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ABSTRACT

Nowadays, the shaking tables represent a staple in earthquake engineering
laboratories. Considered as the most powerful experimental technique to assess the
seismic performance of full- and reduced-scale structures under dynamic excitations
similar to real earthquakes, the shaking tables is aimed to real-time replicate the
desired time histories at the base of the specimen as accurately as possible. Because
of the inherent nonlinearities of the shaking table system, the coupling effects between
the DOFs, the sensitivity of the shaking table to the behaviour of the specimen and its
dynamic characteristics, the tracking performance of a shaking table in following a
defined signal remains an important technical challenge. Usually, the reproduced
accelerations are distorted by phase delay, amplitude attenuation and harmonic
distortions. Hence, the accuracy in acceleration waveform replication must be
significantly enhanced such that the effective reliability assessment of the tested
structures is achieved. Various control methods for shaking table tests have been
proposed to improve the tracking performance of the shaking table. Recently, the
success of Atrtificial Intelligence (Al) has created new possibilities in the field of shaking
table control, to achieve a high accuracy performance over traditional controllers. The
use of neural networks (NNs) has been extensively extended in control applications
due to their capabilities to build up control laws suitable for dynamic, complex and
nonlinear systems, without requiring any mathematical model of the controlled system.
Therefore, this thesis proposes an innovative control strategy by using a NN control
algorithm to improve the acceleration tracking performance of a shaking table originally
controlled by a conventional controller. Several numerical simulations have been
carried out to test the feasibility and efficiency of the proposed control methodology.
Through the sufficient numerical results, an experimental implementation of the
designed NN control function in the QUANSER STIII is realised. The shaking table is
a bi-axial shaking table driven by three linear motors and controlled by a Simulink-
based proportional-derivative feedforward (PDFF) controller that shows several
inabilities in reproducing prescribed acceleration signals. The designed three-layer
feedforward NN is used as a basic control function which compensates for the
distortions measured in the acceleration feedback signals and acts on the command
signal to minimize the tracking errors. The database for offline training, testing, and

validating the NN is the acceleration real-time signals recorded on the shaking table



during the tests using real earthquake records. Subsequently, the NN function block is
implemented online in the outer control loop of the shaking table and performs in
conjunction with the original PDFF controller.

The potential of the NN controller to enhance the fidelity in acceleration signals
reproduction of the shaking table is verified for different load conditions by performing
numerous bare and loaded table tests. Several comparative analysis in terms of
intended and achieved responses in time and frequency domains as well as attained
and desired PGA are undertaken. For both loaded and unloaded shaking table tests,
the experimental results confirmed that the designed NN control algorithm helped the
PDFF controller to track desired accelerations by reducing the distortion in peak
amplitudes and by decreasing the time delays. In the frequency domains, results
demonstrated the high capacity of the NN to cope with nonlinearities and resonance
frequencies of the shaking table system as well as coupling effect due to the interaction
between the shaking table system and the specimen, which is an important source of
traditional control defiance. Moreover, the improvement in the acceleration tracking
performance of the shaking table achieved by using the same NN model after a unique
training process, for different excitation signals and different load conditions attests of

the robustness of the proposed control methodology.

Key words: shaking table, earthquake simulator, neural networks, control system, PD-
Feedforward controller, acceleration tracking, distortion.
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RESUME

De nos jours, les tables vibrantes représentent un outil capital pour les laboratoires de
Génie parasismique. Considérée comme étant la technique expérimentale la plus
efficace pour évaluer les performances sismiques des spécimens a échelle réduite ou
réelle sous des excitations dynamiques similaires aux séismes réels, la table vibrante
est destinée a reproduire en temps réel les signaux désirés a la base des spécimens,
le plus fidélement possible. La performance de la table vibrante a suivre un signal
prédéfini reste un probléme technique majeur a cause des non-linéarités internes du
systeme, aux effets de couplage entre les degrés de liberté (DDL) de la table et a
'influence du comportement et des caractéristiques dynamiques du spécimen.
Généralement, les accélérations reproduites sur la plateforme montrent des temps de
retard, une atténuation des amplitudes ainsi que des distorsions harmoniques. Par
conséquent, la fidélité dans la reproduction des signaux d’accélération doit étre
considérablement améliorée de telle sorte que la fiabilité de I'évaluation des structures
testées soit atteinte. Nombreuses méthodes de contrdle de tables vibrantes ont été
proposées afin d’'améliorer la performance de celles-ci. Récemment, le succés que
connait I'lntelligence Artificielle (IA) a créé de nouvelles possibilités dans le contrble
des tables vibrantes, visant a atteindre de meilleures performances que celles
obtenues par des controleurs standards. L’utilisation des Réseaux de Neurones
Artificiels (RNA) dans le contrOle a largement augmenté de par leur efficacité a
produire des lois de contrdle efficaces pour des systemes dynamiques, complexes et
non-linéaires, sans besoin d’'un modeéle mathématique précis du systéme a controler.
Cette thése propose donc une stratégie de contrdle innovante ou un RNA est appliqué
a une table vibrante ayant un contrdleur classique, afin d’améliorer ses performances.
Plusieurs simulations numériques ont été réalisées pour tester la faisabilité et
I'efficacité de la méthode de contréle proposée. A travers I'obtention de résultats
satisfaisants, le RNA est expérimentalement implémenté dans la table vibrante
QUANSER STIII. Cette derniére est une table bi-axiale, actionnée par trois moteurs
linéaires et contrélée par un proportionnel-dérivative feedforward (PDFF) implémenté
dans Simulink qui montre nombreuses défaillances quant a la reproduction des
accelérations désirées. Le RNA de type feedforward, constitué par trois couches de
neurones est utilisé comme une fonction de contréle basique, compense les

distorsions mesurées dans les réponses en accélérations et agit sur le signal de



commande afin de minimiser les erreurs. La base de données utilisée, en offline, pour
'apprentissage, la validation et le test du RNA est constituée des signaux
d’accélérations récoltés lors des essais sur table vibrante. Par la suite, le RNA est
implémenté online dans la boucle de contrdle extérieure de la table afin d’effectuer la
compensation des distorsions en conjonction avec le PDFF.

Le potentiel du RNA a augmenter la qualité des signaux d’accélérations reproduits sur
table vibrante est vérifié pour différentes conditions de chargement en exécutant des
tests sur table non chargée et chargée. Nombreuses analyses comparatives entre les
réponses en acceélération obtenues et désirées ainsi que le PGA atteint et désiré sont
effectuées dans les domaines temporel et fréquentiel. Les résultats expérimentaux ont
confirmé que le schéma de contrdle proposé a aidé le contréleur PDFF a suivre plus
précisément les acceélérations désirées, et ce en réduisant les distorsions des pics
d’amplitudes et des temps de retard, dans le cas de table non chargée et chargée. Les
résultats dans le domaine fréquentiel ont également démontré la capacité du RNA a
pallier aux non-linéarités du systeme, a atténuer les fréquences de résonance
observées dans les réponses du systéme ainsi qu’a faire face a 'effet de couplage d
a linteraction table-spécimen, qui généralement présente la source principale de
défaillance des contrbleurs classiques. De plus, 'amélioration de la performance de la
table vibrante a suivre les signaux d’accélérations désirées est accomplie grace a un
méme modéle de RNA ayant subi un seul apprentissage, pour différents signaux
d’excitation et différents cas de chargement de la table, ce qui atteste la robustesse

du contréle proposé.

Mots clés : table vibrante, simulateur de séisme, réseaux de neurones artificiels,

systeme de contréle, PD-Feedforward controller, suivi d’accélération, distorsions.
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CHAPTER 1

INTRODUCTION

1. Background and motivation

Development of seismic analysis and design is fundamentally underpinned by
experiments and testing. A tremendous research effort has been placed into the
experimental field of earthquake engineering in order to better assess the seismic
performance of structural and nonstructural components subjected to earthquake-
generated excitations to predict their dynamic behaviours more accurately, with the
main scope of minimizing the seismic risk, assuring the environment safety and
protecting humans’ lives.

In cases where theoretical analysis and analytical simulations reach their limits, such
as for indigenous constructions, high rise buildings and complex structures,
experimentation is the best means that provides reliable data and accurate knowledge.
The experimental side, often defined as a technique of acquiring information through
physical observations and measurements, has been and should remain to be a major
aspect of earthquake engineering research. Even if the experimentation costs much
higher compared to numerical techniques, it remains the only valuable alternative in
the study of complex phenomena that cannot be mathematically modeled or accurately
simulated and more broadly, the experimentation is carried out to validate or improve
the proposed design for the new structures, evaluate and upgrade the existing
structures, verify the analytical studies, establish realistic loading criteria for complex
environmental effects such as wind or earthquakes or study the response

characteristics of structural structures with controlled variations of the input parameters

Recent sophisticated experimental tools have been widely used. Three key types of
testing techniques are available to study the dynamic performance of structures:

= Quasi-static tests: generally applied to study material properties and assess

structural performances such as energy dissipation, collapse modes, through

the application of cyclic displacements or forces to the test specimen at a quasi-

static (low) rate via hydraulic actuators. Instead of following a predefined strain

rate or specific displacement trajectory imposed by a particular earthquake, the

structural element is subjected to predetermined numbers of displacements
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controlled quasi static loading cycles to predetermined displacement ductility
factors or drifts. The main advantage of the slow loading rate is that the quasi-
static tests provide a valuable understanding of the structure’s behavior in the
post-yielding regime and give conservative estimations of the real strength of
the structural element. Despite the fact that the quasi-static cyclic loading tests
have the major benefit of requiring far less complicated loading and recording
equipment, a main disadvantage can be highlighted which is the elimination of
the acceleration-dependent inertial forces and the velocity-dependent damping
forces that can be significant for some types of structures.

Pseudo-dynamic tests: also called computer-actuator online test or hybrid tests,
consist of the slow application of varying forces to the tested structures in order
to determine realistic nonlinear responses, by combining an online computer
simulation of the dynamic response of the structure with direct measurements
from the structure during the test. Inertial and damping forces, required during
the analysis process, for the solution of the equations of motion are modeled
analytically. The main advantage of the PsDT is that the process automatically
accounts for the hysteretic damping, due to inelastic deformation and damage
to the structural materials, which is usually the major source of energy
dissipation. Inertia forces are not experimentally produced and are modeled
numerically. This eliminates conducting the test on a real time-scale, and allows
very large models of structures to be tested with only a relatively modest
hydraulic power requirement. The fact that the cyclic displacement history has
to be defined before the test may not cover the range of displacements which
the structure would undergo under dynamic action and represents the main
disadvantage of the PsDT.

Dynamic tests: they are the most realistic real-time tests. Dynamic tests are
divided into two categories: The first one represents the system identification
testing in the linear-elastic test range. It aims to obtain the model characteristics
of the structure through testing at low amplitude. The second category that
performs in the nonlinear-inelastic range, is the shaking table test, considered
as the most advanced seismic testing technique by reproducing the dynamic
effects that earthquakes impose on structures. The most common physical

dynamic tests are the shaking table tests.
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1.1. Shaking table testing

It is well known that shaking tables have largely impacted the earthquake
engineering domain since 1890. An historical review of the development of
shaking tables could be found in the literature, describing the earliest shaking
tables that have been developed between 1890- 1950 . Consisting of a
moving platform on which the tested structure is mounted, the shaking table is
meant to simulate an earthquake movement along one or more axis and
accurately reproduce the dynamic forces involved. These innovative devices
have been enhanced dramatically to lead to the 1-DOF shaking table (Japan
1962, lllinois 1969, Romania, early 1960) with assistance from the newly-
created (1966) MTS System Corporation, and the use of early forms of the
digital computer, driven in that time by a single actuator or by two electro-
hydraulic actuators which were claimed to provide useful results despite of
their simplicity. Shaking tables have continued to grow in size and capacities
since that time, allowing the test of full-size structures under reproduced
ground motions with maximum accelerations.

Nowadays, the value of the shaking table testing is greatly recognized [124].
In fact, shaking tables are considered as a fundamental device in earthquake
and structural engineering for evaluating the dynamic performance of full- and
reduced-scale structures under dynamic excitations similar to those induced
by real earthquakes. Until now, there are only two shaking tables in the world
which are large enough to test full-scale structures, the E-DEFENSE shaking
table in Japan [96] and the NEES-UCSD shaking table in the USA [100].
Consequently, similitude and magnitude scaling methodologies are applied to
produce a model ground motions testing the reduced-scale structures. In the
two cases, shaking tables are aimed to reproduce the most realistic simulation
of the predefined input motion at the tested specimen bases.

The type of input signals depends on the aim of the test. In general, the input
signals which represent the reference accelerations are either recorded
accelerations during earthquake, synthetic accelerations from attenuation and
seismological study, or some sort of waveforms such as ambient vibrations,
sinusoidal or random waves.

Various types of sensors and hardware are used to measure the response of

the structure. Acceleration and displacement are often measured with strain-
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gage acceleration sensors. Tri-axial geophones or voltage displacement
transducers (LVDT’s) can be placed on the structure to convert movement into
voltage that can be recorded.

1.2. Typical components of a shaking table

Typically, a hydraulic shaking table is composed of three sub-systems:

mechanical, hydraulic and electronic components [100]:

» The mechanical sub-system contains a movable platform representing the
main body of the shaking table, on which is attached the tested structure,
vertical and lateral bearings to guide the platform in motion, hold-down
struts and actuators. These mechanical parts work as one rigid system
operating in a defined frequency bandwidth, with a specific maximum
acceleration amplitude and displacement.

= The hydraulic sub-system: considered as an arrangement of individual
components interconnected, basically constituted by a power supply
(pumps, accumulators, cooler, filter, reservoir, etc.), control elements
(servo-valves, sensors, controller, etc.) and actuating elements (cylinder
and/or motor). In a power supply stage of a standard valve-controlled
hydraulic system, the pump converts mechanical power from the prime
mover to hydraulic power at the actuator. The fluid storage and conditioning
elements (filter, accumulator and cooler) ensure the efficient quality,
quantity and cooling of the fluid. Then, the valves (controlled by a voltage
current signal generated by the controller) are used to control the direction
of the pump flow, the level of the power produced and the amount of fluid
and pressure on the actuator. Finally, a linear actuator (cylinder) or rotary
actuator (motor) converts the hydraulic power to usable mechanical power
output [79].

» Finally, the electronic components are the controller, signal conditioning
units, feedback sensors and accelerometers that provide the position and
acceleration measurements from the platform, the actuators and the

structure, and a data acquisition system to collect the measured data.
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The interaction between these three subsystems is illustrated in Figure 1 [88].
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Figure 1: Interaction diagram between the shaking table subsystems
[Credit: Moghaddam et al., 2014].

In order to simulate a desired signal on the shaking table platform, an electrical
command signal is sent from the personal/connected computer to the
controller. Then, the controller produces the appropriate control input to the
servovalve which opens or closes the valve orifice allowing the circulation of
the adequate hydraulic flow provided by the pump into the actuator. The fluid
forces the actuator arm which is connected to the platform to move along the
desired trajectory. Measurements are made from the different components to
the personal computer for control purpose or data acquisition.

Nowadays, the shaking tables are known to be the most realistic and valuable
experimental technique to evaluate the nonlinear behaviour of the tested
structures under earthquake loads. However, the requirement of large forces
and displacements in shaking tables, the nonlinear dynamic characteristics of
the systems and the mutual influence between the different types of the
shaking table components, have led to a main technical challenge in shaking
table testing which is the high-fidelity in the reproduction of the desired
acceleration on the platform. The most important causes that deteriorate the
quality of signal reproduction in shaking tables are described briefly in the

section below.
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2. Problem statement

In shaking table tests, the seismic performance of structures and scaled buildings’
models is assessed through base excitations until the structural condition reaches an
ultimate level or collapse. In this conditions, the mounted specimen exhibits high
nonlinear behaviours resulting in significant deterioration of the accuracy of the shaking
table control system. Because the control precision determines the reality of
earthquake replication and directly influences the performance research, the control
system of the shaking table is known to be the key part of an effective shaking table
test. Obtaining a highly accurate acceleration signal that matches closely the desired
one is hard to achieve [183]. Due to the influence of the specimen behaviour, the
cross-coupled characteristic, the system nonlinearities and external disturbances, the
control system fails to achieve an accurate tracking performance for different reference
signals under different loading conditions.

Few shaking tables operate in displacement mode in which the displacement feedback
is used to control the platform trajectory. Since the seismic response of structures is
driven by inertia forces, the aim of shaking tables is to reproduce on the platform
prescribed acceleration signals, which are usually earthquake records. A proper
displacement tracking does not necessarily lead to an efficient acceleration tracking,
as a small variation in displacement in a short time may yield a significant error in the
acceleration response [ ]- In general, the acceleration responses are usually
distorted by phase delay, amplitude attenuation and harmonic distortions [180]. For
some shaking table tests, the acceleration signal is reproduced with errors that can
exceed 100% compared to the desired signal in terms of amplitudes [90]. Several
studies avoid the use of direct acceleration measured signal as it is known to be
inherently unstable and results in unacceptable table drifting phenomenon [91]. In fact,
the real-time acceleration feedbacks are always accompanied by bigger noises and
disturbances than displacements. To use acceleration signals, there are principally two
approaches: direct use in feedback loop to improve the tracking error in combination
with displacement and velocity measurements, and indirect use by an observer to
compensate for time delay by filtering the noises in the measurements. Usually, the
reference acceleration signal is converted to reference displacement signal by means
of double integrating the acceleration signal and removing the corresponding drifting
components. However, as the shaking table is meant to replicate reference
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accelerations, the accuracy of the acceleration tracking remains practically difficult to
achieve.

There are several interdependent sources that cause this undesirable waveform
distortion in the measured accelerations. In general, the most important cause is the
nonlinear behaviour of the entire system | ]- It has been widely revealed that
servo hydraulic systems contain inherent high nonlinearities [108]. The dynamic
behaviour of the servo valves and the flow-pressure characteristics in the servo-valves,
the relationship between the servo-valve control flow and the chambers pressures in
the actuators, the oil leakage and several other hydraulic parameters uncertainties,
lead to a significant deterioration of the signal replication. A large number of dynamic
and nonlinear effects present in servo-hydraulic systems contribute significantly in
affecting the control tracking performance of shaking tables. Nonlinear torque motor,
nonlinear flow forces on flapper, spool dynamics, pressure dynamics, nonlinear flow
forces on spool and so on, have been the object of nonlinear identification and
modelling [162].

Another technical challenge that servo-hydraulic systems face, and shaking table in
particular, is the nonlinear friction effect. A nonlinear relationship between the velocity
and the friction force in the actuators [80], a high dry friction in the motors [51] as well
as the hydraulic cylinder friction have been taken into account in recent researches.
The nonlinear friction that has a time-varying characteristics highly deteriorates the
dynamic performance of the entire system.

Moreover, as for every servo-hydraulic system, the external disturbances and internal
uncertainties have a significant impact on the accuracy of the system output. Several
estimation methods, such as UIO (Unknown Input Observer), DOC (Disturbance
Observer) [46], POB (Perturbation Observer), ESO (Extend State Observer), have
been used in order to estimate, and subsequently, cancel the external disturbances
effects or attenuate them to an acceptable level. A history of disturbance cancellation
is detailed in [166].

Despite the fact that several studies have aimed to improve the shaking tables’
performance, the important impact that the mechanical coupling effect between the
DOFs have on the control precision is often ignored [190]. Generally, 6DOFs shaking
tables are controlled using more than six actuators, and hence has a greater stiffness

than a serial connection of actuators [108]. Due to geometric effects, different electric
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parameters and installation errors of eight actuators can cause a large dynamic internal
coupling force in the shaking table system [ 1.

The interaction between the shaking table and the mounted specimen is a major cause
that deteriorates considerably the tracking control and even leads to the system
instability. This interaction phenomena has been the focus of numerous research
works that aimed to enhance shaking table performance. The strength of the
interaction table-specimen mainly depends on the mass, stiffness and nonlinear
characteristics of the specimen. Early studies have proved the sensitivity of the shaking
table to the tested structure characteristics [ ]. A model of shaking table with and
without specimen has been discussed [47]. The degree of flexibility of the payload as
well as its mechanical properties and dynamic characteristics affect the accuracy of
shaking table outputs. In fact, a strong dynamic interaction between the payload and
the shaking table, especially important resonant vibrations between the payload and
the oil column in the actuator frequently occur and affect the frequency response
characteristics of the shaking table. The interaction effects are characterized by a
peak-notch distortion in the amplitude-frequency response and a violent phase lag in
a frequency band close to the natural frequency of the specimen [38]. For instance, it
is stated that it is easier to achieve accurate seismic shaking table output for large-
mass rigid specimen [47].

The effect of the payload behaviour over the accuracy of the signal reproduction is also
observed through an overturning moment [118] caused in several cases when the
center of gravity integrated with the table and the specimen does not match the action
axis of the actuator. Moreover, the specimen often weighs far more than the table and
when it exhibits plastic behaviour or collapse, a drastic variation in the table-specimen
system parameters occurs.

The boundary conditions and the anchorage points between the platform and the
payload as well as the local deformations between the platform and the payload during
tests represent an additional sources of signal distortion that should be taken into
account in order to enhance the quality of the replicated signals [70].

Most of shaking table tests are performed to study a nonlinear behaviour of tested
specimen or investigate some collapse processes. However, the reaction force
generated by a nonlinear specimen on the shaking table deteriorates considerably the
shaking table motion accuracy [120]. Several developed works have been devoted to

develop robust nonlinear controllers that take into account the nonlinear specimen
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[ ] behaviour and compensate for the resonance in specimen responses
resulting in significant errors between the desired and the measured shaking table
signals [ I
In a word, the inherent dynamic characteristics of the shaking table, the payload
behaviour during the test and their nonlinear interaction deteriorate the accuracy of
time histories reproduction by causing an important signal distortion that remains a
large challenge for researchers and civil engineers. This undesired phenomena open
the area to develop advanced control techniques in order to enhance the control
system performance and the fidelity in signal replication. Numerous works study the
applicability of different control algorithms to servo hydraulic shaking tables while
recently, modern control techniques have attracted an important interest such as
improved feedback control [ ], robust control [138], sliding mode control [

], adaptive techniques [ ] and intelligent control [ |

3. Thesis scope

With the recent success of the Artificial Intelligence (Al) in control applications, and the
advanced computation resources that allow the development of large computational
models, the idea of implementing a novel methodology on shaking table control
systems has credit to be investigated. This research study focuses on assessing the
efficiency of a modern control methodology based on Neural Networks (NN) in
improving the quality of the shaking table acceleration tracking performance.

NNs are powerful tools that are taking place through a large number of simple
processing elements, build up complexity out of simple blocks. They adjust the
connection weights between the nodes so that the output target is reproduced.
Recently, the use of NN in control applications has extensively extended due to the
tremendous online learning capabilities, robustness and adaptation to the process
parameters variations. The main advantage of incorporating this type of intelligent
algorithms is their efficiency to build up control laws suitable for dynamic, complex and
nonlinear systems, without requiring any mathematical model of the controlled system.
The difficulty of shaking table parameters identification has been an important
motivation to conduct research on non-model based control methodology. It has been
verified, through considerable research that has been made in using NNs in control

applications, that NN can achieve significant improvement in motion control
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performance. Consequently, a NN is used to increase the acceleration tracking
accuracy of shaking table.

The starting point is the evaluation of the applicability of the proposed control
methodology on a numerical framework of a simulated shaking table. That means that
a first theoretical model of the used shaking table has been established using the
model established by QUANSER, the laboratory equipment producer. The QUANSER
shaking table is a high-powered bi-axial moving platform, actuated using three linear
electric motors to achieve optimal position tracking performance. The given shaking
table is controlled by a classic PD-feedforward (PDFF) controller to regulate the
platform position. The theoretical model gives a simplified mathematical relationship
between the platform position and the applied motor current. In a second stage, an
estimated numerical model has been developed based on the experimental data
collected through a significant program of real-time shaking table tests. A number of
real earthquake records have been used as input signals on the QUANSER shaking
table. These numerical models are used to carry out several simulations with realistic
behaviour of the real shaking table in unloaded and loaded conditions. For instance,
the numerical models can only be used to simplify the shaking table model and predict
a similar response to the real measured acceleration outputs, taken into account the
effect of the nonlinearities without including the explicit nonlinear parameters. Thus, a
multi-layer feedforward NN is designed and trained offline using input-output data
collected through numerical simulations. This numerical validation leads to an
experimental evaluation of the performance of the proposed NN control algorithm
through experimental real-time tests with the online implementation of the NN block.
The performance of the proposed control scheme is assessed through several
comparisons between the measured acceleration signal and the desired one, using
the Root Mean Square Error (RMSE) as a main index assessment computed in time

and frequency domains.



28

4. Qutline of the thesis

An overview of the contents of the thesis are presented in this section.

= Chapter 1: Literature review

In this chapter, numerous control techniques that have been developed and applied to
hydraulic servo systems in general and to shaking tables in particular are briefly
described. The main purpose of this literature review is to provide a knowledge of the
existing control techniques used in shaking table systems, from conventional classic
controllers, advanced controllers, nonlinear controllers to hybrid and intelligent

controllers, and situate the contribution of the proposed control methodology.

= Chapter 2: Shaking table modelling

Numerous models of shaking tables can be found in the literature. This chapter
presents the most common modeling techniques of shaking tables based on the
published research works. The shaking table used in this study, which is the
QUANSER Shaking Table lll is described. Also, the chapter presents the detailed
theoretical model that will be developed on MATLAB/Simulink in the next chapter.

» Chapter 3: Numerical implementation of the NN-PDFF controller

The aim of this chapter is to provide a numerical framework of the implementation of
the proposed control methodology in order to assess the potential of the NN control
algorithm to enhance the acceleration tracking performance of shaking tables. Based
on the results obtained through several simulations of two models of shaking tables
under predefined earthquake records, the efficiency of the designed NN enables to

implement it in real-time shaking table system.

= Chapter 4: Experimental implementation of the NN-PDFF controller

Numerous shaking table tests are carried out on the QUANSER STIII by applying
different input signals. The analysis of the acceleration responses of the QUANSER
STII under several excitation signals, in time and frequency domains, indicate the
nonlinear behaviour of the real system. The aim of this study is to implement the
designed NN control algorithm in the MATLAB/Simulink-based control system of the
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QUANSER STIII. The proposed controller runs in conjunction with the original PDFF
controller. The experimental results of the closed-loop system controlled by the NN-
PDFF controller, with considering two loading conditions are presented. By comparing
the performance of the proposed control scheme with the performance of the original
controller, the enhancement in the measured acceleration signals due to the neural

control function is confirmed.

=  Conclusion and future work

This last chapter provides a summary of the research findings, conclusions and

recommendations for future work and research.
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CHAPTER 1

LITERATURE REVIEW

1.1.Introduction

The shaking table can be simply defined as a means of dynamic testing with a platform
to support specimens and capable of reproducing pre-defined dynamic signals.
Although, there are electrical shakers, most of sizeable shaking tables are made of an
assembly of electrohydraulic servo systems. Schematically, they are constituted of a
hydraulic cylinder, a servo-valve, a moving platform and displacement and/or
acceleration sensors providing direct measurements feedback. Nonlinearities that exist
universally in electrohydraulic servo systems are a main problem which is not
effectively solved yet. They are caused by inherent sources such as the dynamics of
the electrohydraulic components, the hydraulic power mechanism, friction, dead zones
and so on. Uncertainties, unknown and/or time-varying parameters, the coupling
effects between the systems DOF, external disturbances, are among others sources
that affect the accuracy of the shaking tables’ control systems.
Modern control systems aim to track a reference trajectory point by point. In particular,
the control purpose of shaking tables is to reproduce the expected acceleration signals,
generally recorded ground motions from historical earthquakes, on the platform in real-
time. However, high accuracy acceleration tracking performance is required,
representing an extreme challenge in shaking table testing.
An important research interest has been dedicated to the development of efficient
control techniques to drive efficiently electrohydraulic servo systems.
Typically, the control strategies in general can be classified into three categories:

e Classical control strategy (including PID control and improved PID control, TVC

(Three-Variable-Controller), and so on);
¢ Modern control strategy (Nonlinear control, adaptive control, variable structure
control, H2/H robust control and so on);
¢ Intelligent control strategy (neural control, fuzzy control, neural fuzzy control,

adaptive learning control and so on);

Numerous control technologies used for shaking table systems have been reviewed in
[106] and [181]. In order to choose an appropriate control methodology for both
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academic investigations and industrial applications, an overview of an experimental
comparison between all these control approaches could be found in [127].

In this chapter, a brief literature review about some control approaches applied to servo
hydraulic systems, and most specifically to shaking tables is described.

1.2.Control strategies: a review

1.2.1. Classical control strategies
1.2.1.1. PID controller

The most practical and common feedback controller used in industrial
devices is no doubt the PID controller due to its simple structure, low cost
and easy implementation. Traditionally, the shaking table motion has been
controlled by a classic PID controller for many years. The input is the
reference signal to be tracked and the output is the measured response as
schematized in Figure 1.1. The basic expression of a PID controller in time

domain is given in Equation 1.1.
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Figure 1.1: PID feedback control scheme.
u(t) = Kpe + Koo+ K; [ e dt (1.1)

The PID uses the proportional, derivative and integral gains, i.e. Kp, Kd and
Ki, to minimize the error signal e that represents a direct difference between
these two signals. In theory, the proportional gain provides accurate
tracking, the derivative gain compensates the phase lag and the integral

gain reduces the steady-state error [169].
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Since the 80s, a wide-investigated PID tuning literature has been
developed. Tuning the PID gains and defining appropriate values using
basic tuning rules that have been developed and largely used, is a simple
task that can achieve a satisfactory performance for simple linear, stationary
and deterministic systems.

The common design and tuning of the PID assumes that the controlled
system parameters are a priori known and remain unchanged during the
test. This assumption makes its application in industrial systems, including
shaking tables and electrohydraulic servo systems inappropriate [117]. In
fact, as the constant gains values are defined prior to the test, the control
scheme is considered out of real-time [94] and assures only local stability.
Therefore, the re-tuning of the PID gains is an obvious technique to adjust
the controller to the process time-varying parameters. Performed through
trial and error method, the re-tuning is a time consuming procedure and it
requires a skillful operator [126]. The auto-tuning PID controllers have been
explored lately, leading to the development of more advanced control
algorithms, detailed in the sections below.

Moreover, a great number of studies have stated the inability of the PID
controller to control nonlinear systems, time-delayed systems and time-
varying systems [ ] and to achieve the requirements of
earthquake engineering in term of high control performance and large
control bandwidth [ I

It is well-known that even if the PID controller provides reasonable
robustness in the low frequency range and shows a satisfying displacement
tracking performance, the accuracy of the acceleration reproduction is not
guaranteed over a certain frequency bandwidth of interest [ ]- Yet, as
the target signal of shaking table is acceleration signal, high-frequency
control performance is poorer when the PID controller based on
displacement control is adopted, causing large waveform distortion [41].

A common strategy to achieve higher performance when using the PID
controller in complex systems is the linearization of the controlled plants.
Due to the linearization of the system, significant dynamic parameters are
lost, such as the change of viscosity and the bulk modulus of the elasticity

of hydraulic oil, fluid compressibility, servo valve flow-pressure, dead band,



33

variations in supply pressure and control volumes, stiffness, leakage and
friction [48].

Consequently, more advanced control algorithms have been developed in
order to deal with the high nonlinear properties of shaking tables.

1.2.1.2. Three-Variable-Control (TVC)

In order to improve the addressed shortcomings of the PID controller,a TVC
controller, also known as a Three-State-Feedback controller, has been
proposed. The TVC consists of a feedback and a feedforward controller,
based on displacement, velocity and acceleration variables. Thus, six
parameters have to be adjusted: the displacement to control low frequency,
the velocity to control the mid-frequency and the acceleration to control the
high frequency. A simplified diagram is depicted in Figure 1.2.
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Figure 1.2: Block diagram of a basic TVC (credit: Shen et al., 2016).

As can be seen from the figure, the TVC feedback signal consisting of
displacement, velocity and acceleration, and the displacement and
acceleration signal are directly acquired by sensors, i.e. displacement is
measured by an LVDT and acceleration is measured by an accelerometer
mounted on the table, The velocity feedback signal is synthesized using a
low-pass filter with the displacement and a high pass-filter with the
acceleration. Kv, Ker and Kar are the three feedback parameters, while Kar,
Kvr and Kar are the three feedforward parameters, respectively. The signal
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ra(k) is the reference position signal and yd(k) is the output position signal;
ra(k) is the reference acceleration signal.

Compared to the PID, the conventional TVC controller has drawn a lot of
attention and has been employed in several large shaking tables such as
the E-DEFENSE (Japan) and the CGS shaking table (Algeria) [

]- The principle is to replace the unwanted dynamics with the
desired dynamics [153]. It has shown great capabilities to extend the
frequency bandwidth of the closed-loop acceleration response [127],
improve the stability of the entire system and increase the system damping
ratio [176].

Various comparisons between the performance achieved by a PID-
controlled and a TVC-controlled system have been performed. In a
simulation framework built in Simulink, a basic comparison between the
tracking responses for the Irpinia Italy earthquake record of the plant for
both PID and TVC controllers has been illustrated in Figure 2.3, showing a
clear tracking enhancement with the TVC, in both time and frequency

responses. Figure 1.3 is reported from [79].
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However, the TVC remains imperfect because it is still a fixed-gains control
method and shows numerous drawbacks in the acceleration tracking
accuracy as it is significantly affected by the nonlinear characteristics of

electrohydraulic servo systems.
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1.2.2. Modern control techniques
1.2.2.1. Adaptive Control (AC)

An adaptive control attempts to avoid degradation of the dynamic
performance of a control system when environmental variations occur.
While the feedback control system aims to eliminate the effect of state
perturbation, the adaptive control system aims to eliminate the effect of
structural perturbation upon the performance of the control system. It
consists of three functions: identification of the dynamic characteristics of
the plant, a decision making based on the identification of the plant,
modification or activation based on the decision made. A block diagram of

an adaptive control system is depicted in Figure 1.4.
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Figure 1.4: A block diagram of an adaptive control system.

Early published academic works have introduced the concept of adaptive
controllers applied to hydraulic servo systems, proposing two types of
adaptive control schemes: the self-regulation adaptive control and the
model reference adaptive control [31].

The MRC is the most common adaptive control approach, designed to adapt
to changing characteristics of the plant. It can considerably cope with
nonlinear behavior by tuning its internal parameters (gains) during the test
performance. Studies have shown number of advantages of the MRC in
tracking control problems and have guaranteed the easiness of its
implementation, its stability and the convergence of the plant, even if its
parameters are unknown [65].

Even if the adaptive controllers have progressively emerged in industries

since the last quarter of the 20th century, its first use in earthquake



36

engineering has been in 1992 when Stoten and Gomez (2001) applied
Stoten’s adaptive Minimal Control Synthesis (MCS) to a group of European
shaking tables [ ]. This algorithm has been implemented in a small-
scale and medium-scale shaking table to obtain a guideline of enhancing
control systems by using a large-scale shaking table [136].

Among adaptive techniques, the advantages of using the MCS for shaking
table has been cited in their valuable research work as listed in [149]: No
knowledge of the shaking table dynamics is necessary, which represents a
great advantage since the dynamics of the table is strongly dependent on
the specimen and on its working regime as well, the stability and robustness
of the adaptive algorithm have been formally proven and tested [ 1,
the capability to cope with internal parameter variations, external
disturbances due to the specimen parametric changes and nonlinear
dynamics, which shaking tables exhibit over their range of operation. In
addition to this, many shaking-table experiments are carried out in order to
research the nonlinear behaviour of materials and models, a regime that is
difficult to explore using conventional analytical methods. Also, the MCS can
be used on a ‘self-tune and lock’ basis, allowing it to work as a virtual fixed-
gain controller during the test itself. The tuning, however, is conducted in a
precise and automated manner prior to the test. This contrasts with the
standard tuning process of a conventional controller, which relies almost
exclusively on the expertise of the shaking-table operator.

Other types of adaptive control methodologies have been developed and
applied to shaking tables. An adaptive controller based on an adaptive notch
filter has been developed to compensate for disturbances caused by the
reaction forces generated by a specimen during the shaking table tests
[120].

According to adaptive control laws, a staple backstepping adaptive control
technique is applied in real-time hybrid simulation (RTHS) to generate a
command trajectory to a servo hydraulic system with unknown dynamics
and frequency-dependent time lags caused by the interaction of numerical
and experimental components [99].

Some popular adaptive control methodologies use the model reference

adaptive control in which stable control of the system parameters is
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achieved by comparing the output signal with the output signal of the object
reference model. The difference between these signals is the starting point
aimed to be minimized by the controller settings.

In early published works, the performance of an adaptive control applied to
an electrohydraulic servo system, incorporating internal model principle for
asymptotic tracking performance of systems with uncertainties, unmodelled
dynamics and disturbances, has been examined under periodic loads [152].
An indirect adaptive model reference control algorithm has been applied to
a position tracking and disturbance rejection for hydraulic actuators [192]
and experimental results have confirmed the adaptive controller’s ability to
deal with the deadband and the nonlinear opening characteristics of the
valves.

The effectiveness of an adaptive controller used in an electrohydraulic servo
controller has been examined theoretically and experimentally, proving that
the main advantage of the adaptive control scheme is its universal use in
both laboratory and industrial applications [171].

An online adaptive controller has been combined with an offline inverse
compensation model and applied to a six DOF electrohydraulic shaking
table which has considerably improved the acceleration frequency
bandwidth and tracking accuracy of the system [129]. This proposed control
scheme has associated the benefits of the offline compensation and the
online adaptive control and has achieved a fast rate of convergence and an
accuracy in acceleration signal reproduction.

A model reference adaptive control (MRAC) has been implemented to
position control of a loaded shaking table [36] accompanied with a Smith
predictor to compensate the error produced by the system time delay.

The time response and the acceleration tracking performance of a hydraulic
actuator has been improved with a composed PID controller and a Model
Reference Adaptive Control [195] and results have shown a faster time
response at the transient phase and better tracking performance.

As a critical control challenge, the change in the specimen dynamics during
the test leads to a change in the frequency response characteristics of
electrohydraulic servo systems. Another common adaptive approach

includes the adaptive inverse control (AIC) algorithm, which has shown an



38

efficient performance to reproduce the reference shock pulse even if the
specimen characteristics vary considerably during the test [62].

A high fidelity acceleration waveform replication has been achieved on an
electrohydraulic servo system by combining an AIC with an offline
feedforward compensator [128].

The tracking accuracy of an electrohydraulic shaking table has been
reached by combining a feedforward inverse model to extend the system
frequency bandwidth with an AIC to adaptively adjust the time-domain drive
signal [131].

A combined control framework has been developed to improve the
electrohydraulic shaking table performance. The proposed controller
constituted by an AIC feedforward controller for the acceleration closed-loop
ITF estimation, combined with an improved IMC as a modeling error
estimator, has shown great capabilities in extending the frequency
bandwidth of an electrohydraulic shaking table system, overcoming the
stability problem, improving the acceleration real data replication and
minimizing the system uncertainties [132].

The merits of an AIC and the advantages of MCS control algorithm have
been experimentally proven to be powerful in enhancing the position closed-
loop system frequency range and improving its tracking performance [134].
A direct method of adaptive control has been applied to single input single
output (SISO) stable and unstable systems [37]. The Recursive Least
Square (RLS) algorithm has been used to online adjust the PID gains in
order to force the process to behave like the reference model. Results have
confirmed the tracking capability and robustness against process variation
of the used controller.

Even if the adaptive control approaches exhibit a high-quality waveform
replication of the desired signals on shaking tables, a great robustness
against specimen dynamics and an effective cancellation of the shaking
table dynamics [27], inefficient adaptation may occur, especially when rapid
parameter variations occur in the controlled system. In fact, a high-quality
waveform replication of the desired signals can be obtained but this is often

accompanied by a poor transient response when it is initiated.
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1.2.2.2. Nonlinear control

Several research works have highlighted the numerous disadvantages of
conventional linear controllers in industrial processes and their mediocre
performance tracking in real-world controlled systems as they are highly
nonlinear.

In order to improve the tracking performance of electrohydraulic servo
systems and dealing with their dynamic characteristics, early works have
proposed a switch control which is switching between position control loop
and speed control loop based on the actual position error. Results have
shown that the nonlinear switch control strategy has excellent robustness
against inertia load changes [ ]

The development of nonlinear control algorithms has continued to expand
until recently. Various control approaches have been designed and
incorporated to improve the shaking table control stability, especially when
the interaction between the table and specimen is important and when the
specimen reaches high nonlinear states. Based on Lyapunov stability
theorem, a nonlinear control strategy has achieved an excellent control
tracking performance when applied to a shaking table with a nonlinear
SDOF specimen [178]. The objective of the proposed nonlinear control was
to take into account the nonlinear response, the model uncertainties and
various disturbances that affect the test while being performed.

In order to compensate the reaction force and disturbances caused by a
nonlinear specimen in real-time, a nonlinear control methodology has
presented high efficiency in maintaining desired accelerations of the
shaking table [29].

A real-time compensation technique of the reaction algorithm has been
proposed to address the disadvantages of the interaction between the
shaking table and a SDOF specimen by developing a theoretical model of
the specimen [160].

A force feedback compensation technique has been proposed to reduce the
interaction between dual shaking tables and specimen and improve the
reproductive accuracy of the shaking tables [73].
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Further studies have developed sophisticated control algorithm to deal with
the nonlinear interaction between the specimen and the shaking table. A
Nonlinear Single-Based Control (NSBC) has been applied to nonlinear
MDOF systems and has showed great capabilities to deal with nonlinearities
and time-varying system properties. This approach can be simply designed
based on classical control theory and expressed using transfer functions,
requiring a minimum amount of information about the nonlinearities in the
system [34].

A nonlinear robust adaptive control has presented a high position tracking
performance when applied to a symmetric double acting electrohydraulic
servo-drive system, by taking into account the nonlinearities associated with
hydraulic dynamics, parametric uncertainties as well as uncertain
nonlinearities from uncompensated friction dry forces [138].

Originated from Lyapunov theory, a popular nonlinear control technique
which is the sliding mode control (SMC), is a common approach used for
conducting nonlinear stability analyses and control designs. Studies have
showed that systems with sliding modes are an efficient tool to control
complex high-order nonlinear dynamic plants operating under uncertainty
conditions, a common problem for many processes of modern technology.
In addition, the SMC features remarkable properties of accuracy,
robustness and easy tuning and implementation [79].

The SMC has largely been investigated in early studies, trying to address
the Variable Structural Control chattering problems [81] of hydraulic servo
systems and compensating for the nonlinear friction effects [ ]

A time-varying SMC algorithm has been applied to an electrohydraulic servo
system to deal with the uncertainties and disturbances [43], presenting a
satisfying position tracking performance and global robustness.

A nonlinear adaptive SMC has been highly efficient to compensate the
nonlinear uncertain parameters of an electrohydraulic servo system [ ]
A SMC has demonstrated a high effectiveness and stability to accurately
control a piston position through a desired path with a broad range of the
load mass variation [2].

To solve the tracking problems of electrohydraulic servo systems with

nonlinearities and uncertainties, the implementation of robust controllers
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such as the SMC to shaking tables has significantly increased. A robust
SMC based on computed torque control design has been designed and
applied to a two-axis motion control system and has significantly enhanced
the motion tracking performance, the robustness of the system to parameter
variations, external disturbances, cross-coupled interference and friction
force [77].

A nonlinear robust control constituted by a SMC has been designed and
implemented on a multi-purpose earthquake simulator, showing
experimentally the stability of the control approach and its important
efficiency in the reduction of position tracking errors [150].

A fuzzy-sliding-mode supervisory controller has been designed and
implemented to control a shaking table, showing a successful performance
at robust tracking of some harmonic and seismic excitations in the presence
of parametric uncertainties [142].

A novel adaptive reaching law sliding mode controller (ARLSMC) for double
shaking tables system with parameter uncertainty and disturbance,
combining a SMC based on a novel adaptive reaching law to improve
dynamic performance with an adaptive controller to estimate the uncertain
parameters online has proved to have a fast dynamic response
performance, a high control precision, a strong robustness, and a great

capability in reducing the system chattering [189].

1.2.2.3. Advanced model-based compensation techniques

To further improve the performance of standard controllers, researchers
have already put forward a series of advanced compensation control
algorithms with the main scope of improving the tracking performance of
shaking tables.

A reaction force compensation technique has been combined with a
disturbance observer-based control have been proposed to take into
account the nonlinear behavior of the specimen [55].

Another practical control methodology to compensate for the influence of the
specimen on the shaking table and achieve the disturbance suppression



42

performance was to identify the frequency online using a feedback
compensator based on an adaptive notch filter [ I

A model-based control approaches have proven good performance for a
wide range of operating conditions. The process of tuning a model-based-
controller reduces to adjusting a simple bandwidth knob in order to achieve
the desired performance for the specific application. The main advantage of
this controller is the superior performance that is achieved, which is very
important advantage for the customers in today’s manufacturing
environment.

As an efficient shaking table delay compensation technique, a feedforward
compensation method has been developed in order to compensate for high
frequency actuator dynamics and time delays in RTHS [104], using an
inverse model of the closed-loop shaking table.

The experimental implementation of the model-based multi-metric feedback
control strategy has improved the tracking of the desired acceleration signal
for a shaking table loaded with both linear and nonlinear specimen, by
improving the peak acceleration matching and reducing the high frequency
oscillations.

A model-based actuator delay compensation technique has been used to
predict the future response of the entire structure and send the command
signal (displacement signal) to the shaking table at each sampling time. This
compensation technique has shown great capabilities to address the
actuator dynamics and time delay if this latter is constant and an
experimental comparison between the uncompensated and compensated
shaking table responses has been investigated [144].

The development of another type of real-time compensation technique which
is the Infinite-Impulse-Response (IIR) has shown powerful capabilities for
compensating shaking table time delays as well as the effects of complex
control-structure-interaction [146].

A friction compensation method based on the LuGre model has been
designed for a hydraulic shaking table system using the control theory of
backstepping integral and the Lyapunov stability theory to ensure global
asymptotic stability of the closed-loop system [157]. The effectiveness of the

controller has been verified through experimental tests proven its capabilities
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to compensate for unknown interference and the friction properties of the
system, to achieve a higher acceleration tracking accuracy and to improve
the correlation between the reproduced signals and the desired ones.

Some advanced control techniques constituted by a cascade control and a
notch filter has been widely used [75]. This control methodology has proven
its capability to achieve a higher level of control especially in presence of
backlash or resonance. The controlled variable, typically the position,
constitutes the robust control loop while the outer controller represents the
classic controller and a notch filter to compensate the system resonances.
The frequency bandwidth and the stability of the control have been increased
while the sensitivity to the dynamic behaviour of the specimen has been

reduced.

1.2.3. Intelligent control
1.2.3.1. Neural Networks (NN)-based control
1.2.31.1. PID-based NN

The PID still remains the most common and popular controller used in
industrial applications. Its great success is due to its simple structure and
easy implementation. A number of tuning methods exists in order to tune
the PID parameters in the best way. The necessity of retuning the PID is
almost unavoidable as the system parameters change during the
process. The inconvenient of re-tuning the PID through a trial and error
procedure which is time consuming and requires skillful operators, has
led to the development of adaptive controllers and more specifically PID-
based NN. The ability of the NNs to approximate any nonlinear functions
have become extensively used in the control of nonlinear processes. In
fact, Neural Networks (NN) have become one of the most popular field of
study nowadays. From the perspective of control engineering, NNs
should be viewed as nonlinearities tuners. The typical structure of a

PIDNN controller is illustrated in Figure 1.5.
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Figure 1.5: PIDNN structure.

The usual idea while combining Neural Networks (NN) within a PID
controller was first proposed by Huaillin et al., (2000) in order to tune the
PID gains. The structure of the PIDNN itself is still a PID structure. The
hidden layer of the NN works simply as a PID controller through their
activation functions. This easy-designed control methodology, has been
widely used for multivariable nonlinear multi-input-multi-output (MIMO)
processes. The NN weights are automatically updated according to the
errors of the closed-loop system, and the controller helps to implement
nonlinear and adaptive real-time online control for the controlled system.
A comparative study between a direct PIDNN and two other conventional
adaptive PID has been performed [126]. The direct PIDNN that performs
an adaptive control through online learning process has shown a higher
performance and robustness over the classic cancellation and pole
placement controllers in the case of model mismatch and also process
with non-minimum pole behavior.

A PID based-NN has been successfully applied to speed control a
brushless DC while the PID tuning procedure has been performed using
NNs [164].

An adaptive PID-based NN (APID-NN) controller has been used to
establish a unified framework to get fast better tracking performance of a
nonlinear control system, by combining an adaptive PID with a NN
indirect adaptive control (NN-AIC) [141]. In a later study, the
effectiveness of a combined adaptive PID controller with an explicit
neural structure has been confirmed for a nonlinear MIMO system, where

the NN weights are updated online in order to select the suitable values
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of the PID gains [140]. Results have demonstrated that the controller has
achieved an improved and stable tracking performance.

Higher speed response, stronger robustness and dynamic decoupling
effect have been addressed using an adaptive PID decoupling control
based on Radial Basis Function (RBF) NN in a quadrotor aircraft, when
the online PID tuning process has been performed using the self-learning
ability of RBFNN and the corresponding decoupling control algorithm is
performed by a conventional PID controller [49].

A new control technique for nonlinear system has been investigated
using a closed-loop control system consisting of two NNs [5]. The first
NN is a feedforward NN that is employed as a predictive hybrid model of
the plant. The second NN is a PID-based NN which has been pre-trained
offline as an inverse black box model of the plant.

The simple structure of the adaptive PIDNN controller has provided a
gain in computation time and has proven its effectiveness not only for set
point tracking and stability but also for the process robustness through
an optimal online tuning of the PID parameters [193].

An adaptive PIDNN controller used with a Particle Swarm optimization
(PSO) in a complex nonlinear MIMO system with a strong coupling effect,
has been able to obtain high precision with shorter time [60].

A PIDNN controller has been designed for an air supply channel of a coal-
gas furnace [20]. The control scheme constituted by a feedforward pre-
trained NN used for auto-tuning and a PID in parallel, has shown high

trajectory tracking performance.

1.2.31.2. Model Reference Adaptive Control (MRAC)

As seen in several works, neural networks are widely used for modeling
and controlling complex physical systems because of their high ability to
handle complex input-output mapping without the need of detailed
analytical models of the controlled plant.

A popular NN-based controller is a Model Reference Adaptive Controller
(MRAC), generally used to control nonlinear systems. An early study has
proposed a learning multilayer feedforward NN used as direct adaptive
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controller for different nonlinear plants [8]. Another combination of NN
and a robust MRAC has been effective in controlling a nonlinear electro-
pneumatic servo system [156]. The NN has been used to compensate for
constructing a linearized model of the nonlinear plant while the MRAC
has performed the model-matching for the uncertain linearized model to
a given linear reference model.

A Model Reference Adaptive PID controller, based on Radial Basis
Function Neural Networks (RBFNN), has been developed to improve the
performance of a hydraulic parallel robot. The RBFNN has been used to
identify the hydraulic servo-system and update the PID gains online in
order to make the control more adaptive and results have shown the
robustness enhancement of the system [103].

A direct Model Reference neural adaptive controller has shown high
performance in controlling a highly time-varying nonlinear plants with
noise effect [35]. Using a multilayer perceptron network topology, the
control strategy has defined the adaptation control law based on the
convergence of the tracking error between the actual plant output and the
target output which is the response of the reference model.

A MRAC has also been used for a nonlinear hydraulic servo system,
achieving a significant elimination of the steady-state error, a fast
response and a less overshoot [112].

A composite controller of a nonlinear NN with a continuous Robust
Integral Signal Error (RISE) feedback controller has achieved a semi-
global asymptotic stability when applied to hydraulic systems with heavy
disturbances, including parametric uncertainties and unknown
disturbances [186]. The feedforward NN has been used based on MRAC
structure, to have a compensation for unknown state-dependent
disturbances and to further improve the accuracy of the feedforward
compensation.

An effective NNMRAC, consisting of a conventional PID and a NN
inverse dynamic compensator has been applied to servo systems,
affirming its ability to compensate for the nonlinear dynamics of the plant

and for nonlinear disturbances [98].



47

A high tracking precision of nonlinear servo system has been achieved
by using a MRAC and a NN controller in a flight simulator [52]. The online
NN implemented in the velocity-loop was aimed to reduce unknown
models dynamics, parameter variations and disturbances and to adjust
the system to track the nominal velocity-loop reference model. The robust
MRAC has been used to guarantee the global steady.

The performance of a new neuro-adaptive controller has been
investigated through a designed deep NN based-MRAC applied to a 6-
DOF quadrotor [57]. The proposed neuro-adaptive controller has
presented a high performance in achieving reference model tracking,
robustness and stability.

As it is shown, the fast learning and robustness of NNs have made them
suitable for several neural control applications. A Model Reference
adaptive Position Control has been designed and applied for an
electrohydraulic servo valve system [187] using a feedforward NN
showing a very successful and robust control performance over the

traditional PID controller.

1.2.3.2. Fuzzy Logic-based control

It is found that using hybrid control techniques based on the combination of
traditional controllers and intelligent algorithms such as the Fuzzy Logic, has
been an efficient tool to achieve high control performance of nonlinear systems.
Fuzzy control algorithm is based on the linguistic variables - the human thought
process; the input signal is fuzzified at first, then goes through the fuzzy
reasoning process under operational experience and expert knowledge, and
finally the control signal is defuzzified and sent out [12]. In the literature, several
researches stated that Fuzzy Logic Control (FLC) has already been successful
in many control areas. It produces better performance over conventional
controllers such as the PID for the most parts in regards to the time response
and settling time [26].

A critical evaluation of the FLC and the PID controller both applied in
electrohydraulic servo actuator, has ended with the conclusion that the FLC
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achieves a faster response, has no oscillations and then is more suitable for
many important and high precision applications [1].

A robust fuzzy-neural-network (FNN) sliding-mode control based on computed-
torque control design has been applied to a two-axis motion control system in
XY table, proving the robustness of the dynamic behaviors of the proposed
controller with regard to uncertainties [76].

An integrated hybrid fuzzy controller design has been developed for a dual-
cylinder electrohydraulic lifting system, in order to achieve a synchronized
positioning objective with unbalanced loadings, uncertainties and disturbances
[17].

In position control applications, the FLC has been extensively successful. A
Fuzzy Logic Controller has been developed for position control of a servo motor
[ ] given a better dynamic performance and providing more robustness
for industrial position control drive applications.

An accurate tracking performance has been achieved for an electrohydraulic
actuator system using a FLC optimized by Particle Swarm Optimization PSO
algorithm [170]. The study has shown that the proposed control technique has
been able to overcome the nonlinearities and uncertainties in the system and
achieve accurate tracking reference trajectories.

Another study has described the effectiveness of the application of a FL position
control to an electrohydraulic servo system, where the mathematical model of
the system included an internal leakage [59].

A Pl-like Fuzzy Logic position intelligent Control has been developed to control
the position of a nonlinear electrohydraulic servo-actuator in a military aircraft in
order to get a desired position during a specific time with the requirement of a
minimum steady state error, settling time and oscillations in the position
response [61].

A fuzzy gain-scheduling position controller has been efficient in reducing the
error of position reference tracking in a flexible load servo hydraulic system and
increasing the system damping [188].

The possibility to apply a self-learning Fuzzy algorithm for position control of a
hydraulic servo drive has been discussed [28]. A self-tuning Fuzzy PID
controller has been developed to enhance the performance of an

electrohydraulic actuator, when the FL has been used to tune each parameter
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of the PID controller, based on the mathematical model of the system [194]. The
main disadvantage of this proposed control methodology is that it has not taken
into account the load of the hydraulic system, the friction in the hydraulic cylinder
and the leakage in the hydraulic actuator system.

A complex control strategy of main controller combined with FLC based on
wavelet transform has been applied to a multi-variable electrohydraulic servo
system. A NN containing the PID control tuning rules has played a leading role
in the whole system while the FLC has been used as a compensation technique
to ensure rapid response of the system [137]. The proposed combined controller
has achieved its main goal which was to eliminate the mutual interference
between the different closed-loops of the system and the influence of load
variation and external disturbances.

The promising results achieved by Fuzzy Logic Controllers, their simple
operational methodology and their adoption of fuzzy language to describe the
dynamic characteristics of the system, have made them more attractive for
shaking table implementation. The performance of a FL to structural vibration
control of earthquake-excited and wind-excited 1 DOF and 2DOFs models has
been investigated on a small shaking table [40]. Results have proven that the
Fuzzy active Control has been practical and robust but in order to make the
proposed control more practical, the tuning parameters and shapes of
membership functions in the fuzzy inference rules was needed.

A FLC has been designed and implemented on a shaking table based on the
data feedback value of the drive to achieve desired motor speed with different
loads intensity [10].

Successful performance has been achieved by designing and implementing a
Fuzzy-Sliding-Mode supervisory controller on an electric seismic shaking table
[142]. The aim of the proposed controller was to develop a robust tracking of
predefined earthquake records in presence of model uncertainties and
unmodeled dynamics.

As it can be seen through the overall works dedicated to the Fuzzy Logic control
methodology, the later is highly promising for structural control. However, it
requires a substantial computational power due to the complexity of the

controlled process. Dealing with fuzzification, rule base, inference mechanism
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and defuzzification operations, larger set of rules lead to a more accurate control

at the expense of longer computational time [54].

1.2.3.3. Genetic Algorithm-based control

Genetic Algorithm has been recently used as a modern alternative optimization
tool to conventional methods. The suitability of using GA towards various types
of control system engineering has been discussed [39]. Different from normal
optimization technique and search procedures, GAs has shown significant
capabilities for global optimization, powerful searching capabilities and good
control robustness, as it can be reviewed in [114].

The idea of using GA for feedback control gains optimization has continued to
extend from the late 90s. Finding optimal gain values has always been an
extremely time-consuming trial-and-error task. An optimization feedback gains
based on GA has been proposed for a double-loop controller for the speed
control of an over-centered variable-displacement hydraulic motor [53].
GA-based optimization method has been used to design a feedback controller
for shaking table system [42]. The methodology has been evaluated using two
fitness indexes to ensure the required performance that are the feedback
controller stability and disturbance suppression performance, as well as the
servo characteristic.

Though many algorithms found in the literature to tune the PID parameters, a
number of successful applications of GAs have been reported. Early studies
have proposed the use of GAs in PID tuning process | ]- For
example, an experimental evaluation of a tuning method, using GA to provide
optimal PID parameters online for a seesaw system modeled by NNs [173].

In number of published works, a typical use of GA with PID has been
investigated through simulated models. Parameters optimization has been
carried out for a small helicopter based on the stability and adaptability of the
system [168]. An adaptive GA has been successful to find the optimal PID gains
considering the stable convergence while keeping the population diversity and
enhancing the local search abilities [74].

A real-coded GA (RGA) technique has been applied for system identification
and control tuning for a model reference adaptive control (MRAC) for a hybrid
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tank system [7]. A self-tuning PID controller based on GA has been developed
and implemented using adaptive mutation and crossover probabilities to avoid
premature convergence [78]. Tuning parameters of a fuzzy-PID controller has
been performed using GA for high order plants with time delays [102].

The speed and position control of a DC servo motor using a GA tuned PID
controller, providing an improved performance in terms of time specification
such as settling time and rise time [86].

A comparison between a PID gains tuning based on GA and a classic tuned PID
using Ziegler and Nichols method has been carried out to evaluate the tracking
force control performance of an electrohydraulic system [175].

GA has also been used in vibration control. In an early study, a GA-based
control method has been used on an active mass driver system to attenuate the
responses of a structure under seismic excitation. The results have shown a
better performance and robustness of this controller over other control
methodologies [64].

In order to increase the reliability, controllability and utilizing the high speed of
response achievable from electrohydraulic systems, a GA optimization
technique has been extensively used in number of studies, in order to tune
optimally the three gains of a PID [4, 33, 174]. The obtained results have shown
that the developed controller has been able to overcome system nonlinearities,
achieve a minimum settling time with no overshoot and nearly zero steady state
error.

A model combining the advantages of an adaptive GA and a modified Newton
method has been developed for system identification and vibration suppression
of a building structure with an active mass damper. The GA with adaptive
reproduction, crossover and mutation operators has been useful to search for
initial weight and bias of the NN, while the modified Newton method has been
used to increase the NN training performance [16]. The proposed controller has
shown an interesting performance and robustness against variations in system
parameters.

A main shortcoming for a standard GA algorithm may be a pre-maturity and

stagnation while looking for a global optimal solution [56].
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1.3.Conclusion

A shaking table is an experimental tool meant to replicate dynamic loads in order to
evaluate the seismic performance of structures through base excitations. The
complexity of the system, the inherent nonlinearities, the internal coupling effect
between DOFs, the nonlinear interaction between the specimen and the table, the
nonlinear behavior of the tested specimen and so on, lead to significant difficulties in
signal replication. The distortion between the command signal and the measured
signal is considerably affecting the accuracy and reliability of the real shaking table
tests. In fact, the utility of the shaking table tests to study the dynamic behavior of
structures depends on the capacity of the table, on which the structure is mounted, to
faithfully reproduce motions whose effects are important to analyze. Therefore, the
requirement of designing and implementing robust control systems rendering an
accurate tracking control to drive the table along a selected signal is an important
research area.

A vast array of compensation techniques for acceleration signal replication, such as
Feedforward-Inverse-Model-Control (FIMC) have been successfully employed to
cancel out the dynamic characteristics of the shaking table. Based on the estimated
transfer function model and the designed inverse model of the acceleration closed-
loop system, the main disadvantage of these compensation techniques is the fact that
the transfer function model as well as the inverse model of the shaking table must be
accurate. Then, the shaking table needs repetitive excitations that will damage the
specimen before testing it at the desired amplitude excitation.

Numerous investigations have turn to adaptive control methodologies, such as the
Adaptive Inverse Control (AIC) and the Minimal Control Synthesis (MCS). A high
quality waveform replication accuracy can be achieved after converging to their optimal
solution, even with internal parameter variations, external disturbances due to the
specimen parametric changes and nonlinear dynamics. However, they can exhibit poor
transient response when they are initiated, especially when the frequency bandwidth
of the desired acceleration exceeds the frequency bandwidth of the acceleration
closed-loop system of the shaking table.

More advanced control strategies, such as nonlinear controllers, have been designed

and implemented to further improve the acceleration tracking performance of the
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shaking table, dealing with system nonlinearities, uncertainties, internal friction forces
and external unmodeled disturbances.

Recently, the investigation in intelligent controllers has drew a lot of attention.
Developing hybrid controllers, as a combination between conventional controllers and
intelligent control algorithms for gains tuning and parameters optimization objectives,
as well as an outer-loop controller to shape the command signals, has unanimously
established a conclusion that these controllers achieve a better tracking performance
for nonlinear systems. Numerous studies have shown their promising results in terms
of robustness, stability and control performance when applied to complex servo
systems. This thesis is a continuing effort in implementing intelligent algorithms to
enhance the performance of shaking tables in reproducing accurate seismic

acceleration time histories.
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CHAPTER 2

SHAKING TABLE SYSTEM MODELING

2.1.Introduction

In order to understand the shaking table challenges and limitations, but also to
properly design a tuned controller able to replicate the desired trajectories with a
minimum of errors, modeling of shaking tables is required. Methods for the dynamic
modelling of servo-hydraulic systems have been developed over a number of
decades. Based on the existing research works, there is a wide variation in the
complexity and sophistication of the models of shaking tables. At one side, there are
numbers of linear analytical models developed using several assumptions and
dynamics cancelations of some shaking table’s components. Generally, these
linearized models are used in the design of most conventional controllers because of
their simplicity to be developed, simulated and implemented. At the other side, more
advanced modelling techniques could be found in the literature taking into account
the most relevant dynamics and nonlinearities. The main objective of system
modeling is that the derived model is able to simulate the behaviour of the shaking
table as accurately as possible. This chapter presents the most popular models of
standard servo-hydraulic shaking tables. The first part concerns analytic models of a
shaking table that assume a linear relationship between the excitation signal and the
system response. Therefore, advanced shaking tables models that tend to include
the nonlinear dynamics of the shaking table are exposed. Nonlinear modeling of
servovalves, actuators and tested specimen are briefly presented. The last part of the
chapter that concerns the presentation of the shaking table used in this case study,
the QUANSER STIII, provides a description of the system as well as a theoretical

model of the shaking table.

2.2. Description of a servo-hydraulic shaking table

Servo-hydraulic shaking tables are complex systems commonly composed of
servovalves, actuators (with cylinder and pistons), a control system, a platform and
sensors mounted on a reaction mass which is isolated or directly embedded on the

ground. The cylinder as an actuator is driven by a servo valve through a power
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amplifier based on the control signal. The actuator is conventionally controlled by a
feedback compensator using the measured displacement of the piston. Figure 2.1
shows the main components of a typical six axis shaking table.

Horizontal
Actuators

Reaction mass

Vertical
Actuators

Hydraulic
Distribution

Hydraulic
Pumps

Foundation
Suspension System

Figure 2.1: Main components of a typical servo-hydraulic shaking table [Airouche et
al., 2014].

A classic illustrative configuration of a uniaxial shaking table with a simplified working
principle of an actuator are represented in Figure 2.2.
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Figure 2.2: (a) Shaking table system configuration (b) simplified working principle of
the actuator [Seki & Iwasaki 2017].

The operating process of a shaking table test can be summarized as follows: the
controller compares the feedback signal from sensors with the input demand to
determine the error and produces a command signal to drive the flow control valve.
Thus, the control valve adjusts the fluid flow to move the actuator arm until the desired
position is obtained. The condition is that the error signal between the obtained
position and the measured one is falling to zero.

The purpose of the shaking table is to replicate a defined time-history data, which are
generally acceleration earthquake records, on the platform within a range of
reasonable accuracy, in order to examine the structural behaviour of the tested

structure through base excitations.
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In classical control theory, the controlled dynamic systems can be modelled using
differential equations through Laplace transform of the system input and output. One
important key to design an efficient control algorithm to achieve a high fidelity
replication of the desired signal is to faithfully simulate the controlled system.

2.3. Linear models of servo-hydraulic shaking tables

Most of the shaking table modelling techniques use the linearized dynamics for both
the hydraulic actuator and the test structure [ ]- Assuming that the
shake table system is linear, the analytical model represents mathematically the
input-output relationship between the excitation u(t) and the output y(t). For a
displacement-controlled shaking table, a typical target motion ym(t) for the shake table
is derived from an earthquake acceleration record while the excitation input u(t) is the
desired table displacement xq(t). The output y(t) is the achieved displacement
measured from sensors (LVDT). Most of the shaking table models found in the
literature are developed for uni-axial shaking tables, or concern just one axis of a
multi-axis shaking table systems. However cross-coupling components would replace
the single mathematical model [105].

In general, the linear relation between the input, which represents the desired shaking
table displacement xd(t) and the output, which represents the actual shaking table
displacement xm(t) is obtained through different subsystem relationships that are: the
servovalve transfer function between the input signal Ax(t) and the servovalve oil flow
rate gs(t); the actuator transfer function between the servovalve oil flow rate gs(t) and
the shaking table measured displacement xm(t) and a shaking table standard
feedback controller where the input signal Ax(t) is computed based on the error signal
between the desired shaking table displacement x4(t) and the measured shaking table
displacement xm(t).

An early study has developed a linear analytical dynamic of a uniaxial shaking table
that was able to predict well the observed dynamic performance of the shaking table
for a wide range of operating conditions [24]. The proposed model has consisted of
a total transfer function in Laplace domain between the desired and measured table
displacements, taking into account the effects of actuator oil compressibility, oil
leakage across the sealed joints within the actuator, time delay in the servovalve

response, compliance of the actuator reaction mass, and dynamic characteristics of
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the payload. The mathematical relationships that have been developed could be

divided into different subsystems:

A three-stage-servovalve transfer function, expressed by:

Hsy(s) = s (2.1)

Xc(S)

Where xc(s) is the servovalve command signal and gs is the oil flow rate. In
their work, the authors have confirmed that this expression, even if it was
widely used, may not be sufficient to predict accurately the shaking table
behaviour. Therefore, the improved three-stage-servovalve transfer function
could incorporate a time delay that could physically interpreted as the time
necessary to overcome the mechanical and hydraulic inertia of the servovalve,

as expressed in the following equation:
Hgy(s) = kee™™ (2.2)

And kthas been defined as a table gain factor.

A servovalve-actuator transfer function is expressed by :

Hgy(S)
S(s) = v (2.3)
i+ (5205 ) S G G

Fa(s) is the actuator force, A is the piston effective area, 8 is the bulk modulus
of the fluid, V is the total volume of both chambers of the actuator, Kie is the
flow pressure coefficient and xt(s) is the relative actuator displacement.

This servovalve-actuator mathematical expression assumes a linear
relationship between the fluid leakage through the actuator seals and the
pressure of the fluid in the actuator chamber.

A servo-hydraulic system transfer function given by:

S(5) (GKi+Kp +s(Ker+Ka))

1S+ psia-(S52)(22)

H(s) = (2.4)
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The gains Ko, Ki, K4, Kif and Kdp are the user-set gains of the controller.

» A total shaking table transfer function T(s) expressed by:

T(s) = H'(s)[1 + B(s)] (2.5)

Where B(s) is the base transfer function defined as a transfer function between
the relative actuator displacement xt(s) and the displacement of the reaction
mass relative to the laboratory floor xu(s).

The developed model has been used to perform a sensitive analysis of the
shaking table dynamics and useful to understand the dynamics of a shaking
table system and how it is influenced by characteristics of the test structure,

control gain parameters and base compliance.

The linearization of the shaking table dynamics and/or the actuator has been often
seen in the literature for a simplified shaking table modelling purpose. In a more
recent work [108], a linear parameter varying model control methodology has been
proposed where the modes of vibration of the system have been controlled
individually by applying to the control loop a partial nonlinear dynamic inversion to
account for parameter variations. In this work, the servovalve flow rate output is

assumed to be proportional to the control input U as given in the following equation:
qm = Ksp U (2.6)

Where Ksy is the gain of power of the amplifier and the servovalve.
A mathematical model of the cylinder can be expressed as:

d dPm
Gm = Aa o+ Ko =2+ Car P (2.7)

¢ dt
Where yq is the displacement of the piston; Pm is the differential pressure in the
cylinder; Aa is the piston area; Ka is the internal stiffness of the cylinder and Ca is the

leakage coefficient in the cylinder.

A common block diagram of the actuator is presented in Figure 2.3.
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For more detailed equations, an entire single actuator model, including the flow-
velocity relationships, fluid compressibility, and the leakage across the piston as well
as the valve orifice equations could be found in [108].

A simplified open-loop dynamic model of an electro-servo-hydraulic shaking table
EHST has been used to model a 6-DOF shaking table actuated by eight servo-

controlled hydraulic actuators [127]:

G(s) = Ko (2.8)

S(SZ 25y +1)(52 2 +1)

2 T o 2I Bl
w5y Wsv Wy ®h

Where Ko is the open-loop gain of the EHST given by:

KsvK
Ko = A_pq (29)

Ksv is the servovalve gain; Kq is the linearized flow gain; Ay is the effective area of the
hydraulic actuator.

wsv and &sv represent the natural angular frequency and the damping ratio of the
actuator, respectively. wn and & represent the natural angular frequency and the
damping ratio of the servovalve, respectively.

Similar work has been developed to model a six-DOF shaking table, where the
linearized model of the system has been achieved by the DOF decomposition
transforming the multi-axis motion to the single actuator displacement [158]. The
expression of the natural angular frequency and the damping ratio of the servovalve

were given by:
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4 A2

wip =
h Vim

(2.10)

En = (Ko + Co) (57 /4 2.11)

Kc represents the flow pressure coefficient, C«c is the total leakage coefficient,
including the internal leakage coefficient and the external leakage coefficient, m is

the mass of the piston and Vt is the total volume of the actuator.

In more global point of view of a standard shaking table, a simplified block diagram
of the different transfer function components of the shaking table system,
incorporating the dynamics of the platform as well as the specimen are depicted in

Figure 2.4.
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[ g e e 52 : 3 Sz(s) —
Il * Accelerometer
Xds), U(s) Qs ¥. Xds) XealS)
Ci(s) —» | Hods) — Ha als) —» Sxs)
Shakingtable  Servovalve | Flatftme- I LVDT
controller I BprCYmen I

Figure 2.4: Block diagram of standard shaking table.

The resulting table displacement from the input actuator force can be represented by
equation 3.1 [144]:

F. (s) = Hy pt (s)X¢(s) (2.12)

Where H,. s (s) represents the force-displacement transfer function. Hqu(s)
represents the servovalve transfer function from actual command signal to oil flow
through the actuator chambers. Ke represents the force-flow coefficient; Ki represents
the system constant defined by the properties of the hydraulic fluid. C(s) is a standard

feedback controller. U(s) is the command signal sent to the actuator servovalve. X(s)
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and At(s) represent the true displacement and acceleration of the table, respectively.
Xm(s) and Am(s) are the measured displacement and measured acceleration,
respectively; while Sa(s) and Sx(s) are the transfer functions of the shaking table
accelerometer and the LVDT, respectively.

In this section, only few works of linearized EHST models have been reported. The
most used models found in the literature are linear [ ]. For example,
a three-DOF planar model has been developed including a linear relationship
between actuator and table co-ordinates [135]. A linear modelling of Japan’s E-
defense shaking table has enabled the six hydraulic modal resonances to be
predicted [ ]-

Nevertheless, the fidelity of these linear models to reproduce the real shaking table
behaviour is generally verified when the shaking table system and the tested
structures are linear (behave as elastic systems) with known characteristics and
unchanged parameters and suitable to apply a classic control laws. However, this
linear/linearized methodology to simulate the shaking tables behaviour has shown
numerous limitations due to many high order dynamics and time-varying aspect of
the shaking table that are not taken into account, the interaction between the shaking
table components as well as the table-specimen interaction, which make the shaking
table testing a real challenge and the reproduced signal distortions unavoidable. The
need to include nonlinear characteristics in shaking table testing models has become

necessary.

2.4. Advanced models of servo-hydraulic shaking table

Nonlinearity is the difficult problem which exists universally in servo-hydraulic
systems that has not been solved effectively yet. The nonlinearities of servo-hydraulic
systems are generally caused by the dynamic characteristics of the servo-hydraulic
components, the mutual influence of the mechanical, hydraulic and electronic
subsystems, as well as the inherent nonlinearities of hydraulic power mechanism
such as hysteresis, dead zone, fluid leakage, limiting properties and so on.

In addition to these high nonlinearities, there are numerous model uncertainties which
cannot be known and modelled accurately. Therefore, an exhaustive understanding
of the dynamic characteristics of a shaking table and a thorough model of the system
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not only allow its limitations to be assessed, but also enables its control algorithm to
be optimized. Incorporating nonlinear models such as the servovalve, actuator and

specimen nonlinearities has attracted a lot of research attention [ I

2.4.1. Servovalve modeling

In many studies, it has been recognized that the servovalve response has a
significant impact on the system dynamics. For this reason, many attempts for
modelling and studying the dynamic characteristics of servovalves and their
components have been carried out. Generally speaking, the servovalve, which
transforms the control input signal into oil flow, is a complex system where
several parameters may only be estimated within a specified frequency range,
or even completely unknown. The servovalve nonlinearities have always relied
on the flow-pressure characteristics, change of control volumes and the friction
force equation [57]. Furthermore, several dynamic uncertainties are due to
leakage flow, dry friction and so on.

The simplest model of the single-axis positional response to a valve control
signal input has been represented by a series gain and integrator and had
shown that it could be improved by the addition of an empirical first-order
lead/lag, identified from experimental data, has been proposed [15]. More
commonly, however, a second order lag term is added to model the table mass
interacting with the hydraulic “oil-column” compressibility, e.g., Shimizu et al.,
2004 [135], lwasaki et al., 2005 [55], Kakegawa et al., 2003 [55] with a time
delay and taking into account the maximum spool displacement and the slew
rate limit [105].

Even if these simplified models are valuable from a theoretical point of view,
the values of several parameters are not possible to be determined by direct
measurements or by parametric identification which is laborious and often
burdened with a large degree of uncertainty. The identification issue is mostly
not addressed, while the adopted models do not properly reflect the underlying
physical behaviour of the servovalve.

Number of published works continue to focus on the development and
validation of advanced models, taking into account some of commonly ignored

nonlinear sources in servo-hydraulic systems. A nonlinear non-dimensional



64

mathematical model has been developed to fully describe the dynamic
performance of a two-stage electrohydraulic servovalve [32]. The system
nonlinear model governing equations have included the mean flow rate
equation, first stage governing equations, spool governing equations, first
stage and second stage output pressures equations. The valve dynamic
performance has been obtained through its transient response and its
frequency response using Matlab software package.

A detailed nonlinear model of a servo-hydraulic system has been developed
to take into account the presence of unknown parameters such as the pressure
drop caused by the interface block between the actuator and the servovalve
[138]. The simulation model of the system has been described as a second
order model, designed on the AMESim software. It includes some components
generally neglected: two pipes between the cylinder chambers and the
servovalve in order to represent the intermediary block in a simplified way, two
accumulators and some lines respectively on the supply and exhaust pressure
way. The viscous, stiction and coulomb friction force have been taken into
account as well.

A mathematical model of a hydraulic servo system for a manipulator robotic
arm and its essential components has been developed comprising the most
relevant dynamics and nonlinear effects encountered in hydraulic servo
systems [177]. The model consisted of three parts: the valve dynamics, the
pressure dynamics and the mechanical part. A comparison of the steady state
displacement errors between the nonlinear, linear and simplified linear models
has been carried out, proving that the simulated nonlinear model shows better
accuracy than the linear and the improved linear models.

A nonlinear Hammerstein model has been developed for a servo-hydraulic
system modeled by a static nonlinear block and a dynamic linear block,
showing that the nonlinear dynamics of the system have been well captured
[172].

A nonlinear dynamic of the different hydraulic actuator subsystems, the servo-
valve and the cylinder, have been developed and the most nonlinearities of the
system, which arise from compressibility of the hydraulic fluid, the complex
flow properties of the servovalve, valve overlap and friction in the hydraulic

cylinder, have been simulated [162]. Friction models have been developed to
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simulate accurately the system responses. It has been shown that for
simulating the behaviour of the system, nonlinear modelling of the friction is
not enough, and therefore, by adding position and acceleration measurements
of the real system, two new nonlinear dynamic models have been presented

for simulating the system position, velocity and acceleration responses.

2.4.2. Actuator modeling

The hydraulic actuator is the basic functional element of the hydraulic servo-
system. It includes a load mass, with the driving oil flows Qa and Qs as inputs,
and correspondingly the actuator pressures Pa and Ps, and position xp or
velocity x,, as outputs. In shaking table systems, hydraulic actuators are still
the most used, because the technology of electrical actuators does not (yet)
provide the performance achieved by hydraulic actuators in generating high
power to weight ratio [162]. The aim job of the actuator is to transform the
hydraulic energy in terms of flow and pressure into mechanical energy in terms
of velocity and force. However, with increasing the accuracy requirements of
complex motion systems, the limits of performance of hydraulic servo-systems,
due to the nonlinear and dynamic characteristics of these systems, come into
the picture.

The theoretical modelling of the hydraulic actuator is less involved than that of
the servo-valve. Essentially, the problem of modelling hydraulic actuators has
been well established in early studies, among others, by Merritt [S7] and the
principal model relations have been developed here in. In the basic actuator
model, internal leakage and friction of the actuator have to be taken into
account. Many hydraulic actuators in servo applications are provided with
hydrostatic bearings, and for this type of bearings theoretical relations for the
leakage and friction are available. Moreover, the physical modelling of the
hydraulic actuator is well-known and well-defined in the literature. Generally,
the actuator model consists of a mass balances between for each chamber
and an equation of motion of the piston. The mass balances of the respective
actuator chambers give state equations for the actuator pressures at both

sides of the piston allowing these equations [162]:
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By = 5= (Qa = Qeta — Qu — Asy) (2.13)

Py =5 (Qp — Qe = Qu — Apxy) (2.14)

Where Aa and As are the respective piston areas; Qi and Qe represent the
internal and external leakage flow respectively; Va and Vs are the volume of
the respective actuator chambers. xp and xp are the position and velocity of

the piston, respectively, obtained by the following equation:
Mpxp =ABPB_AAPA_Ff+Fe (215)

Where Mp is the inertia of the piston including the inertia of the load. Fr is the
friction force on the piston which in the next subsection different models of the
friction in the literature have been discussed. The external force Fe is the sum
of the forces acting on the piston.

In the cited work, several friction models have been simulated in order to
compensate for hydraulic nonlinearities that are present and that affect the
dynamic characteristics of the servo hydraulic system.

A dynamic model of a hydraulic servo-rotary actuator has been developed
including the external disturbances, the unmodeled disturbances, the time-
variant disturbances as well as the nonlinear friction effects modelled as known
nonlinear functions [185]. The dynamics of the inertia load have been

expressed as follows:
my = PLA— By — AsS;(y) —dy + f(1) (2.16)

Where m and y represent the moment of inertia and the angular displacement
of the load, respectively; PL.=P1-P2 is the load pressure in the hydraulic
actuator; A is the radian displacement of the actuator; B is the viscous friction
coefficient of the system; AsSt represents the approximated nonlinear Coulomb
friction, in which the amplitude Ar and the continuous shape function St should
be identified for controller implementation. dn is the time-invariant or changing

slowly part of the unmodeled disturbances, that is the direct current (DC) value
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of the unmodeled disturbances; and f(t) represents other time-variant
disturbances such as the unconsidered nonlinear frictions as well as external
disturbances.

Taking the basic nonlinearities of the actuator into account, namely the valve
flow nonlinearity, and leakage flow, another dynamics actuator model has
been developed.

The nonlinear actuator dynamics have been described in detailed equations
[162].

Recently, with increasingly exacting performance demands in terms of robust
tracking with high accuracy and fast response, several recent works are still
dedicated to develop nonlinear accurate models of servo hydraulic actuators
[ ] by modelling parametric uncertainties and time-varying disturbance
[182] that represent the main problem in developing high-performance closed-

loop controllers.

2.4.3. Specimen modeling

Shaking table tests are a powerful tool to reproduce realistic earthquake
scenarios through dynamic base excitations in order to provide valuable
knowledge of seismic behaviour of structures, mostly the complex ones. When
a test specimen is mounted on the table, the interaction between the shaking
table and the specimen affects the entire system dynamics, leading to
undesirable distortion in the reproduced earthquake record and deteriorating
the control system performance as well. This interaction between shake tables
and linear structures was addressed by Blondet and Esparza (1988) [11],
Rinawi and Clough (1991) [115], and Conte and Trombetti (2000) [24].
Designing a robust and successful control technique that aims to replicate
faithfully the desired signal commonly relies of many linear assumptions,
transfer functions representations and unvarying parameters of the shaking
table. However, most of the shaking tables testing needs to push the tested
structure to high nonlinear states in order to understand its complex nonlinear
behaviour, analyse some collapse mechanisms, and so on.

A number of developed studies have targeted the development of control

methodologies that are able to reproduce target signals on a shaking table
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platform by reducing the effects of nonlinear structures. However, many
applications including the experimental evaluation of non-structural
components such as suspended ceiling systems [113] or the qualification
testing of complex equipment (IEEE, 2006) it is often required to simulate a
floor/roof motion at a specific location (such as roof corners or mid spans) of a
structure mounted on a shake table [116].

As the objective of the control system of the shake table—structure is to
determine the desired excitation input xd(t) such that the response output y(t)
of the shake table, or the mounted structure will follow the pre-defined target
motion ya(t), the table-structure interaction needs to be taken into account and
an advanced model of the tested structure is required.

The acceleration transfer function described by the ratio of the output structural
total acceleration response to a shake table motion in frequency domain can

be expressed, for a SDOF structure, as follows:

Hs(a)) =M (217)

52+2séswstwg?

Where ws and & are the natural frequency and the damping ratio of the
structure.
Considering a typical nonlinear hysteretic SDOF system illustrated in figure

2.5, the equations of motion of the table-structure system can be expressed

as follows:
mXs(t) + csXs(t) + fs(x) = —mX (t) (2.18)
mXs(t) — {cXs (6) + fs(0)} = —fa (D) (2.19)

Where ms and m: represent the structure mass and the table mass,
respectively; cs is the damping coefficient of the structure; fs(a) is the nonlinear
restoring force; xs is the structure response displacement and xtis the shaking

table displacement; fa is the actuator force applied to the table.
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Figure 2.5: Schematic of a shaking table loaded with a SDOF specimen.

The actuator force can be expressed as [100]:

fa(t) = mex(t) + Kex(t) + (Ce|X(O)|* + fue)sign(x(t)) (2.20)

Where me is the total mass, x is the table displacement, Ce is the damping
coefficient, Ke is the effective horizontal stiffness and fie is the Coulomb friction
force.

In many works, nonlinear specimens have been tested on shaking tables.
Numerical and experimental examination of the control performance has been
carried out for a shaking table loaded with a nonlinear SDOF structure [34].
The results presented in this study show the tracking performance of the
shaking table in presence of a nonlinear specimen modelled with a nonlinear

spring expressed by tri-linear hysteresis loop.

2.5. Electric shaking tables (case study: QUANSER STIII)

2.5.1. Overview

A general description of servo-hydraulic shaking tables has been given
previously for sizable facilities. A more detailed presentation of a second type
of shaking tables which has been extensively used in this study is given in this
section.

QUANSER shaking table 111 (ST Ill) is an electric high-powered bi-axial shaking
table, composed of two moving steel stages: a bottom stage, actuated with two
linear motors along the horizontal x-axis and a top stage and one linear motor

along the transversal y-axis. The stages can move with a maximum load of
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100Kg at high accelerations and velocities with a maximum stroke
displacement of 21.6 cm. The table is actuated by linear electric motors which
increases the reliability of the system and keeps the process quiet.

Figure 2.6 shows an overview of a QUANSER ST Il (University of Djelfa) and
its different components and the nomenclature of the components labelled in
Figure 2.7 are listed in Table 2.1. Figure 2.8 illustrates the relevant interaction

diagram of the entire shaking table system.

Table 2.1: QUANSER ST IIl Components.

No. Component No. Component

1 Ground support stage 7 Top axis linear motor

2 Bottom axis linear motor 8 Top axis hard stops

3 Bottom axis hard stops 9 Top axis stage

4 Bottom axis linear bearing 10 Encoder scanning head
guide

5 Bottom axis stage 11 Encoder scale tape

6 Top axis linear bearing 12 Magnet for limit switch
guide

Connected PC
{Matlab/Simulink and QUARC softwares)

Figure 2.6: Overview of the QUANSER STIII (university of Djelfa).



71

Figure 2.7: QUANSER ST Il components (a) Top view (b) Top corner view.
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Figure 2.8: Diagram interaction between the QUANSER STIII components.
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The current needed to move the stage at the desired position, which is the
named command signal, is calculated by the real-time control software
(QUARC) and sent to the power amplifier through the analog output channel
of the DAQ device. The amplifier applies the current and drives the motor on
the XY Shake Table Ill. The table tracking the commanded signal and the
resulting displacement and acceleration of the stage are measured by the on-
board encoder (LVDT) and the accelerometer sensors. The encoder and
accelerometer are connected to the DAQ and their signals can be displayed
and processed further.

The sliding system is composed of a pair of linear guides using ball bearings.
They enable the two stages to move with a total stoke of £21.6cm. The peak
acceleration with a maximum payload of 100Kg is 1.1g and 1.5g along x axis
and y axis, respectively. The displacement and acceleration measured by
encoders and accelerometers are acquired through a DAQ card by a control
program implemented in MATLAB software on a PC.

2.51.1. Bottom and top stage

The top axis stage weighs a total of 95.22Kg and the moving mass is
47.61Kg. The bottom stage axis weighs a total of 175.48Kg and the
moving mass is 175.48Kg.

The bottom stage, shown in Figure 2.7, is 106.7x106.4 cm?. The bottom
linear motor drives are installed onto this plate. The plate has 4 large
screw holes at each corner and smaller screw holes along the sides.
These can be used to fasten the shake table onto a ground floor support
to prevent the shake table system from moving, or at least reduce the
amount of vibration. Although this is not necessary, it is recommended
in order to yield more precise results when, for instance, measuring
acceleration.

The top stage, shown in Figure 2.7 is 71.1x71.1 cm?2. The top stage has
many screw holes that can be used to mount structures and other

objects.
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The QUANSER ST Ill is actuated using three linear motors with identical

specifications: two linear motors actuating the bottom axis and a single

linear motor actuating the top axis. The linear motor specifications are

given in Table 2.2.

Table 2.2: Linear motor specifications.

Description Value
Max peak current 36A
Max continuous current 12A
Max peak force 2642N
Max continuous force 880.7N
Max peak power 4554W
Max DC voltage 330V

2.5.1.3. _Amplifiers

The linear motors are driven using current-controlled PWM amplifiers

from Advanced Motion Controls (AMC). The amplifiers for the two axes
are different: the x-axis uses the AMC B060A400AC drive and the y-

axis uses the B30A40AC drive. The main specifications for the x-axis

amplifiers and the y-axis amplifiers are given in Tables 2.3 and Table

2.4, respectively. The current reference pin on each amplifier has a

maximum output of £7.25V (i.e., command signal to current loop). This

is used to calculate the amplifier gain.

Table 2.3: X-axis amplifier specifications.

Description Value
Max peak power 7600A
Max peak current 40A
Max continuous current 20A
Motor current-force constant 5.52AV
Current monitor scaling 5.7AIV
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Table 2.4: Y-axis amplifier specifications.

Description Value
Max peak power 5700A
Max peak current 30A
Max continuous current 15A
Motor current-force constant 4. 14AN
Current monitor scaling 4.2ANV

2.5.1.4. Linear bearing guides

The bottom and top stages ride along a pair of linear guides using ball
bearings. They enable the stages to have a total travel length of 8.50
inches, or 21.59 cm. Both are shown in Figure 2.7.

2.5.1.5. Encoders

There is a LIDA 477/487 Heidenhain encoder mounted on the ground
stage base plate that measures the bottom axis or x-axis position. The
encoder read head scans along the scaling strip and outputs 250,000
counts per meter in 1X mode. The encoder resolution is therefore 250
nm/count. Similarly, there is an encoder setup on the top stage to

measure the y-axis position.

2.51.6. Accelerometers

A dual-axis ADXL210E accelerometer is mounted underneath the stage
of the Shake Table Il to measure the acceleration of the stage in both
the x and y directions. The sensor has a range of +10g and its noise, in
the operating range of the shake table, is approximately +5.0 mV, i.e.,
15.0 mg. The analog sensor is calibrated such that 1V equals 1g, or
9.81 m/s2.

2.5.1.7. Limit switches

There is a total of four limit switches installed to detect when the bottom
or top stage approaches the limit of their travel the safety hard stops.
There is a +X and -X limit switch at each end of the bottom x-axis stage

and a +Y and -Y limit switch at each end of the top y-axis stage. The
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limit sensors are magnetically triggered. They are located approximately
1 cm from all the safety hard stops which limits the x-axis and y-axis
travel distance between limit sensors to 20.15cm. Thus, when the stage
goes over the +X switch, it outputs 0. However, when +X is not being
pressed down (i.e., triggered) it normally outputs 1. This signal can then
be used to calibrate the stage to center or to stop the control software

and prevent the table from hitting the hard stops.

2.5.2. Theoretical model

The x-axis of the QUANSER shaking table model can be represented by the

transfer function expressed in the following equation:

X() = s lma(9) (2.21)

Where X(s) = L[x(1)] is the Laplace of the stage position along the x-axis, Imx(s)
is the Laplace of the applied current and Ksx is the model gain. The model gain,

for the x-axis, is given by:

Kpy = 2 (2.22)

Where Mt is the total mass being moved by the motor (i.e., both pre-load and

payload) and Kix is the current-force constant of the motor.

Similarly, for the y-axis, the expression of the transfer function is given by:

Y(s) = ﬁyszlm,y(s) (2.23)
M
Key = ﬁ (2.24)

Mty is the moving mass along the y-axis, Im,y is the applied current to motor vy,

and Kty is the force current constant of linear motor y.

2.5.3. Running QUARC controller of the QUANSER STIII

In order to run the controllers of the QUANSER STIII, the real-time control
software QUARC, MATLAB/Simulink with the real time workshop and the
Control System toolbox as well as the LabVIEW run-time software are

required. The shaking table test procedure assumes that the shaking table is
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connected to the same PC that the software is running on. The advantage of
the QUANSER STIII controllers as they are implemented in MATLAB/Simulink
environment is that it provides the possibility to the users to design their own

controller and to run it using QUARC.

Before running any of the experiments the stage of the XY Shake Table llI

should be in the center position, which is in the middle of the left and right limit

switches. The Simulink diagram for the calibration process is shown in Figure

2.9.

XY Shake Table Ill: Calibrate stage to center

> cal

L

\_’x(m) Xd"-i

Faosition Controller X

> reset enc

Calibration Setpoint X

>

|y () fd

>

|+ cal

Position Controller ¥

»

g rezet enc
Calibraticn S»EipcintY—‘

Figure 2.9: Simulink diagram of the QUANSER STIII calibration.

CAL Signals

e 1]

L

Logical STOF with message
Operator  calibration complete

Shake Table |l - Calibration

Once the calibration is completed, different types of signals can be selected to

be tracked by the platform such as sine wave signal, sine sweep signal (chirp

signal) and earthquake records.

Figures 3.10 to 3.12 show the Simulink diagram that is used for sine wave

command signal, sine sweep command signal and earthquake record,

respectively.
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Figure 2.10: Simulink model used to command a sine wave to the XY Shake
Table Il using QUARC.
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Figure 2.11: Simulink model used to command a sine sweep to the XY Shake
Table Il using QUARC.



79

Predefined Trajectory Position Control

Stop Contraller
! :|
Select xd position
From Works pace
Setpoint 3
! :|
Select yd position
From Works pace
Setpoint ¥
L wd
[Te_sxAd_=] Lis{
Desired Acceleration FD+FF Faositicn Controller P = _ddot
K-Axis H-Aods |
P 1d_x
‘ |—h Im_x
Scopes: X
» vd
[Te_wAd_v] o
Desired Accelerafion PD+FF Position Controller Lt
- Aods Y-Axis Id_y
Im_y
Scopes: Y
a_thl_x
a_thl_w
a_fl
Shake Table [Il »a 12
P ad_x
¥ ad_y

Scopes: Accelersfions

Figure 2.12: Simulink model used to command an earthquake record to the
XY Shake Table Il using QUARC.
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2.6.Conclusion

A shaking table is a technique in experimental earthquake engineering that provides
base excitation to the structures under test in order to evaluate their seismic
behaviour. Due to the shaking table dynamics, the nonlinear components and the
number of varying parameters during the experimental process, the shaking table
system behaviour is usually unpredictable and the users can usually only tune the
controller parameters via trial and error. However, the efficiency and stability of the
control techniques are not guaranteed. Therefore, a realistic model of the shaking
table system is required for any control design.

In this chapter, the standard shaking table modelling methodologies that could be
found in the literature have been reviewed. Various studies have developed analytical
representations of the shaking table system’s behaviour and simplified models of the
system’s components through the linearization of the actuator, the servovalve,
SDOFs decoupling and so on. These works have recognized that there is a
compromise between the degree of accuracy of the developed model and its
complexity to be used afterward in the design of an appropriate control algorithm.
Other studies have presented advanced accurate models of shaking table
subsystems that take into account as many nonlinearities as possible, such as
nonlinear models of the actuator, the servovalve and/or the tested specimen in order
to reproduce a realistic behaviour of the real shaking table system.

The last part of this chapter describes in details the QUANSER Shaking Table Ill, with
a brief presentation of its components, capacities, and limitations. A theoretical model
of the shaking table, developed according to the manual given by the manufacturers,
is used as a primary numerical model of the system to test the validity of the proposed
control scheme designed to enhance the performance of the original PDFF shaking

table controller.
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CHAPTER 3

NUMERICAL IMPLEMENTATION OF THE NN-PDFF CONTROLLER

3.1.Introduction

Shaking tables are intended to reproduce reference accelerations especially
earthquake records at the base of the tested structures. They are generally driven by
the classical controllers, usually performing in displacement, velocity or acceleration
mode.

The aim of this chapter is to apply a NN control algorithm and test its efficiency to
simulated shaking tables. The NN is implemented in two strategies to overcome some
shortcomings inherited to conventional PDFF shaking table controller. The NN is
designed to provide an auxiliary control to the primary control function provided by the
PDFF controller. The global performance of the proposed control technique is
assessed through the measure of the RMSE that is computed between the desired
accelerations and the shaking table output. Further assessment is carried out by
comparing the results of the proposed control algorithm with those of the original PDFF

controller in term of signal distortion in the time domain.

3.2.PID-based NN control

In most cases, the inner-loop controller of shaking tables is a PID controller due to its
versatility and tuning simplicity. However, in many dynamic and seismic tests, the PID
controller fails to meet some requirements, such as wide frequency bandwidth, high
tracking performance and high power spectral density (PSD) replication precision. lts
performance is severely deteriorated because of the complexity of the real shaking
table system, the nonlinear parameters, the nonlinear behaviour of the specimen and
many other causes cited previously in the second and third chapters of this theses.
Consequently, the PID becomes an auxiliary part of the entire shaking table control
system and usually it is associated to other control methodologies and compensation
techniques to improve its performance for different shaking table testing conditions.
For this reason, instead of implementing a new upgraded control system, which is
usually a complex and difficult task, various research works have suggested

improvements of existing PID controllers by combining them with artificial intelligent
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algorithms such as neural networks (NNs). The purpose of this combination is to take
advantages of the simplicity of the standard PID control and the NN’s powerful
capabilities to deal with nonlinearities.

Beside the shaking table control, an extensive research work on the use of PID and
NNs controllers has been developed for several industrial systems such as DC motor
systems for example. A PID controller and a NN controller have been designed and
implemented in parallel to speed control a Permanent Magnet motor [25]. The
objective was to follow the speed trajectory generated by a speed reference generator
and results have been improved. The position control of a servomotor of a 3-
Dimensional laser processing system has been enhanced using NN controller in terms
of good positioning accuracy, fast-tracking accuracy, strong robustness and nonlinear
cancellation [167]. A nonlinear controller based on NNs has proven to be efficient
considering set point tracking performance on a nonlinear DC motor system [92]. A
similar work has been achieved by designing a feedforward NN as a DC motor control
driver [89]. In dynamic robot control, a PID-based NN controller has been proposed to
control a two-links robotic manipulator system [6].

Recently, several researchers have provided a wide literature concerning the use of
combined PID-NN methods, mostly focused on the use of NNs to auto-tune the PID
controller. Abundant published research works can be found in the literature, however,
only few are briefly mentioned in this section. A combination of a PID and a three-layer
NN has been proposed and verified for a complex nonlinear MIMO system exhibiting
strong coupling [60]. An online self-tuning method using neural networks has been
designed for a nonlinear PD computed torque controller of a 2DOF planar parallel
manipulator [71]. The PD gains have been tuned online using NNs and results have
showed the improvement of the control performance in terms of minimizing the error
in tracking trajectories. Similarly, a NN-based PID (NNPID) like controller which is
tuned when the controller is operating in an online mode for high performance
permanent magnet synchronous motor (PMSM) position control has been proposed
[67]. In this proposed control methodology, online gradient free training algorithm is
proposed for training NNPID controller which requires almost no parameter to be
determined prior to the implementation. The development of an adaptive PID controller
has been proposed for an air supply channel of a coal-gas furnace [20]. The NN
controller has been used for auto-tuning the PID in a parallel scheme, based on the

control error signal and the sensor data. The proposed control algorithm has been
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executed through three phases: recording the system response to a test signal,
performing an identification of the system, setting up the PID gains for the initialization
of the auto-tuning NN block controller, training the auto-tuning NN block to finally
operate on the controlled plant. A Neural Network based intelligent PIl controller and
Neural Network based PID controller have been designed and simulated to increase
the position accuracy in a pneumatic servo actuator [50]. The well-trained NN has been
able to provide the Pl and the PID controllers with the suitable gains according to each
feedback that contains the change in error in position and the change in external load
force. These gains have kept the position response within minimum overshoot,
minimum rise time and minimum steady state error. The presented results have been

satisfied without and with the effect of applying external variable load force.

3.2.1. Feedforward neural networks with Lavenberg-Marqguardt training

algorithm
The NN used in this study is a feedforward NN using the powerful Lavenberg-

Marquardt as a training algorithm. This algorithm presents a good balance
between the complexity and simplicity of networks used for the improvement of
the shaking table PDFF control system. Most of the applications of nonlinear
least squares to NNs have focused on sequential implementations, where the
weights are updated after each presentation of an input/output set. However,
the standard algorithms are performed in batch mode, where the weights are
only updated after a complete sweep through the training set. In the following,
the application of a standard Lavenberg-Marquardt algorithm to the batch
training of multi-layer NN is presented.

Considering a two-layer feedforward NN, the net input to unit /i in layer k+17 is

given as follows:
(D) = T wh (0, )y () + R (3.1)
The output of unit i can be expressed as:

YD) = fE @ () (3.2)
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The task of the network is to learn associations between a specified set of input-
output pairs {(x1,T1), (x2,T2), ... (Xa, Ta)}. The performance index of the network

is presented in the following equation:
1 T 1
V=-Cea(Ty = Y") (T, = Y") =3 Za_iefeq (3.3)

Where YqM is the output of the network when the gt input xq is presented and
eq is the error computed between the g output and target. For the standard
backpropagation algorithm an approximate steepest descent rule is used. The

performance index is approximated as:
V=—ele, (3.4)

Where the total sum of squares is replaced by the squared errors for a single
input/output pair. The approximate steepest (gradient) descent algorithm is then

expressed as follows:

. v
AW*(i,j) = _MW‘ZLD (3.5)
Ab*(i) = —a- ba,f(i) (3.6)

Where a is the learning rate.

3.2.2. PID-NN control schemes

Neural networks are used in conjunction with more conventional controllers in

order to help or enhance the controller performance. The NN control algorithm
can be used as a controller in two different ways: direct control and indirect
control. In the direct control, the NN represents the main system controller which
performs an adaptive control through online learning process. Its hidden layer
neurons simply work as PID controller terms through their activation functions
thus it simultaneously utilizes advantages of both PID controller and neural

structure [ ]- In this type of control, the PID controller parameters are
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automatically and continuously tuned in accordance with the changes of the
system parameters. The effectiveness of this type of control has been proven in
few applications in terms of nonlinear control, tracking capabilities and

disturbance robustness.

Reference (\
— l

signal

1 o Cot.um'and i Re:f;pmse
signal . signal
@/

Figure 3.1: Structure of PID-NN direct control [ ]

Indirect NN control means that a NN controller uses a NN model of the system
for compensation purposes. In this case, the NN is not the main controller but it
is used to model the system to be controlled in order to assist the main
controller. The NN in this case is usually trained offline. Figure 3.2 illustrates an

example of an indirect NN control.

| NN
controller
Unpi(s)
Reference PID Upm(s) Uls) Response
; —’6 — —h( — Swvst ¥
signal controller e signal

Figure 3.2: Indirect example of NN, Feedforward with NN inverse model

control

Most of the applications of NNs involve indirect control scheme where the NN is
used as a compensator [154]. An early study [13] published some comparison
results of three different implementation of NN controllers tested for a hydraulic
actuator system: 1) simple open loop profile follower, 2) PID neural controller

(NN as compensator) and 3) NN controller.
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3.3.Shaking table numerical model 01

Actuators

3.3.1. Description

Modelling of the shaking table is a real complex task due to the several nonlinear
parts of the system and its time varying parameters. Many studies have been
done to modelling the shaking table system using experimental parameters
identification [100] or linearization methods of the dynamic system to develop
analytical model of the system [161].

As a starting point, a simplified model of a shaking table has been developed in
an early work in form of finite element models to model the global behavior of a
typical shaking table in unloaded and loaded conditions [68]. Some details of
the finite element model are as follows:

The platform of the shaking table has been modeled in a shell element with a
defined effective mass and stiffness;

the actuators have been modeled by link elements with a given rigidity, natural
frequency, damping ratio and a nonlinear viscous damping coefficient;

A nonlinear tested structure modeled by plastic link elements at its bases.

-~

Platform

Figure 3.3: FE model of the shaking table and a mounted specimen [Larbi et al.,

2015].

Several nonlinear dynamic simulations have been performed to collect
input/output time histories used to carry out an estimation of the total transfer
function of the system. The second order transfer function is estimated using
the MATLAB system identification toolbox, based on the input signal that
represents the desired acceleration earthquake record and the output signal that
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represents the acceleration response signal measured at the platform of the
shaking table. The most accurate results have been produced using sine sweep

excitation signal.
The expression of the estimated transfer function is given in the following

equation [69]:

2.8912 5+383.9521 (3 7)
52+2.6485 5+524.642 '

T(s) =

The magnitude and the phase of the shaking table transfer function are shown
in Figure 3.4.
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Figure 3.4: Magnitude (a) and phase (b) of the shaking table transfer function.

In order to develop a realistic model of a shaking table with an optimal tuned
controller, a conventional PID controller has been added. In order to model the
behavior of the shaking table with an online control system, the above transfer
function is implemented in Matlab/Simulink with an online PID controller. The
tuned gains of the controlleri.e. P, | and D parameters are equal to 0.717, 0.013

and 3.32 respectively. The Simulink model of the shaking table is shown in

Figure 3.5.
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Figure 3.5: Schematic of the Shaking Table with a PID controller
(Matlab/Simulink).

3.3.2. NN control strateqy

In order to reduce the signal distortion between the desired and the measured
signals, two NN control strategies that combine the optimal PID controller and
the designed NN control algorithm are proposed. The first control strategy
intends to implement the NN in an offine mode. Figure 3.6 represents the
Simulink model of the shaking table with the offine NN controller. The NN
algorithm is implemented through a MATLAB function. The aim of this control
scheme is to produce the appropriate command signal to the shaking table, so
as to obtain a closed loop response as close to the desired accelerations as
possible. The predefined earthquake record that is presented to the NN as an
input data. The second control strategy that is proposed is to use the NN as an
additional improvement of the signal replication achieved by the PID controller.
The Simulink model of the proposed online control loop is represented in Figure
3.7.

Ad e v FID(s) p| [UME  am
denis)

PID Controller Transfer Fon ToWorkspace

fen

MATLAB Function

From Workspace

Figure 3.6: Simulink model of the shaking table with offline NN controller.
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Figure 3.7: Simulink model of the shaking table with online NN controller.

Several existing types of NNs could be found in the literature. The simplest
multilayer NN is the most used to enhance the performance of conventional
controllers such as the PID [67]. The chosen NN is the Layer-Recurrent Network
(LRN) which is a new version of the EIman Network. The number of nodes and
hidden layers are determined via a routine optimization procedure of the
proposed NN. The chosen structure was established based on the best NN
performance in terms of coefficient of correlation, number of epochs, and mean-
square-error (MSE) values. Results have led to the choice of the final NN
architecture constituted by 21 hidden neurons with sigmoid function.

A number of simulations are carried out to collect input/output acceleration
signals of the shaking table with a PID controller that is represented in Figure
3.6 and Figure 3.7. These acceleration data are used to constitute a database
to train the NN in offline mode. The training data points are treated with a
sampling time of 0.2 millisecond, creating more than 70000 training points.
These training data aim to train the NN to predict the appropriate or the
additional command signal so that the system responses tend to be as close to
the target as possible. The training procedure has three stages: training,
validation and testing. In general, the training and testing data are generated
from a selected earthquake record by assigning percentages, that is, 70% for
training and 30% for validation, while testing requires a data set that the NN had
never seen before. The stop criterion of number of epochs for checking the
increase of error on the validation data set is selected 1000 and the value of
performance goal sets 1074,

After training, the proposed NN is implemented through a MATLAB Function in
the Simulink model of the shaking table as shown in Figure 3.6.



90

3.3.3. Performance of the NN control

The database to train the NN is constituted using inputs and output signals from
the shaking table model controlled by the PID, represented in Figure 3.6 and
Figure 3.7. The Lavenberg-Marquardt backpropagation algorithm is used in the
training process of the NN. The error in the prediction of the target signal is
estimated using the mean square error formula (MSE) formula expressed in
Equation 3.8, with a target value around 10, as illustrated in Figure 3.8.

YN (A= Amnn D)
MSE = =i=1 : .
T Aq0) (3:8)

Where Ad(i) is the target acceleration value and Amnn(i) is the acceleration
predicted by the NN at step i. N is the number of data points which is 70000 for
El Centro earthquake record used to train the NN.

A linear regression between the network response and the target is performed
and a correlation coefficient between the response and the target R is calculated

using the following equation:

N V(v
ny — Zl=1(x1 X)(Vi—y) (39)
[P i 2 )

In this case, the signal x represents the output of the NN and the signal y
represents the target. The coefficient of correlation is computed to evaluate the
degree of similitude between the output and the desired signals, for several real
ground motions.

The fitting line shown in Figure 3.9 is practically superposed with the diagonal
and the correlation coefficient R obtained is very close to unity. An example of
a time-domain comparison between the NN output and the target signal for
Northridge earthquake record is illustrated in Figure 3.10. As it is shown, the NN
is capable to produce the desired acceleration with high accuracy.
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Figure 3.8: Mean Square Error (MSE) in the NN prediction of the target signal.

T

Training: R=0.99999

2 Data
Fit

2 v=T

n

Output ~= 1*Target + 8.6e-05
o

10 15
Target

Figure 3.9: Linear regression between the NN output and the target signal.
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Figure 3.10: Time domain comparison between the target and the NN output

(Northridge earthquake record).

Then, the trained network is implemented in the model to represent an additional
control function in conjunction with the PID controller in two different ways:
offline and online. The performance of the combined control is evaluated by
comparing the closed loop responses and the target signals. This comparison
is quantified through the computation of the Root Mean Square Error (RMSE)
between the reference signals and the reproduced accelerations. For this
purpose, several earthquake records are simulated using the PID controller
alone and the combined PID-NN controller.

Table 3.3 resume the RMSE values, computed using equation 3.10, obtained
before and after implementing both the offline and the online NN controllers.

N (AgD)=Am(D)?
RMSE = =3 (3.10)

Where Ad(i) is the desired acceleration at step i, Am(i) is the acceleration system
output at step i and N is the total number of data points.

It is found that the online control scheme produced more accurate response
signals than the offline control. This is due to the fact that the NN that takes into
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account the response data to readjust its parameters and provide the

appropriate command signal at each time step when it performs online.

Table 3.1: RMSE between the response and reference accelerations for PID

and PID+NN controllers.

Earthquake record RMEE(%) RPNIISE I\foN/O)
offline online
El-Centro 07.92 07.47 06.58
Cape-Mendocino 12.67 12.12 12.05
Northridge 07.56 07.13 06.39

Figure 3.11 to Figure 3.13 show the time-domain comparison between the target
signals and the response signals achieved with the PID controller alone and
with the combination of the PID and the online NN controller. As it can be seen
through the plots, the NN enhances the signal reproduction on the shaking table,
where the time delays in the system responses are significantly reduced and
the entire output signals with the additional neural control correction follows the

target signal more accurately, especially at the peak values.
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Figure 3.11: Time domain comparison between the desired signal and the
reproduced signal with the PID and the PID-NN (Cape-Mendocino earthquake
record).
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Figure 3.12: Time domain comparison between the desired signal and the
reproduced signal with the PID and the PID-NN (Kobe earthquake record).
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3.4.Shaking table numerical model 02
3.4.1. Description

This model is a representative model of the QUANSER Shaking Table I,
described in details in Chapter 3. The QUANSER STIII is an electric bi-axial
electro-hydraulic earthquake simulator. The control system is a PD-Feedforward
(PDFF) Simulink-based controllers that run in real-time through the real-time
control software QUARC. The advantage of these controllers is the possibility

to simulate several real earthquake records and also, to perform analysis

through the Matlab environment. The bloc diagram used to control the stage

position is depicted in Figure 3.14.

PD+FF Controller
Feed-forward
Control Gain
Ag(S)
@ g
Proportional
Control Gain n(S)
X4(S)
—b@ » K,
‘i XY Shake Table
Plant
Set-point Velocity Derivative Control Current — Acceleration —
. Weight Gain H Acceleration Position :
Derivative i H
o(S) T | In(S) ix(s)
S Sy S g S S G =~ g | < Rty R Y T i
Derivative v S
—» s

Figure 3.14: Bloc diagram of the shaking table position control.

Where Aq(s) is the desired acceleration, Xd(s) is the desired position, X(s) is the
measured position, bsd is the set-point velocity weight, I#(s) and lpd(s) are the
command signals provided by the FF and the PD controllers, respectively.

The current motor signal Im(t) used by the PDFF controller to regulate the stage

position along the horizontal x axis is represented in the following equation:

I (©) = Kp (x4 () — x(1) + Kq(Xa(© — (D) + Ke(x3(t) — (1)) (3.11)
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Kp is the proportional control gain, Kq is the derivative control gain. The gains
values are fixed by default in the controller software for each axis. The PD gains are

obtained allowing the two following expressions:
Kp = Kew,2 (3.12)

Kd = ZKff(l)nz (313)

The values given in the user manual are as follows: wn=62.8 rad/s which
represents the natural frequency and ¢=0.8 which represents the damping ratio
of the closed loop control.

The default gain values are given in Table 3.2.

Table 3.2: Controller gains values.

DOF Kp Kd K
7533 A/m 191.8 A-s/m | 1.91 A/(m/s)?

X
Y 2577 A/m 191.8 A-s/m | 0.653 A/(m/s)?

Even if the control system of the Quanser STIll is implemented in Simulink with
an accessible and easy way, replicating the entire model as faithfully as possible
and obtaining responses similar to the experimental signals is still a great
challenge. First, several dynamic tests have been carried out on the Quanser
STII to collect a database constituted by input-output real signals. A realistic
model of the shaking table is developed and validated, as represented in Figure
3.15. As shown in this figure, the simulated acceleration can track the
experimental results with a good performance. It indicates that the model that is
built represent a decent environment to simulate the real behaviour of the real
shaking table. The experimental and the simulated response of the shaking

table to EI-Centro earthquake record are compared in Figure 3.16.



IE :

From
Workspace

9)

acceleration (x

Integrator?  Integratord

1
B

I#(z)

FF controller

Ipdis)

PO contraller

numis)
den(s)

Am 1

=

Transfer Fen

Integratori

99

L]

Integr stor To'Workspace
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responses (El-Centro earthquake record).

3.4.2. NN Control strateqy

While shaking tables are designed to reproduce reference accelerations, inner-

loop controllers are in most cases performing in displacement mode. In practice,

the displacement controllers fail to replicate accelerations signals accurately. As

for the Quanser Shake Table Ill, the actual control system which is the PD-

Feedforward (PDFF) controller, provides a quasi-perfect matching between the

measured position and the desired position. However, the control is not as

efficient in the reproduction of acceleration signals. This distortion problem is

obtained for different types of signals such as sinusoidal signals, random
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acceleration signals and acceleration earthquake records. The performance

achieved by the actual PD-FF controller for both displacement and acceleration

are shown respectively in Figure 3.17 and Figure 3.18.
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Figure 3.17: Comparison between the desired and measured position with the

original PDFF controller (EI-Centro earthquake record).
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Figure 3.18: Comparison between the desired signal and experimental

response acceleration with the original PDFF controller (EI-Centro earthquake

record).

The numerical model of the shaking table QUANSER STIII is simulated under a

number of selected earthquake records. Similarly to the first proposed NN
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control methodology for the first model of the shaking table, the structure of the
NN in terms of type, number of hidden layers and the number of hidden neurons
is kept unchanged.

The feedforward NN is trained offline using data that are collected from the
simulated input and output signals of the numerical shaking table model using
the Lavenberg Marquardt training algorithm.

Number of implementations of the NN controller combined with conventional
controllers such as PID controllers could be found in the literature. Many
advantages and disadvantages could be examined. However, as the shaking
table system a unique dynamic system, the optimal configuration of the
combination of the designed NN control function with the PDFF controller could
only be determined via trial-and-error. In this case, two methodologies for the
NN implementation are investigated: an offline and an online NN control. In
order to choose the optimal implementation of the NN block in the numerical
model, a routine optimization procedure is performed based on the values of the
computed RMSEs between the reproduced signals and the desired signals. The
smaller error is reached, the best matching results are obtained.

Three different block diagrams of three NN implementations are presented in
Figure 3.19 where Figure 3.19(a) represents the offline control scheme and
Figure 3.19(b) and Figure 3.19(c) represent two different online control

schemes.
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For each implementation scheme of the NN, the RMSE value is computed and

compared with the RMSE obtained with the original PDFF controller alone.

These values are summarized in Table 3.3. The results have led to select the

final implementation that is represented in Figure 3.20. As it can be observed,

the optimal online control scheme that has provided the smallest error in

acceleration reproduction is the scheme (b).

Table 3.3: RMSE between the response and reference accelerations for

different NN block implementation.

To'Workspace

Earthquake RMSE (%) RMSE (%)
record PDFF PDFF + NN

Scheme (a) | Scheme (b) | Scheme (c)
El-Centro 06.86 06.53 05.94 07.28
Cape- 12.10 12.53 10.69 12.89
Mendocino
Northridge 06.37 06.72 05.83 07.38

b in
Ift(z)
Ll f e B e e e

Ipdis)

FL contraller

Figure 3.20: Simulink model of the shaking table with the proposed NN based

PD-Feedforward controller.
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3.4.3. Performance of the NN control

The database to train the NN is constituted by acceleration signals collected via
several simulations of the shaking table model controlled by the PDFF
controller. The error in the prediction of the target signal is estimated using the
mean square error formula (MSE) with a target value around 10, as illustrated
in Figure 3.21. A linear regression between the network response and the target
is performed and a correlation coefficient between the response and the target
R is calculated. The fitting line shown in Figure 3.22 is practically superposed
with the diagonal and the correlation coefficient R obtained is very close to unity.
An example of a time-domain comparison between the NN output and the target

signal for Northridge earthquake record is illustrated in Figure 3.23.
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Figure 3.21: Mean Square Error (MSE) in the NN prediction of the target

signal.
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Figure 3.23: Time domain comparison between the target and the NN output

(Northridge earthquake record).

After good performance in the training process, the NN is implemented and
simulated online with the actual PDFF controller. Numerous simulations using
real earthquake records are carried out. The results prove that the NN
outperforms the PDFF controller in terms of signal distortion. In fact, the
acceleration responses of the numerical shaking table model to different
earthquake records are closer to the target with the additional NN-based
controller, especially in peak values. As showed in Table 3.3, the RMSE
between the output and the desired signals, which is computed for several
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ground motions, has reached smaller values. This highlights to the capabilities
of the additional NN control function to improve the acceleration tracking
accuracy of the shaking table system.

Figure 3.24 to Figure 3.26 show comparisons in time-domain between the
desired accelerations and the measured accelerations produced with both the
PDFF and the PDFF+NN controllers for few of the used earthquake records.
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Figure 3.24: Time domain comparison between the desired signal and the

reproduced signal with the PID and the PID-NN (EIl-Centro earthquake record).
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Figure 3.25: Time domain comparison between the desired signal and the
reproduced signal with the PID and the PID-NN (Cape-Mendocino earthquake

record).
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record).
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3.5.Conclusion

This chapter provides evidence of potential enhancement of the acceleration tracking
accuracy of shaking tables controlled by conventional controllers using NNs. For this
purpose, two models of shaking table are developed in MATLAB/Simulink environment
to reproduce the shaking table’s behaviour as faithfully as possible. The first model
represents an estimated transfer function of a Finite Element model capable to
replicate the global behaviour of a standard shaking table controlled by an optimal PID
tuned controller. The second model is a realistic Simulink model of an electric bi-axial
shaking table which is the QUANSER STIIlI controlled by a Simulink-based PD-
Feedforward controller. These two models produce the input and output data that is
used to train the NN. After training of the NN, different implementation schemes of the
neural control algorithm are tested and investigated in order to obtain the optimal
control loop that provides the best matching performance. For several simulations
using real earthquake records, the output signal produced by the numerical shaking
table model is closer to the target with the additional NN controller. Through this
numerical validation, the designed NN shows prominent control features. Therefore,
an experimental implementation to reduce the observed signal distortion on the
QUANSER STIlll is carried out in the next chapter.



110

CHAPTER 4

EXPERIMENTAL IMPLEMENTATION OF THE NN-PDFF CONTROLLER

4 1. Introduction

The utility of shaking table tests to study the effects of dynamic vibrations on structures
highly depends on the ability of the shaking table, on which the structure is mounted,
to faithfully reproduce signals whose effects are important to analyse. In order to track
reference signals with the lowest distortion possible, accurate control of such devices
is fundamental to ensure the reliability of the shaking table tests. In the previous
chapter, the numerical model of the QUANSER STIll provided a simulated
environment to implement a designed NN control function and to assess its
performance when associated with the original PDFF controller in term of reducing the
signal distortion in measured accelerations.

In this chapter, as a result of the simulation study, the NN control algorithm is
implemented online in the acceleration closed-loop of the real QUANSER STIII control
system to experimentally evaluate the robustness of the designed controller. The NN
acts on the command signal and compensate for acceleration distortions due to the
system nonlinearities as well as the dynamic table-specimen interaction. Several
comparisons are undertaken to assess the performance of the PDFF-based NN

controller over the original PDFF controller.

4.2.Experimental facility description and test procedure

The experimental part of this thesis has been conducted on a QUANSER Shaking
Table Il located at the Laboratory of the Faculty of Civil Engineering of the University
of Djelfa, Algeria. An overview of the facility with a mounted specimen is shown in
Figure 4.1. The detailed components of the shaking table are presented in Chapter 2.
As mentioned previously, the shaking table is a bi-axial high-powered planar stage that
can move a maximum payload of 100Kg at a maximum of 1g acceleration. The stage
has a total stroke of £21 cm along either x-axis or y-axis. In order to increase the
system performance and to keep the tests quiet, the shaking table is actuated using

three linear motors. Two motors mounted on the bottom stage of the shaking table
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operate in parallel and power the x-axis. A single motor mounted to the top stage
actuates the y-axis.

The shaking table system contains a power amplifier (PWM current-controlled
amplifiers), Data acquisition (DAQ) device (QUANSER Q8) and a connected PC (a

common commercial PC) to run the real-time software (QUARC software).

o

Figure 4.1: View of the QUANSER Shaking Table IIl with a mounted specimen.

The desired command signal to be reproduced on the shaking table platform (sine
wave, sine sweep, earthquake record, etc.) is selected by the user via the connected
PC. Then, the current needed is computed using the QUARC software and sent
through the analog output channel of the DAQ device to the power amplifier. Therefore,
the amplifier applies the current and drives the motor on the shaking table to move the
platform along the command signal.

The resulting displacement and acceleration of the stage are measured by the on-
board encoders (LIDA 477/487 Heidenhain encoders) for displacement measurements
and the accelerometer sensors (A dual-axis ADXL210E accelerometer) for
acceleration measurements in a range of £10 g and a noise’s range of £5.0 mg.

The encoders and accelerometers are connected to the DAQ and their signals can be
displayed and processed further on the connected PC. The x-axis and y-axis

differential encoders are connected to a line driver to output a single-ended signal.
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These signals are then connected to the DAQ. The limit switch output is connected
directly to the digital inputs on the data acquisition system.

The system hardware contains an Emergency-Stop switch (E-Stop switch) and an
ARM button on the front panel of the amplifier/control box, presented in Figure 4.2. It
is important to note that the amplifiers can only be enabled if the E-Stop switches are

in the released position and the ARM button has been pressed.

Figure 4.2: Front panel of the amplifier/control box.
The shaking table test can be performed following this procedure:
1. System power

a. Turn ON the main power supply that is connected to the amplifier (three-
phase or single-phase).

b. Release the E-Stop button located on the front panel of the
amplifier/control box, shown in Figure 4.2, by turning it clockwise ;

c. Release the switch on the remote E-Stop (the red button) shown in Figure
4.2;

d. Press on the green ARM button on the front panel of the amplifier box,
shown in Figure 4.2;

e. The POWER and ARMED LEDs should both be ON. If the PC was just
turned ON, then the amplifiers will be enabled. Otherwise (e.g, if a
controller was just ran), the amplifiers are ready-to-be-enabled.

2. Calibration
Before running the shaking table test, the top stage should be in the middle
stroke position on both x-axis and y-axis. The calibration of the stage could be
performed following these steps:

a. Run the “q_cal _xy.mdFl’ Simulink model of the shaking table calibration,
shown in Figure 2.9 (Chapter 2) once the model is built;

b. After the controller has been ran, the stage begins to move towards the
center and stops at the middle of the left and right limit switches (the
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center position) and the message showing “table calibrated” then
appears.
This indicates that the calibration of the table has been successfully done and
the shaking table test can be carried out.
. Shaking table tests
In order to carry out the shaking table tests, the user needs to select the type of
the excitation signal to be sent via the command PC. The Simulink block
diagrams to command a sine wave signal, a sine sweep signal or an earthquake
record are presented in Figures 2.10 to 2.12 of chapter 2. In order to command
a reference signal, the user specifies the desired amplitude and frequency for
the sine signal, the initial and final frequencies along with the amplitude for the
sweep signal, and the name of the earthquake record for the earthquake
replication.
The procedure of running a shaking table test is presented by these steps:

a. Run the Matlab script “setup.m” in order to compute the controller gains,
the filters parameters, the sensor calibration constants, and all the
parameters used in all supplied Simulink models;

b. Open the appropriate Simulink model (q_sine xy.mdl, or
q_sweep_xy.mdl or q_quake_xy.mdl);

c. Build the QUARC controller;

d. Run the QUARC controller; therefore, the shaking table tracks the
defined command signal and the measured positions and/or
accelerations can be displayed, saved and analyzed.

e. The controller stops by itself when the duration defined by the user for
the sine and sweep signals or the duration of the earthquake record is
reached.

The maximum acceleration of the command signal that the table is capable to
track for a given frequency or range of frequencies, can be defined from the
bandwidth curve represented in Figure 4.3 for both x-axis and y-axis. These
bandwidth curves take into account the limitations of the shaking table in
position, velocity and acceleration for unloaded conditions. For the x-axis, low
frequencies between 0-2.1Hz are limited by the table stroke. Beyond this range,
commands are limited by the acceleration. For the y-axis, low frequencies

between 0-1.9Hz are limited by the table stroke. For frequencies in the range of
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1.9-3.3Hz, commands are limited by the velocity. For frequencies higher than
3.3Hz, commands are limited by the acceleration.

The bottom plot shows the acceleration of the load when the stage is tracking a
sine wave at varying frequencies with an amplitude specified by the combined
limit.

Figure 4.4 presents the bandwidth curves for both x-axis and y-axis with a

100Kg payload.
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Figure 4.4: Shaking table bandwidth curve (a) x-axis (b) y-axis (with an additional
100Kg payload).
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4.3.Performance of the original PDFF controller

The control system of the QUANSER STIll is a Simulink-based proportional derivative
and feedforward (PDFF) controller which drives time history signals through QUARC
real-time software. Originally, the PDFF controller is designed to control the shaking
table position following the control scheme described in section 2.5.2 of chapter 2. The
PD controller aims to regulate the stage position and velocity while the FeedForward
controller tends to track the reference acceleration. This section presents the
acceleration tracking performance of the original control system of the shaking table
and shows its limitations. For this purpose, an experimental investigation is performed
by analysing different acceleration responses of the table under different excitation
signals, for both unloaded and loaded table conditions. The information about the real
acceleration output of the system in the frequency domain indicates the real behaviour
of the shaking table system and leads to a better system identification.

4.3.1. Sine wave input signal

In order to evaluate the dynamic behaviour of the shaking table system at
different amplitudes and frequencies, several sinusoidal tests are carried out
within the system performance range. For a first stage, the sinusoidal shaking
table tests are carried out with no payload mounted on the platform in order to
collect data information about the bare shaking table system by eliminating the
effect of the table-specimen interaction. Figure 4.5 shows the time history
acceleration responses to a sinusoidal vibration test of a 1Hz frequency for a
variation of amplitudes: 10mm, 40mm and 50mm, respectively. Undesirable
peak amplitudes in the acceleration responses of the table indicate the large
signal distortion of the system output due to the nonlinearities of the shaking
table system. It can be seen on the time history of the acceleration responses
that the distortion decreases when the amplitudes of the input increase.
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Figure 4.5: (a) Time history response for a sine wave signal of a frequency of 1Hz
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and amplitude of 10mm for an unloaded table.
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Figure 4.5: (b) Time history response for a sine wave signal of a frequency of 1Hz

and amplitude of 40mm for an unloaded table.
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Figure 4.5: (c) Time history response for a sine wave signal of a frequency of 1Hz
and amplitude of 50mm for an unloaded table.

In order to assess the degree of distortion of the system output, further analysis
of the acceleration responses is carried out in the frequency domain as well.
Figure 4.6 represents the FFT of the acceleration system outputs as responses
to sine wave inputs. Several sinusoidal tests are performed, only three are
presented in this study. The shaking table attends to track three sine waves with
the same signal amplitude of 10mm and three different frequencies of
excitations: 1Hz, 3Hz and 5Hz. The frequency response of the table under a
sinusoidal input of 1Hz exhibits a large band of measured amplitudes observed
after the frequency of excitation. For higher frequencies of excitation, the curves
are improved, showing few harmonics whose number decreases by increasing
the frequency of excitation. Through the results displayed in the frequency range
of interest of [0-20HZ], the lower the frequency of signal excitation is, the more
important the distortion of the output signal becomes.

A further analysis is achieved through sinusoidal tests applying to a loaded
table. A mounted 69Kg steel payload with a frequency of 3.5Hz is positioned on
the top stage of the shaking table.

In order to study the effect of the amplitude variation on the frequency response
of the table, three sinusoidal tests with a frequency of 1Hz and three different
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amplitudes: 10mm, 40mm and 50mm are executed. The FFT of the acceleration
responses of the table are presented in Figure 4.6. Therefore, the effect of the
frequency of the signal excitation on the acceleration response of the table is
investigated and the results are illustrated in Figure 4.7. The sine waves have
the same amplitude of 10mm and the three selected frequencies are 1Hz, 3Hz
and 5Hz.
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Based on the presented results of the acceleration responses in the frequency
domains, several harmonic distortions clearly exist in the shaking table output
and demonstrate the nonlinearity of the system.

For analysing the results, total harmonic distortion (THD) criterion is used to
evaluate harmonic distortion. The THD criterion can be computed from the

following equation [162]:

}A 244524 A4%
THD =Y- 2 "* 4.1)

A

Where A1 is the fundamental amplitude, Az is the amplitude of second harmonic,
As is the amplitude of the third harmonic, and so on.

A first study of the effect of the frequency on the acceleration response is
investigated, using sinusoidal tests with the same amplitude (10mm) and three
frequencies: 1Hz, 3Hz and 5Hz. The values of the THD computed using
equation (5.1) are presented in Table 4.1, computed in the frequency range of
[0-20HZz].

A second study focuses on the effect of the amplitude of the sine wave input
and uses sinusoidal excitations with the same frequency of 1Hz and three
different amplitudes: 10mm, 40mm and 50mm. The obtained THD values are

presented in Table 4.2.

Table 4.1: THD analysis results for different sinusoidal frequencies.

1Hz 3Hz 5Hz
Fundamental amplitude 1.766 53.85 22.43
THD (%) 210.49 65.03 40.13

Table 4.2: THD analysis results for different sinusoidal amplitudes.

10mm 40mm 50mm
Fundamental amplitude 1.766 7.406 9.212
THD (%) 210.49 88.31 80.16
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The THD values show that the acceleration response of the loaded table is
highly distorted. They indicate that with the same amplitude of the sinusoidal
input, the harmonic distortion decreases by increasing the frequencies of the
excitation.

The time and frequency representations of the table responses presented in
Figure 4.5 to Figure 4.8 prove that the acceleration output of the shaking table
system is highly distorted.

THD values presented in Table 4.1 and Table 4.2 demonstrate that the
harmonic distortion decreases when the amplitude and frequency of the
excitation signal increase. However, the signal distortion is still seriously
significant which indicates the nonlinear behaviour of the shaking table that the

original PDFF control system is unable to compensate.

4.3.2. Earthquake record input signal

As it has been proved through the experimental responses of the table under
sinusoidal excitations, the shaking table is highly nonlinear which affects the
control system performance. In this section, the capabilities of the original PDFF
controller to replicate historical earthquake records are presented. Three typical
far-field and near-field earthquake records, the 1940 EI-Centro, the 1992 Cape-
Mendocino and the 1994 Northridge ground motions are used in this test.

In order to demonstrate the behaviour of the shaking table in time and frequency
domains, representative comparisons between the desired and the achieved
acceleration responses are illustrated in Figures 4.9 to 4.14 for a bare table, and
in Figures 4.15 to 4.20 for a loaded table. A time window of [0-10sec] is chosen
for a comparison aspect. The figures below show the effect of the interaction
between the table and the specimen as well, in which it is seen that the degree
of distortion is larger when the table is loaded, especially in peak values.

The Root Mean Square Error (RMSE) is chosen as an assessment index of the
degree of distortion observed between the desired acceleration and the
response. Table 4.3 and Table 4.4 give the computed RMSE values for
unloaded and loaded table conditions, respectively. The RMSET indicates the
error acceleration in the time domain and RMSEFr indicates the error
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acceleration in the frequency domain are computed using the following

equations:

Yr=1(aq(k)—am(k))?
21]¥=1 aq (k)?

RMSE; (%) = J x100% (4.2)

YNF (Sq(K)=Sm (K))?
TN Sq(k)?

RMSE; (%) = \/ x100% (4.3)
Where ad(k) and am(k) are the desired and the measured acceleration at the
step k, respectively. N is the number of data points. Sa(k) and Sm(k) are the
desired and measured Fourier magnitude at the k-th frequency, respectively. Nr
is the number of frequencies in Fourier Transform that cover the frequencies of
interest. In this study, the frequency range of 0-100 Hz is adopted.

Another important assessment index of the shaking table tracking performance
is the degree of fidelity in reproducing the PGA of the earthquake record graca).
In fact, the shaking table test could be totally controversial with a reproduced
PGA at the base of the tested structure that is different from the PGA of the real
ground motion. In this study, the error in signal reproduction is calculated
according to the equation (4.4). It is clear that the acceleration responses of the
shaking table system under earthquake records is highly distorted and requires

to be enhanced for more reliable shaking table tests.

e __lachieved PGA—desired PGA|
PGA — desired PGA

(4.4)

Table 4.3: RMSE between desired and measured acceleration of an

unloaded table under earthquake records.

RMSET (%) RMSEF (%) € (%)
El-Centro 63.62 35.33 02.56
Cape-Mendocino 54.80 28.20 33.70
Northridge 54.31 22.78 09.48
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Table 4.4: RMSE between desired and measured acceleration of a

loaded table under earthquake records.

RMSET (%) RMSEF (%) € (%)
El-Centro 68.02 53.62 14.14
Cape-Mendocino 69.80 31.60 67.32
Northridge 63.04 55.86 22.30
0.4 :
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Figure 4.9: Acceleration time-history of the measured response for unloaded
table under EI-Centro earthquake record.
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Figure 4.20: FFT of the acceleration response for a loaded table under
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4.4 Design of the NN control function

As mentioned previously, the simplest multilayer feedforward network is the most used
NN while combined with classic linear controllers. Therefore, the proposed NN is a
three-layer feedforward NN. In order to determine the structure of the NN, a routine
optimization procedure is carried out based on the best NN performance in terms of
coefficient of correlation, number of epochs, and mean-square-error (MSE) values.
Results presented in Table 4.5, led to the choice of the final architecture presented in
Figure 4.21, constituted of 8 neurons in the hidden layer with sigmoidal activation

function and one neuron in the output layer with pureline activation function.
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Table 4.5: Performance of the NN with variation of the number of the

hidden neurons.

Number of Number of MSE values | Coefficient of
hidden neurons epochs correlation
5 15 1.16 x 108 0.80
8 666 1.35 x 10 0.96
10 489 1.83 x 104 0.96
15 613 4.54 x 10 0.95
25 236 5.41x10* 0.88
35 833 4.20 x10* 0.91

Figure 4.21: Three-layer feedforward neural network.

The Lavenberg-Marquardt (L-M) algorithm described in section 3.2.1 of chapter 3 is
used to train the NN. This powerful backpropagation algorithm which does not need to
compute the exact Hessian matrix, is used to train the NN in offline mode based on the

loss function f given in the following equation:

f=3ne (4.5)

Where ei is the acceleration tracking error to be minimized, computed between the
output of the NN and the target; m is the number of data points.

The gradient vector of the loss function is given by the following equation:
Vi =2JTe (4.6)
The performance of the training is judged satisfying based on:

a) The convergence criteria: which indicates that the NN is able to identify the

unknown function that maps between the input and the output;
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b) The generalization criteria: it represents the main feature of the NN which
means that the NN is able to predict the desired output based on unknown data.
In order to achieve a high generalization performance, the data are divided into
three parts: 70% data set for training, 15% data set for validation and 15% data
set for testing;

c) The stop criteria: indicates when the training process will stop based on the
defined maximum number of epochs, maximum amount of time or the chosen
performance criteria is reached. In this case, the performance function is the
MSE (Mean Square Error) and the performance goal is fixed to 10-°.

The database for training, testing, and validating the NN is the acceleration real-time
signals recorded on the shaking table during the tests using real earthquake records,
with the existing PDFF controller. The NN input is the measured signal, and the target
is the prescribed earthquake record. Signals are sampled at 0.2 ms which provide
around 70,000 training points: 70% of the data is used for training, 15% for validation,
and 15% for test.

The stop criteria of number of epochs for checking the increase of error on the
validation data set is selected 5000 and the value of performance goal in term of MSE
is set to 107°.

The performance of the NN in terms of MSE and coefficient of correlation between the
predicted signal and the reference is represented in Figure 4.22 and Figure 4.23,

respectively.
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Figure 4.23: Linear regression between the NN output and the target.

The computed mean square error (MSE) between the NN output signal and the target
reached the value of 10™* in about 666 epochs. A linear regression is performed
between the desired and the predicted acceleration and the fitting line demonstrates
that the prediction of the desired signal by the NN is achieved with an accuracy of 97%.
A representative comparison of the acceleration predicted by the NN and the desired
acceleration is illustrated in Figure 4.24. It is noticeable that the well-trained NN is able

to predict a desired acceleration signal with high accuracy.
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Figure 4.24: Desired and predicted acceleration comparison in a time window of 2s of
El-Centro earthquake record.

Once the performance of the NN meets the required performance in terms of

convergence, generalization and performance function goal, the NN is implemented in

the MATLAB/Simulink based control system of the QUANSER STIII. It performs in an

online mode in combination with the original PDFF controller.

4.5.Performance of the PDFF-based NN controller

The implementation of NNs in the control loops is widely employed in various dynamic
systems. Based on the literature, different topologies of implementing the NN in the
control framework have been attempted. The optimal scheme of the NN
implementation in the QUANSER STIIl is determined through number of real-time
shaking table tests that have led to the best signal matching. The overall

implementation of the NN control block is presented in Figure 4.25.
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controller.

This control scheme is a combination of the original PDFF controller and the designed
NN control function. The proposed controller is composed of an initially existing PD
controller for displacement control, an FF controller for acceleration control to stabilize
the shaking table system, and a NN-based control algorithm to enhance the
acceleration replication accuracy.

The aim of the designed neural controller is to compensate for the distortions measured
in the feedback signals by acting on the command signal to produce reference signals
on the top stage with small tracking errors.
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For a comparison purpose, the experimental acceleration closed-loop frequency
response of the QUANSER STIII with and without NN is depicted in Figure 4.26.
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Figure 4.26: Response frequency characteristics of the shaking table: Magnitude

and phase characteristics from reference to measured acceleration.

As can be seen from the figure, the implementation of the NN block extended the
frequency bandwidth of the acceleration closed-loop system from approximately 5Hz
with the PDFF controller to 55Hz with the NN-PDFF controller.

To assess the potential of the NN controller to enhance the acceleration tracking
accuracy of the shaking table system for different load conditions, a first shaking table
tests are carried out with no payload. In the second stage of this study, a 69Kg steel
specimen representing 70% of the payload with a natural frequency of 3.5Hz, is
mounted on the platform. Feedback accelerations are filtered using a Kalman filter to
reduce noise measurements without causing time delay.

As presented previously, the acceleration RMSE computed between the measured
and the desired acceleration, in both time and frequency domains, and the error in the
reproduction of the PGA of the ground motion, € (PGA), are both used as quantitative
evaluation index to assess, objectively, the capability of the NN controller to increase

the accuracy in the reproduction of the defined acceleration time histories.
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It is important to note that the number of frequencies in Fourier Transform used to
compute the RMEF is chosen to cover the frequency bandwidth of interest. In this study,

the frequency range of 0-100 Hz is adopted.

4.5.1. Tests results: unloaded shaking table testing

A number of comparisons are undertaken to evaluate the fidelity in signal
reproduction of the bare shaking table in terms of intended and achieved
responses in time and frequency domains as well as attained and desired PGA.
Figures 4.27 to 4.29 show a comparison between the reproduced and desired
acceleration time histories under El-Centro, Cape-Mendocino and Northridge
earthquake records, respectively.

Figure 4.30 to Figure 4.33 show a comparison between the achieved and
reference spectral accelerations under the same earthquake records.

The present results confirm that the designed NN control algorithm helped the
PDFF controller to track desired accelerations by reducing the distortion
between the reference signal and the measured response, in both time and

frequency domains.
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NN controller under Northridge earthquake record (unloaded table).
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Figure 4.30: FFT comparison between the measured and the desired signal
for EI-Centro earthquake record (unloaded table).
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for Northridge earthquake record (unloaded table).

It is clear that with the proposed PDFF-based NN controller, an improved
accuracy in the reproduced signals has been achieved. As illustrated by the
acceleration feedback that is getting closer to the target signal especially in the
vicinity of the peak magnitudes and by a decrease in the time delay.

The frequency response amplification of the system around a critical frequency
of 45 Hz has been significantly attenuated by the additional neural control

function. This prominent advantage provided by the implementation of NN
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control algorithm demonstrates the high capacity of the NN to cope with
nonlinear aspects and resonance frequencies of the shaking table system.

Using the equations 4.2 and 4.3, the values of RMSET and RMSEF for the used
earthquake records have significantly decreased, after the implementation of
the additional NN control algorithm. A summary of the computed RMSE of both
acceleration time histories and Fourier magnitudes, for the three earthquake

records that were used, is provided in Table 4.6.

Table 4.6: RMSE relative error values for different earthquake records in

time and frequency domain analysis (unloaded table).

RMSET (%) RMSEF (%)
PDFF Proposed PDFF Proposed
El-Centro 63.62 16.33 35.33 09.90
Cape-Mendocino 54.80 09.27 28.20 02.30
Northridge 54.31 12.9 22.78 06.87

To further assess the enhancement provided by the hybrid controller presented
in this study, a comparison between the reproduced PGA and the desired PGA
has been carried out. Results showed that the PGA is reproduced within 10%
error in the presence of the additional neural controller. The values of the errors
obtained using both the PDFF and the PDFF-based NN controllers are listed in
Table 4.7.

Table 4.7: Error relative in PGA reproduction for different earthquake

records (unloaded table).

Desired PDFF Proposed
PGA (9)
Reproduced €(%) Reproduced £(%)
PGA (g) PGA (9)
El-Centro 0.3311 0.3227 02.56 0.2962 10.56
Cape-Mendocino 1.4966 0.9922 33.70 1.4147 05.47
Northridge 0.6044 0.6617 09.48 0.5556 08.06
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4 5.2. Tests results: loaded shaking table testing

In the first shaking table tests performed on an unloaded table, the designed NN
control algorithm proved its efficiency to compensate for the shaking table
system nonlinearities and track the desired acceleration signal with accuracy. In
order to investigate its robustness for dealing with a table-specimen interaction,
a second experimental shaking table tests are carried out for a loaded table.
The same described specimen is mounted on the top stage of the shaking table,
and the same earthquake records are applied. Similarly, a number of
comparisons are performed to assess the performance of the proposed PDFF-
based NN controller over the PDFF controller alone. Figure 4.33 to 4.35 and
Figure 4.36 to 4.39 show the comparison of the measured time histories and
spectral accelerations responses of the table with the target, respectively. The
proposed PDFF-based NN controller achieves a better accuracy in reproducing
desired accelerations on the table. Also, it suppressed the system resonant
frequencies around 45 Hz and enhanced the spectral amplitudes in the

frequency range of interest.
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Figure 4.33: Enhanced acceleration response achieved with the PDFF-based
NN controller under EI-Centro earthquake record (table + payload).
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Figure 4.34: Enhanced acceleration response achieved with the PDFF-based
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for EI-Centro earthquake record (table + payload).
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Figure 4.37: FFT comparison between the measured and the desired signal

for Cape-Mendocino earthquake record (table + payload).
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Figure 4.38: FFT comparison between the measured and the desired signal

for Northridge earthquake record (table + payload).

Similarly to the first shaking table tests program, the RMSE is used as a principle
performance assessment index to quantify this enhancement obtained after
implementing the NN control algorithm in the closed loop of the shaking table
system. The proposed tracking control strategy has significantly reduced the
RMSET as well as the RMSEF for the all the applied earthquake records. The
computed RMSET of the acceleration time histories and spectral acceleration

responses for the three earthquake records are summarized in Table 4.8.
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Table 4.8: RMSE relative error values for different earthquake records in

time and frequency domain analysis (table + payload).

RMSET (%) RMSEF (%)
PDFF Proposed PDFF Proposed
El-Centro 68.02 18.07 53.62 11.61
Cape-Mendocino 69.81 17.70 38.20 02.30
Northridge 63.04 16.61 55.86 09.34

The fidelity in the reproduction of the PGA on the table with a specimen has
been evaluated using the assessment index given in equation 4.4. The PGA
reproduced at the base of the specimen was in the range of 12% error
maximum, for the three earthquake records that have been used. The computed
errors between the target and the achieved PGA with the PDFF and with the
PDFF-based NN controller are listed in Table 4.9.

Table 4.9: Error relative in PGA reproduction for different earthquake

records (table + payload).

Desired PDFF Proposed
PGA (9)
Reproduced €(%) Reproduced | ¢€(%)
PGA (g) PGA (9)
El-Centro 0.3311 0.2843 14.14 0.3002 09.34
Cape-Mendocino 1.4966 0.4890 67.32 1.1747 21.50
Northridge 0.6044 0.7319 22.30 0.5531 08.48

Based on these result analyses, a remarkable enhancement in reducing the
acceleration errors between the reference signal and the closed-loop system
output was achieved when implementing the NN block. In fact, the NN control
algorithm demonstrated the same level of efficiency and robustness to deal with
the dynamic interaction between the shaking table and the specimen as well as

system’s nonlinearities.
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4.6.Conclusion

Based on the numerical results that showed the efficiency of the NN algorithm to
improve the acceleration tracking performance of simulated shaking tables,
experimental real-time tests have been carried out on the QUANSER STIII to assess
the robustness and the performance of the designed NN control algorithm on the
shaking table. The proposed control methodology combines the three-layer
feedforward NN and the original PDFF controller. At a first stage, experimental data
were acquired in real time using the existing PDFF controller to constitute a database
to train the feedforward NN offline using the Lavenberg—Marquardt algorithm.
Afterwards, the well-trained NN is implemented online in the outer acceleration closed-
loop of the Simulink-based PDFF control system of QUANSER STIII. Along this control
scheme, the acceleration feedback is shaped by the NN control function before being
introduced into the acceleration tracking controller which is the FF controller. Several
real-time shaking table tests have been conducted using three real earthquake records
for different load conditions by using the same NN model. A comparative analysis was
carried out for the two testing conditions, and the results clearly proved that the closed-
loop system performance for acceleration tracking with the PDFF-based NN controller
is significantly enhanced. The NN controller addresses the high amplitude distortions
and time delays, producing accelerations closer to the target time histories as well as
spectral acceleration amplitudes. The acceleration responses have been produced
within a range of 7% to 20% RMSE and the PGA within a range of 8% to 12% errors.
The notable reduction in acceleration tracking errors due to the new neural control
strategy affirmed the high capabilities of the NN to enhance the existing PDFF
acceleration control accuracy and to cope with inherent nonlinearities and resonant
frequencies of the system as well as the coupling effect due to the interaction between
the shaking table system and the specimen, which is an important source of classic
control defiance.

Additionally, the obtained improvement in the acceleration tracking performance of the
shaking table using the same NN structure after a unique training process, for different
excitation signals and different load conditions attests of the robustness of the

proposed control methodology which represents a major advantage.
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CONCLUSION AND FUTURE WORK

The performance of a shaking table directly relies on the capability of the control
system to replicate earthquake ground motion and other type of signals on its platform.
Since dynamical characteristics of the specimens change during the test due to severe
nonlinear deformations and structural damages, conventional tuning control systems
may not be sufficient to achieve acceptable results. In addition, the shaking table
system by its own contains inherent nonlinearities, friction, dynamic coupling effects
between the different DOFs, uncertainties and external disturbances which seriously
deteriorate the tracking accuracy of the control systems.

In the past decades, numerous advanced control techniques have been developed
aiming to improve the robustness, stability and performance of shaking tables’
controllers. A significant amount of research works have developed control systems
based on feedforward compensation, iterative learning method, model-based
compensation and adaptive control techniques. Even if they have proved their
capabilities to achieve better tracking performance, they still have several drawbacks.
Currently, instead of designing sophisticated and complex nonlinear controllers, hard
to be implemented in real world shaking tables, the research community have focused
on a new approach by preserving the conventional controllers of industrial shaking
tables and working on the improvement of their performance and robustness. Recent
development in Artificial Intelligence (Al) have created new possibilities in the field of
shaking table control, to achieve a further enhancement in signal reproduction over
traditional controllers. Within this frame of reference, this thesis investigates the
potential of different schemes of NN-based controllers to increase the acceleration
tracking performance of a shaking table. After a numerical validation via several
simulations, the proposed neural controller has been implemented in the outer-loop of
the QUANSER STIII control system. Experiments have proved the capabilities of the
NN to significantly reduce the acceleration distortions in the experimental shaking table
responses. The most relevant contribution of this thesis is that the enhancement in
shaking table performance is achieved using a novel NN-based control algorithm
developed in MATLAB/Simulink and validated experimentally. The acceleration
tracking improvement of the shaking table driven by the additional NN controller is
obtained using the same structure of the NN and a unique training process performed

offline. The same degree of performance is achieved for different input signals and
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different load conditions which attests the robustness of the proposed control

methodology. The most important conclusions of the work undertaken in this thesis are

outlined in the following sections:

1. Concept of the NN control strategqy and numerical simulations

Numerical models representing a shaking table system are developed in Chapter 3,

aiming to replicate the behaviour of real shaking tables as accurately as possible.

An early simplified model of a shaking table is developed in form of finite
element model to simulate the global behavior of a typical shaking table in
unloaded and loaded conditions under dynamic excitations. Then, a global
transfer function is estimated based on input/output data collected after dynamic
simulations of the model. An optimal tuned controller, which is the conventional
PID controller is added. Then, once the designed NN is trained, two control
strategies are proposed: a first offline control attempts to produce the
appropriate command signal to the shaking table, so as to obtain a response
as close to the desired accelerations as possible. The second proposed control
strategy, which is an online control, uses the NN as an additional improvement
of the signal replication achieved by the PID controller. Comparisons between
the measured accelerations with the implementation of the NN control function
confirm the performance of the proposed NN algorithm in minimizing the errors
in producing more accurate acceleration responses over the PID controller
alone.

A representative model of the QUANSER STIIl shaking table, described in
Chapter 2, is developed in Simulink. The simulated acceleration is able to track
the measured acceleration obtained experimentally with a good accuracy. By
using several earthquake records as excitation signals, a database for training,
validating and testing the designed NN is constituted. Similarly to the
implementation schemes of the NN in the first model, the neural control function
runs in an offline and online modes. Numerous earthquake leading simulations
are carried out, demonstrating the capabilities of the additional NN control
function to achieve a higher accuracy in the reproduced accelerations in both

offline and online control scheme.
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Based on the results of the numerical procedure of implementing the proposed NN
control algorithm, it is shown that the NN controller is able to compensate for the
limitations of a traditional controller like the PID and to improve the accuracy of the
shaking table responses in terms of amplitudes and time delays. Therefore,
experiments through real-time shaking table tests are required to validate the
presented control methodology to achieve a better acceleration tracking performance

of the shaking table.

2. Experimental validation of the NN control technique

The NN control algorithm is implemented online in the acceleration closed-loop of the
real QUANSER STIII control system to experimentally evaluate the robustness of the
proposed controller combined with the existing controller. The approach that is
proposed in the experimental investigation of this work allows the PD controller to
control the stage position and velocity, the FF controller to control the acceleration and
stabilize the table and the additional NN control algorithm to improve the accuracy of
the acceleration replication.

The experimental results confirmed that the proposed NN control algorithm helped the
PDFF controller to track desired accelerations by increasing the quality of the
acceleration feedback, for both unloaded and loaded table conditions, in time and
frequency domains. The notable reduction in acceleration tracking errors in terms of
amplitude distortions and time delays in the measured responses demonstrates the
high capacity of the NN to cope with nonlinear aspects and resonance frequencies of

the shaking table system.

3. Future works

3.1.Short term

Based on the main achievements of this thesis, the short term future works can
be cited as follows:

a. The development the QUANSER STIII serves as a realistic shaking table

model, able to be easily implemented in MATLAB/Simulink and controlled

with any designed controller; the application of other intelligent control

algorithm is worth to be explored;
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b. The results obtained herein for a small electric bi-axial shaking table
encourage to implement the proposed control algorithm in other type of
shaking tables;

c. Aninteresting research expansion can be investigated by using the real-
time acceleration data collected during shaking table tests to carry out an
experimental identification of the QUANSER STIII shaking table.

3.2.Long term
The inner-loop control of the QUANSER STIII shaking table, composed of the
PDFF controller, cannot be improved with a tuning of the predefined gains, it is
worth investigating the substitution of the original controller entirely by a neuro-
controller. Since the Reinforcement Learning (RL) has become the most recent
advancement in machine learning and control techniques for the last 20 years,
it could be an interesting approach to apply this methodology to shaking tables.
The RL approach is designed to solve problems in which the agent interacts
directly with the environment (the system to be controlled) and learns to choose
the appropriate task (command) by trial and error. It presents an intelligent
adaptive controller that produces in real-time the adequate command data at
each time step, based on the recorded system state which is the measured
acceleration. Deep Neural Networks (DNN) can be used to approximate the
optimal command signal point to point, driving the table stage along the desired

trajectory.
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