

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Saad Dahleb University - Blida 1

Faculty of Sciences

Computer Science Department

Thesis Submitted in Partial Fulfillment of the Requirements for the
Master Degree of Information Systems Security

Authors:

KERBICHE MOHAMED ELOUALID

LABRECHE MASSINISSA

Host organization: ETB/IFEG (Sonelgaz)

Jury President: Mme. S.AROUSSI

Jury Examiner: Mr. Y.DOUGA

Advisor: Mme N.BOUSTIA

Supervisor: Mr. M.ZATOUT

2020/2021

SECURITY AND DATA TRANSFER IN DECENTRALIZED

APPLICATIONS USING BLOCKCHAIN TECHNOLOGY

Abstract

Blockchain technology has received great attention recently for enhancing data security in

decentralized applications. It enables data to be exchanged between different contracting parties

that act anonymously within a network and serves as a promising alternative to the current

organizational and technical infrastructure. Blockchain transactions are administered by smart

contracts, software programs that are executed automatically as soon as a given condition is met.

They offer the possibility of creating a new form of agreement between parties without the need

for intermediaries.

In this thesis, we have studied Blockchain technology and decentralized applications. . Then, we

addressed our host organization “ETB/IFEG” needs and problematic that mainly represent the

absence of a concrete solution to store and data files. To answer this problematic, we proposed

a decentralized application as a solution based on Blockchain technology, decentralized storage

and data file encryption. We implemented a Blockchain Smart Contract, developed a

decentralized application and established an encryption for data files.

Through this process, we have concretized the security and data transfer in our decentralized

application using the cryptography and immutability provided by Blockchain technology.

Keywords: Blockchain, Decentralized Application, Smart Contract, Data Security, p2p.

 ملخص

ي التطبيقات اللامركزية. وهو يتيح تبادل

ة لتعزيز أمن البيانات ف ي الآونة الأخير

قد حظيت تكنولوجيا بلوكشاين باهتمام كبير ف

ي تتصرف دون الكشف عن هويتها داخل الشبكة، ويعمل كبديل واعد للهياكل
البيانات بير مختلف الأطراف المتعاقدة الت

ة الحالية. وتدار معاملات بلوكشاين بعقود ذكية، وهي برامج حاسوبية تنفذ تلقائيا بمجرد استيفاء الأساسية التنظيمية والتقني

، وهي تتيح إمكانية إنشاء شكل جديد من الاتفاق بير الأطراف دون حاجة إلى وسطاء ط معير . شر

ي هذه الأطروحة درسنا تكنولوجيا بلوكشاين

 جات ومشاكل المنظمة المضيفة "ثم تناولنا احتياوالتطبيقات اللامركزية ف

ي تبير عدم توفرهم على وجود حل ملموس لتخزين ملفات البيانات. وللإجابة على “المدرسة التقنية لسونلغاز بالبليدة
والت

حنا تطبيق لا مركزي كحل يستند على بلوكشاين، التخزين اللامركزي وتشفير ملفات البيانات. هذه المشكلة، اقي

 ,p2p.، أمن البيانات الذكي التطبيق اللامركزي ، العقد ، بلوكشاين : حيةالكلمات المفتا

Acknowledgements

We first thank ALLAH the almighty who guided us and gave us the

strength and the willingness to realize this Master Thesis.

We would like to express our gratitude to our advisor Mme Narhimene

Boustia for supporting this research project and for having guided,

helped and advised us throughout the project. We would also like to

thank our supervisor Mr Zatout Mohamed for his constant advice,

orientation, guidance and support.

We thank our dear parents, for their unconditional support and

encouragement, which has been a great help.

We address our sincere thanks to all the people who by their words and

advice guided our reflections and contributed to the success of our

master thesis.

Finally yet importantly, our thanks go to the jury the members for

reviewing and judging our work.

4

Table of Content
GENERAL INTRODUCTION .. 9

CHAPTER I: DECENTRALIZED APPLICATION .. 11

I. Introduction ... 11

II. Decentralized applications ... 11

1. Definition: ... 11

2. Centralized Systems:... 12

3. Decentralized Systems:... 13

4. Centralized vs Decentralized .. 14

III. Conclusion .. 15

CHAPTER II: BLOCKCHAIN ... 16

I. Introduction: .. 16

II. Blockchain .. 16

1. Backstory of Bitcoin: ... 16

2. Definition of Blockchain: .. 16

3. Blockchain Components: .. 17

4. Layers of Blockchain: .. 19

5. Types of Blockchain: ... 20

6. Distributed Consensus Mechanisms: ... 22

7. Cryptography behind Blockchain: .. 24

8. Smart Contracts: ... 25

9. Choosing a Blockchain framework: .. 29

III. Conclusion: ... 30

CHAPTER III: CONCEPTION ... 31

I. Introduction: .. 31

II. Needs analysis and specification: .. 31

1. Identified problems: ... 31

2. Identified needs: ... 32

III. Conception view: .. 33

5

1. Architecture view: .. 33

2. Logical view:.. 35

3. Process view: .. 36

4. Deployment view: ... 40

IV. Conclusion: ... 41

CHAPTER IV: IMPLEMENTATION .. 42

I. Introduction: .. 42

II. Development Tools: ... 42

1. Node JS & React JS: ... 43

2. Web3 JS: ... 43

3. Truffle: .. 43

4. Ganache: ... 44

5. Remix IDE: ... 45

6. Metamask: .. 45

7. IPFS Desktop: .. 45

III. Implementation details: ... 47

1. Ethereum Blockchain: ... 48

2. Ethereum Smart Contract: .. 52

3. AES256 data file encryption: .. 60

4. Transactions and Functionalities: ... 63

IV. Conclusion: ... 75

GENERAL CONCLUSION .. 76

Bibliography ... 77

Webography .. 80

6

List of Figures

Figure 1 : Centralized Architecture[5]... 12

Figure 2 : Decentralized Architecture[5]... 13

Figure 3 : Blockchain Blocks[9] ... 17

Figure 4 : How Blockchain Works[11] ... 18

Figure 5 : Blockchain Layers[13] ... 19

Figure 6 : Public Blockchain[14] .. 20

Figure 7 : Private Blockchain[14] .. 21

Figure 8 : Flow of PoW[17] ... 23

Figure 9 : Flow of PoS[17] ... 23

Figure 10 : Chained hash Blockchain blocks[18] ... 24

Figure 11 : Functionality of smart contracts[25] .. 27

Figure 12 : Architecture .. 33

Figure 13 : IPFS Merkle DAG[45] ... 34

Figure 14 : General class diagram ... 35

Figure 15 : Authentication sequence diagram .. 36

Figure 16 : Upload data file sequence diagram .. 37

Figure 17 : Share data file sequence diagram... 38

Figure 18 : Retrieve data files sequence diagram ... 39

Figure 19 : Deployment diagram .. 40

Figure 20 : Implementation Architecture ... 42

Figure 21 : Workspace Main Interface .. 44

Figure 22 : IPFS desktop .. 46

Figure 23 : IPFS API configuration ... 46

Figure 24 : Mapping Hash table[50] ... 53

Figure 25 : Smart Contract addUser function ... 54

Figure 26 : Smart Contract getAllUserInfo function ... 54

Figure 27 : Smart Contract uploadFile function .. 55

Figure 28 : Smart contract remove hash function .. 56

Figure 29 : Smart contract get file function .. 56

Figure 30 : Smart contract upload file function .. 57

Figure 31 : Smart contract get file key function ... 57

Figure 32 : Smart contract deployment .. 58

Figure 33 : Compilation of smart contract[54] ... 59

Figure 34 : AES256-ctr encryption process[57] .. 60

Figure 35 : Convert data file to buffer .. 60

Figure 36 : Data file array buffer ... 61

Figure 37 : AES256-ctr auto generation of key and iv .. 61

Figure 38 : Encrypt aes256-ctr function .. 61

7

Figure 39 : Encrypted data file buffer ... 62

Figure 40 : Decrypt aes256-ctr function .. 62

Figure 41 : Metamask access .. 63

Figure 42 : Ganache account private key .. 63

Figure 43 : Connect Dapp to ganache ... 64

Figure 44 : Handling Ethereum network connection .. 64

Figure 45 : Registration form .. 66

Figure 46 : Register input validation ... 66

Figure 47 : Register transaction .. 67

Figure 48 : Dapp upload file .. 69

Figure 49 : Confirm upload transaction .. 70

Figure 50 : Upload Data File transaction details ... 71

Figure 51 : Dapp share data file .. 72

Figure 52 : Share Data File transaction details ... 72

Figure 53 : Delete data file .. 74

List of Tables

Table 1 : Blockchain types comparison ... 22

Table 2 : Challenges of smart contracts[23] ... 28

Table 3 : General Comparison of Blockchain Frameworks[39, 40]... 29

file:///D:/PFE/PFE%20presentation/thesis.docx%23_Toc77189013

8

Glossary

PoW = Proof Of Work.

PoS = Proof Of Stake.

PBFT = Practical Byzantine Fault Tolerance.

EVM = Ethereum Virtual Machine.

ABI = Application Binary Interface.

P2P = Peer-To-Peer.

DAG = Directed Acyclic Graph.

Dapp = Decentralized Application.

SC = Smart Contract.

DHT = Distributed Hash Table.

IPFS = InterPlanetary File System.

SHA-256 = Secure Hashing Algorithm-256.

UML = Unified Modeling Language.

Blob = Binary Large Object.

AES-256-CTR = Advanced Encryption Standard 256 Counter mode.

General Introduction

9

GENERAL INTRODUCTION

Nowadays, organizations transfer and store huge amount of data. From a security perspective,

data in transit is always data at risk since data in transmission presents an opportunity for

interception. Unauthorized access can also occur when data is stored at rest for download on a

file transfer server. Moreover, there is always the chance of files being delivered to an

unintended recipient or mishandled by end users that receive the files.

Decentralized applications solutions has emerged to resolving data transfer risks and creating a

secured and an optimal workflow. One the most popular solution for a secured data transfer has

emerged called Blockchain. Blockchain is the new wave of disruption that has already started to

redesign business, social and political interactions, and any other way of value exchange.

Every organization will have different ideas as to what information is most sensitive. Financial

information will always be in that top bucket because. The Technical School of Blida (ETB/IFEG)

offers a stimulating environment conducive to learning. Even though the organization has a major

problem for transferring data files between its divisions.

Problematic:

There is an absence of a decentralized and secured solution, which allows the management of

the different types of data files at Technical School of Blida. As many other organization, they use

traditional ways for transferring data files like emails , flash disks or paper printed documents,

which can affect the integrity and the availability of the data files .They even use their own email

network, which becomes saturated because of the space limit restriction that forces the

organization users to delete their old emails . Therefore many data files with sensitive data

becomes unreachable, may be stolen and all of that without traceability.

Objective:

The objective of our thesis design and implementation of a secure distributed application that

allows Technical School of Blida to store and share their data files between their different

divisions in a secured, reliable and decentralized way.

General Introduction

10

Our thesis is divided in four chapters:

 Chapter I: in which we have given a general overview about Decentralized Application.

 Chapter II: in which have studied Blockchain technology.

 Chapter III: where we have exposed and discussed our solution conception.

 Chapter IV: in which we have presented our implementation process.

As general conclusion, we will summarize our work and will open an axis towards the

improvement of our solution with perspectives.

 CHAPTER I: Decentralized Application

11

CHAPTER I: DECENTRALIZED APPLICATION

I. Introduction

A new model for building massively scalable and profitable applications is emerging. These

applications paved the way with their peer-to-peer technology. This feature provide a starting

point for building a new type of software called decentralized applications, or Dapps. In this

chapter, we will speak about Decentralized Application, as we will highlight on both centralized

and decentralized systems.

II. Decentralized applications

In a business perspective, decentralization means that business can make decisions locally. A

business unit can choose the way to use local resources to fulfill objectives for that unit. The unit

must cooperate with other units in the company perhaps also externally, and must report to

management in a specified way. However, there is a freedom of action to perform within each

business unit. In addition, in a decentralized organization there must be a central coordination.

Without management and control, the organization ends up in anarchy. Even if this central

coordination such as standardization can set restrictions for each unit, the main criteria for

decentralization is the right and responsibility to form an efficient inner structure in each

business unit, using local resources to fulfill objectives and tasks that are set for the unit. Changes

in this inner structure should not affect other units.[1]

1. Definition:
Decentralized applications are digital applications or programs that exist and run on a P2P

network of computers instead of a single computer, and are outside the purview and control of

a single authority. By using Blockchain technology Dapps grant users more control over their data

by eliminating the need for centralized intermediaries to manage the data, thus making the

service decentralized.[2]

 CHAPTER I: Decentralized Application

12

Decentralized simply means not centralized. The control, as opposed to with a single entity, lies

with the end users. Where the peers are responsible for the availability of content on the

network. More peers seed the data, higher is the availability & download speed. Decentralized

systems have no single points of failure. Even if several nodes go down, the network as a whole

is still up. There is no single entity control, so there is zero possibility of the network going down

anytime unless all the nodes go down simultaneously which is a rare possibility.[3]

2. Centralized Systems:
Centralized systems are systems that use client/server architecture where one or more client

nodes are directly connected to a central server. This is the most commonly used type of system

in many organizations where client sends a request to a company server and receives the

response[4]. Component of Centralized System are:

 Node (Computer, Mobile, etc.).

 Server.

 Communication link (Cables, Wi-Fi, etc.).

Figure 1 : Centralized Architecture[5]

 CHAPTER I: Decentralized Application

13

3. Decentralized Systems:
As opposed to the centralized systems, in the decentralized case all or at least, several nodes

have to host at least the base information, capabilities related to query processing, and

management. Thus, requesters do not need to ask a central instance for query analysis and

receiving information about the desired resources every time. Accordingly, the system becomes

more failure resilient and in particular much more scalable.[5]

Figure 2 : Decentralized Architecture[5]

The concept of Peer-to-peer introduces many significant advantages in different aspects of

resource discovery including scalability (due to collaborative resource sharing between peers),

reliability (fault-tolerance due to the equality essence of peers), and robustness due to self-

organization against peer or system failures. For resource discovery in P2P systems. [3]

 CHAPTER I: Decentralized Application

14

4. Centralized vs Decentralized
Decentralization should be applied where it makes sense. The goal of any Blockchain solution is

to deliver what the users of that solution need, and this may or may not include certain levels of

decentralization. For a better understanding of decentralized networks, the table below breaks

out how decentralized networks compare to the more common centralized networks.[6]

 Centralized Decentralized

Network/hardware

resources

Maintained & controlled by

single entity in a centralized

location.

Resources are owned &

shared by network members;

difficult to maintain since no

one owns it

Solution components Maintained & controlled by

central entity

Each member has exact same

copy of distributed ledger

Data Maintained & controlled by

central entity

Only added through group

consensus

Control Controlled by central entity No one owns the data &

everyone owns the data

Single Point of Failure Yes No

Fault Tolerance Low Extremely high

Security Maintained & controlled by

central entity

Increases as the number of

network members increase

Performance Maintained & controlled by

central entity

Decreases as the number of

network members increase

Example ERP Systems Blockchain

Table 2: Centralized vs Decentralized [5]

We looked at the design aspects of centralized and decentralized systems and got some idea of

the technical benefits of decentralized systems over centralized ones Decentralized system

allows for more data privacy. It is much more difficult to track information in such a system as

information passes through a variety of points and not just through a single entity. An example

of a decentralized network can be Blockchain.

 CHAPTER I: Decentralized Application

15

III. Conclusion

In this chapter, we have given an overview about Decentralized application. After we have spoken

about Decentralized applications. We listed the different components and exposed the features

of centralized and decentralized systems and their architecture. We ended this chapter with a

comparison between centralized and decentralize approaches in order to understand how

decentralized application can benefit organizations.

In the next chapter, we will speak about Blockchain technology as it an emerging concept of

decentralisation.

CHAPTER II: Blockchain

16

CHAPTER II: BLOCKCHAIN

I. Introduction:

Blockchain is the new wave of disruption that has already started to redesign business, social and

political interactions, and any other way of value exchange. In this chapter, we will explain what

Blockchain is all about in order to understand its importance in building Decentralized Applications.

II. Blockchain

1. Backstory of Bitcoin:
When the Internet was made accessible to the public through the World Wide Web in the early

1990s, it was supposed to be more open and p2p. This is because it was built atop the open and

decentralized TCP/IP. People adapted to the WWW revolution and leveraged the benefits it had to

offer in every possible way. As a result, the World Wide Web started shaping up in a way that might

not have been the exact way it was imagined. It could have been more open, more accessible, and

more peer-to-peer. Satoshi Nakamoto must have felt that the monetary systems were not touched

by the technological revolution since the 1980s. The whole of commerce relies on banks as trusted

third parties to process payments. Financial institutions increase cost and time to settle a

transaction, and limits transaction sizes. So, Satoshi invented a cryptocurrency called Bitcoin that

was enabled by the underlying Blockchain technology.[7]

2. Definition of Blockchain:
Blockchain is a system of records to transact value in a peer-to-peer fashion. It is a shared,

decentralized, and open ledger of transactions. This ledger database is replicated across a large

number of nodes. Each block contains its hash pointer, previous hash block , and data to be

transferred in its structure .This ledger database is an append-only database and cannot be changed

or altered. There is no need for trusted third parties to serve as intermediaries to verify, secure, and

settle the transactions. Blockchain technology was designed to enable true decentralization.[7, 8]

CHAPTER II: Blockchain

17

Figure 3 : Blockchain Blocks[9]

3. Blockchain Components:
These are the core Blockchain architecture components [10]:

 Node : user or computer within the Blockchain architecture (each has an independent copy of

the whole Blockchain ledger)

 Transaction: smallest building block of a Blockchain system (records, information, etc.) that

serves as the purpose of Blockchain.

 Block: a data structure used for keeping a set of transactions which is distributed to all nodes in

the network

 Wallet: A Blockchain wallet is a digital wallet; it is used to securely store the private information

of the user.

 Ledger: Every node in the Blockchain network is used to maintain a ledger of all transactions and

this transaction maintains the state of the data that is being stored on the Blockchain network.

 Peer Network: It is peer-to-peer network contains a group of independent computers called as

nodes that are interconnected to share data among each other with any centralized authority.

 Chain: a sequence of blocks in a specific order

 Miners: specific nodes which perform the block verification process before adding anything to

the Blockchain structure

 Consensus: a set of rules and arrangements to carry out Blockchain operations.

 Events: It is used to create notifications for operations performed on the Blockchain.

CHAPTER II: Blockchain

18

The figure below resumes the general interaction between compenents when a transaction is

requested.

Figure 4 : How Blockchain Works[11]

The transaction process works following this steps[12]:

 The sender sends a new request to start a new transaction.

 The request is created as a new form of transaction.

 The new transaction is broadcasted to the network for validation.

 A group of people verify and validate the broadcasted transaction.

 The valid transactions are approved and then added in the existing network.

 The verified transaction is stored as a new block.

 The newly created block is added to the existing block structure.

 The extent block structure sends a transaction to the destination node.

 The receiver can view the all the transactions done through the senders.

 All the transactions are maintained through a public ledger

CHAPTER II: Blockchain

19

4. Layers of Blockchain:
In order to have a clear understanding of Blockchain there is five major layers that are present in a

Blockchain node and are considered as a common point between Blockchain technologies. This

illustration bellow represents those five layers.

Figure 5 : Blockchain Layers[13]

 Application Layer:

In this layer, we find all functionalities codes in order to make application for the end users. It

implies client-side programming constructs, scripts, APIs, development frameworks, etc.[13]

 Execution Layer:

All the nodes in a Blockchain network have to execute a script or a program to ensure a proper

execution of the transactions. For that, the execution layer is where the ordered functions

executions by application layer are taking place.[13]

 Semantic Layer:

The semantic layer is seen as a logical layer because it defines le logic and the rules of the system. In

which all executed functions instructions in the execution layer get there validation in semantic layer.

And to unsure the logic of the Blockchain, the linking of blocks with each other is defined in this

layer.[13]

CHAPTER II: Blockchain

20

 Propagation Layer:

Considered as a the peer-to-peer communication layer the propagation layer allows the nodes to

discover , talk and synchronize with each other according to the logic of the network . To guarantee

all of that and ensure the stability of the Blockchain network, the transaction and network

propagation are defined in the propagation layer. Therefore, when a transaction is made or a node

wants to propose a valid block it is broadcasted to the entire network.[13]

 Consensus Layer:

The Consensus Layer is considered as the base layer for Blockchain. Its primary purpose is to get all

the nodes to agree on one consistent state of the ledger. There could be different ways of achieving

consensus among the nodes, depending on the use case. [13]

5. Types of Blockchain:
There are different types of Blockchain from fully open, permissionless to permissioned depending

on various features and covering large array of systems.

 Public Blockchain:

Figure 6 : Public Blockchain[14]

A user can join or leave the network as per his wish in the permissionless open public Blockchain.

Here the consent from any central entity is not needed. Only user needs to join the network and add

transactions to the digital record keeping register, which is generally a computing system where in

the necessary software is installed.[14, 15]

CHAPTER II: Blockchain

21

 Private Blockchain:

Figure 7 : Private Blockchain[14]

The rules for the ledger are pre-set by the network administrators in the private Blockchain. Nodes

need to take permission from the network administrator for joining the network and initiating a

transaction. The identity of the network nodes is verified before they join the network.[14, 15]

 Consortium Blockchain:

It is a hybrid combination in between low trusted permissionless and a single highly trusted authority

model of permissioned Blockchain (combination of public and private Blockchains). This type of

Blockchain generally functions under the group of board of managing directors or higher authorities.

Consortium Blockchain is the best solution for inter-discipline, cross-industry applications, financial

services, life sciences and health care, energy and resources, technology, media and

telecommunications, public sector, and consumer and industrial products.[15]

CHAPTER II: Blockchain

22

 Comparison:

 Public Private Consortium

Advantages  Independence

 Transparency

 Trust

 Access control

 Performance

 Access control

 Scalability

 Security

Disadvantages  Performance

 Scalability

 Security

 Trust

 Auditability

 Transparency

Use cases Cryptocurrency Verify Ownership Banking

Table 1 : Blockchain types comparison

From the comparison above, it may seem that public and private Blockchains cannot coexist, but in

reality, several large-scale ventures implement them at the same time to address different

requirements in their systems. it is a good idea to use private Blockchain if you are a company and

want to use it without making everything public. More so, if you want more transparency to your

network, then going for a public platform is a good option. But they are not that much suited for

enterprise use cases.

6. Distributed Consensus Mechanisms:
The goal of consensus is to ensure that the network is robust enough to sustain various types of

attacks. Now days there is two main use consensus algorithms

 Proof of Work:

The idea of PoW was invented in 1993 by Cynthia Dwork and Naor Moni . Markus Jacobson and Ari

Juels coined the idea as ’’proof of work’’ in 1999 . PoW uses computing power for mining process by

solving complex mathematical puzzles. The idea behind the PoW algorithm is that certain work is

done for a block of transactions before it gets proposed to the whole network. Here comes the proof

of work as an answer to the mathematical problem (crypto puzzle) which is considered as the

solution that is difficult to find but it is easily verified. [8, 16].

CHAPTER II: Blockchain

23

Figure 8 : Flow of PoW[17]

 Proof of Stake:

The PoS algorithm is about validating blocks of transactions not mining. There are only transaction

fees for the miners and for that all the digital currencies need to be created in the beginning and

their total amount is fixed all through. Since the creator of a block in a PoS system is deterministic

(based on the amount at stake), it works much faster compared with PoW systems. The PoS systems

may provide better protection against malicious attacks because executing an attack would risk the

entire amount at stake.[8, 16]

Figure 9 : Flow of PoS[17]

CHAPTER II: Blockchain

24

 Comparison:

In PoW and PoS consensus, the attacker needs a large amount of computing power or the stake for

the creation of a long chain instead of the valid chain. Pow requires all miners to attempt to solve a

complex puzzle, with the winner determined by the person who has the most powerful/quantity of

hardware devices.

7. Cryptography behind Blockchain:
Cryptography is the most important component of Blockchain and used for the following cases:

 Cryptographic hash Block: Block chaining using Hash functions for example SHA256. As Each

block consists of four fundamental elements: the hash of the previous block; the data of the

block; the nonce of the hash; and the hash of the block. Each successive block enhances the

authenticity claim for the preceding block by incorporating the hash of the previous

block.[18]

The block hash represents a digital signature, which is a sequence of bits that is calculated

from a message using the public-key procedure [15].In Blockchain technology; digital

signatures are used to confirm that the transactions are derived from resources owner. In

addition, Hash values allow a relatively clear and simple identification of the data; they are

used as references in Blockchain technology. It also ensures that the block contents are

protected against manipulation.[16]

Figure 10 : Chained hash Blockchain blocks[18]

CHAPTER II: Blockchain

25

 Asymmetric cryptography: It is used by Blockchain to identify, verify, and validate

transactions without revealing the users identities. Asymmetric cryptography is

accomplished by using two distinct keys: public and private keys. The private key is kept

private by each user, while the public key is available on the Blockchain network.[19]

 User Identification and Addresses: Addresses are used for the purpose of user identification

in many Blockchain applications that offer multi-signature addresses. Several private keys are

generated for this purpose with the intention of increasing security.[20]

8. Smart Contracts:
The term smart contract and the underlying idea date from long before the emergence of Bitcoin

and Blockchain technology. Nick Szabo (1994) defined a smart contract as piece of computerized

transaction protocol that satisfies contractual conditions such as payment terms, confidentiality or

enforcement, reduces exceptions and minimizes the need for trusted intermediaries. A "smart

contract" is simply a program that runs on the Blockchain. It's a collection of code (its functions) and

data (its state) that resides at a specific address on the Blockchain [21] .They run when

predetermined conditions are met and typically are used to automate the execution of an

agreement.[22]

8.1. Life cycle of a smart contract:

The life cycle of a smart contract typically consists of four broad phases: Creation, Deployment,

Execution and Completion.

 Creation of smart contracts:

Several involved parties first negotiate contract obligations, rights, and prohibitions. Lawyers or

counselors may assist parties in drafting an initial contractual arrangement. The arrangement is then

converted into a smart contract written in programming by software engineers. Plan, execution, and

validation are all steps in the smart contract conversion process, much as they are in app

development. It is worth mentioning that the creation of smart contracts is an iterative process

involving with multiple rounds of negotiations and iterations.[23, 24]

CHAPTER II: Blockchain

26

 Deployment of smart contracts:

The validated smart contracts will be deployed to Blockchain-based networks. Due to the

immutability of Blockchain, contracts stored on them cannot be changed. Any alterations necessitate

the creation of a new deal. After smart contracts are deployed on Blockchain, both parties will be

able to access the contracts through the Blockchain .[23, 24]

 Execution of smart contracts:

A smart contract is made up of a series of declarative statements linked by logical relations. When a

condition is met, the following declaration is executed immediately, resulting in a transaction being

executed and checked by miners in the Blockchain. Following that, the committed transactions and

modified states were stored on the Blockchain. [23, 24]

 Completion of smart contracts:

Once a smart contract is executed, all the parties' states are updated. As a result, the transactions

that occur during the execution of smart contracts, as well as the modified states, are recorded in

Blockchain. In the meantime, digital properties have been moved from one entity to another. As a

result, the digital capabilities of the parties concerned have been unlocked. The smart contract has

now finished its whole life cycle. [23, 24]

Smart Contract on the Blockchain:

A smart contract on the Blockchain is a piece of code that represents the terms of an agreement

among parties. The obligations are enforced via the consensus process when the parties deploy the

contract[25]. A smart contract on the Blockchain enables participants to:

 Inspect the code to ensure it meets the agreed clauses.

 Be reassured that an agreed contract, once registered on the Blockchain, is tamper-proof.

 Be certain the contract executes in the same way for all participants.

 Execute predefined actions according to the predefined occurred events.

CHAPTER II: Blockchain

27

Figure 11 : Functionality of smart contracts[25]

8.2. Advantages of smart contracts:

Listed below the main advantages of smart contracts [26]:

 Autonomy: There is no need to rely on intermediaries to validate the deal since you are the

one who makes it.

 Trust: Your documents are encrypted on a shared ledger.

 Backup: The data documents are duplicated many times over.

 Safety: Cryptography, the encryption of websites, keeps all documents safe.

 Speed: Smart contracts use software code to automate tasks, thereby shaving hours off a

range of business processes.

 Savings: Smart contracts save you money (no presence of an intermediary).

 Accuracy: Automated contracts are not only faster and cheaper but also avoid the errors that

come from manually filling out heaps of forms.

CHAPTER II: Blockchain

28

8.3. Challenges of smart contracts:

Challenges Problems Solutions

Creation challenges  Readability: smart contracts are written

in different programming languages.

 Functional issues: recalling interrupted

function again and exploit this

vulnerability to steal digital currency,

sensitive information …etc.

 Recover source code[27]

 Human readable code

and execution[28, 29]

 Overcharging [30]

Deployment

challenges

 Contract correctness: Impossible to make

any revisions after deployment.

 Dynamic control flow: The interaction of

smart contracts result an increased number

of interconnected contracts over time.

 Bytecode and Source code

analysis[31, 32]

 Graph based analysis[33]

 Path-searching[34]

Execution challenges  Transaction-ordering dependence: The

order of transactions is not deterministic

due to the uncertainty of the bisected

Blockchain branches

 Execution efficiency: Smart contracts

are serially executed which limits the

system performance.

 Sequential execution[35]

 Inspection of contract[36]

Data storing and

sharing challenges

 Data Volume: Storing and sharing a

large amount of data can affect the

performance.

 Operations cost: Storing and sharing

data needs may be expensive.

 Use third party

services.[37, 38]

Table 2 : Challenges of smart contracts[23]

CHAPTER II: Blockchain

29

9. Choosing a Blockchain framework:
A Blockchain framework is software solution that contains infrastructure and libraries to develop the

application. The network infrastructure or simply infrastructure consist of nodes and software

running on them. It provides features and capability such as user identity, transaction details,

consensus protocol and controls the identity management for Blockchains.

 Bitcoin Ethereum Hyperledger Corda

Privacy features No private

transactions

Private

transactions

Private channels,

private

transactions

Private

transactions

Access Public Public, but

supports

permissioned

networks

Permissioned Permissioned

Consensus PoW PoW Multiple

approaches

Multiple

approaches

Smart Contracts Not available Solidity Java , Go, Java

Script

Kotlin , Java , C#

Industry focus Finance Cross-industry Cross-industry Finance

Table 3 : General Comparison of Blockchain Frameworks[39, 40]

Ethereum is the best in terms of documentation and support, development and scalability.it did not

have any major limitations. It has also been around for longer than the other platforms and has

already been used to create fully developed applications for any field. Ethereum is also a platform

that makes it possible for any developer to write Smart Contracts using high-level language solidity,

which is nearly close to well-known programming languages

CHAPTER II: Blockchain

30

III. Conclusion:

In this chapter, we have given an overview about the Blockchain technology. We have dug into

Blockchain different components and transaction process followed with Blockchain layers and types.

We also have described its main distributed consensus mechanisms and cryptography. After that,

we have presented our study about smart contracts, their different characteristics, life cycle, its

importance, advantages and challenges. We ended this chapter with a comparison between

Blockchain frameworks and choosing Ethereum framework based on the comparison results

In the next chapter, we will speak about our conception process in which we will response to our

problematic and expose its solution

CHAPTER III: Conception

31

CHAPTER III: CONCEPTION

I. Introduction:

In this chapter, we will present the conception steps of our proposed solution and that based on our

previous research results in the previous chapters. As first step, we will present our host organization

identify major issues and extract the needs to respond to our problematic that represent the absence

of a concrete solution to manage data files in ETB . Therefore, we will describe our proposed

solutions using different UML diagrams.

II. Needs analysis and specification:

In our general introduction problematic, we have spoken about the need to guarantee the security

and the data files transfer in any organization, which matches the needs of ETB School. After

speaking with our internship supervisor who oriented us to the head master of the commercial and

marketing, we have identified specific needs in data files transfer and security, which affects both

the software and hardware security aspects.

1. Identified problems:
We have listed below problems that could affect the security of data files and both software and

hardware aspects.

1.1. Limited sharing method:

The ETB School has a local network email with a limited storage for each user (700mb). Therefore, a

user must constantly be aware of his storage, which may become full and oblige him to delete some

previous data files to keep others. As result, the sharing and storage a drastically limited.

1.2. Data files security:

Despite having sensitive data in the organization-shared files, there is no concrete security methods

to guarantee the integrity and confidentiality of the shared files between the different entities.

1.3. Large file sharing:

The Organization has bunch of important files with high size storage, which causes many troubles to

diffuse or preview them. It affects mainly the hardware side and causes storage saturation and

CHAPTER III: Conception

32

latency in processing. As a result, the costs increases due to the need of high storage capacity in

order fulfill the exigency of the organization.

1.4. Excessive duplication of files:

With the absence of proper solution for sharing data files, the organization resorts to impractical

solution as printing copies files, transferring files by emails, using flash disks and hard drives .This

can lead to information leak, stilling and altering sensitive data files.

1.5. Centralization:

Many data files are stored and available only in one general host of each division without being

accessible remotely. All the data files existing in their respective divisions are accessible in a

centralized way. Therefore, the accessibility and availability is practically limited.

2. Identified needs:
According to the resorted problems, there are needs to be full field to resolve the previous listed

problems.

1.1. Data security:

When properly implemented, robust data security strategies will protect an organization’s

information assets against cybercriminal activities, but they also guard against insider threats and

human error, which remains among the leading causes of data breaches.

1.2. Decentralization:

Decentralization represent an essential step into building a suitable solution for data files transfer.

Decentralizing the management of and access to resources in an application provides benefits to the

organization:

 Provides a trustless environment

 Reduces points of weakness

 Optimizes resource distribution

All the data files may have huge sizes and sensitive information. Therefore, all of them need to be

shared and stored in an efficient and secured way.

CHAPTER III: Conception

33

III. Conception view:

This Section describe our Dapp logic by exposing different uses case using different conception

views.

1. Architecture view:

Figure 12 : Architecture

1.1. InterPlanetary File System:

IPFS is a protocol and network designed to create a peer-to-peer method of storing and sharing data.

It was initially designed by Juan Benet and is now an open source project developed with help from

the community. IPFS connects all computing devices with the same system of files. In some ways,

IPFS is similar to the Web.[37, 41]

We used IPFS as a peer-to-peer Decentralized Storage in our solution as it uses three main concepts

to guaranty data files decentralizations:

 Content Addressing: IPFS uses content addressing to identify content by what is in it rather

than by where it is located. Every piece of content that uses the IPFS protocol has a content

identifier, or CID, that is its hash. The hash is unique to the content that it came from, even

though it may look short compared to the original content.[42]

CHAPTER III: Conception

34

 Directed acyclic graphs (DAGs): IPFS takes advantage of a data structure called directed

acyclic graphs or DAGs called Merkle DAGs. A Merkle DAG is a DAG where each node has an

identifier, which is determined by hashing the node's contents, including any hidden content

carried by the node, and the list of identifiers of its children, using a cryptographic hash

function such as SHA256. Merkle DAG nodes are immutable. Any change in a node would

alter its identifier and thus affect all the ascendants in the DAG, essentially creating a

different DAG.[43, 44]

Figure 13 : IPFS Merkle DAG[45]

 Distributed hash tables (DHTs): IPFS uses a distributed hash table or DHT to find out

which peers are hosting the content you are looking for. A hash table is a database of

keys to values. A distributed hash table is one where the table is split across all the

peers in a distributed network and to find content, you ask these peers.[46]

The IPFS ecosystem includes the libp2p project, which provides the DHT and handles

peer connections, communication.[47]

CHAPTER III: Conception

35

1.2. Blockchain:

The Blockchain is used to store users information, data files encryption keys and data files hashes

which are returned from IPFS after upload IPFS on it. Users get access to the Blockchain network

using their predefined account.

1.3. The Dapp:
The Dapp is the center of our solution as it allow the user to interact with the Blockchain network

and the Decentralized storage (IPFS). The Dapp has a client-side where the user can execute different

functions on the data files and the server-side on which all users queries and data file encryption are

handled.

2. Logical view:
We can resume our system into three main classes:

 ETB Member: The main user of the Dapp as he is identified with his unique Blockchain

account address. As a user, he can perform different function using our solution

(authentification, register, upload data file, share data file, retrieve data file).

 Data File: The main class of our Dapp on which ETN member will execute different

operations. As each data is identified with a unique ID on the Blockchain and its cryptographic

keys.

Figure 14 : General class diagram

CHAPTER III: Conception

36

3. Process view:
The process view contains the interactions between the actors and the different components of

the system.

3.1. Authentication:

To access the Dapp functionallities , the following authentification steps are required:

 Use a wallet to get acces to the Blockchain network.

 Introduce Blockchain account credential access.

 Acces Dapp login page and confirme login.

 The Dapp check if the user is registred to the list of users.

 If yes the user accesses the Dapp functionalities.

 If not , the user is redirected to registration page.

 After registration, the user get access to the Dapp functionalities.

Figure 15 : Authentication sequence diagram

CHAPTER III: Conception

37

3.2. Upload data files:

A registered ETB member can upload his data files in IPFS in a secure way and save their information

access in Ethereum Blockchain to unsure immutability and protection. Steps are:

 Select a local data file and confirm the upload transaction.

 The Dapp generate randomly a 16bits aes256 key and an initialization vector of 8bits for counter

mode.

 The data file is converted to a buffer, then encrypted with aes256-ctr using they key and the

initialization vector.

 The encrypted file is uploaded to ipfs, which returns the data file hashed path to the Dapp.

 The hashed path , aes256 key , aes256 iv are all stored to Ethereum Blockchain using an

immutable and encrypted mapping structure in which each user has his data files access

information stored safely.

 At the end, the Dapp interfaced updated with new added data file to the displayed files.

Figure 16 : Upload data file sequence diagram

CHAPTER III: Conception

38

3.3. Share data files:

A registered ETB member can share files with others by transferring his data files access information

to the desired receiver. To do that he must:

 Select a data file from the ones displayed on the Dapp interface.

 The Dapp request the data file access information and users wallets addresses from the

Ethereum Blockchain.

 Ethereum response after checking the identities of the requester.

 The user chooses the data file receiver to confirm the transaction.

 The hash, aes256 key and aes256 iv are transferred to the receiver using Ethereum Blockchain

secured transaction.

 A message of success is displayed to the user at the end.

Figure 17 : Share data file sequence diagram

CHAPTER III: Conception

39

3.4. Retrieve data files:

A registered ETB member can retrieve his data files by following this step:

 Select one of the data files displayed on the Dapp interface.

 Dapp request property right to retrieve the path hash, aes256 key and aes256 iv.

 Ethereum Blockchain respond to the Dapp after checking property right.

 The Dapp retrieve the file from ipfs using the hashed path.

 The Dapp convert the data file to a buffer in order to decrypt it.

 The data file is decrypted using aes256-ctr with the key and iv.

Figure 18 : Retrieve data files sequence diagram

CHAPTER III: Conception

40

4. Deployment view:
The deployment view describes the arrangement of components, which makes the Dapp.

 Web browser: It provides the interface for the users to interact with the Dapp. Users need an

Ethereum wallet browser to manage their accounts. The web interface provides the

functionality to store data files information and users information on the Blockchain, as well as

start the execution of different functionalities on data files.

 Blockchain: The system where the smart contract is deployed and provides an Application

Binary Interface (ABI) to the users to call the contract methods in order to read or write

information on the Blockchain.

 Storage: Where all data files should be stored.

 Application Server: a server specifically designed to run applications. The server has both the

hardware and software components that provide an environment for the Dapp to run.

 AES-256-ctr: AES-256 counter mode is used to encrypt buffer converted data files. It uses a key

an a IV(Initialization vector) which represent the counter value. This cryptographic algorithm

has a good parallelization that improves the cypher speed.

Figure 19 : Deployment diagram

CHAPTER III: Conception

41

IV. Conclusion:

In this chapter, we have described the functionalities and software architecture of our proposed

Dapp solution. The Decentralized application aim to secure data files transfer and storage using

cryptography and securing credential access and transfer using Blockchain security and immutability.

We used different conception view to highlight our solution architecture, process logic and

deployment architecture.

In the next chapter, we will speak about our implementation process in which we will concretize

the results of our conception process.

CHAPTER IV: Implementation

42

CHAPTER IV: IMPLEMENTATION

I. Introduction:

In this chapter, we will introduce and bring a detailed presentation of our implementations. We

will describe the different tools and approaches used in this process in order to achieve the

realization of our solution.

II. Development Tools:

This figure bellow represent an overview of ower implementation architecture. It contains all

the component .

Figure 20 : Implementation Architecture

CHAPTER IV: Implementation

43

1. Node JS & React JS:
Node.js is a platform built on Chrome's JavaScript runtime for easily building fast and scalable

network applications. Node.js uses an event-driven, non-blocking I/O model that makes it

lightweight and efficient, perfect for data-intensive real-time applications that run across

distributed devices.

React.js is an open-source JavaScript library that is used for building user interfaces specifically

for single-page applications. The main purpose of React is to be fast, scalable, and simple. It works

only on user interfaces in the application. This corresponds to the view in the MVC template.

Nodejs is the most convenient platform for hosting as well as running a web server for a React

application. It’s because of two main reasons:

 Using an NPM (Node Package Manager), Node works alongside the NPM registry to easily

install any package through the NPM CLI.

 Node bundles a React application into a single file for easy compilation using webpack

and several other Node modules.

2. Web3 JS:
Web3.js talks to The Ethereum Blockchain with JSON RPC, which stands for "Remote Procedure

Call" protocol. Ethereum is a peer-to-peer network of nodes that stores a copy of all the data and

code on the Blockchain. Web3.js allows us to make requests to an individual Ethereum node with

JSON RPC in order to read and write data to the network.[48]

3. Truffle:
A development environment, testing framework and asset pipeline for Blockchains using the

Ethereum Virtual Machine (EVM).

With Truffle, we get built-in smart contract compilation, linking, deployment and binary

management. Network management for deploying to any number of public & private networks.

We install it on Node JS using npm with the command: npm install -g truffle.

CHAPTER IV: Implementation

44

We execute on cmd: truffle init to create a project tree structure with the following items:

 contracts/: Directory for Solidity contracts

 migrations/: Directory for scriptable deployment files

 test/: Directory for test files for testing your application and contracts

 truffle-config.js: Truffle configuration file

4. Ganache:
Ganache is a personal Blockchain for rapid Ethereum and Corda distributed application

development. You can use Ganache across the entire development cycle; enabling you to

develop, deploy, and test your Dapps in a safe and deterministic environment.

Once a workspace is created, the screen will show some details about the server, and list out a

number of accounts. Each account is given 100 ether. Having ether automatically in all accounts

allows you to focus on developing your application.

Figure 21 : Workspace Main Interface

CHAPTER IV: Implementation

45

There are six available pages on the interface:

 Accounts: shows the accounts generated and their balances (default view after creation).

 Blocks: shows each block as mined on the Blockchain, with gas used and transactions.

 Transactions: lists all transactions run against the Blockchain.

 Contracts: lists the contracts contained in your workspace's Truffle projects. For more

information on how Ganache handles contracts, see our Contracts Page documentation.

 Events: lists all events that have been triggered since this workspace's creation. Ganache

will attempt to decode events triggered by contracts in your Truffle project. For more

information on events, see our Events Page documentation.

 Logs: shows the logs for the server, which is useful for debugging.

5. Remix IDE:
Remix IDE is an open source web and desktop application. It fosters a fast development cycle and

has a rich set of plugins with intuitive GUIs. Remix IDE allows developing, deploying and

administering smart contracts for Ethereum Blockchain. We will use it for developing process

only of the smart contract.

6. Metamask:
MetaMask is a cryptocurrency wallet but also a web browser extension (available in Chrome,

Firefox and Brave) used to store, send and receive Ethereum. It allows users to store and manage

account private keys and make Ethereum transactions through regular websites. MetaMask can

be used to store keys for Ethereum cryptocurrencies only.

7. IPFS Desktop:
IPFS Desktop bundles an IPFS node, file manager, peer manager, and content explorer into a

single, easy-to-use application. If you already have an IPFS node on your computer, IPFS Desktop

will act as a control panel and file browser for that node. If you don't have a node, it'll install one

for you. In addition, either way, IPFS Desktop will automatically check for updates[41, 42].

CHAPTER IV: Implementation

46

Figure 22 : IPFS desktop

We configure our IPFS API HTTP headers, as we set:

 Allowed access methods for our Dapp: Put, Post, and Get.

 Allowed access origin: The Dapp IP application server.

By doing this configuration steps we unsure only our Dapp access IPFS.

Figure 23 : IPFS API configuration

CHAPTER IV: Implementation

47

III. Implementation details:

This is Bellow our main project development structure as we have main folders:

 Client: Contains all the scripts, files and node modules, which are all necessary four

development and testing step of our Dapp.

 Contracts: Contains the Dapp smart contract.

 Migrations: Contains the migration script for the smart contract deployment.

 Truffle-config.js: A configuration script file where we have specified our development

network and solidity compiler version.

CHAPTER IV: Implementation

48

1. Ethereum Blockchain:

To deploy our Smart contract we used personal Ethereum Blockchain Ganache from Truffle to

run tests, execute commands, and inspect state while controlling how the chain operates. To

proceed we followed these steps:

 Create an Ethereum Workspace: We select Ethereum as a type of Blockchain.

 Truffle config: We add our Dapp truffle configuration path, which will allow deploying

our Smart contract.

CHAPTER IV: Implementation

49

 Blockchain Server: To allow users access to our Blockchain network we configure its

server interface in our network and port 8545.

 Ethereum Accounts: We set up the number of accounts “10” to be generated and their

balance 100 Ether.

 Gas Price & Gas Price: GAS is used to measure how many steps a transaction will need

on EVM. It is straightforward: your transaction is complex, which means it needs more

computation resources (such as CPU time and memory), you will need to pay more GAS.

All opcodes on EVM will cost GAS. The smallest metric of GAS is wei, and 1 eth = 10^18

wei = 10^9 gwei.

CHAPTER IV: Implementation

50

Thus, the work of the Ethereum network is ensured [49]by:

 Ether (ETH) is the Ethereum network's native cryptocurrency, the second-largest by

market cap on the crypto market.

 Gas is the unit of calculation that indicates the fee for a particular action or

transaction.

 The Gas Limit is the maximum amount of Gas that a user is willing to pay for

performing this action or confirming a transaction (a minimum of 21,000).

 The price of Gas (Gas Price) is the amount of Gwei that the user is willing to spend on

each unit of Gas.

 Transaction tracking: after Starting our Ethereum Blockchain, we can know list, track all

transactions and check their details.

CHAPTER IV: Implementation

51

 Blocks listing: We can check all created blocks information details.

 Blockchain events: All occurring events in block chain can be tracked using Ganache

logs.

CHAPTER IV: Implementation

52

2. Ethereum Smart Contract:
As we have opted for Ethereum framework for as a Blockchain. Our smart contract is

programmed using Solidity language. We opted to use one Smart contract to handle our users

and data files.

2.1. Structures:

In our Smart Contract, there is two main object structures, the users and the file object.

 User object structure:

A user object stores the different information about users and we mainly differ between users

by using their wallet address because of it unicity.

 File object structure:

A File object stores the different information about data files and file ID and file hash are both

important. Therefore, file ID helps to identify file hash on our Blockchain and the file hash to

identify the file in the IPFS network .As result, without those two attributes no one can retrieve

the data files.

CHAPTER IV: Implementation

53

 Mapping File structure:

Mappings is useful for associations to associate unique Ethereum addresses with associated

value types. Mappings act as hash tables that consist of key types and corresponding value type

pair. We used it to associate users with their files according to their wallet address to guaranty

the proof of property.

Figure 24 : Mapping Hash table[50]

As we know, altering smart contract rules is impossible, as result files property can be changed

only by its main holder.

In our case, we have to mappings:

 One for user proper data files: it permit to retrieve all user files by linking them with

address wallets.

 On for the files shared to the user: it permit to retrieve all files shared to a user by linking

them with address wallets.

2.2. Functions:

There is two categories of functions; one is for data files and one for users.

CHAPTER IV: Implementation

54

2.2.1. User functions:

 addUser: a function that register the user into the Blockchain users list , then we can have

a list of address wallets shared only between the Dapp users. Each three parameters take a

string length greeter than 0 , if one of them does not respect this condition an error message

is thrown according to the matching case (‘Invalid Service name’, ‘Invalid First Name’,

‘Invalid Last Name’) and this is assured by using require function that guarantee the validity

before insertion.

Figure 25 : Smart Contract addUser function

 getAllUserInfo: a function that returns the attribute values of a user using its index. This

function is set to view so that the state cannot be changed, only real is allowed. We used

require to check the index validity.

Figure 26 : Smart Contract getAllUserInfo function

 getCountuser: It’s an utility function that returns the number of users registered addresses

. This a view function cannot modify the state.

CHAPTER IV: Implementation

55

2.2.2. File functions:

 uploadFile: A function that register mainly data files hashes and their unique GUIDs

(Globally Unique Identifier which is generated by the dapp server side) into the Blockchain

mapped files, with their different attributes values (user address,file Id, file Hash, file Size,

file Type, file Name, key: concatenation of key+iv). As result, we have a mapped list of files

hashes and their information. All parameters have a condition check using require function,

if one of them does not respect its condition an error message is thrown according to the

matching case. This function emit the upload event and returns the current uploaded file

attributes values.

Figure 27 : Smart Contract uploadFile function

 removeHash: This functions allow us to remove a file hash from the Blockchain by funding

the mapping list of the user using its address. After that we search for the hash using

GUID by looping into the list and compare id bits with keccak256 and abi.encodePacked

CHAPTER IV: Implementation

56

Figure 28 : Smart contract remove hash function

 getFilesofUser: A function that returns the attribute values of a data file user using its

index and the address wallet of user. This function is set to view so that the state cannot

be changed, only real is allowed. We used require to check the index validity.

NB: The function does not return the cryptographic keys of the file.

Figure 29 : Smart contract get file function

 uploadShareFile: A function allow to share a data file information and credential access

(key). It get data file information from the sender mapping file structure and transfer them

to the receiver mapping shared file structure.

CHAPTER IV: Implementation

57

Figure 30 : Smart contract upload file function

 getFilekey: An essential function that retrieve a data file key. The file key is a concatenation

of the aes256 key and aes256 iv. The function require the correct user address to be

connected with his Ethereum account, otherwise the file key cannot be retrieved.

Figure 31 : Smart contract get file key function

 getCount: It is an utility function that returns the number of uploaded files hashes from a

specific address user. It is view function that cannot modify the state.

CHAPTER IV: Implementation

58

 getShareCount: It is an utility function that returns the number of shared files hashes which

a specific address user have access. It is a view function that cannot modify the state.

2.3. Deployment:

We deployed our smart contract to ganache Ethereum network. The figure below shows the

deployment details.

Figure 32 : Smart contract deployment

2.4. Application Binary Interface generation::

CHAPTER IV: Implementation

59

The Application Binary Interface (ABI) is a specification in the form of a JSON that describes the

contract. The ABI is the standard way to interact with contracts in the Ethereum ecosystem, both

from outside the Blockchain and for contract-to-contract interaction[51]. Data is encoded

according to its type, as described in this specification. The encoding is not self describing and

thus requires a schema in order to decode.

After compilation of smart contract.sol using a solidity compiler (eg., solcjs [52]), contract.bin file

will be generated and contains contract’s bytecode. After, we need to use solc to create ABI. The

generated file is a contract template used for interface containing available methods in the

contract. Using the following command to generate ABI file: Solcjs contract.sol --abi [53].

Figure 33 : Compilation of smart contract[54]

2.5. Read data from smart contract:

In order to read data from smart contracts with Web3.js, we use web3.eth.Contract() which

takes two arguments : SC abi and SC address. And now we can use SC methods with

contract.methods.methodname().[54]

CHAPTER IV: Implementation

60

3. AES256 data file encryption:
 We use aes256-ctr [55], which stands for aes256 counter mode. Its take a key of 16byts and

in initialization vector of 8byts for counter mode. It allows good parallelization [56] (ie.

speed).

Figure 34 : AES256-ctr encryption process[57]

 To encrypt ant type of data file, we convert it into an array buffer after reading the file. The

ArrayBuffer object is used to represent a generic, fixed-length raw binary data buffer.

Figure 35 : Convert data file to buffer

CHAPTER IV: Implementation

61

 The buffer is a Uint8Array typed array which represents an array of 8-bit unsigned integers.

Figure 36 : Data file array buffer

 To encrypt the file we use the Crypto node js module, which provide the aes256-ctr

functions to auto generate random key and iv.

Figure 37 : AES256-ctr auto generation of key and iv

 Then wen encrypt the buffer using the generated key, iv and mentioning aes-256-ctr.

Figure 38 : Encrypt aes256-ctr function

CHAPTER IV: Implementation

62

 We get as a result a new buffer with encrypted values.

Figure 39 : Encrypted data file buffer

 For decryption, we use aes256 function with the according data file key and iv. As the

function take the encrypted buffer and decrypt it.

Figure 40 : Decrypt aes256-ctr function

CHAPTER IV: Implementation

63

4. Transactions and Functionalities:
We named our Dapp Doc2Eth and here we will present all interfaces and functionalities using

algorithms and Dapp screenshots.

3.1. Authentication:

 A user must access firstly his wallet by introducing his password to unlock metamask.

Figure 41 : Metamask access

 Then user get his private key to access Ethereum network. In our case, we used ganache

to generate accounts with private keys. The user introduce it in metamask and connect to

the Blockchain network.

Figure 42 : Ganache account private key

CHAPTER IV: Implementation

64

 The user can confirm the connection between the Dapp and Ganache.

Figure 43 : Connect Dapp to ganache

 We used Web3 to retrieve Ethereum account (Ganache) information and connection state

to the Dapp. As we get the account, network ID, deployed Network and the most important

creating the smart contract instance.

 To create the smart contract instance, we use Web3.eth.Contract(). As it uses the ABI that

allows the Dapp to interact with the smart contract, deployed Network and its address.

Figure 44 : Handling Ethereum network connection

CHAPTER IV: Implementation

65

 If the Dapp is not connected to ganache Ethereum network using metamask, its throws

an error as it cannot handle authentication and cannot read web3.eth instance.

 If the user does not have an Ethereum account from the network where the smart

contract has been deployed, the Dapp throws an error.

3.2. Registration:

 When a user login to the Dapp using metamask, it checks if he is registered to list of users,

which is created by the smart contract using the code in the bellow picture. The Dapp uses

the smart contract function getAllUserinfo() .

CHAPTER IV: Implementation

66

 If the user is not registered, he is redirected to the registration form.

Figure 45 : Registration form

 We use a react module react-inputs-validation and regular expression to control if any

input field is empty and omit the special characters.

Figure 46 : Register input validation

CHAPTER IV: Implementation

67

 After filling the form, the user can submit his information. The Dapp call the adduser

function bellow. To finalize the registration, the user must confirm the transaction

displayed by metamask plugin. The register pays 0.004848 ether to confirm the transaction.

Figure 47 : Register transaction

 Now, the user can login and directly access the Dapp main page and use its functionalities.

CHAPTER IV: Implementation

68

3.3. Main interface:

 The Dapp displays the service name, user first and last name.

 The Dapp displays the number of files and shared files.

 The user can visualize the list of his data files, and the lit of the shared data files with him.

CHAPTER IV: Implementation

69

3.4. Upload data file:

 To upload a data file, the user click on the right bottom corner plus button to open the file

explorer and choose a data file.

Figure 48 : Dapp upload file

 After that, the user can confirm upload or cancel it as it shows in the picture billow.

CHAPTER IV: Implementation

70

 After confirming upload, metamask asks to confirm upload transaction which costs

0.0.10344 ether.

Figure 49 : Confirm upload transaction

 After confirmation and a successful transaction execution, metamask shows a message of

transaction confirmation.

 We have also limited the type of files that can be uploaded in the IPFS for a better control

and security. As files with no common extension cannot be uploaded.

CHAPTER IV: Implementation

71

 Here below data file upload details.

3.5. Share data file:

 To share a data file, the user click on the share button of the desired data file. A dialogue

opens with the list of all users. The Dapp uses the uploadShareFile function of the smart

contract.

 After selecting the receiver, the sender can confirm with share button. Then metamask asks

to confirm the transaction with a fee of 0.010345.

Figure 50 : Upload Data File transaction details

CHAPTER IV: Implementation

72

Figure 51 : Dapp share data file

 Here below share data file transaction details.

Figure 52 : Share Data File transaction details

CHAPTER IV: Implementation

73

3.6. Retrieve data file:

 To retrieve the desired data file, the user have to click on the download button.

 When retrieving data file, we have noticed that IPFS return the data file buffer by ordered

blocks. Therefore, we implemented a merging function to build a unique buffer array of our

data file to allow decryption operation.

CHAPTER IV: Implementation

74

 If someone tries to access the file using its hashed only without decrypting the data file with

the Dapp, he will get an encrypted unusable data file.

Exp: A test with a power point data file which ipfs hash link is

gateway.ipfs.io/ipfs/QmbfzAKBvVojhmBbZHg5jbEZ5pYqQVqM5mvMwBnztg91t8

 When trying to access the file directly, the browser sometimes fails to retrieve it as it show

504-timeout error.

 In the case, the data file can be downloaded but no OS programs can open it.

3.7. Delete data file:

 To delete the desired data file from his Blockchain mapping structure list, the user have to

click on the delete button and confirm the transaction.

Figure 53 : Delete data file

CHAPTER IV: Implementation

75

IV. Conclusion:

In this chapter, we have presented our implementation process. As a first step, we presented our

development environment and tools, which have used to build our Dapp and make fully

functional. After that, we exposed two main component of our Dapp, which are the structure

and the functions of our smart contract the encryption solution aes256 we used to secure our

data files. We finished this chapter by presenting the Dapp different functionalities and interfaces

with different test cases.

General Conclusion

76

GENERAL CONCLUSION

Blockchain has proven that is an especially promising and revolutionary technology in security

field because it helps reduce risk, stamps out fraud and brings transparency. Adding to that its

flexibility to work with other decentralized tools and concepts allowed to expanse its fields of

application.

Our thesis main purpose was to assure data transfer in decentralized application using Blockchain

technology. As we aimed to use Blockchain cryptography and secured transactions property, to

create a secured Dapp for Technical School of Blida (SONELGAZ) to assure data transfer and

storage in a secure and optimal way.

To concretize our solution we developed a Smart Contract on Ethereum network to unsure a

secured transfer and storage of data files access information. We used also Ethereum accounts

authentication process to secure our Dapp access. As it is impossible to store huge data files on

Ethereum Blockchain due to the need of high cost and resources, we opted to store the data files

on InterPlanetary File System, which is a protocol and peer-to-peer network for storing and

sharing data in a distributed file system. We also added a cryptographic solution that encrypt

data files using AES256-ctr algorithm and store user keys and initialization vectors into the

Blockchain.

We used Truffle to deploy and test our smart contract and Ganache as Ethereum network test.

We opted for Node JS as our Dapp application server and React JS as client side. After testing our

Dapp, we concluded that only users who have an Ethereum account with the initialized network

could access the Dapp and upload data files. In addition, only the users with hashed link, AES256

Key and AES256 iv can retrieve, share data files.

Perspectives:

In the future, we could improve our Dapp in some aspects listed below:

 Use a decentralized network of oracles to retrieve and verify external data.

 Improve and upgrade the system to support all the three different Schools of SONELGAZ.

 Upgrade the Dapp to editing on data files based on access right

77

Bibliography

1. Hugoson, M.-Å. Centralized versus Decentralized Information Systems. in History of
Nordic Computing 2. 2009. Berlin, Heidelberg: Springer Berlin Heidelberg.

5. Zarrin, J., R. Aguiar, and J. Barraca, Resource discovery for distributed computing systems:
A comprehensive survey. Journal of Parallel and Distributed Computing, 2017. 113.

7. Singhal, B., G. Dhameja, and P.S. Panda, Introduction to Blockchain, in Beginning
Blockchain: A Beginner's Guide to Building Blockchain Solutions. 2018, Apress: Berkeley,
CA. p. 1-29.

8. Sanka, A.I., et al., A survey of breakthrough in blockchain technology: Adoptions,
applications, challenges and future research. Computer Communications, 2021. 169: p.
179-201.

10. Patel, V., et al. A Review on Blockchain Technology: Components, Issues and Challenges.
2020. Singapore: Springer Singapore.

12. Subburaj, J., et al. Block Chain Technology: An Outline. in ICDSMLA 2019. 2020. Singapore:
Springer Singapore.

13. Singhal, B., G. Dhameja, and P.S. Panda, How Blockchain Works, in Beginning Blockchain:
A Beginner's Guide to Building Blockchain Solutions, B. Singhal, G. Dhameja, and P.S.
Panda, Editors. 2018, Apress: Berkeley, CA. p. 31-148.

14. Hellwig, D., G. Karlic, and A. Huchzermeier, Blockchain Foundations, in Build Your Own
Blockchain: A Practical Guide to Distributed Ledger Technology, D. Hellwig, G. Karlic, and
A. Huchzermeier, Editors. 2020, Springer International Publishing: Cham. p. 3-27.

15. Prasad, R. and V. Rohokale, Blockchain Systems and Cryptocurrencies, in Cyber Security:
The Lifeline of Information and Communication Technology, R. Prasad and V. Rohokale,
Editors. 2020, Springer International Publishing: Cham. p. 274-277.

16. Sharma, A., et al., Introduction to Blockchain, in Blockchain Applications in IoT Ecosystem,
T. Choudhury, et al., Editors. 2021, Springer International Publishing: Cham. p. 1-14.

17. Sriman, B., S. Ganesh Kumar, and P. Shamili. Blockchain Technology: Consensus Protocol
Proof of Work and Proof of Stake. in Intelligent Computing and Applications. 2021.
Singapore: Springer Singapore.

18. Mohamed, K.S., New Trends in Cryptography: Quantum, Blockchain, Lightweight, Chaotic,
and DNA Cryptography, in New Frontiers in Cryptography: Quantum, Blockchain,
Lightweight, Chaotic and DNA, K.S. Mohamed, Editor. 2020, Springer International
Publishing: Cham. p. 65-87.

19. Upadhyay, N., Rule of Code, in UnBlock the Blockchain, N. Upadhyay, Editor. 2019,
Springer Singapore: Singapore. p. 11-24.

20. Gayvoronskaya, T. and C. Meinel, Technical Basics for a Better Understanding of
Blockchain Technology, in Blockchain: Hype or Innovation, T. Gayvoronskaya and C.
Meinel, Editors. 2021, Springer International Publishing: Cham. p. 15-33.

23. Zheng, Z., et al., An overview on smart contracts: Challenges, advances and platforms.
Future Generation Computer Systems, 2020. 105: p. 475-491.

78

24. Sillaber, C. and B. Waltl, Life Cycle of Smart Contracts in Blockchain Ecosystems.
Datenschutz und Datensicherheit - DuD, 2017. 41(8): p. 497-500.

25. Vigliotti, M.G. and H. Jones, Smart Contracts, in The Executive Guide to Blockchain: Using
Smart Contracts and Digital Currencies in your Business, M.G. Vigliotti and H. Jones,
Editors. 2020, Springer International Publishing: Cham. p. 133-149.

26. Nzuva, S., Smart Contracts Implementation, Applications, Benefits, and Limitations.
Journal of Information Engineering and Applications, 2019.

27. Zhou, Y., et al. Erays: reverse engineering ethereum's opaque smart contracts. in 27th
{USENIX} Security Symposium ({USENIX} Security 18). 2018.

28. Ciatto, G., et al. From the Blockchain to Logic Programming and Back: Research
Perspectives. in WOA. 2018.

29. Kasampalis, T., et al., Iele: An intermediate-level blockchain language designed and
implemented using formal semantics. 2018.

30. Chen, T., et al., Towards saving money in using smart contracts, in Proceedings of the 40th
International Conference on Software Engineering: New Ideas and Emerging Results.
2018, Association for Computing Machinery: Gothenburg, Sweden. p. 81–84.

31. Albert, E., et al. EthIR: A Framework for High-Level Analysis of Ethereum Bytecode. in
Automated Technology for Verification and Analysis. 2018. Cham: Springer International
Publishing.

32. Brent, L., et al., Vandal: A scalable security analysis framework for smart contracts. 2018.
33. Fröwis, M. and R. Böhme. In Code We Trust? in Data Privacy Management,

Cryptocurrencies and Blockchain Technology. 2017. Cham: Springer International
Publishing.

34. Nikolić, I., et al., Finding The Greedy, Prodigal, and Suicidal Contracts at Scale, in
Proceedings of the 34th Annual Computer Security Applications Conference. 2018,
Association for Computing Machinery: San Juan, PR, USA. p. 653–663.

35. Mavridou, A. and A. Laszka. Designing secure ethereum smart contracts: A finite state
machine based approach. in International Conference on Financial Cryptography and Data
Security. 2018. Springer.

36. Bragagnolo, S., et al. SmartInspect: solidity smart contract inspector. in 2018 International
Workshop on Blockchain Oriented Software Engineering (IWBOSE). 2018.

37. Mohanty, D., Advanced Programming in Oraclize and IPFS, and Best Practices, in
Ethereum for Architects and Developers: With Case Studies and Code Samples in Solidity,
D. Mohanty, Editor. 2018, Apress: Berkeley, CA. p. 151-179.

38. Vimal, S. and S.K. Srivatsa, A new cluster P2P file sharing system based on IPFS and
blockchain technology. Journal of Ambient Intelligence and Humanized Computing, 2019.

39. Quasim, M.T., et al., Blockchain Frameworks, in Decentralised Internet of Things: A
Blockchain Perspective, M.A. Khan, et al., Editors. 2020, Springer International Publishing:
Cham. p. 75-89.

42. Manoj Athreya, A., et al. Peer-to-Peer Distributed Storage Using InterPlanetary File
System. in Advances in Artificial Intelligence and Data Engineering. 2021. Singapore:
Springer Singapore.

43. Sanjuán, H., et al., Merkle-CRDTs: Merkle-DAGs meet CRDTs. 2020. abs/2004.00107.

79

44. Tennant, P.W.G., et al., Use of directed acyclic graphs (DAGs) to identify confounders in
applied health research: review and recommendations. International Journal of
Epidemiology, 2020. 50(2): p. 620-632.

45. Huang, H., et al., When Blockchain Meets Distributed File Systems: An Overview,
Challenges, and Open Issues. IEEE Access, 2020. 8: p. 50574-50586.

46. Huang, H.-S., T.-S. Chang, and J.-Y. Wu, A Secure File Sharing System Based on IPFS and
Blockchain, in Proceedings of the 2020 2nd International Electronics Communication
Conference. 2020, Association for Computing Machinery: Singapore, Singapore. p. 96–
100.

48. Lee, W.-M., Using the web3.js APIs, in Beginning Ethereum Smart Contracts Programming:
With Examples in Python, Solidity, and JavaScript, W.-M. Lee, Editor. 2019, Apress:
Berkeley, CA. p. 169-198.

53. Zheng, G., et al., Application Binary Interface (ABI), in Ethereum Smart Contract
Development in Solidity, G. Zheng, et al., Editors. 2021, Springer Singapore: Singapore. p.
139-158.

54. Panda, S.K. and S.C. Satapathy. An Investigation into Smart Contract Deployment on
Ethereum Platform Using Web3.js and Solidity Using Blockchain. in Data Engineering and
Intelligent Computing. 2021. Singapore: Springer Singapore.

55. Rogawski, M., K. Gaj, and E. Homsirikamol, A high-speed unified hardware architecture
for 128 and 256-bit security levels of AES and the SHA-3 candidate Grøstl.
Microprocessors and Microsystems, 2013. 37(6): p. 572-582.

56. Fei, X., et al., Analysis of energy efficiency of a parallel AES algorithm for CPU-GPU
heterogeneous platforms. Parallel Computing, 2020. 94-95: p. 102621.

80

Webography

2. Hertig, A. What Is a Decentralized Application? [cited 2021 13/05/2021]; Available from:
https://www.coindesk.com/learn/ethereum-101/what-is-a-decentralized-application-
dapp.

3. Decentralized Vs Centralized Systems. [cited 2021 17/04/2021]; Available from:
https://medium.com/nhct-nanohealth-care-token/decentralized-vs-centralized-
systems-cb31b95928c5.

4. Comparison – Centralized, Decentralized and Distributed Systems. [cited 2021
17/04/2021]; Available from: https://www.geeksforgeeks.org/comparison-centralized-
decentralized-and-distributed-systems/.

6. Blockchain on AWS. [cited 2021 05/04/2021]; Available from:
https://aws.amazon.com/blockchain/.

9. Blockchain key characteristics and the conditions to use it as a solution. Available from:
https://medium.com/swlh/blockchain-characteristics-and-its-suitability-as-a-technical-
solution-bd65fc2c1ad1.

11. Blockchain Architecture Basics: Components, Structure, Benefits & Creation. [cited 2021
13/07/2021]; Available from: https://mlsdev.com/blog/156-how-to-build-your-own-
blockchain-architecture.

21. INTRODUCTION TO SMART CONTRACTS. [cited 2021 11/05/2021]; Available from:
https://ethereum.org/en/developers/docs/smart-contracts/.

22. IBM. Smart contracts. [cited 2021 11/05/2021]; Available from:
https://www.ibm.com/topics/smart-contracts.

40. Best Blockchain Frameworks You Should Know About. [cited 2021 17/05/2021]; Available
from: https://merehead.com/blog/blockchain-frameworks-you-should-know-about/.

41. Juan Benet inventor of IPFS. Available from: https://research.protocol.ai/authors/juan-
benet/.

47. WHAT IS LIBP2P? [cited 2021 24/05/2021]; Available from:
https://docs.libp2p.io/introduction/what-is-libp2p/.

49. What Are Gas, Gas Limit, and Gas Price in the Ethereum Network? [cited 2021
28/05/2021]; Available from: https://decenter.org/en/category/mining.

50. Mappings in Solidity Explained in Under Two Minutes. [cited 2021 10-06-2021]; Available
from: https://medium.com/upstate-interactive/mappings-in-solidity-explained-in-
under-two-minutes-ecba88aff96e.

51. Contract ABI Specification. [cited 2021 18/05/2021]; Available from:
https://docs.soliditylang.org/en/v0.5.3/abi-spec.html.

52. solc-js. [cited 2021 18/05/2021]; Available from: https://www.npmjs.com/package/solc.
57. The difference in five modes in the AES encryption algorithm. [cited 2021 10-06-2021];

Available from: https://www.highgo.ca/2019/08/08/the-difference-in-five-modes-in-
the-aes-encryption-algorithm/.

https://www.coindesk.com/learn/ethereum-101/what-is-a-decentralized-application-dapp
https://www.coindesk.com/learn/ethereum-101/what-is-a-decentralized-application-dapp
https://medium.com/nhct-nanohealth-care-token/decentralized-vs-centralized-systems-cb31b95928c5
https://medium.com/nhct-nanohealth-care-token/decentralized-vs-centralized-systems-cb31b95928c5
https://www.geeksforgeeks.org/comparison-centralized-decentralized-and-distributed-systems/
https://www.geeksforgeeks.org/comparison-centralized-decentralized-and-distributed-systems/
https://aws.amazon.com/blockchain/
https://medium.com/swlh/blockchain-characteristics-and-its-suitability-as-a-technical-solution-bd65fc2c1ad1
https://medium.com/swlh/blockchain-characteristics-and-its-suitability-as-a-technical-solution-bd65fc2c1ad1
https://mlsdev.com/blog/156-how-to-build-your-own-blockchain-architecture
https://mlsdev.com/blog/156-how-to-build-your-own-blockchain-architecture
https://ethereum.org/en/developers/docs/smart-contracts/
https://www.ibm.com/topics/smart-contracts
https://merehead.com/blog/blockchain-frameworks-you-should-know-about/
https://research.protocol.ai/authors/juan-benet/
https://research.protocol.ai/authors/juan-benet/
https://docs.libp2p.io/introduction/what-is-libp2p/
https://decenter.org/en/category/mining
https://medium.com/upstate-interactive/mappings-in-solidity-explained-in-under-two-minutes-ecba88aff96e
https://medium.com/upstate-interactive/mappings-in-solidity-explained-in-under-two-minutes-ecba88aff96e
https://docs.soliditylang.org/en/v0.5.3/abi-spec.html
https://www.npmjs.com/package/solc
https://www.highgo.ca/2019/08/08/the-difference-in-five-modes-in-the-aes-encryption-algorithm/
https://www.highgo.ca/2019/08/08/the-difference-in-five-modes-in-the-aes-encryption-algorithm/

