République Algérienne Démocratique et Ropulaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université SAAD Dahlab de Blida

Faculté Des Sciences De l'Ingénieur

Département de Génie Civil

Mémoire de fin d'études en vue d'obtention d'un diplôme deMaster en Génie Civil

Option: Géotechnique

Réalisé par :

MAHDI Hicham & OULDENEOuld Ahmed.

Dimensionnement des pieux sous charges axiales-Etude comparative à partir d'une base de données locale d'essai de chargement de pieu

Proposé et encadré par :

Dr A.BOUAFIA

Présentée et soutenue :07 juillet 2011

Année universitaire : 2010/2011.

ملخصص

إن الدراسات العالمية حول الأوتاد، الثرية بطرق الحساب، تترك المستعمل المبتدئ تائه في الاختيارمن بين كل الطرق المختلفة، زيادة على نتائج الحسابات المتباينة بينهن. وتتبين ذلك جليا عند المقارنة مع تجربة اختبار التحميل للأوتاد بمعطيات وأرقام حقيقية في الورشة.

في حالة وجود نتائج متباعدة ومشكك فيها عند القيام بحساب أولي لقدرة تحمل الأوتاد ونسبة رصها، وفي حدود التكلفة المخصصة للمشروع، فإن المهندسملزم بالقيام بتجربةالتحميل السكوني لوتد حقيقي,التحقق من الدراسات الأولية ومقارنتها بالملاحظات الموجودة في موقعة التجربة.

يمكنا القول أن المقارنة بين الطرق الرائجة في حساب أبعاد الأوتاد مع اتخاذ اختبار التحميل السكوني كمرجع في المقارنة، تعطينا نتائج جد إيجابية حول هذا المشكل، ومن خلالها يمكننا أن نرتب هذه الطرق المستعملة في الجزائر على حسب قدرة التحمل المطروحة مسبقا.

تناول هذه الأطروحة موضوعا مهما خاصة للمتعاملين في مجال البناء في الجزائر من مهندسين وتقنيين خاصة في مجال الأشغال العمومية، نظرا للتطور الملاحظ في الأشغال والبنى التحتية الكبرى مثل مشروع الطريق السيار شرق-غرب.تهدف هذه الدراسة لإعطاء لمحة عامة طرق الحساب،تحصيل مجموعة من اختبارات التحميل السكوني المنجزة مسبقا. لتنطلق بعدها دراسة مقارنة مفصلة، وفي الأخير ترتيب هذه الطرق على حسب نسبة توقعها في تحديد قدرة تحميل الأوتاد.

المفاتيح: الوتد, قدرة التحمل, اختبار التحميل السكوني, الرص, أساليب وطرق الحساب

Résumé

La littérature mondiale des pieux, on dépit de sa richesse on terme de méthodes de calcul, laisse des fois un utilisateur néophyte de ces méthodes perplexe, suite aux prévisions disparates des méthodes de dimensionnement. Une des explications d'une telle divergence réside dans caractère semi-empirique ou empirique de telles méthodes, calées sur observations de comportement de pieux lors des essais de chargement en vraie grandeur dans les chantiers

En cas d'incertitude dans les prévisions de capacité portante et du tassement des fondations sur pieu, et dans la limite du budget alloué à l'étude, une démarche pragmatiques pour l'ingénieur consiste à entreprendre un essai de chargement réel de pieu en vue de vérifier les hypothèses de calcul ou de confronter les calculs aux observations sur site

Il va sans dire que la comparaison entre les méthodes courantes de dimensionnement, avec pour référentiel les constatations sur pieux réels, permet une bonne investigation de cette question et même de classer les méthodes utilisées en Algérie selon leur capacité prédictive

La thèse proposé traite de sous thème si important pour les acteurs de la construction en Algérie, particulièrement suite à l'épanouissement des secteurs des travaux publics par le lancement des grands projets, tels que celui de l'autoroute est-ouest. Elle a pour objectifs de mener une étude bibliographique des méthodes de calcul, d'organiser une basse de données des essais de chargement statique de pieux, déjà disponible, de lancer une étude comparatives détaillée et en fin de classer les méthodes de dimensionnement selon leur pouvoir de prévision

Mots clés :Pieu capacité portante, essai de chargement, tassement, méthode de calcul

Abstract

In geotechnical literature, there are many methods of design of axial capacity of single pile, make a novice userlost of these methods perplexed, following the disparate estimates of design methods. One explanation of this discrepancy lies in semi-empirical or empirical methods such, sets on observations of behavior during pile load tests in the full-scale projects.

In case of uncertainty in predictions of bearing capacity and settlement of pile foundations, and within the budget allocated to the study, a pragmatic approach to engineering is to undertake a real load test pile to verify the design assumptions and to compare the calculations onsite.

Significant that the comparison between conventional methods of design, with reference to the findings on real piles, makes a good investigation of this question and even to classify the methods used in Algeria according to their predictive capacity.

The thesis deals with proposed sub-theme so important to those involved in construction in Algeria, especially after the development of public works by the launch of major projects, such as that of the east-west highway. Its objectives to conduct a literature review of calculation methods, to organize data of lower static loading tests of piles, already available, to launch a detailed comparative study and eventually classify the design methods according to their prediction capacity.

Keywords Pile: bearing capacity, load test, settlement, calculation

PARTIE 01:

ETUDE BIBLIOGRAPHIE

INTRODUCTION

CHAPITRE 1: TECHNOLOGIE DES PIEUX

CHAPITRE 2: CAPACITE PORTANTE D'UN PIEU SOUS CHARGE AXIALE

CHAPITRE 3: LE TASSEMENT D'UN PIEU SOUS CHARGE AXIALE

CHAPITRE 4: ESSAI DE CHARGEMENT STATIQUE D'UN PIEU

CONCLUSION

PARTIE 2:

PRESENTATION DE LA BASE DE DONNEES

INTRODUCTION

CHAPITRE 1: : DESCRIPTION DES SITES D'ESSAIS

CHAPITRE 2: DECRIPTION DES PIEUX D'ESSAI

CONCLUSION

PARTIE 03:

INTERPRETATION DES RESULTATS

INTRODUCTION

CHAPITRE 1: ANALYSE DE LA CAPACITE PORTANTE

CHAPITRE 2: ANALYSE DE LA CHARGE CRITIQUEN

CHAPITRE 3: ETUDE DU TASSEMENT DE REFERENCE

CHAPITRE 4: PROPOSITION D'UNE COURBE DE CHARGEMENT SIMPLIFIEE

CHAPITRE 5: ETUDE COMPARATIVE DES METHODES DE CALCUL DE Q_I

CONCLUSION

ANNEXES

Exemple de fiche synthétique d'une étude géotechnique

Description des sites étudies

ANNEXE 1 Exemple de fiche synthétique

ANNEXE 2 Description des sites étudies

REMERCIMENT

Ce n'est pas qu'il est difficile de remercier tous ceux qui ont participé de près ou de loin à ce travail, mais il faut avouer que les formules sont nombreuses et que le choix des bons mots a été toujours difficile. Entre vifs, sincères, profonds et nous passons les obscures subtilités de la langue française, le choix de la formule de remerciements est difficile.

Nos premiers remerciements vont pour le bon dieu, le tout puissant, qui nous avoir donné le courage et l'optimisme de finir ce travail, et sincèrement remercier ceux qui ont accepté de juger ce travail. , pour l'honneur qu'ils nous ont accordé en acceptant de juger notre travail.

Nous tenons tout particulièrement à remercier notre encadreur, professeur BOUFIA.A, Maître conférence au département génie civil de l'université de Blida, qui a fait tout son possible pour nous aider. Pour avoir su nous guider dans ce travail, pour avoir encore et toujours posé les bonnes questions, pour ses conseils, son intérêt et sa grande disponibilité. Merci professeur BOUFIA.A.

Nous remercions parallèlement l'ensemble des enseignants de l'institut de génie civil qui ont contribué à notre formation, et nous souhaitons le bon courage à toute la promo 2010-2011 du génie civil.

Sans oublier les responsables des laboratoires d'être accepte-nous de faire des stages pratique :

Laboratoire central de travaux public LCTP, surtout Dr A. HADID ingénieur chargée d'étude de l'essai de chargement. Organisme national de contrôle technique des travaux publics (CTTP), ainsi l'entreprise géotechnique Maghreb (GEOMAG) surtout Dr TEKFI chef service technique de leur aide. Un remerciement chaleureux a tout le staff.

En fin, nos remerciements à nos amis du département de génie civil, spécialement à la section masters géotechnique, et toutes les personnes qui ont contribué de prés ou loin à la réalisation de ce travail.

Dédicace

Je dédie ce modeste travail à :

Mes chers parents qui m'ont aidé, encouragé, soutenu, et guidé vers la voie de la réussite. J'aitoujours besoin de leurs prières, que Dieu vous protège.

Ma chère grand-mère et mon grand-père.

Mes chers frères et chères sœurs.

Toute ma famille.

Toutes les personnes qui ont contribué de prés ou de loin à la réalisation de ce travail.

A tous mes amis ...

A mon binôme OULDEN OuldAhmed et toute sa famille.

En fin, un grand remerciement pour professeur S.KENAI.

MAHDI Hicham.

Dédicace

Je dédie ce modeste travail à :

A la mémoire de mon père et ma grande mère.

Ma chère mère

Mes chers frères et chères sœurs.

Mes oncles et tantes

Toute ma famille.

Mes chers parents qui m'ont aidé, encouragé, soutenu, et guidé vers la voie de la réussite. Je vous aime très fort, que Dieu vous protège.

.A mon binôme Mahdi Hicham et toute sa famille.

Toutes les personnes qui ont contribué de près ou de loin à la durée de ma formation en Algérie

A tous mes amis (es) de département génie civil, université de M'sila.

A tous mes amis (es) à l'université de Blida département génie civil, et surtout àCeux de « Géotechnique » promotion (2010/2011).

OULDENE Ould Ahmed.

LISTE DES SYMBOLES ET UNITES

Partie 01:Etude bibliographique

Q₁:La charge limite d'un pieu

Q_p: La charge limite en pointe

Qs; La charge limite de frottement

Q_c:La charge de fluage

CPT: Essai de pénétromètre statique

PMT: Essai pressiometrique

SPT: Penetrometre Standard

A : Section du pieu

P : Périmètre du pieu

α, β: Correspondant à la rugosité du pieu et à la nature de sol

 N_q,N_c :Facteurs de portance varient exponentiellement avec l'angle φ

C: Cohésion

P : Périmètre d'un pieu

D : Fiche de pieu

q_u : La résistance de pointe, elle est donnée par la formule suivante.

B : Diamètre du pieu

h: Ancrage dans la couche porteuse.

D : Profondeur du pieu

 p_{le}^* : Pression limite nette équivalente

K_P: Facteur de portance

q_u: La résistance de pointe

q_{cc}: La résistance pénétrométrique corrigée

K_c: Facteur de portance

q_c^e: Pression limite nette équivalente

k_s: Facteur de portance à partir de l'essai SPT

 n_s : Facteur de frottement latéral

N : Nombre de coups mesures pour un pénétration de 30cm

E(D): Module d'élasticité du sol à la base du pieu

D : Fiche du pieu

B: Diamètre du pieu

 I_V : Facteur de tassement.il dépend de la compressibilité relative sol/pieu $K=E_P/E$, de C, l'élancement du pieu D/B et du coefficient de poisson v.

E_P: Représente le module d'élasticité du pieu

 E_z : Module d'élasticité du sol

 B_0 : Paramètre de mobilisation des frottements ou la pente initiale de la courbe $\tau(z)$

 R_{O} : Paramètre de mobilisation de la pression en pointe du pieu ou la pente initiale de la courbe q_{p}

 ΔL : Raccourcissement élastique du pieu

 F_S : Le coefficient de sécurité

 \propto : Est un facteur d'interaction qui dépend de (D/B, d/B, k, v)

Q_n : Charge nominal calculée appelée aussi charge de service

Q_{max}: Charge d'épreuve maximale

Q_o: Charge appliquée en tête du pieu lors de l'essai

Q_c : Charge de critique mesurée correspondant au seuil critique annonçant le début du grand e enfoncement

Q_l: Charge limite mesurée correspondant à la charge maximale que peut supporter le pieu.

Q_n: Charge nominale mesurée

MPa: Méga Pascal (1MPa= 10⁶ Pa)

KPa: Le kilo Pascal (1kpa=10 ³ Pa)

ton: Le tonne (1tonne= 10KPa)

 $m : Mètre (1m=10^3 mm)$

Partie 02: Présentation de la base de données (Document)

LCTP: Laboratoire central des travaux publics

CTTP: Organisme nationale de contrôle technique des travaux publics

LNTPB:Laboratoire nationale travaux public et bâtiments

LNHC: Laboratoire nationale d'habitant et de la construction

GOMECA: Géotechnique, mines & carrières engineering

CEBTP SOLEN: Bureau d'étude japonaise

OA: Ouvrage d'art

Partie 03: Interprétation des résultats

α : Correspondant à la pente initiale de la courbe de chargement

R : Coefficient de régression

V : Enfoncement en (mm)

Q: Charge (ton)

r : Rapport entre l'effort limite calculée et l'effort limite expérimentale

Cv : Coefficient de variation

 ρ : Rapport entre Q_L hyperbolique et Q_C experimental

 μ : Rapport entre Q_c calculee et Q_C experimental

 μ_{CPT} : Rapport entre Q_c calculee penetrostatique et Q_c experimental.

 μ_{PMT} : Rapport entre Q_c calculee pressiometrique et Q_c experimental

δ : Rapport entre tassement de référence et le diamètre

Qc (Vr): Charge critique calculée en fonction de tassement de référence

 ω : Rapport entre Qc (Vr) et Q_C experimental

 Φ_{CPT} : Rapport entre effort limite calculée par CPT et $Q_{l(hyper)}$

 Φ_{PMT} : Rapport entre effort limite calculée par PMT et $Q_{l(hyper)}$

Sommaire

ملخص	
Résumé Abstract Liste des symboleset unités INTRODUCTION GE NERALE— PARTIE I : ETUDE BIBLIOGRAPHIQUE INTRODUCTION————————————————————————————————————	
Abstract	
Liste des symboleset unités	
INTRODUCTION GE NERALE——0	1
PARTIE I : ETUDE BIBLIOGRAPHIQUE	_
INTRODUCTION—03	
CHAPITRE 1 : TECHNOLOGIE DES PIEUX	
1 Définition—————————————————————————————————)4
2 -Pour quoi les utilise-t-on et dans quels —	05
3 -Classification des pieux:————————————————————————————————————	06
3-1 -La nature du matériau constitutif: ————————————————————————————————————	06
3-2 : Selon le mode d'installation ————————————————————————————————————	09
3-2-1 : Les pieux refoulant le sol	09
3-2-2 : Les pieux ne refoulant pas le sol	12
4-Les avantages et inconvénientsdes pieux mise en place1	6
5-Choix du type de pieu —	16
CHAPITRE 2 : CAPACITE PORTANTE D'UN PIEU SOUS CHARGE AXIALE	
2-1 Généralité—	17
2-2 Déterminations de la charge limite d'un pieu isolée	18
2-3 Méthodes des calculs	19
2-3-1 Les essais de laboratoire	19
2-3-2 Les essais in-situ	20

CHAPITRE: 01 DESCRIPTION DES SITES D'ESSAIS——————		— 57
INTRODUCTION		
PARTIE II: PRESENTATION DE LA BASE DE DONNEES		
CONCLUSION		
4-7 : Méthodes et critères de calculs de capacité portante ————————————————————————————————————	4 7	
4-6 : Présentations des résultantset calcul des charges caractéristiques————	44	
4-5-2 : Réalisation de l'essai -	— 42	
4-5-1 : Préparation de de l'essai	<u>41</u>	
4-5 L'exécution de l'essai—	4 1	
4-4 Appareillages—	39	
4-3 Définitions des charges caractéristiques		_39
4-2-Domaine d'application —	38	
4-1-Objet	38	
CHAPITRE 4 : ESSAI DE CHARGEMENT STATIQUE D'UN PIEU		
3-5 : Effet groupe de pieu sur tassement d'un pieu —		
3-4 : Méthodesnumériques —		
2-3 Leméthode empiriques —		
3 -2 Théorie de transfert des charges		
3-1 Les méthodes d'élasticité de Randolph —		_33
CHAPITRE 3 : LE TASSEMENT D'UN PIEU SOUS CHARGE AXIALE	32	
2-4 Effets du groupe de pieu sur capacité portante ————————————————————————————————————		—20
2-3-2-3 : Calcul à partir de l'essai de pénétromètre dynamique 2-3-2-4 : Calcul à partir de l'essai de pénétromètre standard		
2-3-2-2 : Calcul à partir de l'essai de pénétromètre statique————————————————————————————————————		
2-3-2-1 : Calcul à partir de l'essaipressiometrique		

CONCLUSION—60

PARTIE III: INTERPRETATION DES RESULTATS	
INTRODUCTION————————————————————————————————————	62
CHAPITRE 01 ANALYSE DE LA CAPACITE PORTANTE	
1-1 Critère hyperbolique (ASCE, 1993)	64
1-2 Critère conventionnel	66
1-3 Critère de 90% (Hansen 1963)	67
1-4 Critère de 80% (Hansen 1963	68
1-5 Critère d'Akira Asaoka	69
1-6 Comparaison Q_L hyperbolique et Q (B/10) conventionnel	70
CHAPITRE 02 ANALYSE DE LA CHARGE CRITIQUE	
2-1 Comparaison du rapport q_c experimentale $/q_l$ hyper	72
2-2 Calcul de Q _C à partir des essais in-situ	74
2-2-1 L'essai pénétromètre statique (CPT)	74
2-2-2 L'essais préssiomeétrique(PMT)	76
3-2-3 Comparaison de Q_c calculee et Q_c expérimentale	78
CHAPITRE 03 ETUDE TASSEMENT DE REFERENCE V_R	
3-3-1 Etude statistique de v_r ————————————————————————————————————	80
3-3-2 Relation entre Qc(v r) et v_r	82
CHAPITRE4 PROPOSITION DE COURBE DE CHARGEMENT	
	84
CHAPITRE 05 ETUDE COMPARATIVE DES METHODES DE CALC	ULE Q_L
5-1 APPLICATION DE LA METHODEPENETROSTATIQUE(CPT)	86
5-2 APPLICATION DE LA METHODEPRESIOMETRIQUE (PMT)	87
CONCLUSION ET RECOMMANDATIONS	90

Liste des tableaux

Tableau.1 : Classification conventionnelle des sols	22
Tableau.2 : Mode de mise en œuvre (type de pieu)	22
Tableau.3 : Détermination des abaques—	23
Tableau.4 : Détermination valeur de portance k _c	25
Tableau. 5 : Détermination du frottement latéral unitaireq _s	27
Tableau. 6 : Critère de Aoki et Velloso ——————————————————————————————————	28
Tableau. 7: Critère de Lopes et Laprovitera—	28
Tableau. 8:Critère de Bazarra et Kurkurt ————————————————————————————————————	30
Tableau. 9:Les différents critères de calcul empiriques————————————————————————————————————	31
Tableau. 10:D'autres critères existent dans le calcul de capacité portante	53
Tableau. 11:Description des sites étudiés————————————————————————————————————	57
Tableau. 12: Description des pieux d'essai—	59
Tableau. 13: Résultats de la capacité portante hyperbolique ————————————————————————————————————	65
Tableau. 14: Résultats de la capacité portante conventionnelle—————————————————————————————————	66
Tableau. 15: Calcul capacité portante par critère hansen90%————————————————————————————————————	67
Tableau. 16: Calcul capacité portante par critère hansen80%————————————————————————————————————	68
Tableau. 17: Calcul capacité portante par critère D'Akira Asaoka———————————————————————————————————	69
Tableau. 18:Comparative entre Q _L hyperbolique et Q (B/10) conventionnel	70

Tableau. 19:Comparative entre Q_C experimentale $/Q_L$ hyperbolique————————————————————————————————————	73
Tableau. 20:Qc calculépar l'essai pénétromètre statique(CPT)	74
Tableau. 21:Qc calculépar l'essai préssiométrique (PMT)	76
Tableau. 22:Comparative entre Q _C calculée par CPT etQ _C expérimentale ————————————————————————————————————	79
Tableau. 23: Comparative entre Q _C calculée par PMT etQ _C expérimentale ————————————————————————————————————	79
Tableau. 24:Résultats du rapport δ = B/V _r	8 1
Tableau. 25:Résultats du rapport $\omega = Q_c(Vr)/Q_c \exp$	82
Tableau. 26:Résultats de la comparaison entre Q ₁ calculé par (CPT) et Q ₁ hyper————————————————————————————————————	87
Tableau. 27: Résultats de la comparaison entre Q ₁ calculé par (PMT) et Q ₁ hyper————————————————————————————————————	88

Liste des figures

Figure 1: Domaine des fondations profondes	0
Figure 2: Pieux fiché au substratum	05
Figure 3: Frottement d'un pieu	05
Figure 4 : Les pieux en bois	07
Figure 5 : Pieux en acier	07
Figure 6 : Pieux en béton armé—	08
Figure 7 : Pieux en composite	08
Figure 8 : Pieu battu moulé	09
Figure 9 : Pieu battu pilonné	10
Figure 10 : Pieu vessé moulé—	11
Figure 11 : Pieu foré simple	12
Figure 12 : Pieu foré tubé—	13
Figure 13 : Pieu foré à la boue	14
Figure 14 : Pieu foré à tarière creuse—	15
Figure 15 : Pieu sous charge axiale	17
Figure 16: Schéma de calcul de la pression limite nette équivalente—	21
Fig17 : Valeurs du frottement latéral unitaire—	23
Figure 18 : Schéma de calcul la résistance de pointe.	24
Figure 19 : Schéma principe de la méthode de transfert de charge	35
Figure 20 : Schéma présente l'essai de chargement statique—	38
Figure 21 : Massif de réaction	40

Figure 22 : Vérin hydraulique ————————————————————————————————————	_ 40
Figure 23: Dispositifs de mesurage	—4 1
Figure 24: Diagramme schématisant d'essai de minimal de 10 palies —	— 43
Figure 25: Diagramme schématisant d'essai de minimal de 8 palies	<u>43</u>
Figure 26 : Relation (charge en tête – déplacement verticaux) obtenue pour un pieu foré—	45
Figure 27 : Représente la relation (déplacement de la tête – logarithmique du temps)	
obtenues Pour un pieu précédent	— 45
Figure 28 : Représente la relation « charge en tête-pente des droites de stabilisation » —	— 46
Figure 29 : Critère de la tangente (Butler et Hoy)	<u>4</u> 7
Figure 30 : Critère de valeur limite (davisson 1972)	— 48
Figure 31 : Critère de 80%(Hansen 1963)	— 49
Figure 32 : Critère de 90% (Hansen 1963)	50
Figure 33 : Critère d'Akira Asaoka—	– 51
Figure 34 : Lissage hyperbolique (Duncan et Chang 1970—	— 52
Figure 35 : Interface de logiciel ''PLOT DIGITIZER''	— 62
Figure 36: Interface de logiciel "OriginPro 8"	63
Figure 37 :Comparaison des efforts limite expérimental et conventionnel	— 71
Figure 38 : Histogramme d'analyse de la capacité portante par la charge critique————	— 72
Figure 39 : Courbe de chargement normalisé tri-linéaire simplifiée———————————————————————————————————	<u>84</u>
Figure 40: Interface de calcul à l'aide Microsoft Excel.	<u>86</u>
Figure 41: Comparaison des efforts limites expérimental et calculées par (CPT)	89
Figure 42: Comparaison des efforts limites expérimental et calculées par (PMT)	<u>89</u>

INTRODUCTION GENERALE

Le développement croissant en matière d'infrastructure en Algérie a souvent conduit à l'implantation des ouvrages fondés sur pieux. La difficulté des conditions géotechniques de certains sites est une source d'incertitudes quant à la conception et au dimensionnement des pieux

On fait appel à des fondations sur pieux lorsque le sol de fondation n'a pas les caractéristiques suffisantes pour supporter le poids de la structure, le calcul de la capacité portante des pieux chargés verticalement est une tâche assez complexe vu la richesse méthodes de calcul qui mette l'utilisateur néophyte de ces méthodes perplexe, suite aux prévisions disparates dans le calcul par les essais de laboratoire et in-situ, on a le recours de fait un essai de chargement sur le site.

L'essai de chargement d'un pieu en vraie grandeur est un outil pratique d'analysé insitu de la capacité portante et du tassement d'un pieu isolé qui permet de s'affranchir des incertitudes liées au calcul.

Notre étude consiste à comparer à travers de 56 projets réels, certaines méthodes de dimensionnement des pieux sous charge axiale, à savoir les méthodes basées sur les essais présiométriques, pénétrostatique et essais de chargement, cette étude permettra de faciliter le choix des méthodes adéquates pour l'étude des pieux.

Par ailleurs, une autre étude basée sur l'essai de chargement et les critères courante de l'interprétation de la capacité portante.

La thèse comporte trois grandes parties

La première partiec'est une généralité sur les pieux, on présente les méthodes de calcul leur capacité portante et tassement, suite une exposition sur l'essai de chargement.

Le partie 2 présente la base de donnée étudiée, on recense statistiquement les différents sites et les pieux d'essai.

Sur ces bases, le partie 3 représente les résultats des données expérimentales obtenues est décrire puis comparée. Des courbes des essais de chargement sont alors calculées. En fin synthétisél'ensemble dans une courbe approche simplifié.

INTRODUCTION

Le dimensionnement des fondations est un domaine si complexe et si vaste .et le les plus grands projets en Algérie sont fondée sur pieux, Lors du dimensionnement d'une fondation, deux éléments importants sont àconsidérer: la capacité portante et le tassement. L'ingénieur géotechnicien devra sepréoccuper dans un premier temps de la capacité portante du sol, c'est-à-dire s'assurer que lescouches du sol support sont en mesure de supporter la charge transmise par la fondation. Lecas échéant, il devra alors vérifier que le tassement du sol- qui est la déformation verticale dusol à la surface - reste dans les limites admissibles, nous essayerons d'illustrer l'importance et traitement de ce type de fondations dans notre partie bibliographique.

CHAPITRE1: TECHNOLOGIE DES PIEUX

1- Définition:

On appelle une fondation profonde telle que la profondeur d'encrassement (D) est supérieur 5 à 6 fois la largeur de la fondation, d'après D.T.U 13.2 les profondeurs peuvent aller de 6 à 20 m et le diamètre peut varier de 0.1 à 1.6 m.

Un pieu est une fondation profonde élancée qui reporte les charges de la structure sur des couches de terrain de caractéristiques mécaniques suffisantes pour éviter la rupture du sol et limiter les déplacements à des valeurs trèsfaibles.

Il existe des pieux en cercle, carré, rectangle et aussi des polygones (pieu préfabriqué)

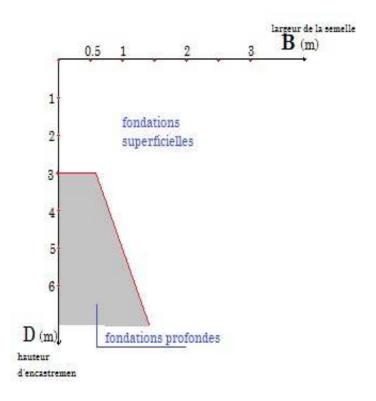


Figure 1: Domaine des fondations profondes

2-Pour quoi les utilise-t-on et dans quels cas :

Avant de réalisation une fondation, la première chose à faire est de connaître le sol (fais une étude géotechnique) et à cause de leurs conditions physiques, mécaniques on peut définies le type de fondation mettre en place.

On choisira les pieux pour les raison suivant :

- ➤ Soit parce que l'ouvrage transmettant une surcharge lourde au sol et ce dernier présente une capacité portante insuffisante.
- Soit parce que le sol est de mauvaise qualité superficielle et existe une couche solide plus profondément dans le sol.

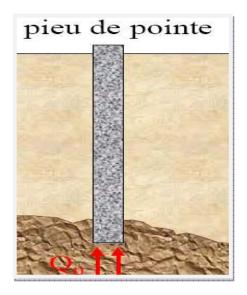


Figure 2: pieux fiché au substratum

- ➤ Soit parce que les tassements prévisibles sont incompatibles avec l'ouvrage
- ➤ Et d'autre cas existence dans les constructions marines.

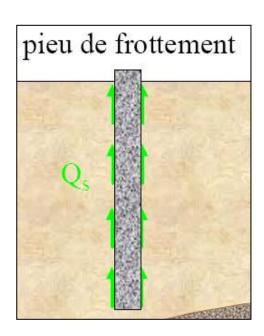
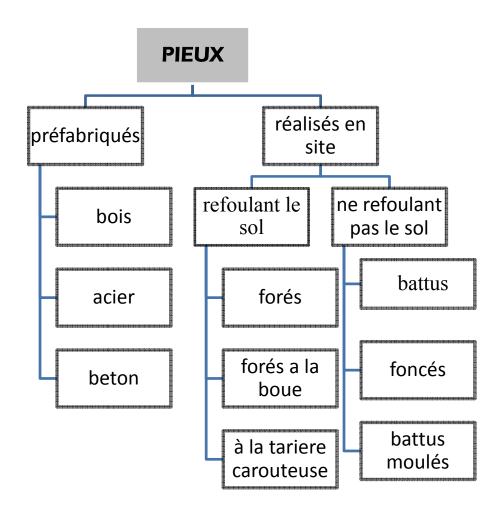



Figure 3: frottement d'un pieu

Figure 3: Frottement d'un pieu

3- Classification desPieux:

Dans ce partie on vue la technologie de la construction d'un pieu et dans quel technique se base suivant la mise en place. Il existe nombreux modes d'exécutions des pieux, il n'est donc pas question de les voir tous, on regardera que quelques types largement utilisés.

Traditionnellement, on classe les pieux selon :

3-1 La nature du matériauconstitutif:

Ce sont les pieux préfabriqué dans les usines et transportés jusqu'au chantier, foncés dans le sol par battage. On distingue 3 types des pieux préfabriqués :

3-1-1 Pieu en bois:

Les pieux en bois probablement est plus vieille méthode de renforcement des fondations, ils sont réservés à des ouvrages provisoires ou petits dimension et leur hauteur ne dépasse pas 12m

Ils ne sont maintenant utilisés que dans les pays où les arbres sont abondants. Le bois est alors traité. Il faut éviter le pourrissement dû à la présence de la nappe phréatique.

Figure 4: Les pieux en bois

3-1-2 Pieux en acier:

Ce sont surtout des profilés en H ou encore des sections évidées (carrées ou circulaires) les longueurs usinées vont de 12 à 21m. Ils sont plus couteux que les pieux en béton, mais il a une grande capacité de reprise de charge pour un poids donné ce qui peut réduire les couts de mise en œuvre. Le pieu en acier ce foncé par battage ou par vibration.

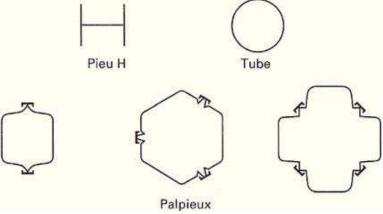


Figure 5: Pieux en acier

3-1-3 Les pieux en béton armé:

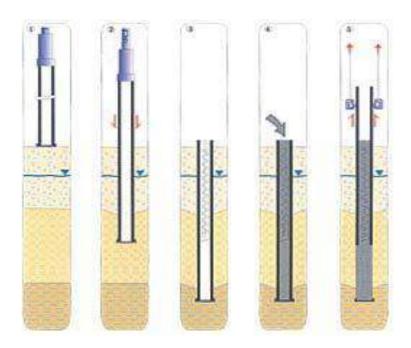
Sont enfoncés dans le sol par battage au moyen d'un mouton diesel oupar vibrofonçage. Ils se composent de trois parties :

- le sabot, pointe d'acier ou en fonte qui assure lapénétration du pieu dans le sol.
- le corps de section carrée, polygonale ou circulaire.
- et la tête réalisée en béton fretté pour résister aubattage et souvent surmontée d'un casque de battage nécessaire pour éviter sa détérioration.

Figure 6 : Pieux en béton armé

3-1-4 : Pieu en Composite : Ce sont habituellement des tubes en acier remplis de béton.

Figure 7: pieux en composite


3-2: Selon lemoded'installation:

On distingue deux grands groupes de pieux: les pieuxmis en œuvre avecrefoulement du sol et lespieux réalisés parexcavation du sol. Dans le premier groupe, on peut citer les pieux battus et dans le second les pieux forés.

3-2-1: Les pieux refoulant le sol:

a)Pieux battus moulés:

Ce procédé consiste au battage d'un tube sa base en acier ou béton par mouton ou avec batteur (hydraulique ou diésel). Le tube est ensuite rempli totalement de béton d'ouvrabilité moyenne.

- 1. Mise en fiche, réglage, pose d'une plaque métallique perdue.
- 2. battage du tube au moyen d'un mouton.
- 3. Mise en place d'armatures.
- 4. Bétonnage à sec.
- 5. Extraction du tube.

Figure 8 : Pieu battu moulé

b) Pieux battus pilonnés:

Ce procédé est sans nuisance sonore. Le sol est comprimé. Les diamètres sont de 40 à 65 cm.

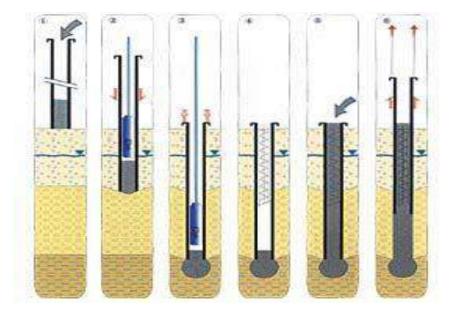


Figure 9 : Pieu battu pilonné

- 1 Mise en fiche, réglage, confection d'un bouchon en béton
- 2 Pilonnage en fond de tube du bouchon en béton et entraînement du tube qui refoule le sol
- 3 Réalisation de la base élargie dans la couche d'ancrage
- 4 Mise en place d'armatures partielles ou toute hauteur.
- 5 Bétonnage sans présence d'eau
- **6** Extraction du tube de telle sorte que le niveau inférieur du tube soit toujours audessous du niveau supérieur du béton.

c) Pieux vessés moulés:

Ce procédé s'applique pas aux sols sableux les pieux vissés moulés sont installé dans les sols cohérents par vissage avec un outil de forme en double vis Pieu exécuté sans extraction de terre et sans vibration, chantier propre

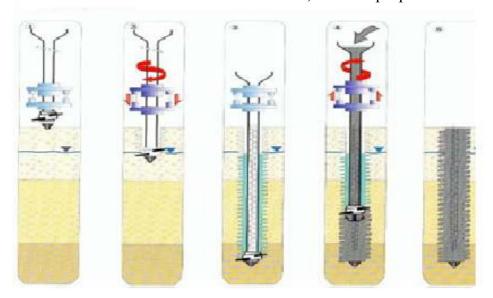
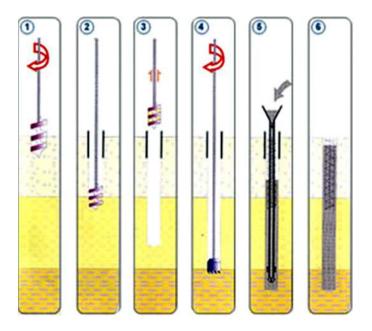


Figure 10 : Pieu vessé moulé


- 1- Mise en fiche, réglage et pose d'une pointe perdue
- 2- L'outil est foncé par combinaison du vissage et du vérinage dans le sol refoulé
- 3- Mise en place d'armatures
- 4- En dévissant le vérinage augmente par refoulement du sol l'épaisseur de l'empreinte laissée par l'outil, la charge de béton garantissant un parfais moulage de celle-ci
- 5- Pieu atlas exécuté

3-2-2: Les pieux ne refoulant pas le sol:

Ces types des pieux sont divers mais essentiellement et plus existent en Algérie on distingue 5 grands différents groupe des pieux forés :

a) Pieux forés simples :

Il est bien utilisé pour pénétration dans les terrains durs et installé à partird'un forage dans le sols par des moyens mécaniques tel que tarière, benne carottier...etc. Ce procédé est sans nuisance sonore. Sans vibration.

- 1. Mise en fiche, réglage, préforage.
- 2. Mise en place de la virole.
- 3. Forage à la tarière.
- 4. Ancrage au carottier.
- 5. Mise en place d'armatures et bétonnage de la colonne.
- 6. Contrôle du béton.

Figure 11 : Pieu foré simple

b) Pieux forés tubés :

Cette procédé demande un ensemble des outils tel que les treuils, une base de stabilité le chute libre des tubes. Le diamètre de ces pieux varie entre 40 à 60cm.

Les outils de forages peuvent être la benne circulaire, la soupape dans les terrains mous et le trapèze dans les terrains durs.

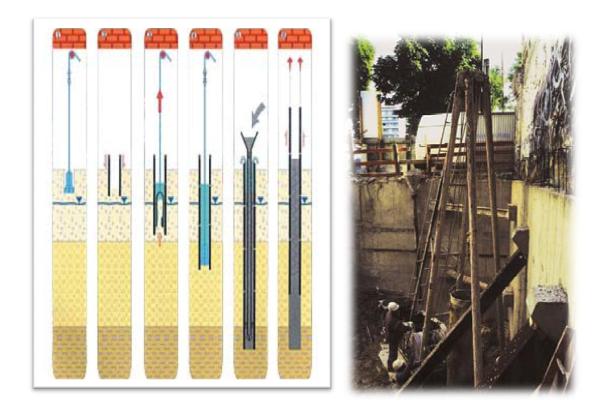


Figure 12 : Pieu foré tubé

- 1 Mise en fiche, réglage, préforage.
- 2 Mise en place du premier élément de tubage.
- 3 Extraction des terres à la soupape.
- 4 Tubage à l'avancement par éléments vissés les uns aux autres (élément de 1,5 à 2 m)
- 5 Mise en place d'armatures partielles ou totales puis bétonnage au tube plongeur avec relevage simultané du tubage.

C) Pieux forés à la boue :

Ce type des pieux sont mise en œuvre lorsque les terrains sont instables, on rappelle que la boue est un outil de forage des pieux descendre a de grandes profondeurs avec diamètre (0.8 à 2) m. elle formé un petite vise sur les parois de forage et ainsi de maintenir en place par surpression hydrostatique

Ce type de pieu peut être réalisé dans tout type de terrain

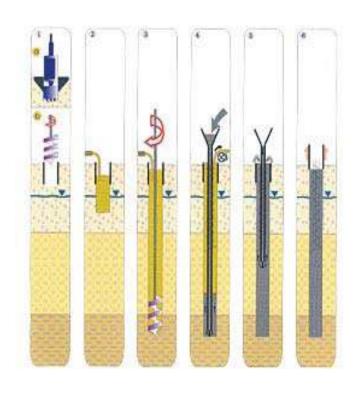


Figure 13 : Pieu foré à la boue

- 1-Préforage et mise en place de la virole2-Mise en œuvre de la boue bentonitique
- 3-Forage sous couvert de la boue à niveau constant.
- 4-Recyclage de la boue, mise en place des armatures partielles ou totales puis bétonnage au tube plongeur en récupérant la boue
- 5-Tube plongeur relevé petit à petit jusqu'à la fin du bétonnage
- 6-Extraction de la virole, contrôle de l'arase béton et traitement de la boue bentonitique.

D) Pieux forés à tarière creuse :

Cette méthode très économie et très utilisé, l'exécution est très rapide mais il faut que la nature du sol s'y prête. En effet tout sol dur ne peut pas être traversé. La langueur de la tarière doit être supérieure ou égal à la longueur de pieu.

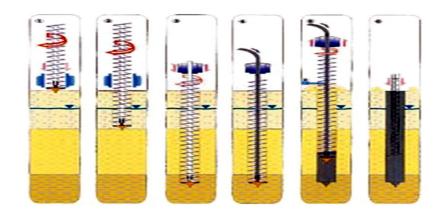


Figure 14 : Pieu foré à tarière creuse

- 1. Mise en fiche, réglage des guides de forage.
- 2. Forage.
- 3. Ancrage par rotation et avec poussée sur l'outil.
- 4. Injection de béton dans l'axe creux de la tarière.
- 5. Remontée de la tarière en rotation lente.
- 6. Mise en place d'armatures.

4-Les avantages et inconvénient des pieux mise en place :

Les avantages :

- Variation de la longueur pour mieux s'adapter aux condits du sol.
- Insertion de gros diamètres.
- ◆ Pas de risque de soulèvement de sol.

Désavantage:

- Risque de striction dans les sols compressibles.
- Installation du béton non faite dans condition idéales.
- ♦ Elargissement du pied de l'inclusion impossible dans un sol sans cohérent.

5-Choix du type de pieu:

Ce choix dépend :

- La nature des couches rencontrées dans le terrain.
- La présence de nappe phréatique.
- Les charges à reprendre.
- De l'environnement du chantier.
- Du coût d'exécution.
- Et du matériel et de la technique de l'entreprise.

CHAPITRE 2: CAPACITE PORTANTE D'UN PIEU SOUS CHARGE AXIALE

2-1 Généralité:

Le chargement vertical d'un pieu se traduit par la mobilisation de deux efforts :

- -Effort de pointe noté (\mathbf{Q}_p) par l'appui de sa base sur le sol résistant.
- -Effort de frottement latéral noté (Q_s) par le frottement latéral entre le sol et le pieu.

L'effort de pointe est proportionnel à:

- section de la base du pieu.
- à la résistance du substratum.

L'effort de frottement latéral est proportionnel à :

- la surface de contact entre le pieu et le sol.
- au coefficient de frottement pieu-sol (rugosité du pieu, pression latérale, coefficient de frottementinterne du sol).

$$Q_l = Q_p + Q_s$$

 $Q_{l\,:}$ la charge limite d'un pieu.

 Q_{p} : la charge limite en pointe.

 $Q_{s\,;}$ la charge limite de frottement.

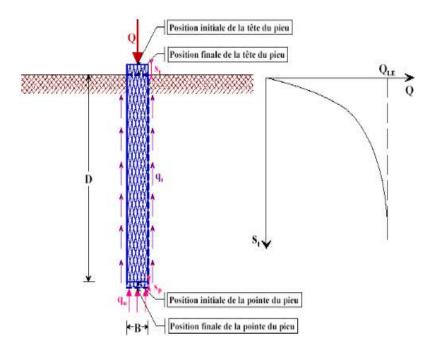


Figure 15: Pieu sous charge axial

2-2 Détermination de la charge limite d'un pieu isolé :

La loi de comportement d'un pieu isolé soumis à un chargement axiale définit deux paramètres :

- La charge de fluage Q_c
- La charge limite Q₁
- a) La chargelimite Q_l (capacité portante) c'est la charge présente au moment de la rupture, elle est obtenue en additionnant la charge limite de pointe Q_p qui correspond au poinçonnement du sol sous la base du pieu et la charge limite Q_s mobilisable par le frottement latéral entre le sol et le pieu.

$$Q_l = Q_p + Q_s$$

tel que : $Q_p = A q_u$

ou A: section du pieu.

 $q_u\!:$ contrainte de rupture sous la pointe.

$$Q_{s} = P \int_{0}^{D} q_{S}(z) dz$$

ou P: périmètre du pieu

 $q_s\!:\!$ contrainte limite de frottement latéral

b) La charge de fluage Q_ccorrespond à la fin de la partie linéaire de la courbe d'enfoncement

$$Q_c = 0.5Q_p + 0.7 Q_s$$
(pieu foré)

$$Q_c = 0.7Q_p + 0.7 Q_s$$
(pieu battu)

2-3Méthodes de calcul:

Plusieurs méthodes peuvent être utilisées pour la détermination de la capacité portante d'un pieu, les plus adaptées sont :

- Les essais de laboratoire : essai de cisaillement direct, essai de compression triaxiale ou l'odomètre.
- > Les in-situ:pénétrometrique (statique, dynamique essais et standard), préssiométrique et d'autres méthodes existe tel que l'essai de chargement de pieu

2-3-1 Les essais de laboratoire :

L'évaluation de la capacité portante d'un pieu à partir de les essais au laboratoire sont utilisé avant le développement des essais in-situ, les qualités mécaniques d'un sol sont caractérisées traditionnellement par deux paramètres, l'angle de frottement interne φ et la cohésion C. Ces deux paramètres peuvent être mesurés au laboratoire sur échantillons intacts, soit par des essais de cisaillement direct, ou soit par des essais de compression triaxial. Donc la charge limite reprise par un pieu isolé dans un sol homogène est formulée selon la théorie classique des corps rigides-plastiques comme suit:

$$\mathbf{Q}_{l}\!\!=\!\!\mathbf{A}\left(1,\!2.\mathbf{C}.\mathbf{N}_{\mathsf{C}}\!\!+\!\!\gamma.\mathbf{D}.\mathbf{N}_{\mathsf{q}}\right)\!\!+\!\!\mathrm{P.D}\left(\alpha.\,\gamma.\mathbf{D}\!\!+\!\!\beta.\mathbf{C}\right)$$

telque:

 $\alpha,\,\beta$ correspondant à la rugosité du pieu et à la nature de sol

α, β correspondant à la rugosité du pieu et à la nature de sol
N_q,N_cfacteur de portance varient exponentiellement avec l'angleφ
A aires de section d'un pieu
C cohésion
P : périmètre d'un pieu
D : fiche de pieu

Cette théorie ne tient pas en compte les déformations du sol avant la rupture ni de compressibilité, ces méthodes sont moins en moins utilisés notamment grâce au développent des méthodes empiriques basées sur les résultats d'essais in-situ.

2-3-2 Les essais in-situ:

Il existe différents essais in-situ peuvent déterminés la capacité portante des pieux tel que préssiomérique et pénétrométrique. Les essais in-situ sont largement utilisés parce qu'ils nous permettent donnent des résultats très précis et rapidement que les essais laboratoire.

On a exposé principalement aux méthodes pratiques de dimensionnement basées sur ces essais qui connaissent actuellement un avancement mondial dans chaque année.

2-3-2-1 Calcul à partir de l'essai préssiométrique :

La propriété la plus remarquable de la méthode préssiométrique du LCPC, est qu'elle est applicable à tous les sols et à tous les types de pieux.

La méthode préssiométrique se base sur le concept du sol homogène équivalent, caractérisée par une pression limite équivalente p_{le} , et une fiche équivalente D_{e} .

Détermination de la charge limite de pointe Q_p :

$$Q_p = q_u$$
. A

Où A : représente la section droite de la pointe du pieu.

qu : la résistance de pointe, elle est donnée par la formule suivante.

$$q_{\rm u} = K_{\rm p.} P_{le} *$$

Où K_P : facteur de portance.

 p_{le}^* : pression limite nette équivalente.

B: diamètre du pieu

h: ancrage dans la couche porteuse.

D : profondeur du pieu

a=max [B/2; 0.5m]

b=min [a; h]

> Détermination de la pression limite équivalente :

La pression limite nette équivalente est une moyenne analytique des valeurs de pression limite nette, mesurées dans une zone utile au voisinage de la pointe, épaisse deb+3asous la pointe et de b au-dessus :

$$P_{le}^* = \frac{1}{b+3.a} \int_{D-b}^{D+3.a} P_l^*(z) dz$$

Zone utile: [D-b; D+3a]

B: diamètre du pieu

h : ancrage dans la couche porteuse. Figure 16: Schéma de calcul de la \mathbf{P}_{le}^{*}

D: profondeur du pieu

a=max [B/2; 0.5m]

b=min [a; h]

L'expression précédente peut se simplifier en utilisant une sommation des trapézes, obtenus en joignant par des droites les points du profil de la pression limite nette $P_{le}^{\ *}$, soit :

$$p_{le}^* \approx \frac{1}{3a+b} \sum_{D-b}^{D+3a} p_l^* (z) \Delta z$$

Détermination du facteur de portance k_p :

La valeur de \mathbf{k}_p facteur de portance, est fixée par le tableau ci-dessous en fonction de la nature du sol (Tableau.1) et du mode de mise en œuvre (type de pieu), quelle que soit la géométrie de la section droite de l'élément de fondation (Tableau.2).

Tableau.1: Classification conventionnelle des sols

	Class	se de sol	P _l (Mpa)	q _c (Mpa)
	A	Argile et limons mous	<0.7	<3.0
Argile limon	В	Argile et limon ferme	1.2 à 2 .0	3.0 a 6.0
	С	Argile très ferme et dure	>2.5	>6.0
	A	lâche	<0.5	<5
Sable .grave	В	Moyennement compact	1.0 à 2.0	8 .0 à 15.0
	С	compacts	>2.5	>20.0
	A	molles	<0.7	<5.0
craies	В	Altérés	1.0 à 2.5	>5.0
	С	compacts	>3.0	-
Marnes marno-	A	tendres	1.5 à 4.0	-
calcaire	В	compacts	>4.5	-
roches	A	Altères	2 .5 à 4.0	-
	В	fragmentés	>4.5	-

Tableau.2: Mode de mise en œuvre (type de pieu'Kp')

Nature des terrains		Eléments mis en oeuvre sans refoulement du sol	Eléments mis en oeuvre avec refoulement du so
	Α	1,1	1,4
ARGILES - LIMONS	В	1,2	1,5
	С	1,3	1,6
SABLES - GRAVES	Α	1,0	4,2
	В	1,1	3,7
	С	1,2	3,2
	Α	1,1	1,6
CRAIES	В	1,4	2,2
C		1,8	2,6
MARNES , MARNO-CALCAIRES		1,8	2,6
ROCHES ALTEREES (1)		1,1 à 1,8	1,8 à 3,2

⁽¹⁾ La valeur de k_p pour ces formations est prise égale à celle de la formation meuble du tableau à laquelle le matériau concerné s'apparente le plus.

valeurs de K_pselon le fascicule 62 titre V

Détermination de la charge limite de frottement latéral Q_s :

$$Q_s = P \int_0^D q_s(z) .dz$$

Où P: le périmètre du pieu

q_s: La valeur du frottement latéral q_s unitaire, à une profondeur z,

La détermination de q_s se fait à partir de la figure 17, et la courbe q_s = $f(p_l^*)$ est sélectionnée du tableau 03.

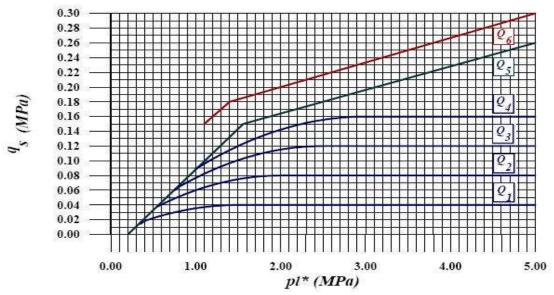


Fig17 :Contrainte de frottement latéral limite q_s en fonction de p_l^st

Tableau 3. Courbe de frottement latéral limite

	Argiles, limons Sables, graves		Craies			Marnes					
	Α	В	C	Α	В	С	A	В	C	A	В
Foré simple	Q_I	$Q_1,Q_2^{(l)}$	$Q_2,Q_3^{(l)}$				Q_I	Q_3	$Q_{4}Q_{5}^{(1)}$	Q_3	$Q_4,Q_5^{(l)}$
Foré boue	Q_I	Q_{I_2}	Q2 ⁽¹⁾	Q_I	$Q_2,Q_1^{(2)}$	$Q_3, Q_2^{(2)}$	Q_I	Q_3	$Q_4Q_5^{(1)}$	Q_3	$Q_{t}Q_{t}^{(l)}$
Foré tubé (tube récupéré)	Q_I	Q_{Ii}	Q2 ⁽³⁾	Q_I	$Q_2,Q_1^{(2)}$	$Q_3, Q_2^{(2)}$	Q_I	Q_2	$Q_{3}, Q_{4}^{(3)}$	Q_3	Q_4
Foré tubé (tube perdu)		Q_I			Q_I	Q_2		(4)		Q_2	Q_3
Puits (5)	Q_I	Q_2	Q_3				Q_I	Q_2	Q_3	Q_4	Q_{5}
Métal battu fermé	Q_I	0	Q ₂		Q_2	Q_3		(4)		Q_3	Q_4
Battu préfabriqué béton	Q_I	(22		Q_3			(4)		Q_3	Q_4
Battu moulé	Q_I	(22		Q_2	Q_3	Q_I	Q_2	Q_3	Q_3	Q_4
Battu enrobé	Q_I	(Q ₂		Q_3	Q,		(4)		Q_3	Q_4
Injecté basse pression	Q_I	0	22		Q_3		Q_2	Q_3	Qı		Q_5
Injecté haute pression (6)		Q_I	Q_{s}		Q_5	Q 6		Q_{S}	Q ₆		Q ₆

> Hauteur d'encastrement équivalent De :

La hauteur d'encastrement équivalent D_e est un paramètre conventionnel de calcul, destinée à tenir compte que les caractéristiques mécaniques des sols de couverture sont généralement plus faibles que celles du sol porteur, elle est définie à partir des essais de sol en place : préssiomètre, et le pénétromètre statique.

$$D_{e} = \frac{1}{P_{le}^{*}} \sum_{D=b}^{D+3a} P_{l}^{*} (z) \Delta z$$

Note $:P_{le}^{*}$ et D_{e} se réduisent évidemment en cas d'un sol homogène idéal à P_{le} D respectivement.

2-3-2-2 : CALCUL A PARTIR DE L'ESSAI DE PENETROMETRESTATIQUE

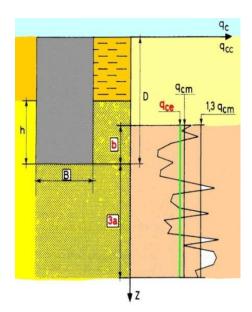
Cette essai grâce elle très répandue au calcul des pieux sous charge axiale, elle base sur la résistance équivalente q_{ce} et la fiche équivalente D_{e} .

On doit estimer dans ce partis la capacité portante des pieux à partir du pénétrométrique statique, en étudient séparément les corrélations de résistance en pointe et le frottement latéral, le long d'un pieu avec les mesures pénétrométrique.

\triangleright Détermination de la charge limite de pointe Q_p :

$$Q_p = q_u$$
. A

A : représente la section droite de la pointe du pieu .


 q_u : la résistance de pointe, elle est donnée par la formule suivante.

$$q_u = K_c.q_c*$$

K_c: facteur de portance ;

q_c^e: pression limite nette équivalente.

Figure 18: Schéma de calcul de résistance de pointe.

Détermination du facteur de portance kc :

Le coefficient de portance traduit la proportionnalité entre la résistance de pointe du pieu et celle du pénétromètre. Ce coefficient dépend de la nature du sol et du mode de mise en œuvre du pieu (pieu foré ou battus). Les valeurs de K_c données dans le fascicule 62 figurent dans le tableau suivant :

Tableau.4 : Détermination valeur de portance K_c

Type de sol	Pieu ne refoulent pas le	Pieu refoulent le
	sol	sol
Argiles et limons	0.40	0,55
Sables et graviers	0,15	0,50
Craies A	0,20	0,30
Craies B	0,30	0,45

\triangleright Détermination de la résistance pénétrométrique équivalente $q_c^{\ e}$:

Il est calculé en fonction des valeurs brutes mesurées q_c^e , et non nettes comme c'est le cas de la méthode préssiométrique. Elle est évaluée comme suit :

-calculer une moyenne analytique dans la zone utile de capacité portante :

$$q_{cm} = \frac{1}{b+3a} \int_{D-b}^{D+3a} qc(z)$$

a, b : définissants la zone utile de la résistance en pointe sont les même que ceux de la méthode préssiométrique.

-on calcule la résistance pénétrométrique moyenne q_{cm} dans la zone utile.

-on remplace toute la valeur dépassants 1,3 q_{cm} par1,3 q_{cm} , soit q_{ce} =1,3 q_{cm}

-recalculer la résistance équivalente par :

$$q_{ce} = \frac{1}{b+3a} \int_{D-b}^{D+3a} q_{cc}(z)$$

Tel que q_{cc} : la résistance pénétrométrique corrigée.

En pratique, on utilise la formule approchée de sommation des trapèzes limités parles Nmesures $\mathbf{q_c}$ sur la tranche [D-b, D+3a], en considérant un pas Δzi entre deux mesures consécutives :

$$q_{ce} = \frac{1}{b+3a} \sum_{i=1}^{i=N} qce. \Delta zi$$

➤ La fiche équivalenteDe

Généralement est inférieure àD, est la hauteur àpartir de la surface du sol, le long de laquelle les résistances pénétrométrique sont représentées par une moyenne analytique égale à q_c^e, soit :

$$D_e = \frac{1}{ace} \int_d^D qc(z) . dz$$

Le termed est égal en général à0, sauf s'il existe des couches superficielles de mauvaise résistance, dont on ne veut pas les introduire dans l'évaluation de la fiche équivalente.

> Détermination de la charge de frottementlatéraleQ_s :

$$Q_s = \pi B \int_0^D q_s d(z)$$

Détermination du frottement latéral unitaireq_s:

La contrainte de frottement latéral limite q_s à la profondeur zest égale à la résistance pénétrométrique à cette profondeur, divisée par un facteur empirique β sans toutefois dépasser une valeur maximale q_s^{max} , soit :

$$q_s(z) = \min \left[\frac{q_{c(z)}}{\beta}, q_s^{max} \right]$$

Tableau. 5 : Détermination du frottement latéral unitaire q_s^{max} en (kPa)

		Argile/limon		Sable /grave			craie		
		A	В	С	A	В	С	A	В
	β	-	-	-	200	200	200	125	80
foré	$q_s^{max}(kPa)$	15	40	40	-	-	120	40	120
	β	-	100	-	250	250	300	125	100
Foré tubé			40	40	-	40	120	40	80
	$q_s^{max}(kPa)$	15							
Métal	β	-	120	150	300	300	300		
battus									
fermé	$q_s^{max}(kPa)$	15	40	80	-	-	120		
Battu	β	-	75	-	150	150	150		
préfabriqué	$q_s^{max}(kPa)$	15	80	80	-	-	120		

Notons que le règlement simple que, pour des raisons de sécurité le frottement latéral correspondant à des résistances pénétrométrique inférieures à 1 MPa doit être négligé. En outre, en absence des valeurs prescrites du coefficient β , il est recommandé de prendre la valeur maximale, soit q_s^{max} .

L'effortQs de frottement limite est à calculé sur une hauteur du pieu excluant les tranches sièges au frottement négatif.

2-3-2-3 Calcul à partir de l'essai de pénétromètre dynamique :

On peut introduire directement le terme de pointe dynamique dans les formules relatives au pénétromètre statique puisque nous avons vu que l'on avait à peu près q_c = q_d , mais ces méthodes corrélatives sont très dangereuses et ne doivent pas être utilisées qu'en parfaite connaissance de cause, sur de sites familiers et par des spécialistes sérieux et conformés.

2-3-2-4Calcul à partir de l'essai de pénétromètre standard :

L'essai de pénétration standard c'est développé aux États-Unis par Raymond et Terzaghi en 1930, elle est très utilisable en American, Canada et Angleterre par contre en Europe et nord-Afrique, elle est relativement limitée à l'avantage des autres défirentspénétrométrique et préssiométrique.

Le calcul de la capacité portante d'un pieu à partir l'essai de pénétration standard basé sur un différend type méthodes des calculs. Résultent en générale de la corrélation purement empirique des résultants d'essai de chargement vertical du pieu avec ceux de SPT. Cet essai permet d'établir une relation entre la résistance de pénétration d'un part et caractéristique et variabilité des sols d'autre part.

Selon la formule suivant

$$Q_1 = Q_p + Q_s = q_p \frac{\pi B^2}{4} + \pi B \int_0^D q_S dz$$

Prévision de la résistance en pointe :

On suppose que la résistance en pointe et promotionnelle au nombre N représentatif de la zone mobilisé autour de la pointe :

$$q_{p}=k_s.N$$

Prévision du frottement latéral

On suppose que la contraintes limite q_s du frottement latéral, les long du pieu et proportionnelle au nombre N représentatif de l'interface sol-pieu, a la profondeur étudiée:

$$q_{s=} n_{s}$$
. N

Note : on calcul n_s et N selon les méthodes suivant

Les méthodes de calcul empiriques :

Aoki&Velloso:

Tableau. 6 : Critère d'Aoki&Velloso

		sable	Sable	Sable	Calcul de
		Saule	limoneux	argileux	N
Pieux foré	k_s (kpa)	286	228	171	N: est la
	n_s (kpa)	2.00	2.28	2.57	moyenne
Pieux	k_s (kpa)	571	457	343	des trois
préfabriqué en béton	n_s (kpa)	4.56	5.14	4.00	valeurs le plus
Pieux en acier	k_s (kpa)	571	457	343	proches de la pointe
acici	n_s (kpa)	4.00	4.56	5.15	

Lopes & Laprovitera:

Tableau. 7: Critère de Lopes & Laprovitera

		sable	Sable limoneux	Sable argileux	Calcul de N
	k_s (kpa)	98.4	87.0	87.0	N: est une moyenne
Pieux foré	n_s (kpa)	1.62	1.94	3.06	arithmétique des valeurs de N entre – B et +B de part de l'autre part

Bazarra&Kurkurt:

Tableau. 8:Critère de Bazarra&Kurkurt

		Diamètre	Sol pulvérulent	Sol cohérent	Calcul de N
Catégorie 1 - 2	k_s (kpa)	B≤0.5m B>0.5m	200 200×B	60	N: est une moyenne
Pieux	n_s (kpa)	B≤0.5m	2.20	3.30	arithmétique
battus	3 (1)	B>0.5m	4.40 ×B		des valeurs
	k_s (kpa)	B≤0.5m	135	40	de N s'étalant de
		B>0.5m	270×B		3.75 B au-
Catégorie		B≤0.5m	0.67		dessus de la
3 -4 Pieux	4	B>0.5m		2.00	pointe, à 1B au-dessous
forés	n_s (kpa)		1.34×B	2.00	N: ne
					dépasser
					pas 50
					coups

Les autres différentes méthodes :

Tableau. 9:Les différents critères de calcul empiriques

		Pieu foré	Pieu battu	Calcul de N
	k_s (kpa)	400	/	Le valeur de N doit être
Decourt (1982)	n_s (kpa)	$q_c = 10 \times (\frac{N}{3} + 1)$	/	entre 3 et 15 pour les pieux en béton préfabriqués et ne dépassant pas 50 pour les pieux forés
Mayerhof (1976 CGS	k_s (kpa)	120	400	N : est une moyenne arithmétique des valeurs
(1985)	n_s (kpa)	1.00	2.00	de N entre 8B au-dessus de la base 3B en- dessous
Shioi- Fukui	k_s (kpa)	100	300	
(1982)	n_s (kpa)	1.00	2.00	Le nombre n à la pointe
	k_s (kpa)	/	400	N : calculé comme suit $N_p=(N_1+N_2)/2$ $N_1: min (N à la pointe$
PHRI (1980)	n_s (kpa)	/	2.00	de pieu et moyenne des N sur zone de 2B sous la pointe) N ₂ : (moyenne arithmétiquesdes N sur zone de 10B au-dessus de la pointe)
Robert	k_s (kpa)	115	190	/
(1997)	n_s (kpa)	1.90	1.90	·

2-4 Effet du groupe de pieu sur capacité portante :

Lorsque les pieux sont suffisamment rapprochés,il ne suffit pas de vérifier la résistance d'un pieu considéré comme isolé.en effet, il arrive que la charge limite globale Q_l^g du groupe de N pieux soit inferieur à la somme des charges limites des pieux du groupe Q_l^∞ considérés comme isolés,le coefficient d'efficacité C_g du groupe de pieux se définit comme suit :

$$C_g = \frac{Q_l^g}{\sum Q_l^\infty}$$

L'expérience montre que le procédé d'installation du pieu par refoulement dans le sol (battage, fonçage, vissage. . .) cause la densification d'un massif sableux lâche à moyennement dense sur un zone d'environ 3 diamètre autour du pieu, ce qui améliore la capacité portante du pieu et se traduit par des valeurs du coefficient C_g supérieur à 1 (MURTHY, 1996).

Les premières expériences sur modèles réduits des pieux battus dans le sable sont dues à KISHIDA et MEYERHOF(1965), qui ont montré que C_g augmentait de 1 à 2 pour d/B égal à 7 et 2 respectivement. En deçà d'un espacement d de 2 diamètres, C_g diminuait avecd/B.

Selon le Frank, l'effet du groupe se manifeste surtout dans les cas des pieux flottants, et est négligeable pour les pieux travaillant en pointe.

En cas de pieux courts installés par refoulement dans les sols sableux lâches, on recommande de considérer une dimension linéaire deC_g de 1,5à1 pour d/B variant respectivement de 2à4. Pour un important groupe de pieu long, C_g est à réduire de 2 à 1 pour d/B variant respectivement de 2à 6.

Dans un massif sableux dense, le refoulement mène à une dilatance du sol avoisinant, et donc à une diminution de la capacité portante. Le coefficient C_g est alors inférieur à 1, et il est recommandé de le faire augmenter linéairement de 0,7 à 1 pour d/Bvariant respectivement de 4,5 à 8, (Frank 1996).

CHAPITRE3: LE TASSEMENT D'UN PIEU SOUS CHARGE AXIALE

On exposera ci-dessous les méthodes les plus utilisées pour l'évaluation des tassements d'un pieu sous charge axiale :

3-1 les méthodes d'élasticité de Randolph :

Dans ces méthodes, on suppose que le sol est un massif élastique isotrope, les approches théoriques les plus utilisées sont celles de

POULOS(1968),BANERJEE&BUTTERFIELD (1978)et RANDOLPHI (1978).

Ces méthodes sont basées sur la solution fondamentale de MINDLIN (1936) du problème d'une force verticale enterrée dans un massif élastique semi-infini.

Le tassement en tête du pieu est donné en général par :

$$V_0 = \frac{Q.I_V}{E(D).B}$$

E(D) : module d'élasticité du sol à la base du pieu

D: fiche du pieu

B: diamètre du pieu

 I_V : facteur de tassement.il dépend de la compressibilité relative sol/pieu $K=E_P/E$, de l'élancement du pieu D/B et du coefficient de poisson v.

E_P: représente le module d'élasticité du pieu

 E_z : Module d'élasticité du sol

Une formulation analytique du facteur de tassement, établie par RANDOLPH et WORTH (1978) pour le cas d'un sol homogène (E : constant avec la profondeur)

Et un sol de GIBSON (variation linéaire du module E en fonction de la profondeur), est donné comme suit :

$$I_V = 4. (1+v). \frac{\frac{8.D.\tanh(\mu.D)}{\zeta.\lambda.\mu.\pi.B.D.(1-v)} + 1}{\frac{4}{\zeta(1-v)} + \frac{4.\pi.\beta.D.\tanh(\mu.D)}{\alpha.B.\mu.D}}$$

Les expressions des facteurs β , α , ζ , λ et μ sont données en fonction de E, E_P , ν ,D,B

0,33 pour sol pulvérulent
$$v = 0,5$$
 pour sol fin sature

 ζ = module d'élasticité de substratum = $\frac{E_S(D)}{E_h}$

$$\beta = \frac{E_S(\frac{D}{2})}{E_{S(D)}} \qquad \beta = 1 \text{ si le sol homogène}$$

$$\lambda = 2. (1 + \nu) \cdot \frac{E_P}{E(D)_S}$$

$$\alpha = \ln[\left(2.\frac{D}{B}\right).(0.25 + \left((2.5.\beta(1 - \nu) - 0.25)\zeta\right))]$$

$$\mu.D = \frac{2.\sqrt{2}.D/B}{\sqrt{\alpha}.\lambda}$$

Il existe d'autres méthodes pour le calcul du tassement basées sur l'élasticité à savoir la méthode de POULOS, la méthode de FRANK et CHRISTOULAS(1991), et les méthodes de LUNNE et CHRISTOFEREN(1985) ainsi les propositions de THMAS

3 -2 Théories de transfert des charges :

L'interface sol / pieu est discrétisé en une infinité de ressorts indépendants qui reprennent les contraintes de frottement latéral et les pressions verticales à la base du pieu en ignorant la continuité du sol comme illustré dans la figure 19.

Le transfert de charges du pieu au sol se fait par le biais de ces ressorts, la relation entre la résistance unitaire transférée au sol qui entoure le pieu et le déplacement relative du pieu par rapport au sol dans chaque couche représente par les courbes de transfert de charge. Cette méthode suppose que les contraintes mobilisées à l'interface sol/pieu, à une profondeur donnée, sont proportionnelles aux tassements correspondants, telles que :

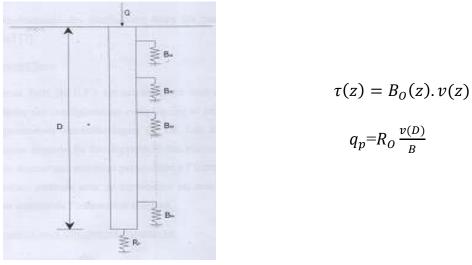


Figure 19 : Schéma principe de la méthode de transfert de charge

Avec:

- $\begin{cases} -B_{0=} & \text{Paramètre de mobilisation des frottements ou la pente initiale de la courbe} \\ \tau(z) = f(v(z)) \\ -R_{0} = \text{paramètre de mobilisation de la pression en pointe du pieu ou la pente initiale} \end{cases}$
 - de la courbe $q_p = f(\frac{v(D)}{R})$

$$B_O = \begin{cases} \frac{2.E_m}{B} & \text{...} \\ 0.8* E_m/B & \text{...} \end{cases}$$
 .Pour sol pulvérulent

$$R_{o} = \begin{cases} 11 * E_{m}....$$
 Pour sol fin
$$4,8*E_{m}...$$
 Pour sol pulvérulent

Dans le cas d'un sol caractérisé par B_0 constante avec la profondeur, le tassement en tête du pieu est donné par :

$$V_o = \frac{4. Q}{\pi. B} + \frac{\frac{R_O \tanh{(a.D)}}{a.B.E_P} + 1}{R_O + a. B. E_P \tanh{(a.D)}}$$

tel que :
$$a = \sqrt{\frac{4.B_O}{E_{P.B}}}$$

Dans le cas d'un pieu incompressible $(\frac{E_P}{E} = \infty)$, le tassement en tête du pieu se réduit à la formule suivante :

$$V_o = \frac{4.Q}{\pi.B} + \frac{1}{(R_O + (4.D.B_O))}$$

2-3 Les méthodes empiriques :

Ces méthodes permettent de faire une estimation approximative du tassement, en se basant sur la compilation d'un nombre de constatations sur les pieux réels. On note à ce titre :

- Recommandation de Vesic (1977) : qui donne le tassement en tête du pieu dans un sol pulvérulent par l'expression suivante :

$$V_o = \frac{B}{100} + \Delta L$$

tel que

 $\begin{cases} \Delta L : Raccourcissement élastique du pieu \\ B : diamètre du pieu \end{cases}$

- Méthode Meyerhof (1956) : utilisée pour différents types de sols, et qui permet de donner le tassement comme suit :

$$V_o = \frac{B}{30F_S}$$

En général F_S étant le coefficient de sécurité pris généralement égal à $0.7Q_C$ par :

$$\begin{cases} V_o = 0.6\%.B.....pour un pieu foré \\ V_o = 0.9\%.B.....pour un pieu battu \end{cases}$$

3-4 : Méthodes numériques :

L'interaction sol /pieu est modélisée par un maillage axisymétrique formé des éléments plans. Le problème peut être étudié à l'aide de tout programme général de calcul par éléments finis. A titre d'exemple, on peut citer les logiciels PLAXIS, CRISP, CESAR, et ABAQUS.

3-5 : Effet groupe de pieu sur tassement d'un pieu :

La présence de deux pieux proche l'un de l'autre modifie le comportement de chacun pris isolément. Un tel phénomène est appelé effet du couple.

Le problème d'interaction d'un couple de pieux libres en tête, a été étudié à l'aide de la théorie de l'élasticité à la base de la solution fondamentale de MINDLIN (1936), par plusieurs chercheurs notamment BUTERFIELD et BANERJEE(1971) et POULOS et DAVIS (1980). Ces derniers ont montré que le tassement peut s'écrire comme suit:

$$V_O = V_O^I (1+\infty)$$

 V_O^I : est le tassement du pieu isolé sous le même effort. \propto : est un facteur d'interaction qui dépend de (D/B, d/B, k, v).

Dans le cas d'un groupe quelconque de pieux, on définit le rapport de tassement :

$$R_S = \frac{\text{tassement moyen du groupe}}{\text{tassement du pieu isolé sous un effort moyen}}$$

Dans ce qui suit, on se limite au cas simple et fréquent d'un groupe de pieux identique, regroupés par une semelle rigide transmettant les efforts au sol à l'aide des pieux seuls. On peut écrire que:

$$R_S = \frac{\text{tassement du pieu dans un groupe}}{\text{tassement du pieu isolé sous le méme effort}}$$

CHAPITRE 4: ESSAI DE CHARGEMENT STATIQUE D'UN PIEU

4-1-Objet:

L'essai de chargement statique de pieu a pour but d'éprouver une fondation profonde en la sollicitant suivant un programme bien déterminé, en vue d'évaluer sa capacité portante.

4-2-Domaine d'application :

La présente méthode d'essai s'applique à l'ensemble des fondations profondes pour des raisons de commodité, on désignera dans la suite du texte tout type de fondation profonde par le vocable de pieu (pieux ou profilés battus, pieux forés de tous diamètres, injectés ou non, barrettes, puits) soumises à des efforts axiaux statiques de compression ou traction et installés en site terrestre ou le mer, si certaines conditions de mesure peuvent être satisfaites dans ce dernier cas, les tirants d'ancrages injectés précontraints en sont exclus. Ils font l'objet de recommandations spécifiques.

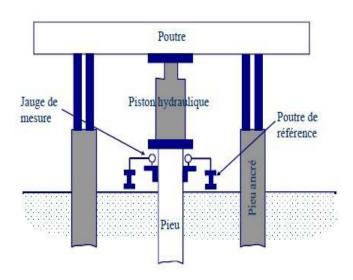


Figure 20 : Schéma présente l'essai de chargement statique

4-3 Définitions des charges caractéristiques :

La réalisation de l'essai de pieu, tout comme son interprétation obligent à s'appuyer sur différentes notions de charges caractéristiques et qui sont :

-les charges calculées résultant de l'application des règles de dimensionnement :

- Q_n : charge nominal calculée appelée aussi charge de service.
- Q_{max} : charge d'épreuve maximale.

-les charges mesurées déduites des mesures effectuées lors de l'essai de chargement :

- Q_o : charge appliquée en tête du pieu lors de l'essai.
- Q_c: charge de critique mesurée correspondant au seuil critique annonçant le début du grand enfoncement.
- Q_l: charge limite mesurée correspondant à la charge maximale que peut supporter le pieu.
- Q_n : charge nominale mesurée.

4-4Appareillage:

La réalisation de l'essai a nécessité la mise en œuvre des moyens suivant :

4- 4-1 Dispositifs de réaction :

Le dispositif de réaction doit répondre aux impératifs suivants :

- Demeurer stable durant toute la durée de l'essai.
- > Ne pas entrainer des déplacements du sol encaissant.
- Doit être disposé de manière à permettre l'accès à la tête de pieu.

Pour sa constitution, il n'existe pas de dispositif standard et dans notre cas, il a été constitué de poutres et de blocs en béton armé ayant un poids total de 820 tonnes environ.

4-4-2 Système d'application de l'effort :

L'effort a été appliquée à l'aide de quatre vérins hydrauliques de 300 tonnes de capacité et de 283 cm2 de section chacun et alimentées par un pompe électrique.

4-4-3 Dispositifs de mesurage et de repérage :

-la mesure des charges appliquées en tête du pieu sont déduites á partir de la pression delivrée par la pompe qui est équipée d'un manomètre de 1000 bars

-le déplacement verticaux de la tête de pieu sont mesurés á l'aide de quatre comparateurs mécaniques au 1/100 de millimètre.

- les éventuels déplacements horizontaux de la tête de pieu sont contrôles à l'aide de deux comparateurs semblables à ceux utilisés pour la mesure des déplacements verticaux.
- -le suivi des déplacements verticaux par nivellement optique afin d'éviter les erreurs de mesures aux comparateurs mécaniques.

4-5L'exécution de l'essai :

4-5-1 Préparation de l'essai :

Le succès de l'essai dépend pour une grande part du sérieux avec lequel il est préparé. Le responsable de l'essai (ingénieur ou toute personne qualifiée) est étroitement associe à la préparation. Celle-ci devra obligatoirement comprendre :

- La collecte d'un maximum d'informations touchant à la confection du pieu d'essai (technique de mise en œuvre, géométries et effective, propriétés des matériaux constitutifs, le cas échéant, paramètres d'injection ou battage);
- le relevé de l'ensemble des données géotechniques relatives aux sols intéressant le pieu d'essai (nature de couches traversées, identifications, résultats des essais en laboratoire et impérativement des essais en place);
- La préparation de tête de pieu (choix d'une géométrie permettant de recevoir le vérin, surfaçage correct, le cas échéant, confection d'une fenêtre permettant le passage du câblage pour les extensomètres);

- La mise en place des bases fixes et des appareils de mesures (ces opérations ne peuvent être réalisées que par l'équipe chargée de la conduite de l'essai proprement dit).

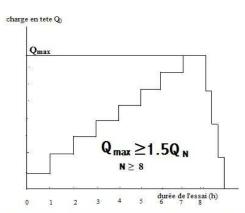
4-5-2 Réalisation de l'essai : soulever

a) Délais de repos:

Sauf cas particulier et avis contraire du géo-mécanicien ayant la responsabilité de l'interprétation de l'essai, on doit laisser s'écouler un délai de repos d'au moins quatre semaines entre la confection du pieu (cas des pieux exécutés en place) ou son battage (cas des pieux façonnés à l'avance ou métal battu) et l'essai de chargement.

b) Programme:

L'essai comporte un chargement monotone de npalies, conformément aux diagrammes des figures 24 et 25.


Si l'on désigne par QN la charge nominale calculée, la charge maximale d'essai Qmaxdoit être au mois prise égale à 1.5QN.

La charge Qmaxdoit être alors atteinte en un minimum de huit paliers d'incréments égaux et de durée égale à une heure chacun, et cela sans déchargement intermédiaire.

Le déchargement en fin d'essai s'effectue en un minimum de quatre paliers d'incrément égaux et d'une durée égale cinq minutes chacun.

Il est toutefois recommandé, si les moyens à mettre en œuvre pour la confection du dispositif de réaction ne sont pas excessifs, que la charge maximale d'essai Qmaxsoit au moins prise égale à 2QN

Qmax≥2QN

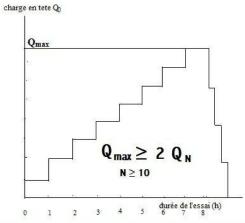


fig 25 Diagramme schématisant un programme d'essai minimal de 8 palies.

fig 24 :Diagramme schématisant un programme d'essai minimal de 10 palies.

Dans ce cas (figure. 24, 25), le nombre de paliers de chargement sera au moins pris égal à 10, le nombre de paliers de déchargement étant limité à 5.

Durant le palier, il faut veiller à ce que la charge Q_0 appliqué au pieu soit maintenue constante.

A l'issue du dernier palier (8^e ou 10^e, selon le programme retenu), il peut être envisage de poursuivre l'essai, sur avis favorable du géotechnicien en ayant la responsabilité, et à condition que les matériels de réaction et d'application des charges le permettent.

L'essai peut être poursuivi raisons :

- Pour atteindre la charge limite du pieu, définie pour un enfoncement de la tête d'au moins 10 % du diamètre B, soit : $V_0 \ge 0.1B$
- Pour réaliser un palier de fluage de longue durée ou des cycles partiels de chargement et déchargements.

c)Lecture en cours de palier :

Après avoir notes du lecture initiale sur tous les appareils de mesure et les avoir mis éventuellement à zéro, relever pour chaque palier la charge appliquée par le dynamomètre et les manomètres, ainsi que les déplacements verticaux et latéraux de la tête indiqués par les comparateurs. Pour chaque palier, faire les lecteurs aux

comparateurs aux temps suivants : 0.1.2.3.4.5.10.15.20.25.30.45 et 60 min pour le chargement, et 0,1 et 5 min pour le déchargement.

Lorsque le pieu est équipé d'extensomètres, il y a lieu d'effectuer des mesures sur ces appareils pour chaque palier, aux temps suivants : 5 et 55 min lors du chargement.

L'ensemble des mesures (dynamomètres, manomètres, comparateurs et extensomètres, le cas échéant) doit être effectué impérativement une heure après le déchargement complet ; facultativement, si les conditions le permettent, le lendemain de l'essai.

La totalité des mesures est consignée sur une feuille d'essai, Celle-ci comporte une colonne pour les observations ou incidents pouvant se produire en cours d'essai (variations de température, pannes de circuits, excentrements, fonctionnements défectueux ou dérives de l'appareillage, déchaussement des ancrages, poinçonnements ou ruptures de pièces, etc.).

En cas d'incidents graves en cours d'essai ou d'une remise en cause de la stabilité du système « pieu d'essai- dispositif de réaction», le responsable peut arrêter l'essai. Il définit ensuite les conditions dans lesquelles l'essai peut être repris.

4-6 Présentations des résultants et calcul des charges caractéristiques :

Les différentes relations pouvant être tirées des mesures en tête doivent être présentées sous forme de graphiques, comme indiqué sur les figures 26,27, 28.

La figure 26 : représente la courbe dite de chargement, qui s'obtient en portant en abscisse la charge appliquée en tète Q_o (mesurée directement au dynamomètre ou indirectement à l'aide des manomètre) et en ordonnée, le déplacement vertical de la tête de pieu Vo .cette dernière valeur est la moyenne des déplacements verticaux lus sur les quatre comparateurs, à la 60^e minute de chaque palier.

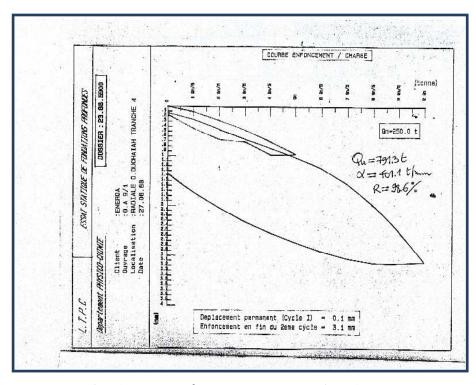


Figure 26 : Exemple de relation (charge en tête-déplacement verticaux) obtenue pour un pieu foré

➤ La figure 27 : représente l'ensemble de la relation « déplacement vertical de la tête —logarithme du temps » pour chaque palier. Chacun d'elle s'obtient en portant en abscisse, sur échelle logarithmique, la durée d'application du palier et en ordonnée le déplacement vertical moyen correspondant de la tête du pieu Vo, on obtient, ainsi une famille de relation comportant généralement en fin de palier une partie droite appelée droite de stabilisation

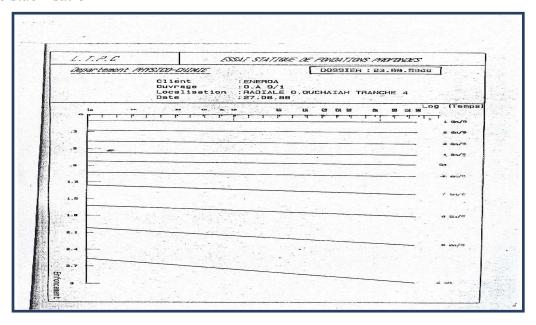


Figure 27: Relation (déplacement de la tête-logarithmique du temps) obtenues pour un pieu précédent

➤ La figure 28 : représente la relation « charge en tête-pente des droites de stabilisation » on l'obtient en portant en abscisse la charge en tête Q₀ et en ordonnée la pente des droites de stabilisation

Le graphique ainsi obtenu présente, dans certains cas, et si l'essai a été poussé suffisamment loin, deux segments de droite qui se coupent en un point dont l'abscisse indique ce qu'il est convenu d'appeler la charge critique de fluage Q_c du pieu (ou plus simplement charge de fluage).dans d'autres cas, le premier segment débouche sur une partie courbe et on considère alors que la charge Q_c se situe à la jonction du segment et de la courbe. Ce cas est illustré par la figure

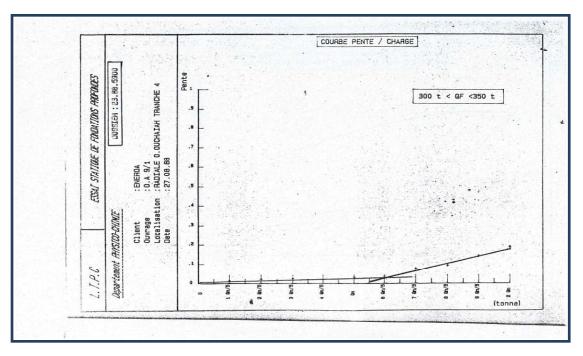


Figure 28 : représente la relation « charge en tête-pente des droites de stabilisation

4-7 Méthodes et critères de calcul de capacité portante :

Il existe plusieurs méthodes d'estimation de la capacité portante dont lesplus courants sont illustrés suivant :

4-7-1 Critère de la tangente (Butler&hoy) :

Méthode:

- a) tracer la tangente initiale à la courbe.
- b) tracer la tangente de pente qui équivalente à 40 kips /inch, soit 7 KN/mm.
- c) la capacité portante c'est l'ordonnée de l'intersection des deux tangentes.

Diagramme:

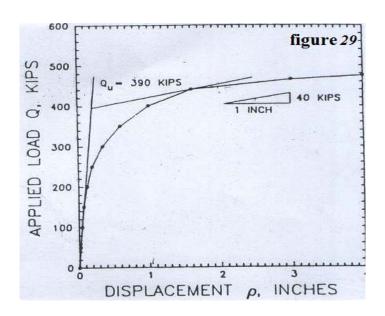


Figure 29 : critère de la tangente (Butler & Hoy)

4-7-2Critère de valeur limite (DAVISSON 1972):

Méthode:

- a) tracer sur la courbe Q en fonctionVet la droite de compression élastique du pieu.
- b) tracer une droite parallèle à la première et passant par le point
- ((0,15+b/120)*25.4,0) en mm.
- c) la capacité portante c'est l'intersection avec la courbe Q en fonction de V.

Diagramme:

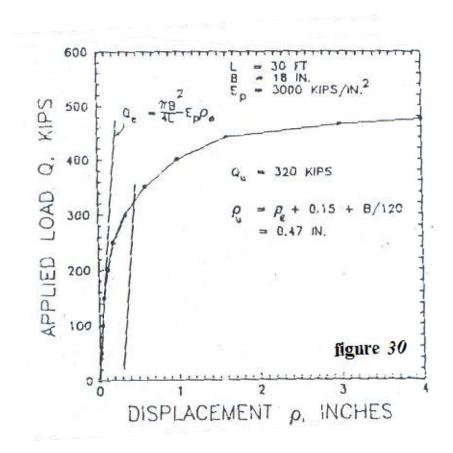


Figure 30 : critère de valeur limite (DAVISSON 1972)

4-7-3Critère de 80%(Hansen 1963):

Méthode:

- a)tracer la courbe correspondant à les points du résultat $\frac{\sqrt{v}}{Q}$ en fonctionV.
- b) déterminer la pointe a et interprété b au propos de cet linge.
- c) calculé la capacité portante maximal $Q_u = \frac{1}{2\sqrt{2}b}$.
- d) calculé la déflection maximal $V_{\rm u} = \frac{b}{a}$.

Diagramme:

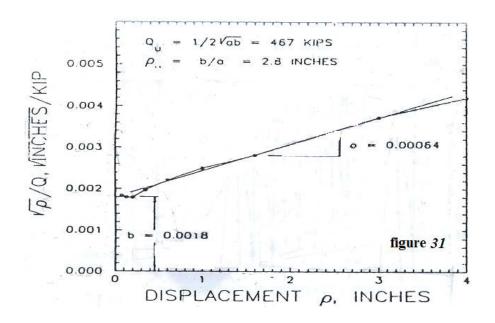


Figure 31 : critère de 80% (Hansen 1963)

4-7-4Critère de 90%(Hansen 1963):

Méthode:

- a) on calculer le terme (0.9 Q) et interprété leur tassement V (0.9 Q).
- b) déterminé le tassement 2V(0.9Q).
- c) on tracé la courbe Q en fonction 2V(0.9Q) qui coupe la courbe Q en fonction deV.
- d) la capacité portante égale le terme de l'intersection des deux courbes.

Diagramme:

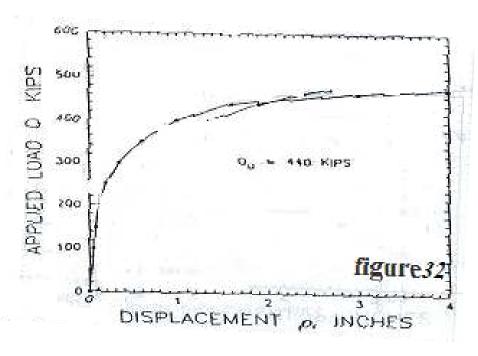


Figure 32 : critère de 90% (Hansen 1963)

4-7-5 Critèred'Akira Asaoka:

Laméthode de la procédure graphique d'Akira Asaoka (1978) qui basé sur la formule suivant :

$$Q_l = \lim_{V \longrightarrow \infty} Q$$

Dans la rupture implique que le tassement tend vers le 0, ça veut dire :

$$Q_k = Q_{k+1}$$

a) on tracé une courbe (X) en fonction de(Y) tell que les coordonnés (X) et(Y)égauxselon le tableau suivant :

X=	QK	Q_1		Q_k		Q _{N-1}	Q_{N}
Y=	Q_{k+1}	Q_2		Q_{k+1}		Q_N	

- b) on trace dans le même graphe un nouvel courbe X=Y
- c) la capacité portante égale l'intersection entre les deux courbes Diagramme

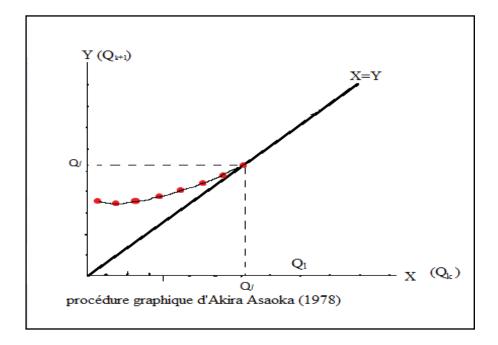


Figure 33 : critère d'Akira Asaoka

4-7-6 Critère conventionnel:

Ce critère le plus utilisée en Algérie, pour but de contrôler et préciser la conclusion de l'étude géotechnique préalable, pour l'essai de chargement statique d'un pieu.la capacité portante est la charge axiale appliquée en tête de pieu, provoque un déplacement de celle-ci au moins égale à 1/10 ème du diamètre du fut.

4-7-7 Lissage hyperbolique (Duncan et Chang 1970) :

La courbe de chargement est assimilée à une hyperbole de la forme :

$$Q = \frac{V_0}{\frac{1}{\alpha} + \frac{V_0}{Q_1}}$$

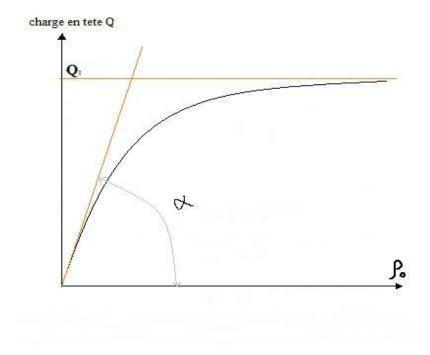


Figure 34: Lissage hyperbolique (Duncan et Chang 1970)

4-7-8 D'autres critères existent dans le calcul de capacité portante :

Tableau. 10:D'autres critères existent dans le calcul de capacité portante

N°	CODE	DEFINITION DE CAPACITE PORTANTE
01	POLISH SPECS (Canada)	Charge équivalent de 38 mm (tassement totale)
02	Terzaghi et Peck	Charge équivalent de 25 mm (tassement totale)
03	Muhs	Charge équivalent de 20mm (tassement totale
04	Indian practice	Charge équivalent de 13 mm (tassement totale
05	AASHTO	Charge équivalent de 06 mm (tassement plastique)
06	Magnel	Charge équivalent de 08 mm (tassement plastique)
07	Boston	Charge équivalent de 13 mm (tassement plastique)
08	NEW YORK	Charge équivalent de 19 mm (tassement plastique)
09	Californie	Charge équivalent de de tassement total de 0.029mm/KN
10	New York	Charge équivalent de tassement plastique de 0.029mm/KN
11	New orleans	Charge équivalent de tassement plastique de 0.014mm/KN
12	Milwaukee	Charge équivalent de tassement plastique de 0.006 mm/KN
13	Ciria Bishop et al	Charge équivalent de tassement totale de 10% de diamètre
14	Vesic	
15	Règlement danois	Charge équivalent de tassement plastique de 10% de diamètre du pieu
16	vesic	Charge équivalent de tassement plastique de 2% de diamètre du pieu
17	Manuel canadien	Charge équivalent de tassement totale de B/30 plus tassement élastique
18	Swedish pile commission	Charge équivalent de tassement plastique de 20mm plus B/20, avec B, en (mm)

CONCLUSION

Le but de cette étude bibliographique était de passer en revue les différentes de type de pieux, la mode d'installation, les avantages et inconvénient des pieux mise en place, ainsi les méthodes de dimensionnement des fondations profondes à partir des essais in-situ et au laboratoire.

Il faut noter qu'il existe d'autres méthodes plus élaborées de dimensionnement baséessur la théorie de l'élasticité,

Du point des essais de chargement statique on noter que le domaine géotechnique est assez riche de critère d'estimation de capacité portante nous essayerons trouver des résultants en partie 02.

INTRODUCTION

Les études géotechniques ont porté essentiellement sur les caractéristiques physiques et mécaniques à partir des essais pressiométrique,pénétrostatique et au laboratoire. Notre base de données comporte 56 essais de chargement sur pieu sous charge axiale réalisés dans cadre de 41 projets de fondation,tels que celui de l'autoroute Est-Ouest, l'Aéroport et le port d'Alger, les centres commerciaux...etc.

Cette taille a été jugé suffisante en phase préliminaire de ce projet de recherche et les sites étudiés sont situés au nord Algérien. Leur étude géotechnique a été faite par différent laboratoire étatique comme LCTP, CTTP, et LNHC ainsi que les laboratoires privés comme GEOMICA, et d'autres laboratoires internationaux comme CEBTP SOLEN.

Tous les essais de chargements présents ont été menés conformément à la norme NF P94-150 comme il est illustré dans la figure 20.

CHAPITRE 1 : DESCRIPTION DES SITES D'ESSAIS

Le tableau 11 précise les différents sites étudiés dans notre projet, il expose le nom du l'ouvrage et leur localisation.Les caractéristiques physicomécaniques et les reconnaissances in-situ de chaque site étudié illustré dans une fiche synthétique d'étude géotechnique (voir un exemple au l'annexe 1).

Les données des fiches synthétiques résumés au l'annexe 2, qui mentionne les sites et leurs localisation par détaille, les laboratoires ayant fait l'étude géotechnique, la nature des sols, les nombres des sondages carottés et les essais in-situ menés pour chaque ouvrage. Notons que dans certains projets leurs rapports de sols n'ont pas été disponibles, à cause de leurs anciennetés ou de la difficulté de les ramener.

Dans l'ensemble, on note que 50% des sites sont des natures argileuses, 30% de nature marneuse et 20% sableuse.

Tableau. 11:Description des sites étudiés

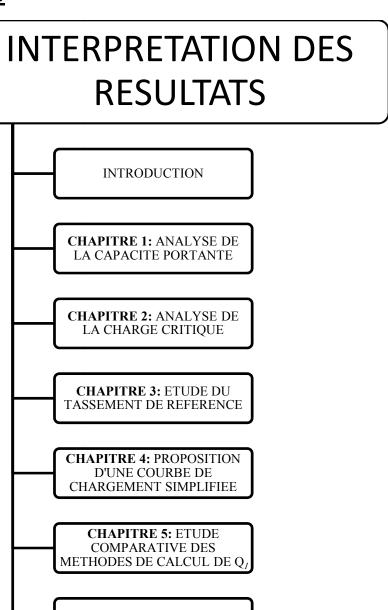
code	Le projet	localisation	
T01	1000 logements Heraoua	AIN TAYA W. ALGER	
T02	Bâtiments ADL	HERAOUA -AIN TAYA W. ALGER	
Т03	OA-49 de 2 ^{eme} rocade	KHEMIS EL KHECHNA W.ALGER	
T04	station de dessalement d'eau	GHAZAOUAT W.TELEMCEN	
T05	0A 0/1 Ligne 08 Gué De Constantine	OUED-SMAR W.ALGER	
T06	OA 3-2 Radiale oued-Ouchayeh	ALGER	
T07	Centre commercial El-Qods	CHERAGA W.ALGER	
T08	Usine des métaux précieux	BARAKI W.ALGER	
T09	500 Logements Bab Zouar	ALGER	
T10	282 Logements – pieu 01	THENIA- W.BOUMERDES	
T11	282 Logements – pieu 02	THENIA- W.BOUMERDES	
T12	282 Logements – pieu 03	THENIA- W.BOUMERDES	
T13	Nouvelle Aérogare H.B pieu 01	ALGER	
T14	Nouvelle Aérogare H.B pieu 02	ALGER	
T15	Acces a la nouvelle aérogare	DAR BEIDA W.ALGER	
	(Ouvrage de franchissement)		
T16	Nouvelle aerogare H.B	ALGER	
	(Centre des essais moteurs d'avions)		
T17	Nouvelle Aérogare H.B (Salon d'honneur)	ALGER	
T18	Imprimerie officielle	BIR KHADEM W.ALGER	

T19	Centre commercial international - pieu 1	EL-HAMMA W.ALGER	
T20	Centre commercial international - pieu 2	EL-HAMMA W.ALGER	
T21	Centre commercial international - pieu 3	EL-HAMMA W.ALGER	
T22	Centre commercial international - pieu 4	EL-HAMMA W.ALGER	
T23	OA 4/2 – Route Nationale RN-1-	BOUFARIK W.BLIDA	
T24	OA 4/2 – Route Nationale RN-1- (CULEE SUD)	BOUFARIK W.BLIDA	
T25	Centre naftal – El-Khroub	CONSTANTINE	
T26	OA 8/1 radiale Oued Ouchayeh	BARAKI W.ALGER	
T27	OA 8/1 radialeOued Ouchayeh	OUED-HARRACH W.ALGER	
T28	Centrale a turbine de gaz - pieu φ1000	RELIZANE	
T29	Centrale a turbine de gaz - pieu1	RELIZANE	
T30	Centrale a turbine de gaz – pieu30	RELIZANE	
T31	Centrale a turbine de gaz - pieu φ1000	RELIZANE	
Т32	O.A 1/2 Oued Mazafrane - PIEU 5	TIPAZA	
Т33	O.A 1/2 Oued Mazafrane - PIEU 4	TIPAZA	
T34	Annexe bibliothèque nationale	TIZI OUZOU	
T35	Centrale thermique Jijel (Pieu C-13)	JIJEL	
T36	Autoroute Est-Ouest OA-PK 273.3	ALGERIE	
T37	Autoroute Est-Ouest OA-PK 290.9 TP	ALGERIE	
T38	Usine d'amm-oniacorascom - Pieu 1	ARZEW W. ALGER	
T39	Usine d'amm-oniacorascom - Pieu 2	ARZEW W.ALGER	
T40	Stade olympique Baraki-Pieu EP6 (zone-1)	BARAKI W. ALGER	
T41	Stade olympique Baraki-Pieu EP7 (zone-1)	BARAKI W. ALGER	
T42	Stade olympique Baraki-Pieu EP3 (zone-3)	BARAKI W. ALGER	
T43	309 logements Dar El-Beida	ALGER	
T44	O.A 9/1 Radiale Oued-Ouchayeh Tranche4	ALGER	
T45	O.A 17/1 (RN-5) Autoroute de l'est	ALGER	
T46	O.A 19/1 Autoroute de l'est	ALGER	
T47	O.A 19/2 (Culée sud) Autoroute de l'est	ALGER	
T48	Viaduc d'Oued Ouchayeh Autoroute de l'est	ALGER	
T49	Parking-Restaurant Sonatrach	HYDRA W.ALGER	
T50	O.A 10/3 Prise d'eau à Gué de Constantine	ALGER	
T51	Hangar portuaire ONAB Port d'Alger	ALGER	
T52	Aménagement de la Place 1 ^{er} mai	ALGER	
T53	Viaduc Oued Rhumel - Pieu 15	MILLA	
T54	O.A 10/1-10/3 Pont sur Oued El-Harrach	ALGER	
T55	Hotel Ibis	BAB EZZOUAR W.ALGER	
T56	Bâtiment ADL - 1274 logements	DRARIA W.ALGER	

CHAPITRE 02: DESCRIPTIONS DES PIEUX D'ESSAI

Les pieux retenus dans cette base de données sont en béton armé installés par procédé de forage simple au tube plongeur, alors que deux pieux sont installés par battage et encastrés dans un horizon argileux marneux. Notons que 53% des pieux ont un diamètre de 1.2m, 30% un diamètre de 1.0 m et le reste des diamètres variant entre 0.17 et 0.8 m; les élancements des pieux variant entre 9 et 43.

Tableau. 12: Description des pieux d'essai


Code	Géométrie	Diamètre (mm)	Elancement (mm)	Mode d'installation	Matériau du pieu
T01	Circulaire	1200	22000	Foré	Béton
T02	Circulaire	1000	16000	Foré	Béton
T03	Circulaire	1200	23000	Foré	Béton
T04	Circulaire	1000	22000	Foré	Béton
T05	Circulaire	1200	36000	Foré	Béton
T06	Circulaire	1200	1500	Foré	Béton
T07	Circulaire	1000	19800	Foré	Béton
T08	Circulaire	800	12000	Foré	Béton
T09	Circulaire	1200	20000	Foré	Béton
T10	Circulaire	1000	22000	Foré	Béton
T11	Circulaire	1000	22000	Foré	Béton
T12	Circulaire	1000	14000	Foré	Béton
T13	Circulaire	1200	18000	Foré	Béton
T14	Circulaire	1200	25000	Foré	Béton
T15	Circulaire	1200	25000	Foré	Béton
T16	Circulaire	600	11000	Foré	Béton
T17	Circulaire	800	12700	Foré	Béton
T18	Circulaire	1000	9100	Foré	Béton
T19	Circulaire	600	22800	Foré	Béton
T20	Circulaire	1000	22600	Foré	Béton
T21	Circulaire	1000	24000	Foré	Béton
T22	Circulaire	600	21800	Foré	Béton
T23	Circulaire	1200	33000	Foré	Béton
T24	Circulaire	1200	36000	Foré	Béton
T25	Circulaire	1000	16000	Foré	Béton
T26	Circulaire	1200	32000	Foré	Béton
T27	Circulaire	1200	32000	Foré	Béton
T28	Circulaire	1000	/	Foré	Béton
T29	Circulaire	1000	34000	Foré	Béton

T30	Circulaire	1000	/	Foré	Béton
T31	Circulaire	1200	/	Foré	Béton
T32	Circulaire	1200	42000	Foré	Béton
T33	Circulaire	1200	52000	Foré	Béton
T34	Circulaire	1000	18000	Foré	Béton
T35	Circulaire	1200	23000	Foré	Béton
T36	Circulaire	1200	14000	Foré	Béton
T37	Circulaire	1200	12000	Foré	Béton
T38	Circulaire	/	/		Béton
T39	Circulaire	/	/		Béton
T40	Circulaire	/	/		Béton
T41	Circulaire	/	/		Béton
T42	Circulaire	1200	57500	Foré	Béton
T43	Circulaire	600	15000	Foré	Béton
T44	Circulaire	1200	17000	Foré	Béton
T45	Circulaire	1200	20000	Foré	Béton
T46	Circulaire	1200	15000	Foré	Béton
T47	Circulaire	1200	20000	Foré	Béton
T48	Circulaire	1200	16000	Foré	Béton
T49	Circulaire	170	15430	Battu	métallique
14)		(ep=10.6mm)			
T50	Circulaire	1200	29000	battu	métallique
T51	Circulaire	600	14800	Foré	Béton
T52	Circulaire	1200	20000	Foré	Béton
T53	Circulaire	1200	42400	Foré	Béton
T54	Circulaire	1200	30600	Foré	Béton
T55	Circulaire	1000	20000	Foré	Béton
T56	Circulaire	1200	28000	Foré	Béton

Conclusion

D'après l'analyse statistiquedes deux tableaux précédents, on conclut que la majorité des pieux sont en béton armé, de forme circulaire, et fichés dans un horizon argileux ou marneux.

PARTIE 03:

CONCLUSION

INTRODUCTION

Cettepartie consiste à comparer les différentes méthodes courantes de calcul de la capacité portante des pieux sous charge axiale aux résultats d'essais de chargement de pieux pour mieux apprécier la qualité de prévision des différentes méthodes de calcul utilisées par les ingénieurs.

Les résultats trouvés dans les rapports d'essai de chargement sont soit numériques soit graphiques, ce qui nous a poussé à numérisé les graphes à l'aide du logiciel 'PLOT_DIGITIZER' comme illustré dans la figure suivante :

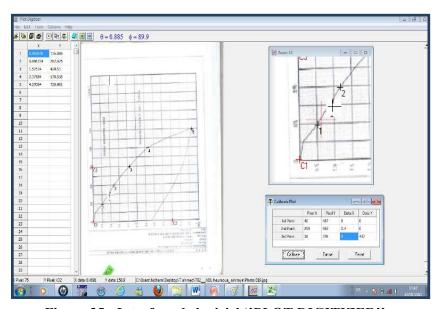


Figure 35: Interface de logiciel "PLOT DIGITIZER"

Les courbes de chargement et tout autre résultat d'interprétation sont tracées en utilisant le grapheur ORIGIN version 8.0, comme illustré à la figure 36dans la page suivante.

Exemple T45:

Q(ton)	60	120	180	240	300	360	420	480	540	600
V (mm)	0.10	0.25	0.50	0.85	1.35	2.00	2.75	3.65	4.90	6.45

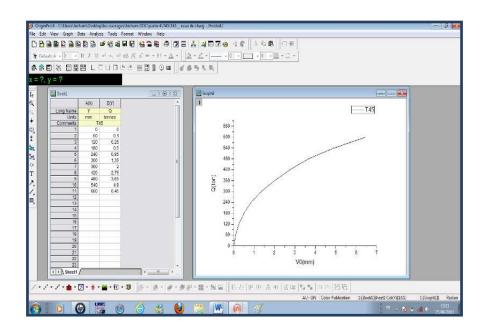


Figure 36: interface de logiciel "OriginPro 8"

Dans ce qui suit, on focalise lors de l'interprétation de ces courbes de chargement sur les concepts de charge verticale critique Q_c et du tassement de référence (V_r) , en vue d'en dégager un courbe de chargement normalisé, à l'utilité d'estimer rapidement et manuellement le tassement d'un pieu, en phase préliminaire des calculs sans avoir recours aux méthodes traditionnelles de calcul des pieux qui sont laborieuses.

CHAPITRE 01: ANALYSE DE LA CAPACITE PORTANTE

Il existe plusieurs critères d'analyse globale de la capacité portante des pieux sous charge axiale notamment ceux de Hansen 90% et 80% en 1963, d'Akira Azaoka, Butler-Hoy, Davisson (1972), le critère hyperbolique (ASCE 1993), critères conventionnel et d'autres critères différents comme illustrés dans le tableau 10.

Parmi cette diversité des critères on a estimé la capacité portante selon les méthodes suivantes:

3-1-1 Critère hyperbolique (ASCE, 1993):

La capacité portante Q_{I} , déduite de l'ajustement hyperbolique des courbes de chargement et correspondant théoriquement à des tassements infinis, les résultats de la capacité portante calculée bien détaillée dans le Tableau 13 qui montre que le coefficient de régression obtenu est supérieur à 95 %, ce qui le signe d'une excellente qualité d'ajustement.

La relation hyperbolique retenue est décrite comme suit :

$$Q = \frac{V_0}{\frac{1}{\alpha} + \frac{V_0}{Q_I}} \dots (1)$$

 Q_l . Capacité portante, correspondant théoriquement à des tassements infinis et donc à l'asymptote horizontal de la courbe de chargement.

α : Correspondant à la pente initiale de la courbe de chargement.

V₀: Le tassement de chaque palier.

Tableau13: Résultats de la capacité portante hyperbolique

code	Alpha (\alpha)	R	Q _l hyperbolique (ton)
T01	405,3	95.1	1122,32
T02	295,44	94.4	735,486
T03	296,022	98.32	840,66
T04	230,83	99.61	418,31
T05	163,35	99.88	506,48
T06	579,713	96.86	520,86
T07	581,85	99.61	1000,31
T08	302,66	99.88	282,6
T09	252,6	252.6	7006,837
T10	383,253	93.148	614,013
T11	1035,81	95.71	386,78
T12	214,71	81.15	1089,46
T13	56,18	99.1	391,81
T14	349,53	95.3	758,23
T15	334,57	93.23	1266,73
T16	425,53	97.57	152,44
T17	273	98.07	145,137
T18	904,26	99.78	
T19	562,44	97.71	148,67 458,41
T20		96.22	
T21	1764,51	99.5	924,33
	333,43		984,91
T22	1122,32	98.36	332,92
T23	234,46	98.57	682,44
T24	275,47	99.2	1228,54
T25	208,222	99.33	135,107
T26	519,93	81.15	773,297
T27	478,8	99.46	1530,32
T28	180,15	99.9	890,3
T29	1097,752	92.59	184,604
T30	125,85	91.51	434,165
T31	106,713	54.77	1255,72
T32	80,27	99.2	853,06
T33	275,47	93.78	893,08
T34	154,22	97.7	1061,83
T35	20,39	97.7	893,86
T36	227,48	97.39	1223,65
T37	974	92.28	2060,15
T38	78,67	93.14	504,4
T39	191,56	98.24	466,05
T40	344,29	98.5	2100,14
T41	186,29	96.54	2404,44
T42	197,99	86.72	3380,52
T43	114,2	99.76	381,1
T44	402,1	98.6	791,3
T45	457,09	98.96	707,55
T46	419,41	92.7	802,93
T47	1523,48	99.18	625,85
T48	1187,34	98.5	799,88
T49	16,617	99.2	507,318
T50	16,54	91.05	76,47
T51	88,462	99.17	258,5
T52	553,279	94.7	865,812
T53	1815	98.17	986,84
T54	440,85	98.09	918,211
T55	1740	96.37	331,97
T56	349,044	88.89	1155,87

3-1-2 CRITERE CONVENTIONNEL:

L'équation précédente (1) peut se récrire comme suit, en introduisant la capacité portante conventionnelle Q(B/10):

$$Q(B/10) = \frac{B/10}{\frac{1}{\alpha} + \frac{B/10}{Ql}}$$

Les résultats du calcul de la capacité portante sont résumés au le tableau 14

Tableau 14: Résultats de la capacité portante conventionnelle

code	В	Q _l hyper	Alpha (ar)	Q _l conv
code	(mm)	(ton)	Alpha (α)	(ton)
T01	1200	1122,32	405,3	1097,0056
T02	1000	735,486	295,44	717,621111
T03	1200	840,66	296,022	821,225316
T04	1000	418,31	230,83	410,864319
T05	1200	506,48	163,35	493,723094
T06	1200	520,86	579,713	516,989134
T07	1000	1000,31	581,85	983,403438
T08	800	282,6	302,66	279,339683
T09	<u>/</u>	7006,837	252,6	/
T10	1000	614,013	383,253	604,330961
T11	1000	386,78	1035,81	385,341105
T12	1000	1089,46	214,71	1036,84923
T13	1200	391,81	56,18	370,289426
T14	1200	758,23	349,53	744,766579
T15	1200	1266,73	334,57	1227,98559
T16	600	152,44	425,53	151,535245
T17	800	145,137	273	143,322802
T18	1000	148,67	904,26	148,425972
T19	600	458,41	562,44	452,266428
T20	1000	924,33	1764,51	919,513175
T21	1000	984,91	333,43	956,65172
T22	600	332,92	1122,32	331,282166
T23	1200	682,44	234,46	666,278914
T24	1200	1228,54	275,47	1184,51745
T25	1000	135,107	208,222	134,235996
T26	1200	773,297	519,93	763,829902
T27	1200	1530,32	478,8	1490,61792
T28	1000	890,3	180,15	848,373446

	D	Ohumar	Alpho	Ogony
code	В	Q _l hyper	Alpha	Q _l conv
	(mm)	(ton)	(α)	(ton)
T29	1000	184,604	1097,7	184,2940
T30	1000	434,165	125,85	1123,513
T31	1200	1255,72	106,71	869,5865
T32	1200	853,06	80,27	783,6580
T33	1200	893,08	275,47	869,5865
T34	1000	1061,83	154,22	993,4306
T35	1200	893,86	20,39	654,6899
T36	1200	1223,65	227,48	1171,151
T37	1200	2060,15	974	2024,466
T38	/	504,4	78,67	/
T39	/	466,05	191,56	/
T40	/	2100,14	344,29	/
T41	/	2404,44	186,29	/
T42	1200	3380,52	197,99	2959,436
T43	600	381,1	114,2	361,0204
T44	1200	791,3	402,1	778,5325
T45	1200	707,55	457,09	698,5391
T46	1200	802,93	419,41	790,3215
T47	1200	625,85	1523,4	623,7148
T48	1200	799,88	1187,3	795,4145
T49	/	507,318	16,617	/
T50	1200	76,47	16,54	73,63307
T51	600	258,5	88,462	246,4950
T52	1200	865,812	553,27	854,6666
T53	1200	986,84	1815	982,3888
T54	1200	918,211	440,85	902,5456
T55	1000	331,97	1740	331,3378
T56	1200	1155,87	349,04	1124,829

3-1-3 Critère de 90% (Hansen 1963) :

Hansen a défini la valeur de la capacité portante équivalant à l'intersection entre les deux courbes comme nous le présentés dans la partie1 4-7-4, voir figure 32.

La courbe1: représente la charge Q (tonnes) en fonction de tassement V (mm) La courbe2: représente la charge Q (tonnes) en fonction le doublé de tassement correspond ou 0.9 de la charge appliqué.

Le résultat indiqué dans le tableau 15 montre que ce critère est non applicable dans l'ensemble des courbes analysées.

2V(0.9Q) palier Q 0.9Q V(0.9Q) code graphe T03 1 0,22 70 63 0.21 0,42 2 126 0.49 0,57 140 0,98 3 1,04 210 189 0.90 1,8 4 1,5 280 252 1.30 2,6 5 2,08 350 315 1.79 3,58 216 2,73 400 360 2.22 6 4,44 7 3,27 450 405 2.78 5,56 8 3,75 500 450 3.28 6,56 T37 1 0,09 120 108 0.079 0,1582 2 0,26 240 216 0.219 0,438 1200 3 360 0,47 324 0.4 0,8 1100 1000 1000 4 0,79 480 432 0.657 1,314 900 5 600 540 0.9 1,02 1,8 700 600 6 1,25 720 648 1.113 2,226 600 500 7 1,54 840 756 2,664 400 1.332 450 300 309 8 1,86 960 864 1.597 3,194 208 9 2,14 1080 972 1.892 3,784 10 2,49 1200 1080 2.148 4,296 T56 0,15 60 54 0,136 0,272 1 2 0,45 120 108 0,768 0,384 3 0,63 180 162 0,576 1,152 0,82 240 216 0,746 1,492 5 1,12 300 270 0,973 1,946 6 1,51 360 324 1,275 2,55 420 378 1,616 3,232 1,87

Tableau15 : Calcul de la capacité portante par critère Hansen90%

3-1-4 Critère de 80% (Hansen 1963) :

Le tableau 16 présente les courbes \sqrt{V}/Q en fonction le déplacement vertical (V) qui donne normalement pente y= b+ a*x comme schématisé dans le figure 31.

D'après les résultats fournées dans le tableau16 nous apercevoir que ce critère est nonapplicable.

 \sqrt{V}/Q graphe V (mm) Q (ton) palier [PRCHY/Q] 0,08 54 0,005238 108 0,006348 2 0,47 1,000 0,867 3 162 0,005748 0.005 1,178 216 0,005025 T02 5 270 0,004798 6.003 1,678 6 2,24 324 0,004619 7 3,4 432 0,004268 8 5,93 540 0,00451 0,00527 1 0,1 60 2 0,25 120 0,004167 8.004 3 0,5 180 0,003928 4 240 0,003841 9.905 -0,85 0,003873 1,35 300 8.004 T45 360 0,003928 6 2 6.803 7 2,75 420 0,003948 2,002 8 3,65 480 0,00398 E.001 540 0,004099 9 4,9 $60\overline{0}$ 10 0,004233 6,45 0,179 77 0,005495 2 0,432 154 0,004268 0.006 0,7386 231 0,00372 T54 0.002 4 1,07 308 0,003358 0,003106 5 1,43 385

Tableau16 : Calcul de la capacité portante par critère Hansen80%

3-1-5 Critère d'Akira Asaoka:

Comme il est schématisé dans la figure 33, l'intersection de la courbe $Q_{k+1}=f(Q_{k+1})$ avec l'asymptote indique la capacité portante, cependant l'observation des courbes montre que l'intersection n'est possible et le critère non applicable.

CODE palier Q_{k+1} graphe Q_k (tou) (tou) 150 T10 T28 ----Q+1 vs Q 600 -550 -450 -400 -350 -300 -T52 100 150 200 250 300 350 400 450 500 550 600 650 700 Q (ton)

Tableau17: Calcul de la capacité portante par critère D'Akira Asaoka

Dans l'ensemble, plus de 90% d'essais ont abouti àdes tassements mesurés en tête du pieu inférieur à 1% du diamètre, et l'application de ces critères nécessitent un tassement supérieur à B/10.Ainsi, ces critères ne sont pas applicables, et il reste à appliquer les critères hyperbolique et conventionnel.

3-1-6Comparaison de Q_l hyperbolique et Q(B/10):

Il est remarquable, d'après l'analyse illustrée au tableau 18, que la moyenne du rapport $r = Q_l$ hyper/ Q_l conventionnel est égal 0.95, comme présentéà la figure 37 ce qui laisse à conclure que la capacité portante ainsi déduite par la formulation hyperbolique est confondue avec la capacité portante conventionnelle correspondant à un tassement de 10% de B.

Un tel fait justifie leur applicabilité dans les projets étudiés parce que si les grands tassements n'ont pas été atteints, on peut extrapoler la courbe expérimentale et estimer la capacité portante.

Tableau. 18: Tableau comparatif entre Q_lhyperbolique etQ (B/10)conventionnel

code	B (mm)	$Q_l hyper(ton)$	$Q_l conv(ton)$	r
T01	1200	1122,32	1097,0056	0,97744458
T02	1000	735,486	717,621111	0,97571009
T03	1200	840,66	821,225316	0,97688164
T04	1000	418,31	410,864319	0,98220057
T05	1200	506,48	493,723094	0,97481262
T06	1200	520,86	516,989134	0,99256832
T07	1000	1000,31	983,403438	0,98309868
T08	800	282,6	279,339683	0,98846314
T10	1000	614,013	604,330961	0,98423154
T11	1000	386,78	385,341105	0,99627981
T12	1000	1089,46	1036,84923	0,95170932
T13	1200	391,81	370,289426	0,94507395
T14	1200	758,23	744,766579	0,98224362
T15	1200	1266,73	1227,98559	0,96941383
T16	600	152,44	151,535245	0,99406484
T17	800	145,137	143,322802	0,9874933
T18	1000	148,67	148,425972	0,99835859
T19	600	458,41	452,266428	0,98659808
T20	1000	924,33	919,513175	0,99478885
T21	1000	984,91	956,65172	0,97130877
T22	600	332,92	331,282166	0,9950804
T23	1200	682,44	666,278914	0,97631867
T24	1200	1228,54	1184,51745	0,96416677
T25	1000	135,107	134,235996	0,99355323
T26	1200	773,297	763,829902	0,98775749
T27	1200	1530,32	1490,61792	0,97405636
T28	1000	890,3	848,373446	0,95290739
T29	1000	184,604	184,294081	0,99832117
T30	1000	434,165	1123,51324	0,89471637
T31	1200	1255,72	869,586507	0,97369385
T32	1200	853,06	783,658051	0,91864353

T34 1000 1061,83 993,430669 0,93558354 T35 1200 893,86 654,689986 0,73243012 T36 1200 1223,65 1171,15162 0,9570969 T37 1200 2060,15 2024,46636 0,9826791 T38 / 504,4 / / T39 / 466,05 / / T40 / 2100,14 / / T41 / 2404,44 / / T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915	T33	1200	893,08	869,586507	0,97369385
T35 1200 893,86 654,689986 0,73243012 T36 1200 1223,65 1171,15162 0,9570969 T37 1200 2060,15 2024,46636 0,9826791 T38 / 504,4 / / T39 / 466,05 / / T40 / 2100,14 / / T41 / 2404,44 / / T42 1200 3380,52 2959,43666 0,87543829 T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T50 1200 76,47 73,6330786 0,96290151			,		
T36 1200 1223,65 1171,15162 0,9570969 T37 1200 2060,15 2024,46636 0,9826791 T38 / 504,4 / / T39 / 466,05 / / T40 / 2100,14 / / T41 / 2404,44 / / T42 1200 3380,52 2959,43666 0,87543829 T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,9842966 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151			,		
T37 1200 2060,15 2024,46636 0,9826791 T38 / 504,4 / / T39 / 466,05 / / T40 / 2100,14 / / T41 / 2404,44 / / T42 1200 3380,52 2959,43666 0,87543829 T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T5			· ·		
T38 / 504,4 / / T39 / 466,05 / / T40 / 2100,14 / / T41 / 2404,44 / / T42 1200 3380,52 2959,43666 0,87543829 T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T			· ·		
T39 / 466,05 / / T40 / 2100,14 / / T41 / 2404,44 / / T42 1200 3380,52 2959,43666 0,87543829 T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949	T37	1200	2060,15	2024,46636	0,9826791
T40 / 2100,14 / / T41 / 2404,44 / / T42 1200 3380,52 2959,43666 0,87543829 T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99	T38	/	504,4	/	/
T41 / 2404,44 / / T42 1200 3380,52 2959,43666 0,87543829 T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / / T50 1200 76,47 73,6330786 0,96290151 0,96290151 0,95355915 T52 1200 865,812 854,666619 0,98712725 0,98712725 T53 1200 986,84 982,388849 0,99548949 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849	T39	/	466,05	/	/
T42 1200 3380,52 2959,43666 0,87543829 T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87	T40	/	2100,14	/	/
T43 600 381,1 361,020475 0,94731166 T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 <t< th=""><td>T41</td><td>/</td><td>2404,44</td><td>/</td><td>/</td></t<>	T41	/	2404,44	/	/
T44 1200 791,3 778,532595 0,98386528 T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,955 Ecart type 0,0425	T42	1200	3380,52	2959,43666	0,87543829
T45 1200 707,55 698,539167 0,98726474 T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,955 Ecart type 0,0425	T43	600	381,1	361,020475	0,94731166
T46 1200 802,93 790,321556 0,98429696 T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T44	1200	791,3	778,532595	0,98386528
T47 1200 625,85 623,714801 0,99658832 T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T45	1200	707,55	698,539167	0,98726474
T48 1200 799,88 795,414583 0,99441739 T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T46	1200	802,93	790,321556	0,98429696
T49 / 507,318 / / T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T47	1200	625,85	623,714801	0,99658832
T50 1200 76,47 73,6330786 0,96290151 T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T48	1200	799,88	795,414583	0,99441739
T51 600 258,5 246,49504 0,95355915 T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T49	/	507,318	/	/
T52 1200 865,812 854,666619 0,98712725 T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T50	1200	76,47	73,6330786	0,96290151
T53 1200 986,84 982,388849 0,99548949 T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T51	600	258,5	246,49504	0,95355915
T54 1200 918,211 902,545669 0,98293929 T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T52	1200	865,812	854,666619	0,98712725
T55 1000 331,97 331,337849 0,99809576 T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T53	1200	986,84	982,388849	0,99548949
T56 1200 1155,87 1124,82911 0,973145 r moy 0,95 Ecart type 0,0425	T54	1200	918,211	902,545669	0,98293929
r moy 0,95 Ecart type 0,0425	T55	1000	331,97	331,337849	0,99809576
Ecart type 0,0425	T56	1200	1155,87	1124,82911	0,973145
				r moy	0,95
Cv 4,474%				Ecart type	0,0425
				Cv	4,474%

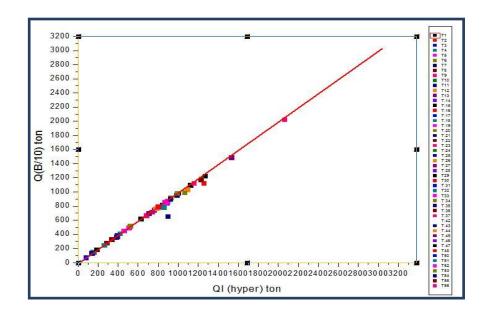


Figure 37 : Comparaison des efforts limite expérimental et conventionnel

CHAPITRE 02:ANALYSE DE LA CHARGE CRITIQUE

L'étude de l'évolution du tassement dans le temps pour une charge donnée, montre qu'il varie linéairement avec le logarithme du temps, selon une pente α pour chaque effort Q.La charge critique (fluage) est la charge qui correspond au changement de pente dans la courbe donnant β en fonction de Q.

3-2-1 COMPARAISON DU RAPPORT Q_c experimentale/ Q_l hyper:

 ρ est défini comme étant le rapport entre et Q_c exper et Q_l hyper.

Le tableau 19 récapitule les résultants statistiques relatifs de la charge critique expérimentale et la charge limite hyperbolique de chaque pieu d'essai. On constate que le coefficient de variation Cv, qui est un mesure de la dispersion de résultant autour de la moyenne est égal à 36.42% pour 48 pieux d'essai parmi les 56 pieux d'essai, (à cause de manque de valeur de charge critique expérimentale). Mais la comparaison entre 42 pieux d'essai donne coefficient de variation est 25% et ρ = 0.45

Comme la montre figure 38, le rapport Q_c/Q_l est égal à 0.45 malgré qu'on a 23.4% de ρ entre 0.2 et 0.3..

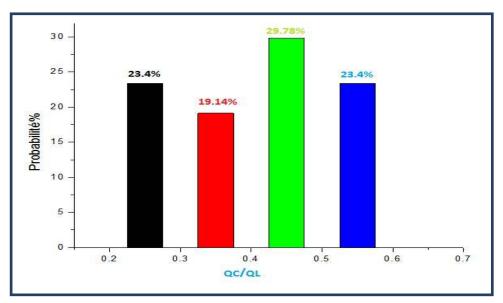


Figure 38 : Histogramme d'analyse de la capacité portante par la charge critique

Tableau. 19: Comparaison entre Q_c experimentale $/Q_l$ hyperbolique

code	Q _l hyper	Q _c exp(ton			Q _l hyper	Q _c exp	_
code	(ton))	ρ	code	(ton)	(ton)	ρ
T01	1122,32	536	0,47758215	T25	135,107	66	0,48850171
T02	735,486	332	0,4514022	T27	1530,32	553,4	0,36162371
T03	840,66	350	0,41633954	T28	890,3	228	0,25609345
T04	418,31	238	0,56895604	T29	184,604	125	0,67712509
T05	506,48	280	0,55283526	T30	434,165	87	0,20038465
T06	520,86	274	0,52605307	T32	853,06	255	0,29892387
T07	1000,31	420	0,41986984	T33	893,08	328	0,36726833
T08	282,6	111	0,39278132	T34	1061,83	485	0,45675861
T09	7006,837	324	0,04624055	T35	893,86	383,5	0,4290381
T10	614,013	286	0,46578818	T36	1223,65	331	0,27050219
T11	386,78	367	0,94885982	T38	504,4	115	0,22799366
T12	1089,46	255	0,23406091	T39	466,05	110	0,23602618
T13	391,81	129	0,32924121	T40	2100,14	630	0,29998
T14	758,23	277	0,36532451	T41	2404,44	770	0,32024089
T15	1266,73	378	0,29840613	T42	3380,52	860	0,25439873
T16	152,44	54,3	0,35620572	T43	381,1	198,7	0,52138546
T17	145,137	104	0,71655941	T44	791,3	300	0,37910859
T18	148,67	88	0,59191498	T45	707,55	360	0,50879796
T19	458,41	281	0,61298837	T46	802,93	480	0,59781052
T20	924,33	425	0,4597925	T47	625,85	300	0,47934809
T21	984,91	481,8	0,48918175	T50	76,47	37,8	0,49431149
T22	332,92	187,5	0,56319837	T51	258,5	104	0,40232108
T23	682,44	307	0,4498564	T52	865,812	345	0,39846988
T24	1228,54	367	0,29872857	T54	918,211	555	0,60443624

ρ moy	0,43
Ecart type	0,156
Cv	36,425%

3-2-2CALCUL DE QcA PARTIR DES ESSAIS IN-SITU:

Un calcul prévisionnel de la charge critique a été mené à la base des méthodes de calcul à partir des essais préssiométrique (PMT) et pénétrostatique (CPT), conformément au règlement français la charge définie comme suivant :

$$Q_c = 0.5Q_p + 0.7 Q_s$$
(pieu foré)

$$Q_c = 0.7Q_p + 0.7 Q_s$$
(pieu battu)

3-2-2-1:L'ESSAIS PENETROMETRE STATIQUE (CPT)

Le tableau 20 récapitule les résultants statistiques relatifs à chaque pieu d'essai comme suivant:

Tableau 20: Qc calculé parl'essai pénétromètre statique (CPT)

code	Q _p (ton)	Q _s (ton)	Q _l (ton)	Q _c calculé(ton)	Qccalculémoy(ton)
	92.91	542.592	635.51	426.2694	
	96.82	542.59	639.41	428.223	
	96.89	542.59	639.48	428.258	
	197.27	542.592	739.86	478.4494	
	97.44	542.59	640.03	428.533	
T05	100.74	542.59	643.33	430.183	449.14
	91.5	542.59	634.09	425.563	
	311.99	542.59	854.58	535.808	
	293.361	542.59	835.95	526.4935	
	75.57	542.59	618.168	417.598	
	70.71	542.59	613	415.168	
	631.247	233.616	864.863	479.1547	
	411.972	233.616	645.588	369.5172	428.73
	720.282	233.616	953.898	523.6722	120.75
T06	358.106	233.616	591.722	342.5842	
	353.927	248.688	602.615	351.0451	
	404.352	248.688	653.04	376.2576	
	440.684	248.688	689.372	394.4236	
	446.375	248.688	695.063	397.2691	
T07	370.159	248.688	618.847	359.1611	374.698
107	246.74	248.688	495.428	297.4516	371.070
	459.727	248.688	708.415	403.9451	
	472.922	248.688	721.61	410.5426	
	338.729	248.68	587.409	343.4405	
	478.726	248.688	727.414	413.4446	

PARTIE III [INTERPRETATION DES RESULTATS]

	250 405	1 271 206	T 40 501	220 1 107	206.652
	278.485	271.296	549.781	329.1497	286.652
T13	254.159	271.296	525.455	316.9867	_
	116.748	271.296	388.044	248.2812	_
	124.57	271.296	395.866	252.1922	
	278.485	271.296	549.781	329.1497	
T14	254.159	271.296	525.455	316.9867	286.65
	116.748	271.296	388.044	248.2812	
	124.57	271.296	395.866	252.1922	
	171.821	376.8	548.621	349.6705	357.8093
	171.821	376.8	548.621	349.6705	
T15	203.472	376.8	580.272	365.496	
113	203.472	376.8	580.272	365.496	
	189.907	376.8	566.707	358.7135	
	30.4225	82.89	113.3125	62.74075	
T16	27.6959	82.896	110.5919	60.83513	64.64
	44.2077	82.896	127.1037	72.39339	
	30.2314	82.896	113.1274	62.60998	
	1113.22	633.024	1746.244	999.7268	1053.94
	2044.67	633.024	2677.694	1465.45	
TT22	1254.29	633.024	1887.314	1070.26	
T32	985.709	633.024	1618.733	935.9713	
	953.605	633.024	1586.629	919.9193	
	978.474	633.024	1611.498	932.3538	
	1113.22	783.744	1896.964	1105.23	
	2044.67	783.744	2828.414	1570.95	
T33	1254.29	783.744	4	1175.76	986.47
100	985.709	783.744	1769.453	1041.47	700
	953.605	783.744	1737.349	1025.4233	
	978.474	783.744	1762.218	1037.85	
	284.86	346.656	631.516	385.0892	383.89
	144.691	346.65	491.341	315.0005	
	418.248	346.65	764.898	451.779	
T35	282.148	346.65	628.798	383.729	
	453.11	866.64	1319.75	833.203	
	452.929	866.64	1319.569	833.1125	
	453.652	866.64	1320.292	833.474	
	322.616	866.64	1189.256	767.956	
T42	426.523	866.64	1293.163	819.9095	816.27
1 T#	276.677	866.64	1143.317	744.9865	010.27
	452.16	866.64	1318.8	832.728	
	450.442	866.64	1317.082	831.869	
	452.024	866.64	1318.664	832.66	
	452.386	866.64	1319.026	832.841]
	1192.57	251.2	1443.77	772.125	984.736
	1888.4	251.2	2139.6	1120.04	1
	1799.85	251.2	2051.05	1075.765	1
T55	1444.09	251.2	1695.29	897.885	1
	1764.05	251.2	2015.25	1057.865	1

3-2-2-2 L'ESSAIS PRESSIOMETRIQUE (PMT):

Le tableau 21 récapitule les résultants statistiques relatifs à chaque pieu d'essai comme suivant :

Tableau 21:Qc calculé parl'essai préssiométrique(PMT)

	348.16	100 -			Qcalculémoy(ton)
		189.5	537.66	306.73	
	339.87	319.99	659.8676	393.936	
T01	348.16	241.18	589.34	342.90	348.11
	339.87	212.832	552.70	318.91	3 10.11
	339.876	332.84	672.716	402.922	
	348.16	213.10	561.26	323.25	
	183.12	1085.18	1268.3	851.186	664.51
	122.08	623.981	746.061	497.82	
	123.67	637.546	761.216	508.11	
	122.08	623.981	746.06	497.82	
T05	122.08	623.981	746.06	497.82	
	305.21	1402.46	1707.67	1134.32	
	85.56	107.15	192.71	117.785	
	62.52	89.48	152	93.896	
T08	95.85	119.94	215.79	131.883	111.7072
	75.36	94.28	169.64	103.676	
	81.08	101.08	182.54	111.296	
	181.316	284.86	466.1	290.06	314.94
	189.907	284.86	474.76	294.35	
	217.037	284.86	501.89	307.921	
T13	336.106	284.86	620.96	367.45	
	181.316	284.86	466.17	290.06	
T14	189.907	284.86	474.76	294.35	314.94
	217.037	284.86	501.89	307.92	311.71
	336.106	284.86	620.96	367.45	
	355.57	383.02	738.59	445.899	382.948
T17	137.52	341.36	478.88	307.712	
	254.24	383.02	637.26	395.234	
	56.844	314.24	371.084	248.39	
	30.5	192.26	222.76	149.832	
	25.91	138.53	164.44	109.926	
	30.5	192.26	222.76	149.832	
T29	71.53	362.1	433.63	289.235	184.6898
1.27	42.244	244.6	286.844	192.342	101.0070
	35.16	212.56	247.72	166.372	
	32.74	200.62	233.36	156.804	
	44.75	260.62	305.37	204.809	
	38.7	228.58	267.28	179.356	

PARTIE III [INTERPRETATION DES RESULTATS]

	56.844	314.24	371.084	248.39	184.6898
	30.5	192.26	222.76	149.832	
	25.91	138.53	164.44	109.926	
	30.5	192.26	222.76	149.832	
	71.53	362.1	433.63	289.235	
T30	42.244	244.6	286.844	192.342	
150	35.16	212.56	247.72	166.372	
	32.74	200.62	233.36	156.804	
	44.75	260.62	305.37	204.809	
	38.7	228.58	267.28	179.356	
T56	1593.11	437.872	2030.98	1103.06	1041.88
	1276.59	489.147	1765.74	980.70	111100

3-2-3 COMPARAISON ENTREQ CALCULEE ET Q_{C} EXPERIMENTALE :

Le calcul de charge de fluage (ou critique) est fait conformément au règlement français (CCTG-93, fascicule 62, titre5), selon le mode d'installation du pieu.

$$Q_c = 0.5Q_p + 0.7 Q_s$$
(pieu foré)

$$Q_c = 0.7Q_p + 0.7 Q_s$$
(pieu battu)

On définit μ comme étant le rapport entre Q_c calculee et Q_c experimental.

Le tableau 22 récapitule les résultats statistiques relatifs à certains cas analysés.

D'après la comparaison on constate que la charge critique calculée à partir du CPT supérieur à celle expérimentale telle que μ_{CPT} moy =1.6, avec 54.5 % en sousestimation et 45.5%en surestimation.

D'autre part on remarque que pour la charge critique calculée à partir de PMT donne le rapportµ_{PMT}moy=1.86% avec 75% en surestimation et 25% en sousestimation.

On observe que la charge critique calculée par CPT est plus proche de la charge expérimentale, (voir les tableaux 22 et 23) dans la page suivante.

Tableau. 22: Comparaison entre Q_C calculer par CPT et Q_C expérimentale

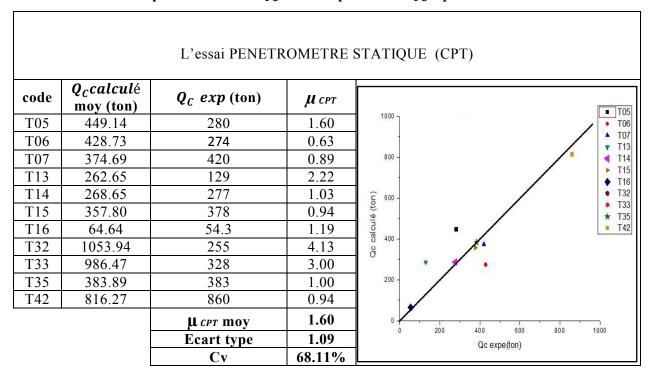


Tableau. 23: Comparaison entre Q_C calculer par PMTet Q_C expérimentale

L'essai Préssiométrique (PMT)								
code	Q _C calculé moy (ton)	Q _C exp (ton)	μ РМТ	600 7				
T01	384.11	536	0.64	100 100				
T05	664.51	280	2.73	500 - A TOE				
T08	111.70	111	1.00	114 130				
T13	314.94	129	2.44	■ T17				
T14	314.94	277	1.13	(Eg.) 300 - T29				
T17	382.94	104	3.68					
T29	184.68	125	1.47	8 200 P				
T30	184.68	87	2.12	100 -				
		μ рмт тоу	1.86					
		Ecart type	0.98	0 100 200 300 400 500 600				
		Cv	53.16%	QC exper(ton)				

CHAPITRE 03: ETUDEDU TASSEMENT DE REFERENCEV_r

Le tassement de référence est ainsi le tassement qui correspond à la moitié de la capacité portante. Il peut être interprété comme étant le seuil d'instabilité des tassements dans le temps.

3-3-1ETUDE STATISTIQUE DE V_r :

Reprenons l'équation hyperbolique de la courbe de chargement (1) :

$$Q = \frac{V_0}{\frac{V_0}{Q_1} + \frac{1}{\alpha}}$$

En la normalisant par Q_I :

$$\frac{Q}{Q_l} = \frac{V_0}{V_0 + \frac{Q_l}{\alpha}}$$

 $\frac{Q_l}{c}$: a la dimension d'une longueur, et est appelé tassement de référence V_r .

$$V_r = \frac{Q_l(hyper)}{\alpha}$$

$$\frac{Q}{Q_l} = \frac{V_0/V_r}{\frac{V_0}{V_r} + 1}$$
 On voit que si $V_0 = V_r = > Q = \frac{Q_l}{2}$

On définit δ comme étant le rapport entre tassement de référence et le diamètre.

D'après le résultant récapitulé au Tableau 24, on observe que le tassement de référence pour l'ensemble de pieu d'essais varie dans une marge de 0.128%B à0.68%B, avec un moyenne de 0.29% de B.

$$\frac{V_r}{B} = 0.29\%$$

le caractère dispersé des valeurs analysée montre que le tassement de référence dépend d'autre paramètres de l'interaction pieu/sol et éventuellement de l'élancement du pieu.

Tableau 24: Résultats du rapport $\delta = B/V_r$

code	α	\underline{O}_1 hyper (ton)	$V_r(\underline{O}_{l}/a)$	B (mm)	δ (%)
T01	405,3	1122,32	2,7691093	1200	0,230
T02	295,44	735,486	2,48945979	1000	0,248
T03	296,022	840,66	2,8398565	1200	0,236
T04	230,83	418,31	1,81219945	1000	0,181
T05	163,35	506,48	3,10058157	1200	0,258
T07	581,85	1000,31	0,89847908	1000	0,171
T12	214,71	1089,46	1,71918879	1000	0,507
T14	349,53	758,23	2,16928447	1200	0,180
T15	334,57	1266,73	3,78614341	1200	0,315
T19	562,44	458,41	0,81503805	600	0,135
T21	333,43	984,91	2,95387338	1000	0,295
T23	234,46	682,44	2,91068839	1200	0,242
T24	275,47	1228,54	4,45979599	1200	0,371
T27	478,8	1530,32	4,94199278	1200	0,266
T28	180,15	890,3	0,16816549	1000	0,494
T30	125,85	434,165	3,24202273	1000	0,344
T33	275,47	893,08	3,24202273	1200	0,270
T34	154,22	1061,83	6,88516405	1000	0,688
T36	227,48	1223,65	5,37915421	1200	0,448
T43	114,2	381,1	3,33712785	600	0,556
T44	402,1	791,3	1,96791843	1200	0,163
T45	457,09	707,55	1,54794461	1200	0,128
T46	419,41	802,93	1,91442741	1200	0,159
T50	16,54	76,47	4,62333736	1200	0,385
T51	88,462	258,5	2,92215867	600	0,487
T52	553,279	865,812	1,56487414	1200	0,130
T54	440,85	918,211	2,08281955	1200	0,173
	1	1	1	δ moy	0,29%
				Ecart type	0,00148
				Cv	45,56%

3-3-2RELATION ENTREQ(Vr)ETV_r:

D'après l'analyse des résultats récapitulés au le tableau 25, qui présenté la relation entre la charge vertical correspondant au tassement de référence et la charge critique expérimentale, on constate que le rapport $Q(V\mathbf{r})$ sur Q_cexp proche à 1 avec une moyenne égal à 0.87 et un coefficient de variation Cv=33.69% ce qui veut dire que la charge de fluage correspond pratiquement au tassement de référence calculé.

Tableau. 25:Résultats du rapport $\omega = Q(Vr)/Q_c \exp$

Code	\underline{O}_1 hyper(ton)	$V_r = Ql/a(mm)$	$\underline{\mathcal{Q}}_{\mathrm{c}}(\mathrm{V}r)$ (ton)	<u>O</u> cexp(ton)	ω
T01	1122,32	2,7691093	561,16	536	0,9551643
T02	735,486	2,48945979	367,743	332	0,9028044
T03	840,66	2,8398565	420,33	350	0,83267909
T04	418,31	1,81219945	209,155	238	1,13791207
T05	506,48	3,10058157	253,24	280	1,10567051
T06	520,86	0,89847908	260,43	274	1,05210613
T07	1000,31	1,71918879	500,155	420	0,83973968
T08	282,6	0,93372101	141,3	111	0,78556263
T10	614,013	1,60210879	307,0065	286	0,93157637
T11	386,78	0,37340825	193,39	367	1,89771963
T12	1089,46	5,07409995	544,73	255	0,46812182
T13	391,81	6,9741901	195,905	129	0,65848243
T14	758,23	2,16928447	379,115	277	0,73064901
T15	1266,73	3,78614341	633,365	378	0,59681226
T16	152,44	0,35823561	76,22	54,3	0,71241144
T17	145,137	0,53163736	72,5685	104	1,4331287
T18	148,67	0,16441068	74,3349999	88	1,18382996
T19	458,41	0,81503805	229,205	281	1,22597675
T20	924,33	0,52384515	462,165	425	0,919585
T21	984,91	2,95387338	492,455	481,8	0,97836351
T22	332,92	0,29663554	166,46	187,5	1,12639673
T23	682,44	2,91068839	341,22	307	0,8997128
T24	1228,54	4,45979599	614,27	367	0,59745714
T25	135,107	0,64886035	67,5535	66	0,97700341
T27	1530,32	3,19615706	765,16	553,4	0,72324743
T28	890,3	4,94199278	445,15	228	0,5121869

PARTIE III [INTERPRETATION DES RESULTATS]

				Cvi	22 (00/
				Ecart type	0,29%
				ω moy	0,87%
T54	918,211	2,08281955	459,1055	555	1,20887247
T52	865,812	1,56487414	432,906	345	0,79693975
T51	258,5	2,92215867	129,25	104	0,80464217
T50	76,47	4,62333736	38,235	37,8	0,98862299
T47	625,85	0,4108029	312,925	300	0,95869617
T46	802,93	1,91442741	401,465	480	1,19562104
T45	707,55	1,54794461	353,775	360	1,01759593
T44	791,3	1,96791843	395,65	300	0,75824592
T43	381,1	3,33712785	190,55	198,7	1,04277093
T42	3380,52	17,0741957	1690,26	860	0,50879746
T41	2404,44	12,906973	1202,22	770	0,64048178
T40	2100,14	6,09991577	1050,07	630	0,59996
T39	466,05	2,43291919	233,025	110	0,47205235
T38	504,4	6,41159273	252,2	115	0,45598731
T36	1223,65	5,37915421	611,825	331	0,54100437
T35	893,86	43,838156	446,93	383,5	0,85807621
T34	1061,83	6,88516405	530,915	485	0,91351723
T33	893,08	3,24202273	446,54	328	0,73453666
T32	853,06	10,6273826	426,53	255	0,59784775
T30	434,165	3,44986095	217,0825	87	0,40076929
T29	184,604	0,16816549	92,3019999	125	1,35425018

33,69% Cv

CHAPITRE4: PROPOSITION DE COURBE DE CHARGEMENTSIMPLIFIEE

Pour les besoins de la pratique, il est important que l'Ingénieur dispose d'un outil simplifié d'estimation du tassement V_0 en tête du pieu sous une charge verticale de service Q, sous forme d'une courbe de chargement simplifiée.

On constate que toute courbe de chargement normalisé $\frac{Q}{Ql} = f\left(\frac{VO}{Vr}\right)$ peutêtre simplifié en une courbe tri-linéaire, comme suit :

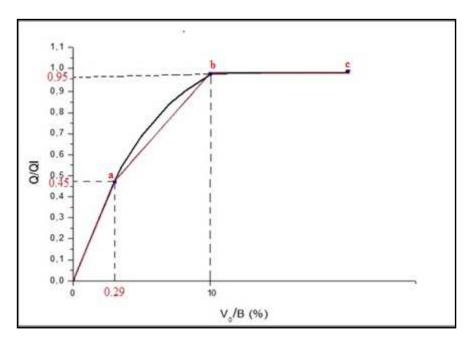


Figure 39: Courbe de chargement normalisé tri-linéaire simplifiée

Tant que la charge en tête Qreste inférieur a une valeur égal la charge de

fluage:Qc =
$$\frac{Ql}{2} > \frac{Q}{Ql} = \frac{\frac{V0}{Vr}}{1 + \frac{V0}{Vr}} = 0.5 = \frac{V0}{Vr} = 1$$

La courbe d'enfoncement peut alors être représentée par les segments rectilignes [O.a] correspondantes les coordonnées : O (0,0) et a (0.29,0.5) comme schématisé dans la figure 39.

Dans la partie 2 où la charge en tête est supérieure à la charge critique, c'est à dire que le rapport $\frac{q}{ql}$ est supérieur à 0.5, l'enfoncement augmente évidement avec la charge appliquée jusqu'à l'enfoncement égal (B/10). Donc, entre les pointes a et b, la courbe de chargement est curviligne: Arc a.b, figure 39.

En atteignant un tassement égal à B/10, la charge Q est égale à $0.95 \, Q_l$, et la rupture est schématisée sur la courbe par une asymptote horizontale bc.

Exemple numérique:

Pieu de B= 1200mm,
$$Q_l$$
= 4500KN, Sous une charge $Q = 2450$ KN.
On a V_r = 0.29% B => V_r = 3.84mm

$$\frac{Q}{Ql} = \frac{\frac{V0}{Vr}}{1 + \frac{V0}{Vr}} = \frac{2450}{4500} = \frac{\frac{V0}{3.84}}{1 + \frac{V0}{3.84}}$$
Application numérique

$$0.544(1+\frac{V0}{3.84}) = \frac{V0}{3.84} = V_0 = 4.0 \text{mm}$$

CHAPITRE05: ETUDE COMPARATIVE DES METHODES DE CALCUL Q_1

Un calcul prévisionnel de la capacité portante à partir des essais in-situ a été fait à l'aide de Microsoft Excel comme il présenté au figure 40. La capacité portante a été menée à la base des méthodes de calcul à partir des essais préssiométrique (PMT) et pénétrostatique (CPT). Pour le calcul à partir de L'essai de pénétromètre standard (SPT), il est remarquable que les règles techniques (CCTG-93, fascicule 62) ignorent complètement l'apport de cet essai au dimensionnement des fondations aussi bien superficielles que profondes. Cette position est renforcée par celle du règlement DTU13.2,applicable aux fondations des bâtiments, aui ne recommande aucune méthode de calcul.

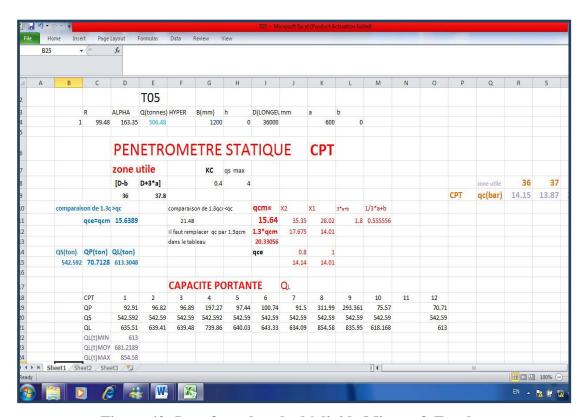


Figure 40: Interface de calcul à l'aide Microsoft Excel

5-1 APPLICATION DE LA METHODE PENETROSTATIQUE (CPT):

On applique la méthode sur 12 pieux d'essai ce qui permet de calculer le rapport :

$$\Phi_{\text{CPT}} = \frac{Q_{l(moy)}(\text{CPT})}{Q_{l(hyper)}}$$

 Φ est définicomme étant le rapport entre effort limite calculée par CPT et $Q_{l(hyper)}$.

Le tableau 26 récapitule les résultants statistiques relatifs à chaque pieu d'essai, Pour chaque projet où lesCPT ont été menés, on obtient différente valeurs de la capacité portante dans les sondages CPT. Les coefficients de variation qui représente la dispersion autour de la moyenne est illustre par l'histogramme dans le Tableau 26, avec une marge de2.8% à 22.6%.D'après la figure 41on observe que 55% des cas donne un rapport inférieur à 1.

L'essai Pénétrostatique (CPT) Q_l calculé **Ecart** CPT code $oldsymbol{\Phi}_{ ext{CPT}}$ Cv% Q_l hyper moy type 35 T05 681,21 506,48 1.34 0.17 12.88 T06 764,01 520,86 1.46 0.33 22.66 T07 641,311 1000,31 0.64 0.072 11.36 T13 464,78 0.99 0.21 391,81 18.32 20 T14 464,78 0.111 758,23 0.61 18.23 T15 564,89 1266,73 0.44 0.012 2.8 T16 464,78 152,44 3.04 0.55 18.23 T32 1854,68 853,06 2.17 0.49 22.57 2005,40 T33 861,51 2.24 0.46 20.88 T35 629,13 0.7 22.57 893,86 0.12 T42 1285,89 3380,52 0.38 0.01 5.01 T55 1868,99 331,97 5.63 0.87 15.57

Tableau. 26: Résultats de la comparaison entre Q_l calculé par (CPT) et Q_l hyper

5-2APPLICATION DE LA METHODEPRÉSSIOMÉTRIQUE(PMT):

On applique la méthode sur 09 pieux d'essai, ce qui permet de calculer le rapport :

$$\Phi_{\text{PMT}} = \frac{Q_{l(moy)}(\text{PMT})}{Q_{l(hyner)}}$$

 Φ est définitcomme étant le rapport entre effort limite calculée par PMT et $Q_{l(hyper)}$.

L'histogramme dans le tableau 27 représente les coefficients de variation du calcul de la capacité portante de chaque projet, la marge de Cv étant de 9.87% à 40.7%.

PARTIE III [INTERPRETATION DES RESULTATS]

Le tableau 27 récapitule les résultants statistiques relatifs de l'ensemble des pieux. Le rapport Φ_{PMT} varie entre 0.47 et 1.53 et prend une valeur moyenne de 1.1, selon les résultats fournées dans le tableau 27.

D'après la figure 42on n'observe que 55% des cas donne un rapport supérieur à 1.

Tableau. 27: Résultats de la comparaison entre Q_l calculé par (PMT) et Q_l hyper

			L'ess	ai Pressic	ometrique	(PMT)
code	Q _l calculé moy	Q_l hyper	$oldsymbol{\Phi}_{PMT}$	Ecart type	C _V %	60 J
T01	595,59	1122,32	0.47	0.051	9.64	50 -
T05	995,89	506,48	1.47	0.8	40.74	45 - 40.74% 38.66% 38.66%
T08	182,53	282,6	0.53	0.08	13.15	38.66% 35 -
T13	515,95	391,81	1.18	0.18	13.88	© 30 −
T14	1160,05	758,23	1.53	0.09	13.88	20 - 21.17%
T17	188,67	145,137	1.32	0.9	21.17	15 - 13.15% 13.88% 13.88%
T29	275,52	184,604	1.49	0.39	26.67	10 - 9.64%
T30	275,52	434,165	0.37	0.14	38.66	0 1
т56	980,36	1155,87	0.85	0.07	8.23	T01 T05 T08 T13 T14 T17 T29 T30 T56

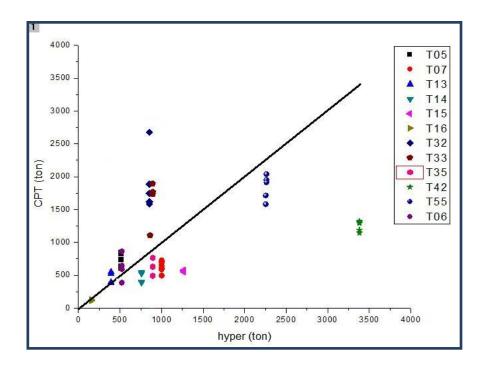


Figure 41: Comparaison des efforts limites expérimental et calculées par (CPT)

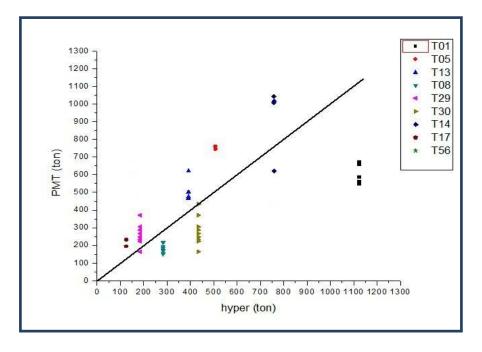


Figure 42: Comparaison des efforts limites expérimental et calculées par (PMT)

CONCLUSION ET RECOMMANDATIONS

Cette étude nous a permis de nous imprégner des différentes méthodologies de dimensionnement des pieux sous ses différents aspects.

Ainsi, vu l'importance que revêtent les fondations sur pieux sur les ouvrages de grande envergure, une attention particulière doit être accordée à leur dimensionnement et à leur mise en œuvre. A cet effet, une phase importante pour la réussite d'un projet de fondation est le choix adéquat d'une méthode de dimensionnement. Ceci dépend de plusieurs aspects à savoir principalement, l'aspect technique, l'aspect coût et temps d'exécution. Les performances des méthodes font l'objet actuellement de plusieurs controverses. Ainsi, notre étude, a consisté en la comparaison des différentes méthodes de calcul aux résultats de 56 essais de chargement statique de pieux en Algérie.

Au terme de cette étude, nous pouvons dire que chaque méthode présente des avantages et des inconvénients.

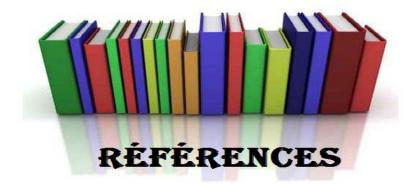
En effet, du point de vue mise en œuvre, les méthodes penetrostatique et pressiomérique, sont parmi les essais in-situ les plus utilisée en Algérie. De plus, pénétrostatique (CPT) s'adapte à beaucoup de types de sol. Pour la méthode d'essai de chargement statique d'un pieu, son rôle est de contrôler et de préciser les conclusions de l'étude géotechnique préalable, mais elle demande encore un personnel qualifié, et avec une expérience dans le domaine.

Du point de vue de l'évaluation de capacité portante à partir des résultants d'essai de chargement, il a été constaté que les critères sont mentionnés dans la littérature non applicables sur résultants de notre projet, sauf celui d'ajustement hyperbolique des courbes de chargement (avec un coefficient de régression obtenu supérieur à 95 %, ce qui est le signe d'une excellente qualité d'ajustement) et critère de conventionnel.

Du point de vue de l'évaluation d'analyse de charge critique(fluage), l'étude du rapport Q_c experimentale/Q_Lhyper est très approche de 0.5 et avec un moyenne est égale à 0.43, ce qui indique un résultant satisfaisant, mais pour la comparaison de la charge

critique expérimentale avec celle calculée à partir des essais in-situ nous avons obtenu une certaine résultants différence

Une étude comparative des méthodes courantes de dimensionnement à la base des essais in-situ a été menées, en l'occurrence les méthodes préssiométrique et pénétrostatique.Il a été constaté que ces deux méthodes permettant une prévision de la capacité portante en bonne concordance avec celle de l'ajustement hyperbolique des courbes de chargement.


On a proposé une courbe de chargement simplifié qui permet d'estimer rapidement et manuellement les tassements d'un pieu en phase préliminaire de calcul, sans avoir recours aux méthodes traditionnelles de calcul des pieux qui est laborieuse.

Ainsi, Pour terminer, nous tenons à formuler des perspectives dans le souci de parfaire etde compléter ce travail :

-La poursuite de l'étude dans le futur pour d'autres projets de fin d'étude, a l'extension de la base de données.

-L'implication des entreprises qui sont spécialisées dans les études géotechniques et réalisation des essais de chargement pour le recueil de données statistiques.

-Améliorer la formule de calcul de Qc à partir de Qp et Qs.

A.Bouafia

"Les essais in-situ dans les projets de fondations ". Office des publications universitaire OPU, Alger, ISBN 9961.0.0692.5, 299p.

A.Bouafia [2010]

" Conception et calcul des ouvrages géotechniques", édition pages bleues internationales, 38p.

M.Cassan [1988]

"Les essais in situ en mécanique des sols", Tome1 : Réalisation et interprétation, Eyrolles, Paris, 1988.

M.Cassan [1988]

"Les essais in situ en mécanique des sols", Tome2 : Application et méthode, Eyrolles Paris, 1988.

CornellUniversity Ithaca [1988]

" Conception et calcul des ouvrages géotechniques", édition pages bleues internationales, 33p.

US Army corps of engineers[1993]

"Conduct and interpretation of load tests on drilled shaft fondations". Volume1: detailed guidelines

R.Frank [1988]

"Calcul des fondations superficielles et profondes", édition Techniques de l'ingénieur et presses de l'ENPC, 139p

Cheikh i. SARR & Gora SARR [2007]

"Etude comparative entre Méthodes de calcul des pieux «Application à l'échangeur de la Patte d'Oie» ", mémoire d'ingénieur, Université cheikh Antadiop de Dakar, Ecole supérieure polytechnique, 145p.

A.BOUAFIA [2003]

"Analyse comparative des méthodes de calcul des pieux fores isolées", revue française de géotechnique N°105,4eme trimestre, pp.41-50.

LCPC [1996]

"Recommandations pour la préparation d'un essai de chargement statique de pieu instrumente à l'aide d'un extensomètre LPC ", méthode d'essai LPC N°45,13p.

LCPC [1989]

"Essai statique de pieu isolé sous charge axiale ", méthode d'essai LPC N° 31,13p.

DTU13.2 [1992]

Norme française NF P 11-212, AFNORParis 11 p, Sept. 1992.

Cours de Mécanique des sols

Génie civil option géotechnique 1^{er} année Master, université de Blida.

R.Frank [195]

"Fondations profonds", cours de Mécanique des sols, enseignement T6-T9, ENPC, extrait de la collection Techniques de l'ingénieurC248, 43p.

FASCICULE 62.[2005]

"Règles techniques de conceptions et de calcul des fondations des ouvrages de Génie civil".

LCTP

- "12 Rapports d'étude géotechnique".
- "51 Rapports d'essais de chargement statique d'un pieu ".

LNHC

"07 Rapports d'étude géotechnique".

LNTPB [1981]

"Rapport d'étude géotechnique sur radiale oued ouchayeh".

CTE GEOMICA [2007]

"Rapport d'étude géotechnique sur Centrale à tribune de gaz ", Relizane.

A.BOUAFIA [2011]

"Contribution à l'analyse du comportement des pieux cous chargement verticalAnalyse d'une base de données locale", 15thAfricanRegionalconference on soilmechanics and geotechnical engineering, Maputo, july 2011, 10 p.

ANNEXE1:

FICHE SYNTHÉTIQUE D'UNE ÉTUDE GÉOTECHNIQUE T05

1. DONNÉES SUR LE PROJET :

Ouvrage : réalisation d'un ouvrage d'art. Localisation: Oued El-Harrach W. Alger. Date de l'étude géotechnique: 09-10-1991.

Référence du rapport de sol : 23915498. Etude faite par : LNHC

2. DONNÉES SUR LES SONDAGES :

TYPE DE SONDAGE : CAROTTES OUTIL DE SONDAGE :.....

NOMBRE DE SONDAGES CAROTTÉS : 06 NOMBRE DE SONDAGES A LA TARIERE : 0 NOMBRE DE PUITS DE RECONNAISSANCE : 0

3. CARACTÉRISTIQUES GÉOTECHNIQUES DU SITE:

Sondage 01

Nombre de couches formant le terrain : 05

Description sommaire successive des couches (A : argile, S : sable, L : limon, M : marne, Sd : Grès, Autre matériau :Nom complet, symboles à combiner s'il y'a mélange)

La profondeur (0.00-2.00) m: L. carbonaté marron grisâtre

La profondeur (2.00-4.00) m: S. fin .graveleux. grisâtre

La profondeur (4.00-8.50) m: S. fin .grossier . grisâtre

La profondeur (8.50-9.00) m: cailloux, galets, grisâtre

La profondeur (9.00-9.40) m: S.fin .grossier . grisâtre

La profondeur (9.00-11.0) m: S.limoneuse, grisâtre

La profondeur (11.0-13.0) m: M. grise

La profondeur (13.0-15.2) m: M. grise sombre molle à partir de 14.00m

La profondeur (15.2-16.0) m: M. tourbeuse grise noirâtre

```
La profondeur (16.0-18.0) m: L. marneux grisâtre
```

La profondeur (18.0-20.0) m: M. limoneuse grisâtre

La profondeur (20.0-22.3) m: M. grisâtre

La profondeur (22.3-23.3) m: M. tourbeuse grise noirâtre

La profondeur (23.3-27.5) m: M peu tourbeux gris sombre

La profondeur (27.5-28.0) m: L. marneux grisâtre

La profondeur (28.0-35.0) m: tourbe marneuse noirâtre

La profondeur (35.0-36.4) m: M. tourbeuse avec graves calcaires grise blanchâtre

La profondeur (36.4-40.3) m: tourbe marneuse noirâtre très molle de 36.40 à 36.60m

La profondeur (40.3-42.0) m: M. très molle graveleux grise

La profondeur (42.0-44.0) m: M. très molle graveleux grise

La profondeur (44.0-46.0) m: S. gravier cailloux avec argile grisâtre

Présence d'une nappe : Non Profondeur de la nappe/surface :

Sondage 02

Nombre de couches formant le terrain : 06

Description sommaire successive des couches (A: argile, S: sable, L: limon, M: marne, Sd: Grès, Autre matériau: Nom complet, symboles à combiner s'il y'a mélange)

La profondeur (0.00-1.00) m:terre végétal

La profondeur (1.00-3.00) m: S. très fin .carbonaté. grisâtre

La profondeur (3.00-5.50) m: S. fin .grossier . grisâtre

La profondeur (5.50-6.50) m: cailloux, galets, grisâtre

La profondeur (6.50-8.50) m: A. limoneuse carbonatée grise

La profondeur (8.50-12.0) m: M. grise

La profondeur (12.0-13.3) m: M. grise

La profondeur (13.3-13.8) m: M. tourbeuse grise noirâtre

La profondeur (13.8-17.7) m: L. marneux grisâtre

La profondeur (17.7-21.0) m: M. limoneux molle par endroits grise

La profondeur (21.0-24.0) m: M. limoneux molle par endroits grise

La profondeur (24.0-27.0) m: M. peu tourbeuse molle à tares molle grise sombre

La profondeur (27.0-30.0) m: M. limoneux grisâtre

La profondeur (30.0-31.4) m: tourbeuse marneuse noirâtre

La profondeur (31.4-34.0) m: M. tourbeuse grise noirâtre

La profondeur (34.0-40.0) m: tourbeuse marneuse noirâtre

La profondeur (40.0-42.0) m: M. tourbeuse caillouteuse par endroit grise noirâtre

La profondeur (42.0-45.0) m: M. tourbeuse caillouteuse par endroit grise noirâtre

La profondeur (45.0-46.0) m: cailloux, galets avec argile, grisâtre

Présence d'une nappe : Non Profondeur de la nappe/surface :

Sondage 03

Nombre de couches formant le terrain : 05

Description sommaire successive des couches (A: argile, S: sable, L: limon, M: marne, Sd: Grès, Autre matériau: Nom complet, symboles à combiner s'il y'a mélange)

La profondeur (0.00-2.50) m: S.très fin .carbonaté marron. grisâtre

La profondeur (2.50-3.00) m: S. fin .carbonaté. Marron grisâtre

La profondeur (3.00-7.00) m: S. grossier .graveleux et caillouteux grisâtre

La profondeur (7.00-15.0) m: sable grossier grisâtre

La profondeur (15.0-15.8) m: cailloux, galets, avec argile grisâtre

La profondeur (15.8-20.0) m: M. grise passage tourbeux de 19.45 à 19.50 m

La profondeur (20.0-21.0) m: L. marneux grisâtre

La profondeur (21.0-23.0) m: L. marneux grisâtre

La profondeur (23.8-24.7) m: L. limoneux grisâtre

La profondeur (24.7-25.7) m: L. molle grisâtre

La profondeur (25.7-28.0) m: M. limoneux molle par endroits grise

La profondeur (28.0-30.0) m: M. molle grisâtre

La profondeur (30.0-35.0) m: M. molle par endroits grise sombre

La profondeur (35.0-36.0) m: M. très molle grisâtre

La profondeur (36.0-37.0) m: L. marneux grisâtre

La profondeur (37.0-38.0) m: tourbeuse marneuse noirâtre

La profondeur (38.0-43.0) m: M. tourbeuse noirâtre

La profondeur (43.0-44.2) m: M. très graveleux grave calcaire blanc grisâtre

La profondeur (44.2-45.5) m : M. tourbeuse noirâtre

La profondeur (45.5-47.6) m : M. peu molle à molle grise

La profondeur (47.6-49.0) m : M. tourbeuse à passage très tourbeux grise à noirâtre

La profondeur (49.0-50.0) m : cailloux bloc grisâtre

Présence d'une nappe : Non Profondeur de la nappe/surface :

Sondage 04

Nombre de couches formant le terrain : 06

Description sommaire successive des couches (A: argile, S: sable, L: limon, M: marne, Sd: Grès, Autre matériau: Nom complet, symboles à combiner s'il y'a mélange)

La profondeur (0.00-1.00) m: S. très fin .carbonaté gris clair

La profondeur (1.00-3.50) m: L. carbonaté. Compacté marron grisâtre

La profondeur (3.50-4.50) m: S. et gravier carbonaté. grisâtre

La profondeur (4.50-5.00) m: S. et gravier carbonaté. grisâtre sombre

La profondeur (5.00-6.00) m: S. très fin .carbonaté gris sombre

La profondeur (6.00-7.00) m: A. carbonaté très graveleux. très molle .gris sombre

La profondeur (7.00-9.00) m: M. molle. Grise. Sombre.

La profondeur (9.00-15.0) m: M. limoneuse .molle à très molle. Organique. Gris sombre.

La profondeur (15.0-16.7) m: M. vaseuse. grise

La profondeur (16.7-20.0) m: M. molle .organique grise noirâtre

La profondeur (20.0-22.6) m: marne vaseuse. Grise. Noirâtre

La profondeur (22.6-24.0) m: : marne molle. Grise. Noirâtre

Le profondeur (24.0-27.0) m: tourbe carbonaté. Noire

Présence d'une nappe : Non Profondeur de la nappe/surface :

Sondage 05

Nombre de couches formant le terrain : 08

Description sommaire successive des couches (A: argile, S: sable, L: limon, M: marne, Sd: Grès, Autre matériau: Nom complet, symboles à combiner s'il y'a mélange)

La profondeur (0.00-1.00) m: S. très fin .carbonaté. gris clair

La profondeur (1.0-3.500) m: L. carbonaté. Compact marron grisâtre

La profondeur (3.50-4.50) m: S. et gravier carbonaté. grisâtre

La profondeur (4.50-6.00) m: S. et gravier

La profondeur (6.00-7.00) m: A. carbonatée

La profondeur (7.00-24.0) m: M. molle. Grise. noirâtre

Le profondeur (24.0-27.7) m: tourbe carbonaté noire

Le profondeur (27.7-29.0) m: M. vaseuse. Organique Grise. Noirâtre

Le profondeur (29.0-35.0) m: tourbe carbonaté noire

Présence d'une nappe : Non Profondeur de la nappe/surface :

Sondage 06

Nombre de couches formant le terrain : 05

Description sommaire successive des couches (A: argile, S: sable, L: limon, M: marne, Sd: Grès, Autre matériau: Nom complet, symboles à combiner s'il y'a mélange)

La profondeur (0.00-2.00) m: remblai

La profondeur (2.00-4.00) m: S. et gravier carbonaté. Grisâtre

La profondeur (4.00-11.0) m: S. fin .légèrement argileux .carbonaté. Marron grisâtre

La profondeur (11.0-11.8) m: cailloux bloc grisâtre

La profondeur (11.8-15.0) m: M. avec concrétions calcaire. Peu compacte. Grise

La profondeur (15.0-19.5) m: L. marneux.mou à très mou. grisâtre

La profondeur (19.5-20.0) m: A. Carbonatée vaseuse Grise

La profondeur (20.0-25.0) m: M. limoneuse très molle. Grise

Présence d'une nappe : Non Profondeur de la nappe/surface :

4. ESSAIS DE LABORATOIRE :

Z (m)	10-10.4	12.6-13.0	18-18.5	21.1-21.7	24.15-24.7	27.2-27.5	28.20-28.50	32.00-32.50	40.50-41.00
descrip ⁿ de l'échant ⁿ	Marne	Marne	Marne	Marne	Marne	Marne	Marne	Marne	Marne
	1.58	1.39	1.28	1.25	1.20	1.23	1.24	1.31	1.59
γ _{d(t/m3)}	1.99	1.87	1.79	1.73	1.72	1.75	1.78	1.81	2.01
γ _{h(t/m3)} ω %	26.4	34.4	39.8	39	44	42	35	38.3	26.5
S _r %	100	100	97	91	95	95	82	97	100
$\gamma_{\rm s}$	100	100	<i></i>	71	75	75	02		100
%T 80 μ	90	90	90	90	90	90	90	90	90
D_{60}									
D_{10}									
D_{30}									
ω ₁ %	42.7	61.0	51.2	62.8	66	56	59	65	76.1
ω _p %	26.9	32.8	28.5	33.7	34.3	28.9	33.1	31.6	34.3
Ip %	15.8	28.2	22.7	29.1	31.7	27.1	25.9	33.4	41.7
Symb.									
σ_{c} (bar)	1.70	0.850	0.280	0.575	0.370	0.240	0.550	1.050	0.850
OCR									
C_{c}	0.202	0.242	0.200	0.255	0.313	0.212	0.200	0.240	0.200
C_{g}	0.030	0.123	0.030	0.077	0.073	0.035	0.043	0.075	0.188
ϕ°									
C' (kPa)									
$\phi_{\mathrm{u}}^{\circ}$	20	19	23	9	14		11	14	11
C _u (kPa)	5.0	2.5	1.0	3.50	1.0		3.5	4.5	03
R _c (kPa)									
α _{cu} (kPa)									
$eta_{ m cu}$									

Z (m)	8.00-8.30	18.10-18.70	23.4-24.00	27.20-27.40	31.00-31.30	34.00-34.50	36.4-40.60
descrip ⁿ de l'échant ⁿ	Marne	Marne	Marne	Marne	Marne	Marne	Marne
	At	At	Lt	At	At	Lt	Lt
$\gamma_{d(t/m3)}$	1.58	1.29	1.15	1.25	1.31	1.35	1.29
$\gamma_{h(t/m3)}$	2.00	1.79	1.67	1.76	1.78	1.82	1.75
ω %	26.1	38.9	44.9	41.2	36.15	35.6	36.7
S _r %	99	96	90	96	92	96	91
γs							
%T 80 μ	90	90	90	90	90	90	90
D_{60}							
D_{10}							
D_{30}							
$\omega_{l}\%$	53.9	74.5	72	62.5	80.8	71.3	64.9
ω _p %	28.6	34.5	36.8	32.4	34.9	34.7	33
Ip %	25.3	40	35.2	30.1	45.9	36.6	31.9
Symb.							
σ_{c} (bar)	1.10	0.330	0.650	0.200	1.300	2.00	0.650
OCR							
C_{c}	0.168	0.197	0.403	0.240	0.259	0.314	0.280
C_{g}	0.084	0.081	0.123	0.081	0.082	0.074	0.039
φ°							
C' (kPa)							
φu°	20				20	13	
C _u (kPa)	03				02	04	
R _c (kPa)							
α _{cu} (kPa)							
β_{cu}							

Z (m)	17.20-17.80	19.00-19.20	21.15-21.60	23.30-24.00	28.00-28.60	30.10-30.40	40.00-40.30	47.00-47.40
descrip ⁿ de l'échant ⁿ	Marne							
$\gamma_{d(t/m3)}$	1.43	1.32	1.26	1.27	1.19	1.125	1.67	1.10
γh(t/m3)	1.89	1.81	1.79	1.77	1.72	1.66	1.98	1.65
ω %	31.6	36.85	41.65	39.35	44.4	47.73	18.65	48.80
S _r %	96	96	98	94	94	92	81	91
$\gamma_{s t/m3}$	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65
%T 80 μ	90	90	90	90	90	90	90	90
D ₆₀								
D_{10}								
D_{30}								
$\omega_{ m l}\%$	57.4	73.5	55.1	71	64.4	78	60.1	63.2
ω _p %	26.6	38.5	27.3	33.5	31.7	36.9	30.3	32.8
Ip %	30.8	35	27.8	37.5	32.7			
Symb.								
σ_{c} (bar)	1.90	0.575	0.250	1.10	0.725	0.550	1.950	0.450
OCR								
C _c								
C_{g}								
φ°								
C' (kPa)	22		10	1.5				10
$\varphi_{\rm u}^{\circ}$	22		19	15				12
$\frac{C_{u} (kPa)}{R_{c}(kPa)}$	01		01	01				04
$\alpha_{cu}(kPa)$								
eta_{cu}								

Z (m)	5.00-5.70	13.5-13.80	17.4-17.8
descrip ⁿ de l'échant ⁿ	Marne	Marne humide	Marne
γd (t/m3)	1.49	1.29	1.22
γh(t/m3)	1.93	1.79	1.71
ω %	29.15	38.7	40.4
S _r %	96.5	96	90
γs(t/m3)	2.65	2.65	2.65
%T 80 μ	90	90	90
D_{60}			
D_{10}			
D_{30}			
ω _l %	64	48.5	75
ω _p %	30	26.9	37.2
Ip %	34	21.6	37.8
Symb.			
$\sigma_{\rm c}$ (bar)	0.625	0.380	0.390
OCR			
C _c C _g	0.143	0.236	0.265
C_{g}	0.073	0.045	0.077
φ°			
C' (kPa)			
$\varphi_{\mathrm{u}}^{\circ}$	21		
C _u (kPa)	01		
R _c (kPa)			
$\alpha_{cu}(kPa)$			
$eta_{ m cu}$			

Z (m)	8.20-8.50	13.20-13.70	14.30-14.70	18.20-18.60	23.60-23.80	26.40-26.70	34.3-34.70
descrip ⁿ de l'échant ⁿ	Marne	Marne	Marne	Marne	Marne	Marne	Marne
	1.02	1.10	1.06	1.00	1.15	1.105	1.05
$\gamma_{d(t/m3)}$	1.93	1.18	1.06	1.22	1.17	1.125	1.05
$\gamma_{h(t/m3)}$	1.78	1.725	1.61	1.76	1.69	1.64	1.615
ω %	40.45	45.95	52.35	43.3	44.1	46.20	53.80
S _r %	93.5	96.5	91	96	91	88.5	
$\gamma_{s(t/m3)}$	2.65	2.65	2.65	2.65	2.65	2.65	2.65
%T 80 μ	90	90	90	90	90	90	90
D ₆₀							
D_{10}							
D_{30}	73	61.8	74.0	61.2	78.0	73	69.1
ω _p %	39.9	33.2	38.5	30.40	34.6	35	35.2
Ip %	33.1	28.6	35.5	30.8	43.4	38	33.9
Symb.							
σ _c (bar)		0.360	0.55		1.050	1.100	0.525
OCR							
C _c		0.278	0.370		0.453	0.425	0.377
C_{g}		0.075	0.136		0.226	0.163	0.081
φ°							
C' (kPa)							
$\varphi_{\mathrm{u}}^{\circ}$	11	19	06	16		13	17
C _u (kPa)	3.5	01	02	04		04	05
R _c (kPa)							
$\alpha_{cu}(kPa)$							
β_{cu}							

5. ESSAIS IN-SITU:

Z (m)

5.1. Essai pressiométrique :

01

Nombre de sondages pressiométriques : 05 Outil de sondage pressiométrique :.....

02

Sondage N°:01 Sondage carotté ou puits le plus proche N°:........

Pl (kPa)	700	750	800	900					
Em(MPa)	7900	7700	6700	6600					
		Sondag	e N°:02 Sondage	e carotté ou puit le p	olus proche N	J°:	 		

Z (m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
Pl (kPa)	700	700	1500	1500	1500	1400	1000	800	700	600	500	400	500	700	700	400	300	500	700	600
Em(MPa)	6800	9200	15500	29800	29800	29800	29800	29800	29800	29800	6800	2900	3700	3000	3700	2900	1100	4200	8700	4300

Sondage N°:03 Sondage carotté ou puit le plus proche N°:.....

Z (m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
Pl (kPa)	800	400	600	700	1300	1400	800	600	500	400	400	400	350	600	600
Em(MPa)	16700	9900	5700	5400	14900	25400	5700	2900	2000	2000	2700	2100	4600	3000	2500

Z (m)	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Pl (kPa)	600	600	500	500	600	350	350	600	600	600	600	600	500	400	800
Em(MPa)	3700	3700	5500	5100	4700	2600	2600	4500	4500	4500	4500	4500	3700	3000	6000

Z (m)	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Pl (kPa)	500	700	800	800	900	500	600	800	800	3600	3600	3600	3600	3600	3600
Em(MPa)	3700	5200	6000	6000	6700	3700	4500	6000	6000	27000	27000	27000	27000	27000	27000

Sondage N°:04 Sondage carotté ou puit le plus proche N°:.....

Z (m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
Pl (kPa)	700	300	300	350	500	700	400	600	600	400	500	550	600	700	600
Em(MPa)	5000	3000	1400	1700	1800	5000	2200	3100	4000	2000	3000	5000	5200	5300	3100

Sondage N°:05 Sondage carotté ou puit le plus proche N°:.....

Z (m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16
Pl (kPa)	600	1500	900	300	200	200	200	290	350	350	500	450	350	470	470	600
Em(MPa)	4500	29500	9900	4500	2400	2000	800	2000	2500	2900	3400	2400	2600	3100	3800	8900

5.2. Essai de pénétration statique CPT:

Nombre de sondages pénétrométriques : 12

Caractéristiques de l'appareil pénétrométrique : Modèle : gouda 200 KN Effort max : Vitesse : Section du cône : cm²

Sondage N°:01 Sondage carotté ou puits le plus proche N°:......

Z(m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
qc (bar)	29,79	31,18	51,75	73,66	65,82	35,71	7,93	6,91	6,13	9,84	9,98	15,8	11,25	13,96	12,1933	16,2348	7,14	5,95	6,17	7,14
·-																				
Z (m)	21	22	23	24	25		27	28	29	30	31	32	33	34	35	36	37	38	39	40

Sondage N°:02 Sondage carotté ou puit le plus proche N°:.....

Z (m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
qc	42,61	50,69	50,05	48,49	52,41	62,90	31,45	53,81	6,08	6,10	9,94	13,78	11,89	17,40	12,93	9,88	7,66	7,85	9,94	9,80
(bar)																				

Z(m)	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
qc (bar)	10,07	10,67	10,85	13,70	12,64	12,07	13,8	8,53	2,81	13,96	21,38	22,14	16,84	23,84	20,36	21,80	18,32	25,32	23,76	33,75

Sondage N°:03 Sondage carotté ou puit le plus proche N°:.....

Z (m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17
qc (bar)	39,59	39,60	41,36	51,66	69,27	66,41	14,89	12,75	14,17	15,84	13,86	13,62	10,07	6,51	6,36	6,29	6,38

Z(m)	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
qc (bar)	6,57	7,00	12,16	12,18	19,00	11,88	9,98	13,07	14,83	15,17	14,27	22,42	20,53	27,93	14,24	16,08	22,15	22,15	22,15	22,15

					So	ndage 1	N°:04 S	Sondage	e carott	é ou pu	it le pl	us proc	he N°:								
Z (m)	01 02	2 (03	04	05	06	07	08	09	10	11	12	13	14	15	16	17		18	19	20
qc (bar)	33,26 2	6,09	16,93	7,60	39,63	13,69	9 14,16	14,70	13,93	14,15	11,38	5,95	9,58	10,13	7,61	12,8	1 10,	,87	13,83	10,90	12,78
		•			•			•	•		•	•			•	•	•				
Z(m)	21	22	23	2	24	25	26	27	28	29	3	30									
qc (bar)	13,96	10,14	10,9	7 1	4,63	16,05	13,90	17,72	17,3	31 22,	96 1	8,73									
		•			Sc	ndage	N°:05 S	Sondage	carotte	ou pu	it le pl	ıs proc	he N°:								
Z (m)	01 02	2 ()3	04	05	06	07	08	09	10	11	12	13	14	15	16	17	1	18	19	20
qc (bar)	35,93 45	5,60	52,34	79,57	31,6	3 6,13	21,79	13,41	14,27	13,79	10,74	4,37	7,30	7,16	9,18	9,04	13,	,06 8	8,01	10,20	12,30
	(m) 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35																				
Z (m)																					
qc (bar)	12,7317	7 10,5	58 13,	,67 9	,94 9	,87 14	1,70 12	,97 15	,56 20,	14 15	,25 15	,85 14	,69 1:	5,29 1	6,13 2	21,55					
	Sondage N°:06 Sondage carotté ou puit le plus proche N°:																				
Z (m)	01 ()2	03	04	05	06	07	08	09	10	11	12	13	14	15	5 1	6	17	18	19	20
qc (bar)	33,43	27,56	77,61	67,5	9 71,	20 74,	56 51,5	58 35,6	56 56,7	9 43,6	2 48,	88 59,	63 20,	,29 19	,90 17	7,77 1	9,97	15,6	58 8,9	9,9	3 12,04
													-						·		
Z(m)	21	22	2 2	23	24	25	26	27	28	29	30	31	32	33	34	35	36				
qc (bar)	11,57	12.	,01 13	3,61	13,55	14,40	15,17	15,69	11,47	18,39	21,74	20,92	17,62	23,54	21,65	5 21,8	34 22	2,281	3		
			•		So	ndage l	N°:07 S	Sondage	e carotte	é ou pu	it le pl	us proc	he N°:			•	•				
Z(m)	01	02	03	04			06 0							13	14	15	10	6	17	18	19 20
qc (bar)	59,91	77,4	0 65,4	45 57	7,56 4	6,39 3	34,65 2	1,99 1	8,46 13	3,34 30	0,60 2	6,82 1	6,07	17,616	5 13,8	34 13,	88 8	,86	7,99	6,29	9,99 8,05
	•		•	•		•			•	•	•		•		•	•	•	•			
Z(m)	21 2	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	5	37	38	39	40
qc (bar)	9,96 1	0,61	10,27	12,67	7 12,0	0 15,7	3 13,8	1 10,6	5 14,29	9 13,12	2 16,1	9 15,8	5 16,	50 13,	92 21	,72 20	0,47	19,88	8 25,	85 25,	85 25,85
	•	•			Son	ndage N	√°:08	Sondag	e carott	é ou pu	it le pl	us proc	che N°			•					
						-		C		•	•	-									
Z(m)	01	02	03	04	4 0	05 0	06 0	7 0	8 09) 10) 1	1 12	2 13	3 14	15	5 1	6	17	18	19	20
qc (bar)	13,11	15,8	6 23,	01 37	7,37 1	4,32 1	7,65 1	5,68 1	0,30 1	7,61 1	1,98 6	,19 6.	,20 6,	,38 8,	96 6,	24 6	,58	8,09	7,8	35 10,	10 10,20
	•			•	•		•	•	•	•	•	•		•		•					•
Z(m)	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	5					
_ ()		<u> </u>																			

Sondage N°:09 Sondage carotté ou puit le plus proche N°:.....

Z (m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
qc (bar)	23,93	18,13	13,06	15,23	13,74	13,42	15,67	22,66	15,11	13,12	13,80	6,33	10,16	10,50	9,92	12,42	12,42	14,10	12,12	12,29
Z (m)	21	22	23	24	25	26	27	28	29	30	31	32	33	34						
qc (bar)	14,62	13,9	95 4,15	17,52	2 18,10	20,7	8,47	17,03	23,67	22,01	20,18	22,10	25,42	2 64.88	3					

Sondage N°:10 Sondage carotté ou puit le plus proche N°:.....

Z(m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19 20	
qc (bar)	27,76	31,52	38,28	47,03	55,11	65,52	73,69	73,72	48,25	17,72	12,85	15,98	20,00	14,96	8,93	8,13	6,33	10,10	8,13 8,	13
<u> </u>								•					•				•		,	
Z(m)	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Z (m) qc (bar)	8,73	22 10,01	23 10,12		25 13,82	_	21		_	30 17,98	_	_	33 23,71			36 22,63	37 11,63	38 25,60		

Z(m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
qc (bar)	39,67	42,73	40,22	39,45	38,19	37,51	36,41	34,49	12,47	9,96	4,79	14,91	19,79	15,87	12,20	10,52	13,66	6,09	7,90	9,96

Z(m)	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
qc (bar)	9,85167	11,05	10,10	11,55	12,84	11,71	13,92	12,04	9,84	13,63	14,83	23,77	13,09	17,78	13,67	17,95	14,59	17,78	20,90	17,29

Sondage N°:12 Sondage carotté ou puit le plus proche N°:........

Z (m)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20
qc (bar)	21,74	26,29	45,05	62,31	65,70	43,85	21,58	26,14	11,84	13,82	12,81	15,95	20,01	13,02	9,85	6,02	5,51	4,92	6,23	

Z(m)	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
qc (bar)	10,02	11,49	11,79	10,02	10,82	10,37	13,50	9,48	17,85	14,58	20,28	14,85	17,07	23,93	16,92	14,15	13,87	21,57	22,21	22,21

Annexe 2:

Fiche synthétique d'une étude géotechnique pour le projet T05 Gué de Constantine

code	localisation des	Etude	date de	Nature des sols	Type d'essai in-
code	ouvrages	fait par :	l'étude	rvature des sois	situ
Т01	1000 logements à HERAOUA AIN TAYA ALGER	LNHC	27/08 2008	13 sondages carottés Le terrain forme de 2 couches, Argile dans les premier 10 mètres et marne jusqu'à 25 m	07 essais de PMT
Т02	ADL HERAOUA AIN TAYA ALGER	/	/	/	/
Т03	OA-49 2 ^{eme} rocade- KHEMIS EL KHECHNA ALGER	LCTP	05/05 2008	01 sondage carotté —— Le terrain constitue des alluvions à 9m et marne jusqu'à 50m	/
Т04	station de dessalement d'eau GHAZAOUAT- TELEMCEN	/	/	/	/
T05	0A 0/1 Ligne 08 GUE DE CONSTANTINE (Oued-Smar) ALGER	LNHC	09/10 1991	06 sondages carottés Le terrain constitue des différent couches sable de (0-15)m Limon marneux (15-23)m Suite de marne jusqu'à 50m	06 essais de PMT —— 12 essais de CPT
Т06	OA 3-2 Radiale oued- Ouchayeh ALGER	LNTPB	Juillet 1981	03 sondages carottés Le terrain constitue des différent couches argile de (0-9)m Sable de (15-23)m Suite de marne jusqu'à 27.5m	04 essais de CPT

Т07	Centre commercial el- qodsCHERAGA ALGER Usine des métaux	LCTP	29/09 2001	08 sondages carottés Le terrain forme de 2 couches principal : Argile sableuse de (0-1.9) et marne argileux limoneuse jusqu'à 25.5	10 essais de CPT
Т08	précieux BARAKI ALGER	AGENOR BARAKI	Octobre 1993	/	/
Т09	500 Logements BAB EZZOUAR ALGER	LNHC	Juillet 2002	06 sondages carottés ——— Le terrain forme d'un seul couche de argile entre brune, carbonaté et sableux	11 essais de PMT 14 essais de CPT
T10	282 Logements Thenia pieu 01 BOUMERDES	/	/	/	/
T11	282 Logements Thenia-pieu 02 BOUMERDES	/	/	/	/
T12	282 Logements Thenia-pieu 03 BOUMERDES	/	/	/	/
T13	Nouvelle Aérogare H.B PIEU 01 ALGER	LNHC	1989	Le site constitue de Sols fin argileuse	04 essais de PMT
T14	Nouvelle Aérogare H.B PIEU 02 ALGER	LNHC	1989	Le site est constitué de Sols fin argileuse	04 essais de CPT

T15	Acces a la nouvelle aérogare - (Ouvrage de franchissement) DAR BEIDA ALGER	LCTP	Septembre 2005	02 sondages carottés Le site est constitué d'un remblai de 3 m suite d'une couche d'argile jusqu'à 16.5 m et couche marneuse jusqu'a 35m	/
T16	Nouvelle aerogareH.B (Centre des essais moteurs d'avions) ALGER	LNHC	1989	Le site constitue de Sols fin argileuse	04 essais de CPT
T17	Nouvelle aerogareh.b (Salon d'honneur) ALGER	LCTP	Septembre 2004	04 sondages carottés Le train forme d'une couche argileuse jusqu'à 8 m après d'autre couche de marne jusqu'à a 25 m La nappe présente a profondeur : 1.4m	03 essais de PMT
T18	Imprimerie officielle BIR KHADEM ALGER	/	2009	/	/
T19	Centre commercial international El-Hamma– PIEU 01 ALGER	LCTP	/	/	/
T20	Centre commercial international El-Hamma – PIEU 02 ALGER	LCTP	/	/	/

T21	Centre commercial international EL-HAMMA – PIEU 03 ALGER	LCTP	/	/	/
T22	Centre commercial international EL-HAMMA – PIEU 04 ALGER	LCTP	/	/	/
T23	OA 4/2 – BOUFARIK BLIDA	LTPC	11/11 1986	01 sondage carotté	/
T24	OA 4/2 – BOUFARIK (CULEE SUD) Route Nationale RN-1- BLIDA	LTPC	04/02 1989	Le site est formé d'une seule couche d'argile au- dessus d'un remblai de 2 m la nappe présente à profondeur de 3 m	/
T25	Centre naftal – el- khroub CONSTANTINE 2005	/	Janvier 2006	/	/
T26	OA 8/1 RADIALE OUED OUCHAYEH (Baraki) ALGER	/	1990	/	/
T27	OA 8/1 RADIALE OUED OUCHAYEH (Oued El-Harrach) ALGER	/	1991	/	/

	Control				
T28	Centrale a				
128	turbine de gaz				
	PIEU φ1000 RELIZANE				
	Centrale a				
				10 sondages carottés	
T29	tribune de gaz	CTE			00 : 1 DV
	PIEU 01	CTE	AOUT	Le train forme de 3	08 essais de PMT
	RELIZANE	GEOMIC A	2007	couches, argile limoneux	10 essais de SPT
	Centrale à	A		dans les 5-6 premiers mètres ensuite argile	10 essais de SP1
T30	tribune de gaz			marneux et après 20 mètres	
	PIEU 30			ont vu la couche limoneux	
	RELIZANE			ont va la codene innoneda	
	Centrale a				
T31	tribune de gaz				
	PIEU φ1000				
	RELIZANE				
	O.A 1/2 OUED				
T32	MAZAFRAN				
	PIEU 05				
	ALGER	/	/	/	/
	O.A 1/2 OUED				
T33	MAZAFRAN				
	PIEU 04				
	ALGER			02 sondages carottés	
	Annexe	LCTP		02 solidages calolles	
T34	bibliothèque	antenne	15/05	Le site est constitué des	,
154	nationale	TiziOuzo	2007	couches argileux et	,
	TIZI OUZOU	u		marneux	
				05 sondages carottés	
	Centrale				
	thermique Jijel		400 -	Le site est constitué 2	4 essais de CPT
T35	(Pieu C-13)	LTPC	1986	couches, sable et argile	
	JIJEL			jusqu'à 27m suppose sur	03 Essais de DPT
				couche de marne	
		l			

Т36	Autoroute Est- Ouest OA- PK 273.3	CEBTP SOLEN	mai 2008	02 sondages carottés Le terrain forme 3couches de (0-1.5)m: limon brun clair (1.5-8) m : sable fin (8-35) m : argile bleu grisâtre peu sableuse	1 essai de PMT
T37	Autoroute Est- Ouest OA-PK 290.9 TP	/	2009	/	1
Т38	Usine d'amm- oniacorascom Pieu 1-Arzew ALGER	/	2009	/	/
T39	Usine d'amm- oniacorascom Pieu - Arzew ALGER	/	2009	/	/
T40	Stade olympique Baraki Pieu EP06 (zone-1) ALGER	LCTP	10/09/200	17 sondages carottés ——— Le site est constitué des couches argile jusqu'à 6m	20 essais CPT
T41	Stade olympique Baraki Pieu EP07 (zone-1) ALGER		9	et marne de (9-54)m entre eux une couche vase grisâtre	
T42	Stade olympique Baraki Pieu EP03 (zone-3) ALGER	LCTP	10/09 2009	08 sondages carottés Le site forme de : Argile marneuse (0-5.5)m Vase plastique (5.5- 13.5)m Tourbe noirâtre (13.5 – 19)m argile sableux suite de couche marneuse (28-65)m	11 essais de CPT

T43	309 logements Dar El-Beida ALGER	/	1995	/	/
T44	O.A 9/1 Radiale Oued- Ouchayeh Tranche4-ALGER	/	1988	/	/
T45	O.A 17/1 (RN-5) Autoroute de l'est	/	1985	/	/
T46	O.A 19/1 (Culée nord - CW- 11) Autoroute de l'est		1985	/	/
T47	O.A 19/2 (Culée sud) Autoroute de l'est	/	1985	/	/
T48	Viaduc d'Oued Ouchayeh Autoroute de l'est	/	1983	/	/
T49	Parking- Restaurant Sonatrach Hydra 2006 ALGER	/	/	/	/
T50	O.A 10/3 Prise d'eau Gué de Constantine ALGER	/	1984	/	/

T51	Hangar portuaire ONAB Port d'Alger	/	1990	/	/
T52	Aménagement de la Place 1 ^{er} mai - ALGER	/	1989	/	/
T53	Viaduc Oued Rhumel-Pieu 15 MILLA	/	1997	/	/
T54	O.A 10/1-10/3 Pont sur Oued El- Harrach ALGER	/	1980	/	/
T55	Hotel Ibis BAB EZZOUAR ALGER	LCTP	14/01 2007	01 sondage carotté Le site est constitué par remblai de 0.5m suite 2 couche argile, marno-graveleuse de 4.5m. Et Couche marneuse de 10 à 35m	05 essais de CPT
T56	Bâtiment ADL 1274 logements à DRARIA ALGER	LNHC	17/04 2011	02 sondages carottés Le site forme de 3 couche un remblai de 1.5m et couche argile limoneuse beige jusqu'à 14m suite une couche marne limoneuse grise a bleuâtre finis a 20m	02 essais de PMT 19 essais de DPT