function
( )V x , has been found such that ( ) 0V x  and ( ) 0, nV x x      , then the origin is 

asymptotically stable if  and only if  ( ) 0V x   only at 0x  . 
A variant and a more general theorem is given in (Vidyasagar, 1992) and is stated as 
follows. 
 
Theorem 1.11-(Vidyasagar, 1992) given the autonomous system(1.6.8). Suppose that 
there exists a positive definite, radially bounded Lyapunov function such that 
 
                                                   ( ) 0, nV x x                                               (1.6.9) 
 
Define the set  : ( ) 0nS x V x   and suppose that the only trajectories contained 

in S  are trivial trajectories. Then, the equilibrium point is globally asymptotically 
stable. 
In case of  non-autonomous systems, a useful lemma that leads to results similar to 
those of  LaSalle’s theorem can be used. 
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Lemma 1.2 (Barballat’s Lemma)- (Lewis et al.,1993) let ( )f t be a differentiable 
function of  t , 

First version: if  ( )
( )

df t
f t

dt
 is uniformly continuous and lim ( )t f t    then 

lim ( )t f t    

Second version: if  ( ) 0f t  , ( )f t  bounded, then lim ( ) 0t f t   

For linear system, we consider the following stability theorem. 
 
 
Theorem 1.12- (Lewis et al.,1993) consider the linear autonomous system 
 
                                          ( )x Ax t                                                              (1.6.10) 
 
Given a matrix n nA  , the following three statements are equivalent; 
1) A  is a Hurwitz matrix 
2) There exist some positive definite matrix n nQ   such that the Lyapunov matrix 
equation 
                                           TA P P A Q                                                       (1.6.11) 
 
Has a unique positive solution n nP   
3) For every positive definite matrix n nQ   ,(1.6.11) has a unique solution P ,and 
this solution is positive definite. 
 

1.7 Additional Stability Results  
 
  In this section, we present additional stability definitions and theorems that are 
useful in the design of  particular types of  controllers. We give first other results on 
local and global exponential stability found in the literature that can be used directly 
and easily. These are presented hereafter. 
 
Lemma 1.3-(Dawsen et al., 1992) given a continuous system 
 
                                             ( , ( )),x f t x t                                                       (1.7.1) 
 
Let ( , )V t x  be the associated Lyapunov function with the following properties 
   

                                                2 2
1 2|| || ( , ) || ||x V t x x    

                                            2
3( , ) || || exp( )V t x x t       
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For ( , ) nx t    all where 
1 2 3, , ,    and  are positive scalar constants. Then, the 

state ( )x t is globally exponentially stable in the sense that  
 

1

2
22

0

1 1

1

2
22

0

1 1

|| ( ) || exp( ) exp( ) ,

|| ( ) ||

|| ( ) || exp( ) (exp( ) exp( )) ,
( )

x t t t if

x t

x t t t t if

 
   

 

 
    

   


       

 
 
       

 

 

Where 3

1





  

 
 
Theorem 1.13-(Berghuis, 1993a) let be a Lyapunov function of  a given continuous 
time system satisfying 

                                                2 2
1 2|| || ( , ) || ||x V t x x                                      (1.7.2) 

 

                                               2 3
1 2( , ) || || || ||V t x x x     for all 1

2

|| ||x



           (1.7.3) 

 

Then, if                                     3 1
0

1 2

|| ( ) ||x t
 

 
                                               (1.7.4) 

 

Then                                     2 2
0|| ( ) || exp( ) || ( ) ||x t m t x t                                   (1.7.5) 

 
For some , 0m   that is ( )x t converges exponentially to zero. 
 
Definition 1.15-(Lewis et al., 1993) 

ex is bounded at 
0t if  states starting close to

ex

will never get too far. In other words 
ex is bounded at 

0t  if  for each 0  such that 

 
                                                  || ( ) ||ex t x                                                    (1.7.6) 

 
There exist a positive 

0( , )r t such that for all 
0t t  

 
                                              

0|| ( ) || ( , )ex t x r t                                                (1.7.7) 

 

ex  is bounded if  it is bounded for any 
0t .

ex is uniformly bounded over  ,t  if  

0( , )r t can be made independent of  
0t . 
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Definition 1.16-(Lewis et al., 1993) 
ex  is uniformly ultimately bounded if  for any

 , 0  , there exist a finite ( , )T   such that whenever || ( ) ||ex t x    

 
                                           

0|| ( ) || ( , )ex t x r t                                                   (1.7.8)     

 
For all ( , )t T   . If  ( , )T    can be made independent of , then 

ex is said to be 

globally uniformly bounded. 
 
In the sequel, we present few results discussed in (Dawson et al., 1990), (Spong and 
Vidyasagar, 1989) and (Xu, 1995), and will be used in the design of  robust controllers. 
The following theorems present uniform boundedness and uniform ultimate 
boundedness results based on the properties of  a Lyapunov function 
(Dawson et al., 1990). 
 
Theorem 1.14-(Dawson et al., 1990) if  (.)V is a Lyapounov function for a given 
continuous time system with the properties  
 

                                   2 2
1 2|| ( ) || ( , ) || ( ) ||x t V t x x t                                            (1.7.9) 

 
                                   ( , ) 0V t x    if     

1 2|| ( ) ||x t                                          (1.7.10) 

 

Where                                        

1

2
2

2 1

1


 



 
  
 

                                                 (1.7.11) 

With 
1 2,   some positive scalars, then  

                                  

1

2
2

1 0 1

1

|| ( ) || ( ), ,x t t t t


 


 
    
 

                                     (1.7.12) 

 
Where is some arbitrary small positive constant. 
 
Theorem1.15-(Dawsen et al., 1990) let (.)V be a Lyapunov function for a given 
continuous time system with the properties 
 
                                        

1 2(|| ( ) ||) ( , ) (|| ( ) ||)x t V t x x t                                   (1.7.13) 

 

 3 3( , ) (|| ( ) ||) ( )V t x x t                                     (1.7.14) 

 
Where is a positive constant, 

1(.) and 
2 ( .) are continuous strictly increasing 

function,
3  is a continuous non-decreasing function. If  ( , ) 0V t x  for all || ( ) ||x t  , 

then the given system has uniform ultimate boundedness property; that is a solution 
to the system with initial states, then given the quantity  
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 We have                                     
1 2( )( )sd                                                 (1.7.15) 

For every  0 ,t t T   , where                             | | ( ) | | sx t d                             (1.7.16) 

 

                           2 0 1

3 3

0, || ( ) ||

(|| ( ) ||) ( )
, || ( ) ||

( ) ( )

s

s
s

s

if x t

T x t
if x t



  


   




 
 

                                   (1.7.17) 

 

And                                 1
2 1( )( )s sd      (1.7.18) 

In many other results, equation (1.7.14) can be found as  
 
                     ( , ) ( || ( ) ||) 0V t x g x t                                                      1.7.19) 
 
Where (|| ( ) ||)g x t is a second order polynomial of  its arguments (Berghuis, 1993a). 
 
  Finally, an important aspect that should be discussed the passivity theorem of  
nonlinear systems, instead of  using the unforced system; consider the nonlinear 
input-output system 
 

 
              

Figure 1.1 Input-Output description of  nonlinear system 
 
The stability analysis of  such a system is studied based on input-output 
measurements only. 
 
Definition 1.17-(Berghuis, 1993a) Assume that system of  Fig.1.1 has the same 
number of  inputs and outputs. Then the system is said to be passive if 
 

                                            
0

( ) ( )
T

Ty t u t d                                                   (1.7.20) 

 
For all 0T  and . It is strictly passive if  there exist a 0  and  , such that  
 

                               
0 0

( ) ( ) ( ) ( )
T T

T Ty t u t d u t u t d                                            (1.7.21) 

 
For all 0T    
A passivity system is in effect one that does not create energy. If  the system under 
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consideration is linear and time invariant, then the passivity is equivalent to positivity 
(Lewis et al., 1993). 
 In the following theorem, we give a simplified from of  the passivity theorem, which 
finds its application to robot manipulators control, as when we deal with feedback 
systems described by 
  

 
 

Figure 1.2 Feedback Interconnection of  two systems 
 
Theorem 1.16-(Berghuis, 1993a) Consider the feedback system of  Fig.1.2, where 
 
              

1 1s H v  and   
2v H s                                             (1.7.22) 

 
Where 

1H and 
2H map 

1eL into
2eL , and suppose there exist solutions sand v in 

2eL . 

Assume that  
                                                              

                                
0

, ( ) ( )
T

Ts v s v d s                                                  (1.7.23) 

                               2
2

0

, ( ) ( ) || ||
T

T
Tv s v s d s                                             (1.7.24) 

 0, 0   . Then, 
2s L . 

 
The passivity theorem gives conditions under which the

2L  stability of  the 

interconnected closed loop system is guaranteed. In other words, the passivity 
theorem guarantees that a certain system does not create energy by making sure that 
its interconnecting parts are either dissipating or not creating energy. This special 
case of  the passivity to divide a nonlinear closed loop system into two blocks. If  the 
feedforward block defines a passive mapping from input to output (according to 
definition 1.17), then the challenge is to make the feedback system strictly passive the 
output signal is guaranteed to belong to

2L . 
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1.8 Conclusion 
   
    In this chapter, we have reviewed some results from control theory that are useful 
in robot manipulators control design problem. The interest has been to include 
enough material to serve as a background to reader in order to follow the analysis 
performed in this thesis. We have given the basic properties of  norms, matrices, and 
functions and presented the Lyapunov stability concept, which is the basic stability 
tool used in this work. Some additional stability results have also been given. These 
results will be used in showing the closed loop stability of  robots when robust 
controller s are considered. 
 
  To complete this part of  preliminaries, in the following chapter, we introduce the 
dynamical description of  Turret gun  manipulators, and derive the dynamical model 
that will be used in the subsequent chapte
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                                                                            Chapter 2 
 

  

                     

                                     Turret Dynamics 
 
 
 
 
 
   
 
 
 
  In this chapter, we introduce the general model that can be used to describe the 
mothion of Turret gun systems. First, we present a description of the geometric 
structure of simple open loop Turret Gun. Then, the dynamical model of Turret 
Gun manipulators is described. This model has a number of structural properties 
that are useful for control system design. These properties are presented next. 
Finally, the patricular Turret Gun system in the study of our work is described. 
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2.1. Introduction  
    
    For Turret design purposes, it is necessary to have a mathematical model that 
reveals the dynamic behavior of  the manipulator. This mathematical model is derived 
using the Lagrangian mechanics (W. Khalil 1990, Lewis et al. 1993). 
 
  In this section, we analyze the dynamical behavior of  Turret Guns. The dynamic 
behavior is described in terms of  the time rate of  change of  the arm configuration 
in relation to the joint torque exerted by the actuators. This relationship can be 
expressed by a set of  differential equations, called equations of  motion, that govern 
the dynamic response of  the arm linkage to input joint torque. 
 
  Two methods can be used in order to obtain the equations of  motion (W. Khalil); 
the Newton-Euler formulation, and the Lagrangian formulation. The Newton-Euler 
formulation is derived by the direct interpolation of  Newton's second law of  motion, 
which describes dynamic system in terms of  forces and momentum as well as torque 
and angular momentum. In the Lagrange formulation, on the other hand, the 
system's dynamical behavior is described in term of  work and energy using 
generalized coordinates. All the workless forces and constraint forces 
are automatically eliminated in this method. Further, the derivation is simpler and 
more systematic than in the Newton-Euler formulation. The Lagrangian formulation 
is used in this chapter to derive the dynamical model of  Turret Gun manipulators. 
 
2.2. Lagrangian Formulation    
 
 The Lagrangian formulation describes the behavior of  a dynamic system in term of  
work and energy stored in the system using generalized coordinates. All the 
constraint forces are automatically eliminated in the formulation of  this approach. 
The closed form dynamic equations can be derived systematically in any coordinate 
system. 
 

Let 1,..., nq q be generalized coordinates that completely locate the n-Degree of  

freedom (DOF) manipulator arm, and let ( , )K q q and ( )U q be the total kinetic energy 
and potential energy stored in the dynamic system respectively. The  
Lagrangian ( , )L q q is defined as 
 
                                              ( , ) ( , ) ( )L q q K q q U q                                           (2.2.1) 
 

Note that, since the kinetic and potential energies are function of iq and , 1,..,iq i n  

so is the Lagrangianc. 
 
 
 

                                19



 Chapter II : Turret Dynamics 

 

 

Using the Lagrangian (2.2.1), equations of  motion of  the manipulator are given by: 
 

                                            ( ) ( )
d

L L
dt q q


  

  
  

                                        (2.2.2) 

 
Where is the generalized force corresponding to the generalized coordinates q. 
 
 To obtain the general arm dynamical equation, we determine the arm kinetic and 
potential energies, the Lagrangian, and then substitute into the 
Lagrange's equation (2.2.2) to obtain the final result. 
 
2.2.1 Arm kinetic Energy 
  Given a point on link i  with coordinates of  i r ,with respect to frame i  attached to 
the link. The base coordinate of  this point are: 
 

                                                    0 i
ir T r                                                        (2.2.3) 

 

Where  0 0 1 1
1 2...

j
i iT T T T  is a 4 4 homogenous transformation matrix. 

 

And                        

1 1
1 2

1

... for

for

( ) for

i i j
i i j

i
j

i
j

T T T i j

T I i j

T i j

 
 



   


     
    

 

 
 

Note that 0
iT  is a function of  the joint variables   1 2, ,..., nq q q , consequently, the 

velocity of  the point in the base coordinates is: 
 

                          0 0

1 1

i i
i i

i j i j
j jj j

v T q r T r q
q q 

       
                    
                                  (2.2.4) 

 
Remark 2.1 
 

1. Since 0 0i

j

T
q

 
   

 for j i ;  we may replace the upper summation limit by n-

the number of  links. 
 

0i

j

r
q

 
    

Because i r is constant with respect to frame i attached to the link. 
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The kinetic energy of  an infinitesimal mass dm at i r  that has velocity vector of  
T

x y zv v v v    
is defined as 

 

                2 2 21 1
( ) ( )

2 2
T

i x y zdK v v v dm trace vv dm                                           (2.2.5.a) 

 
Using equation (2.2.4),(2.2.5.a) can be written as 
 

0 0

1 1

1
( )

2

Tn n
i i Ti i

i j k
j k j k

T T
dK trace r r dm q q

q q 

     
           

                                               (2.2.5.b) 

Thus, the total kinetic energy for link I is given by  
 
                               

i iL ink i
K d K


                                                                      (2.2.6) 

 

 Substituting for idK from (2.2.5.b), we can move the integral inside summations. 

Then defining the 4 4 pseudo-inertia matrix for link i as 
 
                               i i T

i Link i
I r r dm


                                                               (2.2.7.a) 

 
Which is equal to 

                              

2

2

2
i

x dm yxdm zxdm xdm

ydm y dm zydm ydm
I

xzdm yzdm z dm zdm

xdm ydm zdm dm

 
 
 
 
 
 
 
 

   

   

   

   

                               (2.2.7.b) 

 

With [ 1]i Tr x y z    , and the integrals are taken over the volume of  link i . This is a 
constant matrix that is evaluated once for each link. It depends on the geometry and 
mass distribution link i . 
 

After defining iI , we may write the kinetic energy of  link i  as  

 

                           
0 0

1 1

1

2

Tn n
i i

i i j k
k j j k

T T
K trace I q q

q q 

     
           

                                    (2.2.8) 
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The total arm kinetic energy is then written as 
 

                      
0 0

1 1 1

1

2

Tn n n n
i i

i i j k
i n i k j j k

T T
K K trace I q q

q q   

     
            
                          (2.2.9.a) 

 
 Since the trace of  a sum of  matrices is the sum of  individual traces, we may 
interchange the summation and the trace operator to obtain 
 

                                    
1 1

1
( )

2

n n

jk j k
j k

K m q q q
 

                                                   (2.2.9.b) 

Or                                1
( )

2
TK q M q q                                                            (2.2.9.c) 

 
Where the arm inertia matrix ( )M q has the elements defined as  

                                       
0 0

1

( )
Tn

i i
jk i

i j k

T T
m q trace I

q q

    
        
                               (2.2.9.d) 

 
Remark 2.2: 

Since the kinetic energy is scalar quantity then 
1 1

( ) ( )
2 2

T

T T TK q M q q K q M q q
 

    
 

     

                          ( ) ( ) ( ) ( )T T
jk kjK K M q M q or m q m q       

 

2.2.2 Arm Potential Energy  

If  link i has a mass im and a center of  gravity i r expressed in the coordinates of  its 

frame i , the potential energy of  the link is given by: 

                                            0 0T i
i i iU m g T r                                                 (2.2.10) 

Letting    

                                           0 0i
i iT r P  (2.2.11) 

Representing the coordinates of  the center of  gravity in the coordinates, we have the 
total potential energy  

                                             0 0

1 1

n n
T

i i i
i i

U U m g P
 

     (2.2.12) 

2.2.3 Equation of  Motion 
 From equation (2.2.1) and (2.2.2), and using the fact that the potential energy does 
not depend on the joint velocity of  the manipulator arm, we have  

                             ( , ) ( ) ( , )
i

i i i

d K q q U q K q q

dt q q q


   
   

   

 

  
                                   (2.2.13) 

    

    
1

( , ) 1 ( ( ) ) 1 ( , )
( ( ) ( ) ) ( ) ( )

2 2

T n
T

ij j
ji

K q q q M q q K q q
M q q M q q M q q m q q

q q q 

   
      

   


   
   

  
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1 1 1

( )( , )
( )

( )

n n n
ij

ij j k j
j j ki k

ij

m qd K q q
m q q q q

dt q q

dm q

dt

  

   
    

    
 


  




  (2.2.14) 

                  
1 1 1 1 1

( ) ( )1 ( )
( )

2

( )

n n n n n
ij ij

i ij j k j j k
j j k j kk i i

ij

m q m q U q
m q q q q q q

q q q

dm q

dt


    

   
    

   
      



   (2.2.15)  

 
Using the symmetry property of  the matrix ( )M q we have: 
 

  ( ) ( ) ( ) ( )( )1 1

2 2

ij kj ij kjik
k j k j k j k j k j

k i k j i

m q m q m q m qm q
q q q q q q q q q q

q q q q q

     
    

      
           

                                           ( ) ( )( )1

2

ij kjik
k j

k j i

m q m qm q
q q

q q q

   
   

    
                       (2.2.16) 

The use of  Christoffel symbols, allows to write 
 

  , , ,
1

( , )
n

i j i j k k
k

C q q C q


         where     
, ,

( ) ( )( )1

2

ij kjik
i j k

k j i

m q m qm q
C

q q q

   
   

    

        (2.2.17) 

Substitute it into the equation of  motion we get: 
 

                                 , ,
1 1 1

( )
( )

n n n

i ij j i j k k j
j j k i

U q
m q q C q q

q


  

 
     
                            (2.2.18) 

 

Let now ( )G q be the vector whose thi coordinates are given by 
( )

i

U q

q




. We can write 

equation (2.2.18) in a compact form: 
                                    ( ) ( , ) ( )M q q C q q q G q                                              (2.2.19)        

  Where ( , ) nC q q   is the Coriolis/Centripetal vector and ( ) nG q  represent the 
gravity vector. Equation(2.2.19) is the final form of  the robot dynamical equation. 
 The dynamical model of  manipulator can be obtained by another method as follows; 
we have the arm Lagrangian is: 

                                    1
( , ) ( , ) ( ) ( ) ( )

2
TL q q K q q U q q M q q U q                          (2.2.20) 

Then, we have 

            
( , )

( ) ( ) ( ) ( ) ( )
K q q d

L M q q L M q q M q q
q q dt q

   
     

   

   
  

                     (2.2.21) 

And  

                             
1 ( )

( ) ( ( ) )
2

T U q
L q M q q

q q q

  
 

  
                                           (2.2.22) 
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Therefore, replacing (2.2.21) and (2.2.22) into (2.2.2) the arm dynamical equation will 
be  

            
1 ( )

( ) ( ) ( ) ( ) ( ( ) )
2

T U q
L L M q q M q q q M q q

q q q q


   
     
   

   


               (2.2.23) 

 
Where  is the generalized applied torque vector, then 
 

                         
1

( ) ( ) ( ( ) ) ( )
2

TM q q M q q q M q q G q
q


 

    
 

       (2.2.24) 

 
Finally, considering the equality of  the Coriolis/Centripetal term 

                         
1

( , ) ( ) ( ( ) )
2

TC q q q M q q q M q q
q

 
  

 

         (2.2.25) 

 
 
    Let us now introduce the structural properties of  the Turret Dynamics  
 
2.3. Structural properties of  the Turret Dynamics   
  
  In this section, we investigate the detailed structure and the properties of  the 
different terms found in the Turret dynamical equation given by equation (2.2.19) of  
an n-Degree Of  Freedom (DOF) Turret Gun. These properties are of  great utility 
in the design of  controllers and observers presented in this work. 
 
In reality, a Turret Gun is always affected by friction and disturbances. Therefore, we 
shall generalize the arm model given by (2.2.19) to the form  
 

                                         ( ) ( , ) ( ) ( ) dM q q C q q q G q F q                                (2.3.1) 

 
Where the additional friction term is given as  
 

                                            ( ) ( )v dF q Fq F q                                                    (2.3.2) 

 

With vF the coefficient matrix of  viscous friction and dF a dynamical friction term. 

Also, a disturbance term, d , is added. 

 
2.3.1 Properties of  the Inertia Matrix 
 
 The n n  inertia matrix ( )M q ,of  the manipulator is symmetric and positive definite. 
In addition, ( )M q is bounded above and bounded below as follow  

                                                        1 2( )n nI M q I                                       (2.3.3) 
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With 1 and 2 being positive scalars that may be computed for any arm, and nI is 

the n n  identity matrix. 
Likewise, the inverse of  the inertia matrix is bounded, since  

                                                  1

2 1

1 1
( )n nI M q I

 
                                      (2.3.4) 

  If  the joints are revolute, the bounds 1 and 2 can be scalar functions of  the joint 

variableq. 
The boundedness property of  the inertia matrix may also be expressed as 
 

                                          || ( ) ||m MM M q M                                                   (2.3.5) 

Where any induced norm can be used to define the positive scalars mM and MM . 

 
 
2.3.2 Properties of  the Coriolis/Centripetal Term 
 
 The Coriolis/Centripetal matrix is characterized by the following three properties. 
  
 

Property 01: the matrix ( , ) ( ) 2 ( , )N q q M q C q q    is skew-symmetric, so that  
 

                                        ( , ) 0 for allT nx N q q x x                                 (2.3.6) 
 

                       , , , ,
1 1 1

( )
( ) 2 ( , ) 2 ( , )

n n n
ij

ij ij k j i k k k j i k
k k kk

m q
N m q C q q q q C q q q

q  


   


               (2.3.7) 

 
 Substituting the expression of  , , ( , )k j i kC q q q   given in equation (2.2.17), we get  

 

                            
1

( ) ( ) ( )( )n
ij ij kjik

ij k
k k k j i

m q m q m qm q
N q

q q q q

    
    

     
                     (2.3.8.a) 

 

                            
1

( )( )n
kjik

ij k
k j i

m qm q
N q

q q

  
   

   
                                             (2.3.8.b) 

 
Because it is symmetric, we can also write 
 

   
1 1

( ) ( )( ) ( )n n
kj kjik ik

ij k k ij
k kj i j i

m q m qm q m q
N q q N

q q q q 

        
          

         
                     (2.3.8.c) 

 
We can interpret this property using the statement of  conservation of  energy. Note 
that the Turret Dynamics can be written in terms of  the skew-symmetric matrix as 
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                                         1( ) ( ) ( , ) ( )

2
M q q M q N q q q G q                         (2.3.9) 

 
Where friction and disturbance are ignored. Now, with K being the kinetic erergy, 
we have  

                                     1 1
( ( ) ) ( ) ( )

2 2
T T TK d

q M q q q M q q q M q q
dt dt


          (2.3.10) 

 
Hence, equation (2.3.9) yields 
 

                                     1
( , ) ( ( ))

2
T TK q N q q q q G q                                          (2.3.11) 

 

Or                                 ( ( ))TK q G q     (2.3.12)   
 
This is a statement of  the conservation of  the conservation of  energy, with the right 
hand side representing the power input from the net external forces. The skew-

symmetry of  ( , ) ( ) 2 ( , )N q q M q C q q   is nothing than a statement that fictitious 
forces ( , )N q q do no work. 
 
 
Property 02: The matrix ( , )C q q verifies the following relation 
 

                                    ( , ) ( , ) for all , nC q x y C q y x x y                           (2.3.13) 
 
Actually, the thi coordinate of  the vector ( , )C q x y  is 
 

                         
1 1

( , ) ( ) ( ) ( , )
n n

ij j ijk k j ijk k j ij j
k k

C q x y C q x y C q y x C q y x
 

                    (2.3.14)  

 
Since the Christoffel symbols are symmetric with respect to the two last indices. 
 
 
Property 03: The norm of  ( , )C q q verifies the relation  
 

                                       || ( , ) || || || for all n
MC q x C x x                          (2.3.15) 

 
Actually, from equation (2.2.17) we can write 
 

                
,

1 1

( ) ( )( )1
( , ) ( )

2

n n
ij kjik

i j k ijk k
k kk j i

m q m qm q
C q x x C q x

q q q 

   
    

    
               (2.3.16) 
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In the case of  an n-degree of  freedom manipulator with revolute links, we have 
 

                          
, ,

( ) ( )( )
max sup

n

ij kjik

i j k q k j i

m q m qm q

q q q




   
    

    

                                (2.317) 

 
Which yields  

                                            || ( , ) ||
2

ij

n
C q x                                                    (2.3.18) 

In prismatic joints,  is a scalar function ofq. 
 
 
2.3.3 Properties of  the Gravity, Friction and Disturbance Terms 
 
2.3.3.1 Properties of  the Gravity Term 
 
For revolute Turret Gun, the joint variable appears only in ( )G q through sine or 
cosine function. Consequently, we can have the following bound 
 

                                               || ( ) || MG q G                                                     (2.3.19) 

 
Where || . ||  is any appropriate vector norm and is a scalar function. 
 
 
2.3.3.2 Properties of  the Friction Term  
 
 The friction term described by equation (2.3.2) is composed of  the viscous friction 
and the dynamic friction. Assuming that the friction on each joint depends, uniquely, 
on the considered joint velocity. We have then for 1, ..., .i n  
 

                                         ( )v iF diag v                                                           (2.3.20) 

                   1 1( ) [ sgn( ) ... sgn( ) ... sgn( )]d i i n nF q k q k q k q                                           (2.3.21) 

 

With ik  being known constant coefficient, and the sign function defined by 

                                       

1 0

sgn( ) 1 0

0 0

if x

x if x

if x

   


    
   

                                             (2.3.22) 

A bound on the friction terms may be assumed of  the form  
 

                             1. 2.|| ( ) || || ||v d M MF q F q F F q                                                 (2.3.23) 

With 1.MF and 2.MF are known for a specific arm and || . || a suitable norm. 
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2.3.3.3 Properties of  the Disturbance Term 
 

  The Turret Gun dynamical equation (2.3.1) has a disturbance error d , witch could 

represent inaccurately modeled dynamics, external perturbations and so on. 
We assume that 

                                                          || ||d MT                                               (2.3.24) 

Where MT is a scalar constant that may be computed for a given Turret and || . || is any 

suitable norm. 
 
 
2.3.4 Linearity in the Parameters 
 
The Turret Gun dynamical equation (2.2.19) enjoys an additional property that is 
often used in the design of  adaptive controllers (Slotine and Li,1987; 
Craig,1988; Ortega and Spong,1988; Spong and Ortega, 1990; Lewis et al,1993). 
Namely, equation (2.2.19) is linear in the parameters, a property first exploited by 
Craig (1988) in adaptive control. This is important, since some or the entire robot 
dynamical equation may be unknown, thus the dynamics are linear in the unknown 
terms. 
This property is expressed as follows 
                               
                                    ( ) ( , ) ( ) ( , , )M q q C q q q G q Y q q q                                    (2.3.25) 
 
With  is the vector containing all the parameters of  the manipulator, and ( , , )Y q q q 

is a matrix of  robot functions depending on the joint variables (position, velocity, 
and acceleration). This matrix may be computed for any robot manipulator or in our 
case any robotic Turret and so is known. 
 
2.3.5 State Space Representation  
 
  From the Turret Dynamics given by (2.2.19), we can give a state space formulation 
obtained by defining the state vector nx    as 
 

                                                        ( )T T Tx q q                                             (2.3.26) 
 
For simplicity, we neglect the disturbances and the friction terms and note that 
according to (2.2.19), we can write 
 

                                 1 1( ) ( , ) ( ) ( )
d

q M q C q q q G q M q
dt

                               (2.3.27) 

 
Now, we can directly write the state representation  
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 1 1

0

( ) ( , ) ( ) ( )

q
x

M q C q q q G q M q


 

   
         




 
                         (2.3.28) 

 
This last equation may be rewritten as 
 

                                          
00

0 0
n

n

I
x x u

I

  
    
   

                                             (2.3.29)  

 
With the nonlinear control input uis defined as 
                                         1( ) ( , ) ( )u M q C q q q G q                                    (2.3.30) 

 
2.3.6 Passivity Property  
 
 The class of  Turret manipulators systems described by (2.2.19), is passive from  to 
q  that is, there exist a constant   such that  
                            

                                             
0

, ( ) ( )
T

Tq q d                                        (2.3.31) 

   This property cannot be directly shown from the Turret equation as given by 
(2.2.19). For this, another way to derive the dynamics of  rigid robot systems in 
general, is the Hamiltonian formalism (Berghuis, 1993a, Goldstein, 1980). 
We introduce the Hamiltonian matrix c given by  
                                                            

                                                      ( , ) ( , )TH q p p q L q q                                (2.3.32)   
 
Where, as before ( , )L q q is the Lagrangian, and p  is the 1n  vector of  generalized 
momenta, defined as 

                                                           
( , )

( )
L q q

p M q q
q


 







                           (2.3.33) 

Now, from the definition of  the momenta we can deduce that the Hamiltonian is 
just the summation of  kinetic and potential energies as  
 

                                         ( , ) ( , ) ( , ) ( )TH q p p q L q q K q q U q                         (2.3.34)    
 
To this point, by taking the time derivate of  the Hamiltonian ( , )H q p  in (2.3.34) 
 

                        
( , ) 1 ( )

( ) ( )
2

T T TdH q p U q
q M q q q M q q q

dt q


  


                                (2.3.35)     

 

                                    
1 ( )

( ( , ) ( )) ( )
2

T T T U q
q C q q q G q q M q q q

q



    


               (2.3.36)     
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Where we have substituted for ( )M q q  using the equation of  motion. Collecting 

terms and using the fact that 
( )

( )
U q

G q
q





 yields  

                                          1
( , ) ( ) 2 ( , )

2
T T TH q p q q M q C q q q q                     (2.3.37) 

 
The latter equality following from the skew-symmetry property. Integrating both 
sides of  (2.3.36) with respect to time gives  

                                          
0

( ) ( ) ( ) (0) (0)
T

Tq d H T H H                             (2.3.38) 

Since the total energy is non-negative, and the passivity property therefore follows 
with (0)H  . 
 
Remark 
 
This passivity property merely states that the Turret cannot create energy. From a 
control point of  view, a passive system cannot go unstable. Then, if  the controller is 
designed in such a way to preserve this property, the asymptotic stability of  the closed 
loop system is guaranteed. A class of  controllers that is based on this property is 
detailed in next chapter. 
 
2.4. Dynamic Model of  Massive Gun  
 
 
Consider a two-load tracking system (Fig. 2.1) which consists of  a rotating base 
(turret) with a tilting arm (barrel). This tracking system has two loads: the turret load 
and the barrel load, with each being driven by motor through a gear train which has 
backlash, flexibility and damping. 

 
Figure 2.1 Two-load Tracking System Studied  

 
Let 1m be the mass,cbe the radius, and 1 be the angular position, of  the turret load, 
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2m be the mass, 2R be the length, and 2 be the angular position, of  the barrel load, as 

shown in Fig. 2.1. (BEKHITI B. (2019) “Dynamic Modeling & Control of  Large 
Space Structures: Part1 Missiles & Space-Crafts”) 
 
Remark: Gun’s barrel is a tube which the bullet is projected from, in other word, it 
is a caved arm that contains gun’s muzzle. Gun’s turret is the basis on which the barrel 
stands. 
 
Hypothesis: 
 
-We have assumed that the turret base is a uniform (density and shape) thin disk of  
mass 1m rotates around axis “O”. 

-We have assumed that a barrel is a uniform (density and shape) thin rod of  mass 2m

concentrated at the center “C” of  the rod (i.e. 2 2L R ). The perpendicular distance 

from turret’s axis of  rotation and “C” is given by  
 

                                                1 2 2

1
cos

2
d R R 

 
   
 

                                           (2.4.1) 

 
-The moment of  inertia of  the rod about an axis that passes through its end is: 
 

                                                   
2

2
2 2

1
cos

3 2

R
I m 

 
  

 
                                       (2.4.2) 

 
 
  
From classical mechanics it is very well-known that the moment of  inertia of  any 
object about an axis through its center of  mass is the minimum moment of  inertia 
for an axis in that direction in space. The moment of  inertia about any axis parallel 
to that axis through the center of  mass is given by:  
 
                                                      2

parallel cmI I md                                          (2.4.3) 

 
The moment of  inertia of  a composite object can be obtained by superposition of  
the moments of  its constituent parts. The parallel axis theorem is an important part 
of  this process. For example, in our case: 
 
                                                                                        

   

   

2 2

2 2 2
1 1 2 2 2 1 2

2 2 2 2
1 1 2 2 2 2 1 2 1 2 2

1 1
cos cos

2 3 2 2

1 1
cos cos

2 3

Turret Barrel

R R
I I I m R m m R

m R m R m R m R R

 

 

     
           

     

     

                    (2.4.4) 
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The kinetic energy of  an object has two components: one that is due to its linear 
motion and the second is due to its rotational motion. If  the linear velocity of  the 
center of  mass of  a link is ci , and if  the angular velocity of  the link is i , the kinetic 

energy, iK of  the object is: 

 

                                   
1

( ) &
2

T T
i i ci ci i ci i iK m I K K                                  (2.4.5) 

 
Where ciI  is the inertia tensor of  an object i  computed with respect to the object’s 

center of  mass, iC . In our case study only a rotation motion is included therefore:  

 

                                                   
1

2
T

i i ci iK I                                                  (2.4.6) 

 

iK K   

      2 2 2 2 2 2 2
1 1 2 2 2 2 1 2 1 2 2 1 2 2 2

1 1 1 1
cos cos

2 2 3 3
m R m R m R m R R m R   

    
          

    

          (2.4.7) 

 
The gravity forces are the gradient of  the potential energy of  the mechanism. The 
potential energy of  link i  increases with the elevation of  its center of  mass iC . This 

energy is proportional to the mass, the gravity constant, and to the height of  the 
center of  mass. 
 
                                                   0 0i iU m gh U                                                 (2.4.8) 

 
Where 0U represents the potential energy at some reference level. The height is given 

as the projection of  the position vector cir


 along the gravity direction,  

 
                                                   T

i i ciU m g r 
                                                   (2.4.9)  

 
In our case, we have: 
 

                                      2 2 2

1
sin

2
iU U m gR                                             (2.4.10) 

 
Lagrange’s  equation involve a scalar quantity L , the Lagrangian, which represents 
the difference between the two scalars corresponding to the kinetic energy K and the 
potential U of  the mechanism, see (2.2.1). 
 
For an n-DOF mechanism, the Lagrange formulation provides the n  equations of  
motion in the form (2.2.2). 
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Following the Lagrangian method, we can derive the system dynamic equations from 
(2.3.25) : 
 
                                                ,M C G                                          (2.4.11) 

 
Or  

                                   
     

0 0 0

,

I

GM C



   

       
                  



 
                     (2.4.12) 

 
Where  is the vector of  the external torques,  M  is the matrix of  inertia,  ,C  

is coriolis and centrifugal force, and  G   is gravity loading force  

 
With  
 

   1 2 1 2, , ,
T T

       , 
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  
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,   11 12
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 
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 
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   2 2 2

1
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2

T

G m gR 
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    
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cos cos

2 3
M m R m R m R m R R       , 
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22 2 2

1

3
M m R , 

21 12 0M M  , 

 11 2 1 2 2 2sinC m R R         ,  2
12 2 2 2 1

1
sin 2

3
C m R     , 

   2
21 2 1 2 2 2 2 2 1 22

1 1
sin sin 2 , 0.

2 6
C m R R m R C  

 
        

  

 
Electromechanical rotary actuators are designed to improve stabilization accuracy 
and slew rates for some relatively new turret applications. This series of  rotary 
actuators with high torque DC stepper motor (i.e. brushless DC motors) are designed 
to meet and exceed the demanding requirement of  many combat vehicle turret 
applications. The used DC motors equations are: 
 

                                             
2

1 2

i i i

s b
k V

s a s a

 
   

  
                                        (2.4.12) 

 
Where ( , 1, 2iV i  ) are voltages applied to the motor, and 1 2, , ,ik a a b  are motor 

constants. 
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The stepper will be able to hold the gun in place horizontally/vertically when the CG 
is not aligned directly with the rotational axis. In the next table, we introduce some 
of  private parameters: 
  
        Electromechanical actuators Specification   

 Mechanical   
Specifications  

Peak Torque 1stmotor 910     in-lbs (103 Nm) 
2ndmotor 227.5  in-lbs (25.75 Nm) 

Continuous Torque 1stmotor 300      in-lbs (34 Nm) 
2ndmotor 75       in-lbs (8.5 Nm) 

No Load Speed 390 rpm 
 

1 145m  Kg 

Rated Power 1stmotor 1.25  hp (932 W) 
2ndmotor 0.75 hp (232 W) 

2 25m  Kg 

Supply Voltage 24 VDC, 48 VDC, 270 VDC, or 650 VDC 
 

1 75R cm   

Weight 1stmotor 90       in-lbs (41 Kg) 
2ndmotor 22      in-lbs (10 Kg) 

2 2.3R cm   

                   
Table 2.1 Parameters of  the Motors 
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 Classical Control of  

 Turret Gun                                        
Manipulators 

 
     

  The purpose of this chapter is to describe different technique to classical control of rigid 
robot manipulators in general, to apply it to Turret Guns. Both regulation and trajectory 
tracking problems are considered. Before talking on the controller design we could start 
by the motion planning and trajectory generation, then for the control point of view we 
show first that PD-type controllers are useful in solving the regulation problem, wheras 
the tracking problem needs some sophisticated control algorithms. Simulation study is 
performed on 2 DOF Turret Gun. 
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3.1. Introduction 
 
       Over the last two decades, the control of  robot manipulators has taken the 
interest of  many researchers, who developed, through several survey works (Zodiac, 
1992; Spong et al., 1994) many different control law for such systems based on 
different approaches. 
 
      Traditionally, control design in industrial robot manipulators is understood as 
simple fact of  using a simple Proportional and Derivative (PD) regulator at the level 
of  each motor driving the manipulator joints. As simple PD controllers are generally 
good in stabilizing second order systems, the control of  n-link manipulator can be 
interpreted as the control of  n-independent chains of  double integrators, for which 
a PD controller can be designed. This known as the independent joint control (Lewis 
et al., 1993). This scheme totally ignores the system dynamics and attempts to control 
the manipulator by using the locally measured variables of  each joint. 
 
    Actually, the first experiments conducted with real robot were performed with 
simple PD compensators and have been, in general, satisfactory as far as stability and 
middle range performance are concerned. The main reason that the 
experiments were successfully conducted is the “local” equivalence of  the complete 
industrial robot dynamics to a linear model described by a set of  second order 
systems therefore, is locally stabilizable. This local domain enlarges as the 
nonlinearities and the coupling terms become less important. In addition, and as we 
will see, this attraction region can be arbitrarily enlarged by increasing the controller 
gains. 
 
In this chapter, we shall discuss the some control schemes applied to robot 
manipulators as they are used to solve both regulation and trajectory tracking 
problems. The regulation problem also called "point to point", the control objective 
is to regulate the joint angles about the desired position in spite of  torque 
disturbances. On the other hand, the trajectory tracking consists in following a time 
varying reference trajectory specified within the manipulator's workspace. 
 
    First, the regulation problem is treated using simple PD control. This control law 
will ensure the global stability of  the closed loop system with the price of  using high 
proportional gains. This fact will cause a steady state error and destroys the 
regulation. To improve this performance, a PD controller with gravity compensation 
is considered. 
 
   Next, we discuss the trajectory tracking problem, in this case, we may expect that 
the same PD controller will still work well provided that the magnitude of  the 
velocity component a given desired trajectory is relatively small. However, it is 
claimed much of  the literature (Arimoto, 1990; Khelfi, 1995; Berghuis, 1993a; 
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Spong et al., 1994; Zodiac, 1992; Asada and Slotine, 1986) that in the case of  fast 
movement for trajectory tracking the performance of  such a classical servo control 
becomes unsatisfactory. 
 
    According to this argument, several advanced control technique have been 
proposed so far (Asada and Slotine, 1986; Slotine and Li, 1987a; Paden and Panja, 
1988; Criage, 1988). In our case, we selected the most widely considered control laws. 
Among these techniques, we will see a method that attempt to partially compensate 
the robot dynamics nonlinearities and guarantee that the global asymptotic stability. 
Then, a method that uses the complete robot dynamics in the purpose of  completely 
linearized and decouple the system will be discussed. In this case, the closed loop 
system is reduced to n-decoupled linear second order systems, for which simple linear 
control law can be designed to guarantee the global exponential convergence of  the 
tracking error. Finally, we consider the non-adaptive version of  the well-known 
Slotine and Li algorithm (1987a). The benefic contribution of  this control law is that 
it uses a new variable that will yield to the global stability result sing simple stability 
arguments. 
 
    Finally, simulation study on 2-DOF Turret Gun manipulator discussed in section 
2.5 is performed. Before all this, we shall start this chapter by study the problem of  
generating the reference trajectory used as an input to the robot controller. 
 
 
3.2 Motion Planning  
 
3.2.1 Introduction  
 
    In a workbench, a robot is concerned in performing three big classes of  tasks: 
pure displacement, pure static force and complaint tasks combining displacements 
and forces. In this part, we discuss the problem of  generating the reference point 
used as an input to the robot controller in the case of  pure displacements. 
 
   During a displacement task, all what we wait from robot is to follow, with 
prescribed time law, a trajectory defined by a series of  frames, referred to as points, 
corresponding to successive positions of  the robot's end-effector. The problem of  
motion planning, then is to compute the reference for the control law that guarantee 
that the robot passes through these points for the control purpose considered in this 
work, we consider as a reference input the joint coordinates corresponding to the 
desired joint positions. The problem of  motion planning is deeply discussed in 
Yoshikawa (1990), Dombre et al. (1988) and Lewis et al. (1993). 
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3.2.2 Motion Planning between Two Points  
 

  We consider an n-degree of  freedom manipulator. Let 
iq and 

fq be the joint 
coordinate vector corresponding to the initial and final configurations respectively. 

We note by MV and MA the maximal velocity and acceleration vectors respectively. 

 

 The interpolated motion between 
iq and 

fq is function of  time t , is described by 
the following equation: 

                                        ( ) ( ) 0i
fq t q r t D t t                                            (3.2.1) 

 
With  

                                                   
f iD q q                                                      (3.2.2) 

 
Where the value at the limits of  the interpolation function ( )r t  are given by: 
                    

                                              (0) 0, ( )fr r t                                                  (3.2.3) 

 
Expression (3.2.1) can also be written as 
  

                               ( ) 1 ( ) 0f
fq t q r t D t t                                (3.2.4) 

 

For which is a suitable formulation in the case the target tracking, when term 
fq

varies. 

Many functions permit so satisfy the passage through 
fq at 0t  and through 

fq at

ft t . The most used interpolation methods in robotics are polynomial 

interpolation, Bang-Bang law, and are both discussed in this part. 
 
3.2.2.1 Polynomial Interpolation  
 
The most frequently encountered polynomial interpolation techniques are linear 
interpolation and interpolation by three and five order polynomials. 
 
  3.2.2.1.a Linear Interpolation 
 
This method is the simplest interpolation method. The motion of  each joint is 
described by a linear equation of  time. The motion equation is written as  
  

                                           ( ) 0i
f

f

t
q t q D t t

t
                                 (3.2.5) 
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Figure 3.1  Linear interpolation for given joint j 
 
  3.2.2.1.b Three degree Polynomial Interpolation  
 
  If  we impose a null velocity to the start and end points, we will add two additional 
constants to the above two constraints on the position in the linear interpolation 
method; The polynomial that satisfies these constraints is of  minimal degree of  three 
and has the general form 
 

                                       
2 3

0 1 2 3( )q t t t t                                                  (3.2.6) 

 
With an initial and final conditions  
 

                                (0) , ( ) (0) 0, ( ) 0i f
f fq q q t q q q t                              (3.2.7) 

 
Using these initial and final conditions, we can find the coefficients of  (3.2.6) as 
 

                                0 1 2 32 3

3 2
, ,i

f f

q D D
t t

                                (3.2.8) 

 
Expression (3.2.6) can also be rewritten under the form of  (3.2.1), (3.2.4) taking  
  

                                                         
2 3

( ) 3
f f

t t
r t

t t

   
          

   
                       (3.2.9) 
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Figure 3.2 Third order polynomial law for a given joint j 

 
  3.2.2.1.c Five degree Polynomial Interpolation  
 
 If  we seek the continuity of  the acceleration, we should satisfy six constraints and 
the interpolation polynomial should be of  order five. Choosing in addition to (3.2.7), 
the conditions  
  

                                             (0) 0, ( ) 0j j fq q t                                   (3.2.10) 

 
Using the same parameterization as before, we can easily show that the motion in 
this case is described by (3.2.1) with  
                    

                                    
3 4 5

( ) 10 15 6
f f f

t t t
r t

t t t

     
               

     
                          (3.2.11) 

 
The evolution of  position, velocity and acceleration for joint j with a five-degree 
polynomial are represented in fig. 3.3. 

Figure 3.3 Fifth order polynomial law for a given joint j 
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3.2.2.2 Bang-Bang law 
 

   The motion in this case is constrained by a constant acceleration phase until 2ft

and a constant deceleration phase until the point (see fig. 3.4). The initial and final 
velocities are zero. The motion is then continuous in position and velocity but not 
in acceleration. 
 
 
 
The position is given by  
 
                          

                       

2

2

( ) 2 0
2

( ) 1 4 2
2
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fi
f

f f

tt
q t q D t
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

    
                         

              (3.2.12) 

 
 
 
 
 
  

  
Figure 3.4 Bang-Bang law with a given joint j 
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3.3 Robot Control Design  
 
        The objective of  rigid robot manipulator control is to make the robot 
manipulator respond in a predictable and desirable fashion to a set of  input signals. 
In this section, we try to present a large synthesis on the classical controllers applied 
to robot manipulators in general and thus to Turret Gun and study the stability of  
the closed loop system in each case. 
We consider first controllers that deal with the regulation problem. A simple PD 
controller is shown to guarantee global uniform asymptotic stability with the 
condition of  using high proportional gains. To cope with this condition, an extra 
nonlinear term is added to the PD controller in order to ensure the asymptotic 
stability of  the closed loop system with no steady state error. 
 
      The trajectory tracking problem is treated using different nonlinear control laws, 
all of  which, are based on using the complete or a part of  the Turret dynamics in 
order to compensate for the nonlinearities present in the Turret equation of  motion. 
The stability of  the closed loop system is shown using Lyapunov's second method 
arguments. 
 
      Based on the structure of  the proposed controllers, they are classified into three 
min classes. The first class contains the feedback linearization controllers that seek 
to completely linearize and decouple the robot dynamics. The second class contains 
the passivity-based controllers that neither attempt to linearize nor decouple the 
system, but they exploit the passivity property of  the robot manipulator (cf. section 
2.4.6) to search for the global asymptotic stability of  the closed loop system (Zodiac, 
1992; Spong et al., 1994; Ortega and Spong, 1989; Spong and Ortega, 1990; Slotine 
and Li, 1987a; Lewis et al., 1993; Berghuis, 1993a). The third class is variable structure 
system (VSS) based controllers that force the nonlinear dynamical system to 
converge exponentially to the desired trajectories via discontinuous control law. 
These controllers are analyzed and commented through simulation on the 2 DOF 
Turret Gun presented in section 2.4. 
 
3.3.1 Regulation Problem  
 
4.3.1.1 PD Controller 
 
    In this first step, we use a simple PD controller to solve the position problem for 
robot manipulators and so in our case for the Turret Gun position problem. 
Neglecting friction and external disturbances, we consider the Turret dynamics 
described by the following equation  
 
                                            ( ) ( , ) ( )M q q C q q q G q                                        (3.3.1) 
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The regulation objective is to maintain the position of  the manipulator joint variables 

constant around some desired constant position given by dq . The PD compensator 

is given by  
 

                                                   ( )p d vK q q K q                                         (3.3.2) 

 

Let dq q q   denote the position error variable. Then, we have q q   and q q since 

0dq  . Applying this control law to the robot dynamics gives the closed loop system 

 

                                  ( ) ( , ) ( ) 0p vM q q C q q q G q K q K q                                        (3.3.3) 

 
The equilibrium points of  the closed loop system are defined by the following set  
 

                                   ( , ) / ( ) 0, 0d pS q q G q q K q q                                    (3.3.4) 

 
The stability analysis of  the closed loop system is performed using the Lyapunov 
function candidate given by  
 

                                0

1 1
( , ) ( ) ( )

2 2
T T

pV q q q M q q q K q P q P                                     (3.3.5) 

 

Where: ( )P q is the potential energy of  the system 0P is some positive constant such 

that the Lyapunov function V is positive definite. 
 
The time derivative of  V is obtained as 
 

                               1
( , ) ( ) ( ) ( )

2
T T T

pV q q q M q q q M q q q K q P q                                     (3.3.6) 

 
The time derivative of  the potential energy is calculated as  
                                           

                                              ( ) ( )
T

Tq P
P q q G q

t q

  
  

  
                                    (3.3.7) 

 Since  

                                               ( )
P

G q
q





                                                        (3.3.8) 

 
Then, evaluating (3.3.6) along (3.3.3) yields 

1
( , ) ( , ) ( ) ( ) ( )

2
T T T T T T T

v p pV q q q C q q q K q q K q q G q q M q q q K q q G q                                       (3.3.9) 
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Exploiting property 2.1 (cf. section 2.4.2) of  the matrix ( ) 2 ( , )M q C q q   we get directly 
the result 
                              

                                               ( , )
T

vV q q q K q                                                    (3.3.10) 

 

Which is a negative semi-definite function. Then the equilibrium point ( , ) (0,0)q q 

is stable in the sense of  Lyapunov (cf. section 1.6). 
 
 
  This result shows that V is negative semi-definite, which is not sufficient to 
demonstrate that the equilibrium point  ( , ) (0,0)q q    is asymptotically stable. We have 

now to prove that as 0q  , the robot does not reach a configuration dq q . This can 

be done, thanks to the La Salle invariant set theorem (theorem 1.10 section 1.6). 
 
The set R of  points in the neighborhood of  the equilibrium point that satisfies 0V 

is such that 0q   and thus 0q  . From equation (3.3.3), we conclude that necessarily 
          

                                             ( ) 0pG q K q                                                    (3.3.11)  

 
Which result true if   

                                              1 ( )pq K G q                                                   (3.3.12) 

Then, 

                                         1 1|| || ( )p M pq K G q G K                                  (3.3.13) 

 
        Where ( )G q  is an upper bound of  the gravity vector given in equation (2.4.19) 

(cf. section 2.4.3). Thus, increasing the proportional gain can in principle arbitrarily 
reduce the steady state error given in (3.3.13). Unfortunately, measurement noise and 
other unmolded dynamics will limit the use of  high gains. To overcome this problem, 
PID controllers may be used (Zodiac, 1992). It is shown that when adding an integral 
term to the PD type control law (3.3.2) the constraint on the controller proportional 
gains is removed and local asymptotic stability is ensured. A difficulty in using the 
integral action in the control law is that oscillations may appear due to the interaction 
between integral gain and present friction nonlinearities. Another solution proposed 
in Takegaki and Arimoto (1981) is discussed in the following section. 
 
  3.3.1.2 PD Controller with Gravity Compensation  
 
      We can see from the control law of  a simple PD controller that the system 
dynamics are used. Thus, the nonlinearities of  the robot system are not compensated 
for. Then, including some of  nonlinear dynamic terms in the PD controller will 
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probably give better results. Indeed, Takegaki and Arimoto (1981) modified the 
simple controller for desired set point control by inserting the nonlinear gravity term 
in the control law. We shall now study this type of  control generally referred to as 
'point-to-point' control (Zodiac, 1992). 
 
Consider the robot dynamics given in equation (3.3.1), neglecting friction and 
external disturbances. The proposed control law is given as     
 

                                              ( ) p vG q K q K q                                              (3.3.14) 

 

Where q  and qare defined as above. 
This controller can be implemented according to the following figure. 

 
Figure 3.5 PD with Gravity Compensator Controller 

 
Applying this control law to the Turret Dynamics, we obtain the closed loop system 
governed by 
 

                                         ( ) ( , ) 0p vM q q C q q q K q K q                                       (3.3.15)    

 
To show the stability of  the closed loop system, let us consider the following 
Lyapunov function candidate 
 

                                            1 1
( , ) ( )

2 2
T T

pV q q q M q q q K q                                    (3.3.16) 

 
Which is composed of  the kinetic energy and a potential energy introduced by the 
control law. The time derivative of  this Lyapunov function is given by 
 

                                        1
( ) ( )

2
T T T

pV q M q q q M q q q K q                                       (3.3.17) 
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The arguments of  V are omitted for sake of  notation simplicity. Evaluating (3.3.17) 
along the error dynamics (3.3.15) yields  
 

                                        1
( ) 2 ( , )

2
T T

vV q K q q M q C q q q                                     (3.3.18) 

 

Since ( ) 2 ( , )M q C q q   is skew symmetric (property 2.1,  cf. section 2.4.2), we get finally  
 

                                                0T
vV q K q                                                    (3.3.19) 

Which is negative function for 0q . This tells about the convergence of  the velocity 
tracking error. To show the asymptotic convergence of  the entire equilibrium point 

( , ) (0,0)q q   , we have to invoke the LaSalle’s invariant set theorem. Consider the set  
 

                                                 ( , ) / ( , )S q q V q q                                         (3.3.20) 

If  we have 0q , from equation (3.3.15), we will necessarily have q . Then, the only 
trajectory contained S  in is the equilibrium point of  the manipulator, and from 
LaSalle’s theorem (theorem, 1.10), the global asymptotic stability of  the equilibrium 

point ( , ) (0,0)q q    is shown. 
 
3.3.2 Trajectory Tracking Control 
 
         In the previous section, we have seen that the linear PD controller ensures the 
asymptotic stability when the proportional gains are high. Whereas, PD with gravity 
compensation controller will not require much higher gains to give better results as 
far as middle range performance is concerned. In this section, we consider the 
trajectory-tracing problem. Dawson et al. (1990) examined the stability of  the PD 
controller for trajectory following problem of  a robot manipulator. With some 
algebraic manipulations and judicious choice of  a Lyapunov function, they have 
shown that the tracking error is Uniformly Bounded (U.B) (cf. theorem 1.14, section 
1.7), if  the PD gains are chosen greater than a specific bound and if  initial tracking 
error is zero. Hence, when the application requires some rapid displacements of  the 
manipulator and a big dynamical precision, it is necessary to design a more 
sophisticated control law that takes into account all part of  the dynamical interaction 
forces. 
 
3.3.2.1 Paden and Panja Controller  
 
   The control objective is to asymptotically track a desired trajectory predefines by 

the variable ( )dq t  and its successive derivatives ( )dq t  and ( )dq t  that present the 

desired velocity and acceleration respectively. The control law is given by  
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                    ( ) ( ) ( , ) ( ) ( ) ( ) ( )d d p d v dM q q t C q q q t G q K q q K q q                        (3.3.21) 

 
Applying this law to the Turret Dynamics (3.3.1), we obtain the closed loop system 
as  

                                           ( ) ( , ) 0p vM q q C q q q K q K q                                     (3.3.22) 

 
Where q , q  and q  define the acceleration, velocity and position tracking errors 
respectively. 
 
The stability of  the closed loop system is studied using the following Lyapunov 
function candidate  
        

                                    
1 1

( , ) ( )
2 2

T T
d pV q q q M q q t q q K q                                     (3.3.23) 

 
And its time derivative evaluated along the trajectory of  the error dynamics (3.3.22) 
is directly obtained as 
  

                     1
( ) ( ) ( ) ( ) 2 ( , ) ( )

2
T T

v dV q t K q t q t M q q t C q q q t                                (3.3.24) 

 
Using the fact that the matrix is skew symmetric, we obtain  
 

                                              ( ) ( )T
vV q t K q t                                                   (3.3.25) 

 

We can see the right hand side of  (3.3.25) is negative, and 0V  for ( ) 0q t  . 
 
    
     Using Barballat’s lemma (cf. Lemma 1.2, section 1.6), we can prove that the 

equilibrium point ( , ) (0,0)q q    is globally asymptotically stable. From Barballat’s 

lemma it is clear that 0V   as t   then ( ) 0q t   as t   and ( ) 0q t   as t  , 

we should only show that ( ) 0q t   as t  . Considering the result 0, 0q q     as 
t   into the closed loop equation (3.3.23) we can obtain the result that ( ) 0q t   

as t  ; hence, the equilibrium point ( , ) (0,0)q q   is globally asymptotically stable. 
 
3.3.2.2 State Feedback Linearization Based Controller  
     
        Another trajectory tracking control law inspired from literature of  nonlinear 
control system is considered in this section, in the design of  a controller for nonlinear 
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systems, it seems logical to investigate whether there exists a transformation and 
a regular static state feedback that transforms the nonlinear system into a linear one. 
This is known as the feedback linearization problem (Nijmeijer and Van der Schaft, 
1990). In robotics, a method based on this theoretic technique is known as the inverse 
dynamics or the computed torque method. It is shown (Dombre et al., 1988; Lewis 
et al., 1993; Berghuis, 1993a) that this method relies on the cancellation of  nonlinear 
terms present in the robot dynamics (3.3.1), and consequently, requires exact system 
knowledge. This method is presented here. 
 
    Firstly, let we search for the relative degree of  the robot dynamical system, where 
the output of  the robot is considered be the state itself. 
  

                                          1 2 3

T
y t h q t q q q q t                                 (3.3.26) 

 
The time derivative of  the output is the speed of  the joints  
 

                                            
 

   
T

h q
y t q t q t

q

 
  

 
                                    (3.3.27) 

 
The input of  the system does not appear yet, we continue derivation  
 

                                     
( ) ( ) ( ) ( )

T T
h q h qd

y t q t q t q t
dt q q

     
      
      

                   (3.3.28) 

 
Now from the Turret dynamical equation (3.3.1) the acceleration can be written as  
 

                                   1( ) ( ) ( ) ( , ) ( )y t q t M q C q q q G q                                 (3.3.29) 

 
Now the relative degree of  the robot manipulator is two, hence the dynamics is 
reduced to n-decoupled linear second order systems. 
 

                                 ( ) 1
0 0( ) ( ) ( , ) ( )y t M q C q q q G q                          (3.3.30) 

                                                0( ) ( , ) ( )M q C q q q G q                           (3.3.31) 

 
Applying this law to the idealized Turret dynamics written in equation (3.3.1) yields 
to the n-decoupled linear system described by  
 

                                                                       0q                                        (3.3.32) 

 
 

                                48



 Chapter III : Classical Control of Turret Gun Manipulators 

 

 

Where 0 is an auxiliary control input to be designed. Typically, 0 is chosen as  

 

                                  0 ( ) ( )d p d v dq K q q K q q                                              (3.3.33) 

 
This yields to the error equation  
     

                                              0v pq K q K q                                                   (3.3.34) 

 
Equation (3.3.34) shows that the error dynamics are governed by a linear second 
order system. Furthermore, if  the gains are chosen to be diagonal, then the system 
will be perfectly decoupled. 
 
 

By suitably choosing the matrices pK and vK , the tracking error will converge 

asymptotically to zero. To illustrate this, we can write the error equation (3.3.34) in 

state space representation, i.e. we define the state variable  ,
TT Tx q q   , and we can 

write  

                                           
0 1

p v

x x Ax
K K

 
    
                                         (3.3.35) 

 
In order to investigate the stability of  the equilibrium point, 0x  , we choose the 
Lyapunov function candidate  
                               

                                                     ( )
TV x x Px                                               (3.3.36) 

 
Where 0TP P   is the solution to Lyapunov equation 
  

                                               
TA P PA Q                                                  (3.3.37) 

 
With 0Q  . Then, the time derivative of  ( )V x  is 
 

                                         ( )
T T T TV x x Px xPx x A Px x PAx          

                                                ( )T T Tx A P PA x x Qx                                   (3.3.38) 
 
Which is the negative definite function, from which and according to the theorem 
1.8 (cf. section 1.6) global uniform exponential stability of  the equilibrium point 
follows. Fig 3.6 shows the implementation of  this feedback linearization. 
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Figure 3.6 Computed Torque Control Implementation 
 
 
       In this Figure, it is illustrated that the computed torque law attempt to cancel the 
system nonlinearities in order to achieve what is known in nonlinear control theory 
Feedback linearization. 
 
      We notice that this type of  control need exact knowledge of  the model 
parameters to exact linearize and decouple the manipulator dynamics. If  it were the 
case, computed torque controller would be the best controller for the robot 
manipulators. In practice, this is not the case, and at least some of  the dynamics are 
not known exactly. Moreover, calculation time has been so far the main restrictive 
factor that has prevented this method from having a large impact. Most of  practical 
experiments have been carried out in research laboratories at universities (Dombre 
et al., 1988; Lewis et al., 1993; Zodiac, 1992). Nowadays, there is no commercially 
available industrial manipulator equipped with this type of  controller (Zodiac, 1992). 
A possible reason for this (apart from the calculation time limitation) is that 
computed torque needs the analytic derivation of  the robot model and the 
identification of  the associated parameters. These efforts can be important when 
thinking in term of  six degree of  freedom robot manipulators. However, methods 
seeking to simplify the dynamics model do exist (Arimoto and Miyazaki, 1984; 
Dombre et al., 1988; Arimoto, 1990); they allow to obtain, using minimization 
methods, a simplified inertia matrix, hence a simplified Lagrange dynamics and finally 
a simplified computed torque (Zodiac, 1992). 
 
A variant of  the computed torque controller that can be  implemented is the 
predictive controller (Dombre et al., 1988). In this method, instead of  using the 
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nonlinear terms ( )M q , ( , )C q q and ( )G q  calculated at actual values of  qand q  we 

rather evaluate them in terms of  the desired joint variables dq and dq . In this case, 

the control law has the form  
  

                                         0( ) ( , ) ( )d d d d dM q C q q q G q                                (3.3.39) 

Where  

                                         0 ( ) ( )d p d v dq K q q K q q                                       (3.3.40) 

 

If  we suppose that the tracking is perfect, we can assume that ( ) ( )dM q M q . If  the 

Turret model is free of  errors and for zero initial tracking error and decouple the 
system just as do the computed torque law. 
 
 

  
                

Figure 3.7 Predictive Computed Torque Control Implementation 
 

     Another approach, which seeks neither to linearize nor decouple the nonlinear 
system but only looks for the asymptotic stability, is also used in robot control. This 
scheme was proposed in the work of  Slotine and Li in adaptive control of  robot 
manipulators (Slotine and Li, 1987a).  
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3.3.3 Passivity Interpretation  
 
      From the above analysis, we can see that various solution to the control of  rigid 
manipulators, are provided. Conceptually, these techniques can be classified into two 
classes, the class of  invers dynamics controllers, and the class of  passivity- based 
controllers. 
 
      We have seen in section 3.3.2.2. That computed torque controllers are based on 
the feedback linearization technique. This control law reduces the control of  
nonlinear robot system to the control of  n-decoupled second order linear systems 
(as seen from equation 3.3.32). This law can be implemented in the so-called inner 
loop/outer loop architecture as shown in Fig 3.8 
 

Figure 3.8 Inner loop/outer loop architecture implementation 
 
   The inner loop control contains the nonlinear elements responsible of  linearizing 
the system and it has a fixed structure as defined by Lagrange's equations. Since 
Turret dynamics are complex, we expect that high computations are required at this 

level. The additional term 0 is computed in the outer loop. 

 
   In reality, once the inner loop is fixed, which is the case of  the inverse dynamics 
control, the design of  any outer loop controller to stabilize the linearized system is 
possible. In fact, any linear control design can be used to design the outer loop 
controller, which is the main future of  this technique. The outer loop controller given 
by (3.3.31) is merely the simplest choice of  outer loop control, and achieves 
asymptotic tracking of  the joint space trajectories in the ideal case of  perfect 
knowledge of  the system dynamics (3.3.1). However, one has complete freedom to 
modify the outer loop to achieve various other goals such as to enhance the 
robustness to a parametric uncertainties, unmolded dynamics and external 
disturbances. 
 
   The fact that computed torque control method stems from a general system 
theoretic methodology, feedback linearization; it disregards the natural structure 
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imposed by the physical character of  the robot system. In the following discussion, 
we will show that the other methods presented above (PD with gravity compensation 
controller, Paden and Panja controller) do exploit the physical structure of  the robot 
system, especially its passivity property discussed in (2.4.6). These methods are 
classified into passivity-based controllers. The idea of  this philosophy is to reshape 
the robot system's natural energy in such a way that the tracking objective is attained. 
 
   If  we assume that the control objective is to regulate the robot manipulator at 

some desired position dq . It is intuitively clear that the control law should be 

constructed such that the strict energy minimum obtained at ( , ) (0,0)q q   is shifted 
to ( , ) (0,0)q q    for the closed loop system. According to the Hamiltonian dynamic 
equation for the class of  rigid robot manipulators given by (2.4.36)-(2.4.37) (cf. 
section 2.4.6), this can be realized by shifting the potential energy of  the system such 
that it attains its minimum at 0q  . To do this, consider a desired energy function 

of  closed loop system be 0( )P p . From this, define the control law  

 

                                                      
0

0

pp

q q
 


  
 

                                       (3.3.41) 

 
Where   is the new 1n  input. The original Hamiltonoan equation defined by 
(2.4.36)-(2.4.37) are modified to  
  

                                                    0 0( , ) ( )H T q p P p                                      (3.3.42) 

 
It can be easily verified that  
  

                                                         0
TH q                                                 (3.3.43) 

 
This implies that a marginally stable closed loop system is obtained (Van der Schaft, 
1990; Berghuis, 1993a). That is passive from the new input   to q , since  
 

                                             00
, ( ) ( ) 0

T
Tq q d H                               (3.3.44) 

 
To asymptotically stabilize the system, damping, that is velocity error feedback, 
should be injected in the loop, so define  
        

                                                              dK q                                           (3.3.45) 

These yields  

                                                              0
T

dH q K q                                      (3.3.46) 
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   Invoking Barballat’s Lemma (cf. lemma 1.2) the entire equilibrium point 
( , ) (0,0)q q    can be shown to be uniformly asymptotically stable. To this point, the 
control law has not yet been defined. A choice that ensures a strict minimum of  the 
desired potential energy as 0q   can be defined as  
 

                                                    0( )
T

pP q q K q                                                (3.3.47)  

 
For this choice, and using the control expression (3.3.41), we obtain that  
 

                                              0 ( ) p dG q K q K q                                             (3.3.48) 

  
     Note that we have obtained the controller proposed by Takegaki and Arimoto 
(1981), and is given by equation (3.3.14) (cf. section 3.3.1.2). 
 
     For tracking purpose, it is clear that the control law should be constructed to shift 

the energy minimum at ( , ) (0,0)q q   of  the open loop towards ( , ) (0,0)q q    for the 
closed loop system. To attain this objective, both kinetic energy and potential energy 
should be modified in a desired manner. This can be achieved by chooding the 
control law to be  
     

                                   0 ( ) ( , ) ( )d d pM q q C q q q G q K q                                  (3.3.49) 

 

This controller structure establishes a passive mapping from  to q as can be verified 
using the energy function  
 

                                          1
( , ) ( )

2
T T

pH q q q M q q q K q                                          (3.3.50) 

 
Which time derivative evaluated along the dynamics of  the error gives  
 

                                                     
T

dH q K q                                                 (3.3.51) 

 
From this, we can write  
 

                                            
0

, ( ) ( ) 0
T

Tq q d H                                  (3.3.52) 

 
Again, damping should be inserted to guarantee the asymptotic stability of  the closed 
loop system, then defining  
   

                                                       dK q                                                   (3.3.53) 
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And using LaSalle’s theorem, we can show that the convergence of  the equilibrium 

point ( , ) (0,0)q q    is asymptotically stable. 
         The controller as defined by (3.3.49) and (3.3.53) is no more than the Paden 
and Panja controller given by (3.3.22) (cf. section 3.3.2.1).  
 
         From this analysis, we conclude that this approach consists of  designing a 
controller such that the closed loop system matches a desired energy function that 
resembles the natural energy contents of  the open loop system. In this way, passivity 
of  the robot system can be preserved in the closed loop. For this reason, these 
controllers are said to be passivity-based controllers. Moreover, the inclusion of  the 
damping in the loop via velocity feedback, asymptotic stability can be obtained. 
 
3.5. Implementation results  
 
 In this part we will show and discuss the results obtained after implementing the 
last methods  
 
3.5.1 Implementing the PD controller with Gravity Compensator  
 
With pulse reference and random coefficients pK and vK  

 
Figure 3.9 PD Controller with Gravity Compensator with random coefficients pK

& vK  pulse reference, inputs/outputs  
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Now with step reference random coefficients pK and vK  

 
Figure 3.10 PD Controller with Gravity Compensator with random coefficients pK

& vK  step reference, inputs/outputs 

 
Now with sinusoidal reference random coefficients pK and vK  

 
Figure 3.11 PD Controller with Gravity Compensator with random coefficients pK

& vK  sinusoidal reference, inputs/outputs 
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3.5.2 Implementing the Paden & Panja Controller 
 
With pulse reference and random coefficients pK and vK  

 
Figure 3.12 Paden & Panja controller with random coefficients pK & vK  pulse 

reference, inputs/outputs 
 
Now with step reference random coefficients pK and vK  

 
Figure 3.13 Paden & Panja controller with random coefficients pK & vK  step 

reference, inputs/outputs 
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Finally, with sinusoidal reference random coefficients pK and vK  

 
Figure 3.14 Paden & Panja controller with random coefficients pK & vK  sinusoidal 

reference, inputs/outputs 
 
 
3.5.3 Implementing the State Feedback Linearization Based Controller 
 
With pulse reference and random coefficients pK and vK  

 
Figure 3.15 State Feedback Linearization Based Controller pulse reference and 

random coefficients pK and vK , inputs/outputs 
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Figure 3.16 State Feedback Linearization Based Controller step reference and 

random coefficients pK and vK , inputs/outputs 

 
Finally, with sinusoidal reference random coefficients pK and vK  

 
Figure 3.17 State Feedback Linearization Based Controller sinusoidal reference and 

random coefficients pK and vK , inputs/outputs 
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3.5.4 Discussion of  the obtained results  
 
  From the results obtained, it seems that the first two controllers: PD Controller 
with Gravity Compensator and the Paden and Panja, seem to offer fairly satisfactory 
performance with low errors, the State Feedback Linearization Based Controller  is 
not precise enough. 
  After trying these three controllers, we have to make a choice, which due to the 
errors of  the third is reduced to the first two. By examining the coefficients used to 
obtain the results, it turns out that the coefficients of  the first are much lower and 
therefore more in line with reality because of  noise amplification. In addition, the 
time of  response is lower than with the second controller. 
 
3.5. Conclusion 
 
     In this chapter, some of  the classical control schemes applied to robotic systems 
were presented. A simple PD controller was studied first for the regulation problem. 
We have seen that the condition of  implementing big proportional gains is vital for 
achieving the asymptotic stability of  the equilibrium point. Then a gravitation 
compensation term was added to the linear PD controller, where we have seen that 
this modified controller ensures the global uniform asymptotic stability of  the closed 
loop system with no conditions on the controller gains. With this control law, the 
regulation problem was then solved using only simple linear techniques. When the 
application requires some rapid displacements of  the manipulator and a high 
dynamical precision, it is necessary to design a more sophisticated control law that 
takes into account all or a part of  the dynamical interaction forces. For tracking 
purposes, PD with gravity compensation was shown via simulation, to guarantee only 
bounded tracking errors that be decreased arbitrarily by using high controller gains. 
 
      A solution to this, and in order to obtain a perfect tracking, all the nonlinear 
terms on the system dynamics were used in the controller law. First Paden and Panja 
controller was shown to give perfect tracking and ensures the asymptotic stability of  
the tracking error. Then, the computed torque controller was discussed and we have 
shown that this controller, if  the dynamics of  the robot are exactly known, perfectly 
linearizes and decouples the Turret dynamics resulting on decoupled second order 
linear system that we can arbitrarily place its pols by properly selecting its controller 
gains. A variant of  this controller is the predictive controller, where instead of  
calculating the controller nonlinear terms at the actual position and velocity signals, 
they are calculated any desired ones. This controller will the n linearize and decouple 
the system just as do the computed torque controller assuming perfect tracking and 
zero initial tracking errors.  
 
     Through simulation study, we have shown the convergence of  the proposed 
control schemes for regulation and trajectory tracking purposes. A comparative study 
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has shown that the proposed trajectory tracking controllers provide a slightly 
difference on their response provided that the controller's gains are selected 
according to equivalence principle.  
 
      It is important to notice that the basic future of  the control strategies presented 
in this chapter is assumption that full state information, that is position and velocity, 
is available for feedback. In practice, this assumption can only be partially fulfilled.  
 
      Finally, we will work with the first controller: PD Controller with Gravity 
Compensator in the following chapters, because in our case it has shown better 
performances. We will optimize the coefficients as best as possible using the 
algorithms provided for this purpose. 
 
 
 
        
     
    
 
 
 
 
 
 

                                61





 
 

  

Advanced  Optimized  Control  Strategies 
 

 
 

Chapter 4 

 
 

 
 
 
 
 
 
 
 
  

                 Chapter 4 
 
 
 

   Advanced Optimized   
Control Strategies  

 

 

 

 
 
 
 
 

     In optimization of a design, the design objective could be simply to minimize the cost 
of production or to maximize the efficiency of production. An optimization algorithm is 
a procedure which is executed iteratively by comparing various solutions till an optimum 
or a satisfactory solution is found.With the advent of computers, optimization has 
become a part of computer-aided design activities. There are two distinct types of 
optimization algorithms widely used today. In this chapter, we will provide you some of 
these methods,  
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4.1 Introduction 

   

    The main goal of  optimization is to try to get the best possible result for a given system. 
However, depending on the context or the environment, the optimal result can be 
represented either by a maximum or by a minimum of  aptitude of  a system, represented 
by a quality function. While optimization to find a minimum output is often called 
minimum skill, while minimizing the costs of  a system. For this, quality is the negative of  
the cost. 

    The common challenge is to find the global minima / maxima with a certain number 
of  local minima / maxima. This is more easily visualized using the concept of  a cost 
surface for which there may be a number of  small peaks and small valleys. 

     Multivariate systems are more complex than single variable systems, and are more 
difficult to model and solve mathematically. The number of  variables can be used to 
express the dimensions of  the system. Dynamic systems are systems whose output is a 
function of  time and static systems that are invariant in time. 

     System variables can be classified as discrete or continuous. Continuous variables can 
take an infinite number of  values, while discrete variables can only be assigned for a finite 
number of  possible values. A common approach for optimization using digital processes. 
Constrained systems are systems for which variables can only take values within fixed 
limits. Variables in unconstrained systems have no such limits applied. Mathematical 
optimization works best on systems without constraints. 

   The optimization methods used to have the minimum use a single set of  inputs in order 
to numerically find the optimal results. These methods are challenged by the problem of  
local minima/maxima. Unlike these methods, the random search methods use 
probabilistic calculations to find the sets of  variables in which the optimization is carried 
out, so these latter methods do not have the problem of  local minima/maxima. This is 
why deterministic calculation methods are faster than random methods. 

  Most of  the classical optimization methods can be described as minimum search 
algorithms seeking the cost surface for a minimum cost, and therefore suffer from the 
challenge of  local minima. These classical calculation methods are often based and solved 
numerically. 

 More recently, natural optimization methods known as meta-heuristics have been 
developed in order to remedy the inherent limitations of  optimization based on numerical 
calculations. We will use two (2) meta-heuristic methods of  natural optimization, which 
are: 

a) The algorithm simulating the movement of  swarms of  particles (PSO) 

b) The ant colony algorithm (ACO) 

  Modern Meta-heuristic methods are a set of  stochastic optimization techniques inspired 
by natural and biological phenomena. These techniques can be classified into two groups: 

1. Population solution methods known as evolutionary algorithms. 
2. Single solution methods. 
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  These methods provide an intelligent search for the space of  solutions using statistical 
approaches and therefore do not require the computation of  the derivatives of  the cost 
function; therefore, natural methods can deal with non-continuous and discrete 
multivariate systems (SALMI S. (2019) "Introduction to the Meta-Heuristic 
Optimization"). 

4.2 Particle Swarm Optimization 

   Particle swarm optimization algorithms were introduced in 1995 by Kennedy and 
Eberhart as an alternative to standard genetic algorithms. These algorithms are inspired 
by swarms of  insects (or schools of  fish or flocks of  birds) and their coordinated 
movements, in fact, just as these animals move in groups to find food or avoid 
predators, particle swarm algorithms seek solutions for an optimization problem. The 
individuals in the algorithm are called particles and the population is called a swarm. 

In this algorithm, a particle decides its next movement based on its own experience, which 
in this case is the memory of  the best position it has encountered, and based on its best 
neighbor. The new speed and direction of  the particle will be defined according to three 
trends: the propensity to follow its own path, its tendency to return to its best position 
reached and its tendency to go towards its best neighbor. 

4.2.1 Principle  

     The principle of  PSO developed by Kennedy and Eberhart is based on the behavior 
of  flocks of  birds. Thus, PSO was fundamentally developed through the simulation of  
the behavior of  flocks of  birds in two-dimensional space. The position of  each agent is 
represented by its coordinates along the two axes X and Y  , to which we associate the 
speeds expressed by xV (speed along the axis X ) and yV (speed along the axisY ). The 

modification of  the behavior of  each agent is based on the position and speed 
information. 

     At each iteration the agent proceeds via an objective function to evaluate its best value 
up to ( pbest ) and its position along the two axes X andY . 

    This information is obtained from an analysis of  the personal experiences of  each 
agent. In addition, each agent knows the best global value in the group ( gbest ) among 
( pbests ). This information represents the value around which other agents are 
performing. Thus, each agent tries to modify his position based on the following 
information: 

- Current position ( , )x y , 

- Current speed ( )x yV V , 

- Distance between the current position and pbest  

- Distance between the current position and gbest  

 This modification can be represented by the concept of  speed. The modified speed of  
each agent will be written as follows:   

                       1
1 1 2 2( ) ( )k k k k

i i i i iv wv c rand pbest s c rand gbest s                                 (4.2.1) 
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Where 

k
iv : Speed of  the agent i  at the iteration k  . 

w : weighting function. 

jc : weighting factor. 

rand : random number between 0 and 1 . 

k
is : Position of  the agent i  at the iteration k . 

ipbest : Best position of  the agent i . 

gbest : Best global value of  the group. 

 

  The weighting function usually used in the equation (4.2.1) is given as  

                                          max min
max

max

w w
w w iter

iter


                                                  (4.2.2) 

Where  

maxw : Final weight. 

minw : Initial weight. 

maxiter : Maximum number of  iterations. 

iter : Current number of  iteration.  

 

  The model used in the equation (4.2.2) is known as “Inertia Weights Approach (IWA)”. 
The current position (searching the point in the solutions area) is actualized  according to 
the equation  

                                                       1 1k k k
i i is s v                                                       (4.2.3)   

Where  

k
is : Current position of  the agent. 

1k
is  : Actualized position of  the agent. 

1k
iv  : Actualized speed of  the agent.      

 

The concepts of  PSO already presented allow us to build the following general Flowchart 
fig.4.1   
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Figure 4.1 PSO general Flowchart 

 

 

   This algorithm is particularly simple to implement. As we can see, the space of  solutions 
is explored by multiple particles, the best areas discovered by a particle being 
communicated to a given neighborhood in order to pass on the information. 

   However, in general the neighborhood is not complete, which prevents the algorithm 
from falling into local optima. 
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    PSO is a particularly efficient optimization technique (even for noisy objective 
functions), which often seems to work better than genetic algorithms which fail to seem 
sufficiently guided. 

   Indeed the crossing of  two genetic codes evaluated as "good" or "adapted" does not in 
any way provide the certainty that the result will also be adapted. In other words, PSO 
uses a velocity vector that genetic algorithms do not have. 

   The PSO algorithm can be applied to solve different optimization problems in various 
fields of  application. You just have to adapt the variables and parameters of  the algorithm 
to those of  the problem under consideration. 

 

4.2.2 PSO Algorithm  

 

For each particle i = 1,…,s do 

       Randomly initialize xi 

       Randomly initialize vi (or just set vi to zero) 

       Set yi=xi 

endfor 

Repeat 

 

For each particle i = 1,…,s do 

         Evaluate the fitness of  particle i , f(xi) 

        Update yi using equation 

        Update ŷ using equation 

 

For each dimension j = 1,…, Nd do 

            Apply velocity update using equation 

endloop 

           Apply position update using equation 

endloop  

         Until some convergence criteria is satisfied 
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4.3 Ant Colony Optimization  

 

    As already mentioned, swarm intelligence is a relatively new approach to problem 
solving that takes inspiration from social behaviors of  insects and of  other animals. In 
particular, ants have inspired a number of  methods and techniques among which the 
most studied and the most successful is the general-purpose optimization technique 
known as ant colony optimization. Ant colony optimization (ACO) takes inspiration from 
the foraging behavior of  some ant species. These ants deposit pheromone on the ground 
in order to mark some favorable path that should be followed by other members of  the 
colony. Ant colony optimization exploits a similar mechanism for solving optimization 
problems. 

    From the early nineties, when the first ant colony optimization algorithm was 
proposed, ACO attracted the attention of  increasing numbers of  researchers and many 
successful applications are now available. 

   Moreover, a substantial corpus of  theoretical results is becoming available that provides 
useful guidelines to researchers and practitioners in further applications of  ACO 
(Doringo M., Stutzle T. Birattari M. (2006) "Ant Colony Optimization")  . 

 

4.3.1 Biological Inspiration  

In the forties and fifties of  the twentieth century, the French entomologist Pierre-Paul 
Grasse´ observed that some species of  termites react to what he called “significant 
stimuli”. He observed that the effects of  these reactions could act as new significant 
stimuli for both the insect that produced them and for the other insects in the colony. 
Grasse´ used the term “stigmergy” to describe this particular type of  communication in 
which the “workers are stimulated by the performance they have achieved”. 

The two main characteristics of  “stigmergy” that differentiate it from other forms of  
communication are the following. 

❏ Stigmergy is an indirect, non-symbolic form of  communication mediated by the 
environment: insects exchange information by modifying their environment; and 

❏ Stigmergic information is local: it can only be accessed by those insects that visit the 
locus in which it was released (or its immediate neighborhood). 

Examples of  stigmergy can be observed in colonies of  ants. In many ant species, ants 
walking to and from a food source deposit on the ground a substance called pheromone. 
Other ants perceive the presence of  pheromone and tend to follow paths where 
pheromone concentration is higher. Through this mechanism, ants are able to transport 
food to their nest in a remarkably effective way.  

   Deneubourg et al. thoroughly investigated the pheromone laying and following 
behavior of  ants. In an experiment known as the “double bridge experiment’’, the nest 
of  a colony of  Argentine ants was connected to a food source by two bridges of  equal 
lengths Fig.4.2(a). 
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 In such a setting, ants start to explore the surroundings of  the nest and eventually reach 
the food source. Along their path between food source and nest, Argentine ants deposit 
pheromone.  

Initially, each ant randomly chooses one of  the two bridges. However, due to random 
fluctuations, after some time one of  the two bridges presents a higher concentration of  
pheromone than the other and, therefore, attracts more ants. This brings a further amount 
of  pheromone on that bridge making it more attractive with the result that after some 
time the whole colony converges toward the use of  the same bridge.1 

 

 

Figure 4.2 Experimental setup for the double bridge experiment 

(a) Branches have equal lengths; (b) Branches have different lengths 

 

    This colony-level behavior, based on autocatalysis, that is, on the exploitation of  
positive feedback, can be used by ants to find the shortest path between a food source 
and their nest. Goss et al. considered a variant of  the double bridge experiment in which 
one bridge is significantly longer than the other see Figure 4.2(b). In this case, the 
stochastic fluctuations in the initial choice of  a bridge are much reduced and a second 
mechanism plays an important role: the ants choosing by chance the short bridge are the 
first to reach the nest. The short bridge receives, therefore, pheromone earlier than the 
long one and this fact increases the probability that further ants select it rather than the 
long one. Goss et al. developed a model of  the observed behavior: assuming that at a 
given moment in time 1m  ants have used the first bridge and 2m the second one, the 

probability 1p for an ant to choose the first bridge is: 

 

                                                    1
1

1 2

( )

( ) ( )

h

h h

m k
p

m k m k




  
                                        (4.3.1) 

 

   Where parameters k and h  are to be fitted to the experimental data, obviously 2 11p p  . 

Monte Carlo simulations showed a very good fit for 20k   and 2h  . 
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The model proposed by Deneubourg and co-workers for explaining the foraging behavior 
of  ants was the main source of  inspiration for the development of  ant colony 
optimization. In ACO, a number of  artificial ants build solutions to the considered 
optimization problem at hand and exchange information on the quality of  these solutions 
via a communication scheme that is reminiscent of  the one adopted by real ants. 

Different ant colony optimization algorithms have been proposed. The original ant 
colony optimization algorithm is known as Ant System and was proposed in the early 
nineties. Since then, a number of  other ACO algorithms were introduced.  

All ant colony optimization algorithms share the same idea discussed above; In the 
traveling salesman problem, a set of  cities is given and the distance between each of  them 
is known. The goal is to find the shortest tour that allows each city to be visited once and 
only once. In more formal terms, the goal is to find a Hamiltonian tour of  minimal length 
on a fully connected graph. 

In ant colony optimization, the problem is tackled by simulating a number of  artificial 
ants moving on a graph that encodes the problem itself: each vertex represents a city and 
each edge represents a connection between two cities. A variable called pheromone is 
associated with each edge and can be read and modified by ants. 

Ant colony optimization is an iterative algorithm. At each iteration, a number of  artificial 
ants are considered. Each of  them builds a solution by walking from vertex to vertex on 
the graph with the constraint of  not visiting any vertex that she has already visited in her 
walk. At each step of  the solution construction, an ant selects the following vertex to be 
visited according to a stochastic mechanism that is biased by the pheromone: when in 
vertex i , the following vertex is selected stochastically among the previously unvisited 
ones (see Fig.4.3) 

   In particular, if  j  has not been previously visited, it can be selected with a probability 
that is proportional to the pheromone associated with edge , )i j . 

   At the end of  an iteration, on the basis of  the quality of  the solutions constructed by 
the ants, the pheromone values are modified in order to bias ants in future iterations to 
construct solutions similar to the best ones previously constructed. 

(Doringo M., Stutzle T. Birattari M. (2006) "Ant Colony Optimization")   

 

Figure 4.3 An ant in city i  chooses the next city to visit via a stochastic mechanism 

The concepts of  PSO already presented allow us to build the following general Flowchart 
fig.4.4 
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Figure 4.4 Flowchart of  ant colony optimization 
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4.3.2 ACO Simplified Algorithm 

 

Initialize the system parameters 

While termination condition not met do 

    Construct Solutions 

    Apply Path Search  

    Update Pheromones 

end  

 

4.4 Application in the Studied Case 

Let us now apply the algorithms seen above on our PD controller with gravity 
compensator   

 

4.4.1 PSO Application  

First, with an pulse reference let’s calculate the two coefficients pK and vK  in 10 

iterations 

 

Figure 4.5 Pulse reference Input/Output With optimized Coefficients pK and vK  

Using PSO 
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Secondly, with an step reference let’s calculate the two coefficients pK and vK  in 10 

iterations 

 

Figure 4.6 Step reference Input/Output With optimized Coefficients pK and vK  Using 

PSO 

Finally, with a sinusoidal reference let’s calculate the two coefficients pK and vK  in 10 

iterations 

 

Figure 4.7 Sinusoidal reference Input/Output With optimized Coefficients pK and vK  

Using PSO 
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4.4.2 ACO Application  

First, with an pulse reference let’s calculate the two coefficients pK and vK  in 10 

iterations 

 

Figure 4.8 Pulse reference Input/Output With optimized Coefficients pK and vK  

Using ACO 

Secondly, with an step reference let’s calculate the two coefficients pK and vK  in 10 

iterations 

 

Figure 4.9 Step reference Input/Output With optimized Coefficients pK and vK  Using 

ACO 
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Finally, with a sinusoidal reference let’s calculate the two coefficients pK and vK  in 10 

iterations 

  

Figure 4.10 Sinusoidal reference Input/Output With optimized Coefficients pK and vK  

Using ACO 

 

4.5 Discussion of  the Obtained Results  

 

    Now that the results have been obtained, it is time to compare them. Both algorithms 
have given promising outputs, especially in the case of  a Step input where the response 
time is almost zero, the two I / O signals are superimposed almost instantaneously. In the 
case of  the Pulse, it seems that the two suffer slight interference possibly due to the 
coupling of  the two outputs; in the case of  a Sinusoidal input, the response time obtained 
thanks to ACO is more interesting. It should be emphasized however that ACO in general 
requires more iterations than the PSO of  because it advances with a fixed step; it is then 
preferable to reuse the results obtained by decreasing the step for increased precision. 

  Overall, for a rather low number of  common iterations (10), the ACO gave slightly more 
satisfactory results than the PSO. Note the capital importance of  the response time for a 
Turret Gun, especially in the case of  moving targets and taking into account the ignition 
time of  the ammunition (s). 
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Turret Gun  
Realization  

 
 
 
 
 
 
 
 
  

                 Chapter 5 
 
 
Turret Gun  
Realization 

 

 

 

 
 
 
 
 
In this chapter, we try to provide you all the necessary knowledge to realize a Tuuret 

Gun with a laser pointer, in order to clarify the work performed, it will be structered and 
decoupled into four (4) major steps: Engineering, Procurement then Construction and 
Commissioning, at each step more details are fusnished in addition to explanations and 
tricks to overcome the difficulties in moving from theory to practice, to gain time and 
materials. 
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5.1 Introduction  

 

      The life of  a project starts with the gleam in the eye, an abstract idea; to concretize it 
we need to create a project planning; its tasks are the design and organization of  a system, 
which fulfills certain requirements   under given restrictions at lowest costs.  This includes 
the selection and dimensioning of  equipment, resources and other elements, the 
connection of  these elements to performance chains and the design of  logistic networks.  
 
      The tasks of  project realization are the scheduling of  the implementation, the 
construction and manufacturing of  the system elements, the build-up of  the whole 
system, and finally the start-up and tests. Both, planning as well as realization need 
qualified project management. 
  
      Even for projects with reduced volume, it is important and even essential to develop 
a course of  action to optimize the efforts to provide, and the costs for optimal results 
while respecting the time constraints.  
 
     In this context, we cut this realization into four main parts: engineering or abstract 
conception, procurement, construction and finally commissioning, and each part will be 
discussed and explained in order to expose all the problems and difficulties encountered 
with their detailed solutions.   
 
 

5.2 Engineering and Abstract Conception  
 
   The first step is essential, it consists in inventing or innovating an idea, a concept or 
even a product, at this stage, the sketches and corrections are progressively made, taking 
into account the constraints, and possibly the materials and resources available. 
Everything must be meticulously planned, any error during this phase are reflected 
throughout the realization and can even prove to be uncorrectable, and everything must 
be redone. 
  
  For this first step and using a 3D modeling software to have an idea about the global 
steps. We have two (2) degrees of  freedom, we will need two servomotors, and we have 
chosen the following basic configuration in the Fig.5.1 
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Figure 5.1 The basic configuration chosen 
 
Then, we will opt for the following cannon fitted with a laser  
 

 
Figure 5.2.a Simplified 2D Cut of  The Cannon 
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Figure 5.2.b The 3D Cannon Configuration 
 
The final result must then have the following form  
 

 
                  

Figure 5.3 The Final 3D Model of  The Turret Gun 
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Let us now illustrate the two degrees of  freedom : 
 

 
 
                            Figure 5.4 The Illustration of  the First Degree of  Freedom  
 

 
 

Figure 5.5 The Illustration of  The Second Degree of  Freedom 
  
The above illustrations show that the final product will be fully functional, and the 
performance will be amply satisfying. 
 
5.3 Procurement : 
 
Now that we have a more precise idea, we must find the adequate materials filling the 
specificities related to the physical constraints, but also monitoring the overall budget. 
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5.3.1 The servos  
 We will use the servo MG996R 

 
 

Figure 5.6 The Dimensions of  the MG996R Servo in Millimeters (mm)  
 

   This High-Torque MG996R Digital Servo features metal gearing resulting in extra high 
10kg stalling torque in a tiny package. The MG996R is essentially an upgraded version of  
the famous MG995 servo, and features upgraded shock-proofing and a redesigned PCB 
and IC control system that make it much more accurate than its predecessor. The gearing 
and motor have also been upgraded to improve dead bandwith and centering. The unit 
comes complete with 30cm wire and 3 pin 'S' type female header connector that fits most 
receivers, including Futaba, JR, GWS, Cirrus, Blue Bird, Blue Arrow, Corona, Berg, 
Spektrum and Hitec. 
 
This high-torque standard servo can rotate approximately 120 degrees (60 in each 
direction). 
We can use any servo code, hardware or library to control these servos, so it's great for 
beginners who want to make stuff  move without building a motor controller with 
feedback & gear box, especially since it will fit in small places. The MG996R Metal Gear 
Servo also comes with a selection of  arms and hardware. 
 
Specifications 
• Weight: 55 g 
• Dimension: 40.7 x 19.7 x 42.9 mm approx. 
• Stall torque: 9.4 kgf·cm (4.8 V ), 11 kgf·cm (6 V) 
• Operating speed: 0.17 s/60º (4.8 V), 0.14 s/60º (6 V)  
• Operating voltage: 4.8 V a 7.2 V 
• Running Current 500 mA –– 900 mA (6V) 
• Stall Current 2.5 A (6V) 
• Dead band width: 5 µs 
• Stable and shock proof  double ball bearing design 
• Temperature range: 0 ºC – 55 ºC 
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Wiring 
 
 
 
 
 

 
 
 
 

Figure 5.7 Servo’s Wiring Color Code 
 
 
 
5.3.2 The Laser Diode  
Laser Output Type: Red CROSS-LINE Laser 
Dimensions: Diameter: 12mm, Lenght: 35mm. 
Weight: 15 gm. 
Wavelength: 650nm. 
Voltage: 3~6V. 
Output Power: Min 2.5mW, Typical 3.0mW, Max 5.0mW. 
Working current: Min 10mA, Typical 20mA, Max 25mA. 
Focus point Intensity can be adjusted with help of  lens ring head. 

Figure 5.8 The 5.0mW Laser Diode 
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5.3.3 The Microcontroller  
 

 
 

Figure 5.9 Arduino Uno 
 

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 
14 digital input/output pins (of  which 6 can be used as PWM outputs), 6 analog inputs, 
a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset 
button. It contains everything needed to support the microcontroller; simply connect it 
to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get 
started. The Uno differs from all preceding boards in that it does not use the FTDI USB-
to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial 
converter. 
 
Specifications: 
 
Microcontroller                         ATmega328 
 Operating Voltage                    5V  
Input Voltage (recommended)  7-12V  
Input Voltage (limits)                6-20V  
Digital I/O Pins                       14 (of  which 6 provide PWM output)  
Analog Input Pins                     6  
DC Current per I/O Pin           40 mA  
DC Current for 3.3V Pin           50 mA  
Flash Memory                            32 KB of  which 0.5 KB used by bootloader  
SRAM 2 KB EEPROM             1 KB  
Clock Speed                               16 MHz           
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5.3.4 The Solderless breadboards 
 
A modern solderless breadboard socket consists of  a perforated block of  plastic with 
numerous tin plated phosphor bronze or nickel silver alloy spring clips under the 
perforations. The clips are often called tie points or contact points. The number of  tie 
points is often given in the specification of  the breadboard. 
We will use it because it is reusable, and easier to manipulate then soldering directly the 
wires. 

 
Figure 5.10 Solderless breadboards 

 
5.3.5 Wires Alimentation and Materials  
 
We use jumper wires male to male  

 
Figure 5.11 Jumper Wires Male to Male 
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We will need three (3) 5v transformers for the both servos and the laser diode and a 9v 
transformer for the firing mechanism 
 

Figure 5.12.a 220v to 5v Alimentation 
 
We will also use a metallic Tripod for the frame 

 
Figure 5.12.b  Metallic Tripod 

 
 In addition, wood will be used for the platforms and the body of  the copper tube cannon 
on which will be mounted the laser diode. 
 

5.4 Construction 
 
   This section is the outcome of  the two precedent steps; We will use the materials to 
create concretely from the abstract plans. 
 
  In order to do that correctly, we must adapt our project to the reality to overcome the 
various constraints that physics, materials and costs impose, and we will clearly state all 
the difficulties encountered, and solutions developed. 
 
  Finally, we will mount every parts together to check that everything fits perfectly before 
the first tests, ensuring that there are no major faults, because that would make the 
commissioning phase risky.  
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5.4.1 Mounting the Servos  
 
 First will fix the servos with epoxy glue and screws to wooden boards, then using a 
longer screw, we will fix those boards to the Tripod  
 

 
Figure 5.13 The Assembly of  the Servos on Their Wooden Supports 

 
5.4.2 Cannon’s Wooden Body  
 
  In this section, we will build the wooden block that will host the cannon ,.It must be 
drilled with precautions to prevent the wood from splitting 

 
Figure 5.14 The Wooden Body of  The Cannon 

                                86



 
  

Chapter V : Tuuret Gun Realization 

 

  

5.4.3 Barrel Construction  
 
 First, let’s cut the copper tube with the right dimensions, and we will solder to it two 
copper rings with the right diameter to allow the barrel to slide while absorbing the 
recoil force 

 
Figure 5.15 The Copper Tube with Rings Soldered into it 

 
Then, we will build the firing system on which the spring will be stuck strongly using 
epoxy glue and then to the copper tube. 
 

 
Figure 5.16 The Electric Firing System 

 
We get the following result  
 
 

 
 

Figure 5.17 The Barrel with The Firing System and Recoil Absorption System 
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5.4.4 First Assembly and Paint Job 
 
  We reach the end of  the construction stage; it only remains for us to assemble all the 
parts to make sure they match perfectly. 

 
   

Figure 5.18 First Assembly of  The Project  
   
  Then we will disassemble them again, cover with adhesive the parts that should not be 
painted. 

 
 

Figure 5.19 All The Parts of  The Turret Gun Ready for Painting 
 

                                88



 
  

Chapter V : Tuuret Gun Realization 

 

  

 
 

Figure 5.20 All The Parts of  The Turret Gun Painted 
 
After the applied paint has dried, we assemble all the painted components for the tests 
that will be performed in the next phase. 

 
Figure 5.21 The Fully Functional Turret Gun 
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5.4 Commissioning 
 
  Now that the construction phase is complete, it is time to move on to testing, this step 
marks the end of  the realization, and the culmination of  the previous phases.  
 
  The commissioning is the process that ensures the proper functioning of  the final 
product, that all systems and subsystems are in perfect harmony in their operation and 
that none of  them disturbs another, to finally be able to say that the project is finished. 
 

 
 

Figure 5.22 The Turret Gun Firing Tests 
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                        General Conclusion 
 
 

 
 
n this humble work on the study of  the Turret Guns; based on an already 
existing dynamic model of  which we have best shown the stages of  
obtaining it, and relying on Classical Control of  Rigid Robot manipulators, 

we were able to obtain the expected results, in other words realizing a controller capable 
of  forcing the studied system to give the desired outputs. 
 
    Going further still to optimize this controller to the maximum, so as to leave no margin 
for error due to the strategic sensitivity represented by the setting of  such a powerful and 
modern weapon.  
 
Regarding the use of  ACO and PSO for the adaptation of  parameters of  a PD controller 
with Gravity Compensator, an introduction to the basics of  these two algorithms was 
presented. 
 
   Study of  the behavior of  the Turret Gun and its performance helped to retain the 
following results: 
 
• Evidence of  the effectiveness of  the feedback linearization. 
• PD controllers with Gravity compensator have shown more than satisfactory 
performance for the control of  our dynamic model; 
• The optimization of  the controller coefficients thanks to the two algorithms PSO and 
ACO made it possible to minimize the errors and a clear improvement of  the response 
time of  the system to the command.  
 

  This memory will allow to have a more oriented view and to imbue the precepts of  the 
Theory of  Control, especially in such interesting domain, because of  its vital importance 
for any nation worthy of  the name. 

  It is a question of  going beyond the abstract of  fascinating mathematical formulas to 
an even more breathtaking and dizzying reality that modern life is, due to all the dazzling 
advances. 
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The bibliographic study of  Fire Control allowed us to present a brief  history on the use 
of  the different forms that we had with conventional shooting weapons, and to determine 
the path they took to reach their modern forms 

  Having been able to see this synergy more closely, the outcome of  the mind when it 
meets matter, giving it life, making it bend, submitting to its will, is a privilege. 

   After having chosen the most suitable approach, the controller adapted to our case 
study and followed the progress of  these stages until the result; it was even more enriching 
to develop our prototype, which piece by piece assembled like a puzzle where each part 
played its role. 

   Experience, or rather the translation of  theory and practice, creates sparks as they 
complement each other, thwarting unexpected and mishaps. In the end, with a minimum 
of  material we put within reach of  all this achievement. 
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