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thinking clean to make it simple. But it’s worth it in the end because once 
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Abstract 

The assessment of slope stability factor by a finite element analysis using the shear strength reduction method (SRM) 

is one of the most powerful methods that have been proposed as a competitive to the conventional limit equilibrium 

methods (LEM) in the last two decades 

. Although the SRM enjoys several advantages, it owns unfortunately many shortcomings. As an alternative, a new 

finite element approach called stress deviator increasing method (SDIM) is proposed in this paper. The new approach 

assesses the slope stability by incrementally increasing the mobilized principal stress deviator until the soil failure is 

reached. The incremental increasing of the factor that controls the expansion of principal stress Mohr’s circles in the 

SDIM, follows the reverse path as that of reducing factor in the SRM. The numerical procedure is based then on a 

rigorous formulation as it preserves the definition of the safety factor consistent with that of LEM and maintains the 

progressive development of the shear stress on same plane on which the shear strength will occur at failure. The 

proposed method deals with the actual material by using the real strength parameters (𝑐, 𝜙)and 𝜓 rather than those 

reduced by a factor. The results of SDIM encoded in a computer code called 𝑆4𝐷𝐼𝑁𝐴 were thoroughly assessed against 

those of both SRM and LEM.   
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Résumé  

L'évaluation du facteur de stabilité de la pente par une analyse par éléments finis en utilisant la méthode de 

réduction de la résistance au cisaillement (SRM) est l'une des méthodes les plus puissantes qui ont été proposées 

comme compétitive par rapport aux méthodes conventionnelles d'équilibre limite (LEM) au cours des deux 

dernières décennies. Bien que le SRM bénéficie de plusieurs avantages, il présente malheureusement de 

nombreuses lacunes. Comme alternative, une nouvelle approche par éléments finis appelée méthode 

d'augmentation des déviateurs de contrainte (SDIM) est proposée dans cet article. La nouvelle approche évalue 

la stabilité de la pente en augmentant progressivement le déviateur de contrainte principal mobilisé jusqu'à ce que 

la rupture du sol soit atteinte. L'augmentation incrémentielle du facteur qui contrôle l'expansion des cercles de 

Mohr de contrainte principale dans le SDIM, suit la voie inverse comme celle du facteur de réduction dans le 

SRM. La procédure numérique repose alors sur une formulation rigoureuse car elle préserve la définition du 

facteur de sécurité cohérente avec celle du LEM et maintient le développement progressif de la contrainte de 

cisaillement sur le même plan sur lequel la résistance au cisaillement se produira à la rupture. La méthode 

proposée traite du matériau réel en utilisant les paramètres de résistance réelle (c, ϕ) et ψ plutôt que ceux réduits 

d'un facteur. Les résultats du SDIM codé dans un code informatique appelé 𝑆4𝐷𝐼𝑁𝐴 ont été soigneusement 

évalués par rapport à ceux du SRM et du LEM. 

 

 

 

Mot-clé : Stabilité des pentes, Facteur de sécurité, SDIM, Déformation Plastic, 𝑆4𝐷𝐼𝑁𝐴 
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أحد أقوى الطرق  (SRM) يعد تقييم عامل استقرار المنحدر من خلال تحليل عنصر محدود باستخدام طريقة تقليل مقاومة القص

ع تتمت SRM على الرغم من أن في العقدين الماضيين. (LEM) التي تم اقتراحها على أنها منافسة لطرق توازن الحد التقليدية

 السلبيات.بالعديد من المزايا، إلا أنها تمتلك للأسف العديد من 

في هذه المقال العلمي. يقوم  (SDIM) كبديل، تم اقتراح نهج جديد للعناصر المحدودة يسمى طريقة زيادة انحراف الضغط 

ول إلى فشل ريجي حتى يتم الوصالنهج الجديد بتقييم استقرار المنحدر عن طريق زيادة انحراف الضغط الرئيسي المعبأ بشكل تد

 التربة. 

، يتبع المسار العكسي مثل عامل SDIM في Mohr الزيادة التدريجية للعامل الذي يتحكم في توسع الضغط الرئيسي لدوائر

  .SRM الاختزال في

 LEM لخاص بـيعتمد الإجراء العددي بعد ذلك على صياغة صارمة لأنها تحافظ على تعريف عامل الأمان المتسق مع ذلك ا

 ويحافظ على التطور التدريجي لضغط القص على نفس المستوى الذي ستحدث عليه مقاومة القص عند الفشل.

بدلاً من تلك التي يتم تقليلها بواسطة  ψو C، (ϕتتعامل الطريقة المقترحة مع المادة الفعلية باستخدام معلمات القوة الحقيقية ) 

 عامل. 

 .LEMو SRM بدقة مقابل نتائج كل من S ^ 4 DINA فرة في رمز كمبيوتر يسمىالمش SDIM تم تقييم نتائج
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Introduction 

The principles of slope stability, using the Finites Elements Methods (FEM) have been developed over the past 

seventy years, from which practical problems are addressed. Although the slope failure mechanism can be 

difficult to predict, the principles used in a review of the Standards of Practice are relatively straight forward. 

Slopes in soils and rocks are ubiquitous in nature and in man-made structures. Highways, dams, dikes, canals, 

and piles are built by tilting the side faces of the ground, as building slopes is usually less expensive than building 

walls. Natural forces (wind, water, snow, etc.) modify the topography of the Earth, often have unstable slopes. 

The failures of natural slopes (landslides) and artificial slopes have caused numerous deaths and destruction, 

economic losses and environmental damage. Some failures are sudden and catastrophic; others are insidious. 

Some failures are widespread; others are localized. 

Geotechnical engineers should pay special attention to geology, surface drainage, groundwater, and shear strength 

of soils when evaluating slope stability. However, we are handicapped by the geological variability of soils and 

the methods of obtaining reliable values of shear strength. Slope stability analyzes are based on simplifying 

assumptions, and the design of a stable slope relies heavily on experience and careful site investigation. 

An analysis of the stability of a slope begins with the assumption that the stability of a slope is the result of 

descending or moving (i.e. gravitational) and resistant (or ascending) forces. These forces act in equal and 

opposite directions. Resistance forces must be greater than moving forces for a slope to be stable. The relative 

stability of a slope (or its stability at a given time) is generally transmitted by geotechnical engineers through a 

safety factor Fs. And so, over the years, this factor has been found to be effective on the basis of the method used 

for its identification, but this is not always shown to be true in the results, since it is based on reducing the internal 

forces of the soil, that is, devaluation of soil conditions tends to show results that do not match the soil condition. 

OVERVIEW OF THE CHAPTERS 

The first chapter of this paper we are going to talk about the theories behind the calculation of the Ko coefficient 

of the earth at rest (in-situ-stresses). 

In the second chapter, we will be reviewing some limit equilibrium methods to calculate the factor of safety, 

hence we will be describing each method and demonstrating its formulations that lead to the calculation of the 

factor of safety. 

The third is focus in stability of slope using finite elements method, in this chapter we are going to describe these 

methods strength reduction method (SRM), gravity increasing method (GIM) and finite elements analyses 
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(FELA), and meticulously show how they function also present their formulations that are going to lead us into 

the calculation of the factor of safety. 

The fourth chapter in this paper is a review of the SDIM (STRESS DEVIATOR INCREASING METHOD) and 

computer program called S4DINA (Soil Stability Study by Stress Deviator Increasing using Numerical Analysis), 

were this method will be presented with its formulations. 

The last chapter we will be performing a parametrical studies where we are going to verify the applicability and 

functionality of the program S4DINA and SDIM, comparing this method to those from LEM (Bishops and 

Morgenstern-Price).  
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1 Introduction  

Before we make a calculation in geotechnical engineering, it is very important for us to start by determining the 

initial stresses. It is preponderant to calculate the initial stresses because generally the majority of the problems 

that we find in geotechnical engineering depend on it. The initial stresses depend on the nature, land geometry, 

geological history and the deposit conditions. 

The first researcher that proposed the expression of calculating the initial stresses was Jacky, and a part of his 

formulation was based in empiric expressions, taken from laboratory experience. The aim of this chapter is to 

present some synthesis that are going to lead us to the calculation of the initial stresses in slope. 

1.2 Theoretical determination of the pressure coefficient of the earth at rest 

The initial state of the stresses in the soil, specifically in the slopes depend on several factors such as: the geometry 

of the slope, the loading and geological history of the soil, the presence of water in the soil and the state of 

equilibrium of the slope. These factors can make it easier for us to predict how the soil on the slope will behave. 

In the case of soil masses with a horizontal surface, the principal stresses correspond to the horizontal stress and 

the vertical stress. The effective vertical stress is given by the pressure due to the weight of the earth above the 

point considered. The effective horizontal stress is more difficult to determine because it depends on both the type 

of soil and the loading history. In the presence of a mass of soil with a sloping geometry, determining the initial 

stress field becomes a problem of a high level of difficulty. 

1.3 Importance of in situ stresses 

The importance of geological and topographical setting in relation to natural slopes was the major factor for the 

understanding of soils behaviour as it leads us to more accurate predictions in such ways that today, newer 

methods are emerging and this information is the essential for their validation.  

As it has been defined the geology is the science of earth’s history, composition, and structure. This science has 

existed long before the advance of soil engineering. General surficial geology of the area includes the study of 

slopes, tributary valleys, landslides, springs and seeps, sinkholes, exposed rock section, origin of deposit, and the 

nature of unconsolidated overburden. Hence this allowed engineer to get more familiarized with the initial stress 

for natural slope design. 

With that said, topography is defined as the features of plain or region. Then for this last branch is very important 

due to its contribution into knowing the earth surfaces features with which paired with geology gives better 

mechanical parametric to work with while trying to build a numerical models for soil study in this case an earth 

slope, all this leads to point where its proved that slope stability depends upon the slope’s angle, rock and soil 

formations, evidence of past slope movement, and drainage features. 
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Geology and topography survey both play a very important role into a design of an analytical model that will 

feature all of the characteristics of the soil in place where will be implanted the slope, hence this will be governed 

by in situ stresses measurement. The slope stability depends upon the strength of the soil before excavation and 

after excavation. This induced stresses gotten after excavation are a function of the slope angle and the in situ 

stresses which existed before excavation.  

Because of the capital importance of the in situ stresses, designers of earth structures have been incorporating this 

information into their models for better predictions in such way that today a model without this parameters on it 

may not be taken in consideration for bigger projects as tunnels, underground openings, where this knowledge is 

relevant to the understanding of soil or rock behaviour which allowed operators or designers to control this 

operations choosing for each step of a project what kind of method is applicable by only regarding the in situ 

stresses. In recent years engineer have been facing serious stability problems caused by the excavations which 

leads them to give a better look into the lateral ground stresses that by the removal of the soil after an openings 

cause a lot problems, such as rock burst in rock masses or landslide in soil this have showed to engineers that 

mechanical behaviour of soil is dependent on the stresses paths and this fact is important for a proper 

understanding of the role of in situ stress in geotechnical problems. 

The numerical approach that has been built to study the stresses evolution, has led engineer into a better 

understanding of geotechnical issues due to its versatility and powerful predictions that conduct a path which in 

further development can be made in order to turn this tools more accurate regarding the studied soil. Finite 

elements have got a huge attention since it’s allowed a more complex models to be studied and accurate 

predictions over the year have been made, in such way that even this method is getting more powerful over years. 

Right before this tools for slope studies have been made in which those slopes study were based on the assumption 

in situ horizontal and vertical principal stresses. 

1.4  Soil mass with horizontal surface 

The initial stress of the ground in a slope can be a complex study bringing several aspects. For this, we will 

analyze this phenomenon more clearly, starting with the analysis of the horizontal stress of the ground at rest 

(𝑲0), which turns out to be the most common starting point. 

1.5 . Magnitude and measurement of in situ stresses  

In this chapter an initial state of stress was defined in terms of the parameter k for total stresses and the parameter 

𝐾0 for effective stresses. 

Consistent with accepted practice two important assumptions were made, namely: 
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The vertical and horizontal normal stresses at any point are principal stresses when the ground surface is 

horizontal and the vertical normal stress at any point is equal to the corresponding overburden pressure at that 

sane point. 

As we know earth structure can be tricky to assume that they are stable in long-term by that not always these 

assumption can be taken as grated to a good stabilization since the tectonics movements can cause a variation of 

the orientation of the principal normal stresses both vertical and horizontal so its kind  unpredictable. Again it 

may sometimes be inaccurate to assume the vertical normal stress to be equal to the overburden pressure 

particularly in rock masses. Where the sloping ground with a given uniform inclination to the horizontal, the 

description stresses which is considered in some. For the present let us consider the magnitude of initial stresses 

based on assumption considered above. 

1.6. Definition of the coefficient of earths pressure at rest 𝑲𝟎 

𝐾0 is the ratio of the initial and vertical stresses given by the vertical and horizontal stress equations (1.1). This 

coefficient depends on the characteristics of the soil and in some cases, on the history of the stresses to which the 

massif is subjected. 

In 1962 researchers Bishop and Henkel added that the coefficient of rest also depends on the type of soil and the 

degree of saturation to the list of factors that influence the state of the initial stresses. The resting earth pressure 

coefficient 𝑲0 could also be related to the history of deformations and to the microstructure of the soil.  

𝑲0 =
𝝈’𝐡0

𝝈’𝒗0
                                                   (1.1) 

1.7. Expressions of the coefficient of earths pressure at rest 𝑲𝟎 

Many researchers in this field have been interested in the determination of the pressure coefficient of earths at 

rest by the development of theories and empirical, semi-empirical or analytical formulas based on the analysis of 

the stress state of a pressure of ground. The various formulas proposed are linked to certain intrinsic parameters 

of the soil and can be classified as follows: 

- Soil loading history (normally consolidated or over-consolidated); 

- The nature of the soil (clay, sand, etc.); 

- The loading and unloading conditions. 

The different methods of determining the pressure coefficient of the earth at rest are classified according to their 

loading history, which can be compared to the geological history of the site. 
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1.8 . Loading conditions 

Jacky (1944) in this way theoretically studied the stability of a massif with the Mohr-Coulomb criterion and 

established the value of the ratio of horizontal stresses e of vertical stresses at limit equilibrium he obtained: 

𝑲0 =
𝟏−𝒔𝒊𝒏𝝋

𝟏+𝒄𝒐𝒔𝝋
(𝟏 +

𝟐

𝟑
𝒔𝒊𝒏𝝋’)                                   (1.2) 

This expression is usually simplified and we use the following approximate formula, called 

Jaky's formula (1944) (1.7): 

𝑲0 =1-sinφ’                                                    (1.3) 

Jaky's formula applies to normally consolidated soils without restriction due to their nature (sand, silt, clay, etc.). 

Hendron (1963), with theoretical considerations drawn from the assembly of quartz spheres, 

He arrived at an expression relating the pressure coefficient of the earth at rest to the coefficient of 

Friction (f) between quartz spheres (1.8). The expression is applicable only to sands, which are normally 

consolidated sands. 

𝑲𝟎 = (
𝟏−𝒇

𝟐(𝟏+𝒇)
)                                                    (1.4) 

The expression of the coefficient of friction f (1.9), taken from the work of Thurston and Deresiewicz (1959), 

allows to express the pressure coefficient of the earths at rest Ko exclusively as a function of the angle of internal 

friction (1 .10). 

sinφ=
𝟏

𝟑
.

𝟒

𝟗
√𝟔𝒇                                                             (1.5) 

Brooker and Ireland (1965), after comparison with experimental data from a series of tests on 5 clays (tested with 

the oedometer), made a slight readjustment on Jaky's formula (1.7). Indeed, they consider the simplified Jaky 

equation more suited to granular soils and propose a slightly modified expression (1.11) for cohesive soils. 

𝑲0 = 0.95-sinφ’                                           (1.6) 

Although the equation of Brooker and Ireland (1965) seems close to the simplified equation of 

Jaky, it is, by calculation, closer to its first formulation (1.6) than to the formula 

Simplified by Jaky (1.7). (Figure 1.4) 

This finding would certainly explain this slight modification to the Jaky equation. 

Schmidt (1966) revises the formula proposed by Brooker and Ireland (1965) (1.11) because they judge the 

experimental data of the tests on the 5 clays “reasonably better represented” by the new expression (1.12): 

Ko≈ 1 − 𝐬𝐢𝐧(1.2𝛗’)                                      (1.7) 

Bishop (1948) refers to the degree of mobilization of the angle of internal friction. He finds, 

Through his experiments, the higher the porosity, the lower the mobilized friction angle and consequently the 

value of 𝑲0 may be suspected of increasing. 
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1.9. Unloading conditions  

Unloading corresponds to the action of reducing the loads placed on the ground, in this way by reducing the 

vertical stress, it also causes a decrease in horizontal stress. 

The study carried out by researcher Schmidt in 1967 on loading and unloading revealed a correspondence between 

the last point of the loading curve and the first point of the unloading curve. The pressure coefficient of the earth 

at rest during unloading 𝑲0 at the start of unloading is therefore the same as that of the soil normally consolidated 

during loading (𝑲0). 

Hendron's expression (1.14) links coefficient of earths pressure at rest 𝐾0 in unloading (𝑲0), with: 

- The ratio                                                                            
𝝈𝒗𝒎𝒂𝒙

𝝈𝒗
                                        (1.8) 

1.10.  Over-consolidated soil 

Over-consolidation is a phenomenon that is mainly noted in clay soils. An over-consolidated clay is a normally 

consolidated clay which, having undergone an important loading during its history, is found discharged by a 

geological (or other) mechanism. The earth pressure coefficient 𝑲0 can also be obtained in the laboratory during 

a compression test which simulates the conditions under which the sample was located in the soil. These 

conditions are characterized by the total vertical stress in place and by zero lateral strains. The tests are triaxial 

drained tests with zero lateral strain or oedometric tests with measurement of the lateral stress (Serratrice and 

Flavigny, 1993). The vertical stress applied to the specimen varies so as to simulate the loadings and successive 

discharges undergone by the soil during its history. 

1.11. Isotropic linear elasticity 

The soil being a three-phase material, it was necessary to facilitate the study by the formulation of the isotropic 

linear environment where we have the same deformation in all directions, because this phenomenon does not 

correspond to reality, but it brings us closer to analytical values with which we can easily work, the pressure 

coefficient of the earths at rest can be associated with the Poisson's ratio by the equation (1.4). 

                                                                 𝑲0 =
𝐯

1−𝐯
                                                                   (1.9) 

Where v is the Poisson's ratio of the soil. It is the same for the expressions deduced from the more complex 

constitutive laws, like laws of elastoplastic type. 

(1.4) is easily demonstrated by using an oedometric condition 

σ= 𝛔𝟏 = 𝝀𝒕𝒓𝜺𝜹 + 𝟐𝝁 (
𝜺𝒂
𝟎
𝟎

)                                     (1.9) 

                                                              σ1= 𝝀𝜺𝒂 + 𝟐𝝁𝜺                                                       (1.9.1) 
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                                    σ3=λεa       ⟹
𝝈𝟑

𝝈𝟏
 =

𝝀

𝝀+𝟐𝝁
=

𝑬𝝂

(𝟏+𝝂)(𝟏−𝟐𝝂)
 

𝟏
𝑬𝝂

(𝟏+𝝂)(𝟏−𝟐𝝂)
+

𝑬

(𝟏+𝝂)

                     (1.9.2) 

                                  ⇒ 
𝝈𝟑

𝝈𝟏
=

𝑬𝝂

(𝟏+𝝂)(𝟏−𝟐𝝂)
 

𝟏
𝑬

𝟏+𝝂
(𝟏+

𝝂

(𝟏−𝟐𝝂)
)
 

𝑬𝝂

(𝟏−𝝂)(𝟏−𝟐𝝂)
 

𝟏+𝝂

𝑬(
𝟏−𝝂

𝟏−𝟐𝝂
)
                            (1.9.3) 

                                                                     ⇒ 
𝝈𝟑

𝝈𝟏
=

𝝂

𝟏−𝝂
                                                     (1.9.4) 

The stresses σ3 and σ1 can be assimilated to the vertical and horizontal stresses because of the weight of the 

ground  𝝈′𝒗0 and 𝝈′𝒉0 already exposed on equation. By substituting the stresses σ3 and σ1 by the stresses  𝝈′𝒗0 

and  𝝈′𝒉0, we obtain the equation (1.4). 

 

Figure 1 1 Soil sample under oedometric conditions. 

This clearly shows that the weakness of this formulation is shown by the fact that we are forced to consider the 

elastic behavior . Which does not express the reality of the soil. 

1.12. INITIAL STRESSES IN SLOPING GROUND  

As the concept given by Taylor to conjugate stresses for uniform natural slopes by considering a small element 

or point at depth z below the surface of the slope of a uniform β (where β is the slope angle), such case gives a 

total stress on planes parallel to the slope that it’s called 𝝈𝜷  and the total stress on planes parallel to the slope that 

will act in vertical direction and is burden above the element. This stresses can are given as: 

                                       𝝈𝒗 = 𝜸𝒛𝒄𝒐𝒔𝜷                              𝝈𝜷 = 𝒌𝜸𝒛𝒄𝒐𝒔𝜷                        (1.10) 

These stresses are not normal stresses but have both shear and normal components. Therefore consideration of an 

effective stress ratio such as 𝒌𝟎 requires care. However where β =0. Therefore the description of K as a conjugate 

stress ratio which becomes a total stress ratio for   β =0 is quite adequate.  When pore water pressure is zero k 

becomes the effective principal stress ratio 𝒌𝟎 when β=0 as showed in the figure 
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 Figure 1 2 stresses within a long uniform natural slope (a) conjugate stresses (b) normal and shear stresses on 

an element (c) stresses on a plane at any arbitrary inclination. 

Considering the stresses components in the X-Z plane we have the from  (1.4.1) two normal stresses and a shear stresses 

(Fig 1.2.1 b) 

𝝈𝒛 = 𝜸𝒛 (𝟏 + 𝒔𝒊𝒏𝟐𝜷)   

𝝈𝒙 = 𝑲𝜸𝒛 𝒄𝒐𝒔𝟐𝜷   

𝝉𝒙𝒛 = 𝑲𝜸𝒛  𝒔𝒊𝒏𝟐𝜷 𝒄𝒐𝒔𝜷  
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Conclusion  

In this chapter we analyze the contributing factors for the provision of studies of slope stabilization, where running 

on about some researches made in this topic. with which we came to the conclusion that the stabilization of these 

structures is only possible if we observe some details or information of the terrain under study (in-situ stresses, 

whiten we can make accurate predictions on soils behavior these component/parameters of soil have huge impact 

in short and long term stabilization  to mention parameters such as the coefficient of earth pressure at rest, which 

should be the starting point through which we cannot pass over if the study of the existing pressures on the soil 

depend on this factor. and when talking about sloping ground this task is very complex, to make this task more 

accessible the finite elements guarantee that we can carry out the analyzes. in the next chapters we will delve into 

this last aspect. It’s important to calculate the initial stresses in geotechnical engineering before we go forward 

with other calculations. 

Iinitial stresses are the masterpieces of finite element method (FEM) specially speaking about slope stability, 

because we need them for the medialization, norther than less the soil coefficient of soil at rest is one of the first 

most important feature to look for, since this can be easily calculated by using the method illustrated in this chapter 

for the horizontal surfaces, while for sloping ground any effort must be taken and carefully analysed by Finite 

elements methods that will be showed in later chapters. By this time we know that soil behaviour can be mastered 

by knowing the exact in-situ stresses. We also realised that the initial stresses have an influence in the 

development of plastic deformation. 
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CHAPTER II 

LIMIT EQUILIBRIUM METHODS FOR 

DETERMINING THE FACTOR OF SAFETY 
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2.1.1 Introduction 

Over the years, several methods have been developed for solving slope stability problems, one of which has been 

the adoption of a security value that allows the structure to be in equilibrium, either due to internal forces or to 

external forces that will be exerted on it. This value has seen over the years several methods created in order to 

achieve good security results. So the factor of safety counts with tens of equilibrium method for its determination. 

This chapter will be devoted to some of the methods for determining the safety factor: 

2.2.1 Fellenius method 

Fellenius in 1927 proposed a method limited to circular slip surfaces or in general, he assumes that the forces 

between slices can be neglected, because they are parallel to the bases of the slices. This method doesn’t take in 

consideration the Newton's principle of equality of action and reaction, however, he suggests that the resultant of 

the forces acting on each slice is zero in the normal direction. See figure 1noting that he considered that each 

slices is independent of each other’s. So the balance of forces in projection on the normal to the slip line is 

considered to be:  

𝑵𝒊 = 𝑾𝒊 𝒄𝒐𝒔𝜶𝒊                                                           (2.1) 

And also for the global equilibrium of moments what can be found directly by the expression of F will be given 

as a result: 

𝑭 =  
𝟏

∑ 𝑾𝒊𝒔𝒊𝒏𝜶𝒊
[∑ 𝑾𝒊𝒄𝒐𝒔𝜶𝒊𝒕𝒈𝝋𝒊 + 𝑪𝒊

𝒃𝒊

𝒄𝒐𝒔𝜶𝒊

𝒏
𝟏 ]                                             (2.2) 

 

Figure 2 1 Illustration of the Fellenius method. 

 

We notice that the equation making it possible to define F is the same as that given by the method of Bishop for 

a circular slip line but the normal forces 𝑁𝑖 have a different expression, c which leads to a different allocation of 

constraints based on slices. 

The security expression determined by the Fellenius method is often used as the basis values for the iterations 

necessary to find the value of F by the Bishop method. 

Note: 

If the medium is purely coherent (𝜑 = 0). 
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In this case the efforts (𝑹𝒊 = 𝑵𝒊) all passing through the center of the slip circle, for methods using this type of 

slip line give:  

𝑭 =  
𝟏

∑ 𝑾𝒊𝒔𝒊𝒏𝜶𝒊
[∑

𝑪𝒊𝒃𝒊

𝒄𝒐𝒔𝜶𝒊
]                                                   (2.3) 

If we consider the medium as homogeneous.  𝛾 Constant and b= 𝑏𝑖  (slice width) constant 

∑ 𝑾𝒊𝒔𝒊𝒏𝜶𝒊 =  ∑ 𝜸 𝒉 𝒃𝒊𝒔𝒊𝒏𝜶𝒊 

𝑪

𝜸𝑯
[

∑𝟏
𝒄𝒐𝒔𝜶𝒊

⁄

∑
𝒉𝒊𝒔𝒊𝒏𝜶𝒊

𝑯

] =  𝑵𝒔 
𝑪

𝜸𝑯
                                              (2.4) 

From where: 𝑁𝑠 depends only on the geometry of the slope it is independent of the mechanical characteristics of 

the medium (to be compared to the formula of Taylor). 

 

This methods gives lower safety factors - imprecise for flat slopes with high pore pressures; only for circular 

sliding surfaces; assume that the normal force on the basis of each slice is W cosα; an equation (moment of 

equilibrium of the whole mass), an unknown (safety factor). 

 

2.3.1 Bishop's method 

This is a method of calculating circular slip. Bishop assumed that the safety factor is constant along the sliding 

surface. This method was first presented in 1955. In this case where the slip line is circular, the vertical equilibrium 

is written as follows: 

∑ {(𝑽𝒊 − 𝑽𝒊+𝟏)𝒏
𝒊=𝟏  [

𝒔𝒊𝒏𝜶𝒊−
𝒕𝒈𝝋𝒊

𝑭
𝒄𝒐𝒔𝜶𝒊

𝒄𝒐𝒔𝜶𝒊+
𝒕𝒈𝝋𝒊

𝑭
𝒔𝒊𝒏𝜶𝒊

]}                                 (2.5.1) 

∑ {(𝑾𝒊 −
𝑪𝒊𝒃𝒊

𝑭
𝒕𝒈𝜶𝒊)

𝒏
𝒊=𝟏 [

𝒔𝒊𝒏𝜶𝒊−
𝒕𝒈𝝋𝒊

𝑭
𝒄𝒐𝒔𝜶𝒊

𝒄𝒐𝒔𝜶𝒊+
𝒕𝒈𝝋𝒊

𝑭
𝒔𝒊𝒏𝜶𝒊

] −  
𝑪𝒊𝒃𝒊

𝑭
 }            (2.5.2) 

 

And so this system can be solved by equilibrium equations. 

- - n balances relating to the balance of the tranches 

- - n equations relating to ‘horizontal balance of the slices 

- - the global moment equation. 

For the following unknowns: 

- 𝑁𝑖 : let n values 

- (𝑉𝑖 − 𝑉𝑖+1): n values also 

- 𝐹: Unkown 

This method is Precise only for circular sliding surfaces; satisfies the vertical balance and overall balance of the 

moment; assumes that the lateral forces on the slices are horizontal; N + 1 equations and unknowns 
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2.4.1 Bishop's Method Simplified 

Due to the great difficulty in implementing the detailed method, Bishop made additional assumptions to make the 

application of his method more affordable. He therefore assumed that for everything i,(𝑉𝑖 + 𝑉𝑖+1) = 0 which is 

equivalent to considering only horizontal inter-slice forces. And the safety coefficient is obtained by iterating the 

equation (2.6): 

𝑭 =
𝟏

∑ 𝑾𝒊𝒔𝒊𝒏𝜶𝒊
[∑ [

𝑪𝒊𝒃𝒊

𝒄𝒐𝒔𝜶𝒊
+ 𝒕𝒈𝝋𝒊 [[

𝑾𝒊+(𝑽𝒊+𝑽𝒊+𝟏)−𝑪𝒊
𝒃𝒊
𝑭

𝒕𝒈𝜶𝒊

𝒎𝒂
]]                          (2.6) 

Note, however, that we do not verify all the equations of statics since we are satisfied with: 

- n equations relating to the vertical balance of each slice 

- The equation of the global moment F or the unknowns that its normal forces N and the safety factor F 

We therefore do not check the horizontal balance of the slices or the balance of moments for each slice. 

This method is the most used and which gives results very similar to the detailed method. 

Precise method; only for circular sliding surfaces; satisfies the vertical balance and overall balance of the moment; 

assumes that the lateral forces on the slices are horizontal; N + 1 equations and unknowns. 

2.5.1 Janbu’s Method 

This method was developed to respond to the moments when the sliding surface deviates too much from the non-

circular shape, Janbu's (1954-1957) proposes to consider the force and the equilibrium moment of a typical 

vertical slice and the force of 'balance of all the slipped mass. 

 

Figure 2.2 Illustration of the Janbu’s method. 

Horizontal equilibrium gives us F: 

𝑭 =
∑ 𝒃𝒊𝑺𝒊

𝟏

𝒄𝒐𝒔𝜶𝒊
𝟐

∑(𝑾𝒊∆𝑽𝒊)𝒕𝒈𝜶𝒊
                                                          (2.7) 

With 

𝑺𝒊 =
𝑪𝒊+

𝑾𝒊+∆𝑽𝒊
𝒃𝒊

𝒕𝒈𝝋𝒊

𝟏+
𝒕𝒈𝜶𝒊𝒕𝒈𝝋𝒊

𝑭

                                                    (2.8) 
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The forces inter trances can be calculated by the following equilibrium equations: 

𝑯𝒊 − 𝑯𝒊+𝟏 = ∆𝑯𝒊 = (𝑾𝒊 + ∆𝑽𝒊)𝒕𝒈𝜶𝒊 −
𝑺𝒊𝒃𝒊

𝑭
 

𝟏

𝒄𝒐𝒔𝜶𝒊
𝟐                               (2.9) 

𝑽𝒊 = −𝑯𝒊𝒕𝒈𝜶𝒊𝒕 + 𝒉𝒊𝒕
∆𝑯𝒊

𝒃𝒊
                                                                (2.10) 

In which 

- ∆𝐻𝑖 : is the difference of the normal forces alongside two successive slices, 

- ∆𝑉𝑖  : is the difference of the forces parallel to the sides of two successive slices, 

- 𝛼𝑖𝑡 , ℎ 𝑖𝑡 : define the direction and position of the push line.  

Using equations 1.3, while proceeding section by section, allows us to obtain the force values 𝐻𝑖 and 𝑉𝑖 of all 

slices. 

This method satisfies all equilibrium conditions: applicable to any form of sliding surface; assumes heights of 

lateral forces above the base of the slice (varying from slice to slice); digital convergence problems more frequent 

than some other methods; precise method; Equations and unknowns 3N. 

2.6.1 Spencer’s method 

Spencer to consider inter-slices efforts as parallel to each other; that is to say: 

𝑽𝒊

𝑯𝒊
= 𝒕𝒈𝜽𝒊 = 𝝀                                                      (2.11) 

𝜆 Is a parameter to be determined: the method is this time again exact for this 𝜃𝑖 must be between the angle of 

the slope β and the angle αi what does the base of slice i do with the horizontal. 

 

Figure 2.3 Illustration of Spencer's method. 

Qi represents the result of inter-unit forces. It makes an angle equal to (α-θ) with the base of the slice i. 

We will find:                                     𝑻𝒊 =
𝑪𝟏

𝑭

𝒃𝒊

𝒄𝒐𝒔𝜶𝒊
+ 𝑵𝒊

𝒕𝒈𝝋𝒊

𝑭
                             (2.12)    

At equilibrium, the projection of forces parallel to the base of the slice gives: 

𝑻𝒊 − 𝑸𝒊 𝐜𝐨𝐬(𝜶𝒊 − 𝜽𝒊) − 𝑾𝒊𝒔𝒊𝒏𝜶𝒊 = 𝟎                                    (2.13) 
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In the same way the projection of the forces on the normal at this base: 

𝑵𝒊 − 𝑸𝒊 𝐬𝐢𝐧(𝜶𝒊 − 𝜽𝒊) − 𝑾𝒊𝒄𝒐𝒔𝜶𝒊 = 𝟎                         (2.14) 

Let us replace Ti by its value. So we Gets: 

𝑪𝟏

𝑭

𝒃𝒊

𝒄𝒐𝒔𝜶𝒊
+ 𝑵𝒊

𝒕𝒈𝝋𝒊

𝑭
− 𝑸

𝒊
𝐬𝐢𝐧(𝜶𝒊 − 𝜽𝒊) − 𝑾𝒊𝒄𝒐𝒔𝜶𝒊 = 𝟎                   (2.15) 

Soit 

𝑪𝟏

𝒃𝒊

𝒄𝒐𝒔𝜶𝒊
+ 𝑵𝒊

𝒕𝒈𝝋𝒊

𝑭
− 𝑭 𝑸

𝒊
𝐬𝐢𝐧(𝜶𝒊 − 𝜽𝒊) − 𝑭 𝑾𝒊𝒄𝒐𝒔𝜶𝒊 = 𝟎 

𝑵𝒊 − 𝑸𝒊 𝐬𝐢𝐧(𝜶𝒊 − 𝜽𝒊) − 𝑾𝒊𝒄𝒐𝒔𝜶𝒊 = 𝟎                                                   (2.15.1) 

By << eliminating >> 𝑁𝑖 between these two expressions we can calculate Q 

𝑸 =

𝑪𝒊𝒃𝒊
𝑭𝒄𝒐𝒔𝜶𝒊

+
𝒕𝒈𝝋𝒊

𝑭
𝑾𝒊𝒄𝒐𝒔𝜶𝒊−𝑾𝒊𝒔𝒊𝒏𝜶𝒊

𝐜𝐨𝐬 (𝜶−𝜽)[𝟏+
𝒕𝒈𝝋𝒊

𝑭
𝒕𝒈(𝜶−𝜽)]

                                              ( 2.16) 

We must multiply the primary equation by - 𝑡𝑔𝜑   and add up                                                                   

At this moment it is considered that the forces outside the slope are in equilibrium, then the vector sum of the 

inter-slice forces must be zero. What gives us: 

∑ 𝑸𝒊 𝐜𝐨𝐬 𝜽𝒊 = 𝟎 

                                                                                                                          (2.17) 

∑ 𝑸𝒊 𝐬𝐢𝐧 𝜽𝒊 = 𝟎 

So if the sum of the moments of the external forces with respect to a center of rotation is zero, then the sum of 

the moments of the inter-slice forces with respect to this center must also be zero. What gives us: 

∑ 𝑸𝒊 𝑹 𝐜𝐨𝐬(𝜶𝒊 − 𝜽𝒊) = 𝟎                                             (2.18) 

If we admit that the sliding surface is circular and R is the radius (therefore R = a constant) the preceding equation 

can be written:  

                ∑ 𝑸𝒊 𝐜𝐨𝐬(𝜶𝒊 − 𝜽𝒊) = 𝟎                                             (2.19)    

For a given problem, the equations must be solved (2.17 and 2.19.). 

Spencer considers the inter-slice efforts to be parallel to each other, that is to say θ= constant equation 2.17 reduces 

to: 

∑ 𝑸𝒊 = 𝟎 

So we go to solving only two equations instead of three. 

 This method satisfies all equilibrium conditions: applicable to any form of sliding surface; assumes that the 

inclinations of the lateral forces are the same for each slice; lateral force inclination is calculated in the solution 

process so that all conditions for equilibrium is satisfied; Precise method; Equations and unknowns 3N. 
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∑ 𝑸𝒊 𝐜𝐨𝐬 𝜽𝒊 = 𝟎 

∑ 𝑸𝒊 𝐬𝐢𝐧 𝜽𝒊 = 𝟎 

∑ 𝑸𝒊 = 𝟎 

2.7.1 Method of Lowe and Karafiath  

Lowe and Karafiath assume that the inter-slice forces are tilted at an angle equal to the average of the ground 

surface and the base angles of the slices. This simplification leaves (4n-1) unknowns and does not satisfy the 

moment equilibrium. 

Usually the most accurate of the balance of power methods; applicable to any form of sliding surface; suppose 

that the inclinations of the lateral forces are average of the slope surface and sliding surface (varying from one 

slice to another); satisfies the vertical and horizontal force balance; 2N equations and unknowns. 

2.8.1 Morgenstern and Price's Method 

The method employed by Morgenstern and Price (1965) is similar to Spencer's method except that it assumes that 

the inclination of the inter-slice forces can vary by an arbitrary function f (x) and this method also satisfies both 

forces and moments (Fig.2.3). 

Assume Spencer's equation: 

𝑽𝒊

𝑯𝒊
= 𝒕𝒈𝜽𝒊 = 𝝀                                                       (2.20) 

So for Morgenstern and Price (1965) based on this same equation added to this a function of forces as a sequence: 

𝑽𝒊

𝑯𝒊
= 𝒕𝒈𝜽𝒊 = 𝝀𝒇(𝒙𝒊)                                              (2.21) 

Θ being the angle made by the resulting inter-slice force with respect to the horizontal. 

By choosing the function f (x) beforehand, we obtain (n-1) additional equation and a parameter to be determined. 

The problem is therefore statically determined with (4n-1) equation for (4n-1) unknowns. This method poses big 

problems of numerical computation at the level of the convergence of the safety factor. 

This method Satisfies all equilibrium conditions: its applicable to any form of sliding surface; assumes that the 

inclinations of the lateral forces follow a prescribed pattern, called f (x); side the inclinations of force may be the 

same or may vary from one slice to another; lateral force tilts are calculated in the solution process so that all 

conditions for equilibrium is satisfied; precise method; Equations and unknowns 3N. 
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Conclusion 

In conclusion, we can say the Bishops and Morgenstern-Price methods are the most used in the practice of 

engineering, because they give us precise results and with the minimum of parameters to be determined. They are 

applicable to any form of sliding surface. Both methods are the most used because of their accuracy results since 

they both give very close value of factor of safety. This makes it easier to analyze the factor of safety and gives 

us some security that other methods do not provide. Also these methods are easy to work with. 

In principle, the stability of excavation slopes should be evaluated for both the end-of-construction and the long-

term conditions. The long-term condition is usually critical. The stability of an excavated slope decreases with 

time after construction as pore water pressures increase and the soils within the slope swell and become weaker. 

As a result, the critical condition for stability of excavated slopes is normally the long-term condition, when 

increase in pore water pressure and swelling and weakening of soils is complete. If the materials by which the 

excavation is made are so highly permeable that these changes occur completely as construction proceeds, the 

end-of-construction and the long-term conditions are the same. These considerations lead to the conclusion that 

an excavation that would be stable in the long-term condition would also be stable at the end of construction. This  

methods help designer to get good results which the stabilization can be satisfied, but these methods have the 

drawbacks since they cannot give the designer a precision of the slide line for stresses path of the proposed studied 

and they tend to weakening the soil in order to get the  smallest factor of safety. In the next chapters this matter 

will be covered and we will be presenting the new proposed method that deals with actually soil parameters.    
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CHAPTER III 

STABILITY OF SLOPES BY THE FINITE ELEMENT 

METHOD 
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3.1.1 Introduction  

The majority of slope stability analyses performed in practice still use traditional limit equilibrium, involving the 

methods of slices that during many years were unchangeable. This changed when Wittman and Bailey set a criteria of 

emerging methods to become readily to engineers. 

The Finite Element method represents a very powerful approaches that is alternative for slope stability analyses which 

is accurate, versatile and requires fewer assumptions, especially, regarding the failure mechanism. Slope failure in finite 

element model occurs naturally through the zones in which the shear strength of the soil is insufficient to resist the shear 

stresses. In this chapter we will see some methods that are used in finite element method (Strength Reduction Method, 

Gravity loading and Finite Element limit Analysis). 

 

3.1.2 The Strength Reduction Method (SRM) 

 

The principle behind the shear strength reduction technique, which was proposed in finite element slope stability 

analysis it consists in reducing   c and φ until the slope failure occurs, in which slope failure is defined as the 

fracture shear strain develops from the toe at the top of the slope. The overall factor of safety for a slope can be 

determined as the ratio of the total shear strength along the failure surface of a slope to the total shear stress along 

the same failure surface, in general the factor of security it can be determined as the ratio of the total shear stress 

along the same failure surface is expressed: 

                                              𝑭𝑶𝑺𝒐𝒗𝒆𝒓𝒂𝒍𝒍 =
∫(𝒄+𝝈𝒎 𝐭𝐚𝐧 𝝓) 𝒅𝒍

∫ 𝝉𝒎𝒅𝒍
                                             (3.1) 

where 𝜎𝑚 and 𝜏𝑚 are respectively the mobilized normal and shear stresses and 𝑑𝑙 is the differential arc length. If 

the failure surface is known a priori, the conventional way of the application of the finite element analysis is able 

to compute the FOS of equation (3.1) which represents the global factor of safety of the entire slope. At various 

points along the failure surface, a local factor of safety can be defined: 

      𝑭𝑶𝑺𝒍𝒐𝒄𝒂𝒍 =
𝝉𝒇

𝝉𝒎                                                              (3.2) 

Where  𝜏𝑓 is the shear strength and 𝜏𝑚 is the mobilized shear stress at the same point along the potential failure 

surface (Pasternak and Gao 1988).  

 Since there is no predefined failure surface in the finite element method, the scalar of expression (3.2) can be 

regarded at any arbitrary point from the discretized medium as the ultimate value of a trial factor given by the 

following equation: 

            𝑭𝑻𝒓𝒊𝒂𝒍 =
𝝉𝒇

𝝉𝑻𝒓𝒊𝒂𝒍                                                          (3.3)             

Where  𝜏𝑇𝑟𝑖𝑎𝑙  is any arbitrary shear stress located between 𝜏𝑚 and 𝜏𝑓, which tends to 𝜏𝑚 when       𝐹𝑇𝑟𝑖𝑎𝑙 tends 

to 𝐹𝑂𝑆𝑙𝑜𝑐𝑎𝑙. As the strength reduction method was originally proposed in conjunction with Mohr-Coulomb failure 
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criterion (Figure 1), the factor 𝐹𝑇𝑟𝑖𝑎𝑙 termed strength reduction factor can geometrically satisfy the following 

equation: 

                                                                 𝑭𝑻𝒓𝒊𝒂𝒍 =
𝒄

𝒄𝑻𝒓𝒊𝒂𝒍 =
𝒕𝒂𝒏 𝝓

𝒕𝒂𝒏 𝝓𝑻𝒓𝒊𝒂𝒍                                          (3.4)           

  Where 𝑐 and 𝜙 are the effective soil strength parameters. Trial values for strength parameters can be determined 

by: 

                                                          𝒄𝑻𝒓𝒊𝒂𝒍 =
𝒄

𝑭𝑻𝒓𝒊𝒂𝒍   and   𝝓𝑻𝒓𝒊𝒂𝒍 = 𝐚𝐫𝐜𝐭𝐚𝐧 (
𝐭𝐚𝐧 𝝓

𝑭𝑻𝒓𝒊𝒂𝒍)           (3.5) 

The search of the slope stability factor by the strength reduction technique consists of reducing progressively the 

original soil strength parameters namely 𝑐 and 𝜙 by increasing  𝐹𝑇𝑟𝑖𝑎𝑙 according to the equations (3.5). When 

𝐹𝑇𝑟𝑖𝑎𝑙 is gradually increased, at a certain number of stress points (Gauss points in this paper), the failure envelope 

becomes tangential to their stress Mohr’s circles. At this stage, plastic states are established at these stress points 

but the global convergence of the iterative process is still occurring. Here the ratio of shear strength to the 

mobilized shear stress previously defined by the equation (3.2),  is called the stress-point based factor of safety 

𝐹𝑂𝑆𝑆𝑅𝑀
𝑠𝑝

 and determined within the scope of the SRM as : 

𝑭𝑻𝒓𝒊𝒂𝒍 = 𝑭𝑶𝑺𝑺𝑹𝑴
𝒔𝒑

=
𝝉𝒇

𝝉𝑺𝑹𝑴
𝒎                                                        (3.6) 

𝐹𝑂𝑆𝑆𝑅𝑀
𝑠𝑝

 is in fact a local factor of safety as previously stated. By further increasing of 𝐹𝑇𝑟𝑖𝑎𝑙, when the stresses 

equilibrium can no longer be established by a sudden substantial changes in displacements or by a connection of 

plastic shear band, the soil collapse is said to occur and then, the reached value of 𝐹𝑇𝑟𝑖𝑎𝑙 is the value of the global 

soil stability factor 𝐹𝑂𝑆𝑆𝑅𝑀. Consequently, 𝐹𝑂𝑆𝑆𝑅𝑀 can neither be represented geometrically nor it can be 

quantified analytically as it is evaluated in the global sense. It can be seen as the stress-point based factor of safety 

𝐹𝑂𝑆𝑆𝑅𝑀
𝑠𝑝

 of the last stress point that triggered the failure mechanism. 

Had it not been to the linearity of Mohr-Coulomb failure envelope, the  𝐹𝑇𝑟𝑖𝑎𝑙 would never be considered as a 

factor of safety 𝐹𝑂𝑆𝑆𝑅𝑀 when the rotated failure line becomes tangential to the in-situ stress Mohr’s circles. 

3.1.3 The SRM Drawbacks 

Although, many researchers confirmed the deviation of 𝐹𝑂𝑆𝑆𝑅𝑀 from 𝐹𝑂𝑆𝐿𝐸𝑀  in many slope configurations, a 

research study which seriously criticized the SRM had not been found in the literature and unfortunately always 

the LEM which had been incriminated for lack of accuracy. In the author’s opinion, the SRM has its inherent 

drawbacks: 
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According to the theory of slip lines, it is generally accepted that the soil failure occurs at an inclination of an 

angle Γ (=
𝜋

2
+

𝜙

2
), with respect to the major principal stresses directions (Figure 3.1). In order to define an 

accurate expression for the slope stability factor, it is mandatory to evaluate both the mobilized shear stress 

necessary for the slope equilibrium and the available shear strength on the same slip surface. For simplicity and 

for a better illustration, let’s consider a stress point in a cohesion less medium (𝑐 = 0) where the stress state is 

defined by its effective principal stresses 𝜎1
0 and 𝜎3

0, which are respectively the major and minor principal stresses 

illustrated by Figure 3. Taking into account the inclination (
𝜋

2
+

𝜙

2
), the mobilized shear and normal stresses are 

respectively 𝜏𝑎𝑐
𝑚  and 𝜎𝑎𝑐

𝑚  and are indicated by the segments 𝑎𝑏̅̅ ̅ and 𝑜𝑎̅̅ ̅ on Figure 3 (the subscript 𝑎𝑐 stands for the 

accurate value). Obviously, the available shear strength corresponding to 𝜎𝑎𝑐
𝑚  is 𝜏𝑎𝑐

𝑓
 and it is indicated by the 

segment 𝑎𝑑̅̅̅̅  on Figure 3. In this situation, the stress-point based factor of safety is 𝐹𝑂𝑆𝑎𝑐
𝑠𝑝

= 𝜏𝑎𝑐
𝑓

𝜏𝑎𝑐
𝑚 = 𝑎𝑑̅̅̅̅ 𝑎𝑏̅̅ ̅⁄⁄ . 

However, the failure envelope in its pivoting process (around point o in Figure 3) for reducing strength, defines 

an inaccurate pair of stresses when it becomes tangent to the mobilized principal stresses Mohr’ circle 𝑐1. These 

stresses which are 𝜏𝑆𝑅𝑀
𝑚  and 𝜎𝑆𝑅𝑀

𝑚  and indicated respectively by the segments 𝑒𝑓̅̅ ̅ and 𝑜𝑒̅̅ ̅ on Figure 3, act on a 

surface inclined by angle Δ (=
𝜋

2
+

𝜙𝑇𝑟𝑖𝑎𝑙

2
) with respect to the directions of the mobilized principal stresses. As 

the angle Δ differs from the angle Γ, a different value of shear strength corresponds to 𝜎𝑆𝑅𝑀
𝑚  . This shear strength  

𝜏𝑆𝑅𝑀
𝑓

 is indicated by the segment 𝑒𝑔̅̅̅̅  and consequently the stress point-based factor of safety is evaluated as 

𝜏𝑚 

𝜏𝑓 

𝑦 

𝑥 

𝜋

4
−

𝜙

2
 𝜎1

0 

𝜎3
0 

𝜎𝑥 

𝜎𝑦 

𝜏𝑥𝑦 

Potential slip 

line  

𝜎1
0 

𝜎3
0 

Figure 3. 1 Stress state in a sloping ground and orientation of principal stresses with respect to the slip line.  

Djillali Amar Bouzid- Finite Element Analysis of a Slope Stability by Incrementally Increasing the Mobilized 
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𝐹𝑂𝑆𝑆𝑅𝑀
𝑠𝑝

= 𝜏𝑆𝑅𝑀
𝑓

𝜏𝑆𝑅𝑀
𝑚 = 𝑒𝑔̅̅̅̅ 𝑒𝑓̅̅ ̅⁄⁄ . A close inspection of the Figure 3 and using some geometrical simple rules, it 

is easy to see that: 

         𝐹𝑂𝑆𝑆𝑅𝑀
𝑠𝑝

=
𝑒𝑔̅̅̅̅

𝑒𝑓̅̅̅̅
=

𝑎𝑑̅̅ ̅̅

𝑎𝑐̅̅̅̅
<

𝑎𝑑̅̅ ̅̅

𝑎𝑏̅̅ ̅̅
= 𝐹𝑂𝑆𝑎𝑐

𝑠𝑝
                                         (3.7)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2 State of stresses at a given stress point from the modeled medium. (Djillali Amar Bouzid- Finite Element 

Analysis of a Slope Stability by Incrementally Increasing the Mobilized Principal Stress Deviator. https://orcid.org/0000-

0003-2991-6533) 

The equation (3.7) holds true because 𝑎𝑐̅̅ ̅ is greater than 𝑎𝑏̅̅ ̅ regardless the value of the internal friction angle 

𝜙 as long as it differs from zero. For purely cohesive materials the two stress point-based factors of safety 

become equal as we will see next. The author can conclude that the SRM slightly underestimates the factor of 

safety. This underestimation gets bigger when the internal friction angle gets larger and the cohesion gets 

smaller. 

During the whole deformation process of a material obeying Mohr-coulomb’s yield criterion the inequality 

sin 𝜙 ≥ 1 − 2𝜈 (where 𝜈 is the material Poisson’s ratio) must be satisfied. If this condition (termed the 𝜙 − 𝜈 

condition) is violated, abnormal zones of plastic strains appear and are overestimated (Zheng et al. 2005). By 

reducing 𝑐 and tan 𝜙, while keeping 𝜈 invariant, the 𝜙 − 𝜈 condition is violated at a certain deformation step. 

At that moment, plastic strains might happen in depth and consequently inaccurate values for 𝐹𝑂𝑆 𝑆𝑅𝑀 are 

obtained. 

In order to overcome this and to satisfy the 𝜙 − 𝜈 condition within the prescribed values of the reducing factor, 

Zheng et al. (2005) proposed to reduce the Poisson’s ratio according to the trial value of the internal friction angle:  

𝜏𝑇𝑟𝑖𝑎𝑙 = 𝜎 tan 𝜙𝑇𝑟𝑖𝑎𝑙 
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       𝜈𝑇𝑟𝑖𝑎𝑙 =
1

2
[1 − (

sin 𝜙𝑇𝑟𝑖𝑎𝑙

𝛽
)]  where 𝛽 =

sin 𝜙

1−2𝜈
                                   (3.8) 

By doing so, one of the most important deformation parameter 𝜈 is affected and consequently the elastic stress-

strain relationships are affected either. This may lead to inaccurate slope shape configurations. Furthermore, this 

would have not only implications on the deformation process but on the plastic deformations either, since they 

depend on the value of pseudo time which relies in turn on 𝜈. 

In general, a non-associated flow rule with a dilatancy angle 𝜓 smaller than 𝜙 is adopted in the SRM. By applying 

the SRM to a problem of earth pressure, Nordal 2008 showed that this may result in numerical instabilities with 

no clear illustration the collapse mechanism. Furthermore, Krabenhoft et al. 2012 observed that the failure surface 

tends to deviate towards the boundaries rather than remaining on the usual path from slope toe to its top. To 

overcome this situation in the case of an associated plasticity, Tschuchnigg et al. 2015 proposed to reduce the 

angle of dilatancy the same way the two other strength properties are reduced, but in the non-associated flow rule, 

the angle 𝜓  is kept constant as long as it is smaller than 𝜙𝑇𝑟𝑖𝑎𝑙. However, once 𝜙 falls to the value of 𝜓 both are 

reduced simultaneously. This solution has been proposed without providing any solid justification, showing that 

the SRM suffers from the plastic flow rule. 

Computational speed and time can be an issue; Requires more material input parameters; Deformation properties, 

elasto-plastic stress-strain behaviour; Requires more numerical modelling expertise than is commonly taught to 

geotechnical engineers; Inexperience with the method; Definition of instability of solution; Definition of 

convergence can be result of numerical instability (and not physical instability); Sensitivity or probabilistic 

analysis is time consuming. 

3.1.4 Advantages of the SRM 

With passing time, the SRM becomes a confirmed tool for slope stability assessment, not only in the academia 

but even in geotechnical engineering practice. In this regard, Griffiths and Lane 1999, pointed out that the SRM 

should be considered as a powerful alternative to the traditional LEM. This widespread use is probably due to the 

following advantages:  

1. The SRM is applicable to complicated geometries with complex boundary and loading conditions. 

2. No assumption needs to be made in advance about the critical failure surface. The latter occurs 

‘naturally’ through the zones within the soil in which the shear strength is unable to sustain the applied 

shear stresses. 

3. Since it is formulated on the displacement-based FE analysis, the SRM is able to provide information 

about the parameters such as displacements, strains and stresses from the initial positions up to the 

threshold of failure.  

4. The SRM has gained popularity and consequently has been implemented in many geotechnical 

engineering codes such as PLAXIS (PLAXIS 2004). 



41 | P a g e  
 

5. Accounts for various material stress-strain behaviour. 

 

3.2.1 Gravity Increase Method (GI) 
The gravity increase method keeps the shear strength parameters unchanged. In this methodology, gravitational 

acceleration is gradually adjusted until the slope it reaches the critical failure state. At this point, the ratio of the 

applied gravitational acceleration to the standard gravitational acceleration is safety factor of the slope. 

Similarly, the gravity increase method can be achieved by adjusting the density of rock and soil masses with the 

gravitational acceleration kept unchanged. 

The analysis of stability by the gravity increase method assumes the external forces increase due to increasing 

gravity g and the equilibrium solution satisfying equation, can no longer be obtained. Monotonically increasing 

gravity brings external forces on the edge of stability when the strength of the soil is reached. 

Gravity increases according to the formula: 

𝒈 = 𝒈. 𝒕                                                                                          ( 3.9) 

              

Where: 

g - A prescribed vector specifying the direction of gravity loading and its rate of Increase with time, and t is a 

parametric time variable. 

Prescribed in this manner, gravitational acceleration vector g(t) increases and the limit analysis problem reduces 

simply to finding the largest time t = 𝑡𝑙𝑖𝑚𝑖𝑡  for which a global equilibrium solution  exists. The limiting 

acceleration due to gravity in the system is then: 

𝐠𝐥𝐢𝐦𝐢𝐭 = 𝐠. 𝐭𝐥𝐢𝐦𝐢𝐭                              (3.10) 

The present work applies gravity in a single increment to an initially stress-free slope. Others have shown that 

under elastic conditions, sequential loading in the form of incremental gravity application or embanking, affects 

strains but not stresses (Clough and Woodward, 1967). In nonlinear analyzes, it is recognized that the stress paths 

followed due to sequential excavation may be quite different from those followed under a gravity "turn on" 

procedure; however, the safety factor appears unchanged when using single elasto-plastic models (Borja et al. 

1989; Smith & Griffiths, 1998). 

In comparing our results with limiting equilibrium solutions which generally ignore sequence loading, experience 

has shown that the predicted safety factor is insensitive to the form of application of gravity when using the 

elastic-perfectly plastic Mohr-Coulomb models. 

The factor of safety can be sensitive to sequence loading when implementing more complex constitutive laws, 

such as those that attempt to accurately reproduce volumetric changes in an undrained or partially drained 

environment. For example, Hicks and Wong (1988) showed that an efficient stress trajectory could have a great 

influence on the safety factor of an undrained slope. 
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3.2.2 Determination of the factor of safety 

The factor of safety (FOS) of soil slope is defined here as the factor by which the original shear strength 

parameters must be divided in order to bring the slope to the point of failure. The factored shear strength 

parameters Cf and φf, are therefore given by: 

𝐂𝐟 =
𝐂

𝑭𝑻𝒓𝒊𝒂𝒍    
                                                             (3.11) 

𝛗𝐟 = 𝐚𝐫𝐜𝐭𝐠(
𝐭𝐚𝐧𝜙

𝑭𝑻𝒓𝒊𝒂𝒍  
)                                                  (3.12) 

Where SRF is a strength reduction factor, this method is referred to as the shear strength reduction technique  and 

allows for the interesting option of applying different strength reduction factors to the c’  and tanφ’ terms. In this 

method however, the same factor is always applied to both terms. To find the “true” factor of safety is necessary 

to initiate a systematic search for the value of SRF that will just cause the slope to fail. When this value has been 

found, FOS=SRF. 

This definition of factor of safety it is the same as that used in traditional limit equilibrium methods, namely the 

ratio of restoring to driving moments. 

Since gravitational loading induces slope failure, the gravity-based factor of safety against slope failure is given 

by: 

𝑭𝒔𝒈𝒊 =
𝒈𝒍𝒊𝒎𝒊𝒕

𝒈𝒂𝒄𝒕𝒖𝒂𝒍
                                   (3.13) 

Where: 

𝑔𝑎𝑐𝑡𝑢𝑎𝑙  – Representative actual acceleration due to gravity in the slope analysed, i.e. 9.81 m/s2. 

The value of the safety factor is greater than unity for a stable slope. The higher value of safety factor, the more 

stable the slope it is. 

It has been found that a good measure of slope safety is to associate 𝑔𝑙𝑖𝑚𝑖𝑡  with the abrupt increase of acoustic 

emission rate or a dramatic increase in the nodal displacement within the elements.  

 

3.2.3 Drawbacks (GIM) 

The gravity increase method (GIM) has an inherent defect that may result in an incorrectly calculated safety of 

factor or result in a failure to obtain the expected outcome. 

In this study, the error source of GIM was quantitatively analyzed through theoretical derivation to address this 

problem. Hence, the modified gravity increase method (MGIM), which can eliminate the error in GIM, was 

developed by adding a correction factor to the friction angle during the gravity increase procedure. The MGIM 

was comparatively studied by applying the GIM, shear strength reduction method, and MGIM to homogeneous 
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slope models under different dimensions, and an ACADS (Australian computer Aided design society) test was 

introduced to validate the applicability of the MGIM to heterogeneous slopes. The analyses proved that the MGIM 

does not have the inherent defect present in the GIM, and can provide accurate results in the stability analysis of 

both homogeneous slope and heterogeneous slopes with various slopes angle height. Finally, the MGIM and GIM 

were applied to the numerical analysis of a geotechnical centrifugal model test of a soil slope. The results indicate 

that MGIM is capable of capturing the deformation and failure characteristics of geotechnical centrifugal test of 

soil slopes. 

3.3.1 Finite element methods for slopes 

3.3.2 Brief description of the finite element model 

The parameters needed to draw Soil model 

Table 3 1 Soil Parametric.  

φ´ Friction Angle 

c´ cohesion 

ψ´  Dilatancy Angle  

E´ Young Modulus  

ν´ Poisson ratio  

γ´ Volumic weight 

 

The angle of expansion ψ affects the change in soil volume during yield. It is well known that the actual volume 

change exhibited by a soil during yield is quite variable. For example, a medium-dense material during shear 

might initially exhibit some decrease in volume (ψ´ <0), followed by an expanding phase (ψ´ <.0), eventually 

leading to yield under constant volume conditions (ψ´ = 0). Clearly, this kind of detailed volumetry modeling 

goes beyond the perfectly plastic model elasticity used in this study, where a constant expansion angle is involved. 

The question then arises as to which value to use. If ψ´ = φ´, then the plasticity rule is “associated” and direct 

with the theorems of classical plasticity can be done. This is also the case where when the flow rule is associated, 

the stress and velocity characteristics coincide, so more agreement can be expected between the failure 

mechanisms predicted by the finite elements and critical failure surfaces generated by the equilibrium limit 

methods. Despite these potential advantages of using an associated flow rule, it is also well known that flow rules 

associated with friction soil models predict much greater expansion than ever observed in reality. This in turn 

results in an increase in the prediction failure load, especially in problems like load bearing capacity (Griffiths, 

1982). This shortcoming has led some of the most successful constituent soil models to incorporate non-associated 

plasticity elements (Molenkamp, 1981; Hicks & Boughrarou, 1998). 
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The analysis of slope stability is relatively unconfirmed, so the choice of the expansion angle is less important. 

Since the main objective of the present study is accurate prediction of slope safety factors, a compromise value 

of ψ = 0, corresponding to a non-associated flow rule with zero volume change during yield, was used throughout. 

Throughout this article. It will be shown that this value of ψ´ allows model to provide reliable safety factors and 

reasonable indication of the location and shape of potential failure surfaces. The parameters c´ and φ´ refer to the 

angle efficiency of cohesion and friction of the soil. Although a number of failure criteria have been suggested to 

model soil strength (Griffiths, 1990), the Mohr-Coulomb criterion remains one of the most widely used in 

geotechnical practice. In terms of principal stresses and assuming a compression by convention of negative sign, 

the criterion can be written as follows: 

𝑭 = (
𝝈´𝟏+𝝈´𝟑

𝟐
)sin φ´- (

𝝈´𝟏−𝝈´𝟑

𝟐
)- c´cos φ´                                   (3.14) 

Where 𝜎´1 𝑎𝑛𝑑  𝜎´3 are the main and minor effective constraints. 

The failure function F can be interpreted as follows: 

F <0 stresses inside the failure envelope (elastic) 

F = 0 emphasizes the envelope of failure (efficiency) 

F> 0 requests outside the failure envelope (assignor and must be redistributed) 

The elastic parameters E´ and ν´ refer to Young's modulus and Poisson's ratio of the soil. The value of Young's 

modulus can be related to the compressibility of the soil measured in a one-dimensional oedometer (Lambe & 

Whitman, 1969): 

𝑬´ =
(𝟏+𝛎´)(𝟏−𝟐𝛎´)

𝒎𝒗(𝟏−𝛎´)
                                                      (3.15) 

Where 𝑚𝑣 is the coefficient of volume compressibility.      

Although the actual values given to the elastic parameters have a profound influence on the deformations 

calculated before failure, they have little influence on the factor of safety expected in the analysis of slope stability. 

Thus, in the absence of meaningful data for E´ and ν´ they can be given nominal values. 

The total unit weight ã assigned to the soil is proportional to the nodal self-weight loads generated by gravity. 

In summary, the most important parameters in the FE slope stability analysis are the same as they would be in a 

traditional approach, namely, the total unit weight ã, the shear strength parameters c´ and φ´ and the geometry of 

the problem. 

3.4.1 Finite Elements Limit Analysis (FELA) 

The finite element code is used for all the displacement finite element analyzes discussed in this part. It is well 

known that the type of element, the discretization of the mesh and the convergence tolerances have a pronounced 

influence on the safety factor obtained from the finite element method by displacement. Therefore, the influence 

of these parameters was minimized by the use of high order elements (Sloan & Randolph, 1982), fine meshes and 
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tight tolerances. In the finite element code, the safety factor is obtained through the reduction of resistance method 

(SRM); in other words, an analysis is carried out with properties of resistance mobilized for the angle of friction 

φ and the cohesion c, followed by a progressive decrease of tanφ and c (assuming a Mohr - Coulomb failure 

criterion). 

This results in stress states which violate the resistance criterion which are iteratively solved using the same stress 

point algorithm used for a standard elastoplastic in a numerical calculation, leading to a redistribution of the 

stresses in the system up to that balance can no longer be established and failure is achieved. However, careful 

inspection of the failure mechanisms and movement of the checkpoints is necessary to avoid misinterpretation. It 

should be noted that this procedure only works for simple failure criteria such as Mohr - Coulomb. If the force is 

a function of state variables, e.g. density, a more complex algorithm is required, as pointed out by Potts & 

Zdravkovic (2012). In fact, it is one of the objectives of this part to show that the simple resistance reduction 

procedure works for classical failure criteria by comparing it with rigorous limit analysis solutions. The safety 

factor (denoted Fs) obtained from the procedure is defined by: 

𝑭𝒔 =
𝒕𝒂𝒏𝛗’

𝒕𝒂𝒏𝛗’𝒎𝒐𝒅𝒊𝒇𝒊𝒆
=

𝒄’

𝒄’𝒎𝒐𝒅𝒊𝒇𝒊𝒆
                                              (3.14) 

Where  

This is the effective cohesion, φ ’is the effective friction angle. 

One issue that needs to be addressed in moving finite element analysis of failure is the definition of the flow rule. 

Typically, a flow rule not associated with dilatancy angle "less than friction angle" is used, but this can lead to 

numerical instability without a clear indication of the failure mechanism. This problem has been studied by Nordal 

(2008) in the context of a land pressure problem. When using finite element structured meshes with an 

unassociated flow rule, it has been observed that the failure surface tends to propagate along the element 

boundaries (Krabbenhoft et al. 2012). This is accompanied by strong oscillations of the resulting safety factor 

during the resistance reduction procedure, which is the consequence of a non-unique failure mechanism, thus 

making it difficult (or in some cases, even impossible) to set a value. unique for that quantity. In the finite element 

code used in this study the flow rule in the force reduction procedure is treated as follows: for the associated 

plasticity, the dilatancy the angle ψ´ is gradually reduced in the same way as the friction angle φ, while for the 

case not associated with ψ '<φ', ψ 'are kept constant as long as the reduced value for φ', is greater than ψ '. Once 

φ ’drops to the value of ψ’, the two are then reduced simultaneously in subsequent iterations. This is only relevant 

in the following for analyzes under drained conditions, where extreme cases have been rather than using values 

based on proof experiments. Undrained analyzes are usually performed with 

 ψ ’= 0. 

To model unassociated plasticity in limit analysis, Davis (1968) suggested the use of reduced resistance 

parameters, c * and, in combination with an associated flux rule of the form 

𝐜 ∗=  𝛃. 𝐜´                                                                    (3.15) 
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𝐭𝐚𝐧𝛗´ = 𝛃. 𝐭𝐚𝐧𝛗´                                                        ( 3.16) 

Where                                             𝛃 =
𝐜𝐨𝐬𝛙´.𝐜𝐨𝐬𝛗´

𝟏−𝐬𝐢𝐧𝛙´.𝐬𝐢𝐧𝛗´
                                                              (3.17) 

Thus, in what follows, all analyzes referred to as Davis approach have c and as input parameters. Davis argued 

that the flux rule will have no influence on the ultimate limiting load unless the problem is kinematic stress, and 

only for these situations should his approach be applied. As discussed by Sloan (2013), however, it is not 

straightforward to identify such cases in practice, but it is generally accepted that in slope stability analysis, the 

flow rule should not significantly influence on the calculated safety factor (Cheng et al., 2007). This hypothesis 

will be studied later, where it will prove doubtful for steep slopes with high friction angles. 

 

3.4.2 Safety factor obtained from finite element analysis 

The upper and lower limit theorems of plasticity are powerful tools for predicting the stability of geotechnical 

problems. Finite element formulations of these theorems have developed significantly over the past two decades, 

and it is now possible to apply them to a wide variety of complex engineering problems. 

Finite element analysis is particularly powerful when upper bound and lower bound estimates are calculated of 

the true collapse load (for the idealized material) is in upper and lower brackets. The difference between the two 

bounds then provides an exact measure of the error in the solution, and can be used to refine the meshes until a 

sufficiently accurate estimate of the collapse load is found. These formulations used in this game come from the 

methods originally developed by Sloan (1988, 1989) and Sloan & Kleeman (1995), and further improved by 

Lyamin & Sloan (2002a, 2002b) and Krabbenhoft et al. (2005, 2007). A detailed description of the formulation 

of the FELA methods used in this article, including the process of adaptive mesh refinement and resistance 

reduction, is given in Sloan (2013). If a load-based safety factor is desired, which is defined as the ratio of the 

limit load to the actual load, the solution can be obtained from a single pair of lower bound analyzes. However, 

if the safety factor is to be expressed in terms of material strength, which is defined as the ratio of the strength of 

the mobilized material to the actual strength of the material, a strength reduction process should be performed as 

described in Sloan (2013). This involves several analyzes of the upper and lower limits, each with resistance 

parameters. Once a state is found where the calculated collapse of the load matches the actual applied load, the 

limit resistance parameters are derived. 

3.4.1 Comparison of SRM and FELA methods and their advantages 

Finite element analysis provides lower limits of the factor of safety and can therefore estimate the error in the 

solution (for the idealized material adopted). Because displacement finite element analysis is increasingly used to 

calculate safety factors by means of the resistance reduction technique (SRFEA), results from this are compared 

with those from FELA in order to prove that resistance reduction techniques can be applied in practice. This was 

found to be the case by comparing the results for slope stability and tunnel face issues when adopting an associated 
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flow rule, a limit analysis assumption. In SFREA, we would hardly have adopted an associated flow rule; 

however, the influence of the expansion angle on the calculated safety factors obtained from SRFEA is considered 

minor for the slope stability problems. Although this is true in many cases, it has been shown in this article that 

for high friction angles (.408) and steep slopes with low safety coefficient, this is no longer the case and the flux 

rule can have a significant influence on the result. Importantly, these cases also lead to instabilities, precise 

determination of the influence of the difficult flow rule. It was therefore investigated whether the approach 

suggested by Davis (1968), which modifies the resistance parameters to account for plasticity’s but performs the 

analysis as an associated one, can be recommended. Although it is possible because the assumptions are on the 

safe side, this approach can give estimates of the factor of safety that might be considered conservative. Further 

investigations are currently underway to overcome this problem of reliably identifying the factor of safety by 

means of SRFEA involving unassociated flow. Finally, it was emphasized that care should be taken when 

comparing the safety factors obtained and analyzing the total stress for undrained conditions. 
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Conclusion 

In this chapter we presented the Strength Reduction Method, Gravity Increase method and Finite Element Limit 

Analysis, as we can see in the project we made some comparisons between some methods the analytical results. 

The location of the critical slip plane of a slope is accurately determined by using the finite element analysis. 

Unlike the traditional methods, finite element method does not require an arbitrary partitioning of the critical 

surface selection prior to calculations. 

Finite-element limit analysis provides rigorous upper and lower bounds on the factor of safety and can therefore 

estimate the error in the solution (for the idealized material adopted). Because displacement finite-element 

analysis is increasingly used to calculate factors of safety by means of the strength reduction technique (SRM), 

results from this method are compared with those from FELA in order to prove that strength reduction techniques 

can be safely applied in practice. This has been shown to be the case by comparing the results for slope stability 

problems when adopting an associated flow rule, an intrinsic assumption of limit analysis. In SFREA one would 

hardly adopt an associated flow rule; however, the influence of the dilatancy angle on the calculated factors of 

safety obtained from SRFEA is considered to be minor for slope stability problems. Although true in many cases, 

it has been shown in this chapter that for high friction angles and steep slopes with low factors of safety, this is 

no longer the case and the flow rule may have a significant influence on the results. Importantly, these cases also 

lead to numerical instabilities, making an accurate determination of influence of the flow rule difficult. It has 

therefore been investigated whether the approach suggested by Davis (1968). 
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CHAPTER IV 

FINITE ELEMENT ANALYSIS OF A SLOPE STABILITY BY 

INCREMENTALLY INCREASING THE MOBILIZED 

PRINCIPAL STRESS DEVIATOR. 
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 4. Introduction 

In this section we will introduce the method that was created by Amar Bouzid, to solve slope stability problems 

by the means of finite elements. Hence this chapter will be a full undercover of the method called SDIM and will 

also be presenting the computational procedure of the programme created to validate this method called S4DINA. 

All features of the programme will be displayed graphical in order to make the reviewer follow the step by step 

process that will occur during the slope analysis using this Method and Program. 

As announced by the author the new approach assesses the slope stability by incrementally increasing the 

mobilized principal stress deviator until the soil failure is reached. The gradual increasing of the factor controls 

the expansion of principal stress Mohr’s circles in the SDIM. The numerical procedure is based then on a rigorous 

formulation as it preserves the definition of the safety factor consistent with that of LEM and maintains the 

progressive development of the shear stress on same plane on which the shear strength will occur at failure. The 

proposed method deals with the actual material by using the real strength parameters (𝑐, 𝜙) and 𝜓 rather than 

those reduced by a factor. 

4.1 . New method for the slope stability analysis: Increasing of the mobilized principal stress 

deviator  

Naturally, the slope stability failure takes place because of the variation of effective stresses due to an increasing 

in applied surcharge loading or pore pressure for instance.  

In order to keep the concept the stress level and the local factor of safety consistent, and consequently preserving 

either the mobilized normal stress 𝜎𝑚  and slip orientation identical at equilibrium and at failure state, the 

mobilized Mohr’s circle is brought on the verge of failure by maintaining the tangential line at the level of 𝜎𝑚 

parallel to the failure envelope (Figure 4.1). This is cannot be carried out by rotating the failure envelope about a 

fixed point, but however, by translating this line parallel to its original position. 

Initially at any point of the discretized medium (stress or Gauss point in the FEM jargon), the major and the minor 

effective principal stresses are respectively 𝜎1
0 and 𝜎3

0. These stresses may result from the soil self-weight only 

or the combination of the latter with any applied loading on the slope crest. The mobilized stress pairs acting on 

the plane making an angle (
𝜋

4
+

𝜙

2
) with the major principal direction, are (𝜎𝑚 ,  𝜏𝑚) and (𝜎𝑚 , 𝜏𝑇𝑟𝑖𝑎𝑙) (Figure 4) 

corresponding respectively to the initial situation and to any intermediate situation before failure. This plane 

becomes the plane of failure when the initial Mohr’s circle reaches the failure envelope at the end of the process,  

The new idea behind this method was inspired from the concept Rankine (1857) used when he developed the 

theory of lateral earth pressures against a retaining wall. By allowing the latter to move far away or against the 

retained soil, the major principal stress was kept constant while the minor principal stress was allowed to increase 

progressively by the fact of the wall movement, to reach finally its ultimate value. By this way, Rankine developed 

his theory for the two earth pressures states (active and passive). In Rankine’s problem there was a unique stress 
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path, however in a slope stability problem, both principal stresses change and consequently an infinite number of 

stress paths may be followed. Two important key elements may enable us to reduce all the possibilities to only 

one. Firstly, and according to the original definition of the safety factor, the shear strength or the mobilized shear 

stress correspond to same mobilized normal stress (𝜎𝑚) at any point in the discretized medium. Secondly, the 

shear stress corresponding to the mobilized normal stress occurs on the same plane, which becomes for the 

ultimate Mohr’s circle, the sliding plane. 

The objective of the following derivation is to explain the numerical procedure leading to the definition of a 

stress point-based factor of safety 𝐹𝑂𝑆𝑆𝐷𝐼𝑀
𝑠𝑝

 within the present method called Stress (Deviator Increasing Method 

(SDIM). The overall slope safety factor 𝐹𝑂𝑆𝑆𝐷𝐼𝑀 obviously depends on the precision of 𝐹𝑂𝑆𝑆𝐷𝐼𝑀
𝑠𝑝

 in every stress 

point but its value is determined by the global slope failure.) 

The idea is then, to expand the initial principal stresses Mohr’s circle in such a way that the segment (𝑂0𝑖) 

remains parallel to the corresponding segment in the subsequent Mohr’s circles (𝑂𝑡𝑡) (Figure 4.1), ensuring that 

both mobilized shear stress 𝜏𝑚 and trial shear stress 𝜏𝑇𝑟𝑖𝑎𝑙 occur on the same sliding plane and holding the 

definition of the factor of safety in terms of shear stresses satisfied. In these conditions, and assuming a 

compression-positive sign convention, the major principal stress should be increased and the minor principal 

stress should be decreased. The new set of stresses is: 

𝝈𝟏
𝑻𝒓𝒊𝒂𝒍 = 𝝈𝟏

𝟎 + 𝚫𝝈𝟏
𝑻𝒓𝒊𝒂𝒍 = 𝝈𝟏

𝟎 (𝟏 +
𝚫𝝈𝟏

𝑻𝒓𝒊𝒂𝒍

𝝈𝟏
𝟎 ) = 𝑨𝑻𝒓𝒊𝒂𝒍𝝈𝟏

𝟎                     (4.1) 

𝝈𝟑
𝑻𝒓𝒊𝒂𝒍 = 𝝈𝟑

𝟎 − 𝚫𝝈𝟑
𝑻𝒓𝒊𝒂𝒍 = 𝝈𝟑

𝟎 (𝟏 −
𝚫𝝈𝟑

𝑻𝒓𝒊𝒂𝒍

𝝈𝟑
𝟎 ) = 𝑩𝑻𝒓𝒊𝒂𝒍𝝈𝟑

𝟎                     (4.2) 

The determination of 𝑨𝑻𝒓𝒊𝒂𝒍 = (𝟏 +
𝚫𝝈𝟏

𝑻𝒓𝒊𝒂𝒍

𝝈𝟏
𝟎 ) and 𝑩𝑻𝒓𝒊𝒂𝒍 = (𝟏 −

𝚫𝝈𝟑
𝑻𝒓𝒊𝒂𝒍

𝝈𝟑
𝟎 ) are the key elements in the method of 

increasing the sress deviator. 

The magnitude of expansion, that is the rate of 𝜎1
0 increasing and the rate of 𝜎3

0 decreasing is controlled by 𝐹𝑇𝑟𝑖𝑎𝑙 . 

This factor called here the Mohr’s circle expansion factor, is defined as the ratio of shear stress magnitudes by:  

𝑭𝑻𝒓𝒊𝒂𝒍 =
𝝉𝑻𝒓𝒊𝒂𝒍

𝝉𝑺𝑫𝑰𝑴
𝒎                                                                            (4.3) 

Where  𝜏𝑆𝐷𝐼𝑀
𝑚  is the mobilized shear stress and 𝜏𝑇𝑟𝑖𝑎𝑙  is any shear stress between in-situ and failure states. If 

𝐷0 and 𝑆0 stand respectively for the in-situ principal stresses deviator and principal stresses sum, they can be 

defined at any point from the analyzed continuum as:  

                                                       𝑫𝟎 = 𝝈𝟏
𝟎 − 𝝈𝟑

𝟎  and 𝑺𝟎 = 𝝈𝟏
𝟎 + 𝝈𝟑

𝟎                                 (4.3) 

Using Mohr’s circles radii, 𝐹𝑇𝑟𝑖𝑎𝑙 can be written as: 

                                                          𝑭𝑻𝒓𝒊𝒂𝒍 =
𝑨𝑻𝒓𝒊𝒂𝒍𝝈𝟏

𝟎−𝑩𝑻𝒓𝒊𝒂𝒍𝝈𝟑
𝟎

𝟐
𝑫𝟎
𝟐

                                     (4.4) 

The equation (4.4) becomes: 
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                         𝑨𝑻𝒓𝒊𝒂𝒍𝝈𝟏
𝟎 − 𝑩𝑻𝒓𝒊𝒂𝒍𝝈𝟑

𝟎 = 𝑭𝑻𝒓𝒊𝒂𝒍𝑫𝟎                                    (4.5) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1 Evolution of principal stresses in the Stress Deviator Increasing Method (SDIM). (Djillali Amar Bouzid- 

Finite Element Analysis of a Slope Stability by Incrementally Increasing the Mobilized Principal Stress Deviator. 

https://orcid.org/0000-0003-2991-6533). 

 

Since the factor 𝐹𝑇𝑟𝑖𝑎𝑙 is increased, its ultimate value corresponds to the factor of safety 𝐹𝑂𝑆𝑆𝐷𝐼𝑀
𝑠𝑝

 and hence the 

increased major principal stress 𝐴𝑇𝑟𝑖𝑎𝑙𝜎1
0 and the decreased minor principal stress 𝐵𝑇𝑟𝑖𝑎𝑙𝜎3

0 reach respectively the 

failure stresses 𝜎1
𝑓
 and  𝜎3

𝑓
. 

From Figure (4.1), 𝐹𝑇𝑟𝑖𝑎𝑙 is also defined as:  

                  𝑭𝑻𝒓𝒊𝒂𝒍 =
𝒎 𝑶𝒕

𝒎 𝑶𝟎
=

𝑨𝑻𝒓𝒊𝒂𝒍𝝈𝟏
𝟎+𝑩𝑻𝒓𝒊𝒂𝒍𝝈𝟑

𝟎

𝟐
−𝝈𝒎

𝑺𝟎
𝟐

−𝝈𝒎
                                          (4.6)  

The equation (4.6) becomes: 

             𝑨𝑻𝒓𝒊𝒂𝒍𝝈𝟏
𝟎 + 𝑩𝑻𝒓𝒊𝒂𝒍𝝈𝟑

𝟎 = 𝑭𝑻𝒓𝒊𝒂𝒍 𝑺𝟎 + 𝟐𝝈𝒎(𝟏 − 𝑭𝑻𝒓𝒊𝒂𝒍)              (4.7) 

The expression of 𝜎𝑚 can be deduced from the Figure (4) as: 

            𝟐𝝈𝒎 = 𝑺𝟎 − 𝑫𝟎 𝐬𝐢𝐧 𝝓                                                       (4.8) 

By replacing the equation (4.8) into the equation (4.7) one gets: 

                                          𝑨𝑻𝒓𝒊𝒂𝒍𝝈𝟏
𝟎 + 𝑩𝑻𝒓𝒊𝒂𝒍𝝈𝟑

𝟎 = 𝑺𝟎 + 𝑫𝟎(𝑭𝑻𝒓𝒊𝒂𝒍 − 𝟏) 𝐬𝐢𝐧 𝝓                   (4.9) 

Resolving concurrently the equations (4.5) and (4.9), it is easy to find the stress factoring parameters: 

𝑨𝑻𝒓𝒊𝒂𝒍 =
𝑺𝟎+𝑫𝟎𝑭𝑻𝒓𝒊𝒂𝒍(𝟏+𝐬𝐢𝐧 𝝓)−𝑫𝟎 𝐬𝐢𝐧 𝝓 

𝟐𝝈𝟏
𝟎                                     (4.10) 

𝑩𝑻𝒓𝒊𝒂𝒍 =
𝑺𝟎+𝑫𝟎𝑭𝑻𝒓𝒊𝒂𝒍(𝐬𝐢𝐧 𝝓 −𝟏)−𝑫𝟎 𝐬𝐢𝐧 𝝓

𝟐𝝈𝟑
𝟎                                    (4.10) 

𝜏𝑆𝐷𝐼𝑀
𝑓

= 𝑐 + 𝜎 
𝑚 tan 𝜙 

 𝜎3
0 

 
𝐵𝑇𝑟𝑖𝑎𝑙𝜎3

0
 

 

𝜎 

 

𝜎𝑚 

 

 

𝑚 
 𝑂𝑡    

 

𝐴𝑇𝑟𝑖𝑎𝑙𝜎1

0
 

𝜏𝑆𝐷𝐼𝑀
𝑚  

𝑂0 

Initial or mobilized  

Mohr’s circle 

Trial Mohr’s 

circle 

Final Mohr’s 

circle 

𝑂𝑓 

𝜏 

𝜎1
0 

𝜙 

𝑐 

𝑓 

𝑡 

𝑖 
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Since 𝐴𝑇𝑟𝑖𝑎𝑙and 𝐵𝑇𝑟𝑖𝑎𝑙 may have singular values when the in-situ principal stresses are equal to zero, it is then, 

better to return to the equations (4.1) and (4.2) and define the trial values of the principal stresses: 

𝝈𝟏
𝑻𝒓𝒊𝒂𝒍 =

𝑺𝟎+𝑫𝟎𝑭𝑻𝒓𝒊𝒂𝒍(𝟏+𝐬𝐢𝐧 𝝓)−𝑫𝟎 𝐬𝐢𝐧 𝝓 

𝟐
                                      (4.11) 

𝝈𝟑
𝑻𝒓𝒊𝒂𝒍 =

𝑺𝟎+𝑫𝟎𝑭𝑻𝒓𝒊𝒂𝒍(𝐬𝐢𝐧 𝝓 −𝟏)−𝑫𝟎 𝐬𝐢𝐧 𝝓

𝟐
                                    (4.12) 

On one side, 𝜎1
0 is increased regardless its starting value to become 𝜎1

𝑇𝑟𝑖𝑎𝑙 by increasing progressively 𝐹𝑇𝑟𝑖𝑎𝑙, on 

the other side 𝜎3
0 is decreased regardless its starting value to become 𝜎3

𝑇𝑟𝑖𝑎𝑙 by increasing progressively 𝐹𝑇𝑟𝑖𝑎𝑙. 

When these trial stresses reach their ultimate values, the magnitude of  𝐹𝑇𝑟𝑖𝑎𝑙 is considered the stress point-based 

factor of safety 𝐹𝑂𝑆𝑆𝐷𝐼𝑀
𝑠𝑝

. 

For a purely cohesive soil (𝜙 = 0), the equations (4.13) and (4.14) reduce to the following : 

𝝈𝟏
𝑻𝒓𝒊𝒂𝒍 =

𝑺𝟎+𝑫𝟎𝑭𝑻𝒓𝒊𝒂𝒍  

𝟐
= 𝝈𝟏

𝟎 +
𝑫𝟎

𝟐
(𝑭𝑻𝒓𝒊𝒂𝒍 − 𝟏)                          (4.13) 

𝝈𝟑
𝑻𝒓𝒊𝒂𝒍 =

𝑺𝟎−𝑫𝟎𝑭𝑻𝒓𝒊𝒂𝒍

𝟐
= 𝝈𝟑

𝟎 −
𝑫𝟎

𝟐
(𝑭𝑻𝒓𝒊𝒂𝒍 − 𝟏)                          (4.14)         

 (4.6) Since 𝐹𝑇𝑟𝑖𝑎𝑙 controls the expansion (if 𝐹𝑇𝑟𝑖𝑎𝑙 > 1 the trial Mohr’s circle expands outside the mobilized Mohr’s 

circle, and if 0 < 𝐹𝑇𝑟𝑖𝑎𝑙 < 1, the trial Mohr’s circle expands inside the mobilized Mohr’s circle), the amount 

𝐷0

2
(𝐹𝑇𝑟𝑖𝑎𝑙 − 1) added to the major principal stress 𝜎1

0 is subtracted from the minor principal stress 𝜎3
0 (Figure 4.2b). 

The evolution the Mohr’s circle corresponding to 𝜎1
𝑇𝑟𝑖𝑎𝑙  and 𝜎3

𝑇𝑟𝑖𝑎𝑙  is then isotropic (Figure 4.2b). In this kind of soils, 

the failure envelope line in the SRM, falls straight fully horizontal on the Mohr’s circle (Figure 4.2a), while in the SDIM 

(present method) the Mohr’s circle expands isotopically to attain the failure envelope. Consequently, for purely cohesive 

soils, both methods then are expected to yield the same value of factor of safety. 

The proposed method (SDIM) can be viewed as a method which preserves the validity of the safety factor 

definition by imposing a correct stress path to reach failure. Firstly, the procedure maintains the progressive 

development of the shear stress on same plane on which the shear strength will occur at failure. Secondly, it deals 

hence with the actual material, by employing its real strength parameters (𝑐, 𝜙)and 𝜓 rather than those reduced 

by a factor. 

Unlike, the SRM which brings the failure envelope to the stress point in-situ Mohr’s circle, the proposed method SDIM 

expands the latter by gradually increasing 𝐹𝑇𝑟𝑖𝑎𝑙. For a certain value of this factor, some stress points undergo plastic 

flow when their 𝐹𝑂𝑆𝑆𝐷𝐼𝑀
𝑠𝑝

 are reached and the overall factor of safety is not known as long as the solution of the algebraic 

systems of equations is still converging. By a further increasing of 𝐹𝑇𝑟𝑖𝑎𝑙 and when a non-convergence is established 

the last value of 𝐹𝑇𝑟𝑖𝑎𝑙 is assumed to be the overall factor of safety 𝐹𝑂𝑆𝑆𝐷𝐼𝑀. Therefore, the accuracy of 𝐹𝑂𝑆𝑆𝐷𝐼𝑀 

depends obviously of the accuracy of 𝐹𝑂𝑆𝑆𝐷𝐼𝑀
𝑠𝑝

. 
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Figure 4. 2 Computational process I n a purely cohesive material (a) in the srm, the failure envelope line falls 

horizontally on the mobilized mohr’s circle, (b) in the sdim, the mobilized mohr’s circle expands isotropically. 

4.1.2 The computer Program 𝐒𝟒𝐃𝐈𝐍𝐀 : Computational procedure  

The theoretical developments described in the previous section have been implemented in a Fortran computer 

program called S4DINA (Soil Stability Study by Stress Deviator Increasing using Numerical Analysis). The finite 

element discretization of a typical slope domain is depicted in Figure 6. The eight-noded quadrilateral element 

was employed to mesh the entire region of a slope containing an embankment and a foundation layer. This element 

which possesses a quadratic field of displacements performs well in analysing problems such as those of slope 

stability (Smith et al. 2014). Applied boundary conditions to the soil are pinned supports at the bottom of the 

slope with no displacements in both horizontal and vertical directions (𝑢 = 𝑣 = 0) and roller supports on both 

sides of the mesh with no movement in the horizontal direction (𝑢 = 0). The element heights were obtained by a 

uniform division of the embankment total height by the FEs number modelling the embankment in the vertical 

direction 𝑌 and the division of the foundation depth by the number of FEs modelling the foundation layer 

according to 𝑌. The elements widths in the embankment were obtained by dividing both embankment top distance 

and embankment bottom distance by the number of finite elements discretizing the embankment according to the 

𝑋 coordinate. The generation of the elements coordinate was performed on the basis of the inclination of the lines 

connecting the nodes. 

 

 

(a) 

𝐷0

2
(𝐹𝑇𝑟𝑖𝑎𝑙 − 1) 

𝑐 
𝑐

𝐹𝑇𝑟𝑖𝑎𝑙
 

Starting line in the SRM 

(if 0 < 𝐹𝑇𝑟𝑖𝑎𝑙 < 1) Starting Mohr’s circle in the 

SDIM (if 0 < 𝐹𝑇𝑟𝑖𝑎𝑙 < 1) 𝜏 
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(𝐹𝑇𝑟𝑖𝑎𝑙 − 1) 

(b) 

𝜎 



55 | P a g e  
 

 

 

 

 

 

 

 

 

 

 

Figure 4. 3 Mesh used in 4DINA. 

Although the modelling with the adopted mesh is rather crude, the obtained results were reasonably accurate as 

we will see next. A more performant mesh should contain unstructured high order triangles or a combination 

between eight-noded elements and six-noded triangular elements. The latter are preferred as they can adequately 

model the shape of the sloping ground. The optimization of the finite element mesh is beyond the scope of this 

paper, and it is left to a future work. 

Before starting the description of the computer program S4DINA and how the present procedure was implemented 

in the finite element code, it is worth to provide some additional information that may enable the reader a better 

comprehension. The slope geomaterial is dealt with as a visco-plastic material and its behaviour is described 

according to the visco-plastic procedure as given by (Zienkiewicz and Cormeau 1974). The procedure is explained 

in detail by Smith et al. 2014. The computer program begins by reading the geometrical characteristics of the FE 

mesh (mesh dimensions, number of elements, etc.), boundary conditions, soil deformation and strength properties 

relevant to the Mohr-Coulomb failure criterion, and certain parameters relative to the visco-plastic computations 

such as the pseudo time Δ𝑇, the maximum number of iterations 𝐼𝑡𝑒𝑟𝑠𝑚𝑎𝑠 and tolerance of convergence 𝑇𝑂𝐿𝑐𝑜𝑛𝑣.  

After the formulation of the stiffness matrix for each element using the deformation parameters (𝐸, 𝜈), the global 

stiffness matrix [𝐾] for the entire discretized medium is then assembled. The in-situ stresses due to gravity in the 

initial conditions combined with any other stresses which are the result of any applied external loading, are 

calculated for all elements in Gauss points. For the initial stresses due to gravity, the 𝐾0 procedure is not valid for 

a domain with a sloping ground. Instead a deformation process is triggered by gravity loading. This involves, the 

resolution of the following system: 

[𝑲]{𝑼} = {𝑹}𝟎                                                              (4.15)             

          {𝑹}𝟎= ∑ {𝒇𝒆} + {𝑷}𝑬𝑿𝑻𝑵𝒆𝒍𝒆𝒎
𝒊=𝟏 With {𝒇𝒆} = ∫ [𝑵]𝑻𝜸𝒅𝒗𝒆

𝒗𝒆                             (4.16)                                                                              
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Expressions in which, 𝑁𝑒𝑙𝑒𝑚 is the total number of finite elements, [𝐾] = ∑ [𝑘𝑒]𝑁𝑒𝑙𝑒𝑚
𝑖=1  is the global stiffness 

matrix, whereas [𝒌𝒆] = ∫ [𝑩]𝑻[𝑫]
𝒗𝒆  [𝑩]𝒅𝒗𝒆 is the element stiffness matrix. {𝑃}𝐸𝑋𝑇  is the global loading vector 

resulting from the external agencies. [𝑁]𝑇  is the transpose of the shape functions matrix and {𝛾} = {
0

−𝛾
} the 

gravity vector composed from the soil unit weight 𝛾.  

 By resolving the system (4.17), the nodal displacements and the stresses  𝜎𝑥
0, 𝜎𝑦

0 and 𝜏𝑥𝑦
0  at Gauss points are 

determined all over the slope area. The shear stresses exist in both embankment and foundation layer and are 

remarkably high in the vicinity of the sloping ground. On the basis of this set of stresses, the principal stresses 

and the orientation angle 𝛼 of their principal planes with respect to the axes of coordinates (𝑋, 𝑌), are computed 

in the same locations by:  

𝝈𝟏
𝟎 =

𝝈𝒙
𝟎+𝝈𝒚

𝟎

𝟐
+ √(

𝝈𝒙
𝟎−𝝈𝒚

𝟎

𝟐
)

𝟐

+ (𝝉𝒙𝒚
𝟎 )

𝟐
                                           (4.17) 

𝝈𝟑
𝟎 =

𝝈𝒙
𝟎+𝝈𝒚

𝟎

𝟐
− √(

𝝈𝒙
𝟎−𝝈𝒚

𝟎

𝟐
)

𝟐

+ (𝝉𝒙𝒚
𝟎 )

𝟐
                                         (4.18)            

             𝐭𝐚𝐧 ( 𝟐𝜶) =
−𝟐 𝝉𝒙𝒚

𝟎

(𝝈𝒙
𝟎−𝝈𝒚

𝟎)
                                                (4.19) 

At this point, the computed values of  𝜎1
0, 𝜎3

0 and 𝛼 are the backbone elements of SDIM since the present method 

is based on the expansion of the principal stress Mohr’s circle.  Once these stresses and their planes are known at 

every stress point, the program S4DINA proceeds with a large loop over a set of the prescribed values of the 

increasing factor 𝐹𝑇𝑟𝑖𝑎𝑙  (see flowchart of Figure 4.4). The discrete values of this parameter can be either generated 

by the user or computed internally by the program. The second option is adopted in S4DINA and the user can 

check more than 950 values starting by 0.50, and incremented by 0.01, allowing thus to obtain a factor of safety 

within two decimals first and another procedure to refine the FOS for three decimals. The trial principal stresses 

values 𝜎1
𝑇𝑟𝑖𝑎𝑙  and 𝜎3

𝑇𝑟𝑖𝑎𝑙 that result from the process of stress deviator increasing and necessary to generate the 

Cartesian stresses for checking Mohr-Coulomb failure criterion can be determined now by the equations (4.13) 

and (4.14). Since the algebraic system of equations is resolved according to global system of coordinates (𝑋, 𝑌) 

it is manadatory to find the Cartesian stresses corresponding to the principal stresses 𝜎1
𝑇𝑟𝑖𝑎𝑙 and 𝜎3

𝑇𝑟𝑖𝑎𝑙. A simple 

transformation gives: 

𝝈𝒙
𝑻𝒓𝒊𝒂𝒍 =

𝝈𝟏
𝑻𝒓𝒊𝒂𝒍+𝝈𝟑

𝑻𝒓𝒊𝒂𝒍

𝟐
+

𝝈𝟏
𝑻𝒓𝒊𝒂𝒍−𝝈𝟑

𝑻𝒓𝒊𝒂𝒍

𝟐
𝐜𝐨𝐬 𝟐𝜶                                   (4.20) 

𝝈𝒚
𝑻𝒓𝒊𝒂𝒍 =

𝝈𝟏
𝑻𝒓𝒊𝒂𝒍+𝝈𝟑

𝑻𝒓𝒊𝒂𝒍

𝟐
−

𝝈𝟏
𝑻𝒓𝒊𝒂𝒍−𝝈𝟑

𝑻𝒓𝒊𝒂𝒍

𝟐
𝐜𝐨𝐬 𝟐𝜶                                    (4.21) 

𝝉𝒙𝒚
𝑻𝒓𝒊𝒂𝒍 = − (

𝝈𝟏
𝑻𝒓𝒊𝒂𝒍−𝝈𝟑

𝑻𝒓𝒊𝒂𝒍

𝟐
) 𝐬𝐢𝐧(−𝟐𝜶)                                   (4.22)     
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The purpose of computing the quantities given by the previous equations constitute another feature of the 

proposed method. Indeed, they serve to compute the equivalent stress loading vector in each finite element {𝑝𝑒} 

as: 

       {𝒑𝒆} = ∫ [𝑩]𝑻{𝝈𝑻𝒓𝒊𝒂𝒍}
𝒗𝒆 𝒅𝒗𝒆 and {𝑷}𝑬𝑺𝑳 = ∑ {𝒑𝒆}𝑵𝒆𝒍𝒆𝒎

𝒊=𝟏                        (4.23)    

Where  {𝑃}𝐸𝑆𝐿  is the global equivalent stress loading vector, [𝐵]𝑇 is the transpose of strain field-nodal 

displacement matrix, whereas {𝜎𝑇𝑟𝑖𝑎𝑙} is the stress vector containing the stresses defined by the equations (4.22-

4.24), that is  {𝝈𝑻𝒓𝒊𝒂𝒍} = [𝝈𝒙
𝑻𝒓𝒊𝒂𝒍   𝝈𝒚

𝑻𝒓𝒊𝒂𝒍   𝝉𝒙𝒚
𝑻𝒓𝒊𝒂𝒍 ]

𝑻
. There is no contribution of 𝝈𝒛

𝑻𝒓𝒊𝒂𝒍 = 𝝂(𝝈𝒙
𝑻𝒓𝒊𝒂𝒍 + 𝝈𝒚

𝑻𝒓𝒊𝒂𝒍) in the 

loading system, since all elements of the fourth column in the matrix [𝐵]𝑇are zero. However, its contribution in 

checking the yield criterion is not trivial. 

Another imbricated loop starts just after the calculation of the equivalent stress loading vector. Within a maximum 

number of iterations 𝐼𝑡𝑒𝑟𝑠𝑚𝑎𝑥, the following system of equations is resolved: 

[𝑲]{𝑼}𝒋 = {𝑹}𝒋    with   {𝑹}𝒋 = {𝑷}𝑬𝑺𝑳 + {𝑷}𝑩𝑳𝒋
                      (4.24 )  

Equation in which {𝑃}𝐵𝐿𝑗
 is the vector of body loads which varies from an iteration to another. It is given by: 

{𝑷}𝑩𝑳𝒋
= ∑ ∫ [𝑩]𝑻

𝒗𝒆 [𝑫] 𝚫𝑻 (𝜹𝜺𝑽𝑷)𝒋𝒅𝒗𝒆𝑵𝒆𝒍𝒆𝒎
𝒊=𝟏                        (4.25 ) 

For Mohr-Coulomb failure criterion, the pseudo time Δ𝑇 is given by: 

𝚫𝑻 =
𝟒 (𝟏+𝝂)(𝟏−𝟐𝝂)

𝑬[𝟏−𝟐𝝂+(𝐬𝐢𝐧 𝝓)𝟐]
                                      (4.26) 

The constant stiffness method is adopted in this program. It uses repeated elastic solutions to achieve convergence 

by iteratively varying the loads on the system. At this point the SDIM differs significantly from the SRM. In the 

latter, {𝑅}0 of equation (4.17) is kept as the first term in the loading vector (4.26). If stress distribution is necessary, 

body loads should be considered. Here, the body load vector is not formulated the same way as in the SRM. In 

the SRM it is  composed from plastic strains after checking stresses against a fictive yield criterion resulting from 

reduced strength parameters according to each value of 𝐹𝑇𝑟𝑖𝑎𝑙 whereas, {𝑃}𝐵𝐿𝑗
in the present method (SDIM) is 

generated in each iteration after checking stresses whose deviators were expanded according 𝐹𝑇𝑟𝑖𝑎𝑙 against the 

real Mohr-Coulomb yield function formulated by the effective soil strength parameters 𝑐 and 𝜙. Inside this loop 

and for each iteration a convergence test is assessed. This is given by: 

                                                              𝜼 =
|𝒖𝒋−𝒖𝒋−𝟏|

|𝒖𝒋|
𝒎𝒂𝒙

< 𝑻𝑶𝑳𝒄𝒐𝒏𝒗                            (4.27)                                            

Where 𝑢𝑗the nodal displacement in the current iteration is, 𝑢𝑗−1 is the nodal displacement in the previous 

iteration, |𝑢𝑗|
𝑚𝑎𝑥

 is the maximum value of the nodal displacement in the current iteration and 𝑇𝑂𝐿𝑐𝑜𝑛𝑣   is the 

convergence tolerance. When the iterative process fails to converge within the prescribed number of iterations, 

the slope failure is said to occur and then the value of 𝐹𝑇𝑟𝑖𝑎𝑙 is considered the SDIM factor of safety 𝐹𝑂𝑆𝑆𝐷𝐼𝑀. 
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4.2.1 Spurious zones of plastic strains and the importance of visualizing plastic deformation 

areas  

The finite element analysis of a slope stability problem, using the combination of Mohr-coulomb criterion and 

continuum mechanics equations of plane strain problems can give birth to an abnormal phenomenon producing 

large areas of plastic strains. This, in many situations mislead the deformation process to indicate a premature 

slope collapse with an underestimated safety factor, especially if a non-convergence criterion is employed to 

assess the value of FOS.  

To understand how these plastic zones occur, let’s consider a half-infinite space loaded only by gravity. Mohr-

Coulomb elasticity condition gives: 

                                    [𝝈𝟏(𝟏 − 𝐬𝐢𝐧 𝝓) − 𝝈𝟑(𝟏 + 𝐬𝐢𝐧 𝝓)] ≤ 𝟐 𝒄 𝐜𝐨𝐬 𝝓                               (4.29)         

Where 𝜎1 = 𝛾𝑧 and 𝜎3 = 𝑘0𝛾𝑧 are the principal stresses caused by the unit weight at a given depth 𝑧. The use of 

plane strain equations leads to an earth pressure coefficient at rest 𝑘0 =
𝜈

1−𝜈
 where 𝜈 is the soil Poisson’s ratio. 

Replacing the expressions of the principal stresses and the lateral earth pressure coefficient at rest into the 

inequality (4.30), the elasticity condition becomes: 

                                                    𝜸 𝒛 [
(𝟏−𝟐𝝂)−𝐬𝐢𝐧 𝝓

(𝟏−𝝂)
] ≤ 𝟐𝒄 𝐜𝐨𝐬 𝝓                                    ( 4.30) 

Since both (𝟏 − 𝝂) and 𝑧 are > 0, two possibilities are to be considered: 

 If 
(𝟏−𝟐𝝂)−𝐬𝐢𝐧 𝝓

(𝟏−𝝂)
≤ 𝟎, which means that 𝐬𝐢𝐧 𝝓 ≥ (𝟏 − 𝟐𝝂) (called the 𝜙 − 𝜈 inequality condition (Zheng 

et al. 2005)) the inequality (4.31) is verified everywhere since 𝑧 is positive and consequently the 

elasticity condition (inequality 4.30) holds true at any point from the medium indicating thus that the 

whole medium is in an elastic state. 

 If 
(𝟏−𝟐𝝂)−𝐬𝐢𝐧 𝝓

(𝟏−𝝂)
> 𝟎 which means that 𝐬𝐢𝐧 𝝓 < (𝟏 − 𝟐𝝂), the depth of interest 𝑧 is less than a thickness 

𝐻 according to the inequality : 

                                         𝒛 < 𝑯 =
𝟐 (𝟏−𝝂) 𝒄 𝐜𝐨𝐬 𝝓

𝜸[(𝟏−𝟐𝝂)−𝐬𝐢𝐧 𝝓]
                                             (4.31) 

 

  Figure 4. 4. The depth beyond which an abnormal layer of plastic strains can appear in a semi-infinite medium. 

The condition sin 𝜙 < (1 − 2𝜈) k 

𝑧 

Plastic zone 

Elastic zone 
𝑐 − 𝜙 Soil 

𝛾, 𝜈 

 

𝐻 
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eeps the holding the elasticity conditions true only in an upper layer of thickness 𝐻 (Figure 4.5). Obviously the 

elastic zone thickness depends on the magnitudes of 𝜈, 𝑐 and 𝜙.The lower layer extending to infinity is plastically 

damaged which is physically irrational (Zheng et al. 2005). This abnormal plasticity layer should not exist since 

the medium is in overabundant equilibrium. 

The above equations are only valid for a semi-infinite space. However, for a slope stability problem, the 

anomalous region of plastic strains is curved with irregular shapes that follow the sloping ground. As it is difficult 

to establish the area expression analytically, the option for the numerical method is possible since the four plastic 

strains increments are available in each integration point. Many researchers (Maji 2017 and Zheng et al. 2005) 

agreed to use of equivalent plastic strain as an appropriate scalar to represent the plastic state at any given point. 

This parameter is computed as:  

          �̅�𝒑 = ∑ (𝚫�̅�𝒑)
𝒊𝒊                                                      (4.32a)   

                                         with             (𝚫�̅�𝒑)
𝒊

= √{𝚫𝜺𝒑}
𝒊

𝑻
{𝚫𝜺𝒑}

𝒊
                                    (4.32 b) 

(Δ𝜀�̅�)
𝑖
 is the incremental equivalent plastic strain evaluated from the components of the vector of plastic strains 

{Δ𝜀𝑝}
𝑖
 at a given loading step 𝑖. 𝜀�̅� is the accumulation of the incremental equivalent plastic strains from all 

loading steps. 𝜀�̅� which is computed in each Gauss point is an excellent indicator for the plasticity conditions 

when treating a slope stability problem. 

Focussing on the computation of the slope stability factor is not enough to decide whether the slope has really 

collapsed and the factor of safety has been accurately determined. Checking for the violation of the 𝜙 − 𝜈 

inequality with the use of a visualization technique to plot the plastic deformation contours are necessary steps to 

care for in order to ensure that the finite element computations have been normally performed. 

4.2.2 Comparative analysis involving the slope safety factor and contours of plastic 

deformation zones 

It is well established that the accuracy of FOS computed by the finite element method, relies on several factors. 

These factors may include, the nature of finite element employed, the total number of elements in FE mesh, the 

mesh density in the slope region where the failure line is expected to occur, the prescribed maximum number of 

iterations, the convergence tolerance allowed in the finite element computations, the type of flow rule adopted 

and obviously the value of Poisson’s ratio.  

The primary target of this section is seeking the relative accuracy when compared to both LEM and SRM or to 

any other rigorous method. The SRM results were obtained by the use of the Fortran computer program code P64 

from the textbook by Smith et al. 2014. In order to create the same conditions of comparison and hence a reliable 

comparison, slight modifications were performed on the code P64 which is called MSGP64 (Modified Smith and 

Griffiths P64) in this paper.  Firstly, the routine which performs the generation of the mesh in S4DINA was 

implemented in MSGP64 to exclude any effect of the nature and the number of finite elements on the outcomes. 
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Secondly, the sequence of  𝐹𝑇𝑟𝑖𝑎𝑙  values, implemented internally to control the process of Mohr’s circles 

expansion in S4DINA were similarly adopted in MSGP64 as factors for reducing the strength parameters. Thirdly 

and similarly to what has been programmed in S4DINA, a supplementary routine for computing the equivalent 

plastic strains was also encoded in MSGP64. The process of stress correction is the same as was stated earlier. 

The LEM factors of safety appearing in the comparison examples were obtained using the computer code SLIDE 

6.0. The comparison is restricted to the most accurate slice methods, the Bishop and Morgenstern-Price methods.
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Conclusion  

As reviewed early SDIM as the potential to help slope designer or geotechnical engineers deal with this problems 

with more efficacy and with precise data displayed by the programs that comes to paired with this Method S4DINA  

and mitigate future  problems in order to save life’s and money. By working in means of progressively increasing 

a factor called Mohr’s circle expansion factor until the slope failure is reached, borrowing thus, and the reverse 

path of the SRM which consists of reducing the soil strength parameters. The slope failure is said to occur when 

the iterative process fails to converge within the prescribed range of the maximum number of iterations.  

SDIM tends to use a very strict rules in order to provide the best results and more accurate factor of safety. It 

gives the engineer a clear view of the dangerous zones with a high precision for the best interpretations of the 

results. Making designer life easier and making sure that the factor of safety provided is related to the real soil 

parametric took from in-situs tests analysis. In this chapter we studied the bases of the new method called SDIM- 

stresses deviator increasing Method that comes paired with its program called  S4DINA   that will be reviewed in 

the next chapter. This program will be studied in order to validate all that have been mentioned in this chapter. 

The basis of SDIM are solid and with a very good results by the end of it.  

To verify that the data have been input correctly, a cross section of the problem being analysed should be drawn 

to scale and include all the required data. The input data should be checked against the drawing to ensure the data 

in the input file are correct. 

Automatic searches will be performed for circular or noncircular slip surfaces. The automatic search procedures 

used S4DINA  is designed to aid the designer into getting the best results for any type of surfaces form so since 

the method is applicable to any form of surfaces like slice methods of Morgenstern-Price fore stance SDIM takes 

advantages of providing the precise strain stresses path.  
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CHAPTER V 

APPLICATION OF THE PROGRAM S4DINA AND 

PARAMETRIC STUDY 
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5.1. Introduction 

In this chapter we get to conclude our work by exposing the study’s that have been conducted in order to get able 

to make accurate evaluation of the safety coefficient using both Numerical analyses. For the following chapter 

we worked with the following material (software) In order to carry out the parametric study: 

 Rocscience SLIDE 6.0 

 TECPLOT 

 SDINAR 

 Origin Pro  

SLIDE 6.0 for the factor of safety from the LE Methods, while TECPLOT for drawing plastic zones and 

stress contours in a slope stability problem and 𝐒𝟒𝐃𝐈𝐍𝐀 to conduct a Slope Stability Analysis by Finite 

Element Modelling and we used Origin Pro to Build graphical representation of the analyses that will be 

showed further in this chapter for a better appreciation of the method even the table of the results will be 

represented to compare it.  

5.2. Parametrical Study. 

For the analyses of the new method SDIM was verified by comparing results with the existing slice method using 

examples in the literature.  The slope stability and safety were evaluated with this new method and the effects of 

different factors on soil slope safety and stability were analysed. These results indicate Finite elements Analysis 

provides a very close value from those given by the LE method in slope stability analysed and for that, the analyse 

was conducted using an associated analyse and non-associated since the LEM uses associated analyses as its 

standard while S4DINA gives the designer a choice of associating or not. 

So for the association we assumed that 𝜓 = 19.6° and non-associated will be zero 𝜓 = 0°. 

5.1 1Table Soil characteristics.    

SOIL C(kn/m2) 𝜑 ° 𝛾 (kn/m3) 𝜓° 

 

 3 19.6° 20 19.6° 

The model profile that have been used for this evaluation is displayed bellow for the respective profile with 

foundation and without foundation model. The drawing was designed on the designate software Slide 6.0 the 

same models that will be used on S4DINA to make sure that the evaluation taken in count the same configuration. 

1. Case 1 we have studied a profile that included the Slide surfaces within its foundation and the profile 

description are displayed in picture in other to show off the measurement that have been taken in 

consideration for this study. 
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Figure.5 1 

Slope with foundation Profile. 

2. Case 1 in this parte we have took out the foundation in order to study the slope itself, the profile that will 

be followed was taken in consideration for the analyses to better understand the studied of the 

disassembled parts  of the project to get better and precision of the general and partial factor of safety. 

 

Figure 5.2 1 Slope without foundation Profile. 

5.3. Input Soil Parametric 

In this part we show the inputted parametric that we have taken in consideration in both software’s SLIDE 6.0 

and S4DINA for Study propose: 

Case 1) Slide 6.0. for this software in both cases where the slope with foundation and without foundation the that 

input that file will be the same, as showed in the interface below. 
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Figure 5.3 1 Soil parametric in Slide 6.0 Input Data file. 

Case 2)  S4DINA, in this case we will include two input that files for the slope with Foundation and without 

foundation profile since the work in S4DINA will be taken by the off MSDV COMPILER. Therefore we will also 

display two input files since we said early that in S4DINA we can perform a study’s that are associated or note by 

the use of psi. 

A) Slope profile with foundation Data file. Associated. 
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Figure 5.4 1 Associated Profile of the slope with foundation on SDINAR data file 

A.1)  in this case we can clearly see that the value of psi is taken to zero, means that this calculation will be non-

associated. 

 

Figure 5.5 1 non-Associated Profile of the slope with foundation on SDINAR data file. 

B) Slope profile without foundation input Data file. Associated 

 

Figure 5.6 1 Associated Profile of the slope without foundation on SDINAR data file.  

B.1) Slope profile without foundation input Data file. Non-Associated 
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Figure 5.7 1  Non-Associated Profile of the slope without foundation on SDINAR data file 

5.4. Comparison between the results of calculation of LEM and SDIM 

This analyses will conducted by phases, fort the first part we will be testing the influence of the Calculation 

parametric to know how do they can influence the results of the factor of safety to be obtain since S4DINA take 

all parametric in consideration, and we further get to make evaluation of the deformation parametric in order to 

understand how can they also influence to the slope stability analyses. We will be displaying the results got in 

S4DINA while of slide 6.0 are constant because for its parametric study have no influence on the results. 

5.5. Analyses of the influence of the input parametric 

In this parte we will analyse the effects of the parametric that are required within the S4DINA while for Slide 6.0 

those are not required, to start this first parte we will begin with   Calculation parametric (Interaction number and 

Number of Finite elements) and further we will analyse the Deformation parametric (E- Young’s Modulus and 

Poisson Ratio). 

 Iteration, in the context of computer programming, is a process wherein a set of instructions or structures are 

repeated in a sequence a specified number of times or until a condition is met. 

5.6 Iteration Number, Slope with Foundation and without foundation. 

Associated flow rule. 

Table 5 2 1. Rapport of the Results of the effect of the Number of Iteration for FS of the 3 methods. 

INTERATION BS MP SDIM 

100  

 

 

 

 

 

0.957 

200 0.979 

300 0.989 

400 0.990 

500 0.991 
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600  

 

0.999 

 

 

0.997 

0.991 

700 0.991 

800 0.991 

900 0.991 

1000 0.992 

1100 0.992 

1200 0.992 

1300 0.992 

1400 0.992 

1500 0.992 

 

 

 

Figure 5.8 1 Iteration Number for the slope with foundation, associated 

Non-associated 

Table 5 2 2 Rapport of the Results of the effect of the Number of Iteration for FS of the 3 methods 

Interation BS MP SDIM 

100  

 

 

 

 

 

 

 

0.914 

200 0.914 

300 0.938 

400 0.949 

500 0.951 

600 0.953 
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700  

0.999 

 

0.997 

0.954 

800 0.955 

900 0.956 

1000 0.957 

1100 0.958 

1200 0.959 

1300 0.959 

1400 0.959 

1500 0.959 

 

 

Figure 5.9 1. Iteration Number for the slope with foundation, non-associated 

5.6.1. Iteration Number, Slope without Foundation 

a) Associated 

Table 5 2 3 Rapport of the Results of the effect of the Number of Iteration for FS of the 3 methods 

Interactions BS MP SDIM 

100   0.949 

200 0.969 
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300  

 

 

 

0.989 

 

 

 

 

 

 

0.984 

 

0.978 

400 0.982 

500 0.983 

600 0.985 

700 0.985 

800 0.986 

900 0.986 

1000 0.986 

1100 0.987 

1200 0.987 

1300 0.987 

1400 0.987 

1500 0.987 

 

 

Figure 5.10 1 Iteration Number for the slope without foundation, associated. 

The variation of the Number of Iteration have a big influence on the factor of safety that will be displayed as 

result, starting from a 100 iterations we got a underestimated value of factor cause by the lack of iteration for the 

correspondent geometry since at this set number the program could get into the convergence, it can be cleared 

viewed on the plastic counters. 

Also when the assumption for the calculations is with associated flow rule the factor of safety factor got from 

SDIM and LEM are very closed from each other,  when applying the non-associated flow rule we found the a 

lack of resistance of soil and the factor of factor tends to be far from LEM. 
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5.7. Analyses of the plastic zones and stress contours in a slope stability problem. 

In this part we will be analysing the plastic zones and stress contours in a slope stability problem got with this 

new procedure SDIM. As mentioned early in this chapter, for the drawing we used Tecplot, into this we focusing 

on testing the parametric that have inputted early on this same chapter, we have gather the coordinates from 

SDINAR Rapport file order to get this date into an extension .dat to be able to run it on tecplot. We will displaying 

in this the both the slope features, with foundation and a slope without foundation. 

5.7.1. Associated flow rule. 

a) Number of iterations 100. 

 

Figure 5.11 1Strain contours corresponding to the step of failure for 100 iterations, with the foundation. 

At this step is clear the appearance of small slip line by toe and clear see a start of deformation which can mislead 

engineers into thinking that the failure process has begun while isn’t  true because at this set of iterations there is 

no convergence and the deformation process is far from being reach. The same behaviour will be seen on the non-

associated flow rule. To rectify this further increasing of the number of iteration is needed. 
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Figure 5.11 2 Strain contours corresponding to the step of failure for 100 iterations, without the foundation. 

b) Number of iterations 200 

 

 

Figure 5.11 3 Strain contours corresponding to the step of failure for 200 iterations, with the foundation. 
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Figure 5.11 4 Strain contours corresponding to the step of failure for 200 iterations, without the foundation. 

c) Number of iterations 300 

 

 

Figure 5.11 5 Strain contours corresponding to the step of failure for 300 iterations, with the foundation. 
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Figure 5.11 6 Strain contours corresponding to the step of failure for 300 iterations, without the foundation. 

d) Number of iterations 400 

 

Figure 5.11 7 Strain contours corresponding to the step of failure for 400 iterations, with the foundation. 

At this stage we can clearly see the slide line being addressed forward to the crest, where when reach the condition 

for the convergence will be met, following the factor of safety we can see is still underestimated only will be 

acceptable when all convergence is reached. 
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Figure 5.11 8 Strain contours corresponding to the step of failure for 400 iterations, without the foundation. 

e) Number of iterations 500 

 

Figure 5.11 9 Strain contours corresponding to the step of failure for 500 iterations, with the foundation 
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Figure 5.11 10 Strain contours corresponding to the step of failure for 500 iterations, without the foundation 

f) Number of iterations 

 

Figure 5.11 11 Strain contours corresponding to the step of failure for 600 iterations, with the foundation 
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Figure 5.11 12 Strain contours corresponding to the step of failure for 600 iterations, without the foundation 

g) Number of iterations 700 

 

Figure 5.11 13 Strain contours corresponding to the step of failure for 700 iterations, with the foundation. 
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Figure 5.11 14 Strain contours corresponding to the step of failure for 700 iterations, without the foundation 

h) Number of iterations 800 

 

Figure 5.11 15 Strain contours corresponding to the step of failure for 700 iterations, with the foundation 
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Figure 5.11 16Strain contours corresponding to the step of failure for 800 iterations, without the foundation 

i) Number of iterations 900 

 

Figure 5.11 17Strain contours corresponding to the step of failure for 900 iterations, with the foundation 
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Figure 5.11 18 Strain contours corresponding to the step of failure for 900 iterations, without the foundation. 

j) Number of iterations 1000 

 

Figure 5.11 19 Strain contours corresponding to the step of failure for 1000 iterations, with the foundation. 

At 1000 iteration the convergence was reached and the factor of safety is acceptable and even with further 

increasing of the iteration number any change will be verified because at this stage the failure process has started. 

So at this point no need to go further increasing the number of iteration. 
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Figure 5.11 20Strain contours corresponding to the step of failure for 1000 iterations, without the foundation. 

k) Number of iterations 1100 

 

 

Figure 5.11 21 Strain contours corresponding to the step of failure for 1100 iterations, with the foundation 
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Figure 5.11 22Strain contours corresponding to the step of failure for 1100 iterations, without the foundation 

l) Number of iteration 1200 

 

Figure 5.11 23Strain contours corresponding to the step of failure for 1200 iterations, with the foundation 
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fig 

Figure 5.11 24 Strain contours corresponding to the step of failure for 1200 iterations, without the foundation. 

m) Number of iterations 1300 

 

Figure 5.11 25 Strain contours corresponding to the step of failure for 1300 iterations, with the foundation. 
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Figure 5.11 26 Strain contours corresponding to the step of failure for 1300 iterations, without the foundation. 

n) Number of iterations 1400 

 

Figure 5.11 27 Strain contours corresponding to the step of failure for 1400 iterations, with the foundation. 
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Figure 5.11 28 Strain contours corresponding to the step of failure for 1400 iterations, without the foundation. 

o) Number of iterations 1500 

 

Figure 5.11 29 Strain contours corresponding to the step of failure for 1500 iterations, with the foundation. 
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Figure 5.11 30 Strain contours corresponding to the step of failure for 1500 iterations, without the foundation. 

As mention early any change is to be expected while when reached the convergence so after reaching the 

convergence the factor of safety and plasticity zones won’t suffer any changes. 

5.7.2.Non-Associated flow rule 

Exactly the same behaviour from the associated flow rule is expected in the non-associated flow rule. 

Table 5 2 4 Rapport of the Results of the effect of the Number of Iteration for FS of the 3 methods. 

Iteracions BS MP SDIM 

100  

 

 

 

 

0.989 

 

 

 

 

 

0.984 

0.914 

200 0.924 

300 0.928 

400 0.929 

500 0.931 

600 0.933 

700 0.936 

800 0.938 

900 0.938 

1000 0.938 

1100 0.938 

1200 0.938 

1300 0.940 

1400 0.940 

1500 0.940 
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Figure 5.11 31 Iteration Number for the slope without foundation, non-associated 

a) Number of Iterations 100 

 

Figure 5.11 32 Strain contours corresponding to the step of failure for 100 iterations, with the foundation 
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Figure 5.11 33 Strain contours corresponding to the step of failure for 100 iterations, without the foundation 

b) Number of iterations 200 

 

Figure 5.11 34 Strain contours corresponding to the step of failure for 200 iterations, with the foundation 
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Figure 5.11 35 Strain contours corresponding to the step of failure for 200 iterations, without the foundation. 

c) Number of iterations 300 

 

Figure 5.11 36 Strain contours corresponding to the step of failure for 300 iterations, with the foundation 
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Figure 5.11 37 Strain contours corresponding to the step of failure for 300 iterations, without the foundation. 

d) Number of iterations 

 

Figure 5.11 38 Strain contours corresponding to the step of failure for 400 iterations, with the foundation. 
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Figure 5.11 39 Strain contours corresponding to the step of failure for 400 iterations, without the foundation 

e) Number of iterations 500 

 

Figure 5.11 40 Strain contours corresponding to the step of failure for 500 iterations, with the foundation 
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Figure 5.11 41Strain contours corresponding to the step of failure for 500 iterations, without the foundation 

f) Number of iterations 600 

 

Figure 5.11 42 Strain contours corresponding to the step of failure for 600 iterations, with the foundation 
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Figure 5.11 43 Strain contours corresponding to the step of failure for 600 iterations, without the foundation 

g) Number of iterations 700 

 

Figure 5.11 44Strain contours corresponding to the step of failure for 700 iterations, with the foundation 
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Figure 5.11 45 Strain contours corresponding to the step of failure for 700 iterations, without the foundation. 

h) Number of iterations 800 

 

Figure 5.11 46 Strain contours corresponding to the step of failure for 800 iterations, with the foundation 
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Figure 5.11 47 Strain contours corresponding to the step of failure for 800 iterations, without the foundation. 

i) Number of iterations 900 

 

Figure 5.11 48 Strain contours corresponding to the step of failure for 900 iterations, with the foundation 



96 | P a g e  
 

 

Figure 5.11 49 Strain contours corresponding to the step of failure for 900 iterations, without the foundation. 

j) Number of iterations 1000 

 

Figure 5.11 50 Strain contours corresponding to the step of failure for 1000 iterations, with the foundation 



97 | P a g e  
 

 

Figure 5.11 51 Strain contours corresponding to the step of failure for 1000 iterations, without the foundation. 

k) Number of iterations 1100 

 

Figure 5.11 52 Strain contours corresponding to the step of failure for 1100 iterations, with the foundation 
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Figure 5.11 53 Strain contours corresponding to the step of failure for 1100 iterations, without the foundation 

l) Number of iterations 1200 

 

Figure 5.11 54 Strain contours corresponding to the step of failure for 1200 iterations, with the foundation 
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Figure 5.11 55 Strain contours corresponding to the step of failure for 1200 iterations, without the foundation 

m) Number of iterations 1300 

 

Figure 5.11 56Strain contours corresponding to the step of failure for 1300 iterations, with the foundation. 
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Figure 5.11 57 Strain contours corresponding to the step of failure for 1300 iterations, without the foundation 

n) Number of iterations 1400 

 

Figure 5.11 58 Strain contours corresponding to the step of failure for 1400 iterations, with the foundation. 
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Figure 5.11 59 Strain contours corresponding to the step of failure for 1400 iterations, without the foundation 

o) Number of iterations 1500 

 

Figure 5.11 60 Strain contours corresponding to the step of failure for 1500 iterations, with the foundation. 
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Figure 5.11 61 Strain contours corresponding to the step of failure for 1500 iterations, without the foundation. 

Here we clearly see that the deformations are more netted and almost reached the crest due to the lack of the 

resistance since we assumed that psi =0. 

5.8. Deformation Parametric 

5.8.1. Young’s Modulus Analyses 

Associated flow rule. 

Table 5 2 5 Results of Evaluation of the young’s Modulus variation. Associated. 

E BS MP SDIM 

1000  

0.999 

 

0.997 

 

0.992 
5000 

10000 

50000 

100000 
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Figure 5.11 62 Evaluation of the young’s Modulus variation. Associated 

 

5.8.2. Associated flow rule 

Table 5 2 6  Results of Evaluation of the young’s Modulus variation. Associated 

E BS MP SDIM 

1000  

0.989 

 

0.984 

 

0. 986 

 

 

5000 

10000 

50000 

100000 
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Figure 5.11 63. Evaluation of the young’s Modulus variation. Associated 

Clearly shown that the Young Modulus has no effects at all on the calculation. So the factor of safety gotten from 

SDIM are very close from LEM. 

The plastic strain counters are expected to be the same through all the process of increasing this parameter. 
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a) Young’s Modulus E=1000 kN/m2 

 

Figure 5.11 64 Strain contours corresponding to the step of failure for E=1000 kN/m2, with the foundation. 

 

Figure 5.11 65 Strain contours corresponding to the step of failure for E=1000 kN/m2, without the foundation. 
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b) Young’s Modulus E=5000kN/m2 

 

Figure 5.11 66 Strain contours corresponding to the step of failure for E=5000 kN/m2, with the foundation 

 

Figure 5.11 67 Strain contours corresponding to the step of failure for E=5000 kN/m2, without the foundation. 
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c) Young’s Modulus E=10000kn/m2 

 

Figure 5.11 68 Strain contours corresponding to the step of failure for E=1000 kN/m2, with the foundation. 

 

Figure 5.11 69 Strain contours corresponding to the step of failure for E=10000 kN/m2, without the foundation. 
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d) Young’s Modulus E=100000KN/m2 

 

Figure 5.11 70 Strain contours corresponding to the step of failure for E=100000 kN/m2, with the foundation 

 

Figure 5.11 71 Strain contours corresponding to the step of failure for E=1000 kN/m2, without the foundation. 

Any change of behaviour is to be expected because the Young Modulus has no influence in the calculation so any 

value of Young Modulus is valid. 
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5.8.3.Non-Associate flow rule. 

Table 5 2 7  Results of Evaluation of the young’s Modulus variation. Non-associated 

E BS MP SDIM 

1000  

0.999 

 

0.997 

 

0. 957 
5000 

10000 

50000 

100000 

 

 

Figure 5.11 72 Evaluation of the young’s Modulus variation. Non-associated 

5.8.4. Non associated flow rule. 

Table 5 2 8 Results of Evaluation of the young’s Modulus variation. Non-associated 

E BS MP SDIM 

1000  

0.989 

 

 

 

 

0.984 

 

0.938 
5000 

10000 

50000 

100000 
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Figure 5.11 73 Evaluation of the young’s Modulus variation. Non-associated 

a) Young’s Modulus E=1000kN/m2 

 

Figure 5.11 74Strain contours corresponding to the step of failure for E=1000kN/m2, with the foundation 
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Figure 5.11 75 Strain contours corresponding to the step of failure for E=1000 kN/m2, without the foundation. 

b) Young’s Modulus E=5000kN/m2 

 

 

Figure 5.11 76 Strain contours corresponding to the step of failure for E=5000 kN/m2, with the foundation. 
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Figure 5.11 77 Strain contours corresponding to the step of failure for E=5000 kN/m2, without the foundation. 

c) Young’s Modulus E=10000kn/m2 

 

Figure 5.11 78 Strain contours corresponding to the step of failure for E=10000 kN/m2, with the foundation. 
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Figure 5.11 79 Strain contours corresponding to the step of failure for E=10000 kN/m2, without the foundation. 

d) Young’s Modulus E=100000kn/m2 

 

 

Figure 5.11 80 Strain contours corresponding to the step of failure for E=100000 kN/m2, with the foundation. 
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Figure 5.11 81 Strain contours corresponding to the step of failure for E=100000 kN/m2, without the 

foundation. 

5.8.5. Poisson ratio Evaluation 

1.2 Analyse of Poisson ratio on slope with Foundation and without foundation 

1) Poisson ratio Analyses 

5.8.6. Associated flow rule. 

Table 5 2 9 Results of Evaluation of the Poisson ratio variation. Associated 

Poisson ratio BS MP SDIM 

0.1  

 

 

0.999 

 

 

 

0.997 

0.994 

0.15 0.993 

0.20 0.992 

0.25 0.992 

0.30 0.992 

0.35 0.992 

0.40 0.991 

0.45 0.991 

0.49 0.991 
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Figure 5.11 82 Evaluation of the Poisson ratio variation. Associated 

5.8.7. Associated flow rule. 

Table 5 2 10  Results of Evaluation of the Poisson ratio variation. Associated 

Poisson Ratio BS MP SDIM 

0.1  

 

 

0.989 

 

 

 

 

 

 

 

0.984 

0.984 

0.15 0.985 

0.20 0.985 

0.25 0.985 

0.30 0.986 

0.35 0.987 

0.40 0.987 

0.45 0.988 

0.49 0.992 
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Figure 5.11 83 Evaluation of the Poisson ratio variation. Associated. 

Poison ratio has a small effect on the calculation since the results of the factor of safety from SDIM are very close 

form LEM. This parameter should be careful treated since it must obey the plasticity condition by regarding the 

factor of safety is harder to detect this effects it’s only visible by regarding the plastic counters. 

a) Poisson Ratio 0.10 

 

Figure 5.11 84 Strain contours corresponding to the step of failure for v=0.10, with the foundation. 
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Figure 5.11 85 Strain contours corresponding to the step of failure for v=0.10, without the foundation 

b) Poisson Ratio 0.15 

 

Figure 5.11 86 Strain contours corresponding to the step of failure for v=0.15, with the foundation. 
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Figure 5.11 87 Strain contours corresponding to the step of failure for v=0.10, without the foundation. 

c) Poisson Ratio 0.20 

 

Figure 5.11 88 Strain contours corresponding to the step of failure for v=0.20, with the foundation 
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Figure 5.11 89 Strain contours corresponding to the step of failure for v=0.20, without the foundation. 

d) Poisson Ratio 0.25 

 

Figure 5.11 90 Strain contours corresponding to the step of failure for v=0.25, with the foundation. 

So from the 0.10 Poison Ration we can see that the yield counters are abnormal or we can say the appearance of 

parasite zones or the spurious zones due to the non-respected conditions, in such case the poison ration is expected 

to be greater than 0.32 in other to attain good results so further increasing is needed to reaches valid factor of 

safety. 
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Figure 5.11 91 Strain contours corresponding to the step of failure for v=0.25, without the foundation 

e) Poisson Ratio 0.30 

 

Figure 5.11 92 Strain contours corresponding to the step of failure for v=0.30, without the foundation 

in this stages of increasing the Poison ratio we clear see the disappearance of the parasite zones and appearance 

of plastic zones  because the condition is met and this factor of safety are valid to use since they both closer form 

each other even with further increasing not a big change is encountered. 
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Figure 5.11 93 Strain contours corresponding to the step of failure for v=0.30, without the foundation. 

f) Poisson Ratio 0.35 

 

Figure 5.11 94 Strain contours corresponding to the step of failure for v=0.35, with the foundation. 
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Figure 5.11 95 Strain contours corresponding to the step of failure for v=0.35, without the foundation. 

g) Poisson Ratio 0.40 

 

Figure 5.11 96 Strain contours corresponding to the step of failure for v=0.40, with the foundation. 
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Figure 5.11 97 Strain contours corresponding to the step of failure for v=0.40, without the foundation. 

h) Poisson Ratio 0.45 

 

Figure 5.11 98 Strain contours corresponding to the step of failure for v=0.45, without the foundation 
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Figure 5.11 99 Strain contours corresponding to the step of failure for v=0.45, with the foundation 

i) Poisson Ratio 0.49 

 

Figure 5.11 100 Strain contours corresponding to the step of failure for v=0.49, with the foundation 
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Figure 5.11 101 Strain contours corresponding to the step of failure for v=0.49, without the foundation 

5.8.8.Non associated flow rule 

Same behaviour described above is to be expected when the assumption is psi=0. 

Table 5 2 11 Results of Evaluation of the Poisson ratio variation. Non-Associated 

Poisson 

ratio 

BS MP SDIM 

0.1  

 

 

0.999 

 

 

 

0.997 

0. 961 

0.15 0.962 

0.20 0.962 

0.25 0..964 

0.30 0.956 

0.35 0.957 

0.40 0.957 

0.45 0. 954 

0.49 0.950 
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Figure 5.11 102  Evaluation of the Poisson ratio variation. Non-Associated 

Non-Associated flow rule 

Table 5 2 12 Results of Evaluation of the Poisson ratio variation. Non-Associated 

Poisson Ratio BS MP SDIM 

0.1  

 

 

0.989 

 

 

 

0.984 

0.929 

0.15 0.929 

0.20 0.935 

0.25 0.935 

0.30 0.937 

0.35 0.940 

0.40 0.940 

0.45 0.968 

0.49 0.979 
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Figure 5.11 103 Evaluation of the Poisson ratio variation. Non-Associated 

a) Poisson Ratio 0.10 

 

Figure 5.11 104 Strain contours corresponding to the step of failure for v=0.10 , with the foundation 
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Figure 5.11 105Strain contours corresponding to the step of failure for v=0.10, without the foundation. 

b) Poisson Ratio 0.15 

 

Figure 5.11 106 Strain contours corresponding to the step of failure for v=0.15, with the foundation 
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Figure 5.11 107 Strain contours corresponding to the step of failure for v=0.15, without the foundation. 

c) Poisson ratio 0.20 

 

Figure 5.11 108 Strain contours corresponding to the step of failure for v=0.20, with the foundation 
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Figure 5.11 109 Strain contours corresponding to the step of failure for v=0.20, without the foundation. 

d) Poisson Ratio 0.25 

 

Figure 5.11 110 Strain contours corresponding to the step of failure for v=0.25, with the foundation. 
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Figure 5.11 111 Strain contours corresponding to the step of failure for v=0.25, without the foundation. 

e) Poisson ratio 0.30 

 

Figure 5.11 112 Strain contours corresponding to the step of failure for v=0.30, with the foundation 
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Figure 5.11 113 Strain contours corresponding to the step of failure for v=0.30, without the foundation. 

f) Poisson Ratio 0.35 

 

Figure 5.11 114 Strain contours corresponding to the step of failure for v=0.35, with the foundation 
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Figure 5.11 115 Strain contours corresponding to the step of failure for v=0.35, without the foundation. 

g) Poisson Ratio 0.40 

 

Figure 5.11 116Strain contours corresponding to the step of failure for v=0.40, with the foundation. 
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Figure 5.11 117 Strain contours corresponding to the step of failure for v=0.40, without the foundation. 

h) Poisson Ratio 0.45 

 

Figure 5.11 118 Strain contours corresponding to the step of failure for v=0.45, with the foundation. 
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Figure 5.11 119 Strain contours corresponding to the step of failure for v=0.45, without the foundation. 

i) Poisson Ratio 0.49 

 

Figure 5.11 120 Strain contours corresponding to the step of failure for v=0.49, with the foundation 
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Figure 5.11 121 Strain contours corresponding to the step of failure for v=0.49, without the foundation. 

5.9. Number of  Finite elements without foundation 

In this section we looking to understand how the number of finite elements can affect the factor of safety. 

5.9.1. Associated flow rule 

Number of elements BS MP SDIM 

225  

0.989 

 

0.984 

 

0.996 

325 0.996 

670 0.989 

1500 0.985 
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Figure 5.11 122 Evaluation of the Finite elements variation. Associated 

5.9.2. Associated flow rule with foundation. 

 

Number of elements BS MP SDIM 

225  

0.989 

 

0.984 

1.008 

325 1.001 

670 0.996 

1500 0.992 
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Figure 5.11 124 Evaluation of the Finite elements variation. Associated 

We see that while the number of finite elements are lower the value of the factor of safety is overestimated, is 

important to put the correct or enough number of finite elements in order to get good values of the factor of safety 

that we accurately represented the state of the case of study. 



139 | P a g e  
 

 

Figure 5.11 125 Strain contours corresponding to the step of failure for FE=225, with the foundation. 

 

Figure 5.11 126 Strain contours corresponding to the step of failure for FE=225, without the foundation. 
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Figure 5.11 127 Strain contours corresponding to the step of failure for FE=325, with the foundation. 

 

Figure 5.11 128 Strain contours corresponding to the step of failure for FE=325, without the foundation. 
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Figure 5.11 129 Strain contours corresponding to the step of failure for FE=670, with the foundation. 

 

Figure 5.11 130 Strain contours corresponding to the step of failure for FE=670 , without the foundation. 
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Figure 5.11 131 Strain contours corresponding to the step of failure for FE=150, with the foundation. 

 

Figure 5.11 132 Strain contours corresponding to the step of failure for FE=1500 , without the foundation. 

Higher is the number of finite elements better and lower is the factor of safety is to mention that the program 

accept for the slope a total of 1000  number finite elements and for the foundation 1000 is the max. So meeting 
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this requirements we can consider the study accurately of course regarding the good input of all data need for 

analysing. 

5.9.3. Non-associated without foundation 

Number of elements BS MP SDIM 

225 0.989 0.984 0.958 

325 0.989 0.984 0.951 

670 0.989 0.984 0.937 

1500 0.989 0.984 0.935 

 

 

Figure 5.11 123 Evaluation of the Finite elements variation. Non-Associated 

5.9.4. Non-Associated without foundation 

Number of elements BS MP SDIM 

225  

0.989 

 
 

 

0.984 

0.958 

325 0.951 

670 0.997 

1500 0.935 
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Figure 5.11 134 Evaluation of the Finite elements variation. Associated 
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Figure 5.11 135 Strain contours corresponding to the step of failure for FE=225, with the foundation. 

 

Figure 5.11 136 Strain contours corresponding to the step of failure for FE=225 , without the foundation. 

 

Figure 5.11 137 Strain contours corresponding to the step of failure for FE=325, with the foundation. 
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Figure 5.11 138 Strain contours corresponding to the step of failure for FE=325 , without the foundation. 

 

Figure 5.11 139 Strain contours corresponding to the step of failure for FE=670, with the foundation. 
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Figure 5.11 140 Strain contours corresponding to the step of failure for FE=670 , without the foundation. 

 

Figure 5.11 141 Strain contours corresponding to the step of failure for FE=1500, with the foundation. 
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Figure 5.11 142 Strain contours corresponding to the step of failure for FE=1500, without the foundation. 

As noticed in other study analyses when the assumption is psi=0 the lack of resistance gives a strong deformation 

line that suggest that. 
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Conclusion  

The slide is a software in general uses the assumption of associated flow rule, by this we conducted the calculation 

by association and non-association flow rule, when non-associated the results from SDIM where little far from 

those from SLIDE because SDIM gives the designer the control of this parameters and to put up the value closed 

to those from LEM we add up the angle Psi on the profile meaning that the association is archived and the results 

got close because the resistance increasing. 

At the first section we tested the number of iteration to check the effects of this calculation parameter and we 

could conclude by this study that the number of iterations have a big influence on the analyses and should careful 

be treated in order to get good and rigorous results by this method and the good use of the program will be the 

key to have an accurate analysis. 

One of the interesting things that we found in the program SDIM we realised that the slip surface it gives 

automatically after calculating the factor of security. 

The second section we performed a teste where we teste out the effects of the Young Modulus parameter and end 

conclude that this parameters actually has no influence on the analysis and any value for this is valid to get good 

and accurate results with this method.  

At the third section we workout with the Poison ratio where we come across with a phenomena of the parasite 

appearance when the plasticity condition is not meted and to solve this problem further increasing of this value 

had to be made in order to attain good results and accurate factor of safety and plastic strain counter. 

By the end we tested out the effects of the finite elements number in which we could conclude that this has a big 

effect in the analysis since when this value are lower we get overestimated factor of safety and after a further 

increasing we were able to get satisfied value of factor of safety and accurate results were obtain. 
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Conclusion 

In this work, we reviewed SDIM and  S4DINA  created by our supervisor  Amar Bouzid, which tends to improve 

the research work that have been conducted over the past years on the subject of slope stability analysis, this 

method provides a rigorous and accurate factor safety that tends to value the existing soil parameters in a given 

land. We tested this method in this project, and we found good results and with whom this project is based. In 

this paper we provided comparative studies of already existing methods (LEM). 

The capital importance of the stabilizations of earth slope have mobilized so many researchers into deep diving 

in this matter in order to come up with mathematical solutions to deal with such problems cause by this earth 

structures when not stabilized since in past and in nowadays this lead in various disaster that have cost a life of 

hundreds and economical losses so motivated by this factors the author conducted his research on this matter and 

come up with a new way of dealing with this problems, we are lucky to be part of the first one benchmarking this 

method into a such a paper and also working with the newer programme that solves this with efficacy. Many 

method were done by many authors that some were include in this project and by studying those method and 

picking two of them that are also used in geotechnical field practice and also academia we could compare this 

methods performance side to side with this newer method SDIM that showed a very consistence results in 

comparison with those methods SRM. The finite elements programme S4DINA that gives a very accurate results 

and more precise calculations that leads in a better predictions of the slope failure. As mentioned early SDIM It 

consists of progressively increasing a factor called Mohr’s circle expansion factor until the slope failure is 

reached, borrowing thus, the reverse path of the SRM which consists of reducing the soil strength parameters. As 

the slope failure is said to occur when the iterative process fails to converge within the prescribed range of the 

maximum number of iterations. This method gives the designer or the geotechnical engineer the possibility of 

conducted the calculations using real in situs parametric and the ability to control the and visualize the contour 

lines of the plastic region that comes with a very accurate precision. Dealing with the finite elements programme 

S4DINA that have been created by the author of the method to illustrate and validate this method the designer 

gets to choose between a wide ranges of parametric that sectioned it the programme. 
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