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Abstract

In this master’s thesis, we study two issues. The first is the fermion mass mixing and the second is

the Higgs boson decay. All of this is within the framework of the Electro-Weak theory of the Standard

Model. We review both the mixing and the Higgs mechanism to study the effect of the mixing on

the Higgs boson decay. In addition for that purpose, It was necessary to go through the process of

renormalization in order to get rid of any ultraviolet divergence. The study is executed at one loop

level by using special calculation tools under the Mathematica program, that are FormCalc, FeynCalc

and FeynArt.
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3.3 Tree level of the process Huū . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Tree level of the process HW−W+ et HZZ . . . . . . . . . . . . . . . . . . . . . 46

3.5 The H −→ bb̄ total decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 The H −→ cc̄ total decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 The H −→ τ τ̄ total decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 The H −→ gg total decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 The H −→ AA total decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 The H −→ ZA total decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 The Higgs decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 The Higgs decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.13 The Higgs total decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Plot of the branching ratios of the higgs decay channels . . . . . . . . . . . . . . . . 54

3.15 The W boson total decay width; the red line is the decay width the mixing effect . . . 55

A.1 Definitions of variables for two-body decays. . . . . . . . . . . . . . . . . . . . . . 58

A.2 Definitions of variables for three-body decays. . . . . . . . . . . . . . . . . . . . . . 59

vii



List of Tables

1.1 The three families of chiral fermions of standard Model . . . . . . . . . . . . . . . . 8

3.1 The Higgs decay width for MH = 125 GeV . . . . . . . . . . . . . . . . . . . . . . 53

3.2 The Higgs decay branching ratios for MH = 125 GeV . . . . . . . . . . . . . . . . 54

viii



Introduction

During the past century, a major event changed the way we understand the nature: the merging of

quantum mechanics with special relativity, leading to the birth of the so-called The Standard Model

of physics particle [11], [12], [18], [19] which was experimentally confirmed with a great accuracy.

A model through which we were able to give a simple explanation of the concept of mass, through

the Higgs mechanism and symmetry breaking. According to this mechanism, the electromagnetic

and weak interactions are unified into electroweak interaction at high energy. This interaction gives

rise to a scalar boson with which the particles interact to acquire their masses. The search for the

Higgs boson was the holy grail of all particle accelerators until July 2012 [28]. Finally, the missing

single particle was found to complete the Standard Model. With this, the passion for searching for the

Higgs boson was transformed into experiments to find out the effect of its mechanism which gives to

remain particles their masses. More investigations are spent to study decaying of the Higgs particle,

its production and properties.

One of the central ingredient of the SM is the Cabbibo-Kobayachi-Maskawa (CKM) matrix or

the quark mixing matrix, which rules the charged current interactions of the quark mass eigenstates

and enables the heavier ones to decay to the lighter ones [22]. In particular, it is the key to our

understanding why certain laws of nature are not invariant under simultaneous charge conjugation

and parity transformations.

In this master thesis, we are first interested in an overview of the Standard Model and Electroweak

Theory to know what are all of its parameters, especially from the standpoint of group theory and in

addition to its Lagrangian with all its parts. Then we talk about the Higgs mechanism to find the way

that the mass generation of all the elementary particles happened. After we move to the mixing of

the fermion masses by introducing the fermion mass mixing matrices. We will discuss the study of

the renormalization of the particle masses, the quark mixing matrix element and the electric charge at

one loop level. First, we must solve the ultraviolet divergence problem that appears in the particle self

energies extracted from the propagators, and make it in the form of a convergent mathematical ex-

pression. After clearly showing the ultraviolet divergence, we remove it by the counter terms method.

This focuses mainly on adding the counterterm to the lagrangian in order to reach a consistency be-

tween the the standard model parameters theoretically and the results obtained experimentally. One

of the most important things we will renormalize is the quark mixing matrix element Vij [5], then we
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will research the effect of this latter on the decay of the Higgs boson. After that, we will compare

between this effect and the effect in the W boson decay to two quarks which is the only physical

process containing the CKM matrix element.

The plane of this master thesis in order to reach our goal will be as follows

Chapter 01

In this chapter we will focus on the Standard Model, with all of its components. Starting from

particles to the canonical lagrangian with its detailed parts. Among them is the Higgs part that will

lead directly to the Higgs mechanism, which is responsible for the spontaneous breaking of the elec-

troweak symmetry. Through this mechanism fermions and bosons obtain their masses.We end with

the fermion mass mixing, where does the Yukawa couplings matrix appear, which we have to diago-

nalize. Then finally, we get the final expression of all the fermions generations masses.

Chapter 02

This chapter is about the renormalization of the mass mixing matrix, but firstly we must examine

why we have to renomalize in the first place, and we will find ourselves face to a famous problem in

quantum field theories: the ultraviolet divergences. We will solve the ultraviolet divergences problem

by giving an example from QED (the fermionic propagator), where we will highlight the dimensional

regularization method in order to show the ultraviolet divergence more clearly. We move to look for

a method that enables us to remove the ultraviolet divergence. That is the renormalization procedure.

Then we jump to choose a set of parameters and fields to apply the renormalization scheme for EWSM

on them. We will renormalize the fermion sector, the gauge sector, the Higgs sector, the electric

charge, and finally the quark mass mixing matrix element which is the aim of this chapter [5], [23].

We explicitly work at one loop, even we believe that our formalism is likely to carry out over to higher

orders.

Chapter 03

In this chapter we study the Mass Mixing effect on Higgs Width at One Loop Order. The

Higgs boson decay is into a particle and anti-particle. We use the automatic pakages FeynArts

and FormCalc [14], [13], [18] to draw the Feynman digrams, generate the Fortran codes of the tree

level, and the one loop level respectively. We choose a set of Higgs decay channels for which we

calculate decay width through use FormCalc package under Mathematica. Namely those decays

are:

2



H −→ bb̄, H −→ cc̄,

H −→ τ τ̄ , H −→ gg,

H −→ AA and H −→ ZA

With mentioning all steps to generate the Fortran codes we need to calculate the Higgs decay

width and the branching ratios.

Finaly we move to the W boson decay into quark and anti-quark which is the only physical

process containing the CKM matrix element [33], then we compare between the mass mixing matrix

effect in both the Higgs and the W boson decay. The last step will be our conclusion. Some long

calculations that concern what is studied in this chapter are put in the Annexes.
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Chapter 1

Standard Model and Fermion Mass Mixing

1.1 Standard Model

1.1.1 Introduction

The arrival of the Standard Model to its prosperous state today was the result of many years of

developments and progress, it was completed in early 1970s but not fully experimentally verified until

the discovery of the Higgs boson at the Large Hadron Colider (LHC) in 2012. The SM is the theory

that describes all elementary particles discovered so far and their interactions, and it summarizes all

we know about fundamental forces of electromagnetic, weak and strong interaction (but excluding

gravity). Those three fundamental interactions described by the SM are mediated by Spin-1 gauge

bosons [21]

The photons mediating the electromagnetic interaction: Imagined in 1900 by Max Planck and

confirmed in 1905 by Albert Einstein, it is massless and has zero electric charge. A quantum ob-

ject, the photon manifests itself as a wave (electromagnetic wave) and as an assembly of corpuscles

(gamma radiation). The correspondence between the two aspects is given by the Planck formula:

E = ~ν, where the corpuscular aspect is contained in the left hand side which represents the en-

ergy of each photon and on the right side ν represents the frequency of the wave associated with this

photon. The electromagnetic interactions have an infinite range because their particles (photons) are

massless.

The W and Z bosons mediating the weak interaction: W bosons were seen in January 1983

during a series of experiments made possible by Carlo Rubbia and Simon van der Meer. They found

the Z boson a few months later, in May 1983. The respective symbols are W+, W−, and Z0. TheW±

bosons have either a positive or negative electric charge of 1 elementary charge and are each other’s

antiparticles.

The gluon mediating the strong interaction: observed indirectly in 1979, it is a vector boson with
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a spin of 1. While massive spin 1 particles have three polarization states, massless gauge bosons

like the gluon have only two polarization states because gauge invariance requires the polarization to

be transverse to the gluon travelling direction. In quantum field theory, unbroken gauge invariance

requires that gauge bosons have zero mass. There are eight remaining independent color states, which

correspond to the eight types or colors of gluons.

In addition to bosons, the SM contains also spin 1/2 fermions (the matter particles) [18] which

are divided into two subclasses :

1 Quarks : Elementary fermions which were discovered between 1968 and 1995. They are sen-

sitive to all fundamental interactions and are the constituents of all hadrons. When associated three

by three, they form the baryons. With quark-antiquark assemblages they form mesons. There are six

types of quarks split in three generations (or families) [21].

Quark type : Family 1 Family 2 Family 3 Electric charge

Up up (u) charm (c) top (t) +2/3.

Down down (d) strange (s) bottom (b) -1/3.

They carry a fractional electric charge and a color charge which they swap by exchanging a gluon

with a neighboring quark. Free at short distance, quarks become strongly bounded if the distance

increases between them. Quarks can only be detected indirectly because of confinement: one never

observes isolated quarks or gluons. If at low energy they exist in the form of bound states called

hadrons, at very high energies however quarks seems to form a plasma state of quarks and gluons.

2 Leptons: There are six types of leptons, grouped in three generations. The lightest charged

leptons is the electron (e) which was discovered in 1897 by J.J.Thomson, followed by the muon (µ)

observed by Carl D.Anderson in 1936 and the tau (τ ) which was detected between 1974 and 1977.

All these particles have antiparticles with opposite charge and are completed by the neutral neutrinos:

which can take three forms (or flavors): The electron neutrino (νe) (1956), the muonic ((νµ) (1962)

and tauic (ντ ) (2000), Neutrinos have no electric charge and have a very low mass of which only

one upper bound is known. They periodically transform into each other in a process called neutrino

oscillations. They are sensitive only to weak interaction.

The SM is a gauge theory with the gauge group SU(3C)⊗SU(2)I ⊗U(1)Y [21]. The first gauge

group SU(3)C forms the underlying symmetry group of the strong interaction, the (C) stands for

the color. Its corresponding eight gauge fields are the massless gluons that participate in the strong

interaction. The second factor, the group SU(2)I⊗U(1)Y describes the elecroweak sector of the SM,

the (I) stands for the weak isospin and the (Y) stands for the weak hypercharge.

SU(2)I ⊗U(1)Y involves respectively two parameters g and g’ which are the couplings of gauge

bosons to fermions.
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Figure 1.1: Standard Model elementary particles (WIKIMEDIA COMMONS)
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1.1.2 The Standard Model Lagrangian

The SM is a quantum feild theory, and any quantum feild theory must be described by a La-

grangian which involves different feilds and contains kinetic and interaction termes.

The Lagrangian of the SM can be composed as follow [18], [21], [20], [5]:

LSM = Lkinetic + LGF + LHiggs ++LY ukawa (1.1)

Each of them is separately gauge invariant.

The Fermionic Part

Chiral Fermion Fields:

The SM contains three generation of a collection of chiral fermion fields [21]. There are two

types of chirality, left and right. Each chiral fermion is described by a ψ field. Neutrinos are a Dirac

or Majorana spinors and only their left part exists. So they are described in the SM by a single left

chirality spinor. The left- and right-handed chiral fermion states are obtained from an unpolarized

Dirac spinor using the projection operators [18]

PR =
1

2
(1 + γ5) (1.2)

PL =
1

2
(1− γ5) (1.3)

with γ5 = iγ0γ1γ2γ3 the products of the Dirac matrices, in such a way that

PRψ = ψR (1.4)

PLψ = ψL (1.5)

Using the anticomutation relation {γν , γ5} = 0 and the fact that γ5 is Hermitian we also have:

ψ̄PR = ψ†γ0PR = ψ†PLγ
0 = (PLψ)

†γ0 = ψ̄L (1.6)

similarly we get

ψ̄PL = ψ̄R (1.7)

with PR + PL = 1 and P 2
R = PR, P 2

L = PL.

We can get a new lagrangian in term of chiral fermion fields by inserting the projection operators
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into the Dirac Lagrangian. Let us start by the Lagrangian for a generic fermion ψ with mass mf [5]:

L = ψ̄i∂νγ
νψ −mf ψ̄ψ (1.8)

The first term splits into two terms involving left and right handed chiral fermion fields. By

inserting a factor (P 2
L +P 2

R) = 1 before the ψ and using the anticomutation relation to pull one factor

of that projection operator through γν in each term one obtain

ψ̄i∂νγ
νψ = ψ̄PRi∂νγ

νPLψ + ψ̄PLi∂νγ
νPRψ = ψ̄Li∂νγ

νψL + ψ̄Ri∂νγ
νψR (1.9)

We can then incorporate the gauge transformation properties by promoting the derivative ∂ν to a

covariante derivative Dν and these two terms of (1.9) will be gauge invariante for any of the fermion

fields given in table 1 [21], [20].

SU(2)L U(1)Y

Li
L :

(
νe
e

)

L

,

(
νµ
µ

)

L

,

(
ντ
τ

)

L

, 2 , −1/2

Qi
L :

(
u
d

)

L

,

(
c
s

)

L

,

(
t
b

)

L

, 2 , −1/6

ujR : uR , cR , tR , 1 , −1
djR : dR , sR , bR , 1 , −2/3
ejR : eR , µR , τR , 1 , −1/3
νjR : νeR , νµR , νRτ , 1 , 0

Table 1.1: The three families of chiral fermions of standard Model

Now for the mass term using a similar method we have:

−mψ̄ψ = −mψ̄PLψ −mψ̄PRψ = −mψ̄RψL −mψ̄LψR (1.10)

Because the left-handed and right-handed fermions of the SM carry different SU(2)I ⊗ U(1)Y
gauge charges, such mass terms are not gauge invariant and thus cannot be inserted by hand into

the Lagrangian. Therefore, given the correct gauge charges of the SM fermions, (unbroken) gauge

invariance implies that all the SM fermions are massless.
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Kinetic terms for the fermions and gauge interactions:

The kinetic term for the chiral fermion fields, including the interaction with the gauge fields due

to the covariante derivative, is written as [20], [5]:

Lkinetic =

3∑

i=1

(
L̄L,iiγ

µDl
µLL,i + Q̄L,iiγ

µDq
µQL,i

)

+
3∑

i=1

(
l̄R,iiγ

µDl
µlR,i + ūR,iiγ

µDq
µuR,i + d̄R,iiγ

µDq
µdR,i

)
(1.11)

This term describes how to couple the gauge bosons to fermions, the gauge covariant derivatives are

given by [20]:

Dl
µLL,i =

(
∂µ +

1

2
igW a

µσ
a − 1

2
ig′Bµ

)
LL,i (1.12)

Dl
µlR,i = (∂µ − ig′Bµ) lR,i (1.13)

Dq
µQL,i =

(
∂µ +

1

2
igsG

a
µλ

a +
1

2
igW a

µσ
a +

1

6
ig′Bµ

)
QL,i (1.14)

Dq
µuR,i =

(
∂µ +

1

2
igsG

a
µλ

a +
2

3
ig′Bµ

)
uR,i (1.15)

Dq
µdR,i =

(
∂µ +

1

2
igsG

a
µλ

a +
1

3
ig′Bµ

)
dR,i (1.16)

Here, the Pauli matrices σa and the Gell-Mann matrices λa are the generators of the SU(2) and

SU(3) Lie algebras respectively [20]. The SM carry different SU(2)I⊗U(1)Y gauge charges because

of the chirality of fermions. So the explicit mass terms for the fermions are forbidden and thus cannot

be inserted by hand in the lagrangian. The masses of the fermions are generated via their fields

Yukawa couplings to the higgs field (spontaneous symmetry breaking).

The Gauge part

The LGF describes the dynamics and self interactions of the gauge fields related to each of the

three factors of the symmetry group. The pure gauge field Lagrangian reads [21], [20], [5]:

LGF = −1
4
(∂µG

A
ν −∂νGµA+gsf

abcGB
µG

C
ν )−

1

4
(∂µW

a
ν −∂νW a

µ +g
′εabcW b

µW
c
ν )

2− 1

4
(∂µBν−∂νBµ)

2

(1.17)

whereGA
µν , W a

µν andBν are the kinetic tensors associated with the gauge fields of the groups SU(3)C ,

SU(2)L, and, U(1)Y . The isotriplet W a
ν , a = 1, 2, 3 is associated with the generator Iaν of the weak

isospin group SU(2)W . The isosinglet Bν with the weak hypercharge YW of the group U(1)Y . εabc =

fabc are the totally antisymmetric constante of SU(2). gS is the strong interaction coupling strength.
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The Higgs part

We add to the SM an SU(2)-doublet of complex scalar field denoted by Φ(x) and written as [18],

[20], [5]:

Φ(x) =

(
φ†(x)

φ0(x)

)

L

=
1√
2

(
φ1 + iφ2

φ3 + iφ4

)

L

(1.18)

where φ1, φ2, φ3 and φ4 are properly normalized real scalar fields. The Φ(x)’s hyper-charge is Y =

1/2. The new term in the lagrangian involving Φ(x) is given by:

LH = (DµΦ)
†(DµΦ)− V (Φ) (1.19)

where the first term contains the kinetic and gauge interaction terms via the covariante derivative:

Dµ = ∂µ − ig2IaWW a
µ + i

1

2
g1YWBµ (1.20)

The second term is a potential energie function involving Φ. The most general gauge invariant

potential energie function, or scalar potential, is given by [18], [21], [20]

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 (1.21)

It is constructed in such a way that it gives rise to spontaneous symmetry breaking. This means that

the parameters λ and µ are chosen such that the potential V (Φ) takes its minimum for a nonvanishing

Higgs field, i.e. the vacuum expectation value 〈Φ〉 of Higgs field is nonzero.

Yukawa part:

The construction of the lagrangian term that describe the Higgs couplings to fermions is simple.

The most general gauge-invariante renormalizable lagrangian terms involving the Higgs doublet and

fermions are, for all generations [21], [20], [5]:

LY ukawa = −
3∑

i,j=1

[
∑

a=u,ν

Ψ̄a
L,iα

a
ijH̃Ψa

R,j +
∑

b=d,e

Ψ̄L,iα
b
ijHΨb

R,j

]

−
(

3∑

i,j=1

[
∑

a=u,ν

Ψ̄a
L,iα

a
ijH̃Ψa

R,j +
∑

b=d,e

Ψ̄L,iα
b
ijHΨb

R,j

])† (1.22)

where the second term is the Hermitian conjugate of the first term, αa
ij and αb

ij are the Yukawa cou-

plings matrices, H̃ is the charge conjugated Higgs field.
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1.2 Higgs mechanism and mass generation

1.2.1 Introduction

The symmetry of the SU(2)I ⊗U(1)Y describes the electroweak sector of the SM; and so far we

had mainly considered the SM before electroweak symmetry breaking and SM lagrangian parts had

been written in terms of gauge eigenstates only, the gauge invariance of the electroweak Lagrangian

does not allow the invariance of the explicit mass terms for bosons and fermions. By this logic no

particle is massive, which is against the experimental results. The only explanation for these results

is that there is a symmetry breaking of SU(2)I ⊗ U(1)Y .

After electroweak symmetry breaking, it is convenient to rewrite the lagrangian in terms eigen-

states: the gauge eigenstates W 1,2,3 and B are effectively no longer physical eigenstates with mass

zero. They become the charged gauge bosons W±
µ with mass MW and the neutral bosons Zµ with

mass MZ and the photon Aµ with mass zero, this is called the Higgs mechanism.

1.2.2 The Spontaneous Breaking of The Electroweak Symmetry

We had already introduced the scalar field (1.18) in the form of a weak Isospin IΦ = 1
2

dou-

blet with a weak hypercharge Y (Φ) = 1, and we had coupled it. The potential which contains the

interaction terms of the Higgs field with itself has two extremums found by resolving [6]

V ′(Φ) =
∂V (Φ)

∂|Φ| = 2(µ2|Φ|+ 2λ|Φ|3) = 0 (1.23)

So this is true when:

|Φ|1 = 0 (1.24)

or

|Φ|2 =
√
−µ2

λ
(1.25)

Considering the relative possible signs of the coefficients of the two terms in V we have two

cases [6]:

-When−µ2 and λ are both positive, the potential energy function has a minimum at |Φ|1 = 0 and

|Φ|2 are imaginary. In this case the potential is symmetric and the electroweak symmetry is unbroken

in the vacuum, because the action of a gauge transformation does not change the vacuum state Φ = 0,

The right side of Fig 1.2.

-When −µ2 is negative and λ is positive, the potential energy function has a minimum |Φ|2 away

from |Φ|1 = 0 which is a maximum. In this case the vacuum, or minimum energy state is not invariant

under SU(2)I⊗U(1)Y transformations: the gauge symmetry is spontaneously broken in the vacuum,

11



Figure 1.2: Plot of V (Φ) as a function of |Φ|

The left side of Fig 1.2.

At this the case −µ2 < 0, the Higgs field must follow one direction to achieve the electroweak

symmetry breaking. This means that the potential induces a Vacuum Expectation Value for H [6]:

|〈0|Φ|0〉|2 = µ2

2λ
=
v2

2
6= 0 (1.26)

And when this choice is made, the electroweak Lagrangian symmetry under the group SU(2)L⊗
U(1)Y is broken spontaneously. we can parameterize the state (1.18) in this way:

Φ(x) =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
=

1√
2

(
χ2 + iχi

v + h(x)− iχ3

)
(1.27)

where χi, χ2, χ3 and h(x) are small fluctuations so we can rewrite Φ in another convenient form:

Φ(x) ==
1√
2

(
χ2 + iχi

v + h(x)− iχ3

)
=

1√
2
exp

[
i
−→σ · −→χ
v

](
0

v + h(x)

)
(1.28)

Now consider the gauge transformation of Φ:

U(1)Y : Φ −→ exp

[
i

2
λaY (x)

]
Φ (1.29)

SU(2)L : Φ −→ exp

[
i

2
λaL(x)

σa

2

]
Φ (1.30)
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If we choose λa(x) = −2χa/v, a = 1, 2, 3 at each point in spacetime we arrive at

Φ =
1√
2

(
0

v + h(x)

)
(1.31)

this gauge choice is known as unitarity gauge. We can notice that the fields χ1,2,3(x) disappear under

the effect of these transformations: they are therefore non-physical or unobservable. The exception is

for the h(x) field and that is what makes it “physical Higgs boson” with a mass:

MH =
√
−2µ2 =

√
2λv (1.32)

1.2.3 Higgs-bosons coupling and mass generation

We returne now to the lagrangian (1.19) to examine the gauge-kinetic term:

Lgauge−kinetic = (DµΦ
†)(DµΦ) (1.33)

By inserting (1.31) into Lgauge−kinetic, the vacuum expectation value (vev) introduces couplings

in mass terms for the gauge bosons through applying the covariant derivative (1.20) to Φ:

DµΦ =
1√
2

(
∂µ − ig

σa

2
W a

µ − ig′
Y

2
Bµ

)
×
(

0

v + h(x)

)

=
1√
2

(
∂µ − ig2W 3

µ − ig
′

2
Bµ −ig(W 1

µ − iW 1
µ)

−ig(W 1
µ − iW 2

µ) ∂µ + ig
2
W 3

µ − ig
′

2
Bµ

)
×
(

0

v + h(x)

)

=

(
−ig(W 1

µ − iW 1
µ)(v + h)

(v + h)∂µh+
i
2
(gW 3

µ − g′Bµ(v + h)

)

(1.34)

Accordingly, the Hermitian conjugate term is:

(DµΦ)
† =

1√
2

(
ig(W 1

µ + iW 2
µ)(v + h), ∂µh− i

2
(gW 3

µ − g′Bµ(v + h)
)

(1.35)

Multiplying (1.34) by (1.35) gives:

(DµΦ)
†(DµΦ) =

1√
2

[
∂µh∂

µh+
g2

4
(v + h)2(W 1

µ + iW 2
µ)(W

1µ − iW 2µ)

+
1

4
(v + h)2(gW 3

µ − g′Bµ)(gW
3µ − g′Bµ)

] (1.36)
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The first term is the properly normalized kinetic term for the real scalar field h. To generate

bosons masses, we extract the h independent terms. For the second and the third terms, we note that

the combinations W 1
µ ± iW 2

µ correspond to the charged W bosons [18]

W+ =
W 1

µ − iW 2
µ√

2
(1.37)

W− =
W 1

µ + iW 2
µ√

2
(1.38)

For the remained parts we should define [5]

Zµ ≡ cos θWW
3
µ − sin θWBµ (1.39)

Aµ ≡ sin θWW
3
µ + cos θWBµ (1.40)

θW is the Weinberg angle defined in term of the coupling constants of SU(2) and U(1) by [6], [5]

cos θW = CW =
g′√

g2 + g′2
(1.41)

sin θW = SW =
g√

g2 + g′2
(1.42)

The electromagetic coupling is expressed as:

e = g′SW = gCW =
gg′√
g2 + g′2

(1.43)

Replacing (1.37) and (1.38) in the second term of (1.36) gives:

(DµΦ)
†(DµΦ) =

g2v2

4
W+

µ W
−µ +

g2v

2
hW+

µ W
−µ +

g2

4
hhW+

µ W
−µ + · · · (1.44)

The first term here is a mass term for the W bosons with:

M2
W =

g2v2

4
(1.45)

The Higgs vacuum expectation value has given the W boson a mass.

The second and the third terms give the interaction of one or two Higgs bosons with W+
µ W

−µ,

They correspond to Feynman diagram vertices Fig 1.3 with the following rules:

hW+
µ W

−
ν : i

g2v

2
gµν = igMW gµν = 2i

M2
W

v
gµν (1.46)
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Figure 1.3: Feynman rules for the hWW and hhWW vertices

hhW+
µ W

−
ν : i

g2

4
× 2!gµν = 2i

M2
W

v2
gµν (1.47)

where the extra factor 2! in the second expression is a combinatorial factor coming from the two

identical Higgs bosons in the Lagrangian term. We now consider the third term of (1.36). We take the

linear combination of W 3
µ and Bµ and according to (1.41) and (1.42) we find:

(gW 3
µ − g′Bµ) =

√
g2 + g′2

(
g√

g2 + g′2
W 3

µ −
g√

g2 + g′2
Bµ

)

=
√
g2 + g′2(CWW

3
µ − SWBµ)

=
√
g2 + g′2Zµ

(1.48)

The third term in (1.36) becomes:

(DµΦ)
†(DµΦ) =

(g2 + g′2)v2

8
ZµZ

µ +
(g2 + g′2)v

4
hZµZ

µ +
(g2 + g′2)

8
hhZµZ

µ + · · · (1.49)

The first term here is a mass term for the Z boson:1

M2
Z =

(g2 + g′2)v2

4
(1.50)

The second and the third terms in (1.49) give the interaction of one or two Higgs bosons with ZZ,

the corresponding Feynman rules are:

hZµZν : i
(g2 + g′2)v

4
× 2!gµν = i

√
g2 + g′2MZgµν = 2i

M2
Z

v
gµν (1.51)

hhZµZν : i
(g2 + g′2)

8
× 2!× 2!gµν = 2i

M2
Z

v2
gµν (1.52)

1Remember that the mass term for a real vector field takes the form 1

2
M2

ZZµZ
µ.
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Figure 1.4: Feynman rules for the hZZ and hhZZ vertices

where each coupling contains as 2! from the two identical Z bosons. We note that the orthogonal state

(1.40) did not appear in the Lagrangian or rather does not exist. This means that it does not couple

to the higgs field and thus does not acquire a mass through the Higgs mechanism. This state will be

identified as the photon.

Finally, the gauge bosons masses are [6]:

MAν
=Mγ = 0 (1.53)

MW+ =MW− =MW =
1

2
vg (1.54)

MZ =
1

2
v
√

(g2 + g′2) (1.55)

1.3 Fermion mass mixing

1.3.1 Introduction

As we saw before, the electroweak symmetry of the SM is broken once we expand the Higgs

doublet around a chosen vacuum state. After the spontaneous symmetry breaking, the interaction

between fermions and the Higgs doublet could give them masses. This can be achieved by adding the

Yukawa term by hand in the SM lagrangian which describes the Higgs fermion coupling.

In this section we will see how we can generate fermion masses, and we will introduce the mixing

between the different fermions families and this leads us to define the fermion mixing matrices.
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1.3.2 The construction of the lagrangian and fermion mass generation

Since the fermions field has mass dimension 3/2, the fermion pairs have mass dimension 3. Com-

bining this pair with a single Higgs doublet (mass dimension 1) gives a mass dimension 4. Follow-

ing this logic we can add a term which describes the coupling between the Higgs field and one of

SU(2)L doublet fermion and one SU(2)L singlet (see table 1.1). The most general gauge-invariante

Lagrangian terms involving The Higgs doublet and fermion are [5]:

Ldown−quark = −[αdQ̄LΦdR + α∗
dd̄RΦ

†QL] (1.56)

Lelectron = −[αeL̄LΦeR + α∗
e ēRΦ

†LL] (1.57)

For the up-type quarks and neutrinos (note that we are taking the neutrino massive here by includ-

ing a right-handed neutrino νR) we use the anti-doublet or conjugate doublet2. The conjugate Higgs

doublet is given by [5]

Φ̃ = iσ2Φ
∗ = i

(
0 −i
i 0

)(
φ−

φ0∗

)

L

=

(
φ0∗

−φ−

)

L

(1.58)

we can write another gauge-invariant Lagrangian terms

Lup−quark = −[αuQ̄LΦ̃uR + α∗
uūRΦ̃

†QL] (1.59)

Lneutrinos = −[ανL̄LΦ̃νR + α∗
ν ν̄RΦ̃

†LL] (1.60)

where every second term in these ast four Lagrangian terms is the Hermitian conjugate of the first

one.

The αd, αe, αu and αν are the Yukawa couplings. They are complex in general (here we assume

them as real dimensionless couplings). These constants have to be related in some way to the fermion

masses. Substituting, after the symmetry breaking, the Higgs doublet form

Φ =

(
φ†

φ0

)
→ 1√

2

(
0

v + h(x)

)
(1.61)

and

Φ†QL =
(
0, v + h(x)

)( u

d

)

L

=
v + h(x)√

2
dL (1.62)

2We take advantage of a useful property of SU(2). This conjugate transforms in the same way as the doublet and it

has hypercharge Y = −1/2
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in the Yukawa quark terms we get

LY ukawa = −
αdv√
2
d̄d+

αd√
2
hd̄d (1.63)

A simple comparison with the Lagrangian of Dirac (1.8) allows to deduce the mass expression.

So the first term is a mass term for the down-type quark md = αdv/
√
2, and the second is an hd̄d

coupling.

Following a similar calculation for the other lagrangian terms, it is possible to obtain the masses

of up-type and down-type quarks and leptons:





mu = αuv/
√
2, mc = αcv/

√
2

mt = αtv/
√
2, ms = αsv/

√
2

mb = αbv/
√
2





me = αev/
√
2, mµ = αµv/

√
2

mτ = ατv/
√
2, mν = ανv/

√
2

As it has been discussed in the previous sections, the SM fermions come in three different families

(or generations). In principle, as far as we do not take into account the mixing between the different

fermion families, the last calculation to generate the fermion masses is sufficient if we want to describe

each generation of fermions separately. But the most general Yukawa lagrangian including all left and

right-handed fermion fields with a generation indices i, j is:

LY ukawa = −
3∑

i,j=1

[
∑

a=u,ν

Ψ̄a
L,iα

a
ijΦ̃Ψ

a
R,j +

∑

b=d,e

Ψ̄L,iα
b
ijΦΨ

b
R,j

]

−
(

3∑

i,j=1

[
∑

a=u,ν

Ψ̄a
L,iα

a
ijΦ̃Ψ

a
R,j +

∑

b=d,e

Ψ̄L,iα
b
ijΦΨ

b
R,j

])† (1.64)

The dimensionless couplingαa,b
ij are now the (i, j) entries of 3×3 complex non-diagonal matrices.
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The Yukawa lagrangian takes this new general form

LY ukawa = −
3∑

i,j=1

[
Q̄I

L,iα
u
ijΦ̃u

I
R,j + Q̄I

L,iα
d
i,jΦd

I
R,j + L̄I

L,iα
e
ijΦe

I
R,j + L̄I

L,iα
ν
ijΦ̃ν

I
R,j

]

−
3∑

i,j=1

[
ūIR,iα

∗u
ij Φ̃

†QI
L,j + d̄IR,iα

∗d
i,jΦ

†QI
L,j + ēIR,iα

∗e
ijΦ

†LI
L,j + ν̄IR,iα

∗ν
ij Φ̃

†LI
L,j

]

= −
3∑

i,j=1

[
Q̄I

L,iα
d
i,jΦd

I
R,j + d̄IR,iα

∗d
i,jΦ

†QI
L,j + Q̄I

L,iα
u
ijΦ̃u

I
R,j + ūIR,iα

∗u
ij Φ̃

†QI
L,j

]

−
3∑

i,j=1

[
L̄I
L,iα

e
ijΦe

I
R,j + ēIR,iα

∗e
ijΦ

†LI
L,j + L̄I

L,iα
ν
ijΦ̃ν

I
R,j + ν̄IR,iα

∗ν
ij Φ̃

†LI
L,j

]

(1.65)

The superscript I implies that the fermion fields are expressed in the interaction basis. At this

point we can write

LY ukawa = Lquark
yukawa + L

lepton
yukawa (1.66)

1.3.3 The diagonalization of Yukawa coupling Matrices

As the elements of the masses matrix of fermion flavors are proportional to those of Yukawa′s

matrix the states of flavors have no defined mass. We have to diagonalize this mass matrix to find

the eigenvalues of masses and their corresponding eigenstates called mass states [2]. After symmetry

breaking, the fermion mass terms become:

Lmass = −
3∑

i,j=1

[
d̄IL,iM

d
ijd

I
R,j + d̄IR,jM

∗d
ij d

I
L,i

]
−

3∑

i,j=1

[
ūIL,iM

u
iju

I
R,j + ūIR,jM

∗u
ij u

I
L,i

]

−
3∑

i,j=1

[
ēIL,iM

e
ije

I
R,j + ēIR,jM

∗e
ij e

I
L,i

]
−

3∑

i,j=1

[
ν̄IL,iM

ν
ijν

I
R,j + ν̄IR,jM

∗ν
ij ν

I
L,i

]
+ Interactionterms

(1.67)

The interaction terms of the fermion fields to the Higgs field h(x)f̄ f are omitted. The expression

(1.67) is in matrix form, where Mij = v√
2
αij and M∗

ij = v√
2
α∗
ij . We have to diagonalize the mass

matrices Mij ,M
∗
ij to obtain proper mass term by multiplying them on the left and the right by appro-

priate unitary transformation matrices: U , (U †U) = 1. The basis transformations that diagonalize the

Yukawa coupling are defined by
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


d1

d2

d3




L,R

= Ud
L,R




d

c

b




I

L,R

,




u1

u2

u3




L,R

= Uu
L,R




u

s

t




I

L,R




e1

e2

e3




L,R

= Ue
L,R




e

µ

τ




I

L,R

,




ν1

ν2

ν3




L,R

= Uν
L,R




νe

νµ

ντ




I

L,R

(1.68)

Such that:

Md
diag = ULM

d
ijU

†
R =



md 0 0

0 ms 0

0 0 mb


 ,Mu

diag = ULM
u
ijU

†
R =



mu 0 0

0 mc 0

0 0 mt


 (1.69)

Me
diag = ULM

e
ijU

†
R =



me 0 0

0 mµ 0

0 0 mτ


 ,Mν

diag = ULM
ν
ijU

†
R =



mνe 0 0

0 mνµ 0

0 0 mντ


 (1.70)

The Lmass bacomes:

Lmass = −
3∑

i,j=1

[
d̄IL,iU

d†
L U

d
LM

d
ijU

d†
R U

d
Rd

I
R,j + d̄IR,jU

d†
R U

d
RM

d∗
ij U

d†
L U

d
Ld

I
L,i

]

−
3∑

i,j=1

[
ūIL,iU

u†
L U

u
LM

u
ijU

u†
R U

u
Ru

I
R,j + ūIR,jU

u†
R U

u
RM

u∗
ij U

u†
L U

u
Lu

I
L,i

]

−
3∑

i,j=1

[
ēIL,iU

e†
L U

e
LM

e
ijU

e†
R U

e
Re

I
R,j + ēIR,jU

e†
R U

e
RM

e∗
ij U

e†
L U

e
Le

I
L,i

]

−
3∑

i,j=1

[
ν̄IL,iU

ν†
L U

ν
LM

ν
ijU

ν†
R U

ν
Rν

I
R,j + ν̄IR,jU

ν†
R U

ν
RM

ν∗
ij U

ν†
L U

ν
Lν

I
L,i

]

(1.71)

where U matrices could be absorbed in the fermion states. This removes all the U matrices from the

Lmass. This later is then expressed only in term of fermion mass eigenstates:

Lmass = −
3∑

i=1

[
d̄L,iM

d
i dR,i + d̄R,iM

d∗
i dL,i

]
−

3∑

i=1

[ūL,iM
u
i uR,i + ūR,jM

u∗
i uL,i]

−
3∑

i=1

[ēL,iM
e
i eR,i + ēR,iM

e∗
i eL,i]−

3∑

i=1

[ν̄L,iM
ν
i νR,i + ν̄R,iM

ν∗
i νL,i]

(1.72)
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Since Mf
i =Mf∗

i we can write

Lmass = −
3∑

i=1

[
md

i (d̄L,idR,i + d̄R,idL,i)
]
−

3∑

i=1

[mu
i (ūL,iuR,i + ūR,iuL,i)]

−
3∑

i=1

[me
i (ēL,ieR,i + ēR,ieL,i)]−

3∑

i=1

[mν
i (ν̄L,iνR,i + ν̄R,iνL,i)]

(1.73)

Finally we have the general expression of fermion masses [2], [5]

mf
i =

v√
2
UL,f
ij αf

jkU
R,f†
ki (1.74)

After we have obtained the form of the mass for all fermions, we will study the mixing of quarks

and leptons separately to obtain matrix mixing blocks for both of them.

1.3.4 The Fermion Mixing Matrix(CKM and PMNS)

The Yukawa couplings diagonalization leads to the mixing between the different families of

fermions in off-diagonal matrix elements. The kinetic terms are also modified by the basis trans-

formation (1.68). As a result, the fermion mixing between families appears in the charged current

interaction [24]:

Lf =
(
ū d̄

)I
i

[
iγµ∂µ + γµ

(
g′

6
Bµ +

g
2
W 3

µ
g√
2
W+

µ

g√
2
W−

µ
g′

6
Bµ − g

2
W 3

µ

)](
uIi

dIi

)I

i

+
(
ν̄ ē

)I
i

[
iγµ∂µ + γµ

(
g′

6
Bµ +

g
2
W 3

µ
g√
2
W+

µ

g√
2
W−

µ
g′

6
Bµ − g

2
W 3

µ

)](
νIi
eIi

)I

i

+ ......

−
√
2

v

3∑

i=1

[
Q̄I

L,iM
d
i d

I
R,i + d̄IR,iM

∗d
i Φ†QI

L,i + Q̄I
L,iM

u
i Φ̃u

I
R,i + ūIR,iM

∗u
i Φ̃†QI

L,i

+ L̄I
L,iM

e
i Φe

I
R,i + ēIR,iM

∗e
i Φ†LI

L,i + L̄I
L,iM

ν
i Φ̃ν

I
R,i + ν̄IR,iM

∗ν
i Φ̃†LI

L,i

]
+ .....

(1.75)

Considering that the rest of the terms do not mix up- and down-type fermions, this lagrangien

becomes as follow:

Lf =
g√
2
ūIiLγµW

−
µ d

I
iL +

g√
2
d̄IiLγµW

+
µ u

I
iL +

g√
2
ν̄IiLγµW

−
µ e

I
iL +

g√
2
ēIiLγµW

+
µ ν

I
iL

−
√
2

v

3∑

i=1

[
ūIL,im

d
i d

I
R,iφ

+ + d̄IL,im
u
i u

I
R,iφ

− + ūIR,im
∗d
i d

I
L,iφ

+ + d̄IR,im
∗u
i u

I
L,iφ

−

+ ν̄IL,im
e
ie

I
R,iφ

+ + ēIL,im
ν
i ν

I
R,iφ

− + ēIR,im
∗ν
i ν

I
L,iφ

+ + ν̄IR,im
∗e
i e

I
L,iφ

−]

(1.76)
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We can now rewrite the lagranian (1.76) by expressing the interaction eigenstates
{
uI , dI , νI , eI

}

as fermion mass eigenstates {u, d, ν, e}

Lf =
g√
2
ūiL(U

u
LU

d†
L )ijγµW

−
µ diL +

g√
2
d̄iL(U

d
LU

u†
L )ijγµW

+
µ uiL

+
g√
2
ν̄iL(U

ν
LU

e†
L )ijγµW

−
µ eiL +

g√
2
ēiL(U

e
LU

ν†
L )ijγµW

+
µ νiL + ......

−
√
2

v

3∑

i=1

[
ūL,i(U

u
LU

d†
L )md

i dR,iφ
+ + d̄L,i(U

d
LU

u†
L )mu

i u
I
R,iφ

−

+ ūR,i(U
u
LU

d†
L )m∗d

i dL,iφ
+ + d̄R,i(U

d
LU

u†
L )m∗u

i uL,iφ
−

+ ν̄L,i(U
ν
LU

e†
L )me

ieR,iφ
+ + ēL,i(U

e
LU

ν†
L )mν

i νR,iφ
−

+ ēR,i(U
e
LU

ν†
L )m∗ν

i νL,iφ
+ + ν̄R,i(U

ν
LU

e†
L )m∗e

i eL,iφ
−
]
+ .....

(1.77)

where

VCKM = Uu
LU

d†
L (1.78)

and

UPMNS = Uν
LU

e†
L (1.79)

Thus, all of the interesting mixing effects are given by these two matrices [6]

VCKM = Uu
LU

d†
L =



V11 V12 V13

V21 V22 V23

V31 V32 V33


 =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (1.80)

UPMNS = Uν
LU

e†
L =



U11 U12 U13

U21 U22 U23

U31 U32 U33


 =



Uνee Uνeτ Uνeµ

Uντ e Uντ τ Uντµ

Uνµe Uνµτ Uνµµ


 (1.81)

known as the Cabibbo-Kobayashi-Maskawa (CKM) (QuarkMixing Matrix) and the Pontecorvo- Maki-

Nakagawa-Sakata (PMNS) (Lepton Mixing Matrix). They can be specified by three angles and a

phase. and they can be written with an identical parametrization for each of them [24], [17], [21], [6]

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c13c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c13c23 − s12s23s13eiδ c23c13


 (1.82)

UPMNS =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c13c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c13c23 − s12s23s13eiδ c23c13






1

ei
α12
2

ei
α13
2


 (1.83)

Note that 1, 2, 3 refer to mass eigenstates defined in terms of flavor eigenstates by these matrices.
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Finally, these are CKM and PMNS Numerical values [6]:

VCKM =



0.97427 0.22536 0.00355

0.22522 0.97343 0.0414

0.00886 0.0405 0.99914


±



0.00014 0.00061 0.00015

0.00061 0.00015 0.0012

0.00032 0.0011 0.00005


 (1.84)

UPMNS =




0.788396077726927 0.408445470475221 0.152472950695434

−0.468414463157376 0.744717881532313 0.427088737464917

0.102569223161843 −0.488580313546053 0.778454422594894


 (1.85)
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Chapter 2

Renormalisation of Mass Mixing Matrix

2.1 Introduction

The ultraviolet divergences appear in intermediate steps of calculations in quantum field theo-

ries [1]. In the 1930’s, when the ultraviolet divergences were first discovered in qunatum electro-

dynamics, many physicists believed that fundamental principles of physics have to be changed to

eliminate the divergences [4]. In 1940’s, Bethe, Feynman, Schwinger, Tomonaga, and Dyson, and

others proposed a program of renormalization that gave finite and physically sensible results by ab-

sorbing the divergences into redefinitions of physical quantities. Some scalar or tensorial integral

quantities diverge in the ultraviolet limit. We must, therfore, improve the theory to discard these

divergences through performing what is called the renormalization prescription. The lagrangians,

introduced in chapter 1 are called bare lagrangians, in that sense they couldn’t predict the unbared

physical constants as masses, charges ... ect, which are determined experimentally.

To cure these problems, we therefore add counter terms to those lagranians [4]. The counter terms

should be chosen to cancel the ultraviolet divergences. Accordinglly, a set of diagrams and Feynman

rules associated with these counter terms must be also added. The form of the counter terms are fixed

by introducing renormalization conditions.

2.2 Ultraviolet divergences review through QED

The ultraviolet divergence is a serious problem in QED, and it accures in many different calcu-

lation up to high orders [1], [4]. Here in this section, we start giving an example to compute the

correction of the fermionic propagator, as one of the QED processes in which the loop self energy

couldn’t be fixed experimentally because of the existence of the UV divergence. Then, we will treat

this divergence using the counter term procedure [4].
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2.2.1 Construction of the fermionic propagator

Getting the propagator from the vacuum expectation value of time-ordered products of field op-

erators can be somewhat daunting. So, we apply an alternative practical method explained in be-

low [32], [32], [20] and this directly on the following Dirac lagrangian [4]:

Lf = Ψ̄(i∂µγ
µ −m)Ψ (2.1)

Namely, we make the change
−→
∂ µ −→ −ipµ , this leads to

Lf = Ψ̄f(i(−ipµ)γµ −mf)Ψf (2.2)

= Ψ̄f [D(p)]Ψf

Where the oparator D(p) is define by the expression

D(p) = 6p−mf (2.3)

The fermionic propagator in momentum space is simply obtained by inverting (2.3).

S0,f(p) = iD(p)−1 =
i

6p−mf + iǫ
(2.4)

2.2.2 The one loop correction of the fermionic propagator

Let consider the full fermionic propagator in momentum space. It corresponds to a propaga-

tion of the fermion without interaction with external real photons, but rather with the emission and

reabsorption of virtual photons. The full propagator can be written as a geometric series of graphs

containing more and more insertions of the fermion self energy expression −iΣ̂(p) (see Fig 2.1) (a

similar example of the electron propagator is found in ref [20], [4]).

Figure 2.1: The Full Fermionic Propagator

We can link the exact fermionic propagator Sf(p) with the free fermionic propagator Sf,0(p) as
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p− kp p

Figure 2.2: The fermion self energy

follow

Sf(p) = Sf,0(p) + Sf,0(p)(−iΣ̂)Sf,0(p) + Sf,0(p)(−iΣ̂)Sf,0(p)(−iΣ̂)Sf,0(p) + .... (2.5)

= Sf,0(p) + Sf,0(p)(−iΣ̂)
{
Sf,0(p) + Sf,0(p)(−iΣ̂)Sf,0(p) + ....

}

= Sf,0(p) + Sf,0(p)(−iΣ̂)Sf (p)

where −iΣ̂(p) is what we called fermion self energy. It is formed by An the sum represented by

circles in the figure (2.1)

Multiplying on the left of (2.6) with S−1
f,0(p) and on the right with S−1

f (p) we get

S−1
f,0(p) = S−1

f,0(p)Sf,0(p)S
−1
f (p) + S−1

f,0(p)Sf,0(p)(−iΣ̂)Sf (p)S
−1
f (p) (2.6)

= S−1
f (p)− iΣ̂

which we can rewrite as

S−1
f (p) = S−1

f,0(p) + iΣ̂(p) = −i
[
6p− (mf + Σ̂(p))

]
(2.7)

where (2.4) is used.

Then, by inverting (2.7), we obtain the exact fermionic propagator

Sf(p) =
i

6p−mf + iΣ̂(p)
(2.8)

In lowest order there is only the diagram of Fig 2.2 contributing to Σ̂(p). Applying Feynman’s rules

to this diagram makes it possible to write the mass operator at one loop level:

− iΣ̂(p) = (ieQf )
2

∫
d4k

(2π)4
gµν

k2 + iǫ
γµ
6p− kµγµ +mf

(p− k)2 −m2
f + iǫ

γν (2.9)

Each loop is associated with an integration on the quadri-momentum kµ. We notice that this inte-

gration within the loop is linearly divergent. However, we know that in the real physical world, the

26



fermions can propagate, which means that the exact fermionic propagator (2.8) is not zero. The emer-

gence of the divergence at the level of the denominator of the fermionic propagator is only in the

imaginary part, it must therefore be treated by renormalization. To do this, it is necessary to trans-

form the above integral to a convergent expression plus a singular part. This goal is achieved under

the dimensionally regularizing procedure.

The principle of dimensional regularization [4], [3], [35] introduced by t’Hooft and Veltman is

based on the observation that the divergent loop integrals occur only when the integration measure is

of dimension 4. The idea is to analytically extend this dimension to non-integer values, d = 4− ǫ [4].

The divergences for d = 4 then appear as poles in 1/ǫ. Since the fields are no longer defined in

dimension 4, it is necessary to introduce a renormalization scale µ in order to keep the dimensionless

coupling constants. The results will depend on this scale. This regularization has the advantage of

preserving gauge invariance.

So the expression (2.9) takes the form

− iΣ̂(p) = 4παQ2
fµ

4−D

∫
dDk

(2π)D
gµν

k2 + iε

γµ( 6p− kµγµ +mf)γν
(p− k)2 −m2

f + iǫ
(2.10)

After doing steps required to regularize expression (2.10)1, we find

Σ̂(p) =
α

4π
Q2

f (4πµ
2)(2−

D
2
)Γ(2− D

2
)



( 6p−mf )

1∫

0

dx
(2−D)(1− x)

[
m2

fx− x(1− x)p2 − iǫ
]2−D

2

+m2
f

1∫

0

dx
2(1− x) +Dx

[
m2

fx− x(1 − x)p2 − iǫ
]2−D

2





(2.11)

The singular part of the fermion self energy at the one loop level reads

Σ̂(1)(p) =
( α
4π
Q2

f

)[
mf

4

εuv
− 6p 1

εuv

]
+O(1), (2.12)

where εuv = 2−D/2 = ǫ/2. Equation (2.12) shows that the ultraviolet divergences (εuv → 0) appear

twice: once with mf coefficient and the other with 6p coefficient. In order to cancel the divergences of

the fermionic self energy, we introduce a counter term at the level of the fermionic Lagrangian.

2.3 Renormalisation constants and counter-terms

As we said previously, we have to choose a set of independents parameters and fields to renor-

malize [5]. In our work we choose the SM entities that we introduced in chapter 1, that is:

1which are listed in Appendix C
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• all fermionic and bosonic fields: fL,R, Z, Aν ,W
±, H .

• SM model parameters: e,MW ,MZ ,MH , mf,i, Vi,j.

Then, we define the renormalization constants corresponding first to these parameters as2:

e0 = (1 + δZe)e (2.13)

M2
W,0 = M2

W + δM2
W (2.14)

M2
Z,0 = M2

Z + δM2
Z (2.15)

M2
H,0 = M2

H + δM2
H (2.16)

mf,i,0 = mf,i + δmf,i (2.17)

Vi,j,0 = Vi,j + δVi,j, (2.18)

and second to the fields as [4], [5]:

W±
0 = Z

1/2
W W = (1 +

1

2
δZW )W± (2.19)

(
Z0

A0

)
=

(
Z

1/2
ZZ Z

1/2
ZA

Z
1/2
AZ Z

1/2
AA

)(
Z

A

)
=

(
1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA

)(
Z

A

)
(2.20)

H0 = Z
1/2
H H = (1 +

1

2
δZH)H (2.21)

fL
i,0 = Z

1/2,f,L
ij fL

j (2.22)

fR
i,0 = Z

1/2,f,R
ij fR

j (2.23)

Since we treated the fermionic propagator in the last section, we continue with renormalization of the

fermionic sector (mf,i, f
L
i,0, f

R
i,0). Then after, we deal with the remains fields and parameters.

2.3.1 Renormalization of the fermionic propagator at one loop level

The aim of the renormalization of the fermionic propagator is to remove the ultraviolet diver-

gences which appear during the loop calculation. Therefore, we introduce at the level of the fermionic

lagrangian a new component known as counter term. The main idea is to separate the infinite part

from the finite part of the original parameters in the lagrangian (2.1) [4]. The counter term of infinite

contributions have, by definition, the same structure of the original terms in the lagrangian. The un-

bared parametres are fixed by experiments, and as consequence the singularity of the counter terms

2The bare quantities are indexed by 0
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are absorbed in the bared parameters. These contraints lead to the renormalization conditons. Here,

we introduce two renormalization constants ZL
f and Zmf

. The first constant links the mass eigenstates

fL,i to the bare mass eigenstates fL
0,i, and the second constant is in relation to the fermionic mass mf ,

according to the following form [18], [4], [31]

fL
i,0 = Z

1/2,f,L
ij fL

j (2.24)

fR
i,0 = Z

1/2,f,R
ij fR

j , (2.25)

f̄L
i,0 = Z

1/2,f,L
ij f̄L

j (2.26)

f̄R
i,0 = Z

1/2,f,R
ij f̄R

j , (2.27)

and

m0,f = Zmf
mf . (2.28)

where the renormalization constants can be written to the first order of perturbation as [4]

ZL
f = 1 + δZL

f + · · · (2.29)

Zmf
= 1 + δZmf

+ · · · (2.30)

This form of the renormalization constants enables us to split the bare Lagrangian Lf,0 into the renor-

malized Lagrangian Lf,R and the counter terms lagrangian δL. Neglecting the high orders, the bared

fermionic Lagrangian (2.1) takes the form

Lf,0 = f̄L
0,i(i∂µγ

µ)fL
0,i −mf f̄

L
0,if

L
0,i

= Zf f̄
L
i (i∂µγ

µ)fL
i − ZfZmf

mf f̄
L
i f

L
i

= (1 + δZL
f )f̄

L
i (i∂µγ

µ)fL
i − (1 + δZL

f )(1 + δZmf
)mf f̄

L
i f

L
i

= f̄L
i (i∂µγ

µ)fL
i −mf f̄

L
i f

L
i + δZL

f f̄L,i(i∂µγ
µ)fL

i − (δZL
f + δZmf

)mf f̄
L
i f

L
i + · · ·

(2.31)

Lf,R and δLf read respectively [31]

Lf = f̄L
i (i∂µγ

µ)fL
i −mf f̄

L
i f

L
i (2.32)

δL(1)
f = δZL

f f̄
L
i (i∂µγ

µ)fL
i + (δZL

f + δZmf
)mf f̄

L
i f

L
i (2.33)

Even, the fermionic Lagrangian is expressed, here, in terms of renormalized fields and renormalized

masses, it has the same Feynman rules as those deduced from the initial Lagrangian. We have just to
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add the feynman rules corresponding to the counter term δL(1)
f . Therefore, we get for the self energy

−iΣ̂(1)
f,R(p) = −iΣ̂(1) + iδZL

f 6p− i(δZL
f + δZmf

)mf (2.34)

= −iΣ̂(1) + i( 6p−mf)δZ
L
f − imfδZmf

For convient presentation, this expression is ranged in the following form

Σ
(1)
f,R(p) = mf (Σ̂

(1)
a (p) + δZmf

) + ( 6p−mf)(Σ̂
(1)
b (p)− δZL

f )· (2.35)

where

Σ̂(1)
a (p) =

( α
4π
Q2

f

){
3

[
1

εuv
+ ln(4π) + ln(

µ2

m2
f

)− γ
]

(2.36)

−1 − 2

1∫

0

dx(1 + x)ln

[
x− p2

m2
f

x(1− x)− iǫ
]}

,

and

Σ̂
(1)
b (p) =

( α
4π
Q2

f

){
−
[

1

εuv
+ ln(4π) + ln(

µ2

m2
f

)− γ
]

+ 1 + 2

1∫

0

dx(1 + x) ln

[
x− p2

m2
f

x(1 − x)− iǫ
]}
·

(2.37)

The purpose of the next paragraph is to determine the renormalization constants Zmf
and Zf using

renormalization conditions.

Renormalization Conditions for the fermionic Sector:

We require two renormalization conditions related to Sf,0 (2.4), and Sf (2.8) [5] [18], [20], [4],

[31]

• The first condition:

The pole of Sf : ( 6p = mf,r+Σ̂f (p)) must be equal to the pole of Sf,0: ( 6p = mf ), as consequence

[
Σ̂f (p)

]
6p=mf

= 0 (2.38)

• The second condition:

The residue at the pole of the renormalized fermionic propagator must be equal to the residue
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at pole of the free fermionic propagator:

Res [Sf ] 6p=mf
= Res [Sf,0]6p=mf

⇒ lim
6p−→mf

6p−mf

6p−mf − Σ̂f (p)
= 1 (2.39)

Taking into account the Taylor expansion of Σ̂f (p) in the vicinity of mf and of the first condi-

tion, we can write:

Σ̂f (p) = Σ̂f (mf) + ( 6p−mf )

[
∂Σ̂f (p)

∂ 6p

]

6p=mf

+
1

2!

[
∂2Σ̂f (p)

∂ 6p2

]

6p=mf

+ · · · (2.40)

Then, the second condition for the fierst order takes the form:

[
∂Σ̂f (p)

∂ 6p

]

6p=mf

= 0 (2.41)

By applying these renormalization conditions on the relation (2.35), we have first for the constant

δZmf [
Σ̂

(1)
f,R(p)

]
6p=mf,R

= mf,R

(
Σ̂(1)

a (p) + δZOS
mf

)
|6p=mf,R

= 0 (2.42)

⇒ δZOS
mf

= −
[
Σ̂(1)

a (p)
]
6p=mf,R

=
αQ2

f

4π
3

(
− 1

εuv
+ ln(4π) + ln

(
µ2

m2
f

)
− γ − 4

3

)
(2.43)

and secondly for the constant δZf we have

[
∂

∂ 6p
{
mf,R(Σ̂

(1)
a (p) + δZmf

) + ( 6p−mf,R)(Σ̂
(1)
b (p)− δZL

f )
}]

6p=mf,R

(2.44)

⇒ δZOS
f = mf,R

[
∂Σ̂

(1)
a (p)

∂ 6p

]

6p=mf

+
[
Σ̂

(1)
b (p)

]
6p=mf

· (2.45)

where

[
∂Σ̂

(1)
a (p)

∂ 6p

]

6p=mf

=
αQ2

f

4π



−

6

mf
− 4

1∫

0

dx
(1 + x)

m3
f


 p2x(1− x)
x p2

m2
f

x(1− x)− iǫ





 (2.46)
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Substituting (2.46) and (2.37) in (2.45) we get

δZOS
f =

αQ2
f

4π



−

6

mf

− 4

1∫

0

dx
(1 + x)

m3
f


 p2x(1− x)
x p2

m2
f

x(1− x)− iǫ





 (2.47)

+
( α
4π
Q2

f

){
−
[

1

εuv
+ ln(4π) + ln(

µ2

m2
f

)− γ
]

(2.48)

+1 + 2

1∫

0

dx(1 + x) ln

[
x− p2

m2
f

x(1− x)− iǫ
]}
·

⇒ δZOS
f =

αQ2
f

4π

(
− 1

εuv
+

2

εuv
+ ln(4π) + 3ln

(
µ2

m2
f

)
− γ − 4

)
(2.49)

Note that we can write the fermion self energy in the following form [7]

Σ̂(p) = 6pPLΣ̂
f
L(p

2) + 6pPRΣ̂
f
R(p

2) +mf Σ̂
f
S(p

2), (2.50)

where PL (1.3) and PR (1.2) are the projector operators. Σ̂L and Σ̂R are the left and right-handed

fermion self energy respectivly, and Σ̂S is the scalar part. According to the renormalization condition

corresponding to this last form of Σ̂ [5], we rewrite the renormalization constants as follow

δZf,L
ij =

2

m2
f,i −m2

f,j

[
m2

f,jΣ̂
f,L
ij (m2

f,j) +mf,imf,jΣ̂
f,R
ij (m2

f,j) (2.51)

+ (m2
f,i +m2

f,j)Σ̂
f,S
ij (m2

f,j)
]

i 6= j,

δZf,R
ij =

2

m2
f,i −m2

f,j

[
m2

f,jΣ̂
f,R
ij (m2

f,j) +mf,imf,jΣ̂
f,L
ij (m2

f,j) (2.52)

+ 2mf,imf,jΣ̂
f,S
ij (m2

f,j)
]

i 6= j,

δZf,L
ii = −Σ̂f,L

ii (m2
f,i)−m2

f,i

∂

∂p2

[
Σ̂f,L

ii (p2) + Σ̂f,R
ii (p2) + 2Σ̂f,S

ii (p2)
]
|p2=m2

f,i
, (2.53)

δZf,R
ii = −Σ̂f,R

ii (m2
f,i)−m2

f,i

∂

∂p2

[
Σ̂f,L

ii (p2) + Σ̂f,R
ii (p2) + 2Σ̂f,S

ii (p2)
]
|p2=m2

f,i
. (2.54)

We use these last form of renormalizeation constants in the third section to calculte the fermion mass

mixing matrix elements.

Now, we back to renormalize the remains fields and parameteres. In the next sections we will treat

the gauge bosons propagators.
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2.3.2 Renormalization of the gauge sector

Applying the same procedure used in the fermionic propagator calculation [18], [20], we can

compute the W boson propagator [31]. First, we pick only the free gauge lagrangian term that corre-

spond to the W boson propagator:

LW,0 = W+
µ,0

[
gµν�−M2

W,0g
µν
]
W−

ν,0· (2.55)

Then, using the same substitution as in the fermionic propagator case [32]:

−→
∂ µ −→ −ipµ, ←−

∂ µ −→ ipµ (2.56)

⇒ � =
←−
∂ µ

−→
∂ µ −→ p2,

we obtain

LW,0 = W+
µ,0g

µν(p2 −M2
W,0)W

−
ν,0 (2.57)

= W+
µ,0 [D(p)]W−

ν,0 (2.58)

where

D(p) = gµν(p2 −M2
W,0) (2.59)

By inverting (2.59), we obtain the W boson propagator

Dµν
W,0 = −igµν

1

p2 −M2
V

(2.60)

Following the same logic in the fermion sector, the full W boson propagator can be written as a series

containinig more and more insertion of the W boson self energy expression:

Dµν
W = −igµν

(
1

p2 −M2
W

− 1

p2 −M2
W

Σ̂W (p)
1

p2 −M2
W

+ · · ·
)
, (2.61)

where the W boson self energy Σ̂W (p) is given by [31]

Σ̂µν
W (p) =

(
gµν − pµpν

p2

)
Σ̂T

W (p) +
pµpν

p2
Σ̂L

W (p)· (2.62)

We have to eliminate the longitudinal part. We need to renormalize the W boson self energy to cancel

the divergences in Σ̂T
W (p). We use here the previous counter terms method. By substituting (2.19)

33



and (2.13) in (2.57) we get

LW,0 = ZWW
+
µ g

µν(−p2 +M2
W + δM2

W )W−
ν (2.63)

= (1 + δZW )W+
µ g

µν
[
−p2 +M2

W + δM2
W

]
W−

ν,0 (2.64)

= W+
µ

[
−gµν(p2 −M2

W )
]
+W+

µ

[
−gµνδZW (p2 −M2

W ) + gµνδM2
W

]
W−

ν ·

As in the fermion case, the W boson Lagrangian splits into two terms. The second one is the counter

term lagrangian. This enables us to write

Σ̂T
W,R(p

2) = Σ̂T
W (p2)− δM2

W + δZ2
W (p2 −M2

W ) (2.65)

Then we define the on-shell renormalization canditions as follow [18], [31]

ReΣ̂T
W (p2)|p2=M2

W
= 0, Re

∂

∂p2
Σ̂T

W (p2)|p2=M2
W

= 0· (2.66)

The cases of A,Z bosons are very similar th the W boson case. procedure. We notice that there is a

self-energy of transition between the photon and the Z boson:

Σ̂ZA(p) =

(
gµν − pµpν

p2

)
Σ̂T

ZA(p) +
pµpν

p2
Σ̂L

ZA(p). (2.67)

similarly to (2.65), and after using (2.20) and (2.13), we write

Σ̂T
ZZ,R(p

2) = Σ̂T
ZZ(p

2)− δM2
Z + δZ2

ZZ(p
2 −M2

Z) (2.68)

Σ̂T
AA,R(p

2) = Σ̂T
AA(p

2) + δZ2
AAp

2 (2.69)

Σ̂T
AZ,R(p

2) = Σ̂T
AZ(p

2)− 1

2
δZ2

AZp
2 +

1

2
δZ2

ZA(p
2 −M2

Z)· (2.70)

The imposed renormalization conditions are as follow [5], [31]

ReΣ̂T
ZZ(p

2)|p2=M2
Z
= 0, Re

∂

∂p2
Σ̂T

ZZ(p
2)|p2=M2

Z
= 0, (2.71)

Σ̂T
AA(0) = 0,

∂

∂p2
Σ̂T

AA(0) = 0, (2.72)

Σ̂T
AZ(0) = 0, ReΣ̂T

AZ(p
2)|p2=M2

W
= 0· (2.73)

To summarize, we have eight renormalization condition for 7 renormalization constants: δZZZ , δZAZ ,

δZZA, δZAA, δM2
Z , δZW and δM2

W .

To complete the representation we give all the counter terms of the gauge sector
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• The mass counter terms:

δM2
W = ReΣ̂T

W (M2
W ) (2.74)

δM2
Z = ReΣ̂T

ZZ(M
2
Z) (2.75)

• The wave function counter terms:

δZZZ = −Re ∂

∂p2
Σ̂T

ZZ(M
2
Z), δZW = −Re ∂

∂p2
Σ̂T

W (M2
Z), (2.76)

δZZA =
2

M2
Z

Σ̂T
AZ(0), δZAZ = − 2

M2
Z

ReΣ̂T
ZA(M

2
Z), (2.77)

δZAA = − ∂

∂p2
Σ̂T

AA(0)· (2.78)

We make here a general remark that all renormalization constants are obtained from self energies.

The mass counter terms δM2
W,Z are related to the fundamental renormalization constants by [5]

δM2
Z

M2
Z

=
δM2

W

M2
W

=
SW

CW

(3δZZA − 2δZAZ). (2.79)

It is also useful to renormalize the Weinberg angle. As part of on-shell renormalization scheme, it is

natural to use its definition from masses of W and Z bosons:

sin2(θW ) = 1− M2
W

M2
Z

. (2.80)

This definition is independent of a specific process, and, it is valid to all orders of perturbation theory.

We then get the following counterterms [5]

δSW = −1
2

C2
W

S2
W

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
(2.81)

δCW

CW

= −S
2
W

C2
W

δSW

SW

(2.82)

2.4 Charge renormalization constant δZe

We can detrmine the charge renormalization constant through any charged particle vertex with

the photon. Let us consider the electromagnetic vertex. At tree level the eeA vertex correspond s to
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the following amplitude [18], [34], [31]

ΓeeA
µ = −ieAµ. (2.83)

The one loop correction and the counterterm of this vertex are represented in the above figure. This

counter term modifies the relation (2.83) to give a full contribution at one loop level

ΓeeA
Rµ = ΓeeA

µ + δΓeeA
µ (2.84)

where δΓeeA
µ contains electric charge counterterms and the renormalization constants of electron and

photon wave functions. The amplitude then becomes

ΓeeA
Rµ = ΓeeA

µ

(
1 +

δZe

e
+

1

2
δZAA −

1

2

SW

CW

δZZA

)
. (2.85)

This expression should not depend on the renormalization constants of the electron wave function. It

is universaly valid for all charged fermions(with diffrent factor Qf ).

To obtain the charge renormalization constant, we impose a condition where the coupling represented

in (2.83) will not change:

ΓeeA
Rµ = −ieAµ (2.86)

⇒ δZe

e
+

1

2
δZAA −

1

2

SW

CW
δZZA = 0 (2.87)

leading to the counterm of the electric charge

δZe

e
= −1

2
δZAA +

1

2

SW

CW
δZZA (2.88)

2.5 Renormalization of mass mixing matrix elements

As we mentioned in the first chapter, the mixing of particles is expressed in terms of mixing

matrix. Because of the fact that mass eigenstates at the tree-level mix with each other by radiative

corrections, the mixing matrices have to be renormalized to obtain ultraviolet (UV) finite amplitudes.

In this section we review the one loop on-shell renormalization of the mixing matrices. As introduced

in the first chapter, the relation between the fermion mass eigenstates and the interaction eigenstates

is given by [5]

fi = Ui,L,Rf
I
i , f I

i = U †
i,L,Rfi. (2.89)

36



By radiative corrections, the wave functions of fi should be renormalized. The relation between the

on-shell renormalized fields fi and unrenormalized fields f 0
i is defined by (See (2.24)) [5]

f 0
i =

(
δij +

1

2
δZij

)
fj (2.90)

The off-diagonal parts of δZij (i 6= j) represent the mixing between fi an fj . The relation (2.89) is

modified as

f I
i = U †,0

i,L,Rf
0
i = U †,0

i,L,R

(
δij +

1

2
δZij

)
fj (2.91)

The explicit form of δZij for i 6= j is given in terms of the fermionic fields (see (2.51)). The factor

1/(m2
i − m2

j) in (2.51) is unique for the off-diagonal wave function corrections. δZij diverge when

the masses mi, mj of fi and fj , respectively, become close to each other.

For the cancellation of the UV divergences of off-diagonal δZij , the mixing matrix U has to be

renormalized. Assume that the renormalized U is related to the bare U0 by

U0
i,L,R = (δij + δuij)Uj,L,R (2.92)

Since both U0 and U are unitary, the counterterm δu should be anti-hermite [5]. The UV divergent

part of δu is determined such as to cancel that of the anti-hermitian part of δZ. In the study of the

radiative correction to the CKM matrix, Denner and Sack proposed to cancel the total anti-hermitian

part of δZij by δu, by choosing

δuij =
1

4
(δZij − δZ†

ij). (2.93)

This is usually called the on-shell renormalization of the mixing matrix.

2.5.1 Renormalization of the quark mixing matrix elements

The quark mixing matrix and the corresponding renormalization constant are defined as follows,

(The renormalizaion of both of CKM AND PMNS matrices elements are found in ref [5]).

V0,ij = (U1V U
†
2)ij = Vij + δVij· (2.94)

V0,ij and Vij are are both unitary. The lowest order of Vij is giving by [22]

V0,ij = Uu,L
i,k U

d,L†
k,j (2.95)
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We define, up to the first order, the renormalized quark mixing matrix as follow

Vij = (δik +
1

2
δZu†

ik )U
uL
kmU

d,L†
mn (δnj +

1

2
δZd

nj) (2.96)

= V0,ij +
1

2
δZu†

ik V0,kj +
1

2
V0,inδZ

d
nj· (2.97)

Using (2.94) we obtain:

δVij = V0,ij − Vij (2.98)

=
1

2
δZu,AH†

ik V0,kj +
1

2
V0,inδZ

d,AH
nj (2.99)

we have from the referance [5]:

δZf,AH
ij =

1

2
(δZf,L

ij − δZf,L†
ij ) (2.100)

δZf,AH
ij = δZf,AH†

ij (2.101)

After substituting (2.100) in (2.96), we get the quark mixing matrix counter term

δVij =
1

4

[
(δZu,L

ik − δZ
u,L†
ik )Vkj − Vik(δZd,L

kj − δZ
d,L†
kj )

]
· (2.102)

By inserting the renormalization constants (2.51) and (2.53) in (2.102) , we obtain the final form of

δVij [5]

δVij = 1
2

{
1

m2
u,i−m2

u,k

[
m2

u,kΣ
u,L
ik (m2

u,k) +m2
u,iΣ

u,L
ik (m2

u,i) +mu,imu,k

(
Σu,R

ik (m2
u,k) + Σu,R

ik (m2
u,i)
)

+ (m2
u,k +m2

u,i)
(
Σu,S

ik (m2
u,k) + Σu,S

ik (m2
u,i)
)]
Vkj

−Vik 1
m2

d,k
−m2

d,j

[
m2

d,jΣ
d,L
kj (m

2
d,j) +m2

d,kΣ
d,L
kj (m

2
d,k) +md,kmd,j

(
Σd,R

kj (m2
d,j) + Σd,R

kj (m2
d,k)
)

+ (m2
d,k +m2

d,j)
(
Σd,S

kj (m
2
d,k) + Σd,S

kj (m
2
d,j)
)]}
· (2.103)
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Chapter 3

Mass Mixing effect on Higgs Width at One

Loop Order

3.1 Introduction

Now that we have discovered the Higgs boson, we have a chance to study its properties. In our

opinion, the most interesting measurable quantities associated with the Higgs boson are partial widths

to it various decay modes and its branching ratios. In the SM the Higgs boson width is very precisely

predicted once the Higgs boson mass is known. A Higgs boson mass of about 125 Gev allows to

explore the Higgs boson couplings to many SM particles.

In this chapter we will study the Higgs boson decay width of the following channels: H → bb̄,

H → cc̄, H → τ τ̄ , H → AA, H → ZA, H → gg, to compare between them, then to calculate the

branching ratios of each channel and we end our work by study the effect of the quark mixing matrix

element δVij on the Higgs and the W boson decay channels.

3.2 Higgs decays channels in Standard Model

The Higgs boson can decay in several different ways depending on its mass. In general, the

study of Higgs decay focuses on kinematics of two massive particles. Let m1 and m2 represent the

considered masses, and λ1 and λ2 their polarizations. The process is as follow [28]

H(p, 0)→ A(k1, λ1) +B(k2, λ2) (3.1)

According to the conservation momentum-energy law, we have in the reference frame of the higgs
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boson

−→
0 =

−→
k 1 +

−→
k 2 (3.2)

MH = E1 + E2 =

√
m2

1 + |
−→
k 1|2 +

√
m2

2 + |
−→
k 2|2 (3.3)

It is easy to deduce from these equations

E1 =
M2

H +m2
1 −m2

2

2MH
(3.4)

E2 =
M2

H +m2
2 −m2

1

2MH
(3.5)

|−→k 1| = |−→k 2| =
1

2MH

√
M4

H +m4
1 +m4

2 − 2m2
1m

2
2 − 2M2

H(m
2
1 +m2

2)· (3.6)

In the case m1 = m2 = m the last equations reduce to

E1 = E2 =
MH

2
(3.7)

|−→k 1| = |
−→
k 2| =

MH

2

√
1− 4m2

M2
H

(3.8)

3.2.1 The higgs boson decay width

First, we need to define the decay width denoted Γ, which reperesents the number of decays per

unit of time. According to a given channel (i) of disintegration, the width Γi obeys to the golden rule

of Fermi [30]1

Golden Rule for Decays

Suppose particle 1 decays into several other particles 2, 3, · · · , n:

1→ 2, 3, · · · , n (3.9)

The decay width is given by the formula:

dΓi(1→ 2 + 3 + ...+ n) =

(
1

n!

)
1

2m1

[(
d3p2

(2π)32E2

)(
d3p3

(2π)32E3

)
...

(
d3pn

(2π)32En

)]
|M|2

× (2π)4δ4(p1 − p2 − p3 − · · · − pn)
(3.10)

1The decay width for a given process is determined by the amplitude and the phase space according to Fermis Golden

Rule Γ = 2π
~
|M|2(phase space)
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where pi = (Ei,
−→p i), is the four-momentum for the i-th particle (i = 2, cdots, n), and M is a

scalar function which represents the transition amplitude from the initial state formed by the Higgs

particle on a mass shell towards a final state formed by n − 1 particles. The delta function enforces

conservation of energy and momentum. It is zero unless p1 = p2 + p3 + · · ·+ pn.

Since we are not interested in the individual momenta of the decay products, we integrate over all

outgoing momenta to get the total decay width Γ. Further, we consider only the disintegration of the

Higgs boson into just two particles. So we get after putting p1 = p, p2 = k1 and p3 = k2 :

Γ =

(
1

6

)
1

2MH

∫ [(
d3k1

(2π)32E)1

)(
d3k2

(2π)32E2

)]
|M2(k1, k2)| × (2π)4δ4(p− k1 − k2) (3.11)

In addition, it is possible to write the delta function in the form [28]

δ4(p− k1 − k2) = δ(MH − E1 −E2)δ
3(−−→k 1 −

−→
k 2) (3.12)

= δ

(
MH −

√
m2

1 + |
−→
k 1|2 −

√
m2

2 + |
−→
k 2|2

)
δ3(−−→k 1 −

−→
k 2)

Using the properties of the delta function, we integrate the equation (3.11) according to
−→
k 2

Γi =
1

6

1

16π2MH

∫
|M(|−→k 1|)|2

δ

(
MH −

√
m2

1 + |
−→
k 1|2 −

√
m2

2 + |
−→
k 1|2

)

√
m2

1 + |
−→
k 1|2

√
m2

2 + |
−→
k 1|2

dk3 (3.13)

Then integrating the angular variables of dk3 = k2 sin θdkdθdϕ in the last expression we get:

Γ =

(
1

6

)
1

8πMH

∫
|M(|−→k 1|)|2

δ

(
MH −

√
m2

1 + |
−→
k 1|2 −

√
m2

2 + |
−→
k 1|2

)

√
m2

1 + |
−→
k 1|2

√
m2

2 + |
−→
k 1|2

|−→k 1|2d|
−→
k 1| (3.14)

Then suppose that:

E =

√
m2

1 + |
−→
k 1|2 +

√
m2

2 + |
−→
k 1|2 (3.15)

Its differential

dE =
E|−→k 1|dk1√

m2
1 + |
−→
k 1|2

√
m2

2 + |
−→
k 1|2

(3.16)

This allows us to transform (3.14) into the form:

41



Γi =
1

3!

1

8πMH

∞∫

m1+m2

|M(|−→k |)|2|−→k |(E)δ(E −MH)
dE

E

=
1

3!

1

8πM2
H

|M(|−→k |E=MH
)|2|−→k |E=MH

(3.17)

we replace k by (3.6) and we get the Higgs decay width in two particles of different masses:

Γ 6=
i =

1

6

1

16πM2
H

|M(|−→k 1|E=MH
)|2
√

1 +
m4

1 +m4
2 − 2m2

1m
2
2

M4
H

− 2(m2
1 +m2

2)

M2
H

(3.18)

And for the case m1 = m2 = m, we get the Higgs decay width in two particles of identical

masses:

Γ=
i =

1

6

1

16πM2
H

|M(|−→k 1|E=MH
)|2
√
1− 4m2

M2
H

(3.19)

3.2.2 Higgs decay into fermion antifermion pairs

We consider the decay process of the scalar Higgs boson in pairs: one fermion of mass mf and

spin s1 and the other an anti-fermion of same mass mf and spin s2, These fermion anti-fermion pairs

can be leptons : (ei, ēi), (νi, ν̄i) or quarks: (di, d̄i), (ui, ūi); i = 1, 2, 3. The opening of these channels

is governed by the condition: 2mf =MH [28].

Moreover, note that since the fermion and its anti-fermion have the same mass, we use the formula

(3.19) to calculate the decay width Γ(H −→ f̄ f). Now it suffices to calculate the expression of the

square of the amplitude |M(|−→k 1|E=MH
)|2 of the process H −→ f̄f . To do all these calculation we

use FeynCalc and FaynArt for getting the total decay width and drawing the Feynman diagram of

each process.

Higgs decay into lepton antilepton pairs

We start by activating the FeynCalc program inside Mathematica, then we get the Feynman

diagram of the H −→ ll̄ process by running:
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1 LoadFeynArts = True ;

2 <<FeynCalc ‘

3 He = CreateTopo log ie s [ 0 , 1 −> 2 ]

4 Hef = I n s e r tF i e l d s [ CreateTopo log ie s [ 0 , 1 −> 2 ] , {S [ 1 ] } −> {F[2 , {1} ] , −F
[2 , {1} ]} ,

I n s e r t i o nLev e l −> {Cla s s e s } ] ;
5 Paint [ Hef ]

Here, by creating a 1 by 2 topology and inserting physical fields, we get:

Figure 3.1: Tree level of the process Hee

Now we generate the Feynman amplitude of the diagram:

6 Heamp = FCFAConvert [ CreateFeynAmp [ Hef ] , IncomingMomenta −> {pH} ,
ChangeDimension −> 4 ,DropSumOver −> True , SMP −> True , Contract −> True ,

UndoCh i r a lSp l i t t i ng s −> True , F i na l Sub s t i t u t i o n s −> {MLE[ l ] −> SMP[ ”m e”

] } ]
7 Heeamp = Dira cS imp l i f y [Heamp]

After fixing the kinematics:

8 SP [ p1 , p2 ] = (SMP[ ”m H” ]ˆ2 − 2∗SMP[ ”m e” ] ˆ 2 ) /2 ;

9 SP [ p1 , p1 ] = SMP[ ”m e” ] ˆ 2 ;

10 SP [ p2 , p2 ] = SMP[ ”m e” ] ˆ 2 ;

11 SP [pH, pH] = SMP[ ”m H” ] ˆ 2 ;

we obtain:

|M|2 = e2(m2
eM

2
H − 4m4

e)

2m2
W (sin(θW ))2

(3.20)

To obtain the total decay rate we run the following instructions
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12 $Assumptions = {SMP[ ”m H” ] > 0 , SMP[ ”m e” ] > 0} ;
13 phaseSpacePre factor [m ] := (1/(16∗Pi∗SMP[ ”m H” ] ) ) ∗Sqrt [ 1 − 4∗(mˆ2/SMP[ ”

m H” ] ˆ 2 ) ] ;

14 totalDecayRateHe = Simp l i fy [(#1 / . SMP[ ”e” ] ˆ2 −> 4∗Pi∗SMP[ ” a l pha f s ” ] &)

[ phaseSpacePre factor [SMP[ ”m e” ] ] ∗HeeampSq ] ]

which have the final output

ΓH−→eē =
α
√
m2

H − 4m2
e(m

2
em

2
H − 4m4

e)

8M2
Hm

2
W (sin(θW ))2

, (3.21)

where α = 1/137.035999139(31) is the fine structure constant. Similar pattern is followed to get the

remain of Hl̄l decay width:

Figure 3.2: Tree level of the process Hµµ et Hττ

Higgs decay into quark antiquark pairs

We follow the same previous steps as in the case of leptons

1 LoadFeynArts = True ;

2 <<FeynCalc ‘

3 Hu = CreateTopo log ie s [ 0 , 1 −> 2 ]

4 Huf = I n s e r tF i e l d s [ CreateTopo log ie s [ 0 , 1 −> 2 ] , {S [ 1 ] } −> {F[3 , {1} ] , −F
[3 , {1} ]} ,

I n s e r t i o nLev e l −> {Cla s s e s } ] ;
5 Paint [ Huf ]

The Hūu squared amplitude is given by

|M|2 = e2CAm
2
u(M

2
H − 4m2

e)

2m2
W (sin(θ))2

(3.22)
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Figure 3.3: Tree level of the process Huū

and the associated total decay width is then

ΓH−→uū =
αCAm

2
u(m

2
H − 4m2

u)
3

2

8M2
Hm

2
W (sin(θW ))2

(3.23)

3.2.3 Higgs decay into pairs of massive vector bosons:

We consider the decay process of the scalar Higgs boson in two different massive vector bosons

pairs:

H(p, 0)→ W+(k1, s1)W
−(k2, s2) (3.24)

H(p, 0)→ Z(k1, s1)Z(k2, s2) (3.25)

The code sequences to these processes is

1 LoadFeynArts = True ;

2 << FeynCalc ‘

HZf = I n s e r tF i e l d s [

CreateTopo log ie s [ 0 , 1 −> 2 ] , {S [ 1 ] } −> {V[ 2 ] , V[ 2 ] } ,
I n s e r t i o nLev e l −> {Cla s s e s } ] ;

Hwf = I n s e r tF i e l d s [

CreateTopo log ie s [ 0 , 1 −> 2 ] , {S [ 1 ] } −> {−V[ 3 ] , V[ 3 ] } ,
I n s e r t i o nLev e l −> {Cla s s e s } ] ;

Paint [HWf]

Paint [ HZf ]

and the associated squared amplitudes, after fixing the kinematics, are

|M|2HZZ =
e2m2

W (−4m2
Hm

2
Z +m4

H + 12m4
Z)

8m4
Z(cos(θW ))4(sin(θW ))2

(3.26)

|M|2HWW =
e2m2

W (−4m2
Hm

2
W +m4

H + 12m4
W )

4m2
W (sin(θW ))2

(3.27)

Then from the last expressions we get the total decay rates:
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Figure 3.4: Tree level of the process HW−W+ et HZZ

ΓH−→WW =
α
√
m2

H − 4m2
W (−4m2

Hm
2
W +m4

H + 12m4
W )

16M2
Hm

2
W (sin(θW ))2

(3.28)

ΓH−→ZZ =
α
√
m2

H − 4m2
Z(−4m2

Hm
2
Z +m4

H + 12m4
Z)

32M2
Hm

2
W (sin(θW ))2

(3.29)

The processes H −→ gg, t −→ AA, and H −→ ZA are not possible at tree level and hence

their amplitude couldnt be generated by FeynCalc. However in the next section it will be possible to

achieve these goals with FormCalc, which is more efficient for one loop level computation.

3.3 Computing Higgs width through FormCalc

We want to compute the Higgs width at one loop level through FormCalc which had reached big

steps towards automating the one loop calculation. It is a package which calculates and simplifies tree

level and one loop level Feynman diagrams amplitudes [18]. Here, we use FormCalc, FeynArts and

Looptools [14], [13] together to calculate the squared matrix element for a given process (the Higgs

decay process at MH = 125 GeV. We start with creating a Mathematica file which contains all codes

that must be proceeded by FormCalc to get the total decay width of all the Higgs decay processes.

We were inspired to write this Mathematica file from Hahn, where he studied the Higgs decay into

bottom antibottom quarks.. At first time we set the Higgs decay width at one value MH = 125 GeV.

Then after we change the Higgs mass from 0 Gev to 250 GeV. Starting by analysing the fermion

anti-fermion channels,we choose for that the processes H −→ bb̄, H −→ cc̄ and H −→ τ τ̄ channels.

Afterwards, we also need to analyse massless final suitable states like gluons and photons.

3.3.1 The H −→ bb̄, H −→ cc̄, H −→ τ τ̄ channels.

H −→ bb̄ is the isotropic scalar two body decay which represents the dominant Higgs decay

mode. We generate the following codes by FormCalc
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(∗
Hbb−SM.m

gene ra te s the Fortran code f o r

H −> \bar b b in the e lec troweak Standard Model

t h i s f i l e i s part o f FormCalc

l a s t modi f i ed March 2021

Note : the QED con t r i bu t i o n s are not taken in to account here .

To plug the QED part back in , remove the Exc ludePar t i c l e s −> V[ 1 ]

from the I n s e r tF i e l d s opt i ons below .

∗)
Needs [ ”FeynArts ‘ ” ]

Needs [ ”FormCalc ‘ ” ]

time1 = SessionTime [ ]

CKM = IndexDelta

pro ce s s = S [ 1 ] −> {−F[4 , {3} ] , F[ 4 , {3} ]}

name =”/home/ zghiche / fo rmca lc /Hbb−SM. ”

(∗ 18 May 06 : c a r e f u l , not UV f i n i t e i f photon i s taken out ! ∗)

SetOptions [ I n s e r tF i e l d s , Model −> ”SM” ]

SetOptions [ Paint , Pa intLeve l −> {Cla s s e s } , ColumnsXRows −> {4 , 5} ]

take the comments out i f you want the diagrams pa inted

DoPaint [ d i ag s , f i l e ] := (

I f [ FileType [ ”diagrams” ] =!= Directory ,

CreateDirectory [ ”diagrams” ] ] ;

Paint [ diags ,

DisplayFunction −> ( Display [ ” diagrams/” <> f i l e <> ” . ps” , #]&) ]

Pr int [ ”Born” ]

tops = CreateTopo log ie s [ 0 , 1 −> 2 ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ”born” ] ;

born = CalcFeynAmp [ CreateFeynAmp [ i n s ] ]
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Pr int [ ”Counter terms” ]

tops = CreateCTTopologies [ 1 , 1 −> 2 ,

ExcludeTopolog ies −> {TadpoleCTs , WFCorrectionCTs } ] ;
i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” counter” ] ;

counter = CreateFeynAmp [ i n s ]

Pr int [ ” Ve r t i c e s ” ]

tops = CreateTopo log ie s [ 1 , 1 −> 2 , Tr ianglesOnly ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” ve r t ” ] ;

v e r t = CalcFeynAmp [ CreateFeynAmp [ i n s ] , counter ]

amps = {born , ve r t }

{born , ve r t } = Abbreviate [ amps , 6 ,

Preproces s −> OnSize [ 100 , S impl i fy , 500 , DenCol lect ] ]

c o l = ColourME [ All , born ]

abbr = OptimizeAbbr [ Abbr [ ] ]

subexpr = OptimizeAbbr [ Subexpr [ ] ]

d i r = SetupCodeDir [ name <> ” . f o r t r a n ” , Dr iver s −> name <> ” . d r i v e r s ” ]

WriteSquaredME [ born , vert , co l , abbr , subexpr , d i r ]

WriteRenConst [ amps , d i r ]

Pr int [ ” time used : ” , SessionTime [ ] − time1 ]

After generating this Fortran codes we obtain the drawings of all possible Feynman diagrams for

this process (see Annex E) and the numerical values of the H −→ bb̄ decay width. Next, we consider

similarly the processes H −→ cc̄ and H −→ τ τ̄ by creating their Mathematica file (see Annex B).

3.3.2 The H −→ gg, H −→ AA, H −→ ZA channels.

The Higgs boson does not couple directly to the photon and gluons, but the decay occurs in-

directly. The Higgs boson can emit massive particles and absorb them immediately. These virtual
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Figure 3.5: The H −→ bb̄ total decay width
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Figure 3.6: The H −→ cc̄ total decay width
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Figure 3.7: The H −→ τ τ̄ total decay width
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particles can emit photons and/or gluons. The two photon mode is rare, as consequence of the weak

intensity of the electromagnetic interaction compared to the strong interaction. Because of the absence

of the tree level here, the lowest order amplitude is generated by one loop fermionic and bosonic dia-

grams. The decay of the neutral Higgs boson to two photons and a photon plus Z boson are mediated

by W and heavy fermion loops.
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0.0006

0.0008
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Figure 3.8: The H −→ gg total decay width
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Figure 3.9: The H −→ AA total decay width

All graphics: Fig 3.5, Fig 3.6, Fig 3.7, Fig 3.8, Fig 3.9, Fig 3.10 are plotted for the fixed values:

MH = 125 GeV, Mb = 4.18 GeV, MC = 1.275 GeV ,Mτ = 1.77682 GeV, MZ = 91.1876 GeV,

MW± = 80.385 GeV, CW = MW/MZ , S2
W = (1 − CW )(1 + CW ), α = 1/137.035999074, and

the the CKM parameters in Wolfenstein parameterization are: λ = 0.2257+0.0009
−0.0010, A = 0.814+0.021

−0.022,

ρ = 0.135+0.031
−0.016, and η = 0.349+0.015

−0.017.
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Figure 3.10: The H −→ ZA total decay width

For an accurate comparison of all the previous curves, we have collected them in one plot as

shown below

Figure 3.11: The Higgs decay width

We find that at low Higgs mass (of the order of 100 GeV), the Higgs boson preferably disintegrates

into a pair of quark b. It is the dominant Higgs decay mode, thus we are going to compare the

remaining decay widths without the H −→ bb̄.
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Figure 3.12: The Higgs decay width

In the low mass range (ΓH < 100 GeV) the Higgs boson is very narrow, but the width becomes

rapidly wider for masses larger than 125 GeV. The main decay mode in the range until 250 GeV is

H −→ bb̄ followed by the decay into cc̄ and τ τ̄ .

Regarding the H −→ AA, it is a very interesting channel for a low mass of the Higgs boson. We

cav argue that H −→ AA and H −→ ZA final states are very small compared to all athers.

For large masses (MH > 500 GeV), the Higgs decay width becomes comparable to its mass, the

main modes in this range is the decay into the messive gauge bosons H −→ ZZ, H −→ WW and

than the top quark H −→ tt̄ .

We conclude that the total decay width of the higgs boson, the inverse of its lifetime, is only a

few MeV for a mass close to 100 GeV, but increases considerably to reach values of the order of the

Higgs mass. In other spoken words the Higgs is a narrow resonance for low mass and becomes a very

wide resonance for very heavy Higgs.

Since we have six decay Higgs channels, we can obtain the Higgs total decay width form through

the following relation:

ΓT =
∑

i

Γi (3.30)
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Figure 3.13: The Higgs total decay width

Now we are going to fixe the Higgs mass at 125 Gev and calculate the Higgs decay width after a

numerical integration over cos θ:

Tree-level One loop level

Γ(H → bb̄) 5.1437× 10−3 5.1281× 10−3

Γ(H → cc̄) 3.8584× 10−4 3.8294× 10−4

Γ(H → τ τ̄ ) 2.4963× 10−4 8.3564× 10−4

Γ(H → AA) 0 5.7594× 10−6

Γ(H → GG) 0 1.6379× 10−4

Γ(H → ZA) 0 5.7594× 10−6

Table 3.1: The Higgs decay width for MH = 125 GeV

3.4 The branching ratios of the Higgs decay

The branching ratios have been derived from all the partial widths that we calculate before [28]

BRi =
Γi∑
i Γi

=
Γi

ΓT
(3.31)

The b quark is the most important branching ratio followed by the charmed quark c and lepton τ .

The gluon comes after and finally the decay into two photons and photon plus Z boson follows.
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Branching ratios

H → bb̄ 8.65483× 10−1

H → cc̄ 6.4369× 10−2

H → τ τ̄ 3.97707× 10−2

H → AA 1.49976× 10−3

H → gg 2.76439× 10−2

H → ZA 0.972039× 10−3

Table 3.2: The Higgs decay branching ratios for MH = 125 GeV

Figure 3.14: Plot of the branching ratios of the higgs decay channels

At (BR) ∼ 10−3 the processes existed are H → AA, H → ZA. Then we find the processes

H → cc̄, H → τ τ̄ , H → gg at 10−1 < (BR) < 10−2. The dominate Higgs decay channel is the

H → bb̄ process near (BR) = 1.

3.5 Effects of mass mixing on Higgs width

In the theory of the SM the only vertices ,containing the mass mixing, are φ±qq̄ and Wqq̄. The

one loop amplitude calculation for the process Wqq̄ is in ref [33]. The δVqq̄ counterterm is necessary

to obtain a finit amplitudeMWqq̄. To know the relative effect of the mass mixing on Higgs width, we

choose the process of the vertex Wcs̄ which has confirmed effect of the mass mixing on its physical

states [5](Annexe A equation 16), and comparing the results obtained by FormCalc between the W

boson decay and the Higgs decay. We set the W boson mass MW in the range 70 GeV to 150 GeV

and then activate the mixing effect CKM option in the Mathematica file :
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CKM = IndexDelta −> $CKM = True

This make effective the mass mixing in the one loop decay width calculation. We observe that

the mass mixing effect appears directly after the W boson mass reaches the 80 GeV (All the partial

widths (in GeV) of the W -boson decay channels at the one-loop level are found in ref [9]).

Figure 3.15: The W boson total decay width; the red line is the decay width the mixing effect
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What we did next was the same mixing activation for all the Higgs decay channels treated previ-

ously. But what we obtained is the same results that we got in the previous section, namely without

noticeable change. According to the equation (A.16) in the ref [5], the mass mixing has theoretically

no effect on the Higgs fermion interaction. On the other hand, according to the same equation, the

fermion-Goldstone interaction has this effect and then needs the counterterm δVφqq̄ for the one loop

calculation which is not the case of the Higgs fermion interaction.
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Conclusion

In this Master thesis we have been interested in studying the fermion mass mixing and the the

Higgs boson decay at one loop level.

We have first began reviewing the Standard Model of particles with all its contents (Lagrangian,

particles, intearction and kinetic terms) and through it we have tried to understand the work of the

Higgs mechanism in the spontaneous breaking of The electroweak symmetry and how the particles

acquires their mass.

Then we have proceeded to study the renormalization at one loop level in chapter 02, where we

were able to find the ultraviolet divergences, and then we have got rid of them by adding counter

terms. The main objective of all this was to study the various decay channals of the Higgs boson,

our study was performed through the FormCalc program that enabled us to calculate the higgs decay

width. We have deeply understand how the program works and we were able to enter all the necessary

information into it, whether for decaying into two or more particles. then, we translated all the

obtained results into graphs to make them easy to read. Finally, we compare the effect of the fermion

mass mixing on the decay of the Higgs boson and on thedecay of the W boson.
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Appendix A

Kinematics of two and three body decays

A.1 two body decays

We consider the decay of particle “a” into two particles 1 and 2 in the rest frame of “a”. We

symbolize this by a −→ 1 + 2, and we summarize our notation as follow

Particle a 1 2
Mass M m1 m2

Energy E =M E1 E2

Momentum p = 0 p1 =
√
E2

1 −m2
1 p2 =

√
E2

2 −m2
2

Figure A.1: Definitions of variables for two-body decays.

• Conservation of momentum and energy:

p = 0 = p1 + p2 ⇒ p1 = −p2 (A.1)

M = E1 + E2 (A.2)
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We have from

E2 = p2 +m2, E2
1 −m2

1 = E2
2 −m2

2 (A.3)

Which when Solved for E1 gives

E1 =
M2 +m2

1 −m2
2

2M
. (A.4)

The kinetic energy of particles 1 is then

T1 = E1 −m1C
2. (A.5)

We have an expression of the momuntum in the final state

p =| p1 |=| p2 |=
1

2Ma

√
[M2

a − (m1 +m2)2] [M2
a − (m1 −m2)2], (A.6)

The velocity of the particle is defined by

vi = Pi/Ei (A.7)

A.2 Three body decays

Figure A.2: Definitions of variables for three-body decays.

We define here the quantities pij = pi + pj, m2
ij = p2ij , then

m2
12 +m2

23 +m2
13 =M2 +m2

1 +m2
2 +m2

3, (A.8)

and

m2
12 = (P − p3)2 =M2 +m2

3 − 2ME3, (A.9)

where E3 is the energy of particle 3 in the rest frame of M.

The three energies of the three momentum are known, so their relative orientation is fixed. The

momenta can be specified in space by givin three Euler angles (α, β, γ) that specify the orientation of
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the final system relative to the initial particle

dΓ =
1

(2π)5
1

16M
| M |2 dE1dE1dαd(cos β)dγ. (A.10)

Alternatively

dΓ =
1

(2π)5
1

16M
| M |2| p∗1 | p3 | dm12dΩ

∗
1dΩ2, (A.11)

where (| p∗1 |,Ω∗
1) is the momentum of particle 1 in the resy frame of 1 and 2, and Ω3 is the angle of

particle 3 in the rest frame of the decaying particle. | p∗1 | and | p3 | are given by

| p∗1 | =
1

2m12

√
[m2

12 − (m1 +m2)2(m2
12 − (m1 −m2)2], (A.12)

| p3 | =
1

2M

√
[M2 − (m12 +m3)2(M2 − (m12 −m3)2] (A.13)

which have the same form with (A.6).

In a three-body decay the maximum of | p3 | (A.14), is acheived when m12 = m1 + m2 i.e

particle 1 and 2 have the same vector velocity in the rest frame of the decaying particle. If in addition

m3 > m1 or m2, then | p3 |max>| p1 |max or | p2 |max.
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Appendix B

Fortran codes generated by FormCalc

B.1 FormCalc codes for the process H −→ cc̄

(∗
Hcc−SM.m

gene ra te s the Fortran code f o r

H −> \bar c c in the e lec troweak Standard Model

t h i s f i l e i s part o f FormCalc

l a s t modi f i ed March 2021

Note : the QED con t r i bu t i o n s are not taken in to account here .

To plug the QED part back in , remove the Exc ludePar t i c l e s −> V[ 1 ]

from the I n s e r tF i e l d s opt i ons below .

∗)
Needs [ ”FeynArts ‘ ” ]

Needs [ ”FormCalc ‘ ” ]

time1 = SessionTime [ ]

CKM = IndexDelta

pro ce s s = {S [ 1 ] } −> {F[3 , {2} ] , −F[3 , {2} ]}

name =”/home/ zghiche / fo rmca lc /Hcc−SM.m. ”

(∗ 18 May 06 : c a r e f u l , not UV f i n i t e i f photon i s taken out ! ∗)

SetOptions [ I n s e r tF i e l d s , Model −> ”SM” ]
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SetOptions [ Paint , Pa intLeve l −> {Cla s s e s } , ColumnsXRows −> {4 , 5} ]

take the comments out i f you want the diagrams pa inted

$PaintSE = MkDir [ name <> ” . diagrams” ] ;

DoPaint [ d i ag s , f i l e , o p t ] := Paint [ diags , opt ,

DisplayFunction −> ( Export [ ToFileName [ $PaintSE , f i l e <> ” . ps” ] , #]&) ]

Pr int [ ”Born” ]

tops = CreateTopo log ie s [ 0 , 1 −> 2 ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ”born” ] ;

born = CalcFeynAmp [ CreateFeynAmp [ i n s ] ]

Pr int [ ”Counter terms” ]

tops = CreateCTTopologies [ 1 , 1 −> 2 ,

ExcludeTopolog ies −> {TadpoleCTs , WFCorrectionCTs } ] ;
i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” counter” ] ;

counter = CreateFeynAmp [ i n s ]

Pr int [ ” Ve r t i c e s ” ]

tops = CreateTopo log ie s [ 1 , 1 −> 2 , Tr ianglesOnly ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” ve r t ” ] ;

(∗ ve r t = CalcFeynAmp [

CreateFeynAmp [ i n s ] ,

S e l e c t [ counter , DiagramType [#] == 1 &] ] ∗)

v e r t = CalcFeynAmp [ CreateFeynAmp [ i n s ] , counter ]

amps = {born , ve r t }

{born , ve r t } = Abbreviate [ amps , 6 ,

Preproces s −> OnSize [ 100 , S impl i fy , 500 , DenCol lect ] ]

c o l = ColourME [ All , born ]

abbr = OptimizeAbbr [ Abbr [ ] ]

subexpr = OptimizeAbbr [ Subexpr [ ] ]
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d i r = SetupCodeDir [ name <> ” . f o r t r a n ” , Dr iver s −> name <> ” . d r i v e r s ” ]

WriteSquaredME [ born , vert , co l , abbr , subexpr , d i r ]

WriteRenConst [ amps , d i r ]

Pr int [ ” time used : ” , SessionTime [ ] − time1 ]

B.2 FormCalc codes for the process H −→ τ τ̄

(∗
Htautau−SM.m

gene ra te s the Fortran code f o r

H −> tau−bar tau in the e lec troweak SM

th i s f i l e i s part o f FormCalc

l a s t modi f i ed March 2021

∗)

Needs [ ”FeynArts ‘ ” ]

Needs [ ”FormCalc ‘ ” ]

time1 = SessionTime [ ]

CKM = IndexDelta

pro ce s s = {S [ 1 ] } −> {F[2 , {3} ] , −F[2 , {3} ]}

name =”/home/ zghiche / fo rmca lc /Htautau−SM4”

SetOptions [ I n s e r tF i e l d s , Model −> ”SM” ]

SetOptions [ Paint , Pa intLeve l −> {Cla s s e s } , ColumnsXRows −> {4 , 5} ]

take the comments out i f you want the diagrams pa inted

$PaintSE = MkDir [ name <> ” . diagrams” ] ;

DoPaint [ d i ag s , f i l e , o p t ] := Paint [ diags , opt ,

DisplayFunction −> ( Export [ ToFileName [ $PaintSE , f i l e <> ” . ps” ] , #]&) ]
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Pr int [ ”Born” ]

tops = CreateTopo log ie s [ 0 , 1 −> 2 ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ”born” ] ;

born = CalcFeynAmp [ CreateFeynAmp [ i n s ] ]

Pr int [ ”Counter terms” ]

tops = CreateCTTopologies [ 1 , 1 −> 2 ,

ExcludeTopolog ies −> {TadpoleCTs , WFCorrectionCTs } ] ;
i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” counter” ] ;

counter = CreateFeynAmp [ i n s ]

Pr int [ ” Ve r t i c e s ” ]

tops = CreateTopo log ie s [ 1 , 1 −> 2 , Tr ianglesOnly ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” ve r t ” ] ;

(∗ ve r t = CalcFeynAmp [

CreateFeynAmp [ i n s ] ,

S e l e c t [ counter , DiagramType [#] == 1 &] ] ∗)

v e r t = CalcFeynAmp [ CreateFeynAmp [ i n s ] , counter ]

amps = {born , ve r t }

{born , ve r t } = Abbreviate [ amps , 6 ,

Preproces s −> OnSize [ 100 , S impl i fy , 500 , DenCol lect ] ]

abbr = OptimizeAbbr [ Abbr [ ] ]

subexpr = OptimizeAbbr [ Subexpr [ ] ]

d i r = SetupCodeDir [ name <> ” . f o r t r a n ” , Dr iver s −> name <> ” . d r i v e r s ” ]

WriteSquaredME [ born , vert , abbr , subexpr , d i r ]

WriteRenConst [ amps , d i r ]

Pr int [ ” time used : ” , SessionTime [ ] − time1 ]
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B.3 FormCalc codes for the process H −→ gg

(∗
HGG−SMQCD.m

gene ra te s the Fortran code f o r

H −> G1 G1 in the e lec troweak SM

th i s f i l e i s part o f FormCalc

l a s t modi f i ed March 2021

∗)

Needs [ ”FeynArts ‘ ” ]

Needs [ ”FormCalc ‘ ” ]

time1 = SessionTime [ ]

CKM = IndexDelta

pro ce s s = {S [ 1 ] } −> {V[ 5 ] , V[ 5 ] }
name =”/home/ zghiche / fo rmca lc /HGG−SMQCD1”

SetOptions [ I n s e r tF i e l d s , Model −> ”SMQCD” ]

SetOptions [ Paint , Pa intLeve l −> {Cla s s e s } , ColumnsXRows −> {4 , 5} ]

take the comments out i f you want the diagrams pa inted

$PaintSE = MkDir [ name <> ” . diagrams” ] ;

DoPaint [ d i ag s , f i l e , o p t ] := Paint [ diags , opt ,

DisplayFunction −> ( Export [ ToFileName [ $PaintSE , f i l e <> ” . ps” ] , #]&) ]

Pr int [ ” Ve r t i c e s ” ]

tops = CreateTopo log ie s [ 1 , 1 −> 2 , Tr ianglesOnly ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” ve r t ” ] ;

v e r t = CalcFeynAmp [ CreateFeynAmp [ i n s ] ]

v e r t = Abbreviate [ vert , 6 ,

Preproces s −> OnSize [ 100 , S impl i fy , 500 , DenCol lect ] ]

c o l = ColourME [ Al l ]
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abbr = OptimizeAbbr [ Abbr [ ] ]

subexpr = OptimizeAbbr [ Subexpr [ ] ]

d i r = SetupCodeDir [ name <> ” . f o r t r a n ” , Dr iver s −> name <> ” . d r i v e r s ” ]

WriteSquaredME [{ } , vert , co l , abbr , subexpr , d i r ]

WriteRenConst [{ } , d i r ]

Pr int [ ” time used : ” , SessionTime [ ] − time1 ]

B.4 FormCalc codes for the process H −→ AA

(∗
HAA−SM.m

gene ra te s the Fortran code f o r

H −> gamma gamma in the e lec troweak SM

th i s f i l e i s part o f FormCalc

l a s t modi f i ed March 2021

∗)

Needs [ ”FeynArts ‘ ” ]

Needs [ ”FormCalc ‘ ” ]

time1 = SessionTime [ ]

CKM = IndexDelta

pro ce s s = {S [ 1 ] } −> {V[ 1 ] , V[ 1 ] }
name =”/home/ zghiche / fo rmca lc /HAA−SM5”

SetOptions [ I n s e r tF i e l d s , Model −> ”SM” ]

SetOptions [ Paint , Pa intLeve l −> {Cla s s e s } , ColumnsXRows −> {4 , 5} ]
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take the comments out i f you want the diagrams pa inted

$PaintSE = MkDir [ name <> ” . diagrams” ] ;

DoPaint [ d i ag s , f i l e , o p t ] := Paint [ diags , opt ,

DisplayFunction −> ( Export [ ToFileName [ $PaintSE , f i l e <> ” . ps” ] , #]&) ]

Pr int [ ” Ve r t i c e s ” ]

tops = CreateTopo log ie s [ 1 , 1 −> 2 , Tr ianglesOnly ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” ve r t ” ] ;

v e r t = CalcFeynAmp [ CreateFeynAmp [ i n s ] ]

v e r t = Abbreviate [ vert , 6 ,

Preproces s −> OnSize [ 100 , S impl i fy , 500 , DenCol lect ] ]

abbr = OptimizeAbbr [ Abbr [ ] ]

subexpr = OptimizeAbbr [ Subexpr [ ] ]

d i r = SetupCodeDir [ name <> ” . f o r t r a n ” , Dr iver s −> name <> ” . d r i v e r s ” ]

WriteSquaredME [{ } , vert , abbr , subexpr , d i r ]

WriteRenConst [{ } , d i r ]

Pr int [ ” time used : ” , SessionTime [ ] − time1 ]

67



B.5 FormCalc codes for the process H −→ ZA

(∗
HZA−SM.m

gene ra te s the Fortran code f o r

H −> Z gamma in the e lec troweak Standard Model

t h i s f i l e i s part o f FormCalc

l a s t modi f i ed March 2021

Note : the QED con t r i bu t i o n s are not taken in to account here .

To plug the QED part back in , remove the Exc ludePar t i c l e s −> V[ 1 ]

from the I n s e r tF i e l d s opt i ons below .

∗)

Needs [ ”FeynArts ‘ ” ]

Needs [ ”FormCalc ‘ ” ]

time1 = SessionTime [ ]

CKM = IndexDelta

pro ce s s = S [ 1 ] −> {V[ 2 ] , V[ 1 ] }

name =”/home/ zghiche / fo rmca lc /HZA−SM.m. ”

(∗ 18 May 06 : c a r e f u l , not UV f i n i t e i f photon i s taken out ! ∗)

SetOptions [ I n s e r tF i e l d s , Model −> ”SM” ]

SetOptions [ Paint , Pa intLeve l −> {Cla s s e s } , ColumnsXRows −> {4 , 5} ]

take the comments out i f you want the diagrams pa inted

$PaintSE = MkDir [ name <> ” . diagrams” ] ;

DoPaint [ d i ag s , f i l e , o p t ] := Paint [ diags , opt ,

DisplayFunction −> ( Export [ ToFileName [ $PaintSE , f i l e <> ” . ps” ] , #]&) ]
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Pr int [ ”Counter terms” ]

tops = CreateCTTopologies [ 1 , 1 −> 2 ,

ExcludeTopolog ies −> {TadpoleCTs , WFCorrectionCTs } ] ;
i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” counter” ] ;

counter = CreateFeynAmp [ i n s ]

Pr int [ ” Ve r t i c e s ” ]

tops = CreateTopo log ie s [ 1 , 1 −> 2 , Tr ianglesOnly ] ;

i n s = I n s e r tF i e l d s [ tops , p r o ce s s ] ;

DoPaint [ ins , ” ve r t ” ] ;

(∗ ve r t = CalcFeynAmp [

CreateFeynAmp [ i n s ] ,

S e l e c t [ counter , DiagramType [#] == 1 &] ] ∗)

v e r t = CalcFeynAmp [ CreateFeynAmp [ i n s ] , counter ]

v e r t = Abbreviate [ vert , 6 ,

Preproces s −> OnSize [ 100 , S impl i fy , 500 , DenCol lect ] ]

abbr = OptimizeAbbr [ Abbr [ ] ]

subexpr = OptimizeAbbr [ Subexpr [ ] ]

d i r = SetupCodeDir [ name <> ” . f o r t r a n ” , Dr iver s −> name <> ” . d r i v e r s ” ]

WriteSquaredME [{ } , vert , abbr , subexpr , d i r ]

Pr int [ ” time used : ” , SessionTime [ ] − time1 ]
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Appendix C

Dimensional Regularisation

These are steps followed to perform the dimentional regularization of the mass operator Σ(p):

After evaluation of the integrant numerator:

− iΣ̂(p) = 4παQ2
fµ

4−D

∫
dDk

(2π)D
gµν

k2 + iε

γµ( 6p− 6k +mf )γν
(p− k)2 −m2

f + iǫ
(C.1)

The mass operator becomes:

− iΣ̂(p) = 4παQ2
fµ

4−D

∫
dDk

(2π)D
( 6p− 6k)(2−D) +mfD

[(p− k)2 −m2
f + iǫ][k2 + iǫ]

(C.2)

• Linearization of denominators via Feynman parametrization:

By applying the generalized formula of Feynman’s parametrization

1

apbq
=

Γ(p+ q)

Γ(p)Γ(q)

1∫

0

dx
xp−1(1− x)q−1

[ax+ b(1 − x)]p+q (C.3)

We have for the denominator

1

[(p− k)2 −m2
f + iǫ][k2 + iǫ]

=

1∫

0

dx
1

[
(k − px)2 + p2x(1− x)−m2

fx+ iǫ
]2 (C.4)

Then we find:

− iΣ̂(p) = 4παQ2
fµ

(4−D)

1∫

0

dx

{∫
dDk

(2π)D
(2−D)( 6p− 6k) +Dmf[

(k − px)2 + p2x(1 − x)−m2
fx+ iǫ

]2

}
(C.5)

To obtain quadratic forms as a function of the integration quadri-momenta in the denominator
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of the expression (C.5) we apply this change of variable:

k = l + px (C.6)

−iΣ̂(p) = 4παQ2
fµ

(4−D)

1∫

0

dx {[(2−D)(1− x)pµγµ +Dmf ]

∫
dDl

(2π)D
1

[
l2 −m2

fx+ p2x(1− x) + iǫ
]2

} (C.7)

Setting that

R2
x = m2

fx− p2x(1− x)− iǫ (C.8)

we get:

−iΣ̂(p) = 4παQ2
fµ

(4−D)

1∫

0

dx

{
[(2−D)(1− x)pµγµ +Dmf ]

∫
dDl

(2π)D
1

[l2 −R2
x]

2

}
(C.9)

• Calculation of integrals on Euclidean phase space:

Using:

I(r,m) =

∫
(l2)r

(l2 − R2
x)

m

dDl

(2π)D
= i

(−1)r−m

(4π)
D
2

(R2
x)

r+D
2
−mΓ(r + D

2
)Γ(m− r − D

2
)

Γ(D
2
)Γ(m)

, (C.10)

will give

⇒
∫

1

(l2 −R2
x)

2

dDl

(2π)D
= i

(−1)2

(4π)
D
2

(R2
x)

D
2
−2Γ(

D
2
)Γ(2− D

2
)

Γ(D
2
)Γ(2)

= I(0, 2). (C.11)

So we have

− iΣ̂(p) = 4παQ2
fµ

(4−D)

1∫

0

dx {[(2−D)(1− x)pµγµ +Dmf ] I(0, 2)} (C.12)

Then using the relation

(2−D)(1− x) 6p +Dmf = (2−D)(1− x)( 6p−mf ) +mf [2(1− x) +Dx], (C.13)
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leads to

Σ̂(p) =
α

4π
Q2

f (4πµ
2)(2−

D
2
)Γ(2− D

2
)



( 6p−mf )

1∫

0

dx
(2−D)(1− x)

[
m2

fx− x(1 − x)p2 − iǫ
]2−D

2

+m2
f

1∫

0

dx
2(1− x) +Dx

[
m2

fx− x(1 − x)p2 − iǫ
]2−D

2





(C.14)

It is this expression (C.14) which represents the one loop-order correction of the free fermionic

propagator and it intervenes in the denominator of the exact fermionic propagator.

Finally we move to Demonstration of ultraviolet divergence: The expression (C.14) is conver-

gent if D < 4 so we can define the positive quantity εuv by:

εuv = 2− D

2
(C.15)

After few manipulations using the relations

Γ(εuv) =
1

εuv
− γ +O(εuv) (C.16)

aεuv = 1 + εuv ln(a) +O(εuv) (C.17)

and using (C.15), we get

Σ̂(1)(p) = mf Σ̂
(1)
a (p) + ( 6p−mf )Σ̂

(1)
b (p) (C.18)

= mf Σ̂
(1)
mf

(p) + 6pΣ̂(1)

6p (p)

Where

Σ̂(1)
a (p) =

( α
4π
Q2

f

){
3

[
1

εuv
+ ln(4π) + ln(

µ2

m2
f

)− γ
]

− 1− 2

1∫

0

dx(1 + x) ln

[
x− p2

m2
f

x(1− x)− iǫ
]}

Σ̂
(1)
b (p) =

( α
4π
Q2

f

){
−
[

1

εuv
+ ln(4π) + ln(

µ2

m2
f

)− γ
]

+ 1 + 2

1∫

0

dx(1 + x) ln

[
x− p2

m2
f

x(1− x)− iǫ
]}
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The singular part is

Σ̂(1)
uv (p) =

( α
4π
Q2

f

)[
mf

4

εuv
− 6p 1

εuv

]
+O(1) (C.19)
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Appendix D

Feynman-digrams-of-the-Higgs-decay-

processes

D.1 H −→ bb̄, H −→ cc̄, H −→ τ τ̄

D.1.1 Born

D.1.2 Vertices
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D.1.3 Counterterms
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D.2 H −→ gg, H −→ AA, H −→ ZA

D.2.1 Vertices
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D.2.2 Counterterms
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