LISTE DES FIGURES

Figure (1.1): Une classification des types de flammes en fonction de leur forme et de leur
mélange réactionnel10
Figure (1.2) : Schéma de la structure d'une flamme laminaire de diffusion 11
Figure (1.3) : Schéma de la structure d'une flamme laminaire prémélangée12
Figure (1.4) : Structure d'une flamme prémélangée laminaire13
Figure (1.5) : Les différents types de flammes turbulentes de prémélangées (diagramme de
Borghi)17
Figure (1.6) : Régimes de combustion turbulente prémélangée identifiés par Borghi et Destriau
(1995)
Figure (2.1) : Aperçu sur les différents modèles de turbulence
Figure (3.1) : Aperçu sur les modèles de combustion turbulente40
Figure (3.2) : Définition de la variable d'avancement 40
Figure (4.1) : Schéma de la géométrie en (mm)47
Figure (4.2) : Géométrie
Figure (4.3) : selections nommées
Figure (4.4) : Maillage grossier
Figure (4.5) : Dimensionnement du maillage
Figure (4.6) : Dimensionnement des inflations 51
Figure (4.7) : Maillage généré comportant 113069 éléments 52
Figure (4.8) : Critères de qualité des éléments 52
Figure (4.9) : Spectre de la qualité orthogonale 53
Figure (4.10) : Choix du modèle de turbulence
Figure (4.11) : les conditions aux limites pour mixture_1 et mixture_2 55
Figure (4.12) : la condition aux limites pour outlet
Figure (4.13) : la condition aux limites pour les parois
Figure (4.14) : Évolution des résidus dans le cas non réactif 57
Figure (4.15) : Accélérations du solveur obtenues à l'aide du solveur couplé pseudo-transitoire58
Figure (4.16) : Modèle de combustion
Figure (4.17) : Paramètres de la réaction chimique
Figure (4.18) : Conditions aux limites pour ϕ_1 =0.9 et ϕ_2 =0.4

Figure (4.19) : Évolution des résidus dans le cas réactif pour $\phi_2=0.4$
Figure (4.20) : Conditions aux limites pour ϕ_1 =0.9 et ϕ_2 =0.7
Figure (4.21) : Évolution des résidus dans le cas réactif pour $\phi_2=0.7$ 61
Figure (4.22) : Conditions aux limites pour $\phi_1 = \phi_2 = 0.8$
Figure (4.23) : Évolution des résidus dans le cas réactif pour $\phi_1 = \phi_2 = 0.8$
Figure (4.24) : Comparaison du champ de vitesse entre différents maillages63
Figure (5.1) : Evolution Y^+ en fonction de la position
Figure (5.2) : Représentation de la structure moyenne de l'écoulement
Figure (5.3) : Ecoulement non-réactif : champs de vitesse et lignes de courant
Figure (5.4) : Ecoulement non-réactif : champs de vitesse en m/s et lignes de courant Présentée
par : Vincent ROBIN
Figure (5.5) : Ecoulement non-réactif : champs de pression
Figure (5.6) : Ecoulement non-réactif : champs de l'énergie cinétique turbulente67
Figure (5.7) : Ecoulement non-réactif : Courbes de (a) composante de la vitesse longitudinale
et (b) énergie cinétique turbulente
Figure (5.8a) : Courbes de la composante de la vitesse longitudinale à $x/hstep=1,6770$
Figure (5.8b) : Courbes de la composante de la vitesse longitudinale à $x/hstep=8,3670$
Figure (5.9a) : Courbes de l'énergie cinétique turbulente à <i>x/hstep</i> =1,6771
Figure (5.9b) : Courbes de l'énergie cinétique turbulente à <i>x/hstep</i> =8,36
Figure (5.10): Ecoulement réactif: vecteurs vitesse pour (a) $\phi_1=0.9$ et $\phi_2=0.4$ (b) $\phi_1=0.9$ et
$\phi_2 = 0.7$ (c) $\phi_1 = \phi_2 = 0.8$
Figure (5.11) : Composante de la vitesse longitudinale moyenne de l'écoulement réactif pour
trois richesses différentes
Figure (5.12a) : Courbes comparatives de la composante de la vitesse longitudinale (courbes
de gauche) et de l'énergie cinétique turbulente (courbes de droite) à x/hstep=0 pour ϕ_1 =
<i>φ</i> ₂ =0.8
Figure (5.12b) : Courbes comparatives de la composante de la vitesse longitudinale (courbes
de gauche) et de l'énergie cinétique turbulente (courbes de droite) à x/hstep=1,67 pour ϕ_1 =
<i>φ</i> ₂ =0.8
Figure (5.13): Courbes comparatives de la composante de la vitesse longitudinale à
$x/hstep=1,67$ pour $\phi_1=0.9$ et $\phi_2=0.7$

Figure (5.14): Courbes comparatives de la composante de la vitesse long	gitudinale à
$x/hstep=1,67$ pour $\phi_1=0.9$ et $\phi_2=0.4$	79
Figure (5.15): Contour de températures de l'écoulement réactif (a) ϕ_1 =0.9 et	$\phi_2 = 0.4$ (b)
$\phi_1 = 0.9$ et $\phi_2 = 0.7 \phi_1 = \phi_2 = 0.8$	80
Figure (5.16) : Courbes comparatives des températures de l'écoulement réactif p	our les trois
cas de richesses différentes	82
Figure (5.17) : Température moyenne à <i>x/hstep</i> =1,67 pour $\phi_1 = \phi_2 = 0.8$	82
Figure (5.18) : Température moyenne à <i>x/hstep</i> = 8,36 pour $\phi_1 = \phi_2 = 0.8$	83
Figure (A.1) : Présentation des méthodes de solutions basées sur la pression	95
Figure (A.2) : Aperçu de la méthode de solution basée sur la densité	96
Figure (A.3) : Solvers Fluent	98
Figure (A.4) : Algorithme PISO	99