الجمهوريةالجزائريةالديمقر اطيةالشعبية République Algérienne démocratique et populaire

وزار دَالتَعليمال عساليوالبحـثالعـلمـي Ministère de l'enseignement supérieur et de la recherche scientifique

> جامعةسعددحلبالبليدة Université SAAD DAHLAB de BLIDA

> > كليةالتكفولوجيا Faculté de Technologie

قسمالإلكترونيك Département d'Électronique

Mémoire de Master

Filière ELECTRONIQUE Spécialité ELECTRONIQUE DES SYSTEMESEMBARQUES

> présenté par ELGHRIBI Bilel & BAZERIA Abdelhak

ETUDE COMPARATIVE ENTRE LES STRUCTURES A PUITS QUANTIQUES

GaAsP/GaPETGaNAsP/GaP

Proposé par:

Professeur Aissat Abdelkader

Co-promotrice :

M^{me}. Chenini Lynda

Président :

Mr. Nacer S.

Examinateur :

Mme. Zerrouk D.

Année Universitaire 2018-2019

ملخص

يتكون هذا العمل من دراسة مقارنة لهياكل بئر الكمونGaAsP/GaP و GaAsP/GaP من خلال نمذجة الهيكلين. لقد درسنا أولاً تأثير إدخال الزرنيخ في أنصافالنواقل الثلاثية GaAsP وخصائصها الإلكترونية الضوئية ، ثم درسنا تأثير إدخال نسبة قليلة من النيتروجين في الأخير. في الواقع ، يؤدي دمج نسبة نيتروجينية منخفضة إلى انفجار نطاق التوصيل إلى نطاقين فرعيين. تحت تأثير هذا الإدماج ، سيكون هناك انخفاض في الشريط الممنوع. درسنا أيضا تأثير الإجهاد و حسبنا طول موجة الانبعاث كدالة لعرض البئر والتراكيب x (الزرنيخ) و y (النيتروجين). كلا الهيكلين يتيحان لنا تطبيقات في مجال الأشعة تحت الحمراء القريبة.

<u>Résumé</u>

Ce travail consiste en une étude comparative des deux structuresà puits quantiques GaAsP/GaP et GaNAsP/GaP et cela en modélisant les deux structures. Nous avons étudié d'abordl'effet de l'introduction de l'arsenicdans l'alliage ternaire GaAsP et ses propriétés optoélectroniques, puis nous avons étudiél'effet de l'introduction de quelques pour cent de l'azote dans cette dernière. En effet, l'incorporation d'une faible composition d'azote provoque l'éclatement de la bande de conduction en deux sousbandes. Sous l'effet de cet éclatement, il va y avoir une réduction de la bande interdite. Nous avons également étudiél'effet de la contrainte sur la structure de bande. Nous avons calculé la la largeur longueur d'onde d'émission en fonction de du puits et des compositions x (l'arsenic) et y (l'azote). Les deux structures nous permettent d'avoir des applications dans le domaine de l'infrarouge proche.

<u>Summary</u>

This work consists on a comparative study of the two GaAsP/GaP and GaNAsP/GaP quantum well structures by modeling the two structures. We first studied the effect of the introduction of arsenic into the GaAsP ternary alloy and its optoelectronic properties and then we studied the effect of introducing a few percent of the nitrogen into the latter structure. Indeed, the incorporation of a low nitrogen composition causes the splitting of the conduction band in two sub-bands. Under the effect of this splitting, there will be a reduction in the band gap. We also studied the effect of strain on the band structure. We calculated the emission wavelength as a function of well width and compositions x (arsenic) and y (nitrogen). Both structures allow us to have applications in the near infrared domain.

DEDICACE

Cest avec une immense fierté que je dédie ce modeste travail de fin d'étude :

A mes très chers parents Abderezak et Latifa pour leurs efforts et les sacrifices qu'ils m'ont prodigué, et surtout pour les profonds sentiments qui m'ont encouragé tout le long de mes études, qu'ils trouvent ici le témoignage de ma profonde gratitude.

A mes très chers frères.

A mes deux chères sœurs.

A toutes les familles : BAZERIA et KAIBICHE.

A mon très cher ami et mon binôme Bilel et toute la famille EL-GHRIBI.

Pour tous les gens qui m'ont accompagné durant cette année universitaire et les années précédentes.

A chaque personne qui m'a aidé de près ou de loin dans la réalisation de ce travail.

A mes amis, qui ont des cœurs remplis d'amour et d'amitié : Mohamed Redha, TayebSarray, AbderrahmanaeArab, Hichem Aoufi et les twins Lotfi et Nabil.

A tous mes amis d'El-Houma avec qui je partage toute ma vie.

Abdelhak

Dédicas

Je dédie ce travail à mes très chers parents, grâce à leurs soutiens indéfectibles, ce travail a pu avoir le jour, car ils ne cessent de me donner l'amour nécessaire pour que je puisse arriver à ce que je suis aujourd'hui·

A mes adorables sœurs……

A toute ma famille et tous mes amis.

A tous ceux qui m'ont aidé de près ou de loin pour réaliser ce travail·

Que Dieu vous protège et que la réussite soit toujours à ma portée pour que je puisse vous combler de bonheur.

REMERCIMENT

Toutefois, il parait difficile de remercier en seulement quelques lignes et comme nous le voudrions toutes les personnes qui, de près ou de loin, ont contribué à la réalisation de cette thèse car une thèse n'est pas l'histoire d'une seule personne.

Cette thèse nous a permis de nous enrichir aux plans scientifiques et techniques et également au plan humain. Sur tous ces aspects, nous nous devons remercier tous ceux qui ont contribué à ce que nous parvenons au bout de ce manuscrit.

Nos vifs remerciements au Professeur Mr. Aissat Abdelkader pour sa qualité de promoteur de thèse, pour sa disponibilité, et aussi pour m'avoir fait bénéficier de ses compétences scientifiques.

Il n'est pas facile d'exprimer toute nos gratitudes à MadameChenini Lynda qui a dirigé ce travail. Sa disponibilité permanente et son aideont été d'un soutien dont nous lui sommes particulièrement reconnaissants. Sa compétence et sesconseils avisés nous ont été d'un grand secours.

Nous remercions chaleureusement Monsieur NACER S. de l'université de Blida d'avoir accepté de présider le jury et de nous honorer de sa présence.

Nous sommes très reconnaissants au Madame ZERROUK D. d'avoir accepté d'examiner ce travail et de nous faire l'honneur de participer au jury.

Nous remercions les enseignants du département de l'électronique pour leurs soutiens, pour leurs conseils et leurs compétences et le professionnalisme dans le domaine scientifique Un grand merci à nos parent.

Un merci pour tous les gens que nous ne pouvons pas citer, tout le monde sans exception, à l'université ou ailleurs, à tout ceuxqui nous ontaidés, par un sourire, par un encouragement, par une information, tout le monde avaitconfiance en nous et ceci nous a donné de l'énergie pour nous assumer et aboutir.

Nous adressons nos remerciements les plus sincères à tous nos collègues et amis.

Sommaire

Remerciem	ents							
Dédicaces								
Résumé								
Table des matières								
Liste des tableaux								
Liste des fig	ures							
Introduction	n Génér	ale					1	
	СНАР	PITRE I :L	es matéria	aux semi-condu	icteurs			
I.1 Introduc	tion						4	
I.2 Notions	fondam	entale					4	
ا 1.2.1 ا	.'énergi	ie d'un él	lectron				4	
1.2.2	Fableau	périodio	que				6	
I. 3 Premièr	es zone	s de Brill	louin				7	
Ι.	3.	1	Les	points	de	haute	7	
symétrie		•••••						
Ι.	3.	2	Les	lignes	de	haute	7	
symétrie								
I. 4 Semi-co	nducte	urs III-V .					8	
I. 4. 1	Définit	ion					8	
Ι.		4.	2	Les	C	omposés	9	
binaires								
١.	4.	3	Les	composés	ternaires	et	10	
quaternaire	s							
1.5	Ca	ractéristi	iques	structu	urelles	:	11	
		•••••						
l.		5.	1	Les	S	systèmes	11	
cristallins								

	١.	5.		3	Les	hété	ro- 12	
stru	ctures							
I.	6 La masse							
effe	ctive							
	I.	6.	1	Masse	effecti	ve o	des 14	
élect	trons							
	I.	6.	2	Masse	effecti	ve o	des 14	
trou	S							
Ι.		7		L'é	nergie		de 14	
gap	••••••							
	I. 7. 2	1 Semi-cond	ucteur	à gap direct			14	
	I.	7.	2	Semi-con	ducteur	à g	gap 15	
indir	ect							
l.	<i>.</i>			8			La 17	
tem	peratu	re						
	_		_		× // ·			
I.	9	Déterminat	ion	des param	ètres (loi	de Véga	rd) 20	
I. 	9	Déterminat	ion	des param	ètres (loi	de Véga	rd) 20	
I. I.	9 rainte	Déterminat	ion	des param 10	ètres (loi	de Véga	rd) 20 La 20	
I. I. cont	9 rainte	Déterminat	ion	des param 10	nètres (loi	de Véga	rd) 20 La 20	
I. I. cont	9 rainte I.	Déterminat	ion 10.1	des param 10 Co	ètres (loi ompression	de Véga	rd) 20 La 20 et 20	
I. I. cont tens	9 rainte I. ion	Déterminat	ion 	des param 10 Co	ètres (loi ompression	de Véga	rd) 20 La 20 et 20	
I. I. cont tens	9 rainte I. ion I. 10.	Déterminat	ion 10.1 critiqu	des param 10 Co e	ètres (loi ompression	de Véga 	rd) 20 La 20 et 20 23	
I. I. cont tens I. 11	9 rainte I. ion I. 10. Puits o	Déterminat	ion 10.1 critiqu	des param 10 Co e	nètres (loi ompression	de Véga	rd) 20 La 20 et 20 23 25	
I. I. cont tens I. 11	9 rainte I. ion I. 10. Puits o I. 11.	Déterminat 	ion 10.1 critiqu	des param 10 Co e	ètres (loi ompression	de Véga	rd) 20 La 20 et 20 23 25 25	
I. I. cont tens I. 11	9 rainte I. ion I. 10. Puits o I. 11. I. 11.	Déterminat 	ion 10.1 critiqu 	des param 10 Co e	bètres (loi	de Véga	rd) 20 La 20 et 20 23 25 25 27	
I. I. cont tens I. 11	9 rainte I. ion I. 10. Puits o I. 11. I. 11. I. 11.	Déterminat 	ion 10.1 critiqu confine Puits C	des param 10 Co e ements Quantiques	nètres (loi	de Véga	rd) 20 La 20 et 20 23 25 27 28	
I. I. cont tens I. 11	9 rainte I. ion I. 10. Puits o I. 11. I. 11. I. 11.	Déterminat Déterminat 2 Épaisseur quantique 1 Définition 2 Types de c 3 Les Multi- 4. Énergie de	ion 10.1 critiqu confine Puits C e quant	des param 10 Co e ements Quantiques tification	bètres (loi	de Véga	rd) 20 La 20 et 20 23 25 25 27 28 29	
I. I. cont tens I. 11	9 rainte I. ion I. 10. Puits o I. 11. I. 11. I. 11. I. 11.	Déterminat Déterminat 	ion 10.1 critiqu confine Puits C e quant	des param 10 Co e ements Quantiques tification	nètres (loi	de Véga	rd) 20 La 20 et 20 23 25 25 27 28 29 .30	

Etude de la structure à puits quantique à base de GaAsP/GaP	
II.1 Introduction	31
II.2 Description du Phospho-arséniure de gallium (GaAsP)	31
II.2.1 Caractéristiques structurelles	31
II.2.1.1 Structure cristalline	31
II.2.1.2 Paramètre de B	33
maille	
II.2.2 La contrainte	34
II.2.3 L'épaisseur critique	34
II.2.4 L'énergie de la bande interdite	35
II.2.5 Evolution du gap en fonction de la température 3	37
II.2.6 La masse effectivedes porteurs	38
II.2.7 Spin-orbite du GaAsP	39
II.2.8 Les alignements de bandes de la bande de conduction et de la bande de valence	39
II.2.9 Energie de confinement	41
II.2.10 Calcul d'énergie de transition	15
II. 3 4	16
Chapitre III :	
Etude de la structure à puits quantique GaNAsP/GaP	
III. 1 Introduction	17
III. 2 La structure à puits quantique GaAsNP/GaAs	17
III. 2. 1 L'influence de l'Azote sur la bande 4 conduction	18
III. 2. 2L'énergie de gap5	50

III.	3 Dépendance		du	gap	en	52
température						
III.	4		Paramètres		de	53
maille						
III.		5			La	54
contrainte						
III. 6 La mass	e effective					56
III.	7		Décalage		des	57
bandes						
III. 8 Niveau	cénergétiques					59
III. 9 Energie	de transition				•••••	63
III. 10. Longu	ieur d'onde					64
III.		11		Conclu	ision	65
Conclusion g	énérale					66
Bibliographie	e					67

Introduction générale

En moins d'un siècle, l'homme est passé du problème de prouver l'existence desatomes à celui de les manipuler un par un, de les assembler en fonction de ses besoins, pour créer des matériaux nouveaux aux propriétés étonnantes (alliages spéciaux, matériaux composites très légers et trèsrésistants, cristaux liquides, semiconducteurs....etc.). Cette progression dans la conception et la fabrication de nouveaux matériaux a constitué un domaine très actifde la recherche et de la technologie moderne [1].

Parmi les matériaux utilisés, on trouve les semi-conducteurs qui sont au cœur denombreuses technologies électroniques de pointe qui façonnent les réseaux du futur. Lesmatériaux semi-conducteurs utilisés présentent des caractéristiques fixes, qu'ellesrépondent aux besoins ou non. Pour avoir plus de liberté dans les propriétés, l'emploi desalliages semi-conducteurs s'avère une solution miracle. En mélangeant les éléments entreeux, on peut fabriquer tout type d'alliages, des binaires, des ternaires, des quaternaires, despentanaires et même des quasi binaires, tout dépend des propriétés que l'on veut obtenir. Plus le nombre de composés utilisés est grand, plus onélargit l'éventail d'ajustement des paramètres mais en parallèle, on voit croitre lacomplexité des modèles qui les régissent.

Certains paramètres des alliages sont basés sur une interpolation linéaire de ceuxdes composés parents tels que le paramètre du réseau, la masse effective, mais d'autrestels que le gap énergétique dévie un peu de la linéarité par un terme correctif appelébowing ou le paramètre de courbure tiré généralement de l'expérimentation [2].

Les propriétés électroniques des solides sont largement mises à profit pour laréalisation de nombreux dispositifs et de différents appareils de mesure. Lespropriétés des binaires *GaAs*, *InAs*, *GaSb*, *InSb*, *GaP*, et *InP* étant les plus connues, par contre peu de résultats sont disponibles pour l'alliage semi-conducteur ternaire*GaAs*_x P_{1-x} et le quaternaire *GaN*_y*As*_x P_{1-x} . Malgré l'importance despropriétés électroniques des alliages à plusieurs composants quiont été utilisés comme des substrats, couche de revêtement (claddinglayers), élémentsactifs dans les dispositifs optoélectroniques et pour d'autres applications [3], beaucoupde recherches théoriques et expérimentales sont effectuées sur les alliages ternaires, mais seulement quelques alliages quaternaires ont été étudiés [3].

Durant cette même période, le développement dans le domaine de l'informatique a connu le même essor que la micro-électronique. Le cout exorbitant lors de la fabrication de nouveaux composants a poussé les chercheurs a utilisé la simulation pour mieux comprendre les phénomènes physiques et pour proposer des pistes d'améliorations des structures et de nouvelles architectures de dispositifs à moindre cout.Ces logiciels de simulation sont utilisés pour résoudre numériquement les systèmes d'équations obtenues par les lois de la physique qui sont difficiles à résoudre analytiquement.

Aujourd'hui, les logiciels de simulations jouent un rôle très important dans tous les domaines de l'électronique générale. En effet, avant la fabrication d'un composant électronique, on procède à une simulation. Cette simulation est définit dans le cas général comme une technique permettant de reproduire de façon virtuelle le comportement d'un phénomène réel, et dans ce cas, les résultats obtenus sont très satisfaisantes, car la simulation gagne en terme de cout et de temps par rapport à la fabrication.

Le but de ce travail estde mener une étude comparative entre les deux structures a puits quantiques, la première est a base du ternaire GaAsP/GaP et la deuxième consiste à ajouter de l'azote à cette dernière pour qu'elle devienne GaNAsP/GaP et cela en investissant les paramètres optoélectroniques des deux structures à puits quantiquestoute en comparant et en discutant les résultats obtenue.

Pour développer toutes ces notions dans cette thèse, nous avons scindé notre mémoire en trois chapitres principaux entourés d'une brève introduction et d'une conclusion générale.

Le premier chapitre est consacré à l'étude des principales propriétés des matériaux semi-conducteurs III-V. Nous abordons ce chapitre par une présentation générale de ces matériaux, ensuite on définit leur réseau cristallin, leur réseau réciproque ainsi que leur structure de bande d'énergie et l'influence de la température sur cette structure. On donne aussi les expressions permettant de calculer les masses effectives des électrons ainsi que l'étude de la contrainte des composés qui vont venir par la suite. Dans le chapitre deux, on explore la structure *GaAsP/GaP* en détaillant la théorie des bandes pour comprendre les fonctionnalités apparentes.

Le troisième chapitre sera une extension dudeuxième chapitre qui vient pour détailler la structure *GaNAsP/GaP*. En ajoutant de l'azote, on aura à utiliser le modèle BAC (anticrossing band) vu le fort effet de l'introduction de l'azote puisqu'il mène à l'éclatement de la bande de conduction en deux sous bandes et par conséquent il sera très intéressant de voir qu'elle effet ça va avoir sur les propriétés de ce matériau.

Pour en finir, une conclusion résumant tout le travail en comparant les deux structures et qui vient pour éclaircir le chemin à suivre aux futurs preneurs.

Les différentes méthodes de résolution de l'équation de Schrödinger dans le puits, sont expliquées dans l'annexe à la fin de ce mémoire.

Liste des acronymes et abréviations

- a_s : Paramètre de maille de substrat.
- a_e: Paramètre de maille de la couche épitaxie.
- E : Constante de déformation.
- $\mathcal{E}_{//}$: Constante de déformation dans le plan de croissance.
- \mathcal{E}_{\perp} : Constante de déformation dans la direction de croissance.
- C_{ij} : Constante d'élasticité.
- E₀: Energies de bande interdite a O(k).
- A : Une constante empirique $[ev.K^{-1}]$.
- B : Une constante associée à la température de Debye [K].
- m_e: La masse effective des électrons.
- m_{hh} : Masse effective de trous lourd.
- m_{lh} : Masse effective de trous léger.
- a_c : Le potentiels de déformation hydrostatique de la bande de conduction.
- A_v :Lepotentiel de déformation hydrostatique de la bande de valence.
- ΔEc : Bande offset de la bande de conduction.
- ΔEv : Bande offset de la bande de valence.
- $\frac{\Delta V}{v}$: Le changement relatif du volume.
- h_c : Epaisseur critique.
- Δa : Est le désaccordparamétrique.
- γ : Est le coefficient de poissant.
- E_F : Est le niveau de fermi.
- K : La constante de Boltzmann.
- $K_{//}$: Les énergies des minima des différentes sous-bandes de conduction varient comme n2, avec n entier.
- V0 : Décalage de bandes.
- En : Valeurs propres de l'énergie (quantification).
- τ : Est la constante de temps prenant en compte toutes les diffusions.
- E_{tr} : L'énergie de transition.

 λ : La longueur d'ondes.

- φ : Température moyenne des phonons.
- *p* : Paramètres de dispersion des phonons.
- α : Constante.

 E_{en} : Le nième niveau d'énergie des électrons (n=1,2...).

 E_{hhn} : Le nième niveau d'énergie des trous lourds (n=1,2...).

 E_{lhn} : Le nième niveau d'énergie des trous légers (n=1,2...).

 λ_F : La longueur d'onde de De Broglie.

 E_{n+1}, E_n : Niveaux d'énergie discrets.

- *t*: Constante de temps prenant en compte toute les diffusions.
- K_b : étant la constante de Boltzmann et T la température.
- \hbar : La constante de Planck.
- ψ : La fonction d'onde.
- V : La profondeur du puits de potentiel.
- L_P : L'épaisseur du puits.
- m^{*}: La masse effective de la particule.
- E_N : L'énergie du niveau de l'atome d'azote isolé
- $E_{M}(k)$: L'énergie de la bande de conduction.
- V_{MN} : Décrit l'interaction entre ces deux types d'états.

Liste des figures

Figure 1.1 :Schéma représentatif des bandes d'énergie	5
Figure 1.2 :Le tableau périodique Mendeleïev	6
Figure 1.3 : Première zone de Brillouin de la structure zinc blende avec la présentation des points et lignes de hautes symétries	8
Figure 1.4 : Mailles cristallographiques des structures a) wurtzite , b) Zinc Blende	12
Figure 1.5 :Hétérostructure de type I	13
Figure 1.6 :Hétérostructure de type II	13
Figure 1.7 :Semi-conducteur a gap direct	15
Figure 1.8 : Semi-conducteur a gap indirect	16
Figure 1.9 :L'énergie de gap en fonction du paramètre de maille pour les différents alliages	17
Figure 1.10 : Illustration de deux types de déformation, couche en tension et couche en compression	22
Figure 1.11 : Représentation schématique de la structure de bande d'un matériau SC (a) non contraint, (b) contrainte compressive, (c) contrainte en tension	22
Figure 1.12 :Schéma montrant une couche contrainte en compression (a) et une autre couche contrainte relaxée (b)	23
Figure 1.13 : La contrainte dans le cas d'une DHS	24
Figure 1.14 : Illustration d'un puits quantique	25
Figure 1.15 :Schématisation d'une structure de type SCH	27
Figure 1.16 :Schématisation d'une structure de type GRINSCH	28
Figure 1. 17 :Schématisation d'une structure à multi-puits quantiques	28

Figure 2.1 : mailles cristallographiques de la structure Zinc Blende	32
Figure 2.2: Structure Zinc Blende en projection sur un plan	32

Figure 2.3: variation de paramètre de maille en fonction de la concentration	33
Figure 2.4: Variation de la contrainte en fonction de la concentration x duGaAs _x P ₁₋ $_x$ /GaP	34
Figure 2.5 : Variation de l'épaisseur critique en fonction de la composition x	35
Figure 2.6: Energie de la bande interdite de la structure $GaAsP/GaP$ contrainte et non contrainte en fonction de la concentration x	36
Figure 2.7: Energie de bande interdite pour le GaAsP en fonction de la Température	37
Figure 2.8: variation de la masse effective en fonction de la concentration (x) du $GaAsP$	38
Figure 2.9: Spin-orbite du GaAsP en fonction de la concentration x	39
Figure 2.10: Décalage de la bande de conduction et de la bande de valence du GaAsP/GaP	41
Figure2.11: Evolution de l'énergie des électrons dans un puits quantique GaAs _{0.15} P _{0.85} /GaP	42
Figure2.12: Evolution de l'énergie des électrons dans un puits quantique GaAs _{0.25} P _{0.75} /GaP	42
Figure2.13: Evolution de l'énergie des électrons dans un puits quantique GaAs _{0.35} P _{0.65} /GaP	43
Figure 2.14: Evolution de l'énergie des trous lourds dans un puits quantique GaAs _{0.35} P _{0.65} /GaP	44
Figure2.15: Evolution de l'énergie des trous lourds dans un puits quantique GaAs _{0.35} P _{0.65} /GaP	44
Figure 2.16: Evolution de l'énergie de transition dans un puits quantique <i>GaAsP</i> / <i>GaP</i>	45
Figure2.17: Evolution de la longueur d'onde dans un puits quantique <i>GaAsP</i> / <i>GaP</i>	46

Figure 3.1 : Schéma d'une structure à puits quantiques à base de <i>GaNAsP/GaP</i>	48
Figure 3.2: Les bandes d'énergie dans une structure à puits quantique:	
(a) avant éclatement de la bande de conduction, (b) après éclatement	50
Figure 3.3 : Les deux sous bandes E+ et E- de la bande de conduction du <i>GaNAsP</i> /	

GaP	51
Figure 3.4 : Effet de l'azote sur l'énergie de gap contraint et non contraint pour le quaternaire $GaN_yAs_xP_{1-x-y}$	51
Figure 3.5 : Courbures iso-gap en fonction des compositions (<i>x</i> , <i>y</i>)	52
Figure 3.6 : Effet de la température sur le gap de la structure $GaN_yAs_xP_{1-x-y}$	53
Figure 3.7 : Paramètre de maille de $GaN_yAs_xP_{1-x-y}$ en fonction des paramètres (x, y)	54
Figure 3.8 : Déformation uni-axial et bi-axial en fonction de la concentration de l'azote y (x=0.3)	55
Figure 3.9: courbure iso-contrainte: déformation bi-axial en fonction de la concentration de l'arsenic et de l'azote <i>x</i> , <i>y</i> respectivement	55
Figure 3.10 : Variation des masses effectives des électrons, trous lourds et légers en fonction d'azote	57
Figure 3.11: Schématisation des décalages des bandes	57
Figure 3.12: Variation de Q_c en fonction des paramètres de composition xet y	58
Figure 3.13: Variation de Q_v en fonction des paramètres de composition x et y	59
Figure 3.14 : Variation des niveaux des électronspour $x = 0.25$ et $y = 0.005$	60
Figure 3.15: Variation des niveaux des électrons pour $x = 0.25$ et $y = 0.02$	60
Figure 3.16 : Variation des niveaux des trous HHpour $x = 0.25$ et $y = 0.005$	61
Figure 3.17:Variation des niveaux des trous HHpour $x = 0.25$ et $y = 0.02$	61
Figure 3.18 : Variation des niveaux des trous LHpour $x = 0.25$ et $y = 0.005$	62
Figure 3.19: Variation des niveaux des trous LHpour $x = 0.25$ et $y = 0.02$	62
Figure 3.20: Variation de l'énergie de transitionen fonction de la largeur de puits L_p ($y = 0.005$)	63
Figure 3.21: Variation de l'énergie de transitionen fonction de la largeur de puits L_p ($y = 0.02$)	63
Figure 3.22: Variation de la longueur d'ondeen fonction de la largeur de puits pour	
y = 0.005	64
Figure 3.23 : Variation de la longueur d'ondeen fonction de la largeur de puits pour $= 0.005$	64

CHAPITRE I : Les matériaux semi-conducteurs

I.1 Introduction

Selonleurs propriétés électriques, les matériaux peuvent être classés en troisgroupes: les conducteurs, les semi-conducteurs et les isolants.

Les composants électroniques telsque les diodes, les transistors et lescircuits intégrés sont fabriqués àpartir de ces matériaux semi-conducteurs.

Pour comprendre le fonctionnementde ces composants, on doitposséder une connaissance de base de leurs structures et del'interaction des particules qui lescomposent.Pour cela, nous allons examinerdans ce chapitre les propriétés des semiconducteurs et ces principales caractéristiquestelle que la structure de bande, la masse effective, les puits quantiquesainsi que l'effet de la contrainte et de la température.

I.2 Notions fondamentales

I.2.1 L'énergie d'un électron

Dans la théorie quantique, les électrons n'occupent pas une place définie, mais ont une certaine probabilité d'occuper une région de l'espace autour du noyau.Un électron isolé, détaché de tout atome ou de tout matériau peut prendre n'importe quelle valeur d'énergie dans un solide. Par contre, dans un semi-conducteur, ce qui nous intéresse le plus, la situation est intermédiaire : l'énergie des électrons peut prendre toute valeur à l'intérieur d'un intervalle dépendant de la structure du matériau, on parle de bandes d'énergie. Il existe deux types de bandes : les bandes permises. A l'inverse, lesbandes interdites [4].

Deux bandes d'énergie permises jouent un rôle particulier :

- la dernière bande complètement remplie, appelée « bande de valence » ;
- la bande d'énergie permise suivante appelée « bande de conduction ».

L'énergie qui sépare ces deux bandes est appelée gap, nommée aussi **bande interdite** tel que l'on peut voir sur la figure 1.1.

Figure 1.1 :schéma représentatif des bandes d'énergie.

La répartition des électrons dans les niveaux obéit aux lois de la thermodynamique statistique. Au zéro absolu, seuls sont peuplés les niveaux de plus basse énergie. Dans les isolants, les bandes d'énergie les plus faibles sont entièrement pleines. La hauteur de la bande interdite est grande (> 5 eV). Il n'y a pas de niveaux d'énergie accessibles et pas de conduction.

Dans les conducteurs (métaux), la bande de conduction et la bande de valence se chevauchent. Les électrons peuvent donc passer directement de la bande de valence à la bande de conduction et circuler dans tout le solide.

L'unique différence entre un semi-conducteur et un isolant est la largeur de cette bande interdite. Dans un isolant, cette valeur est si grande (aux alentours de 6 eV pour le diamant par exemple) que les électrons ne peuvent pas passer de la bande de valence à la bande de conduction : les électrons ne circulent pas dans le solide.

Dans les semi-conducteurs, cette valeur est plus petite (1.12 eV pour le silicium, 0.66 eV pour le germanium, 2.26 eV pour le phosphure de gallium).

I.2.2 Tableau périodique

Le tableau périodique de Mendeleïev est un classement en affichage tabulaire de tous les éléments chimiques. Le tableau périodique actuel est un système où les éléments connus sont classés à ce jour. Ils sont placés de gauche à droite et de haut en bas dans l'ordre croissant de leurs numéros atomiques. Les éléments sont disposés en sept rangées horizontales appelées périodes, et en dix-huit colonnes verticales appelées groupes ou familles. En allant versle bas et vers la gauche le rayon atomique et ainsi que le rayon ioniqueaugmentent. En allant vers le haut et vers la droite c'est l'énergie d'ionisation, l'affinité électronique et l'électronégativitéqui augmentent [5].

Les lignes de la table périodique sont appelées des périodes et les colonnes sont des groupes. Cette classification donne un autre nom à ce tableau : la classification périodique. Certains groupes ont des noms. Par exemple, le groupe 17 est celui des halogènes et le groupe 18 est celui des gaz nobles. La table est également divisée en quatre blocs avec des propriétés chimiques similaires.

Comme les positions sont ordonnées, la table peut être utilisée pour obtenir des relations entre les propriétés des éléments, ou pour prédire les propriétés de nouveaux éléments non encore découverts ou synthétisés. Le tableau périodique fournit un cadre utile pour l'analyse du comportement chimique et est largement utilisé en chimie et autres sciences.

	4 Be Mg	er Ma	Syn Nom Isse atom	n ^o sol n Gai Ique Inc	lide uide zeux onnu	Métai Métai Métai Métai Lanti Actin	ux alcalir ux alcalir ux de tra ux pauvr nanides ides	15 ho-terreu nsition es	× 0	Métalloid Non-méta Halogène Gaz rares	105 1111X 15	B 13 Al		7 N 15 P	8 0 16 5 16		2 He 10 Ne 10 Ne 11 18 Ar
19 K	Ca Later	Sc.	22 Ti	V	Cr Cr	Mn Mn	Fe Fe	Co	28 Ni	29 Cu	Zn	Ga	Ge Ge	AS Mast	Se Se	Br tree	S6 Kr
Rb Rb	38 Sr	39 Y	240 Zr	Nb	Mo Mo	43 Tc	Ru Ru	Rh Rh	Pd	47 Ag	48 Cd	49 In	50 Sn	Sb	52 Te	53	X0
55 Cs	Ba	67-71	Hf T2	73 Ta	W74	Re	76 Os	177	78 Pt	79 Au	Hg	81 TI	82 Pb	Bi	Po	At	Rn
87 Fr	Ra Ra	89-103	104 Rf	105 Db	108 Sg	107 Bh	108 Hs	Mt	110 DS	Rg	Cn	Uut	FI FI	Uup	116 LV	Uus	
		Τ															
			57 La	Ce	59 Pr	Nd	61 Pm	62 Sm	Eu Faite	Gd	65 Tb	Dy	Ho	Er Er	Tm Tm	70 Yb	Lu Lu
		mp	Ac B9	90 Th	Pa	U ⁹²	Np 93	94 Pu	95 Am	96 Cm	Bk 97	98 Cf	B9 Es	100 Fm	Md	102 No	103 Lr

Figure 1.2 :Le tableau périodique Mendeleïev

I.3 Première zone de Brillouin

La première zone de Brillouin est définie de manière unique comme la maille primitive dans l'espace réciproque. Pour la structure zinc-blende, cette zone à la forme d'un octaèdre tronqué (figure 1.3).

I.3.1 Les points de haute symétrie

- Γ : ce point est le centre de la première zone de Brillouin avec les coordonnées k_r(0, 0, 0).
- X : ce point est le centre d'une face carrée de l'octaèdre qui appartient à l'un des axes k_x, k_y ou k_z. Nous avons donc :

 $k_x = \frac{2\pi}{a} (\pm 1,0,0), k_y = \frac{2\pi}{a} (0, \pm 1,0) \text{ et } k_z = \frac{2\pi}{a} (0,0,\pm 1)$

- L : ce point est le centre d'une face hexagonale de l'octaèdre dont les coordonnéessont : k_L=^{2π}/_a (1,1,1)
- W : ce point se trouve sur l'un des sommets des faces carrées. Lescoordonnées sont : k_W=^{2π}/_a (0, ¹/₂, 1)
- Z : ce point est situé sur la ligne qui joint le centre d'une face carrée. Les coordonnées sont : k_z = ^{2π}/_a (1,¹/₂, 1)

I. 3. 2 Les lignes de haute symétrie

Les lignes de haute symétrie dans la première zone de Brillouin sont :

- Δ : cette ligne représente la direction [100]. Elle relie le centre Γ au pointX
- Σ : c'est un point appartenant au plan de symétrie $k_x = k_y$ ou $k_y = k_z$ ou $k_x = k_z$.
- Λ : cette ligne est la direction [100]. Elle relie le centre de la zone (Γ) aucentre d'une face hexagonale qui est le point L de l'octaèdre.

Figure 1.3 :Première zone de Brillouin de la structure zinc blende avec la représentationdes points et lignes de hautes symétries.

I. 4 Semi-conducteurs III-V

I. 4.1 Définition

Un semi-conducteur à l'état pur (intrinsèque) n'est pas unbon conducteur ni un bon isolant. Les éléments les plus utilisés pour les semi-conducteurssont le silicium, le germanium et le carbone ainsi quedes éléments composés tels que l'arséniure de gallium (GaAs) et le phosphure d'indium (InP),sont aussi couramment utilisés pour les semiconducteurs.

Les matériaux semi-conducteurs III-V sont des corps composés formés à partir d'un élément de la colonne III et d'un élément de la colonne V du tableau de la classification périodique de Mendeleïev (figure 1.2). Ainsi de nombreux composés binaires, ternaires et quaternaires peuvent être réalisés.

	III	IV	V	VI
	5	6	7	8
	B	C	N	0
	13	14	15	16
	Al	Si	P	S
	Aluminium	Sidicitaen	Photphore	Scafes
30	31	32	33	34
Zn	Ga	Ge	As	Se
Zinc	Gatirum	Germanium	Arsenic	Selenium
48	49	50	51	52
Cd	In	Sn	Sb	Te
Cademium	Indiam	Luin	Antimolae	Telluce
80	81	82	83	84
Hg	TI	Pb	Bi	Po
Mercure	Thallitorn	Ploint	Biamath	Palanium.

Tableau 1.1 :Tableau périodique partiel [5]

I. 4.2 Les composés binaires

Les composés binaires possibles tels que l'arséniure de gallium (GaAs), l'arséniure d'indium (InAs) n'ont pas tous le même intérêt et le même potentiel. L'étude de leurs propriétés, et en particulier de la structure de bandes, montre que les éléments les plus légers donnent des composés à large bande interdite dont les propriétés se rapprochent de celles des isolants.

Les composés contenant du bore ou de l'aluminium entrent dans cette catégorie ; ils ont en général peu d'intérêt pour l'électronique rapide [6], qui demande des semi-conducteurs à forte mobilité de porteurs ou pour l'optoélectronique ou une structure de bande directe est nécessaire pour que les transitions optiques soient efficaces [6].

A l'autre extrémité, les éléments lourds comme le thallium ou le bismuth donnent des composés à caractère métallique. Pour des applications électroniques et optoélectroniques, on considérera essentiellement les composés à base de galium (GaAs, GaSb) ou d'indium (InP, InAs) dont les propriétés sont les plus intéressantes. Le tableau (1.2) résume quelques paramètres pour différents matériaux de la famille III-V.

Composés III-V	$E_g(eV)$	m^*/m_0	$\mu \left(\frac{cm^2}{V.s} \right)$	a(Å)
BN	7.5			3.6150
AlP	2.45			5.4510
AlAs	2.16			5.6605
AlSb	1.58	0.12	200	6.1355
BP	2.0			4.5380
GaN	3,36	0.19	380	a = 3.189
Guit	5100	0115		c = 5.185
GaP	2.26	0.82	110	5.4512
GaAs	1.42	0.067	8500	5.6533
GaSb	0.72	0.042	5000	6.0959
InP	1.35	0.077	4600	5.8686
InAs	0.36	0.023	33000	6.0584
InSb	0.17	0.0145	80000	6.794

Tableau 1.2 : Propriétés des principaux composés binaires III-V à 300 K[9].

I. 4.3 Les composés ternaires et quaternaires

L'intérêt pratique des semi-conducteurs III-V est encore considérablement renforcé par la possibilité de réaliser des alliages et cela par substitution partielle de l'un des éléments par un autre élément de la même colonne. On peut obtenir, par exemple, des alliages ternaires, ou quaternaires qui sont identifiés de la façon suivante :

> Alliages ternaires : S'il y a substitution de 2 atomes sur l'un des sous réseaux, soit:

$$A_x A'_{(1-x)} B$$

Exemple : $Ga_x In_{(1-x)}P$

> Alliages quaternaires 1+3 : S'il y a substitution de 3 atomes sur des sous réseaux soit

$$A_x A'_y A''_{(1-x-y)} B$$

Exemple : $Ga_x In_y Al_{(1-x-y)}B$

Alliages quaternaires 2+2 : S'il y a substitution de 2 atomes sur chacun des deux sous réseaux, soit :

$$A_x A'_{(1-x)} B_y B'_{(1-y)}$$

Exemple: $Ga_x In_{(1-x)}P_y As_{(1-y)}$

La plupart des solutions solides ainsi réalisées sont complètes, la loi de Végard (relation linéaire entre le paramètre de réseau et la composition) est approximativement suivie, et on observe une évolution progressive et régulière des propriétés (dont la bande interdite et les paramètres cristallins) en fonction du taux de substitution [7].

I.5 Caractéristiques structurelles

I. 5.1 Les systèmes cristallins

A l'exception des matériaux III-V nitrurés qui cristallisent suivant la structure hexagonale Wurtzite (Diamant), la majorité des matériaux III-V cristallisent suivant la structure cubique Zinc Blende qui est constituée de deux sous-réseaux cubique à face centrée CFC, l'un d'éléments III et l'autre d'éléments V, décalés l'un par rapport à l'autre de (1/4, 1/4, 1/4) suivant la direction [111].

Cette structure est représentée soit en perspective, soit en projection sur un plan formé par une des faces du cube.

Figure 1.4 :Mailles cristallographiques des structures a) wurtzite , b) Zinc Blende[8]

I. 5.2 Les hétéro-structures :

Une hétérostructure est constituée d'un matériau semi-conducteur A pris en « sandwich » entre deux barrières d'un matériau semi-conducteur [9].

Hétérostructures de type I :

Dans ce type de structures, les électrons et les trous seront confinés dans le même matériau B. La probabilité de recombinaison sera donc élevée.

$$\Delta E_g = E_{g1} - E_{g2} = \Delta E_c + \Delta E_v \tag{1.1}$$

 $\Delta E_c > 0$ et $\Delta E_v > 0$

Figure 1.5 : Hétérostructure de type I.

> Héterostructure de type II :

Les extrema des bandes de conduction et de valence sont spatialement séparés, les électrons et les trous seront donc confinés séparément et leurs recombinaisons seront moins probables

Figure 1.6 : Hétérostructure de type II.

I. 6 La masse effective

I. 6.1 Masse effective des électrons

La masse effective des électrons est inversement proportionnelle à la dérivée seconde de la courbe de dispersion de l'énergie dans l'espace \vec{k} .

$$m_e^* = \frac{\hbar^2}{d^2 E_{/dk^2}}$$
 (1.2)

I. 6.2 Masse effective des trous

La masse effective des trous est définie comme celle des électrons, mais la bande de valence des semi-conducteurs cubique est composée de deux branches dégénérées en K=0. Les énergies des trous sont comptées positivement vers le bas. La bande de plus grande courbure, bande inferieure, correspond à des trous de masse effective inferieure (bande des trous légers) et la bande de plus faible courbure, bande supérieure, correspond à celle des trous lourdspermettent de définir des masses effectives isotropes. Ils ont été calculés pour la plupart des semi-conducteurs.

$$m_{hh}^* = \frac{m_0}{\gamma_1 - \gamma}$$
 , $m_{lh}^* = \frac{m_0}{\gamma_1 + \gamma}$ (1.3)

$$\gamma = \sqrt{2(\gamma_2^2 + \gamma_3^2)} \tag{1.4}$$

 $\gamma_1, \gamma_2 \ et \ \gamma_3$ sont les paramètres de Luttinger.

I. 7L'énergie de gap

I. 7.1 Semi-conducteur à gap direct

On parle de gap direct lorsque les deux extremums de la bande de conduction et celui de la bande de valence correspondent au même quasi-moment (quantité de mouvement associée au vecteur d'onde dans la première zone de Brillouin). Les porteurs de

charge des matériaux à gap direct peuvent passer d'une bande à l'autre en échangeant simplement un photon, dont la quantité de mouvement est négligeable à ces niveaux d'énergie. Un certain nombre de semi-conducteurs III-V sont à gap direct, comme l'arséniure de gallium GaAs et l'arséniure d'indium InAs.

Figure 1.7 :Semi-conducteur à gap direct.

I. 7. 2 Semi-conducteur à gap indirect:

On parle de gap indirect lorsque la différence entre les vecteurs d'onde de ces deux extremums est non nulle.Les porteurs des matériaux à gap indirect doivent interagir à la fois avec un photon et avec un phonon tel que l'en voit sur la figure 1.8 afin de modifier leur vecteur d'onde, ce qui rend la transition bien moins probable comme l'antimoniure d'aluminium AISb; le silicium et le germanium sont également des semi-conducteurs à gap indirect.

Figure 1.8: Semi-conducteur à gap indirect.

Les matériaux III-V offrent une grande variété de compositions permettant de modifier leurs propriétés électroniques.

Les points du graphe de la figure 1.9 montrent la position des composés binaires, et les lignes représentent l'évolution du gap E_g et du paramètre cristallina en fonction de la composition des alliages ternaires.

L'utilité de ce diagramme est très importante car elle permet de connaitre la composition de tout alliage ternaire susceptible d'être déposé en couche mince par épitaxie sur un substrat binaire tel que le *GaAs* ou l'*InP* en tenant compte que le paramètre cristallin doit être très proche de celui du substrat [10].

Figure 1.9 : l'énergie de gap en fonction du paramètre de maille pour les différents alliages [10].

I. 8La température

Considérons le cas d'un semi-conducteur intrinsèque. L'énergie du gap E_g représente en fait la séparation minimum d'énergie entre la bande de conduction E_c et la bande de valence E_v soit :

$$E_g = E_c - E_v \tag{1.5}$$

 E_g dépend fortement de la température. En effet cette énergie est le résultat de deux effets: soit un changement en volume due à la variation de la température, et une dispersion électron-photon qui dépend aussi de la variation de cette température, qui fait varier le maximum de la bande de valence et le minimum de la bande de conduction.L'énergie du gap dépend de la température selon la loi ci-dessous énoncé par Thurmond (1975) et qui s'exprime par :

$$E_g(T) = E_g(0) - \frac{AT^2}{B+T}$$
(1.6)

Avec *A* et *B*sont les paramètresempiriques de Varshni donnés dans le tableau(1.3) pour les différentes directions.

Paramètres	E_g^{Γ}	E_g^{X}	$E_g^{ m L}$	A ^Γ	B^{Γ}	A ^X	B^X	A^L	B^L
Unité	(<i>eV</i>)	(eV)	(<i>eV</i>)	(<i>meV/K</i>)	(K)	(meV /K)	(K)	(meV /K)	(<i>K</i>)
Si	4.34	1.1557		0.391	125	0.702	1108	-	-
GaAs	1.519	1.981	1.815	0.5405	204	0.460	204	0.605	204
InP	1.423	2.384	2.014	0.363	162	-	-	0.363	162
AlSb	2.386	1.696	2.329	0.420	140	0.390	140	0.580	140
InAs	0.417	1.433	1.133	0.276	93	0.276	93	0.276	93
GaP	2.886	2.35	2.72	-	-	0.5771	372	0.5771	372

Tableau 1.3 :Energies de gap et les paramètres de Varshni des principaux semi-conducteurs à T = 0k au voisinage des points Γ, X, L [9].

Et pour les composés qui ont une structure de type wurtzite, le gap et les paramètres sont donnés dans le tableau 1.4 suivant:

Paramètre	$m{m}_{m{c}}^{\Gamma}$	m _c ^x	Eg	А	В	Р	α	φ
Unité	m_0	m_0	eV	meV/K	K	-	meV/K	k
InN	0.11	0.11	1.994	0.245	624	2.9	0.21	453
GaN	0.20	0.18	3.47	0.909	830	2.62	0.599	504
AlN	0.33	0.25	6.20	1.799	1462	3.0	0.83	575

Tableau 1.4 :Les différents paramètres de nitrure de type wurtzite [9].

Une loi physique plus précise a été proposé récemment par Passler donnée par:

$$E_g(T) = E_g(0) - \frac{\alpha \cdot \varphi}{2} \left[\sqrt[p]{1 + \left(\frac{2T}{\varphi}\right)^p} - 1 \right]$$
(1.7)

Avec :

- arphi : Température moyenne des phonons.
- p : Paramètres de dispersion des phonons.
- α : Constante.

Les différents paramètres sont donnés par le tableau 1.5 suivant:

Paramètres	Р	α	arphi
Unité	-	meV/K	К
Si(X)	2.33	0.318	406
Ge(L)	1.38	0.407	230
GaAs(Γ)	2.44	0.472	230
InP(Γ)	2.51	0.391	243
GaP(X)	2.09	0.480	358
InSb(Γ)	2.68	0.250	136
InAs(Γ)	2.10	0.281	143
AlP(X)	2.5	0.350	130
$ZnSe(\Gamma)$	2.67	0.490	190
$ZnTe(\Gamma)$	2.71	0.454	145

 Tableau 1.5 : Les paramètres de Passlerà T=0 k [9].

I. 9 Détermination des paramètres (loi de Végard)

Pour calculer les paramètres d'une structure ternaire ou quaternaire il faut passer, en général, par la loi de Végard (loi d'interpolation linéaire). Les matériaux ternaires sont formés à partir de deux matériaux binaires AC et BC ayant un élément commun. Si x est la concentration en A, alors (1 - x) est la concentration en B.

Les paramètres du matériau ternaire T varient selon une loi linéaire, fonction des paramètres des deux matériauxA etB:

$$T(x) = x T_{AC} + (1 - x) T_{BC}$$
(1.8)

Par exemple, pour un alliage ternaire $GaAs_xP_{(1-x)}$, le paramètre de maille a_{GaAsP} s'écrira:

$$a_{GaASP} = x \cdot a_{GaAS} + (1 - x) \cdot a_{GaP}$$
(1.9)

Où a_{GaAs} et a_{GaP} sont respectivement les paramètres de maille des deux binaires GaAs et GaP.

I.10La contrainte

I. 10.1 Compression et tension

Lorsqu'on fait croitre un semi-conducteur sur un autre, si les deux matériaux constituant le substrat et la couche active ont des paramètres de mailles différents, le matériau constituant la couche de plus grande épaisseur impose sa maille à l'autreau voisinage de l'interface, donc pour les couches suffisamment fines, la maille du matériau épitaxiée se déforme de manière élastique dans les deux directions parallèle ($k_{//}$) et perpendiculaire (k_{\perp}) à la surface de croissance.

Les effets de la contrainte sur les propriétés électroniques et optiques des semi-conducteurs ont fait l'objet de plusieurs études récentes dans le but de réaliser desdispositifs optoélectroniques fonctionnant à des vitesses élevés.

Due au désaccord des paramètres de maille du substrat et de la couche épitaxiée, la contrainte modifie les caractéristiques intrinsèques du semi-conducteur comme l'énergie de gap, les potentiels de déformation ainsi que les paramètres de structure de bandes comme les masses effectives.

Ces changements présentent plusieurs intérêts pour la réalisation des composants plus performants, et surtout avec des courants de seuils plus faibles [11].

La couche épitaxiée est déformée en compression ($a_s < a_e$)et en tension ($a_s > a_e$) par des déformations bi-axiales (ϵxx et ϵyy) est uni-axial (ϵzz) [10]

Bi-axiale dans le plan croissance :

$$\varepsilon_{\perp} = \varepsilon_{xx} = \varepsilon_{yy} = \frac{a_s - a_e}{a_e}$$
 (1.10)

Uni-axial dans la direction de croissance :

$$\varepsilon_{\perp} = \varepsilon_{zz} = \frac{2.C_{12}}{C_{11}} \varepsilon_{xx} \tag{1.11}$$

Où :

ε : La déformation de maille.

 a_s : Paramètre de maille de substrat.

 a_e : Paramètre de maille de la couche épitaxie.

 C_{11} et C_{12} : Constants d'élasticité.

Figure 1.10 : Illustration de deux types de déformation, couche en tension et couche en compression.

Figure 1.11:Représentation schématique de la structure de bande d'un matériau SC (a) non contraint, (b) contrainte compressive, (c) contrainte en tension

I. 10.2 Épaisseur critique

L'épaisseur au-delà de laquelle la couche épitaxie commence à relaxer est appelé épaisseur critique. Cette épaisseur critique dépend des propriétés mécaniques des matériaux (coefficients élastiques C_{ij}), ainsi que du degré de désaccord paramétrique entre le substrat et la couche épitaxiée.

Si l'épaisseur de la couche épitaxie dépasse la valeur de l'épaisseur critique, les mailles ne subissent plus les contraintes mécaniques imposées par le substrat et le paramètre de maille atteint celui du matériau massif. Le réseau est totalement relaxé [11].

$$\frac{\Delta a}{a} = \frac{a_s - a_e}{a_e} \tag{1.12}$$

Figure 1.12:Schéma montrant une couche contrainte en compression (a) et une autre couche contrainte relaxée (b).

Dans une structure à puits quantique, et comme on a une double hétéro structure (DHS) la contrainte est répartie sur les deux interfaces de croissances comme montre la figure1.13:

Figure 1.13 : la contrainte dans le cas d'une DHS.

Pour calculer l'épaisseur critique, on utilise le modèle proposé parMatthews et Blackeslee qui nous donne l'expression suivante [12]:

$$h_{c} = \frac{a}{\beta \sqrt{2}.\pi.\varepsilon} * \frac{1 - 0.25.\gamma}{1 + \gamma} * ln\left(\frac{h_{c}.\sqrt{2}}{a} + 1\right)$$
(1.13)

Où :

a : est le paramètre de maille de la couche relaxée.

 ε : est le désaccord paramétrique.

 γ : est le coefficient de poisson donnée par :

$$\gamma = \frac{C_{12}}{C_{11} + C_{12}} \tag{1.14}$$

Avec :

 c_{ij} : Les coefficients élastiques.

 β : Un coefficient qui prend les valeurs suivantes selon le type de la structure

structure	Couche unique	Puits quantique	Super réseau
valeur de $\boldsymbol{\beta}$	4	2	1

Tableau 1.6 : valeur de β selon le type de structure.

I. 11Puits quantique

I. 11.1 Définition

Pour réaliser un puits quantique, on utilise deux matériaux (A) et (B), la méthode consiste à faire croitre l'épitaxie du matériau B sur le substrat du matériau A, ensuite en faisant croitre de nouveau le matériau A sur le matériau B [13]. Les matériaux (A) et (B) doivent avoir des énergies de bande interdite différentes.

Où :

 E_{en} : Le nième niveau d'énergie des électrons (n=1,2...).

 E_{hhn} : Le nième niveau d'énergie des trous lourds (n=1,2...).

 E_{lhn} : Le nième niveau d'énergie des trous légers (n=1,2...).

D'autre part, lorsque l'épaisseur de la couche active devient comparable à la longueur d'onde de De Broglie λ_F donnée par:

$$\lambda_F = \frac{2\pi\hbar}{\sqrt{2 \cdot m_e^* \cdot E_F}} \tag{1.15}$$

 E_F : Niveau de Fermi.

L'effet quantique apparait et le spectre d'énergie devient discret. L'augmentation de l'épaisseur de puits augmente le nombre de niveaux d'énergies, et diminue l'espacement entre ces niveaux, ceci traduit une limite sur l'épaisseur qui dépend du matériau:

$$E_{n+1} - E_n > \hbar t \tag{1.16}$$

Où :

 E_{n+1}, E_n : Niveaux d'énergie discrets.

t: Constante de temps prenant en compte toute les diffusions.

Il faut aussi que l'écart entre deux niveaux soit plus grand que la distribution de Fermi due à la température [14].

$$E_{n+1} - E_n > K_b T (1.17)$$

Où :

 K_b : étant la constante de Boltzmann et T la température.

Avec l'apparition de l'effet quantique, les états électroniques ne correspondent plus au bas de la bande de conduction, mais ils sont quantifiés en structure de sous bande. Le problème principal réside dans l'interaction entre l'onde optique et les porteurs, à cause de la faible largeur de puits. Ce désavantage peut être surmonté en adoptant une structure avec un confinement séparé il existe deux types de confinement [14] que nous allons voir dans le paragraphe suivant:

I.11.2 Types de confinements

• Confinement à saut d'indice SCH :

Dans ce type, le guide d'onde optique est réalisé grâce à un matériau barrière de composition constante [15] comme le montre la figure suivante :

Figure 1.15 :Schématisation d'une structure de type SCH [14].

• Confinement à indice graduel GRINSCH:

Dans ce type, la structure est réalisée grâce à un matériau barrière de composition graduelle, épitaxiée sur la couche de confinement comme le montre sur lafigure 1.16.

Figure 1.16: Schématisation d'une structure de type GRINSCH [14].

I. 11.3 Les Multi-Puits Quantiques

Un multi-puits quantique est constitué d'une succession alternée de couches de deux semi-conducteurs, lorsque les couches intermédiaires sont suffisamment épaisses, les fonctions d'ondes des électrons dans le puits de la bande de conduction ne pénètrent pas suffisamment les barrières qui les confinent.

Pour qu'il y ait un recouvrement appréciable avec la fonction d'onde en dehors du puits, ce qui implique une localisation de l'électron dans le puits dans lequel il se trouve.

Figure 1. 17 :Schématisation d'une structure à multi-puits quantiques [15].

I.11.4. Énergie de quantification

Le but de ce paragraphe est de rappeler succinctement la méthode de détermination des niveaux quantifiés dans un puits quantique tel représenté sur la figure 1.14. Le puits a une profondeur V et de largeur L_p.

En prenant en compte les niveaux discrets le long de la direction z et le continuum d'états le long des directions x et y, les états d'énergie d'une particule confinée dans un puits quantique sont donnés par l'expression:

$$E(n, k_x, k_y) = E_n + \frac{\hbar^2}{2m^*} (k_x^2 + k_y^2)$$
(1.18)

L'équation de Schrödinger a les expressions suivantes:

$$-\frac{\hbar^2}{2m^*}\frac{d^2\psi}{dz^2} + (V - E_n)\psi = 0 \text{à l'extérieur du puits} \quad (z \ge L_p, z \le 0)$$

$$(1.19)$$

$$-\frac{\hbar^2}{2m^*}\frac{d^2\psi}{dz^2} - E_n\psi = 0 \text{dans le puits} \quad (0 \le z \le L_p)$$

Où \hbar est la constante de Planck, ψ est la fonction d'onde, V est la profondeur du puits de potentiel, L_P est l'épaisseur du puits,m^{*} représente la masse effective de la particule.

L'écriture des conditions de raccordement des fonctions d'ondes et de leurs dérivées $\frac{1}{m^*} \frac{d\psi}{dz}$ qui doivent être continues aux interfaces z=0 et z=L_p, dans le cas de puits finis on aboutit à la forme suivante de la fonction enveloppe:

$$\psi = \begin{cases} A \exp(k_1 z) &, z \le 0 \\ B \exp(k_2 z + \delta) &, 0 \le z \le L_p \\ Cexp(-k_1 z), z \ge L_p \end{cases}$$
(1.20)

Avec
$$k_1 = \left(\frac{2m^*(V-E_n)}{\hbar^2}\right)^{1/2}$$
 et $k_2 = \left(\frac{2m^*E_n}{\hbar^2}\right)^{1/2}$

où A, B,C et δ sont des constantes.

L'équation aux valeurs propres donnée par l'expression [15]:

$$\frac{\sqrt{2m_1E_n}}{\hbar}L_p = n\pi - 2arctg\left(\sqrt{\frac{m_2E_n}{m_1(V-E_n)}}\right)$$
(1.21)

où m₂et m₁sont respectivement les masses effectives de l'électron dans le puits et la barrière. Le potentiel V est une fonction de l'écart d'énergie de bande interdite ΔE_g de part et d'autre de l'hétérojonction puits/barrière, et est donnée par:

$$V = Q.\Delta E_g \ avec \ \Delta E_g = E_{gbar} - E_g(1.22)$$

Où E_{gbar} et E_g sont les énergies des bandes interdites des matériaux de barrière et du puits $et_{O=70\%}$.

I.12 Conclusion

Dans le premier chapitre, nous avons présentéles principales notions et propriétés des semi-conducteurs en générale et des semi-conducteurs III-V en particulier. Nous avons vu leurs cristallographies et quelques notions sur la structure des bandes. Ensuite, nous avons abordé les propriétés des hétéro-structures, la notion de la contrainte et finalement les principales notions théoriques des structures à puits quantiques qui vont nous aider à bien entamé le chapitre suivant.

Liste des tableaux

Tableau 1.1 : Tableau périodique partiel	9
Tableau 1.2 : Propriétés des principaux composés binaires III-V à 300 K	10
Tableau 1.3 : énergies de gap et les paramètres de Varshni des principaux semi- conducteurs a t=0k au voisinage des points Γ,Χ,L	18
Tableau 1.4 : Les différents paramètres de nitrure de type wurtzite	18
Tableau 1.5 : Les paramètres de Passler à T=0 k	19
Tableau 1.6 : valeur de β selon le type de structure	25

Tableau 2.1: Les énergies de bande interdite E_0, E_g^x et E_g^L , pour les binaires GaP et $GaAs$ à	
300 K	35
Tableau 2.2 : Energies de gap et les paramètres de Varshni	37
Tableau 2.3 : Masse effective des électrons pour certains Binaires GaP et GaAs	38
Tableau 2.4 :Potentiels de déformation pour GaAs et GaP	40

Chapitre II

Etude de la structure à puits quantique à base de GaAsP/GaP

II.1 Introduction

Après avoir donné un bref aperçu dans le premier chapitre sur les principales généralités sur les semi-conducteurs, nous allons aborder de près l'étude de notre structure GaAs_xP_{1-x}/GaP constitué des éléments de la colonne III (Ga) et de la colonne V (As, P) de la table périodique des éléments (figure 1.2),ses caractéristiques ainsi que les nombreux avantages qu'elle présente.

Dans ce chapitre aussi, nous allons présenter les résultats de calcul des énergies de quantificationet l'énergie de transition dans cette structure.

II.2 Description duphospho-arséniure de gallium (GaAsP)

Le phospho-arséniure de gallium ou arséniure-phosphure de gallium (GaAsP) est un composé chimique d'arsenic, de gallium et de phosphore.

C'est un matériau semi-conducteurIII-Và gap direct, utilisé en particulier pour réaliser des composants opto-électroniques, des diodes électro-luminescentes dans la lumière visible, et des photodétecteurs, des cellules photovoltaïques et des fenêtres optiques.

II.2.1 Caractéristiques structurelles

II.2.1.1 Structure cristalline

A l'exception des matériaux III-V nitrurés qui se cristallisent suivant la structure hexagonale Wurtzite, la majorité des matériaux III-V se cristallisent suivant la structure cubique Zinc Blende qui est constituée de deux sous-réseaux cubique à face centrée CFC, l'un d'éléments III et l'autre d'éléments V, décalés l'un par rapport à l'autre de (1/4, 1/4, 1/4) suivant la direction [111]. Cette structure est représentée soit en perspective, soit en projection sur un plan formé par une des faces du cube tel que l'on peut voir sur les figures 2.1 et 2.2.

Figure 2.1:Maille cristallographique de la structure Zinc Blende.

Figure 2.2:Structure Zinc Blende en projection sur un plan.

II.2.1.2Paramètre de maille

Le calcul du paramètre de maille de GaAsP est obtenu selon la loi de végard et cela en utilisant les paramètres de maille des binaires de GaAs (a=5.6533 Å) et le GaP (a=5.4508 Å):

$$a_{GaAsP} = xa_{GaAs} + (1 - x)a_{GaP}$$

$$(2.1)$$

La figure (2.3) présente l'évolution du paramètre de maille a du matériau GaAs_xP_{1-x}en fonction de la concentration de l'arsenic x.D'après les résultats obtenus on constate que le paramètre de maille de *GaAsP* augmente suivant la concentration de l'arsenic.

Figure 2.3: variation de paramètre de maille en fonction de la concentration *x*.

II.2.2La contrainte

La contrainte parallèle ε_{xx} et perpendiculire ε_{zz} sont illustrées sur la figure (2.4). L'augmentation de la concentration de l'arsenic mène à une diminution de la contrainte dans le plan (x,y) et à une augmentation de celle dans la direction de la croissance (z). On constate que le matériau subit une contrainte de compression.

Figure 2.4:Variation de la contrainte en fonction de la concentration x du $GaAs_xP_{1-x}/GaP$.

II.2.3L'épaisseur critique

Tel que nous avons vu dans le chapitre 1, l'épaisseur critique est celle à partir de laquelle les défauts commencent à apparaitre.

La figure 2.5 présente la variation de l'épaisseur critique en fonction de la concentration de l'arsenic.

Figure 2.5 : Variation de l'épaisseur critique en fonction de la composition *x*.

II.2.4 L'énergie de la bande interdite

Les semi-conducteurs *GaAs*, *GaP*, ont un gap direct c'est à dire le minimum de la bande de conduction et le maximum de la bande de valence se trouve au même point k au centre de la zone de Brillouin tel que nous avons vu dans le chapitre 1.

Les valeurs des énergies de gap aux différentes vallées des binaires GaAs et GaP à 300 K sont indiquées dans le tableau 2.1.

Binaire	$E_g^{\Gamma}(ev)$	$E_g^{\mathrm{X}}(\mathrm{ev})$	$E_g^{\mathrm{L}}(\mathrm{ev})$
GaAs	1.43	1.91	1.72
GaP	2.76	2.261	2.63

L'énergie de bande pour le GaAsP est obtenue selon l'équation suivante :

$$E_g(GaAsP) = x \cdot E_g(GaAs) + (1 - x)E_g(GaP) + x \cdot (1 - x) \cdot C$$
(2.2)

C, est le Paramètre de Bowing définissant la courbure de l'énergie de gap ayant comme valeur -0.19 eV.

La figure (2.6) présente la variation du gap de GaAsP dans les deux cas: contraint et non contraint en fonction de la concentration de l'arsenic, x.

On remarque que lorsque la concentration x augmente, l'énergie de la bande interdite diminue dans les deux cas.Pour des valeurs de x>0.05, la contrainte augmente la valeur de l'énergie de la bande interdite, ce qui veut dire qu'on aura des longueurs d'ondes plus petites.

Figure 2.6: Energie dela bande interdite de la structure GaAsP/GaP contrainte et non contrainte en fonction de la concentrationx.

II.2.5 Evolution du gap en fonction de la température

L'évolution de l'énergie de la bande interditeen fonction de la température peut généralement être décrite par l'expression de Varshni:

$$E_g(T) = E_g(0) - \frac{AT^2}{B+T}$$
 (2.3)

Avec :

E_g(0) : L'énergie du gap à 0K. A : une constante empirique[eV.K⁻¹] B : une constante associée à la température de Debye [K]

Materiaux	А(е.К ⁻¹)	В(К)	E _g (0)
GaAs	5.580 . 10 ⁻⁴	220	1.43
GaP	$5.771.10^{-4}$	372	2.76

Tableau 2.2 : Energies de gap et les paramètres de Varshni[4].

La figure (2.7) présente la variation du gap de GaAsPen fonction de la température T, on constate que l'énergie de la bande interdite diminue lorsque la température augmente (T varie de 0 jusqu'au 500K).

Figure 2.7: Energie de bande interdite pour le GaAsP en fonction de la température (Varshni).

II.2.6La masse effectivedes porteurs

La masse effective des électrons, trous lourds et les trous légers du matériau*GaAsP* est donné par l'équation suivante:

 $m_i^*(GaAsP) = x.m_i^*(GaAs) + (1-x).m_i^*(GaP)$ (2.4)

L'indice i désigne les notations suivantes é, HH et LH.

Binaire	m_e^*	m^*_{HH}	m^*_{LH}
GaAs	0.067	0.55	0.083
GaP	0.114	0.52	0.17

Tableau 2.3 : Masse effective des électrons pour certains Binaires GaP et GaAs [4].

La figure (2.8) illustre la variation des masses effectives des porteurs, c'est-à-dire les électrons (m_e^*) , les trous lourds (m_{HH}^*) , et les trous lèges (m_{LH}^*) , en fonction de la concentration x. On constate que lesmasses effectives des électrons et des trous légersdiminuentlorsque la concentrationx augmente, tandis que la masse des trous lourds augmente.

II.2.7Spin-orbite du GaAsP

La figure (2.9) présente la variation du spin–orbite (Δ) du GaAsP en fonction de la concentration x, on remarque qu'une augmentation de la concentration mène à une augmentation du spin-orbite, une propriété qui est très importante pour les lasers.

Figure 2.9:Spin-orbite du *GaAsP* en fonction de la concentration x.

Les décalages en énergies des centres de gravités de la bande de valence et de la bande conduction en k=0 varient proportionnellement a la contrainte

II.2.8Les alignements de bandes de la bande de conduction et de la bande de valence

Les décalages de bandes de la bande de conduction et de la bande de valence sont des paramètres très importants à déterminer.

Les décalages en énergie des centres de gravités de la bande de valence et de la bande de conduction en k=0 varient proportionnellement à la contrainte.

$$\Delta E_{\nu moy}^{hyd} = a_{\nu} \left(2\varepsilon_{xx} + \varepsilon_{zz} \right) \tag{2.5}$$

$$\Delta E_{cmoy}^{hyd} = a_c \left(2\varepsilon_{xx} + \varepsilon_{zz} \right) \tag{2.6}$$

 $Oùa_c$ et a_v sont respectivement les potentiels hydrostatiques de déformation pour la bande de conduction et la bande de valence.

Binaire	a _v (ev)	a _c (ev)
GaAs	-0.85	-11.0
GaP	-1.70	-7.14

Tableau 2.4:Potentiels de déformationpour GaAs et GaP[4].

Les décalages énergétiques induits par la contrainte de cisaillement pour chacune des bandes constituant la bande de valence sont les suivantes:

$$\Delta E_{hh}^{Sh} = -\frac{1}{2} \delta E^{Sh} \tag{2.7}$$

$$\Delta E_{lh}^{Sh} = -\frac{1}{2}\Delta + \frac{1}{4}\delta E^{Sh} + \frac{1}{2} \left[\Delta^2 + \Delta \cdot \delta E^{Sh} + \frac{9}{4} (\delta E^{Sh})^2 \right]^{1/2}$$
(2.8)
$$\delta E^{Sh} = 2b(\varepsilon_{zz} - \varepsilon_{xx})$$
(2.9)

L'énergie Ev de la bande de valence est:

$$E_{\nu} = E_{\nu moy} + \frac{\Delta}{3} + E_g + \Delta E_{\nu moy}^{hyd} + \max\left(\Delta E_{lh}^{Sh}, \Delta E_{hh}^{Sh}\right)$$
(2.10)

L'énergie Ec de la bande de conduction est:

$$E_c = E_{vmoy} + \frac{\Delta}{3} + E_g + \Delta E_{vmoy}^{hyd} + \Delta E_c^{hyd}$$
(2.11)

Les décalages de bandes seront donc:

$$\Delta E_c = E_{cb} - E_{cp} \tag{2.12}$$

$$\Delta E_{v} = E_{vb} - E_{vp} \tag{2.13}$$

La figure (2.10) nous montrele décalage de la bande de conduction ΔEc et de valence ΔEv entre le puits GaAsP et le substrat GaAs en fonction de la composition d'arsenic x.On constate que les décalages des bandes de conduction et de valence augmentent quand la concentration x augmente. On remarque que le décalage de la bande de conduction et supérieur à celui de la bande de valence.

Figure 2.10:Décalage de la bande de conduction et de la bande de valence du *GaAsP/GaP*.

II.2.9Energie de confinement

La résolution de l'équation de Schrödinger tel qu'on a vu dans le chapitre 1 selon l'équation 1.22, nous donne les énergies de quantification des é. Cette évolution pour trois valeurs de x (0.15, 0.25 et 0.35).

Figure2.11: Evolution de l'énergie des électrons dans un puits quantique GaAs_{0.15}P_{0.85}/GaP

Figure2.12: Evolution de l'énergie des électrons dans un puits quantique GaAs_{0.25}P_{0.75}/GaP.

Figure 2.13: Evolution de l'énergie des électrons dans un puits quantique GaAs_{0.35}P_{0.65}/GaP.

On constate que l'énergie de quantification des électrons diminue avec l'augmentation de la largeur de puits.

Sur les figures 2.11, 2.12 et 2.13 on peut voir que l'augmentation des fractions d'arsenic augmente l'énergie de quantification dans le puits, ainsi que le nombre de niveaux qui estde 7pour 15% d'arsenic et 9niveaux pour 35% d'arsenic.

De même, nous avons fait pour les trous lourds et on pourra voir sur les figures 2.14 et 2.15 que l'augmentation du pourcentage d'arsenic accroît l'énergie de quantification des trous lourds.

Figure2.14: Evolution de l'énergie des trous lourds dans un puits quantique GaAs_{0.35}P_{0.65}/GaP.

Figure 2.15: Evolution de l'énergie des trous lourds dans un puits quantique GaAs_{0.35}P_{0.65}/GaP.

II.2.10 Calcul d'énergie de transition

L'énergie de recombinaison électrons-trous lourds est donnée par la relation suivante:

$$E_{tr} = E_g^{contr} + E_{ne} + E_{hhn} \quad (2.14)$$

La longueur d'ondes correspondante est:

$$\lambda\left(\mu m\right) = \frac{1.24}{E_{tr}} \tag{2.15}$$

Où
$$E_{tr}$$
 est l'energie de transition

Sur la figure 2.16, nous avons représenté l'énergie de transition entre le premier niveau des électrons et celui des trous lourds pour les deux valeurs x=0.15 et x=0.35.

Il est clair que l'augmentation de la composition d'arsenic diminue l'énergie de transition ce qui a pour effet d'augmenter la longueur d'onde tel que l'on peut voir dans la figure 2.17.

Figure 2.17: Evolution de la longueur d'onde dans un puits quantique *GaAsP/GaP*.

II. 3 Conclusion

Dans ce chapitre nous avons vérifié l'effet de la concentration de l'arsenic x sur les différents paramètres de la structure à puits quantique GaAsP/GaP. Nous constatons que la concentration x a un effet remarquable sur ces paramètres. De même les effets de la température et de la contrainte ont aussi été vérifiés. Tous deux affectent l'énergie de la bande interdite, ouvrant ainsi de nouvelles applications technologiques. Dans le chapitre qui suit, nous allons voir l'effet de l'introduction du nitrogène dans la structure à puits quantique GaAsP/GaP.

Chapitre III:

Etude de la structure à puits quantiqueGaNAsP/GaP

III. 1 Introduction

Un matériau prometteur qui peut être adapté à la structure de bande optimale est l'alliage *GaNAsP* appartenant à ce que l'on appelle les nitrures dilués [16,17].Ces matériaux possèdent un certain nombre de propriétés fascinantes.La croissance du*GaNAsP* sous la forme de couches épitaxiéeset de structures à puits quantiques empilésa été démontrée [18,19].

Plus récemment, le *GaNAsP* a également été fabriqué dans la géométrie des nano fils [20], ce qui ouvre la voie à de nouvelles applications technologiques prometteuses. Pour activer cette nouvelle technologie, les effets de l'introduction d'azote dans le *GaAsP* doivent être bien compris, mais ils sont jusqu'à présent méconnus. Dans ce travail, nous abordons ces questions importantes en nous basant sur des études complètes de caractérisation structurelle et optique.

Nous allons dans ce chapitre voir l'effet de l'ajout de l'azote sur la bande de conduction ainsi que les simulations qui ont été faites afin d'étudier l'effet de la contrainte créé entre le substrat et la couche active sur les différents paramètres comme le gap et l'épaisseur critique. Ainsi que la masse effective et le décalage des bandes.

III. 2 La structure à puits quantique GaAsNP/GaAs

Maintenant que le grand potentiel qu'a le quaternaire $GaN_yAs_xP_{1-x-y}$ a été mis en évidence, on entame l'étude de cette structure faisant l'objet de ce chapitre. Comme le montrela figures (3.1), elle sera composée d'une couche de GaNAsP entre deux couches GaP.

Figure 3.1 : Schéma d'une structure à puits quantiques à base de *GaNAsP/GaP*.

L'alliage de $GaN_yAs_xP_{1-x-y}$ constituant le puits a des propriétés électroniques et optiques très particulières et attrayantes, comme la réduction de l'énergie de la bande interdite, la réduction de la dépendance du gap en température [21].

Dans cette parie nous nous intéressons dans un premier temps à l'effet de l'azote sur la bande de conduction, ensuite sur le gap, en utilisant le modèle d'anti-croisement de bandes. Puis en deuxièmepartie, nous nous penchons sur les effets physiques de l'origine de ces modifications, puis nous allons voir l'effet de l'azote et l'arsenic sur le procédé de croissance de ces structures.

III. 2. 1 L'influence de l'Azote sur la bande conduction

La substitution de l'azote en faible quantité à de l'arsenic dans la structure $GaAs_xP_{1-x}$ aura un effet spectaculaire sur la structure de bande. Effectivement, le caractère très électronégatif de l'atome N introduit un niveau accepteur dit iso-électronique car la valence de l'atome d'azote est identique à celle de l'atome d'arsenic.

Dans le $GaAs_x P_{1-x}$, le niveau d'impureté N ainsi créé, est résonant avec la bande de conduction, ce niveau, très localisé dans l'espace réel, est donc très délocalisé dans l'espace des k (espace réciproque) d'après la relation de Heisenberg : Δx . $\Delta k \ge \hbar$.

Selon le modèle d'anti-croisement de bande appelé souvent BAC (Bande Anti Crossing) qui a été proposé par Shan et al [22] que, dans l'alliage $GaN_yAs_xP_{1-x-y}$, ces étatslocalisés dus aux atomes d'azote isolés dans la matrice GaAsPsoient couplés avec les états délocalisés du minimum Γ de la bande de conduction de la matrice GaAsP.

Pour cela, ladescription mathématique de cette interaction donne deux solutions :

$$\begin{vmatrix} E_M(k) - E & V_{MN} \\ V_{MN} & E_N - E \end{vmatrix} = 0$$
(3.1)

Les solutions sont données par:

$$E_{\pm} = \frac{1}{2} \left[E_N + E_M(k) \pm \sqrt{\left(E_N - E_M(k) \right)^2 + 4V_{MN}^2} \right]$$
(3.2)

Où E_N est l'énergie du niveau de l'atome d'azote isolé, $E_M(k)$ est l'énergie de la bande de conduction Γ du GaAsP et V_{MN} décrit l'interaction entre ces deux types d'états. Cette interaction est d'autant plus forte que le nombre d'atomes d'azote dans la matrice de GaAsP est élevé avec $V_{MN} = 2.7$. \sqrt{y} et E_n =1.52-3.9y.

Où : yest la fraction d'azote.

A partir de l'équation3.2, on constate qu'à cause de l'interaction de $E_M(k)$ avec E_N , la bande de conduction se divise en deux sous bandes non paraboliques. Plus la concentration de l'azote augmente plus les deux niveaux se repoussent et donc plus le minimum de la bande de conduction de l'alliage formé diminue, et ceci mène vers une réduction de la bande interdite, que nous allons voir par la suite.

III.2.2l'énergie du gap

En utilisant le modèle de BAC, l'expression de l'énergie de la bande interdite est donnée par l'expression (3.3):

$$E_g(GaAsNP) = \frac{1}{2} \left[E_g(GaAsP) + E_N \pm \sqrt{\left(E_g(GaAsP) - E_N \right)^2 + 4V_{MN}^2(y)} \right]$$
(3.3)

 $E_q(GaAsP)$ est l'énergie de la bande interdite du ternaire GaAsP.

C'est donc la répulsion des deux sous bandes qui serait à l'origine de la réduction de l'énergie de la bande interdite avec l'incorporation de l'azote, ceci est illustré par le schéma de la figure (3.2).

Figure 3.2: Les bandes d'énergie dans une structure à puits quantique: (a) avant éclatement de la bande de conduction, (b) aprèséclatement.

Figure 3.3 :Les deux sous bandes E+ et E- de la bande de conduction du *GaNAsP/GaP*. On peut voir sur la figure 3.4 l'augmentation de la concentration de l'azote diminue l'énergie de la bande interdite.

Figure 3.4:Effet de l'azote sur l'énergie de gap contraint et non contraint pour le quaternaire $GaN_yAs_xP_{1-x-y}$

Comme on vient de le voir sur la figure 3.4, l'incorporation de l'azote a pour effet de diminuer l'énergie de la bande interdite, il s'est avéré que l'introduction de l'arsenic diminue aussi le gap, pour illustré cet effet, la figure 3.5 nous montre l'évolution de gap avec les compositions de l'arsenic x et de l'azote y simultanément.

Figure 3.5: Courbures iso-gap en fonction des compositions (x, y).

III. 3 Dépendance du gap en température

L'augmentation de capacité des dispositifs exige des sources lasers avec une bonne stabilité en température. C'est la raison pour laquelle on vérifie dans cette partie l'effet de la température sur l'énergie de gap pour plusieurs valeurs d'azote.

Cette variation est illustrée sur la figure 3.6 en utilisant la relation de Varshni et l'augmentation des deux paramètres mènent à une diminution de l'énergie de la bande interdite.

Figure 3.6:Effet de la température sur le gap de la structure $GaN_yAs_xP_{1-x-y}$.

III. 4 Paramètre de maille

Le paramètre de maille du $GaN_yAs_xP_{1-x-y}$ est tel que la plupart des autres paramètres, obtenu en utilisant la loi de Végard donnée par l'expression pour les quaternaires:

$$a(GaN_yAs_xP_{1-x-y}) = x. a(GaAs) + y. a(GaN) + (1 - x - y). a(GaP)$$
(3.4)

Nous avons tracé l'évolution duparamètre de maille en fonction des compositionsx et y, on peut voir que l'arsenic a pour effet d'augmenter le paramètre de maille, par contre, l'azote le diminue.

Figure 3.7:Paramètre de maille de $GaN_yAs_xP_{1-x-y}$ en fonction des paramètres (*x*, *y*).

III. 5 La contrainte

L'effet de l'azote sur la contrainte bi-axiale et uni-axiale est illustré sur la figure 3.8. On voit bien que l'addition de l'azote mène à une diminution de ε_{zz} alors que cette même addition va mener à une augmentation de ε_{xx} .

Quant à la figure 3.9, c'est la courbure iso-contrainte de la déformation bi-axiale en fonction de la concentration de l'arsenic et de l'azote.

La surface des valeurs positives représente la zone des couplets (x, y) de tension, celle des valeurs négatives représente la zone des couplets (x, y) de compression et la ligne de '0' représente les valeurs pour lesquelles le matériau puits sera en accord de maille avec le substrat.

Figure 3.8: Déformation uni-axial et bi-axial en fonction de la concentration de l'azotey(x=0.3)

Figure 3.9:courbure iso-contrainte: déformation bi-axial en fonction de la concentration de l'arsenic et de l'azote x, y respectivement.

III. 6 La masse effective

Comme nous l'avons déjà vue dans le premier chapitre, la masse effective des électrons est inversement proportionnelle à la courbure de bande de conduction, et après l'éclatement due à l'incorporation de l'azote, la bande de conductionE- devient fortement non parabolique et de courbure plus faible, on s'attend donc à ce que la masse effective des électrons dans cet alliage diminue fortement avec l'addition de l'azote.

Cette diminution est expliquée par une forte interaction du minimum de la bande de conduction avec les états localisé de N. La masse effective m_e^* est donné par:

$$m_{e}^{*}(GaAs_{x}N_{y}P_{1-x-y}) = 2 \cdot \frac{m_{e}^{*}(GaAs_{x}P_{1-x})}{\left[1 - \frac{E_{c} - E_{N}}{\sqrt{(E_{c} - E_{N})^{2} + 4 \cdot V_{MN}(y)}}\right]}$$
(3.5)

Et pour la détermination de la masse effective $m_e^*(GaAsP)$ on utilise l'interpolation linéaire selon la loi de Végard:

$$m_e^*(GaAs_x P_{1-x}) = (1-x) \cdot m_e^*(GaP) + x \cdot m_e^*(GaAs).$$
 (3.6)

La figure (3.7) montre la variation de la masse effective des électrons, trous lourds et trous légers en fonction de l'azote pour des différentes concentrations d'arsenic.

On constate que l'azote a pour effet de diminuer la masse effective des porteurs, les résultats mentionnent la diminution de la masse effective des électrons, même chose pour les trous lourds et légers.

Figure 3.10:Variation des masses effectives des électrons, trous lourds et légers en fonction d'azote.

III. 7 Décalage des bandes

Ce sont les décalages ΔEc , ΔEv entre les bandes de conduction et de valence, des deux matériaux constituant la barrière et le puits comme illustré sur le schéma suivant:

Ces décalages de bandes permettront d'avoir deux autres paramètres qui sont eux aussi important et qui sont lesQc et Qv offset ratio donnés par les équations:

$$Q_c = \frac{\Delta E_c}{\Delta E_c + \Delta E_v^{hh}} \tag{3.7}$$

$$Q_{\nu} = \frac{\Delta E_{\nu}^{hh}}{\Delta E_c + \Delta E_{\nu}^{hh}}$$
(3.8)

Sur la figure 3.12, on simule la variation du paramètre Qc en fonction de la composition d'arsenic pour différentes valeurs d'azotes. Pour des valeurs d'arsenic inférieures à 0.1, le Qc augmente, alors que pour des valeurs supérieures à 0.1, le Qc diminue. Alors que l'augmentation de l'arsenic mène à une diminution de Qc.

Figure 3.12:Variation de Q_c en fonction des paramètres de composition x et y.

La figure 3.13 montre la variation du Qv en fonction du pourcentage de l'arsenic pour plusieurs valeurs d'azote. L'augmentation de la concentration d'azote mène à une augmentation du Qv alors quel'azote diminue le Qv.

Figure 3.13:Variation de Q_v en fonction des paramètres de composition x et y

III. 8 Niveaux énergétiques

L'augmentation de la concentration d'azote diminue le nombre des niveaux énergétiques des électrons et élargit la séparation entre ces niveaux tels que l'on peut voir sur les figures 3.14 et 3.15.

De même pour les niveaux énergétiques des trous lourds, L'augmentation de la concentration d'azote diminue le nombre des niveaux énergétiques des trous lourds et élargit la séparation entre ces niveaux tels que l'on peut voir sur les figures 3.16 et 3.17.

Même remarque pour les niveaux énergétiques des trous légers, L'augmentation de la concentration d'azote diminue le nombre des niveaux énergétiques des trous légers et élargit la séparation entre ces niveaux tels que l'on peut voir sur les figures 3.18 et 3.19.

Figure 3.14:Variation des niveaux des électronspour x = 0.25 et y = 0.005.

Figure 3.15:Variation des niveaux des électrons pour x = 0.25 et y = 0.02.

Figure 3.16:Variation des niveaux des trous HHpour x = 0.25 ety = 0.005.

Figure 3.18:Variation des niveaux des trous LHpour x = 0.25 ety = 0.005.

III. 9Energie de transition

L'augmentation de x et y diminue l'énergie de transition tel que l'on peut voir sur les figures 3.20 et 3.21.

Figure 3.20: Variation de l'énergie de transitionen fonction de la largeur de puits L_p (y = 0.005).

III. 10 Longueur d'onde

L'augmentation de x et y augmente la longueur d'onde d'émission telle que l'on peut voir sur les figures 3.22 et 3.23.

Figure 3.22: Variation de la longueur d'ondeen fonction de la largeur de puitspour y = 0.005.

III. 11 Conclusion

Dans ce chapitre, nous avons étudié les propriétés très particulières de la structure à puits quantique GaNAsP/GaP.Ces propriétés attrayantessont dues à l'incorporation de l'azote qui mène à l'éclatement de la bande de conduction en deux sous bandes ce qui cause la diminution de la bande interdite et l'augmentation de la longueur d'onde d'émission.

Nous avons étudié le gap et donner son évolution en fonction des paramètres de composition x et y ainsi que la dépendance du gap en température, puis, nous avons vu les masses effectives des porteurs, le paramètre de maille, la contrainte et finalement les décalages des bandes ainsi que les niveaux énergétiques, l'énergie de transition entre le premier niveau électronique et celui des trous lourds et la longueur d'onde correspondante.

Conclusion générale

Dans le domaine des matériaux qui est la base de tous les dispositifs fabriqués, on est tout le temps en train d'explorer d'autres classes dematériaux. L'emploi des semiconducteurs s'est avéré très fructueux et divers dispositifs ont prouvé leurs importances dans notre vie quotidienne.L'exploit d'autres classes de matériaux ouvre un grand éventail de recherches de matériaux magiques, petits et rapides.

L'objectif de ce travail est d'étudier et de comparer les propriétés optoélectroniques des deux structures à puits quantiques contraintsle *GaAsP/GaP* et le *GaNAsP/GaP*.

Tous deux se cristallisent dans une structure zinc blende. Concernant la première structure ($GaAs_xP_{1-x}/GaP$), l'ajout de l'arsenic augmente le paramètre de maille, l'énergie spin-orbite, la masse effective des électrons et celle des trous légers ainsi que les décalages des bandes. Alors que l'augmentation de la concentration de ce paramètre diminue la contrainte, l'énergie de la bande interdite et la masse effective des trous lourds.

Dans la deuxième structure ($GaN_yAs_xP_{1-x-y}/GaP$), l'ajout de l'azote en toute petite quantité dans la première structure mène à un éclatement de la bande de conduction en deux sous bandes ce qui mène à son tour à une diminution de la bande interdite, du paramètre de maille ainsi que la masse effective des électrons, trous lourds et celle des trous légers, sans oublier le Qc. Par contre, cet ajout mène à une augmentation de la contrainte et le paramètre Qv.Concernant l'énergie de confinement, l'addition des deux compositions influe sur le nombre des niveaux énergétiques des différents porteurs. Nous avons aussi vérifié l'énergie de transition et nous avons constaté que tous deux mènent à une diminution de l'énergie de transition ce qui mène à son tour à une augmentation de la longueur d'onde d'émission.

Pour un puits quantique *GaAsP* de larguer 50 Å et des valeurs d'arsenic x = 0.15 et x = 0.35, on aura des longueurs d'ondes correspondantes égales à 0.495 µm et 0.561 µm, respectivement. L'ajout de l'azote dans le *GaAsP*, pour les mêmes valeurs de L_p et x précédentes, en toute petites quantité, prenant comme exemple y=0.005 et y=0.02, nous permette d'avoir des longueurs d'ondes de valeurs égales à 0.763 µm, 0.81 µm (pour y=0.005) et 0.810 µm et 0.866 µm (pour y=0.02) ce qui élargit le domaine d'application.

Références Bibliographiques

[1] :Louis Marchildon, " Mécanique quantique ", Bruxelles, 2000.

[2] :L. Vegard, Z. Phys. 5, 17,1921.

[3] : K. Shim, H.Rabitz, Ji-H.Chang, and T.Yao, J.Cryst.Growth, 214/215 (2000) 350.

[4] :W. A. Harrison. Electronic structure and the properties of solids : the physics of the chemical bond. Dover Publications, 1989.

[5] : <u>https://www.aquaportail.com/definition-9250-tableau-periodique.html</u>

visiter le07.09.2019

[6] : Yacine MAROUF : « Modélisation des cellules solaires en InGaN en utilisant Atlas Silvaco » thèse de magister université de Beskra 2013.

[7] : B. Terek : « Propriétés optique de puits quantique GalnAsN /GaAs» , Thèse doctorat, Université de Blaise Pascal, le 12 mai 2006.

[8] : N. Aggarwal, A. Vasishth, B. Singh and B.I Singh, Investigation of room temperature ferromagnetic behaviour in dilute magnetic oxides, Integrated Ferroelectr., VOL. 186, pp. 10-16, 2018.

[9] : Adachi 2017

[10] : k Amina .n Meriem : « Eude et simulation de l'effet tunnel dans une structure a double puits quantique » thèse de master université de Blida 2013.

[11] : Y Van CLUMINAL

Réalisation et étude des diodes lasers a base de GaSb émettant vers 2.3 μm pour applications a l'analyse des gaz

[12] : L. Ali : « Etude des propriétés optiques de puits quantiques contraints ultra-minces d'InAs/InP», Thèse doctorat, Université de Montréal, Juin 2006.

[13] : AISSAT Abdelkader :

"Cours matériaux pour l'optoélectronique". Université de Blida 2017.

[14] : SEGHILANI Mohamed Seghir :

"Modélisation et simulations d'une structure à multi-puits quantiques à base de GalnAs (N,Sb)/GaAs". Thèse de magistère. Université de Blida. Département d'électronique.

[15] AISSAT ABDELKADER :

"Modélisation et calcul du gain optique et du courant de seuil d'un laser à puits quantique contraint à base de GaInAs/InP". Thèse de magistère. Université BLIDA, 1999.

[16] R. Kudrawiec, A. V. Luce, M. Gladysiewicz, M. Ting, Y. J. Kuang, C. W. Tu, O. D. Dubon,
K. M. Yu, X. Walukiewicz, Electronic Band Structure of GaN_xP_yAs_{1-x-y} Highly Mismatched
Alloys: Suitability for Intermediate-Band Solar Cells, Phys. Rev. Appl, Vol. 1, pp. 034007 ().

[17] Physics and Applications of Dilute Nitrides; Buyanova, I. A., Chen, W. M., Eds.; Taylor & Francis Books, Inc: New York, 2004.

[18] Kuang, Y. J.; Yu, K. M.; Kudrawiec, R.; Luce, A. V.; Ting, M.; Walukiewicz, W.; Tu, C. W. GaNAsP: An Intermediate Band Semiconductor Grown by Gas-Source Molecular Beam Epitaxy. Appl. Phys. Lett. 2013, 102, 112105.

[19] Karcher, C.; Grüning, H.; Gü ngerlich, M.; Klar, P. J.; Volz, K.; Stolz, W.; Heimbrodt, W. Optical Properties of Ga(NAsP) Lattice Matched to Si. Phys. Status Solidi C 2009, 6, 2638–2643.

[20]La, R.; Pan, J. L.; Bastiman, F.; Tu, C. W. Self-Catalyzed Ga(N)AsP Nanowires and GaAsP/GaNAsP Core-Shell Nanowires Grown on Si (111) by Gas-Source Molecular Beam Epitaxy. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2016, 34, 02L108.

[21] : A. Alssat, S. Nacer, M. Bensebti, J.P. Vilcot

Investigation on the emissionwavelenght of GaInNAsstraindquantiumwells on GaAssubstrates.

Microelectronics journal 39, 2008 pp 63-66

[22] : W. Shan, W. Walkiewczand J.W. Ager III

Band anti-crossing in GaInNAsalloys.

Phys. Rev 1999 vol 82, n° 6 pp 1221-1224.

Résolution de l'équation de Schrödinger pour un potentiel coulombien

Il s'agit de résoudre l'équation de Schrödinger indépendante du temps pour un potentiel central en 1/r (avec $r = |\vec{r_1} - \vec{r_2}|$):

$$\left(-\frac{\hbar^2}{2m}\Delta + U(\vec{r})\right)\phi(\vec{r}) = E\phi(\vec{r}) \quad \text{avec} \quad U(\vec{r}) = -\frac{e^2}{4\pi\varepsilon_o r} \quad (1)$$

En raison de la forme du potentiel, nous pouvons traiter ce problème en symétrie sphérique pour laquelle l'opérateur Δ s'écrit (fastidieux, quelques éléments sont donnés à la fin de ce complément) :

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2} \left(\frac{\partial^2}{\partial \theta^2} + \frac{1}{tg\theta}\frac{\partial}{\partial \theta} + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial \varphi^2} \right) \quad (2)$$

Il est alors intéressant de calculer le moment cinétique, d'abord en coordonnées cartésiennes, puis converti en coordonnées sphériques :

$$\vec{L} = \vec{r} \wedge \vec{p} \quad \text{et} \quad p_u = \frac{\hbar}{i} \frac{\partial}{\partial u} \quad \text{avec } u = x, y, \text{ ou } z$$
$$D' \circ \tilde{u} : \quad \vec{L} = \frac{\hbar}{i} \begin{pmatrix} -\frac{\cos\varphi}{ig\theta} \frac{\partial}{\partial\varphi} - \sin\varphi \frac{\partial}{\partial\theta} \\ -\frac{\sin\varphi}{ig\theta} \frac{\partial}{\partial\varphi} + \cos\varphi \frac{\partial}{\partial\theta} \\ \frac{\partial}{\partial\varphi} \end{pmatrix}$$

Et on remarque alors que :

$$L^{2} = -\hbar^{2} \left(\frac{\partial^{2}}{\partial \theta^{2}} - \frac{1}{tg\theta} \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \varphi^{2}} \right)$$

On est donc amené à résoudre l'équation suivante :

$$\left[-\frac{\hbar^2}{2m}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right) + \frac{L^2}{2mr^2} + U(r) - E\right]\psi(r,\varphi,\theta) = 0$$

On remarque que les opérateurs comportent soit la coordonnée r, soient les coordonnées φ et θ , mais elles ne sont pas mélangées. A partir de ce constat, on peut écrire une solution du type :

$$\phi(r,\theta,\varphi) = R(r)Y(\theta,\varphi)$$

Dans ce cas, l'équation devient, en divisant par RY et en multipliant par r²:

$$\left[-\frac{\hbar^2}{2m}\frac{1}{R}\left(\frac{\partial^2}{\partial r^2}+\frac{2}{r}\frac{\partial}{\partial r}\right)(R)+U(r)-E\right]r^2=-\frac{L^2Y}{2mY}=\text{constante}$$

En effet, la partie de gauche ne dépend que de r, et la partie droite que de φ et θ , donc le tout est constant, puisque cette équation doit être valable quelques soient r, φ et θ . On obtient ainsi 2 équations, une radiale et une azimutale. En fait l'équation azimutale représente une équation aux valeurs propres. En mathématiques, les solutions de cette équation sont connues. Elles sont appelées harmoniques sphériques, et sont fonctions propres de L² avec la valeur propre $l(l+1)\hbar^2$, c'est-à-dire :

$$L^2 Y_l = \hbar^2 l(l+1)Y_l$$

En utilisant l'astuce suivante :
$$\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r}\right)(R) = \frac{1}{r}\frac{\partial^2}{\partial r^2}(rR),$$

il reste alors à déterminer la partie radiale qui satisfait l'équation :

$$-\frac{\hbar^2}{2m}\left[\frac{1}{r}\frac{\partial^2(rR)}{\partial r^2} - \frac{l(l+1)}{r^2}R\right] + (U(r) - E)R = 0$$

Pour l'instant nous n'avons fait aucune hypothèse sur la forme du potentiel, si ce n'est qu'il ne dépend que de r (et pas des angles). Or nous savons que pour l=0, on doit retomber sur les niveaux simples de Bohr, qui sont des niveaux discrets qui s'écrivent en fonction de la constante de Rydberg E_o . Il doit donc exister plusieurs solutions discrètes dépendant du nombre quantique n, mais également de l. Nous écrirons dès lors ces solutions comme $R_{nl}(r)$. Pour simplifier l'écriture de cette équation, nous allons utiliser la constante de structure fine, le rayon de Bohr, ainsi que E_o :

$$\alpha = \frac{e^2}{4\pi\varepsilon_o\hbar c} \quad \text{d'où} \quad a_B = \frac{\hbar}{\alpha mc}, \ E_o = \frac{1}{2}\alpha^2 mc^2, \ U(r) = -\frac{e^2}{4\pi\varepsilon_o r} = -\frac{\alpha\hbar c}{r}$$

Ainsi en posant $r = \rho . a_B$, $u_{nl}(r) = r . R_{nl}(r)$ et $\varepsilon_{nl} = -E_{nl}/E_o$, on obtient :

$$u_{nl}'(\rho) + \left(\frac{2}{\rho} - \frac{l(l+1)}{\rho^2} - \varepsilon_{nl}\right) u_{nl}(\rho) = 0$$

Les solutions de cette équation se trouvent en examinant les cas où $\rho \rightarrow 0$ (dans ce cas le terme en $1/\rho$ est prépondérant) et où $\rho \rightarrow \infty$ (dans ce cas seul reste le terme ε_{nl}):

$$\rho \to 0 \quad v''(\rho) - \frac{l(l+1)}{\rho^2} v(\rho) = 0 \quad \text{qui a pour solution} \quad v = \lambda \rho^{l+1} + \frac{\mu}{\rho^l}$$

$$\rho \to \infty \quad w''(\rho) - \varepsilon_{nl} w(\rho) = 0 \qquad \text{qui a pour solution} \quad w = \lambda' \exp(-\sqrt{\varepsilon_{nl}}\rho) + \mu' \exp(\sqrt{\varepsilon_{nl}}\rho)$$

En raison du fait que la fonction d'onde ne peut être infinie en $\rho = 0$ ou $\rho = \infty$, la solution générale s'écrit alors comme :

$$u_{nl}(\rho) = (a_{l+1}\rho^{l+1} + a_{l+2}\rho^{l+2} + \dots + a_k\rho^k + \dots)\exp(-\sqrt{\varepsilon_{nl}}\rho^{l+1})$$

où le polynôme doit être fini pour que la fonction d'onde soit finie. En injectant cette solution dans l'équation initiale, on trouve la relation :

$$\frac{a_{k+1}}{a_k} = \frac{2\left(k\sqrt{\varepsilon_{nl}} - 1\right)}{k\left(k+1\right) - l\left(l+1\right)} \quad \text{avec} \quad k \ge l+1$$

Si on considère que le polynôme s'arrête à l'ordre p, on doit donc avoir $a_{p+1} = 0$ ce qui conduit à $\sqrt{\varepsilon_{nl}} = 1/p$, et on remarque ainsi que le degré maximum du polynôme n'est autre que n. L'énergie des niveaux ne dépend donc pas de l et s'écrit bien comme le proposait Bohr :

$$\varepsilon_n = \frac{1}{n^2}$$
 soit $E = -\frac{E_o}{n^2}$

L'indice l doit donc vérifier $l+1 \le n$, et on constate qu'il existe plusieurs sous-niveaux d'indice l différents pour une même valeur de n et donc de l'énergie. A partir de ces dernières expressions, on retrouve les fonctions radiales $R_{nl}(r) = u_{nl}(r)/r$ données dans le tableau au paragraphe III-3.