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Abstract

After being hunted for about half a century since its prediction by Peter Higgs, the Higgs

boson was finally discovered by CERN at the Large Hadron Collider (LHC) in July 2012. The

experimental confirmation of its existence marked the last step of completing the Standard

Model of electroweak and strong interactions, and started the era of Higgs precision tests to

look for new physics. This discovery is particularly important, since it confirms the consistency

of the Higgs mechanism in generating particle masses through the first ever discovered scalar

field.

In this master degree thesis, we take a deeper look at the way the Higgs has been discovered

at LHC. Firstly, we aim attention at the whole process taking place at LHC, by focusing par-

ticularly on the pp→ H → ZZ∗ → 4 leptons golden channel. Starting from the proton-proton

collision, all the way to the detection of the final state four leptons in the ATLAS detector.

Secondly, taking MadGraph5 aMC@NLO as our event generator, we focus on the simulation of

the parton collision events leading us to the four leptons final state. Here, we lay stress upon

the way our knowledge about Standard Model interactions, parton showering, hadronization

and detector processes is involved in simulating events. Lastly, we make use of the ATLAS

Open Data datasets. We compare the given experimental data with the corresponding simu-

lated ones, then we reconstruct the Higgs signal using some statistical tools.

Keywords : Higgs boson, Standard Model, LHC, ATLAS experiment.
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Résumé

Après avoir été traqué pendant près d’un demi-siècle depuis sa prédiction par Peter Higgs, le

boson de Higgs fut finalement découvert par le CERN au grand collisionneur de hadrons (LHC)

en juillet 2012. La confirmation expérimentale de son existence a marqué la dernière étape qui

compléta le Modèle Standard des interactions électrofaibles et fortes, et a initié l’ère des tests de

précision du Higgs à la recherche de la nouvelle physique. Cette découverte est particulièrement

importante, puisqu’elle confirme la consistance et la validité du mécanisme de Higgs dans la

génération des masses des particules à travers le premier champ scalaire découvert.

Dans cette thèse de master, nous regardons de plus près comment le boson de Higgs a été

découvert au LHC. D’abord, nous portons l’attention sur tout le processus se déroulant au LHC,

en nous concentrant particulièrement sur le canal d’or pp→ H → ZZ∗ → 4 leptons. À partir de

la collision proton-proton jusqu’à la détection des quatre leptons de l’état final dans le détecteur

ATLAS. Ensuite, en prenant MadGraph5 aMC@NLO comme générateur d’événements, on se

concentre sur la simulation des événements de collisions de partons nous menant vers l’état

final des quatre leptons. Ici, nous mettons l’accent sur la manière dont nos connaissances sur

les interactions du Modèle Standard, les cascades de partons, l’hadronisation et les processus

de détection sont impliquées dans la simulation des événements. Enfin, nous utilisons les en-

sembles de données ATLAS Open Data. Nous comparons les données expérimentales fournies

avec celles simulées correspondantes, puis nous reconstruisons le signal du Higgs en utilisant

certains outils statistiques.

Mots-clés : boson de Higgs, Modèle Standard, LHC, expérience ATLAS.
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P�l�

rty� �rV �� ¢� ¥bnt�� @n� ,��z�� ��  r� �O� 
CAq§ A� �� ¨t�� ��b�� Tl�C  �
(LHC) rybk�� �A�¤Cdh�� � AO� ¨� CERN �b� �� z�y¡  ¤Ew� �AKt�A� �ry�� ll� ,z�y¡
¨FAyq�� �Ðwmn�� �AmktF¯ ry�±� wW��� �A� £ w�w� ¨b§r�t�� dy��t�� .2012 Tyl§w� ¨�
��� �� z�yh�� T� ��CAbt�¯ d§d� dh� T§�d�¤ ,T§wq�� T§¤wn�� wq��¤ Tfy`R¤rhk�� wql�
¨� z�y¡ Ty�� �As�� d�¥§ ¢�± ,QA� �kK� �h� �AKt�¯� �@¡ d`§ .d§d� ºA§zyf� �lWt��

.¢�AKt�� �� ¨mlF �q� �¤� �®� �� �Amys��� �t� dy�w�
¨� z�y¡ �AKt�� Ah� �� ¨t�� Tq§rW�� Yl� �m�� r\� ¨ql� ,£@¡ rtFAm�� T�¤rV� ¨�
Anq�� Yl� QA� �kK� zy�rt�� �� LHC ¨� ©r�� ¨t�� �Aylm`�� �� Erb� ,¯¤� . LHC
�AKt�� Y�� ¯w}¤ , w�¤r� -  w�¤r� � AO� �� A�®W�� .pp → H → ZZ∗ → 4l Tyb¡@��
MadGraph5 aMC@NLO �Am`tFA� ,Ay�A� .HlV� �JAk�� ¨� T`�C±� �A�wtbl� Ty¶Ahn�� T�A���
Ty¶Ahn�� T�A��� Y�� A� wq� ¨t��  w�CAb�� � AO� ��d�� A�A�m� A�Amt¡� ¨�w� ,��d�°� �Knm�
 w�CAb�� �¯®J ¤ ,¨FAyq�� �Ðwmn�� �®�Aft� Ant�r`� ��  � Yl� d�¥� ,An¡ .T`�C±� �A�wtbl�
T�wm�� �d�ts� ,�ry�� .��d�±� A�A�m� Tyn`� �Kk�� �Aylm� ¤ Ty�¤Cdh�� �Aylm`�� ¤
�� .�A�A�m�� �� Ahl�Aq§ A� �� T�dqm�� Tyb§r�t�� �A�Ayb��  CAq� .T�wtfm�� HlV� �A�Ay�

.Ty¶AO�³� ��¤ ±� {`� �Am`tFA� z�y¡ CAJ� ºAn�  A��� �wq�

.HlV� T�r�� ,LHC ,¨FAyq�� �Ðwmn�� ,z�y¡  ¤Ew� : Ty�Atfm�� �Amlk��
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Introduction

A great way to make considerable progress in physics, is to come up with revolutionary

ideas. Suggesting brand new theories and views, or general theories that can combine already

existing and verified ones. These new theories are capable of giving not only the same results

as the former ones (sometimes through applying approximations, limits or special cases...), but

adds further to the comprehension of physics’ phenomena. For example, Maxwell was the first

one to link the electricity and magnetism. He considered them as different manifestations of

the same phenomenon, combining them into one single branch of physics we call ”the electro-

magnetism”. Theoretical implications of it, especially regarding the speed of light, gave rise to

the development of ”the special relativity” by Einstein. Which in turn unified space and time.

And the best way to confirm the accuracy of a theory or prediction is through experimental

approaches. This is what physicists were aiming for when they built the Large Hadron Collider

(LHC): to unravel the missing pieces associated to the comprehension of the theory of funda-

mental interactions, the Standard Model. This theory has shown to be the most successful

model of subatomic particles since its development in the 1960s. It provides an elegant mathe-

matical framework, that describes the way the fundamental constituents of matter interact with

one another, through the fundamental forces mediated by gauge bosons: the electromagnetic

force carried by photons, the weak force by W± and Z bosons and the strong force by gluons.

It succeeded in explaining several experimental results and precisely predicting different kinds

of phenomena. Like the experimental confirmation of the existence of quarks in 1968, W± and

Z bosons in 1983, top quark t in 1995, and the tau neutrino ντ in 2000.

However, it took almost half a century to discover the Higgs boson, the last missing piece

of the Standard Model. This dicovery was announced in July 2012 by the ATLAS and CMS

collaborations, with a mass around 125 GeV. The Higgs’ existence was postulated to explain

”how do particles acquire mass?”. And thus in 2013, The Nobel Prize in Physics was handed

jointly to Peter Higgs and François Englert for:

”The theoretical discovery of a mechanism that contributes to our understanding of the origin

of mass of subatomic particles, and which recently was confirmed through the discovery of the

predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron

Collider” [1].
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The aim of this master degree thesis, is to reconstruct and analyse the Higgs signal in the

pp→ H → ZZ∗ → 4 leptons golden channel with real and simulated data, and using statistical

tools. This in order to better understand the importance of this discovery in the Standard

Model, and why it is a huge step in the history of physics.

The content of our thesis is organised as follows:

• In the first chapter, we talk about the Higgs boson and its role in the Standard Model

[2–6]. We explain the spontaneous breaking of the electroweak symmetry, as well as the

generation of particle masses. We also look at the hadronic Higgs production and the

Higgs decay modes.

• The second chapter is dedicated to the physics behind the Large Hadron Collider and the

ATLAS detector. Why the LHC is designed the way it is, and what kind of observables

and data it provides.

• As for the third chapter, after discussing the background estimation and event selection

for the pp → H → ZZ∗ → 4l channel, we’ll be focusing on how events in the LHC are

simulated. We take a deeper look at Madgraph5 aMC@NLO as a Monte Carlo event

generator, and we use it to generate a process simulation as an example application.

• In the last chapter, we finally use data and simulation samples from the ATLAS Open

Data datasets, to reconstruct histograms fitting the Higgs signal and background noise

with data. Then we’ll try to compare the simulated results with the experimental data

using statistical tools, mainly by calculating the p-value.

2



Chapter 1

The Standard Model Higgs boson

1.1 What is the Standard Model Higgs Boson?

The Standard Model Higgs boson is the only scalar particle predicted by the Standard

Model (SM) [2–6] of particle physics. It was hunted for half a century, to be finally discovered

at the Large Hadron Collider (LHC) in July 2012, with a mass of MH = 125.36±0.41GeV [7,8].

A chronology of the discoveries of the Standard Model particles is given in the Figure 1.1.

This scalar particle, before having been introduced in the weak and electromagnetic unified

theory of the SM in 1967-1968 [2–6] , was hypothesized in 1964 through a classical formulation

by P. Higgs [9], and separately through a quantum formulation by F. Englert and R. Brout [10].

The goal of the introduction of this particle in connection with gauge vector fields was to explain

how we can avoid the unobserved massless spin zero particles predicted by Goldstone, when a

continuous symmetry group leaves the Lagrangian but not the vacuum invariant [11,12].

The main idea pointed out by P. Higgs, F. Englert and R. Brout was the introduction of

the gauge invariance constraint simultaneously on both the scalar and the gauge Lagrangians.

Then, similarly as done by Goldstone, they added the assumption that the scalar field Φ(x),

ruled by a Φ4(x) self interaction, undergoes a spontaneous breaking of its degenerate minima

states, that brings it to one specific vacuum. This vacuum breaks the gauge symmetry but the

Lagrangian is still gauge and Lorentz invariant. Despite the fact that this procedure gives the

scalar Higgs boson its mass as mentioned by Goldstone, it furthermore allows weak gauge vector

bosons to acquire finite values of mass. It is worthwhile to point out here that G. S. Guralnik, C.

R. Hagen and T. W. B. Kibble showed explicitely that, in this formulation, the disappearance

of the massless unphysical scalar degrees of freedom makes the gauge vector degrees of freedom

acquire their corresponding physical masses [13]. This procedure that generates the gauge

vector boson masses in the SM is called the Higgs mechanism.

Let us now look more deeply into how the mass of SM elementary particles is generated.
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Figure 1.1: Chronology of the discoveries of the Standard Model particles [14].

In the SM approach, there are three different ways through which the scalar, the vector and

the spinor elementary particles can get their respective masses. But they all share the same

characteristic of being related to a specific kind of interaction with the Higgs field. In fact, to

generate masses we need the Φ4(x) self interaction for the scalar particle, the minimal gauge

coupling interaction for the gauge vector particles and the Yukawa interaction for the spinor

particles. Furthermore, we always take profit from the fact the Higgs is currently living around

one of its minima states due to a spontaneous broken symmetry driven by the cooling down

of the universe temperature. This break in symmetry brought the ground state of elementary

particles from underlying to the SUc(3)⊗ SUIW (2)⊗ UY (1) gauge group, to appear as state of

the SUc(3)⊗Uem(1) gauge group. Hence, color and electromagnetic symmetries are the current

residual symmetries of states in our universe. Yet, the Lagrangian LSM still being governed by

the SUc(3)⊗ SUIW (2)⊗ UY (1) gauge symmetry.
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1.1.1 Generation of the scalar Higgs boson mass (Goldstone mech-

anism)

In the SM, we assume that the Higgs field Φ(x) is a complex scalar Klein Gordon field

with respect to Lorentz group, a doublet under the weak isospin non abelian group SUIW (2), a

singlet under the non abelian color group SUc(3) with no color charge, and a singlet under the

abelian hypercharge group UY (1) with hypercharge value Y(Φ) = 1.

Hence, we can write:

Φ(x) =

(
φ(+)(x)

φ(0)(x)

)
=

(
φ1(x) + iφ2(x)

φ3(x) + iφ4(x)

)
(1.1)

This field is subject to the following Lagrangian LS with a Φ4 self interaction.

LS = (DµΦ)†(DµΦ)− V (|Φ|2) (1.2)

Where Dµ denotes the covariant derivative:1

Dµ = ∂µ − ig
3∑

k=1

σ̂k
2
W k
µ (x)− ig′Y

2
Bµ(x). (1.3)

And V (|Φ|2) is the Higgs potential energy:

V (|Φ|2) = µ2Φ†Φ + λ(Φ†Φ)2 = µ2|Φ|2 + λ|Φ|4 (1.4)

which, for the free parameters µ2 and λ chosen as µ2 < 0 and λ > 0, can be depicted as in the

Figure 1.2.

This potential has an infinite number of possible stable minima (vacuum states)2 corre-

sponding to:

|Φ|2(min) =
(
φ2

1 + φ2
2 + φ2

3 + φ2
4

)
(min)

=
1

2

(
−µ2

λ

)
≡ 1

2
υ2 (1.5)

Hence, when the universe cooled down, the Higgs state falls into a specific stable vacuum state

(amounting to a choice of a non observable phase factor). So without loss of generality, we can

choose this Higgs minimum state as being:

1Where σk stands for the Pauli matrices, W k
µ (x) stands for the three quadri-vector fields belonging to the

adjoint representation of the SUIW (2) group with the corresponding coupling constant g, and Bµ(x) stands
for the quadri-vector field belonging to the adjoint representation of the UY (1) group with the corresponding
coupling constant g′.

2States for which: V ′(|Φ|2)||Φ|2=|Φ|2
(min)

= 0 and V ′′(|Φ|2)||Φ|2=|Φ|2
(min)

> 0

5



Φ0 =
1√
2

(
0

υ

)
(1.6)

Figure 1.2: Illustration of the shape of the Higgs potential V (|Φ|2) for µ2 < 0 and λ > 0 [15].

Here, it is worthwhile to note that the Lagrangian LS is invariant under the gauge trans-

formations of the SUIW (2)⊗ UY (1) group but not the vacuum Φ0.

In fact, the scalar field Φ and the gauge fields Bµ and W µ
k are subject to the following gauge

transformations simultaneously:

Φ(x)→ Φ′(x) = exp

{
i

2

(
3∑

k=1

θk(x)σk + ϕ(x)Y

)}
Φ(x),

Bµ(x)→ B′µ(x) = Bµ(x)− 1

g′
∂µϕ(x)

W µ
k (x) −→ W ′µ

k(x) = W µ
k (x)− 1

g
∂µθk(x) + εkln θ

l(x)W µ, n(x)

(1.7)

This leads to:

Dµ Φ(x) −→ D′µ Φ′(x) (1.8)

=

[
∂µ − ig

3∑
k=1

σ̂k

2
W ′µ
k (x)− ig′Y

2
B′µ(x)

]
exp

{
i

2

(
3∑

k=1

θk(x)σk + ϕ(x)Y

)}
Φ(x)

= exp

{
i

2

(
3∑

k=1

θk(x)σk + ϕ(x)Y

)}[
∂µ − ig

3∑
k=1

σ̂k

2
W µ
k (x)− ig′Y

2
Bµ(x)

]
Φ(x) = Dµ Φ(x)
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Hence:

L′S =
[
D′µΦ′(x)

]†
[D′µΦ′(x)]− V (|Φ′(x)|2) = LS (1.9)

is gauge invariant.

But the Higgs vacuum state transforms as:

Φ0 −→ Φ′0 = exp

{
i

2

(
3∑

k=1

θk(x)σk + ϕ(x)Y 1

)}
Φ0

'

{
1 +

i

2

(
3∑

k=1

θk(x)σk + ϕ(x) 1

)}
Φ0

= Φ0 +

{
i

2

(
3∑

k=1

θk(x)σk + ϕ(x) 1

)}
Φ0

= Φ0 +
i

2
√

2

(
ϕ(x) + θ3(x) θ1(x)− iθ2(x)

θ1(x) + iθ2(x) ϕ(x)− θ3(x)

)(
0

υ

)

=

(
1 +

i

2
[ϕ(x)− θ3(x)]

)
Φ0 +

i

2
√

2
[θ1(x)− iθ2(x)]

(
υ

0

)
6= Φ0 (1.10)

Which means that the vaccum Φ0 is not invariant under the gauge group SUIW (2) ⊗ UY (1).

Besides, it is invariant under a new gauge group. In fact, if we consider just the third component

of the weak isospin, and combine it with the hypercharge in a way that forces the relation

θ3(x) = φ(x) ≡ θ(x), then we get:

Φ0 −→ Φ̃0 = exp

{
i

2
θ(x)

(
σ3 + 1

)}
Φ0 = exp

{
iθ(x)

(
1 0

0 0

)}
Φ0

'

(
1 + iθ(x) 0

0 1

)
Φ0 =

1√
2

(
1 + iθ(x) 0

0 1

)(
0

υ

)
=

1√
2

(
0

υ

)
= Φ0

This leads us to the Uem(1) group for which the electromagnetic charge Q should be given by

the Gell-Man formula: Q = IW3 + Y/2.

• Fluctuations around the vacuum

Let us now consider that the Higgs field undergoes small fluctuations around the vacuum

Φ0. We can then parametrize it as follows:

Φ(x) =
1√
2

(
χ2(x) + iχ1(x)

υ +H(x)− iχ3(x)

)
=

1√
2
exp

(
~σ.~χ(x)

υ

)(
0

υ +H(x)

)
(1.11)
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Then by applying the exp
(
−~σ.~χ(x)

υ

)
gauge transformation to the field Φ(x), we get:

exp

(
−~σ.~χ(x)

υ

)
Φ(x) =

1√
2

(
0

υ +H(x)

)
(1.12)

We see that by this trick, all the fluctuations χ1(x), χ2(x), χ3(x) have been ruled out. Then

those are unphysical fields named Goldstone fields. The only remaining physical field is the

truly Higgs field H(x). So if we stick only with the physical field, we are allowed to write:

Φ(x) =
1√
2

(
0

υ +H(x)

)
(1.13)

We are now interested in the mass of this physical Higgs field. For that, let’s replace this

expression into the Lagrangian LS, then pick only the terms that are quadratic in the field

H(x).

LS → L(H2) =
1

2
∂µH(x)∂µH(x)− 1

2
(µ2 + 3λυ2)H2(x) (1.14)

Then, eliminating the tadpole υ(µ2 + λυ2)H(x) by the imposing constraint µ2 + λυ2 = 0, our

Higgs Lagrangian in equation (1.14) takes the form:

L(H2) =
1

2
∂µH(x)∂µH(x)− 1

2

=M2
H︷ ︸︸ ︷

(−2µ2)H2(x) (1.15)

A simple comparison with the Klein-Gordon Lagrangian enables us to deduce that the mass of

the Higgs boson is:

MH =
√
−2µ2 =

√
2λ υ (1.16)

The current corresponding experimental value is [16]:

MH = 125.10(14)GeV (1.17)

Besides, the value of υ deduced from muon decay experiment is [16]:

υ =

√
1/(
√

2GF ) = 246.219651(64)GeV with: GF = 1.1663787(6) 10−5GeV −2 (1.18)

This allows us to deduce the numerical value of the quartic Higgs self coupling as being:

λ =
M2

H

2 υ2
= 0.12907(29) (1.19)

which is of the same order as the strong coupling [16] αs(MZ) = 0.1179(10).
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1.1.2 Generation of the electroweak vector gauge boson masses (Higgs

mechanism)

Now let us consider the electroweak Lagrangian LEW :

LEW = LS + LG (1.20)

where LG is given by 3:

LG = −1

4
W k
µνW

kµν − 1

4
BµνB

µν (1.21)

and 
W k
µν = ∂µW

k
ν − ∂νW k

µ + g εklmW l
µW

m
ν

Bµν = ∂µBν − ∂νBµ

(1.22)

In this Lagrangian we replace the Higgs field by the expression (1.13). Then we extract only

the quadratic terms in W k
ν and Bν and their mixing. After some tedious rearrangements, we

can write:

LEW → LW 2 = − 1

2(g2 + g′ 2)
∂µ
(
g′W 3

ν − gBν

)
∂µ
(
g′W 3 ν − gBν

)
− 1

2(g2 + g′ 2)
∂µ
(
gW 3

ν − g′Bν

)
∂µ
(
gW 3 ν − g′Bν

)
−1

2
∂µ
(
W 1
ν − iW 2

ν

)
∂µ
(
W 1 ν + iW 2 ν

)
+

1

8
g2υ2(W 1

µ + iW 2
µ)(W 1µ − iW 2µ)

+
1

8
υ2(gW 3

µ − g′Bµ)(gW 3µ − g′Bµ)

Then, by introducing the following transformations 4:

W+
µ =

1√
2

(W 1
µ − iW 2

µ) =
1√
2

(W 1
µ + iW 2

µ)† ≡ (W−
µ )†

Zµ =
gW 3

µ − g′Bµ√
g2 + g′ 2

≡ W 3
µ cos θW −Bµ sin θW

Aµ =
g′W 3

µ − gBµ√
g2 + g′2

≡ W 3
µ sin θW −Bµ cos θW

(1.23)

3W k
µ and Bµ are real electroweak states.

4θW is the Weinberg angle.
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we obtain:

LW 2 = − 1

2
∂µAν∂

µAν︸ ︷︷ ︸
massless photon

− 1

2

[
∂µZν∂

µZν − 1

4
υ2(g2 + g′2)ZµZµ

]
︸ ︷︷ ︸

massive Z weak gauge boson

− 1

2

[
(∂µW

−
ν )†∂µW−ν − 1

4
g2υ2

(
W−µ)†W−

µ

]
︸ ︷︷ ︸

massive W− weak gauge boson

− 1

2

[
(∂µW

+
ν )†∂µW+ν)− 1

4
g2υ2

(
W+µ

)†
W+
µ

]
︸ ︷︷ ︸

massive W+ weak gauge boson

(1.24)

Hence, we deduce that the masses of the electroweak gauge bosons are:

Mγ = 0, MZ =
υ

2

√
g2 + g′2, and MW+ = MW− ≡MW =

1

2
υg (1.25)

The current experimental values of those masses are [16]:


Mγ < 10−18 eV

MZ = 91.1876(21)GeV

MW = 80.379(12)GeV

(1.26)

We can then estimate the values of the electroweak couplings g and g′ as 5:
g =

2MW

υ
→ 0.652904(17)

g′ =
2

v

√
M2

Z −M2
W → 0.349790(09)

⇒ e =
gg′√
g2 + g′ 2

→ 0.30832(04) '
√

4πα→ 0.30286

(1.27)

1.1.3 Generation of the spinor fermion masses (Yukawa mechanism)

In the SM, to be in line with the experimental results concerning the decays of particles,

Dirac fermions are classified into three families. Furthermore, for each specific fermionic fla-

vor and with respect to the weak isospin interaction, the left handed chiral particle behaves

differently than the right handed chiral one.

Let us now confine ourself in the study of one leptonic family composed of two flavors lu

and ld. Each one of these flavors can be split into two kinds of particles, left and right handed

ones. So we have: l
(L)
u , l

(R)
u , l

(L)
d and l

(R)
d . Now with respect to the weak SU(2)IW gauge group,

l
(L)
u and l

(L)
d live in the same doublet state Ll, while l

(R)
u and l

(R)
d live in separate singlet states

5Where the fine structure coupling α = 1
137 .
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Rl,u and Rl,d. This allows us to write:

Ll =

(
l
(L)
u

l
(L)
d

)
, Rl,u = l(R)

u , Rl,d = l
(R)
d (1.28)

The idea is now to use the Higgs field Φ(x):

Φ(x) =
1√
2

(
0

υ +H(x)

)

and its charge conjugate ΦC(x):

ΦC(x) = i σ2Φ∗(x) =
1√
2

(
υ +H(x)

0

)
(1.29)

to generate a SM gauge invariant Yukawa interaction, involving the scalar and the spinor fields.

For the down type flavor, the corresponding Yukawa Lagrangian reads:

LY,d = −λd
(
L̄l(x)Φ(x)Rl,d(x) + Φ†(x)R̄l,d(x)Ll(x)

)
(1.30)

And for the up type flavor, the corresponding Yukawa Lagrangian reads:

LY,u = −λu
(
L̄l(x)ΦC(x)Rl,u(x) + Φ†C(x)R̄l,u(x)Ll(x)

)
(1.31)

where λd and λu are the Yukawa coupling for the down and the up flavors. These Yukawa

Lagrangians are then combined with the Dirac fermionic kinetic Lagrangian LF , that can be

written in the form:

LF = iL̄l(x)D(l,L)
ν γνLl(x) + iR̄l,u(x)D(l,R)

ν γνRl,u(x) + iR̄l,d(x)D(l,R)
ν γνRl,d(x)

(1.32)

where the covariant derivatives D
(l,L)
ν and D

(l,R)
ν are given by:

D(l,L)
ν = ∂ν − ig

3∑
k=1

σ̂k

2
W k
ν (x)− ig′Y

2
Bν(x)

Dl
R, ν = ∂ν − ig′

Y

2
Bν(x)

(1.33)

After that, we extract from the Lagrangian LF +LY,d+LY,u the quadratic terms in the fermionic
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fields ld(x) and lu(x). We then end up with two expressions:
Ll2d = i l̄d (∂νγ

ν) ld −
λd υ√

2
l̄d ld

Ll2u = i l̄u (∂νγ
ν) lu −

λu υ√
2
l̄u lu

(1.34)

Hence, the corresponding masses are:

Md =
λd υ√

2
and Mu =

λu υ√
2

(1.35)

The current experimental values of the masses of the three generations of fermions in the SM

are presented in the Table 1.1. We point out here that the top quark t has the largest Yukawa

coupling, with a value nearly equal to unit (λt ' 1). This makes the top quark the fermion that

interacts the most strongly with the Higgs boson. Hence, this interaction between the Higgs

and the top quark can be used as a suitable tool to probe Higgs sectors.

Flavor Flavor symbol Observed mass [16] Yukawa coupling '

Electron neutrino νe < 1.1 10−6MeV 6.32 10−12

Muon neutrino νµ < 0.19MeV 1.09 10−6

Electron e 0.5109989461(31)MeV 3.34 10−6

Up u 2.6(4)MeV 1.49 10−5

Down d 5.3(4)MeV 3.04 10−5

Tau neutrino ντ < 18.2MeV 0.0001

Strange s 92.47(69)MeV 0.0005

Muon µ 105.6583745(24)MeV 0.0006

Charm c 1.27(2)GeV 0.0073

Tau τ 1776.86(12)MeV 0.0102

Bottom b 4.18(3)GeV 0.0240

Top t 172.76(30)GeV 0.9923

Table 1.1: Experimental mass values of the Standard Model fermions.

The different experimental values of all the SM particles masses including scalar Higgs

boson, fermions and vector bosons are illustrated in the Figure 1.3. This figure highlights the

hierarchy structure of these mass values. They range from a value less than 10−18 eV for mγ,
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to the value ' 1.73 1011eV for mt.

Figure 1.3: Hierarchy distribution of the Standard Model elementary particle masses [17].

1.1.4 SM Feynman rules involving the physical Higgs scalar field

In the SM, the Higgs maintains with the whole physical particle spectrum of the SM, the

interactions given by the Feynman rules [18–20] depicted in the Table 1.2. This table enables

us to see that, at the leading order (LO), the dominant interactions of the Higgs are first

the self interaction, then the interaction with the weak massive gauge bosons and finally the

interaction with the top quark. Besides, since the photon and the gluons are massless, there

is no interaction of these particles with the Higgs at LO, but at next to leading order (NLO)
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through fermionic loops, and also through W weak gauge boson loop for photons.

Interacting fields Feynman rule [18] Numerical vertex

coupling estimate

H −H 1

(k2 −M2
H)

/

H −H −H 3 eM2
HMZ

2MW

√
M2

Z −M2
W

196GeV

Zµ − Zν −H
eM3

Z

MW

√
M2

Z −M2
W

gµν (69GeV ) gµν

W+
µ −W−

ν −H
eMW MZ√
M2

Z −M2
W

gµν (54GeV ) gµν

f̄ − f −H emf MZ

2MW

√
M2

Z −M2
W

0.72 / 0.02 (top/bottom)

Zµ − Zν −H −H
e2M4

Z

2M2
W (M2

Z −M2
W )

gµν 0.29

W+
µ −W−

ν −H −H
e2M2

Z

2 (M2
Z −M2

W )
gµν 0.23

H −H −H −H −3 e2M2
HM

2
Z

2M2
W (M2

Z −M2
W )

1.64

Table 1.2: SM Feynman rules involving Higgs. For numerical evaluation we used: e ≡ e(MZ) =
0.317, MZ = 91.1876GeV , MW = 80.379GeV , MH = 125.10GeV , mb = 4.18GeV and mt =
172.76GeV [21].

1.2 How can we produce the Standard Model Higgs bo-

son at the Large Hadron Collider?

At the Large Hadron Collider, we have a hadronic collision between protons accelerated

at an energy of about 6.5TeV . At this high energy, each proton is constituted, beside its

valence up and down quarks, of a sea of quark and antiquark pairs, as well as a huge amount

of gluons. Each frontal hard collision between two protons with quadri-momentum P1 and

P2 respectively, will essentially involve the collision between two internal partons of quadri-

momentum p1 = x1 P1 and p2 = x2 P2; where x1 and x2 are fractions of the carried momenta

and are varying from 0 to 1. And how likely a given parton i carries a fraction x of the initial
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proton’s momentum is described by the experimentally deduced parton distribution functions

fi(x,Q
2). For example from CTEQ6 collaboration [22,23] or MSTW collaboration [24].

Then here, we are looking for producing the Higgs boson from these partonic collisions.

And since the last LEP7 lower limit on Higgs mass was 114GeV , we are especially interested

in hard partonic collisions. On the other hand, we know that the Higgs is mostly interacting

with the heavier particles: the top quark, the weak gauge bosons and at a lower level with the

bottom quark. So for producing efficiently the Standard Model Higgs boson, we rely especially

on processes that involve the top quark, then the bottom quark. We also focus on the processes

that are involving the massive weak gauge bosons for their high strength interaction with the

Higgs.
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Figure 1.4: Parton density functions for partons inside the proton (MSTW collaboration) [24].

Hence the main production modes of the Higgs boson at LHC, arranged by decreasing order

of the cross section, are:

1. Gluon fusion (ggF): this is the direct production process of the Higgs via the fusion of

two gluons pp→ gg → H. Since the gluon PDFs are largely dominant at the LHC area,

6CTEQ: for the Coordinated Theoretical-Experimental project on QCD.
7LEP: for Large Electron Positron collider.
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this process is considered the most dominant process at the LHC. It proceeds through a

loop of the top quark that has a moslty unit Yukawa coupling.

2. Vector boson fusion (VBF): this process can originate from two massive weak gauge

bosons W± or Z emitted by two quarks. Then those weak gauge bosons annihilate to

generate the Higgs boson pp→ qq → V V q′q′ → Hq′q′.

3. Electroweak boson associated production (WH, ZH): also called Higgs-strahlung.

A quark anti-quark annihilation produces an off-shell vector boson (either a W or Z ),

which then emits a Higgs boson to return on mass shell pp → qq̄ → V ∗ → V + H.

(Off-shell means it has an effective mass different from its rest mass).

4. Pair fusion associated production (tt̄H, bb̄H): a top anti-top (or a bottom anti-

bottom) quark pair is emitted simultaneously by two gluons. The pair then annihilates to

produce a Higgs boson pp→ ggtt̄→ Htt̄. This mode has a cross section of two magnitude

orders inferior to the direct production. Thus it’s not easily exploitable unless there’s a

very high luminosity.

The corresponding Feynman diagrams for these Higgs production modes are represented in the

Figure 1.5:

H
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q
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V

H

g

g
t ,b
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H

t ,b

V

V
H

q ’

q ’

q

q

Figure 1.5: Representative Feynman diagrams of the different Higgs production modes at the
LHC.
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1.3 How does the Standard Model Higgs boson decay?

Taking into account the Standard Model Higgs boson decay rate depicted in the Figure

1.6, we see that for mH = 125 GeV, the Higgs boson decays almost instantaneously. It has an

extremely short lifespan of about τH ∼ 10−22s, since its total decay rate is ΓH ∼ 2 10−3 GeV

and it should obey the Heisenberg relation τHΓH ' ~ 8.
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Figure 1.6: The Higgs total decay rate [25].

Since the Higgs boson couples to all the massive particles, the possible decay final states

are numerous. We’ll resume them in what follows:

1. Decay into a fermion pair:

• Decay into leptons.

• Decay into quarks.

2. Decay into gauge bosons:

• Direct decay into weak bosons.

3. Loop mediated decay into gauge bosons:

• Decay into two gluons.

8~ = 6.582119569...10−25 GeV.s.
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• Decay into two photons.

• Decay into a photon and a Z boson.
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Figure 1.7: Standard Model Higgs boson decay branching ratios [25].

The Higgs boson can thus decay in many different ways, and each decay mode has its own

probability of happening. The branching ratio, defined as the fraction of the total number of

decays following the process, gives an idea of how likely a Higgs boson will decay into one of

its decay modes. For example, in around 60% of the time, a Higgs with a mass of 125 GeV will

decay to bb̄. The Higgs boson branching ratios are shown in the Figure 1.7.
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Chapter 2

LHC physics and ATLAS detector

Particle colliders are the most important experimental tool for particle physics nowadays.

They show to be pretty useful in confirming and testing theoretical suggestions, be it new or

existing theories. In this chapter, we are going to take a closer look at the ATLAS experiment

in the Large Hadron Collider, and try to understand the physics involved in the proton proton

collision. This chapter is largely inspired from the excellent lecture notes of Schwartz on collider

physics [26].

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [27] is an underground ring, situated near Geneva,

underneath the France-Switzerland border. It consists of a circular tunnel of 27 kilometers in

circumference, with a mean depth of 100 meters underground. Its superconducting magnets

and accelerating structures can accelerate particles along their way to nearly the speed of light,

producing very high energy collisions. It is considered the world’s biggest and most powerful

particle accelerator of all times. It was built by the CERN (European Organisation for Nuclear

Research), with the main objective of discovering the Higgs boson. Its overall aim is to help in

answering the fundamental open questions in physics.

The energy density and temperature produced in the collisions at the LHC are similar to how

it would’ve been a few moments after the Big Bang. With this, physicists hope to better

understand how the universe evolved.

2.2 Why is the LHC designed the way it is?

To answer this question, we can start by looking for the approximate requirements for

discovering a Higgs boson. We’ll be using some dimensional analysis and basic Particle Physics.

19



Figure 2.1: Sectional plan of the LHC, with ATLAS, CMS, ALICE and LHCb as detectors
locations [28].

Intuitive and rough estimates will be used rather than precision calculations whenever possible

to derive results [26].

The base unit for scattering cross sections is the barn (b), and it’s defined as: 1b = 10−28m2.

We can also define it as the cross section for n − U235 scattering (a neutron and a Uranium

235 nucleus), which is ∼ 1b. We can notice that cross sections have the same dimensions as an

area.

If we want to know the cross section for a proton-proton scattering at the LHC, we can use

the fact that a nucleus’ volume is proportional to A, the number of its nucleons (protons +

neutrons): V ∼ A (since we have V = 4
3
πr3). This means that the radius is proportional to

A1/3: r ∼ A1/3, which leads to the area of the nucleus scaling like A2/3 since it should scale like

r2. Note that from the point of view of scattering, protons and neutrons are pretty much the

same (we can’t tell the difference between them through the strong interaction). We’ll consider

both of them as nucleons. So we can write:

σ(U235, n) ∼ 1b

σ(p, p) ∼ σ(U235, n)

A2/3
= σ(U235, n).A−2/3

And thus, the proton-proton scattering should have a total cross section of: 1 × 235−2/3b =
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0.026b ' 0.03b or 30mb in millibarns.

As another way to estimate this, we can use the conversion relation between length and energy.

We can derive it from the Planck-Einstein relation [29] as follows:

E = hν = h
c

λ
= 2π~

c

λ
λ

2π
=

~c
E
⇒ λ2

4π2
=

~2c2

E2
(m2)

We notice that the left part is a squared length (λ is a wavelength) over radians (no dimension),

so the unit is m2. If we take E = 1 GeV then:

1

GeV 2
~2c2 = 3.895× 10

−32

m2 (2.1)

with the reduced Planck constant ~ = 6.58× 10−25GeV.s, light’s velocity c = 3× 108m/s and

1GeV = 103MeV = 109eV . Considering 1m = 1015fm (fm being the femtometer unit), we

get the product ~c = 197.32MeV.fm ' 200MeV.fm. With this, we can write (2.1) in a way

easier to remember and more approximative, taking ~ = c = 1:

1

fm
' 200MeV, and

1

GeV 2
' 4× 10−32m2 = 4× 10−4b (2.2)

It says that the strong interaction scale of Quantum Chromo-Dynamics (QCD), ΛQCD ∼
200MeV is the same as the ”radius” of the proton rp = 0.8fm ∼ 1fm. Which means that

the proton scattering cross section area should be roughly: σ ∼ πr2
p ' 3fm2 = 3× 10−30m2 =

0.03b = 30mb. And thus, it’s actually consistent with what we estimated from the n − U235

cross section.

This rough number σ ∼ 30mb is enough to get us started. As an example of a process of

interest, let’s find the rate for a W boson production. For weak interactions, the typical scale

is Fermi’s constant GF :

σ(pp→ W ) ∼ GF ∼
g2

M2
W

∼ 1

(100GeV )2
= 10−4GeV −2 = 4× 10−8b = 40nb

So, we can say around 40 in a million proton collisions will produce W boson.

How about a Higgs boson production? The most common production mode for a Higgs particle

is, as we’ve seen in the previous chapter, from gluon fusion in a top loop. The cross section of

the Higgs should be down by around a loop factor of 1
16π2 ∼ 2 × 10−2 from weak interaction

cross sections that occur at tree level (like W production). We can estimate:

σ(pp→ H) ∼ (loop) ' 10−2 × σ(pp→ W ) ∼ 10−11b = 10pb
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And so, in order to produce 10 Higgs, we’ll need about 1 billion proton collisions.

Let’s now talk about luminosity, which is the collision rate at the LHC. What kind of

luminosity will be needed in order to obtain good results in a reasonable amount of time? Let’s

take an example: consider we want to observe 100 Higgs bosons in a year. Let’s say we look

at H −→ γγ decay mode, it has a 10−3 branching ratio. Taking experimental efficiencies into

consideration, at about ε ∼ 10−2 level:

109collisions

1Higgs
× 103Higgs

H −→ γγ
× 1

10−2eff.
× 100H −→ γγ

year
× year

107s
= 109collisions/s = 1GHz

So in order to see 100 Higgs produced in a year, we’ll have to collide 1 billion protons per

second. How do we do that concretely?

Protons are separated into bunches at the LHC. These bunches move around the tunnel at

nearly the speed of light, with around 25 ns (∼ 8 meters) between each group. This spacing

means that bunches collide at a 40 MHz frequency. So to obtain a GHz rate, we need around

25 collisions everytime bunches cross each other. This is achieved at the LHC by squeezing

the bunches to a spot size of around 10 microns (10−6 m) across at the crossing point. With a

number of 1011 protons per bunch, the collision number per bunch crossing becomes:

Nevents = (1011protons/bunch)2.
σpp = 10mb

σbeam = (10µm)2
= 100 collisions/bunchcrossing

Which gives us a total collision rate of 4 GHz.

Regarding the accelerating part, in order to accelerate a particle to a wanted energy, we make use

of its electromagnetic properties. A charged particle can thus be accelerated with electric fields

E, whereas magnetic fields B are used to control its trajectory. A magnetic field perpendicular

to the particles’ velocity allows to maintain them in a circular trajectory. Quadrupolar magnets

(and sometimes sextupolar) keep the charged particles beam concentrated, otherwise the beam

would tend to get dispersed since it consists of particles that have the same electric charge sign.

At the LHC, the collision rate we talked about is called the luminosity. Instantaneous

luminosity is what you integrate over time to get the integrated luminosity. The instantaneous

luminosity of the LHC is currently: L = 10Hz/nb = 1034cm−2.s−1. If we multiply by the pp

cross section: L× 10mb = 108Hz = 0.1GHz.

So, this is roughly what we need for Higgs physics. To hunt for possible exotic Beyond

Standard Model physics particles, we’ll most likely have to increase the instantaneous luminosity

considerably.
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2.3 Particle detection

Detectors help identify and measure the characteristics of particles contributing in a reac-

tion. After taking a look at the physics involved in the making of these devices, we’ll proceed

to describe the LHC’s ATLAS detector.

2.3.1 Detector physics

In order to have a detection, there has to be an interaction. The big majority of detectors

are based on the electromagnetic interactions of particles with matter. That’s why, with only

some few exceptions, only the charged particles are detected directly. Although photons are

neutral, they manifest themselves by their interactions with charged particles. Other neutral

particles have no electromagnetic interaction. They can only be ”seen” following collisions,

decays or any other process that produces secondary charged particles [30].

Ionisation

Ionisation is the most common process contributing in the detection. When a charged

particle is in motion, its electromagnetic field accelerates the electrons of atoms close to its

trajectory and thus ionizes them. The ion can then be detected either chemically or electrically.

During the process, the charged particle continues in its trajectory but some of its energy is

absorbed by the medium. The theory allows to predict with precision the amount of these

losses, largely due to Coulomb scattering by atomic electrons (this is different from Coulomb

scattering with nuclei).

The Bethe-Bloch formula expresses the mean energy loss per distance travelled x:

− dE

dx
=
DZ2ne
v2

[
ln

(
2mv2γ2

I

)
− v2 − δ

2

]
(2.3)

where m is the mass, Z the charge and v the velocity of the particle (we consider ~ = c = 1).

γ = (1 − v2)−1/2 is the Lorentz factor. The constant D is: D = 4παem
m

, whereas I is the mean

ionisation potential. δ is a factor for the electric-field screening and adds a correction due to

the medium’s density. As for ne, it’s the electronic density of the medium.

A good knowledge about the ionised medium allows to determine the velocity and charge of

the charged particle.

Coulomb scattering

The charged particle can also interact with heavy nuclei electromagnetically through Coulomb

scattering. This process is characterized by:
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• A motionless target (or almost).

• A transverse scattering or a considerable scattering angle.

• An elastic or quasi-elastic collision (conservation of the energy).

Bremsstrahlung radiation

In this process, the particle-nucleus collision is accompanied with the emission of a photon

and thus is different from Coulomb diffusion with its inelasticity.

− dE

dx
=
E

λ
(2.4)

where λ is the wavelength of the radiation:

λ−1 = 4
Z(Z + 1)

m2
α3
emnaln

(
183

Z1/3

)
with na being the atomic density and the other quantities already mentioned above.

Unlike the ionisation, the bremsstrahlung radiation is strongly dependent on the mass of the

charged particle (∝ (mass)−2), so it will be dominant for small mass particles (electrons and

positrons).

Photons absorption

Photons have a high probability of being absorbed or scattered by atoms in a material,

to more or less big angles depending on their energy. The density I of monochromatic (same

wavelngth) photons of a beam (or a beam’s intensity) varies according to:

dI
dx

= −I
l

(2.5)

where l = 1
naσγ

is the mean free path. By integrating the last equation we get:

I(x) = I(x0)e−(x−x0)/l (2.6)

which indicates an exponential decrease of the beam’s intensity in terms of the distance from

the atom. Photons’ absorption by matter goes through three processes that contribute all to

the total cross section σγ:

Photoelectric effect

An absorbed photon emits an electron from more or less deep electron shells. The absorption

spectrum of the medium depends on the energy of the photons but it’s mostly characterized
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by peaks corresponding to the binding energies of the electrons.

Compton effect

The Compton effect describes the scattering of a photon by matter. This process is inelastic.

Pair production

Beyond a certain energy threshold E = 2mec
2, the photons can induce the creation of a

particle-antiparticle pair with both me as their masses, in presence of an external field. There

are two distinct contributions to the cross section: the first is where the external field is that of

the atomic electrons, and the second is where the photons interact with the field of the nucleus.

At very high energy, the creation of pairs overshadows the photoelectric and Compton effects

in the expression of the total cross section σγ.

2.3.2 The ATLAS detector

The two main multi-purpose detectors at the LHC are ATLAS (A Toroidal LHC ApparatuS)

and CMS (Compact Muon Solenoid). They both have the same basic design. We are more

interested in the ATLAS detector since our study will use data from the ATLAS experiment.

(ATLAS)

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000 A

PRESHOWER
Silicon strips ~16 m2 ~137,000 channels

SILICON TRACKERS

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

STEEL RETURN YOKE
12,500 tonnes

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

CRYSTAL 
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO4 crystals

Total weight
Overall diameter
Overall length
Magnetic field

: 14,000 tonnes
: 15.0 m
: 28.7 m
: 3.8 T

CMS DETECTOR

Pixel (100x150 μm2) ~1 m2 ~66M channels
Microstrips (80–180 μm) ~200 m2 ~9.6M channels

(CMS)

Figure 2.2: Overview of the ATLAS and CMS detectors at the LHC [31] [32].

The ATLAS detector is a huge cylindrical shaped device, centered around the Interaction

Point (IP). It is currently the largest particle detector on earth, with 44 meters long and 25

meters height, weighing around 7000 tons.
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Figure 2.3: The coordinate system in the ATLAS detector [33].

Coordinate system

The coordinate system used in the ATLAS experiment is a right-handed Cartesian frame,

defined with the z-axis along the beam direction, the x-axis pointing towards the center of

the LHC tunnel and the y-axis pointing upwards. The x-y plane is the transverse plane in

accordance with the z-axis i.e. transverse to the beam direction.

Considering the detector’s geometry and symmetry around the z-axis, equivalent cylindrical

coordinates are generally employed (as shown in the Figure 2.3). A charged particle is charac-

terized by its momentum with the set (pT , θ, φ), where:

- φ is the azimuthal angle, measured around the beam axis in the x-y plane.

- θ is the polar angle, measured from the beam axis.

- pT is the transverse momentum, which is the component of the three-momentum on the

transverse plane x-y: pT =
√
p2
x + p2

y.

The pseudorapidity η, defined as: η = − ln tan θ
2
, is usually used instead of the polar angle θ.

And the quantity: ∆R =
√

(∆η)2 + (∆φ)2, is also used to express the distance between two

trajectories. We’ll discuss the choice of these variables later in this chapter.

Detector components

In a proton-proton collision, transverse sprays of resulting particles will flow from the

crossing point of LHC beams through the different components of the detector. Organized

from the inside to the outside, the main components of the ATLAS detector are:

• Inner Detector (ID): or tracker, to track the trajectory of charged particles and bend

it through a magnetic field, in order to measure the momenta. It is divided into three dif-
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ferent parts. The region around the beam line consists of silicon pixel detectors. Outside

is a silicon semiconductor tracker, followed by a transition radiation tracker.

• Electromagnetic Calorimeter (ECal): to measure energies of electrons and photons.

It is made of liquid argon.

• Hadronic Calorimeter (HCal): to measure energies of protons and neutrons, and

provide a good reconstruction of jets and missing transverse energy. It is made of plastic

scintillator tiles and iron.

• Muon Spectrometer (MS): to measure muons tracks based on their magnetic deflec-

tion in large superconducting magnets. It contributes greatly in the large size of the

detector.

The Figure 2.4 represents the different components of the ATLAS detector, and shows how

different particles appear and interact with them so that they are reconstructed and identified.

Figure 2.4: Sectional plan of the ATLAS detector showcasing its different components and
tracks left by different particles [34].
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1. Electron : will flow through the inner detector leaving a track behind, before finally

stopping in the electromagnetic calorimeter.

2. Photon : behaves in a similar way but leaves no track.

3. Proton : leaves a track and interacts primarily in the hadronic calorimeter.

4. Neutron : behaves in a similar way but leaves no track.

5. Muon : passes all the way through ATLAS leaving tracks behind.

6. Neutrino : passes through ATLAS without being detected at all.

2.4 Triggering and data acquisition

At the LHC, ATLAS is designed to observe up to 1.7 billion events per second, let’s say

approximately 1 billion. A rate in GHz is also the order of speed of computer processors

nowadays. A computer with a Central Processing Unit (CPU) of 1 GHz means it can make

around 1 billion operations every second. One collision event at the LHC fills up around 1

MB of storage space. It is obviously impossible to save all 1 billion events on disk every

second. But we also know that only some of these events will contain interesting characteristics,

potentially leading to new discoveries. So rather than that, current electronics have the capacity

of recording 200 MB/s. So, in order to be recorded and analysed, the 109 events need to be

filtered and reduced to select around 1000 events only. This is where the triggering system

takes place; where the data acquisition system directs the data from the detectors to storage.

Triggers are a set of criteria and conditions that decide if an event is interesting enough and

worth recording or not to disk for physics analyses. Thus it reduces the flow of data into

manageable amounts. They are regularly updated and modified to get optimised results or

depending on the objectives. The triggering process is extremely crucial to collider experiments;

if an important event escapes a trigger, it is forever lost [26].

The online event selection process of the ATLAS triggering system follows two stages [35]:

1. The Level-1 hardware trigger : composed of custom-made electronics. Works on data

from the calorimeter and muon detectors. After the event occurs, the decision to keep

its data is made in less than 2.5 microseconds. The Level-1 trigger can collect around

100,000 events per second at most for the High-Level Trigger (HLT).

2. The High-Level Trigger (HLT): software based trigger, consisting of a large farm of

CPUs. It improves the analysis of the hardware based Level-1 trigger. It manages a very

detailed analysis, either with:
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- An overall examination of the event for selected detector components (like calorimeters,

trackers or muon detectors).

- Or by using data in smaller and isolated regions of the detector.

The HLT analysis selects about 1000 events per second. They are fully collected into an

event record. These events data are saved with a data storage system for offline analysis.

2.5 Kinematics

We have two protons coming in towards each other in opposite directions, each taken to

be in the z direction by convention. Let’s study the kinematics of this collision at very high

center-of-mass energy, by taking it for example at the 13 TeV LHC [26].

Protons are accelerated to nearly the speed of light, with both a momenta of 6.5 TeV. So we

write the four momenta as:

P µ = (P 0, P 1, P 2, P 3) = (
E

c
, Px, Py, Pz)

P µ
1 = (6.5, 0, 0, 6.5) P µ

2 = (6.5, 0, 0, −6.5) (TeV) (2.7)

Everytime protons collide, we can say that it’s their constituents that are colliding. There are

three valence quarks in a proton (two up and one down uud), and they’re all binded together

by gluons. We can also find virtual particles (like a pair of a particle and its anti-particle) that

can appear at higher energies in the collision. These constituents are called partons.

If we collide two beams of protons together, most of the time, nothing big happens and there’s

scattering of constituents that carry a negligible fraction of the proton’s energy. But sometimes,

there’s a probability to get a hard quark-gluon scattering. Where the particles involved carry

a significant fraction of the protons’ energy, giving a significant amount of particles produced,

heading at transverse directions to the beams. It is this kind of collisions that we’re the most

interested in observing and analysing: the hard processes.

When we have a hard process, the parton momenta are written as:

pµ1 = x1P
µ
1 pµ2 = x2P

µ
2 (2.8)

x1 and x2 represent the fraction of the proton’s momenta for the partons.

According to the parton model [36], momentum fractions x1 and x2 are independent. The

probability of finding x1 in the first proton doesn’t depend on what happens in the second one.

The key to being able to calculate anything at all at the LHC using the perturbation theory is

factorization, and this independence is an example of it.

Let’s say these two partons of p1 and p2 as momentum enter a high energy collision and
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produce a Z boson which then gives an e+/e− pair as decay result. The angular separation

between these produced leptons can be interesting. The azimuthal angle φ can be measured

around the beam line cylinder in the transverse plane, as well as the polar angle θ measured

from the beam axis. If (p1 + p2)2 = m2
Z , the Z is created at rest in the partonic center-of-mass

frame. Whereas it is not at rest in the lab frame, since p1 + p2 can have some net z-momentum

pz. The lepton pair will be back-to-back in azimuth (∆φ = π), but θ will depend on this net

pz. So if pz = 0, the e+e− pair polar angles will be equal and opposite to each other. However,

if there is a net z-momentum, they will get closer together in θ.

From the point of view of a partonic collision, angles in the lab frame are usually not that

interesting. So it’s preferable to use variables that have the same values both in the lab and

partonic center-of-mass frame. These variables are longitudinally boost invariant.

We can parametrize a Lorentz boost along the z-direction as the matrix:

Kz =


cosh β 0 0 sinh β

0 1 0 0

0 0 1 0

sinh β 0 0 cosh β

 (2.9)

A four momentum pµ transforms under this Lorentz transformation as:

pµ → p′µ = Λµ
ν(z) pν = Kµ

ν (z) pν (2.10)
E −→ E cosh β + pz sinh β

px −→ px

py −→ py

pz −→ pz cosh β + E sinh β

(2.11)

The transverse momenta, which are px and py (the x and y components of the momentum),

are boost invariant.

~pT ≡ (px, py), pT ≡ |pT | (2.12)

The azimuthal angle φ is also boost invariant.

tanφ =
px
py

(2.13)

To find another boost invariant quantity, let’s consider c = cosh β and s = sinh β so that we

have c2 − s2 = 1. Under a Lorentz boost we have:

E + pz
E − pz

−→ E(c+ s) + pz(c+ s)

E(c− s)− pz(c− s)
=

(E + pz)(c+ s)

(E − pz)(c− s)
=
E + pz
E − pz

(c+ s)2
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because (c+ s)(c− s) = c2 − s2 = 1.

This motivates defining the rapidity as:

y =
1

2
ln
E + pz
E − pz

−→ 1

2
(ln

E + pz
E − pz

+ 2 ln(c+ s)) = y + ln(c+ s) (2.14)

So, the difference between two rapidities is boost invariant. Therefore, we define the angular

separation, which is boost invariant, as:

R =
√

(∆φ)2 + (∆y)2 (2.15)

Plotting distributions in terms of rapidity functions instead of polar angle helps better to

separate the physics of the protons producing the boost from our hard collision physics.

To see the rapidity as an intuitive concept, let’s consider particles with no mass. These particles

have E =| ~p |. Then by drawing a small momentum triangle we can find that cos θ = pz
|~p| = pz

E
.

y =
1

2
ln
E + pz
E − pz

=
1

2
ln

1 + cos θ

1− cos θ
=

1

2
ln

2 cos2 θ
2

2 sin2 θ
2

= ln cot
θ

2
, m = 0 only (2.16)

Hence there is a simple relation between angle and rapidity for massless particles. This inspires

the definition of pseudorapidity η as:

η ≡ ln cot
θ

2
(2.17)

Using Taylor expansions of this last expression around θ ' π
2

gives:

η ' π

2
− θ (2.18)

The ATLAS and CMS detectors measure particles up to pseudorapidities of around ±5.

To summarize, we can say:

1. Rapidity is a kinematic quantity defined as y = 1
2

ln E+pz
E−pz .

2. It is not boost invariant in itself, but variations in rapidity are boost invariant.

3. Some other boost invariant quantities are ~pT = (px, py) and φ = tan−1 px
py

.

4. Pseudorapidity η ≡ ln cot θ
2

is a geometric quantity.

5. It is the same as rapidity only for massless particles. For particles with mass, differences

in pseudorapidities are not boost invariant.
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2.6 Observables

All collider observables depend on the momentum and energy of the produced particles.

The ideal way is to be able to measure the 4-momentum of every particle in a significant

event, but it is not quite attainable in practice unfortunately. What can actually be measured

is the energy of all the particles that are stable on detector timescales. It is measured with the

various calorimeters deposits and directions of particles (η, φ). In the calorimetery system,

most particles transfer their energy in total, except two: neutrinos and muons. Neutrinos leave

the detector without interacting with anything, so they end up not being detected at all. As

for muons, they flow all the way through the detector before losing their energy. A muon

momentum is measured using the curvature of its trajectory in the muon spectrometer. Strong

magnetic fields are used to bend the trajectory. And since the curvature of the energetic tracks

is small, a lot of space is needed (what makes ATLAS and CMS so big). There’s also use of

the curvature of tracks in the inner detector, for distinguishing between charged particles like

electrons and measuring their 3-momentum [26].

The missing transverse momentum ~p miss
T is a standard observable derived from the

momenta of particles. It is a 2-vector:

~p miss
T ≡ −

∑
j

~p jT (2.19)

The missing transverse energy (MET) is a related quantity, which is a scalar:

Emiss
T ≡ |~p miss

T | (2.20)

Examples :

• An event having a W− boson that decays into e−ν. We will only be able to detect the

electron and not the neutrino. The 4-momentum of the electron is measurable. The

neutrino’s momentum should have transverse components (px and py) opposite to those

of the electron. This doesn’t apply to the pz component because of the longitudinal boost

of the partonic system. Therefore, the neutrino’s transverse components are given by

~p miss
T . If it’s known that the W boson was on-shell, it gives an additional restriction that

can allow the full reconstruction of the neutrino momentum.

• An event having more than one neutrino. All the neutrinos momenta can not be recon-

structed. We take p → Z → νν events, the neutrinos could have gone anywhere if there

is no transverse momentum to be measured at all (this would not even trigger since there

is nothing interesting to see).

HT is another common quantity used. There is no precise definition of it, but it usually
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indicates the scalar sum of the missing transverse momentum in some object categories. We

may find for example:

HT =
∑
jets j

|~p jT |, or HT =
∑

leptons j

|~p jT | (2.21)

The invariant mass of certain objects can also be quite interesting:

m2
objects = |

∑
objects j

pµj |2 (2.22)

For example, we will make use of the four-lepton invariant mass later in our study for recon-

structing the Higgs signal in the H → ZZ∗ → 4l channel.

The invariant mass of two particles (1) and (2) is: m =
√

(E1 + E2)2 − (~p1 + ~p2)2. But we

don’t always have all three components of the momentum p. In that case, we can at least

consider the transverse mass:

mT ≡
√

(E1
T + E2

T )2 − (~p1
T + ~p2

T )2 (2.23)

with ET =
√
m2 + p2

T being the transverse energy.

- If p1 and p2 are both purely transverse (η = 0) ⇒ mT = m.

- If p1 and p2 are both purely longitudinal ⇒ mT = 0.

- Otherwise ⇒ 0 < mT < m.

2.7 ATLAS search channels for the Higgs boson

We will try to describe the signature of an SM Higgs boson decay at the LHC for a mass

around 125 GeV [37–40].

At first, it would seem logical to chose the bb̄ decay mode to observe our particle, since it has the

largest branching ratio at mH = 125 GeV with 57%. Unfortunately, other hadronic processes

usually produce this same final state, which makes the background too large to distinguish a

signal.

To achieve a convenient signal to background ratio, it’s better to look at decays into leptons or

photons. The most common leptonic decay is the τ+τ− channel which happens 6% of the time.

However, there’s a probability of 75% for the τ lepton to decay into hadrons. Which makes

it suffer from a large background as well. This leaves us with the lighter leptons (muons and

electrons). The direct decay into these leptons, like muons, has a really small branching ratio

(0.02%), and thus it’s not possible to get separated from the typical di-lepton background.

For a good signal to background ratio with a leptonic final state, we have the W± and Z
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Figure 2.5: Standard Model Higgs boson decay
branching ratios at mH = 125 GeV [40]. Figure 2.6: Higgs boson production cross sec-

tion times branching ratio for the three decay
channels: H → ZZ∗ → 4l, H → W+W− →
lνlν, H → γγ [37].

bosons decay modes, which subsequently decay into leptons. As for the decay into photons,

the H → γγ decay channel can also be very helpful despite its small branching ratio (0.2%).

To resume, the best channels to exploit in order to observe the Higgs signal are:

1. pp→ H → ZZ∗ → 4l

2. pp→ H → WW ∗ → eνµν

3. pp→ H → γγ

These channels have showed to be crucial for the Standard Model Higgs boson discovery and

the measurement of its properties.

Our thesis will focus exclusively on the four-lepton decay channel pp→ H → ZZ∗ → 4l.
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Chapter 3

Simulating data for the Higgs search

3.1 Why did we choose the pp→ H → ZZ∗ → 4l channel?

In this section, we are going to explain why we chose the four-leptons channel: pp→ H →
ZZ∗ → 4l for our study, in the search for a Standard Model Higgs boson. The * on one of the

Z bosons means it is off-shell, as it must be since mH < 2MZ .

pp→ H → ZZ∗ → l+ l− l′+ l′− with l, l′ = e, µ. (3.1)

This channel is called the golden channel, since it has the cleanest and clearest signature

among all the possible Higgs decay modes. It has small background and the Higgs can be fully

reconstructed. So the use of this channel provides some exceptional advantages, summed up in

what follows [37]:

• The final state can be fully reconstructed by the detector, as it consists of four charged

leptons. This allows precise measurements of the Higgs’ properties; such as determining

the invariant mass for its mass, and the total angular momentum for its spin by using

the angular dependence of the 4 leptons.

• The decay chain doesn’t involve any hadrons, therefore the leptons in the final state are

separated from the hadronic processes of the underlying events. This makes it easy to

distinguish the signal from the background resulting from leptonic decays of hadrons.

• The leptons of the final state are produced by a Z boson decay, which is several orders

of magnitude heavier than other particles (even when being off-shell). As a result, the

leptons will have a relatively high momentum, making them easy to distinguish from

leptons produced by QCD processes.

Unfortunately, H → ZZ∗ represents only 3% of Higgs decays, and the Z boson decays
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into leptons only 6% of the time, which is a relatively small cross section. Thus if we take the

first run of the LHC as an example (run 1): out of the 500 thousands Higgs produced, there

were only about 50 events of H → ZZ∗ → 4l [26]. And by taking experimental efficiencies

into consideration, this value further reduces to a measly handful of events actually observed.

That’s why data selection and collection is so important, as well as reducing the impact of the

background processes with a larger cross section, which comes as a priority right after that.

3.2 Background estimation

There are two categories of backgrounds for a signal in any physics process [37]:

1. Irreducible background : it consists of the SM processes that share the same final state as

the signal reaction.

2. Reducible background : it is constituted of events that are different from the signal, but

can mimic it because of a misreconstruction of the physics objects.

3.2.1 Irreducible background

Let’s focus now on the background of our channel. The SM events which produce the same

final state as H → ZZ∗ → 4l are shown in the Figure 3.1 as Feynman diagrams.

qq → ZZ∗(γ)→ 4l

gg → ZZ∗(γ)→ 4l

qq → Z → 4l

(3.2)

These processes are not distinguishable from the signal, and contribute in the distribution of

the four-lepton invariant mass. Their cross sections are predicted by the Standard Model. And

thus even though it’s an irreducible background, it can be estimated then taken into consider-

ation in the counting of events.

For Higgs masses below 2MZ ' 182 GeV, the most significant irreducible background contri-

bution comes from qq/gg → Zγ events, considering the cross section of the photon production

is much larger than an off-shell Z boson.

For values of the Higgs boson mass above the threshold mH = 2MZ , the irreducible background

increases since there is a production of a pair of on-shell Z bosons.

For a better understanding of the difference between the signal and the irreducible back-

ground process, it’s interesting to study some kinematic variables at the Monte Carlo generator
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Figure 3.1: Feynman diagrams of the relevant SM processes producing the same final state as
a Higgs boson decay into four leptons.

level (before the reconstruction). For example, the Figure 3.2 shows the pseudorapidity dis-

tribution. In the region of the detector acceptance (|η| < 2.5), the signal and background

distributions almost entirely overlap. The chosen regions may lead to a loss of events with one

of the four leptons falling outside.

Figure 3.2: Generator-level distributions of the lepton pseudorapidity obtained from the H →
ZZ∗ → 4l signal process (blue) with mH = 125 GeV and the qq → ZZ∗ → 4l background
process (red) [37].
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3.2.2 Reducible background

Let’s talk about the reducible background now. The ZZ∗ background is evaluated by

applying the event selection to the simulated events and by normalizing the distributions to

the expected number of events from the total integrated luminosity, obtained from the Standard

Model cross section prediction. Whereas reducible background events like Z(→ ll)+jets and tt̄

are estimated with data-driven methods.

The composition of the reducible background depends on the flavor of the sub-leading lepton

pair (the pair decaying from the off-shell Z∗). Different approaches are taken for the ll+µ+µ−

and the ll + e+e− final states. The small contribution from the WZ reducible background is

estimated from simulation.

1. ll+µ+µ− : with a sub-leading muon pair. This reducible background comes from Z+jets

and tt̄ (mostly Zbb̄ processes).

2. ll + e+e− : with a sub-leading electron pair. This reducible background comes from jets

or photons misidentified as electrons.

The background estimates are driven from data, along with verified Monte Carlo simu-

lations. It will contribute greatly in the event selection. This will be discussed in the next

section.

3.3 Event selection

To increase the signal-to-background rate, events need to go through some specific selection

criteria. Using trigger algorithms, the events are selected by the ATLAS trigger system during

the LHC runs. The sample of events picked by the trigger is reduced further by necessitating

the presence of at least two lepton pairs with opposite charges (l+ l− l′+ l′−). Precise quality

requirements should be satisfied by the leptons, specific for muons and electrons. Then events

with four ”good” leptons need to pass precise kinematic and topological selection criteria.

3.3.1 Triggers

Of all the events observed by the ATLAS detector, the candidate events for the Higgs

boson are only a tiny fraction. The H → ZZ∗ → 4l events all need to have four leptons as

final state, so the trigger algorithms specify the presence of electrons or muons with transverse

energy/momentum above a distinct threshold. In a Monte Carlo sample of H → ZZ∗ → 4l

events with mH = 125 GeV, the fraction of simulated signal events selected by the trigger

compared to the actual number of events (efficiency of the triggering algorithms) is found to

be:
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• 4µ : 92.2%.

• 2e2µ/2µ2e : 90.9%.

• 4e : 91.8%.

3.3.2 Lepton quality requirements

The offline event selection (or pre-selection) depends on muons and electrons reconstructed

by the ATLAS detector. This is performed by applying cuts on transverse momenta pT and

pseudorapidities η of reconstructed leptons. For example, electrons pT needs to be > 7 GeV

and must be within the region |η| < 2.47.

Electrons

The reconstruction of electrons in ATLAS uses energy deposits in the Electromagnetic

Calorimeter associated to a track in the Inner Detector (ID). Unlike muons, that possess a

quite unique signature, electrons can be easily mimicked by background objects; such as photons

converted in e+ + e− pairs, soft hadronic jets or electrons from hadronic decays. In order to

avoid these backgrounds, sequential cuts and multi-variate analysis (MVA) techniques are used

on different electron identification categories.

Muons

The identification of a muon in ATLAS exploits information from the Muon Spectrometer

(MS), the Inner Detector (ID) and the calorimeters to a smaller extent. The ID and the MS

both provide independent particle momentum measurements, which improves the resolution by

combining them. Muon identification follows various reconstruction criteria, leading to differ-

ent muon ”types” (Stand-Alone (SA), Combined (CB), Segment-tagged (ST) and Calorimeter-

tagged (CaloTag) muons).

3.3.3 Kinematic and topological cuts

The selection of the Higgs boson candidate events is made amidst the ones with two pairs

(a quadruplet) of ”good” leptons, with Same Flavor and Opposite Sign (SFOS). Within the

quadruplet, only one Stand-Alone or Calorimeter-Tagged muon is admitted. The selection of

the quadruplet is done separately for all the possible final states for each event.
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Building of the quadruplet

• pT thresholds for the 3 leading leptons of the quadruplet: 20, 15 and 10 GeV.

• One quadruplet for each event, with the leading and sub-leading lepton mass (m12 and

m34 respectively) closest to the Z boson nominal mass.

• Leading lepton mass: 50 < m12 < 106 (GeV).

• Sub-leading lepton mass: mthreshold < m34 < 115 (GeV).

• Reject quadruplet if mll < 5 (GeV), ∆R (l, l′) > 0.10 (0.20) for same (different) flavor

leptons.

Reducible background suppression

Since the leptons resulting from background events such as Z+jets or tt̄ are produced mainly

by decays of hadronic particles, they are usually not isolated. For the Higgs boson candidates

selection, the background of these events is reduced by applying to every lepton a requirement

on the track isolation, calorimetric isolation and on the impact parameter significance.

3.4 Event simulation

In this section, we describe the techniques and steps used in the simulation of high energy

proton-proton collision events [41].

3.4.1 Proton-proton collisions

The evolution of a proton-proton collision at the LHC, as showed in the Figure 3.3, can be

described as follows:

1. When the two beams of protons running at opposite directions meet, proton-proton col-

lisions happen at the intersection points. Each proton is composed of different partons,

that carry fractions of its momentum. The proton composition follows Parton Distribu-

tion Functions (PDFs), which are models in terms of energy sharing and flavor.

2. The partons of the colliding protons emit radiations, initiating a succession of decays

q → qg, g → qq̄, g → gg. Since the strong coupling constant αS has a large value,

these branching processes have a high probability to happen (starting initial-state parton

showers).
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3. At a momentum transfer scale Q2, two partons from the showers enter a hard scattering.

The products are the final-state elementary particles. We note that some resonances are

short-lived (such as the Z, W± and Higgs bosons), and thus decay almost instantly into

partons, leptons or photons.

4. The spreading partons (quarks and gluons) begin scattering, initiating final-state showers.

5. Following every decay in the initial and final-state showers, the momentum scale is reduced

down to ΛQCD ∼ 1 GeV. The perturbative theory is no longer valid there.

6. Under ΛQCD, partons are confined into colorless hadrons by the strong interaction. After

this hadronization, the unstable particles go through decay. Thus, the parton showers

become jets of stable and meta-stable particles, which can be observed in particle detec-

tors.

Hadronization
and

hadron decay

Parton showering

Hard scattering

Beam remnants

Protons colliding

Underlying
event

Figure 3.3: Diagram of the evolution of a hard proton-proton collision [42].

The representation of a proton-proton collision is factorized into different subprocesses.

With the appropriate method, each of them is rather easy to manage. In order to simulate

and reproduce the phenomenology at the LHC, this technique is used by Monte Carlo Event

Generators.
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The factorisation theorem allows the hard perturbative and soft non-perturbative processes to

be treated separately. A proton-proton scattering (pApB → X) of generic final state X can be

represented by this integral over the final state phase-space:

σAB =
∑
a,b

∫
dxa dxb dΦFS fa(xa, µF )fb(xb, µF ) · σ̂ab→X (3.3)

where fa(xa, µF ) and fb(xb, µF ) are the parton distribution functions, and σAB is the total

cross-section. xa and xb the partonic fractions of the proton momentum pA and pB respec-

tively, carried by parton a and b involved in the hard interaction. And σ̂ab→X the hard partonic

scattering cross-section (calculated using perturbation theory). The factorisation scale param-

eter µF replaces the momentum transfer Q2. This represents the limit separating the hard and

the soft process. Further calculations are possible using the perturbative expansion.

Parton distribution functions

In the equation (3.3) we’ve just seen, the parton distribution functions (PDFs) describe the

dynamics of the partons participating in the hard process in relation with the protons colliding.

They model the probability of a parton to carry a fraction x of the proton momentum.

The dependence in x is derived from global fit to data. Results are accessible in the tree-

level and next-to-leading (NLO) orders, and only partly in the next-to-next-to-leading order

(NNLO). The PDF estimations uncertainties need to be taken into consideration in any theo-

retical prediction (uncertainties on experimental data and analysis, uncertainty on αS...).

There are many PDF sets available, we mention the most common ones: CTEQ [23], MSTW [24]

and NNPDF [43]. They mainly differ in the number of parameters of the model and the data

used in the processes fit.

3.4.2 Principles of Monte Carlo event generation

Here we will introduce the main principles on which Monte Carlo event generation is based

in order to provide a simulation [44].

Random number generation

A pseudo-random number generator is a deterministic algorithm that produces a series of

values ”sufficiently” disorganized to look like a random sample. It follows a unifrom distribution

(let’s say on the interval [0, 1]). There are many methods to generate such numbers, such as

the middle square method, Fibonacci generator, congruence methods... And there are different

tests to check the properties and quality of a pseudo-random number generator.
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Such generators are used in computers, and they represent the main source for generating

random numbers that follow any classical probability distribution (discrete and continuous).

This takes a mojor part in the simulation process.

Monte Carlo methods for integral calculations

We call a Monte Carlo method any method aiming to calculate a numerical value by using

random number generation, namely probabilistic techniques.

Monte Carlo methods are mainly used for the approximate computation of integrals, based on

the law of large numbers (which assures that the average of the results collected from performing

the same experiment a large number of times ought to be close to the expected value, and gets

closer the more the number is larger). Hence it allows the calculation of approximate values

of expected values (noted E) of probabilities, using identically and independently distributed

realizations of a law that we know how to simulate. For example, suppose we want to calculate

the integral I =
∫ b
a
h(x) dx, that we can present in the form :

I =

b∫
a

h(x) dx =

b∫
a

fX(x)g(x) dx (3.4)

where the function fX is supposed to be a probability density of the random variable X:

fX(x) ≥ 0 and
∫ b
a
fX(x) dx = 1. The Monte Carlo method suggests to estimate I by the

quantity:

În =
1

n

n∑
i=1

g(Xi) (3.5)

with X1, X2, ..., Xn being independent realizations that follow the density law fX .

Indeed, according to the law of large numbers, În converges almost surely and:

lim
n→∞

1

n

n∑
i=1

g(Xi) = E[g(X)] = I (3.6)

Thus for n large enough, În provides a good approximation of I.

We note that unlike other methods of numerical integration, such as the trapezoidal rule

and Simpson’s rule who use a deterministic approach, Monte Carlo methods follow a non-

deterministic approach. Which means each realization provides a different outcome. Monte

Carlo may be slower than the other methods for n points taken, but it shows to be the best

for phase-space integrals and higher dimensions. The advantage it has is the independence of

the speed of convergence from the dimension of the problem, contrary to other deterministic

methods that depend on it, which reduces their speed considerably.

43



Monte Carlo Event Generators

In order to do the simulation of high energy collisions in detail down to final-state individual

stable particles, we use Monte Carlo Event Generators (MCEGs). The objective is generating

a large amount of simulated collision events, characterized by final-state particles and their

four-momenta, taking into consideration the probability to generate an event to be equivalent

to the probability of producing the actual event in the real experimental data. They represent

a very important tool for collider physics.

The simulated data provided by these generators help in analysing and comparing theoretical

models and calculations with experimental data and detector measurements. Collider physics

experiments depend on simulated events by MCEG codes (such as Herwig, Pythia, Sherpa,

POWHEG...) in order to design and adjust detectors and analysis strategies.

Steps in the event generation process

Making use of the factorization theorem, different steps can be described for the event

generation of a hadronic collision (proton-proton) [41].

1. The computation of the hard subprocess (Matrix Element ME): the hard sub-

process simulation is the first step of the event generation. A hard process is when

partons (quarks and gluons) of the two protons colliding interact with each other at a

high momentum scale. Since the strong coupling constant αS is quite small for the hard

subprocess, it can be evaluated with perturbation theory and by a matrix element. In

this hard interaction, only one parton of high energy fraction of the proton participates

with an energetic parton of the other proton. This produces two further transverse sprays

of fundamental objects, whereas the remaining partons keep running without engaging in

the main interaction. These partons represent the so-called underlying event, and thus

will become relevant later. The particles who appear in the hard subprocess will take

place in the following parton shower step.

2. The parton shower step (PS): because of the big momentum transfers throughout

the hard subprocess step, the final-state particles gotten from the matrix element have

high energies. The involved partons enter a parton shower that keeps going until their

energy decreases by collinear parton decay and/or soft gluon emission to the point they

enter the hadronization step. This happens because the partons (quarks and gluons) of

the hard process who carry a color charge can emit QCD radiation through gluons, who

themselves carry a color charge leading them to interact with each other by additional

gluon emissions. To describe the parton shower, there exists different approximation

schemes.
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3. The hadronization process : during the parton shower, the partons lose energy through

decay and gluons emission, and αS increases at the same time. At some point, the

coupling between color-charged partons becomes strong enough to create colorless hadrons

out of binding partons. The hadronization process starts at an energy of around ∼
1GeV (depending on the hadronization model), and the perturbative methods currently

available can not calculate it. That’s why hadronization models which are based on

experimental data are used to describe these hadron formations. Unstable and short-

lived hadrons keep decaying into other hadrons until only stable ones are left.

4. The underlying event : the partons of the protons that didn’t take part in the hard

process are called the beam remnants. These can also emit gluons themselves as under-

lying events, and thus participate in the hadronization process.

The event generation technically ends here. However, Monte Carlo event generation can

keep going with additional steps, for a complete simulation up to a full analysis :

5. Pile-up simulation : in a bunch crossing at the collider, there are multiple proton-

proton interactions at the same time. They constitute what we call the pile-up. It is

modeled using either recorded data events to emulate it or a detailed simulation of the

detector to recreate it.

6. Detector simulation : a full simulation of the ATLAS detector gives the expected

response after the propagation of final-state particles through the magnetic field and

their interaction with the different detector components. For each particle, these inter-

actions with the material are simulated, including energy loss, photon conversions and

Bremsstrahlung.

7. Reconstruction and identification step : what a particle detector measures at first

are hits of particles of the final-state in the subdetectors cells. After that, tracks and

objects are reconstructed with these data, by applying reconstruction algorithms that

take into consideration particle types properties in order to identify these objects.

3.4.3 MadGraph5 aMC@NLO as an event generator

MadGraph5 aMC@NLO [45] is a Monte Carlo event generator for collider physics. It is a

fully automated and public computer code. It is used nowadays to simulate LHC events. It is

also a tool to obtain future predicitons in new physics models.

This software can generate processes and their Feynman diagrams, it can also include several

extensions, such as: the code Pythia [46], which is a random event generator, used for parton

showering and hadronization (takes jets into consideration). Or Delphes, which simulates the
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detection process and event reconstruction. This provides a complete LHC simulation, starting

from events at the parton level to detector results. Here’s a list of these packages:

• MadAnalysis : to draw automatically different histograms, in relation with the event

generation.

• ExRootAnalysis : to convert the different outputs to a ROOT format.

• Pythia : to simulate parton showering and hadronization.

• Delphes : to simulate the detector.

We can turn on or off these additional pieces, depending on the kind of simulation we actually

need. For example, if we only want to calculate a cross-section at the parton level, the basic

MadGraph software is enough and the rest is unnecessary. However, if we want to include

hadronization and detector simulation, we’ll need to use Pythia and Delphes in addition.

Events at the parton level (MadEvent)⇒ Showering and hadronization (Pythia)⇒ Detector

response (Delphes).

The MC@NLO part is an implementation of this formalism package to MadGraph, combining

in a unique framework all of their features, thus superseding both of them and including some

new capabilities (it’s the most recent version at the moment). It is capable of computing tree-

level and one-loop NLO (Next-to-Leading Order) amplitudes for any given process. Physical

observables can be predicted with different perturbative accuracies and final-state descriptions

using such calculations.

3.4.4 Example using MadGraph5 aMC@NLO simulation

In this example, we are attempting to make a simulation for the H → ZZ∗ → 4l process,

using MadGraph5 aMC@NLO. The software is available to download for free on its official

website [47], an online generation is also available (though only in leading order). As the

Figure 3.4 shows, the interface is accessible directly through the terminal after installing it on

the computer (a Linux operating system is necessary).

Setup

Before starting the simulation, we make sure to configure the process generation properly:

• We generate H → ZZ∗ → 4l in MadGraph with the command :

generate p p > h, (h > z l+ l−, z > l+ l−)

• Configuration : we turn ON Delphes, Pythia and MadAnalysis5.
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Computer interface.

Official website.

Figure 3.4: Screenshot of the MadGraph5 aMC@NLO interface and website [47].

• Histograms : are given for an integrated luminosity of 10fb−1.

• Datasets : samples consisting of signal events.

• We set the number of generated events to 10000 events, and the center-of-mass energy to

13 TeV (each beam energy set to 6500 MeV).

After around an hour of compilation, we get a MadAnalysis report file in .pdf version as output.

It includes a variety of histograms of different observables of the process, in terms of the number

of events. The one we are the most interested in is the four-leptons mass, shown in the following

Figure 3.5. We clearly see a peak around 125 GeV.

Figure 3.5: Histogram of the four-leptons mass output from MadGraph5 aMC@NLO.
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Chapter 4

Reconstructing the Higgs signal

through the pp→ H → ZZ∗→ 4l golden

channel

In this section we are ready to describe the experimental Higgs boson search in the four

lepton decay channel. Only events with two pairs of oppositely charged electrons or muons are

selected; the invariant mass of the four leptons (m4l) is used to reconstruct the mass of the

Higgs boson spectrum. The leptons produced by the decay of the Z boson is called the leading

pair, while the second pair decaying from Z∗ represents the sub-leading pair. The search for

the Higgs boson in the channel H → ZZ∗ → 4l is done via its four possible final states:

1. µ+ µ− µ+ µ− (4µ).

2. e+ e− e+ e− (4e).

3. µ+ µ− e+ e− (2µ2e).

4. e+ e− µ+ µ− (2e2µ).

4.1 ATLAS Open Data

ATLAS Open Data [48] is a set of pp collision data accompanied with several tools [49] re-

leased by the ATLAS Collaboration as an open-access to the public, specifically for educational

and research purposes. The general aim is to provide a straightforward interface to replicate

the procedures used by High-Energy Physics (HEP) researchers and enable users to experience

the analysis of particle physics data in educational environments.

Considering our channel is the four-lepton channel, the dataset we’ll be using is from ”ATLAS
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13 TeV samples collection at least four leptons (electron or muon), for 2020 Open Data re-

lease” [50,51]. It consists of 10fb−1 of collision data at a center-of-mass energy of 13 TeV from

the 2016 data taking period. This set of real data is accompanied by matching simulated data

of Standard Model processes and a selection of Beyond the Standard Model signals.

Events are selected with at least four leptons (electron or muon). Both real and simulated

data go through a loose event preselection, in order to reduce processing time by decreasing

the overall number of events that will be analysed. The preselection consists of a set of object

selection criteria followed by an event selection subjected to these preselected objects.

4.1.1 Experimental samples

Our analysis is based on the datasets collected by the ATLAS experiment during the second

run of the LHC operation. The data has been collected by the ATLAS detector at a center-of-

mass energy of
√
s = 13 TeV during the year 2016. It corresponds to an integrated luminosity

of 10fb−1.

The 13 TeV ATLAS Open Data events belong to 61 runs from the first four periods of the

2016 pp data-taking and contain approximately 270 million of collision events. Over a billion

particle interactions take place in the ATLAS detector every second. The maximum average

number of pp interactions per bunch crossing in this dataset is 79.8 collisions and the bunch

spacing is 25 ns.

ATLAS has published a volume of 10fb−1 data at 13 TeV which corresponds to approximately

one quadrillion proton-proton collisions or the production of 500 thousand Higgs bosons.

10fb−1 is part of the 139fb−1 collected by the run 2 of LHC (cumulative luminosity: 1st and

2nd run).

The 13 TeV experimental datasets contain several reconstructed physical objects (such as elec-

trons, muons, photons, jets...). Our channel is the H → ZZ∗ → 4leptons channel, so we’ll

be using events selected with at least four leptons (electron or muon). Only about less than

900 events of interest remain, considering cross sections and efficiencies. Among the provided

experimental data, the observables we will actually use are:

• Transverse momentum of the lepton pt (Lep pt);

• Pseudorapidity of the lepton η (Lep eta);

• Azimuthal angle of the lepton φ (Lep phi);

• Energy of the lepton (Lep E);

• Charge of the lepton (Lep charge);

• Type of the lepton (Lep type; 11 for an electron e, 13 for a muon µ).

49



4.1.2 Simulated samples

The pp collision data is accompanied by a set of Monte Carlo (MC) simulated samples

describing several processes, which are used to model the expected distributions of different

signal and background events. Simulated data sets allow us to compare theory to real data.

They are based on theoretical models of the physical processes expected during collisions,

associated with a detailed description of the ATLAS detector.

The aim of the analysis is to isolate the low mass Higgs bosons decaying into Z bosons pair

and subsequently four leptons from a sea of various SM processes. This is realised by imposing,

on the data sample, cuts which are carefully designed so that a maximum sensitivity of the

H → ZZ∗ → 4l process can be reached. We also use histograms analyses to differentiate

between physics processes by applying cuts to data, specific physics processes (signal) can be

isolated from the background. Cuts preferentially remove the unwanted processes (background)

but leave as much as possible of the desired process (signal). It is useful to have a good

understanding of the physics processes involved when applying cuts.

Among the provided simulated data, same observables as in the experimental samples are

needed, plus additional quantities that only accompany the simulated data:

• Weight of a simulated event (mcWeight);

• Scale factor for pile-up reweight (scaleFactor PILEUP);

• Scale factor electron efficiency(scaleFactor ELE);

• Scale factor muon efficiency (scaleFactor MUON);

• Scale factor to account for the different operating efficiencies of the used triggers

(scaleFactor LepTRIGGER).

These scale factors apply corrections for various object efficiencies by using pre-cuts.

Simulated data

According to the ATLAS Collaboration [52], the H → ZZ∗ → 4l signal is modelled using

the POWHEG [53] Monte Carlo event generator, which calculates separately the gluon fusion

(ggF) and vector-boson fusion (VBF) production mechanisms with matrix elements up to next-

to-leading order (NLO). POWHEG is interfaced to PYTHIA [46] for showering and hadroniza-

tion, which in turn is interfaced to PHOTOS [54] for quantum electrodynamics (QED) radiative

corrections in the final state. PYTHIA is used to simulate the production of a Higgs boson in

association with a W or a Z boson (VH) and with a tt̄ pair (tt̄H).

The cross sections for the ggF process have been calculated to NLO [55], and next-to-next-to-

leading order (NNLO) in QCD [56]. In addition, QCD soft-gluon re-summations calculated in
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the NNLL ( next-to-next-to-leading logarithmic) approximation are applied for the ggF process.

NLO electroweak (EW) radiative corrections are also applied. The cross sections for VBF pro-

cesses are calculated with full NLO QCD and EW corrections, and approximate NNLO QCD

corrections are available. The cross sections for the associated WH/ZH production processes

are calculated at NLO and at NNLO in QCD, and NLO EW radiative correction are applied.

The cross sections for associated Higgs boson production with a tt̄ pair are calculated at NLO

QCD.

The Higgs boson decay branching ratios to the different four-lepton final states are provided by

PROPHECY4F [57], which includes the complete NLO QCD+EW corrections and interference

effects between identical final-state fermions.

Background simulation

The ZZ∗ continuum background is modelled using:

• POWHEG for quark-antiquark annihilation.

• gg2ZZ for gluon-gluon contributions, normalised to the MCFM prediction.

The ZZ∗ qq′ continuum background is modelled using SHERPA [58]. The QCD scale uncer-

tainty has a ±5% effect on the expected ZZ∗ background, and the effect due to the PDF and

αs uncertainties is ±4% (±8%) for quark-initiated (gluon-initiated) processes. TAUOLA [59]

is used for the simulation of τ lepton decays which come from both signal and background Z

decays. The Z+jets production is modelled using ALPGEN [60] and is divided into two sources:

Z+light jets, which includes Zcc̄ in the massless c̄ quark approximation and Zbb̄ with bb̄ from

parton showers, and Zbb̄ using matrix element calculations that take into account the b quark

mass. For comparison between data and simulation, the QCD NNLO FEWZ and MCFM cross

section calculations are used for inclusive Z boson and Zbb̄ production, respectively. The tt̄

background is modelled using MC@NLO and is normalised to the approximate NNLO cross

section calculated using HATHOR [61].

4.2 Efficiency

Reconstruction and identification efficiency are the two main components of electron and

muon detection efficiency [37].

• Electron reconstruction efficiency: the tag-and-probe method applied to Z → e+e−

events is used to determine the efficiency of the electron reconstruction. The tag is one of

the two electrons used to define the event, while the probe, which is the second electron,
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is used to measure the efficiency. The charge of the tag+probe electrons must be opposite

and their invariant mass mee should be within ±15 GeV from the Z boson mass mZ .

• Electron identification efficiency: the efficiency of the electron identification algo-

rithms is also measured using a tag-and-probe method from real and simulated Z → e+e−,

Z → e+e−(γ), J/Ψ→ e+e− decays. The identification efficiency generally grows as a func-

tion of ET because more energetic electrons are better separated from the background.

The shape of the efficiency as a function of the pseudo-rapidity reflects some well-known

detector features.

• Muon reconstruction efficiency: since the ATLAS detector structure is not the same

all over the |η| range, the efficiencies in the central (|η| < 2.5) and in the forward region

(|η| > 2.5) are measured with different strategies. As a function of pT , the Z → µ+µ−

sample is complemented with lower pT muons, obtained from J/Ψ→ µ+µ− decays. Low

pT muons are very important also in the H → ZZ∗ → 4l analysis since one of the two Z

bosons is off-shell.

4.3 Systematic uncertainties

The systematic uncertainties are determined by comparing the nominal event yield with

the one obtained after having modified relevant quantities, by applying weights on Monte

Carlo. The systematic uncertainty on the energy for electrons or momentum for muons (scale

or resolution) is calculated by a scale factor for selecting data events, and by observing the

number of events after the selection. Several systematic uncertainties are taken into account

in the analysis. We have uncertainties due to the identification and reconstruction of leptons,

luminosity, the estimation of background and cross sections of the Higgs boson production.

4.3.1 Leptons

The uncertanties on the lepton reconstruction and identification efficiencies and on the

momentum scale and resolution are studied from Z → l+l− and J/ψ → l+l− decays. The 2µ2e

and 2e2µ modes differ by the flavor of the lepton pair having a reconstructed invariant mass

closest to the Z mass.

• Electrons: the relative uncertainty on the signal acceptance due to the uncertainty

on the efficiency of reconstruction and electron identification for a Higgs boson of mass

m4l = 600 GeV is ±2.6% ±1.7% and ±1.8% [7] in channel 4e, 2e2µ and 2µ2e respectively,

and ±9.4% (±8.7%/±2.4%) at m4l = 125 GeV [52].
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• Muons: the relative uncertainty on the signal acceptance due to the uncertainty on the

efficiency of reconstruction and muon identification for a Higgs boson of mass m4l = 600

GeV is ±0.7%, ±0.5% and ±0.5% [7] in channel 4µ, 2e2µ and 2µ2e respectively, and

±0.9%, ±0.8%/±0.5% at m4l = 115 GeV [7].

4.3.2 Electron energy scale

The electron energy scale uncertainties determined from Z → e+e− and J/ψ → e+e−

decays, is propagated as a function of the pseudo-rapidity η and the transverse energy ET of

the electrons. The uncertainties on the measured Higgs boson mass due to the electron energy

scale uncertainty are ±0.04%, ±0.025% and ±0.04% for the 4e, 2e2µ and 2µ2e final states

respectively [37].

4.3.3 Muon energy scale

The systematic uncertainties on the muon momentum scale are determined using a large

samples of Z → µ+µ− and J/ψ → µ+µ− decays. The uncertainties on the measured Higgs

boson mass due to the muon energy scale uncertainty are ±0.04%, ±0.015% and ±0.02% for

the 4µ, 2e2µ and 2µ2e final states, respectively [37].

4.3.4 Integrated luminosity

The normalisation uncertainty on the integrated luminosity is ±2.4% [62,63] for data at 13

TeV.

4.3.5 Background estimation uncertainties

The uncertainties on the data-driven estimation of the reducible background are due to the

uncertainty on the transfer factors caused by limited Monte Carlo statistics [7].

4.3.6 Theoretical uncertainties

These uncertainties have been studied for the signal and the background. For the SM ZZ∗

background, which is estimated from MC simulation.

• QCD scale (ΛQCD) uncertainty: the QCD scale uncertainties for the mH = 125 GeV

amount to +7%
−8% for the ggF process, ±1% for the VBF and WH/ZH processes, and +4%

−9%

for the tt̄H process [7].
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• Parton density functions (PDFs) and αs uncertainty: the uncertainties related to

the parton distribution functions amount to±8% [7] for the predominantly gluon-initiated

ggF and tt̄H processes, and ±4% [7] for the predominantly quark-initiated VBF and

WH/ZH processes (Figure 1.5).

• Uncertainty of the H → ZZ∗ branching ratio: the uncertainties on the predicted

branching ratios amount to ±5% [7].

4.4 ATLAS Open Data code

The release of the 13 TeV ATLAS Open Data is accompanied by a set of Jupyter notebooks

(open-source web application for sharing documents containing live codes, equations, visual-

izations and narrative text) that allow data analysis to be performed directly in a web browser

either online or offline by downloading all the data needed locally [64].

So, we worked locally with a Python code given open access at the CERN ATLAS Open

Data website https://atlas.cern/resources/opendata, that allows to rediscover the Higgs

boson in the channel H → ZZ∗ → 4l. A number of Python tools are needed to help us:

• uproot: lets us read ”.root” files typically used in particle physics by converting them

into data formats used in Python.

• pandas: lets us store data as dataframes, a format widely used in Python.

• numpy: provides numerical calculations such as histogramming.

• matplotlib: common tool for making plots, figures, images, visualisations.

However, we did not settle only for the result provided, but we made our own modified and

improved version of the initial notebook, in order to obtain additional results. So instead of

only one histogram plot of the four-lepton invariant mass as an output, we added four other

different manipulations on data enabling us to do a deeper and wider analysis plus more details

in the other outputs. This will be discussed more in the next section.

4.5 Statistical reconstruction of the Higgs signal

First level : statistical histograms reconstruction

The selection criteria presented in this chapter are applied to all of the 2016 data of proton-

proton collisions at center-of-mass energy
√
s = 13 TeV with an integrated luminosity of 10fb−1.
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The Figure 4.2 displays the steps of reconstructing the expected distributions of the four-

leptons invariant mass m4l for the background and for a Higgs boson signal with mH = 125

GeV compared to the data. Plot (a) consists of the observed Higgs boson candidates (events

that pass selection). These experimental data are represented by black dots. Plot (b) represents

the expected background contribution, whereas plot (c) is the Higgs signal expectation for a

mass around mH = 125 GeV. Plot (d) is the superposition of all the three previous plots. The

red histogram represents the expected background for the ZZ∗ processes and the purple one

represents the reducible Z and tt̄ backgrounds.

The plot shows a peak in the low mass region for ZZ∗. Since the Z∗ is too small, that peak

corresponds to the Z → 4l production around m4l = MZ = 91 GeV. We can also notice the

threshold above m4l = 2MZ ' 180 GeV of the on-shell ZZ production, and a narrow peak

around m4l = mH = 125 GeV that actually fits with the observed data (excess of events bigger

than background).

These plots were made by calculating the four-lepton invariant mass m4l for the selected events,

which then was plotted according to the number of events observed and/or expected in the

mass range 80-250 GeV, with a step of 5 GeV. This output was given after running our code to

calculate the four-lepton mass from experimental and simulated (background and signal) data

samples:

m4l =
√
E2 − p2

x − p2
y − p2

z (4.1)

with px, py, pz being the components of the momentum of the four-lepton system and E the

four-lepton energy. We point out that the observables needed are taken directly from the data

samples. They are gathered in sets of four selected leptons, and we take the transverse momen-

tum pT , pseudorapidity η, azimuthal angle φ and energy E of each lepton of the quadruplet.

An overview of the function used in the code is shown in Figure 4.1:

Figure 4.1: The function that calculates the four-lepton invariant mass m4l (mllll) in the ATLAS
Open Data code.
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(a)

(c)

(b)

(d)

Figure 4.2: Distribution of four-lepton m4l invariant mass by steps: (a) experimental data, (b)
background expectation, (c) signal expectation, (d) data fitted with background and signal
expectations.

Our finding with 10fb−1. CERN finding 139fb−1 (2020) [65].

Figure 4.3: The distribution of the four-lepton invariant mass m4l, for the selected candidates,
compared to the expected signal and background contributions for the

√
s = 13 TeV.
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The Figure 4.3 shows our output of the four-lepton invariant mass distribution (on the left),

next to the most recent ATLAS plot of 2020 (on the right).

We notice a considerable difference in the precision of the two graphs. Experimental data

points (black dots) fit way better in the 2020 plot. This is mainly due to the higher integrated

luminosity of 139 fb−1 (larger number of events).

Our finding.

2015

CERN finding (2015) [66].

Figure 4.4: Invariant mass distribution of the leading lepton pair (m12).

Our finding. CERN finding (2012) [7].

Figure 4.5: Invariant mass distribution of the sub-leading lepton pair (m34).

As for Figure 4.4 and 4.5, they each show the leading and sub-leading leptons mass dis-

tribution m12 and m34 respectively. Our findings (on the left) were made by means of some
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modifications to the code. The main idea is defining functions that calculate m12 and m34,

determined by applying cuts to the leptons selected.

Figure 4.6 shows the distribution of the m12 versus m34 invariant masses for the selected

candidates in the mass range 120 < m4l < 130 GeV. Where black triangles represent data, the

Higgs signal with mH = 125 GeV is represented in blue and it is superimposed on the Z and

tt̄ background (red) and ZZ∗ background (orange).

Our finding. CERN finding (2012) [7].

Figure 4.6: Distribution of the m34 versus the m12 invariant mass.

Second level : statistical precision p-value analysis

For data analysis in High Energy Physics (HEP), precision statistical procedures [67–71]

are important in order to exclude or discover a new phenomenon. It determines whether or

not the observed data are compatible with a given hypothesis and to determine a degree of

incompatibility.

So there are two nested hypotheses tested against each other. The Standard Model (denoted

by b for background) and the Standard Model containing a Higgs boson with a mass mH , i.e.

the signal+background denoted by s(mH) + b. To establish a discovery we define the null

hypothesis as the background only hypothesis noted Hnull = H0, and test it. We either fail

to reject it or manage to reject it in favour of the alternative hypothesis noted Halt = H1.

Rejection of the null hypothesis H0 at the level of 5σ is considered a discovery. This means

that only one background experience could fluctuate and sound like that same excess signal

among the billions of colision data are summed up into a single digit that determines whether
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the LHC rejected the background only hypothesis in favor of the Higgs boson mass mH or not.

Exclusion of a certain hypothesis requires at least a 95% confidence level (CL) when CLs (see

(A.32)) is less than 5%.

For statistical procedures, we use the frequentist approach. The Bayesian approach is used

as a check to set the exclusion limits and the probabilities quantify the degree of confidence

in a hypothesis. The frequentist approach begins by defining a statistical test, qµ, the purpose

of which is to quantify the agreement between the observed data and the predictions. It is

usual to look at the parameter µ which determines the strength of the H → ZZ∗ → 4l process

and simply called signal strength. This parameter is defined as µ = σobs/σSM , where σSM is

the cross section of the calculated Standard Model. Signal strength is defined so that µ = 0

corresponds to the background-only hypothesis and µ = 1 corresponds to the Standard Model

Higgs boson in addition to the background hypothesis. Test statistics for discovery or exclusion

are generally based on the profile likelihood ratio λ(µ). The two most common test statistics

in high energy physics are Neyman-Pearson (see Appendix A.3.2) and Profile Likelihood.

Likelihood function

The data are available in form of a binned histogram. In most of the cases, each bin content

is independent of any other bin and all obey Poisson distributions, assuming that bins contain

event-counting information. The likelihood function can be written as a product of Poissonian

pdfs (probability density functions) corresponding to each bin. Whose number of event is given

by ni. The expected number of events from signal and background in each bin depends on

some unknown parameters: µi = µi(θ1, ..., θm). The function to be minimized, in order to fit

θ1, ..., θm, is the following:

− 2 lnL(~n, ~θ) = −2 ln

nbins∏
i=1

Poiss(ni;µi(θ1, ...θm)) (4.2)

= −2

nbins∑
i=1

ln
e−µi(θ1,...θm)µi(θ1, ...θm)ni

ni!
(4.3)

= 2

nbins∑
i=1

(µi(θ1, ...θm)− ni lnµi(θ1, ...θm) + lnni!) (4.4)

The expected number of event in each bin, µi, is often approximated by a continuous function

µ(x) evaluated at the center of the bin x = xi. The parameters of the pdf which are not

interesting are called nuisance parameters and are used to evaluate the impact of the systematic

uncertainties on the measurement of the parameters of interest.

The distribution of the number of events in each bin can be approximated, for sufficiently

large number of events, by a Gaussian with standard deviation equal to σ =
√
ni. Then the
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probability of the dataset is the product of the probabilities of each bin:

P ∝
nbins∏
i=1

1√
2πσ2

{
exp

[
−1

2

(
ni − µ(xi; θ1, ...θm)

σ

)2
]}

(4.5)

Maximizing (4.5) is equivalent to minimizing the negative of its logarithm, and the term 1√
2πσ2

does not depend on the parameters θ if the uncertainties σ are known and fixed, hence it is a

constant that we can drop when performing the minimization. So that the maximum likelihood

estimate of the model parameters is obtained by minimizing the quantity:

χ2 =

[
nbins∑
i=1

(ni − µ(xi; θ1, ...θm))2

σ2

]
(4.6)

called the chi-squared χ2. What we see is that chi-squared fitting is a maximum likelihood

estimation of the fitted parameters if the measurement errors are independent and normally

distributed with constant standard deviation. So the idea is to minimize the mean difference

between the observed and expected values.

We use likelihood ratio by dividing the likelihood function from equation (4.9) over its

maximum value, which we obtain replacing µi with ni. Hence, we obtain:

λ = −2ln
L(ni;µi(θ1, ...θm))

L(ni;ni)
= −2ln

e−µiµnii
ni!

ni!

e−ninnii
(4.7)

= 2
∑
i

[
µi(θ1, ...θm)− ni + ni ln

(
ni

µi(θ1, ...θm)

)]
(4.8)

the distribution of λ can be used to determine a p-value. The profiled likelihood is always

normalised to its maximum value given by the maximum likelihood (ML) estimator, which is

called profile likelihood ratio.

Now we choose a bin represented by the yellow band (Figure 4.7) and we apply the count-

ing to it, where every bin is in fact a counting experiment. We assume it follows a Poisson

distribution with mean µs + µb:

P (n|µs, µb) =
(µs + µb)

n

n!
e−(µs+µb) (4.9)

where the n is the number of events, µs and µb are the expected number of events from the

signal and background, respectively. To establish the existence of the signal process, we test

the hypothesis of µs = 0 (the background-only hypothesis) against the alternative where the
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Figure 4.7: The distribution of the four-lepton invariant mass m4l for the selected candidates.

signal exists, that is, µs > 0. From (4.9), we construct the profile likelihood ratio:

λ(0) =
P (n|0, µb)
P (n|µ̂s, µb)

=

(
µb

µ̂s + µb

)n
eµ̂s =

(µb
n

)n
en−µb (4.10)

λ(0) =

(
20

32

)32

e32−20 = 0.047 (4.11)

where µ̂s = n − µb is the maximum likelihood estimator of µs given that we observe n events

in the selection region.

The hypothesis testing performed in the analysis in this Chapter are based on the profile

likelihood ratio.

The test statistic q0 for discovery of a positive signal

The test statistic qµ with µ = 0 is commonly exploited to test against the background-only

hypothesis, Where the rejecting the µ = 0 hypothesis effectively leads to the discovery of a new

signal.The test statistic can be defined as:

q0 =

{
−2 lnλ(0) if n > µb

0 otherwise.
(4.12)

q0 = 6.080 (4.13)

where λ(0) is the profile likelihood ratio for µ = 0, as defined in (4.10).

Asymptotically, a test statistic −2 lnλ of one parameter of interest µ is distributed as a χ2
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distribution with one degree of freedom. The test statistic q0, i.e equation (A.31) for µ = 0,

may lead to the rejection of the null hypothesis in case of both an upward and a downward

fluctuation of the observed data. This is appropriate if the presence of a new phenomenon

could lead to an increase or decrease in the number of events found.

If the data fluctuate such that one finds fewer events than even predicted by background

processes alone, then one has q0 = 0. Large values of q0, corresponding to an increasing level of

incompatibility between the dataset and the background-only hypothesis. This statistical test

is used to calculate the probability (p0, with µ = 0) that the background can vary to produce

an excess at least as large as that observed in the data.

p-value

Assumed an observed data sample, claiming the discovery of a new signal requires to de-

termine that the sample is sufficiently incompatible with the hypothesis that only background

(H0) is present in the data. A test statistic can be used to measure how agreeing or disagreeing

the observation is with the hypothesis of the presence of background only.

To quantify the level of disagreement between the observed data and the hypothesis of

µ = 0 using the observed value of q0, we compute the p− value. It is the probability, under

postulation of the null hypothesis Hnull, of finding data of equal or greater incompatibility

with the predictions of Hnull. This can be illustrated in Figure 4.8 of the profile likelihood test

statistic by the light blue area. Here H0 is the tested null hypothesis (background-only) and

the p− value is given by:

p0 =

∞∫
qµ=0,obs

f(q0|0)dq0. (4.14)

p0 = 0.013 (4.15)

Where qµ=0,obs is the value of the statistical test observed by the experiment, and the rejection

of the theory of the non-signal, µ takes the value of 0. Here f(q|0) denotes the pdf of the

statistic q0 under assumption of the background-only (µ = 0) hypothesis. There is a probability

interpretation of the p − value: This statistical quantity expresses how likely the number of

observed events would be due only to background processes. We can also write p − value of

the hypothesized µ = 0 in the form:

p = 1− Φ(
√
q0) (4.16)

where Φ is the standard Gaussian cumulative distribution.

In particle physics, when performing searches, the p− value is generally converted into the
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Figure 4.8: The pdf of the Profile-Likelihood, q0 test statistics, under the null (b) and alternative
(s+b) hypotheses.

equivalent significance Z defined as a Gaussian distributed variable, which is found Z standard

deviations above its mean, has an upper-tail probability equal to p (Figure 4.9). That is:

Z = Φ−1(1− p) (4.17)

where p is the p− value and Φ−1 is the standard normal quantile. Equation (4.16) and (4.17)

lead therefore to the simple result:

Figure 4.9: The relationship between a p− value and a significance of Z sigma.
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Z =
√
q0 =

√
2

(
n ln

(
n

µb

)
− n+ µb

)
(4.18)

Z = 2.465 (4.19)

The quantity Z measures the statistical significance in units of standard deviations or sigmas σ.

Often in particle physics, a significance of at least Z = 5 (a five-sigma effect (5σ)) is regarded

as sufficient to claim a discovery. This corresponds to p = 2.87× 10−7.

For purposes of excluding the signal hypothesis, a threshold p − value of α = 0.05 (i.e.,

95% confidence level) is often used, which corresponds to Z = 1.64. And since our result is

p = 0.013 < α and Z = 2.465 to correspend for a 2.5σ (i.e. 99.30% confidence level), this

numerical p-value that we obtained still confirm a Higgs mass for around MH = 125 GeV.

Figure 4.10: Bell curve of the Standard Normal Distribution [72].

The significance of an excess in the data is first quantified with the local p0, where the

0 corresponds to the value of µ, which implies the purely background model. So this is the

probability that the background fluctuates extremely, or more extreme than what we observed

in the data. Thus, if p0 is very low, then it is very unlikely that the local fluctuation is due to

background, it is therefore from the signal. By using the p0 defined in the formula (4.14), the

observed p−value is shown as a function of the Higgs massmH in Figure 4.11. From the left plot,

it is observed that the local minimum of p0 = 2.9× 10−3 lies at mH = 121GeV , corresponding

to a statistical significance of 2.76σ. This result rejects the background-only theory in the

H → ZZ∗ → 4l channel. And the right plot obtained from the result of the H → ZZ∗ → 4l

analysis using the full
√
s = 7 TeV and

√
s = 8 TeV statistics, when combained the result, the

local minimum of p0 = 10−4 , corresponding to 3.6σ. where we conclude, that the result of the
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statistical quantity published by the ATLAS collaboration, remains more precise than what we

obtained.

Our finding. CERN finding [7].

Figure 4.11: Local p0 value as a function of mH .

Figure 4.12: Plot of the observed (solid lines) and expected (dashed lines) local p0-values as a
function of the Higgs boson mass. The values of the expected p0-value are obtained assuming
the existence of a Standard Model Higgs boson signal for that mass [7].

The Figure 4.12 shows the combination of the results of the H → γγ, H → ZZ∗ → 4l

and H → W+W− → lνlν channel, various Higgs boson searches of the ATLAS experiment in
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July 2012. An excess of events was around mH = 125 GeV, with a local significance of 6σ,

corresponding to p0 = 1.7× 10−9. A similar excess was also observed by the CMS experiment

who worked in parallel with ATLAS at the LHC.

So this was the final discovery plot of July 2012, with a p-value over the 5-sigma discovery

criteria. So, a p-value of 1σ means we have a 1 in 10 chance the signal isn’t the Higgs. 3σ

means 1 in 1000 chance it isn’t a Higgs, this is considered an evidence. 6σ means 1 in a billion

chance it is not a Higgs and is only due to background fluctuations. This makes it a real

discovery.
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Conclusion

In this master thesis, we were interested in reconstructing the Higgs signal from the ATLAS

experiment open data at the LHC, through the pp→ H → ZZ∗ → 4 leptons decay channel.

In a first step, we experienced the strengh and the elegance of the Higgs mechanism in

generating masses of scalar, vector and fermion Standard Model particles. Then we examined

more deepely the Standard Model Feynman rules associated to the Higgs field, to identify the

most involved processes in the creation and decay of the Higgs particle in the proton proton

collisions at the LHC.

Then, in order to test this theoretical background concretely in the experimental field, we

paid attention to the design and making of the Large Hadron Collider with a special interest

in the ATLAS detector and data acquisition. Furthermore, we expressed the theory into a

manageable form, by simulating the whole collision process that produces the Higgs boson in

the golden channel taking place at the LHC. In this simulation, we also took into consideration

the background processes that produce the same four leptons final state as the Higgs boson.

Finally, we explored available experimental and simulated data from the ATLAS Open

Data portal. We then applied kinematical cuts to these data, to highlight the four leptons

Higgs signal in contrast with background events. After that, in a first level statistical analysis,

we plotted histograms of the observed data and of the simulated background and Higgs signal.

This allowed us to notice that for MH = 125 GeV, the simulated events fit with the observed

ones when we jointly take into account the Higgs signal and the background. As for the following

step, we relied on a more precise statistical analysis. It consisted in calculating the p-value for

various hypothetical Higgs masses. This statistical quantity expresses how likely the number

of observed events would be due only to background processes. Although less precise than that

published by the ATLAS collaboration, the numerical p-values that we obtained still confirm

a Higgs mass for around MH = 125 GeV.

In the end, now that the Standard Model is completed, the relationship between the theory

and experiment through data analysis will still help in the search for greater hints to physics

beyond the Standard Model. Hence, more precise computations and measurements are needed

to explore rare events and look for any potential heavier particles.
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Appendix A

Statistical methods for High Energy

Physics

A.1 Bayes theorem

Bayes theorem is a basic result in probability theory, it is used to update the estimates

of any probability or parameter, based on the observations and the probability laws of those

observations. It allows to determine a conditional probability that of A knowing B. It can be

derived easily from the definition of conditional probability:

P (A|B) =
P (A ∩B)

P (B)
(A.1)

Considering two events A and B, by using equation (A.1) twice we can write:

P (A|B) =
P (A ∩B)

P (B)
(A.2)

P (B|A) =
P (A ∩B)

P (A)
(A.3)

from which the following equation derives:

P (A|B)P (B) = P (B ∩ A)P (A) (A.4)

according to (A.4), the Bayes theorem can be written in the form:

P (A|B) =
P (B|A)P (A)

P (B)
(A.5)
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In equation (A.5), P (A) has the role of prior probability and P (A|B) has the role of posterior

probability

P (H|E) =
P (E|H)P (H)

P (E)
(A.6)

A.1.1 Bayesian Probability

Bayesian Probability makes great use of Bayes Theorem, in the form:

P (Theory|Data) =
P (Data|Theory)

P (Data)
× P (Theory) (A.7)

P (Theory) is called the prior, P (Data|Theory) is the Likelihood: the probability of getting

Data if Theory is true. P (Theory|Data) is the Posterior.

A.2 The Likelihood function

The Likelihood function is a function of the parameters of a statistical model calculated

from observed data. The result of an experiment can be modeled as a set of random variables

x1......xn, whose distribution takes into account both the effects of the detector and the theory,

which can be described according to certain parameters θ1......θm whose values are unknown.

L = f(x1..., xn; θ1..., θm) (A.8)

In case our sample consists of N independent measurements, typically each corresponding to a

collision event, the likelihood function can be written as:

L =
N∏
i=1

f(xi1..., x
i
n; θ1..., θm) (A.9)

For example :

The number P (data|theory) of the equation is now generalised to the function L(a, x), where

x is the observed value of the data.

The probability of getting x counts from a Poisson process with mean a:

P (x, a) = exp−a
ax

x!
(A.10)

We also write:

L(a, x) = exp−a
ax

x!
(A.11)
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These are identical joint functions of two variables (x and a) to which we have just happened

to have given different names. The equation (A.10) as describing the probability of getting

various different x from some fixed a, whereas equation (A.11) describes the likelihood for

various different a from some given x.

∗ If P (x1, a) > P (x2, a) then x1 is more probable than x2.

∗ If L(a1, x) > L(a2, x) it does not mean that a1 is more likely than a2 .

A.2.1 Maximum likelihood estimates

The maximum likelihood estimate is a statistical estimator used to infer the parameters of

the probability distribution of a given sample, by finding the values of the parameters maximiz-

ing the likelihood function. And to maximize the Likelihood function, a numerical treatment

is needed in most of the realistic cases.

Extended likelihood function

The likelihood function expresses the probability density of a sample as a function of the

unknown parameters θ1, ..., θm given a sample of the N measures of the variables ~x = (x1, ..., xn)

L( ~x1, ..., ~xN) =
N∏
i=1

f(xi1, ..., x
i
n; θ1, ...; θm) (A.12)

The size N of the sample is a random variable. In those cases, the extended likelihood function

can be defined as:

L( ~x1, ..., ~xN) = P (N, θ1, ..., θm)
N∏
i=1

f(xi1, .., x
i
n; θ1, ..., θm) (A.13)

where P (N, θ1, ..., θm) is the distribution of N, and in practice is always a Poissonian whose

expected rate parameter is a function of the unknown parameters θ1, ..., θm:

P (N ; θ1, ..., θm) =
ν(θ1, ..., θm)N exp−ν(θ1,...,θm)

N !
(A.14)

− logL or −2 logL can be used in numerical treatment rather than L either with a standard

or an extended likelihood function, because the product of the different terms is transformed

into the sum of the logarithms of these terms.

For a Poissonian process that is given by the sum of a signal plus a background process. The
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extended likelihood function may be written as:

L(~x; s, s, b, ~θ) =
(s+ b)N exp−(s+b)

N !

N∏
i=1

(fsPs(xi; ~θ) + fbPb(xi, ~θ)) (A.15)

where s represents the signal and b the background, fs and fb are the fraction of signal and

background events, namely:

fs =
s

s+ b
(A.16)

fb =
b

s+ b
(A.17)

and Ps and Pb are the pdf of the variable x for signal and background, respectively. Replacing

fs and fb into (A.15) gives:

L(~x; s, b, ~θ) =
exp−(s+b)

N !

N∏
i=1

(sPs(xi; ~θ) + bPb(xi; ~θ)) (A.18)

We use negative logarithm of equation (A.18). That should be minimized in order to determine

the best-fit values of s, b and θ:

− lnL(~x; s, b, ~θ) = s+ b−
N∑
i=1

ln
(
sPs(xi; ~θ + bPb(xi; ~θ)

)
+ lnN ! (A.19)

lnN ! is a constant which can be omitted in the minimization. And the signal strength µ can

be used instead of s as the parameter of interest, defined by the following equation:

s = µs0 (A.20)

Where s0 is the theory prediction for the signal yield s. µ = 1 corresponds to the nominal value

of the theory prediction for the signal yield.

A.3 Hypothesis tests

A hypothesis test is done by comparing some of the observed data samples, which are either

more compatible with one theoretical model or another alternative model. Hypothesis tests are

used to determine the results of the lead to the rejection of the null hypothesis of predetermined

level of significance.

In the test, there are two nested hypotheses tested against each other: null hypothesis H0 de-

noted by the background only b and alternative hypothesisH1 denoted by the background+signal.

A test statistic is a variable calculated from of our data sample which has a discriminating power
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between two hypotheses H1 and H0. We can take as a signal sample all the events whose value

of x is greater than a threshold x > xcut. x is an example of a test statistic used to discriminate

the two hypotheses H1 = signal and H0 = background.

The most important steps that can be taken to get a test:

We set the null hypothesis H0 and the alternative hypothesis H1.

The significance level α, as the probability to reject the hypothesis H0 if it is true (error of

the first kind). Hence the selection efficiency for the signal corresponds to 1− α.

The misidentification probability β, as the probability to reject the hypothesis H1 if it is true.

The case of rejecting H1 if true is called error of second kind. 1− β is also called power of the

test.

We conclude whether or not the null hypothesis is rejected according to the result of the

comparison of the value of the probability p-value to the threshold risk α:

∗ If pvalue ≤ 0.05 is statistically significant. It indicates strong evidence against the null

hypothesis, as there is less than a 5% probability the null is correct. Therefore, we reject

the null hypothesis, and accept the alternative hypothesis.

∗ If pvalue > 0.05 is not statistically significant and indicates strong evidence for the null

hypothesis. This means we retain the null hypothesis and reject the alternative hypoth-

esis. We should note that we cannot accept the null hypothesis, we can only reject the

null or fail to reject it.

The p-value and α have the same formula, but α is a property of the test, computed before you

see the data. The p-value is a property of the data.

A.3.1 Statistical tests and p-value

In a statistical test, the p-value is the probability of getting the observed value of the test

statistic, or a value with even greater evidence against H0, if the null hypothesis is true.

A result is said to be statistically significant when it is unlikely that it could be obtained by

mere chance. In contrast, a statistically insignificant result is one that possibly (more than 5%

chance) was obtained by chance.

The p-value is only an indication of how strange the measured result qmeas is, assuming the null

hypothesis is correct. To obtain the p-value of our result we ask the question: if this experiment

were repeated several times, under the null hypothesis, in which fraction of experiment would

we obtain a result as extreme, or more extreme than what we observed ?

If the p-value is very small, we can conclude that our q is not compatible with the null hypothesis

i.e. we can conclude that the null hypothesis is false. Even in this case, it does not tell us that
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our alternative hypothesis is true. The p-value is defined as:

pµ =

∞∫
qµ,obs

f(qµ|µ)dq (A.21)

where qobs is the observed value of the test statistic q in data and and f(qµ|µ) represents the

probability density function (pdf) of q. µ which corresponds to the two hypotheses:

. µ = 0: the null hypothesis, background-only hypothesis (b).

. µ = 1: the alternative hypothesis, signal+background hypothesis (s+b).

The p-value for the signal+background hypothesis is:

ps+b = P (q ≥ qobs|s+ b) =

∞∫
qobs

f(q|s+ b)dq. (A.22)

where f(q|s+b) is the p.d.f of q under the assumption of the alternative hypothesis. Equivalently

for the null hypothesis:

pb = P (q ≤ qobs|b) =

−∞∫
qobs

f(q|b)dq. (A.23)

Figure A.1 shows the distribution of the test statistic q under the s+b and b hypotheses.

In particle physics, the significance of an observation is measured in terms of standard

deviations, ”sigma”. The standard deviation measures the likelihood that an observation is

due to chance rather than signaling a discovery.

• Two sigma effects are likely to occur with a regularity comparable to that of two die

rolls producing two consecutive sixes.

• Three sigma effect corresponds to a probability of a few thousandths that an observation

is due to chance: this is the point at which it is generally accepted that an observation

becomes interesting. A result of 3 sigmas is qualified as evidence.

• Four sigma corresponds to a high probability.

• We need five sigma when there is a discovery. At this point, it is considered that there

is less than a one in a million chance that the sighting is due to chance. A result of 5

sigmas is considered a true observation.

• Six sigma is a one in 500 million chance that the result is the result of fluctuations due

to chance.
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Figure A.1: The distribution of the test statistic q under the s + b and b hypotheses; the
corresponding p− value for the test statistic observed in data qobs [71].

A.3.2 The Neyman-Pearson lemma

The Neyman-Pearson lemma ensures that the selection criterion can be considered optimal if

it achieves the smallest misidentification probability (β) for a desired value of a signal efficiency

(1−α), or a fixed significance level(α), which depends on the likelihood ratio evaluated for the

observed data sample x under the two hypotheses H1 and H0:

λ(x) =
L(x|H1)

L(x|H0)
> kα (A.24)

where L(x|H0) and L(x|H1) are the values of the likelihood functions for the two considered

hypotheses. kα is a constant whose value depends on the fixed significance level α.

Multivariate discriminators are samples with multiple variables of a statistical test provided by

algorithms. The algorithms are ”trained” using data samples simulated with computer algo-

rithms (Monte Carlo) i.e. where either H0 or H1 is known to be true. Among the most common

problems that arise with training of multivariate algorithms, the size of training samples is nec-

essarily finite, hence the true distributions for the considered hypotheses cant be determined

exactly form the training sample distribution.
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A.4 Projective likelihood ratio

In case of independent variables, the likelihood functions appearing in the numerator and

denominator of equation (A.24) can be factorized as product of one-dimensional pdf. Even in

the cases when variables are not independent, this can be taken as an approximate evaluation

of the Neyman-Pearson likelihood ratio, so we can write:

λ(x) =
L(x1, ..., xn|H1)

L(x1, ..., xn|H0)
'
∏n

i=1 fi(xi|H1)∏n
i=1 fi(xi|H0)

(A.25)

The approximation may be improved if a proper rotation is first applied to the input variables

in order to eliminate their correlation. This approach is called principal component analysis.

A.5 Profile likelihood ratio

The likelihood L(µ, θ) is a function of parameter of interest µ and nuisance parameters θ.

To test a hypothesized value of µ in chapter 4 are based on the profile likelihhod ratio:

λ(µ) =
L(~x;µ,

ˆ̂
θ)

L(~x; µ̂, θ̂)
(A.26)

In the denominator µ̂ and θ̂ are the best fit values of µ and θ corresponding to the observed

data sample, and in the numerator
ˆ̂
θ is the best fit value for θ obtained for a fixed value of

µ. We have already assumed that all parameters are treated as nuisance parameters and this

is the only parameter of interest. The motivation for the choice of (A.26) as the test statistic

comes from Wilks theorem that allows to approximate asymptotically −2 lnλ(µ) as a χ2.

For example:

The data thus consist of two measured values: n and m. We have one parameter of interest,

µ, and one nuisance parameter, b. The likelihood function for µ and b is the product of two

Poisson terms:

L(µ, b) =
(µs+ b)n

n!
exp−(µs+b) (τb)m

m!
exp−τb (A.27)

Since L(µ, b) is a function of the two variables µ and b we use partial derivatives to find the

maximum likelihood estimator (MLE). The easy value to find is µ̂:

∂L(µ, b)

∂µ
= 0 =⇒ µ̂ =

n− m
τ

s
. (A.28)

and the same for b̂:
∂L(µ, b)

∂b
= 0 =⇒ b̂ =

m

τ
. (A.29)
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To find the MLE
ˆ̂
b for a specified µ:

∂2L(µ, b)

∂b2
,

ˆ̂
b =

n+m− (1 + τ)µs

2(1 + τ)
+

[
(n+m− (1 + τ)µs)2 + 4(1 + τ)mµs

4(1 + τ)2

]
(A.30)

A.5.1 Test statistic qµ = −2 lnλ(µ)

The definition of λ(µ) in equation (A.26), shows that the profile likelihood is ranging

between 0 and 1, with λ near 1 implying good agreement between the data and the hypothesized

value of µ. It is convenient to define the test statistic:

qµ = −2 lnλ(µ) (A.31)

as the basis of a statistical test. Where higher values of qµ thus correspond to increasing

incompatibility between the data and µ.

Minimising the statistic qµ, or, equivalently, maximising λ(µ), allows to determine the value of

the signal strength µ which is the most compatible with the observed data.

A.6 Nuisance Parameters

In statistics, a nuisance parameter is any parameter which is not of immediate interest but

which must be taken into account in the analysis of the parameters which pose an interest.

To establish the discovery in particle physics is based on a frequentist significance test using a

likelihood ratio as a test statistic. In addition to the parameters of interest such as the speed

(cross section) of the signal processing, the signal and background models will generally contain

nuisance parameters whose values are not taken as known a priori but must rather be adjusted

from the data.

A.7 CLs method

The CLs method consists of replacing the p-value used to define the critical region by:

CLs =
pH1

1− pH0

=
pµ
pµ=0

=
ps+b

1− pb
(A.32)

Where H1 is the alternative hypothesis, H0 is the null hypothesis. The CLs method can be

defined for any test statistic, however in the context of setting limits. If a value of µ has a

value of CLs below a value threshold α then the value of µ will be excluded with a confidence

level of 1 − α. To obtain a low value of CLs and therefore the exclusion of the value µ, a low
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value of pµ is no longer sufficient. It is also necessary that pµ=0 is very low which means that

the observation carried out is strongly incompatible with the background assumption, so the

experiment has some sensitivity to rule out the signal assumption. In the case of an experiment

infinitely sensitive to exclude the hypothesis µ, the exclusion by the standard statistical test is

found.
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