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 ملخص

 

مكن ي بحيث الغرض الرئيسي من هذا العمل هو تطوير خوارزميات تحكم فعالة، بسيطة وقوية

تطبيقها على عدد كبير من الأنظمة غير الخطية. تكمن الفكرة في تحسين أداء وحدات التحكم المعروفة 

صطناعي، مثل ذالك باستخدام أدوات الذكاء الاو والتحكم التنبئي، PIDوالشائعة، وهي وحدة التحكم 

 meta) (heuristicالشبكات العصبية، المنطق الضبابي، وطرق التحسين الاستكشافية الفوقية

optimization سمحت دراسة طرق التحسين الاستكشافية الفوقية بتحديد طريقة التحسين المناسبة .

محت هذه الواقع، س التي يمكن استخدامها في تطبيقات التحكم في الوقت الفعلي مع تقديم أداء جيد. في

 teaching) (learning basedالدراسة أيضًا باقتراح تحسين لخوارزمية التحسين القائمة على التعلم

optimization  لك، سمح العمل البحثي الذي تم إجراؤه باقتراح العديد من خوارزميات ا. علاوة على ذ

لشبكة االتكيفية ذات  PIDوحدة التحكم  التكيفية ذات للشبكة العصبية، PIDالتحكم، وهي وحدة التحكم 

لقائمة لنموذج  العصبي باستخدام طريقة التحسين ااالعصبية من نوع سلسلة فورييه، والتحكم التنبئي ذو 

 على التعلم.

من أجل تحسين سرعة تقارب خوارزمية التحسين القائمة على التعلم، تم اقتراح إستراتيجية 

ب، بناءًا على درجة كل طال  أنناء عملية التحسين. يتم تقييم معد  جديدة لعملية اختيار أزواج الطلا

التقارب وكفاءة الخوارزمية المقترحة من خلا  استعما  العديد من دوا  الإختبار المعروفة. تسُتخدم 

 هذه الخوارزمية لحل مشكلة تحسين التحكم التنبئي غير الخطي.

دة صبية المقترحة ، يتم استخدام شبكة عصبية متعدالتكيفية ذات للشبكة الع PIDفي وحدة التحكم 

التقليدية. تم تطوير خوارزمية تعديل المعاملات باستخدام  PIDالطبقات لتحديد قيم معاملات وحدة تحكم 

طريقة الانتشار العكسي. تم تحليل وحدة التحكم المقترحة ومقارنتها مع العديد من وحدات التحكم المختلفة 

 الحاسوبية والدراسة التجريبية.من خلا  المحاكاة 

لشبكة العصبية من نوع االتكيفية ذات  PIDوحدة التحكم المقترحة الثانية تسمى وحدة التحكم 

سلسلة فورييه. في هذا العمل، نظرًا لبنيته البسيطة وخصائصه الجذابة للغاية تسُتخدم الشبكة العصبية 

. لتقييم فعالية وحدة التحكم المقترحة، يتم PIDمن نوع سلسلة فورييه لضبط معاملات وحدة التحكم 

التطرق إلى التحكم في ذراع الروبوت ذو نلانة درجات للحرية ويتم إجراء مقارنة، باستخدام العديد من 

 خوارزميات التحكم.

خدام التنبئي غير الخطي بوجود قيود على المتغيرات و باستبا لتحكم  يتعلق العمل الثالث المقترح

عصبية و طريقة التحسين القائمة على التعلم. في وحدة التحكم هذه، يتم استخدام شبكة عصبية الشبكات ال

 متعددة الطبقات للتنبؤ بالمخرجات المستقبلية للنظام، ويتم حل مشكلة التحسين للتحكم التنبئي باستخدام

ت فعالية . لإنبا(ETLBO, ITLBO, TLBO) ى التعلمستراتيجية التحسين القائمة عللإ عدة طرق

التحكم المقترحة، تم التطرق إلى التحكم في نموذج مفاعل مستمر يحرك بشكل مثالي،  اتخوارزمي

 تان للحرية، وتم إجراء مقارنة باستخدام عدة خوارزميات للتحكم.درجونموذج ذراع الروبوت ذو 

تحكم  ة: تحكم ذكي غير خطي، شبكة عصبية اصطناعية، سلسلة فورييه، وحدالكلمات المفتاحية

PID .تحكم تنبئي ، 
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ABSTRACT 

 

The main purpose of this work is to develop efficient, simple, and robust control 

algorithms for a large class of nonlinear systems. The idea is to improve the performance of 

the well known and popular controllers, namely the PID controller and the predictive control, 

using artificial intelligence tools, such as neural networks, fuzzy logic and meta heuristic 

optimization methods. The study of meta heuristic optimization methods has allowed to 

determine the appropriate optimization method that can be used in real time control 

applications and give good performance. In fact, this study has also allowed proposing an 

improvement to the teaching learning based optimization algorithm. Furthermore, the carried 

out research work has allowed proposing several control algorithms, namely the adaptive 

neural network PID controller, the adaptive Fourier series neural network PID controller, 

and the neural network model predictive control using the teaching learning based 

optimization method. 

In order to improve the convergence rate of the teaching learning based optimization 

algorithm, a new strategy to the selecting process of the students’ pairs, based on the grade 

of each student during the optimization process, is proposed. The convergence rate and the 

efficiency of the modified algorithm are assessed by considering several well-known 

benchmark functions. This algorithm is used to solve the optimization problem of nonlinear 

predictive control. 

 In the proposed adaptive neural network PID controller, a multilayer percepron 

neural network is used to online determine the gain values of the conventional PID 

controller. The adaptation algorithm is developed using the back propagation method. The 

proposed controller is analyzed and compared with several different controllers through 

computer simulation and experimental study. 

The second proposed controller is called adaptive Fourier series neural networks PID 

controller. In this work, due to its simple architecture and very attractive proprieties, the 

Fourier series neural network is used to online adjust the parameters of the PID controller. 

To assess the effectiveness of the proposed controller, the control of a 3-DOF robot arm 

manipulator is considered and a comparative study, using several control algorithms, is 

carried out.   

 The third work concerns the constrained nonlinear predictive control using neural 

networks and teaching learning based optimization. In this work, a feed forward multilayer 

neural network is used to predict the future outputs of the system, and the optimization 

problem of predictive control is resolved using different versions of the teaching learning 

based optimization strategy; namely the TLBO algorithm, the Improved TLBO (ITLBO) and 

the enhanced TLBO (ETLBO). To demonstrate the effectiveness of the proposed control 

algorithms, the control of the model of the continuous stirred tank rector, and the 2-DOF 

manipulator robot model, is considered and a comparative study, using several control 

algorithms, is carried out.  

Keywords: intelligent control, artificial neural network, Fourier series, PID controller, 

predictive control, TLBO, meta-heuristic.  

  



V 
 

RESUME 

 

L'objectif principal de ce travail est de développer des algorithmes de contrôle 

efficaces, simples et robustes et qui peuvent s'appliquer sur une large classe de systèmes non 

linéaires. L'idée est d'améliorer les performances des méthodes de commande bien connues 

et populaires, à savoir le régulateur PID et la commande prédictive, en utilisant les outils de 

l'intelligence artificielle, tels que les réseaux de neurones, la logique floue et les méthodes 

d'optimisation méta heuristique. L'étude des méthodes d'optimisation méta heuristique a 

permis de déterminer la méthode d'optimisation appropriée qui peut être utilisée dans les 

applications de commande en temps réel et donner de bonnes performances. En fait, cette 

étude a également permis de proposer une amélioration de l'algorithme d'optimisation basé 

sur l'apprentissage par enseignement (teaching learning based optimization). De plus, les 

travaux de recherche menés ont permis de proposer plusieurs algorithmes de commande, à 

savoir le régulateur adaptatif PID en utilisant un réseau neuronal, le régulateur adaptatif PID 

en utilisant un réseau neuronal de type série de Fourier et la commande prédictive à modèle 

neuronal en utilisant la méthode d'optimisation basée sur l'apprentissage par l'enseignement. 

Afin d’améliorer le taux de convergence de l’algorithme d’optimisation basé sur 

l’apprentissage par l’enseignement, une nouvelle stratégie de sélection des paires 

d’étudiants, basée sur la note de chaque étudiant au cours du processus d’optimisation, est 

proposée. Le taux de convergence et l'efficacité de l'algorithme modifié sont évalués en 

considérant plusieurs fonctions de test couramment utilisées. Cet algorithme est utilisé pour 

résoudre le problème d'optimisation de la commande prédictive non linéaire. 

Dans la commande PID adaptative en utilisant les réseaux de neurones, un réseau de 

neurones multicouche est utilisé pour déterminer en ligne les valeurs des gains d'un 

régulateur PID conventionnel. L'algorithme d'adaptation est développé en utilisant la 

méthode de rétro-propagation. Le régulateur proposé est analysé et comparé, par simulation 

et expérimentalement, avec plusieurs régulateurs. 

Le deuxième algorithme de commande proposé, est la commande PID adaptative en 

utilisant un réseau de neurones de type série de Fourier. Dans ce travail, en raison de son 

architecture simple et de ses propriétés intéressantes, un réseau neuronal de type série de 

Fourier est utilisé pour ajuster en ligne les paramètres du régulateur PID. Pour évaluer 

l'efficacité de l'algorithme de commande proposé, la commande d'un bras manipulateur à 3 

degrés de liberté est envisagée et une étude comparative, en utilisant plusieurs algorithmes 

de commande, est réalisée.  

Le troisième travail est consacré à la commande prédictive non linéaire avec 

contraintes à modèle neuronal et en utilisant plusieurs versions de l'algorithme d'optimisation 

basée sur l'apprentissage par enseignement. Dans cet algorithme, un réseau neuronal 

multicouche est utilisé pour prédire les sorties futures du système, et le problème 

d'optimisation associé est résolu en utilisant plusieurs version de la méthode d'optimisation 

basée sur l'apprentissage par enseignement; à savoir l'algorithme TLBO, le TLBO amélioré 

(ITLBO) et le ETLBO. Pour démontrer l'efficacité des algorithmes de commande proposés, 

la commande du modèle du réacteur continu parfaitement agité, et du modèle d'un bras 

manipulateur à 2 degrés de liberté, sont considérés et une étude comparative, en utilisant 

plusieurs algorithmes de commande, est réalisée. 

Mots clés : contrôle intelligent non linéaire, réseau de neurones artificiels, série de Fourier, 

contrôleur PID, contrôle prédictif, TLBO, méta-heuristique. 
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 INTRODUCTION  

 

Control theory is a field of applied mathematics that aims to control the behavior of 

dynamical systems. The objective is to develop a control algorithm (controller), which can 

drive the controlled system to a desired state by manipulating its inputs, while minimizing a 

given cost function and ensuring a certain level of stability. This function contains different 

criteria, such as: a delay, an overshoot and a steady state error. The control system can be 

implemented in an open or a closed loop. To generate the control signals, open-loop 

controllers only require the desired reference trajectories, while the closed loop controllers 

(feedback controllers) require, in addition to the desired reference trajectories, at least one 

feedback signal from the controlled system. Each control type has its advantages and is best 

suitable to particular types of control. However, the control action in closed loop control 

systems is based on the outputs; these controllers have the ability to self-correct, while an 

open loop controller has not this ability and the outputs have no effect on the control action. 

Control theory has been introduced for the first time in 1868, by the physicist James 

Maxwell [1], where, a centrifugal governor (controller) was used to control a windmill 

velocity, and the impact of the self-oscillation phenomenon on the system stability has been 

analyzed. After that, Edward John Routh used Maxwell’s results to advance the control 

theory [2–4]. In 1895, using differential equations, Adolf Hurwitz introduced the Routh-

Hurwitz theorem [5,6], which analyzes the stability of linear systems without solving them. 

In December 1903, the Wright brothers made their first successful controlled flight as they 

installed a mechanical controller at the back of their plane to control its trajectory. In 1922, 

the famous Proportional Integrate Derivative (PID) controller has been introduced by 

Nicolas Minorsky [7]. Beside the PID regulator, several linear controllers have been 

developed. Such as: the Full State Feedback (FSF) or pole placement [8], the Linear 

Quadratic Regulator (LQR) [9], the Linear Quadratic Gaussian (LQG) [10,11], the Model 

Algorithmic Control (MAC) [12], the Dynamic Matrix Control (DMC) [13], … etc. 

Linear controllers can be used to control nonlinear systems, by approximating their 

dynamic behavior around the operating conditions with linear models. Indeed, linear 

controllers have been found to give satisfactory performance in many practical applications 

[14–21]. However, a severe degradation in the control performance of industrial systems, 

which have become more complex and highly nonlinear, can occur when using linear 

controllers. In fact, this degradation can be observed when the operating conditions deviate 

from the steady states around which the model has been linearized. Hence, to improve the 

control performance of nonlinear systems, nonlinear control methods should be investigated. 

Indeed, a lot of attention was given to nonlinear control systems, and several algorithms, 

such as the nonlinear PID controller [22–25], the sliding mode control [26–28], the bang-

bang control [29,30], the Nonlinear Model Predictive Control (NMPC) [31,32], the 

Nonlinear Generalized Predictive Control (NGPC) [33,34], were proposed. However, 

designing a nonlinear controller that ensures the stability of the closed-loop system is often 

a difficult, a complex and a time consuming task. Contrary to the theory of linear systems, 

there is no general control method that can be used with a large class of nonlinear systems, 

and most of the developed techniques are limited to very particular classes of these systems.  

One of the solutions that were investigated to get around the complexity of 

controlling nonlinear systems is to develop intelligent control techniques having the ability 

of learning, adaptation and decision-making. Indeed, biological systems and, in particular, 



2 
 

humans provide an example. Thus, an imitation, even partial, of their capacities provides an 

important contribution to the theory of systems. This imitation can be done by analyzing and 

understanding the structural and functional aspects of these natural systems. Then, using 

graphical representations and mathematics, model the identified components of intelligence. 

Previous work in this context has led to the advent of powerful tools such as Neural Networks 

(NN), Fuzzy Logic (FL) and meta-heuristic optimization algorithms. The modeling and 

control methods using Artificial Intelligence (AI) tools, such as neural networks, fuzzy logic, 

machine learning and meta-heuristic optimization, are grouped under the name intelligent 

control. Since the introduction of the concept of neural networks and fuzzy set theory, several 

methods of nonlinear systems modeling and control using neural networks and fuzzy logic 

have been proposed. Hybrid control methods that combine neural networks and fuzzy logic, 

neural networks and meta-heuristic optimization, fuzzy logic and meta-heuristic 

optimization, and conventional linear control methods with artificial intelligence have also 

been considered by several researchers. 

Several structures of Neural Network Controllers (NNCs) have been proposed. In 

1988, Hiroyuki et al. proposed an architecture based on the feedback error learning neural 

network to control the angular positions of a robot manipulator [35]. In this architecture, two 

neural networks were used; the first one simulates the dynamics of the manipulator, and the 

second one calculates the torque signal that reduces the error between the desired and the 

real angular positions of the manipulator. In the same year, another feedback NNC have been 

proposed [36], where a novel approach to emulate the system using neural networks was 

developed. One year later, a novel NNC method that control unknown dynamic systems was 

presented [37]. This NNC is an adaptive controller for nonlinear time-invariant systems. 

Unlike the NNCs presented before, this NNC requires only one neural network. Except the 

system order, the dynamics of the system are considered unknown. After that several 

applications and strategies based on this NNC method, such as the Gaussian networks for 

direct adaptive control [38], the Adaptive control of nonlinear systems using neural networks 

[39] and the nonlinear self-tuning adaptive control [40], were considered. A dynamic 

manipulator controller, where a back-propagation NN is used to predict the torque of each 

joint based on the values of the desired angles position, was proposed [41]. The NN was 

implemented in parallel with a Proportional Derivative (PD) controller. It has been shown, 

through various simulations on the PUMA 560 robot, that this NNC has fast convergence 

rate. Nineteen ninety was the year in which the NNC methodology captured the most 

attention of researchers [42]. Miller et al. [43] have developed a new architecture, called 

Cerebellar Model Arithmetic Computer (CMAC), which was implemented to control a robot 

manipulator. The CMAS architecture is based on the Least Mean Square (LMS) training 

process; it has plenty of advantages, such as fast computation, incremental training, output 

superposition and simple hardware realization. A comparative study between the CMAS, the 

self-tuning regulator and the Lyapunov based model reference adaptive controller, was given 

in [44]. The obtained results showed the superiority of the CMAS against linear and 

nonlinear systems with and without noise. A novel NNC approach, that uses a new 

unsupervised learning algorithm was developed [45]. It has been shown that this NNC can 

give good performance against complex nonlinear systems. In the same year, an adaptive 

model-based NNC for robot manipulator, was proposed to control the  PUMA 560 robot 

[46]. This method uses two NN for payload estimation, during high-speed motion, and for 

error compensator. After that, a similar controller called Robust Model-Based NNC, that is 

based on the pseudo continuous-time analog quantitative feedback theory, was developed 

[47]. Several other NNCs architectures, such as the Nonlinear NNC for dynamic system 

[48], the NN compensator for uncertainties of robotic manipulators [49], the NN for self-

learning control systems [50], the adaptive control using NNs [51], were developed in 1990. 
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In 1992, using neural network, K.S. Narendra et al. have proposed a control strategy to deal 

with structural failures of the system [52]. After that, the same authors proposed a globally 

stable adaptive controller for a restricted class of nonlinear systems in the presence of 

uncertainties [53]. In the year 2000, Zhang et al. presented a new NNC architecture [54]. In 

this work a smooth and singularity-free adaptive controller for first order systems, for which 

the stability of the closed-loop system is guaranteed, was designed. Two different back 

stepping NNC strategies for a class of nonlinear systems were proposed in [55]. Using the 

dynamic surface control, Wang and Huang have proposed an NNC that guarantees the 

closed-loop stability and gives a small tracking error [56]. In 2008, a generalized HJB 

(Hamilton Jaccobi Bellman) formulation based on NNC for Nonlinear Discrete-Time 

Systems (NDTS) was proposed [57]. In the same year, an adaptive NNC for a class of pure-

feedback NDTS was presented [58]. In the last decade, several NNC strategies, such as the 

adaptive NNC for output feedback nonlinear systems using a barrier Lyapunov function [59], 

the adaptive NN decentralized back stepping output-feedback control for nonlinear large 

scale systems with time delays [60], the adaptive control with high-order NN [61], the NN 

based adaptive control for a class of uncertain nonlinear stochastic systems [62], the dynamic 

surface control using NN [63], the adaptive NNC of an uncertain robot with full state 

constraints [64], the NNC based adaptive learning design for nonlinear systems With full 

state constraints [65],  the adaptive NN finite time output feedback control of quantized 

nonlinear systems [66], the improved radial basis function NNC strategy [67], and the NNC 

of robot manipulators and nonlinear systems [68], have been developed.  

Due to the success achieved using NNC against nonlinear systems, several hybrid 

controllers, based on NN, have been proposed. Among these controllers, the neuro-fuzzy 

controllers have received a lot of attention due to its high performance against nonlinear 

systems. Until 1991, there was no systematic procedure for designing an FLC, at the time, 

the approach was to define the membership functions and the rules by studying an already 

existing human system or controller. However, Lin et al. proposed the Integrated Neural 

Network based Fuzzy Logic Control (INNFLC), where an NN was organized to mimic the 

FLC by integrating the learning capability of the NN with the FLC system [69]. The resulting 

controller is a Multi Layer Perceptron (MLP) that has three hidden layers. Where, the nodes 

of the first layer and the third layer represent the membership functions of the FLC. The 

second layer integrates the rule engine into the network. After that, similar architectures were 

proposed, such as the fuzzy modeling using generalized neural networks and Kalman filter 

algorithm [70] and the rule extraction using generalized neural networks [71]. In 1993, the 

famous Adaptive Network based Fuzzy Inference System (ANFIS) was presented [72]. The 

ANFIS is based on human knowledge and stipulated input-output data pairs. Several 

application of the ANFIS in system control have been considered [73–77]. Other ANFIS 

variants can be found in the literature [78–80].  

Model Predictive Control (MPC) is one of the most important control strategies, it is 

a modern and successful technique that is characterized by its ability to control constrained 

multivariable system. Several predictive control algorithms, based on linear models, were 

developed [12,13,81–86]. The success of the MPC strategy is related to its capability of 

handling different types of constraints, and its ability to handle multivariable systems, 

systems with no-minimum phase behavior and systems with variable or unknown time 

delays. Although, linear MPC techniques give satisfactory performance in many practical 

applications [87–89], in the case of highly nonlinear process, severe degradation in the 

control performance can be observed. To ensure higher performance, MPC methods that use 

a nonlinear prediction model must be investigated. In fact, a lot of attention was given to 

Nonlinear MPC (NMPC), and several control techniques were proposed [90–92]. The main 
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difficulties in designing NMPC are obtaining an adequate nonlinear model for the system to 

be controlled, and online solving the nonlinear and the non-convex optimization problem. 

Obviously, the efficiency and the computational requirement of the controller depend 

extremely on the accuracy and the simplicity of the used model. Among the various 

nonlinear models developed and used in predictive control, we can find Volterra series [93–

95], Fuzzy models [91,96–98], and NN models [90,99,100]. 

Solving the non-convex optimization problem of nonlinear constrained predictive 

control is difficult and time-consuming task. Since an analytical solution cannot be obtained, 

several suboptimal methods were used to deal with the optimization problem [101–103]. 

These suboptimal methods can be classified into three categories: the linearization of the 

nonlinear model, the use of a particular structured model that gives a free response and a 

forced response, and the use of numerical approaches that are nonlinear optimization 

techniques. Numerical approaches can be classified into two classes: the first class join the 

deterministic numerical approaches such the sequential quadratic programing and nonlinear 

interior point method. These methods handle the optimization problem by solving series of 

linear sub-problems. However, they are known for their sensitivity to initial conditions and 

cannot be used with models where the details of the derivatives are unknown. The second 

class gathers stochastic numerical approaches such as meta-heuristic optimization 

algorithms. Meta-heuristic algorithms could mitigate the non-convex and nonlinear 

optimization problem of predictive control. Indeed, Meta-heuristic algorithms are easy to 

implement, have good performance, and could locate adequate solutions in a reasonable 

time. Different meta-heuristic algorithms, such as Genetic Algorithms (GA) [104,105], 

Particle Swarm Optimization (PSO) [90,106,107], Artificial Bee Colony (ABC) [96,97], 

Evolutionary Algorithm (EA) [108], and Teaching Learning Based Optimization (TLBO) 

[109,110], can be found in the literature. In fact, a lot of researches have been conducted on 

solving the NMPC optimization problem using meta-heuristic algorithms 

[90,96,97,105,107]. 

The basic objective of this doctoral thesis is to develop control algorithms for 

nonlinear systems using the tools of artificial intelligence. The aim is to design control 

methods that are: 

 Simple to guarantee their implementation in real time. 

 Efficient and give good control performance with a large class of nonlinear systems. 

 Adaptive to compensate parameters variation and external disturbances. 

 Robust against modeling errors and external disturbances. 

This interest is justified by the fact that the physical systems are, in a very large 

majority, nonlinear subject to modeling errors and parametric uncertainties, as well as to 

external disturbances. The ability of neural networks to approximate uniformly continuous 

functions has been proven in several papers. Neural networks, with the ability to approximate 

a large class of nonlinear functions, provide a canonical and feasible structure for the 

representation of non-dynamic systems. Meta-heuristic algorithms are easy to implement, 

have good performance, and could converge to global solutions in a reasonable time. 

The research directions explored in this thesis are: 

 Artificial intelligence based adaptive nonlinear PID controller: the aim is to use 

different architectures of neural networks to online obtain the PID gains, 
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 Teaching learning based optimization: develop an improved version of the TLBO 

algorithm that can be used to online solve the optimization problem of predictive 

control, 

 Neural network based constrained nonlinear predictive control: the objective is to 

develop an efficient constrained nonlinear predictive control algorithm using a 

multilayer feed forward neural network and the teaching learning based optimization. 

Single-input single-output and multi-input multi-output nonlinear systems are 

considered in this thesis. To highlight the performance of the proposed control algorithms, a 

comparative study, using simulation and experimental setup, is carried out and the control 

of the following systems is considered: 

 The model of the continuous stirred tank reactor, 

 The induction machine, 

 The three degrees robot manipulator. 

The thesis is organized as follows:  

In the first chapter, some of the AI based control algorithms are presented and 

discussed. NN controllers and fuzzy logic control algorithms are given. Furthermore, some 

hybrid neural network fuzzy logic controllers are presented and the AI based MPC 

techniques are also described.  

In the second chapter, a general description of meta-heuristic algorithms is given, 

then a detailed description of three meta-heuristic algorithms, namely the particle swarm 

optimization, the teaching learning based optimization and the Improved TLBO (I-TLBO) 

is introduced. The proposed enhanced TLBO (ETLBO) algorithm is presented and compared 

to several meta-heuristic algorithms using some well-known benchmark functions.  

In the third chapter, three versions of the AI based PID controller are given. The 

Adaptive NNPID (ANNPID), the proposed Adaptive Fourier Series Neural Network PID 

(AFSNNPID) and the PSO based PID are given. To assess the effectiveness of the ANNPID, 

the AFSNNPID and the PSO based PID controller, the control of the Continuous Stirred 

Tank Reactor (CSTR) and the 3-DOF robot arm manipulator, through simulation and 

experimental study, are considered.  

In the fourth chapter, three proposed AI based NMPC controllers are presented and 

evaluated by considering the control of the MIMO robot arm manipulator.   

The thesis finishes with concluding remarks and some prospects for the future works.  
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CHAPTER 1 

AI-BASED CONTROL ALGORITHMS 

 

1. Introduction  

This chapter introduces a review of some AI based control methods, such as the Neural 

Network Control (NNC), the Fuzzy Logic Control (FLC), the Fuzzy Neural Network Control 

(FNNC) and the AI-based Nonlinear Model Predictive Control (AI-NMPC).  

2. Neural network control 

Due to their learning and generalization capabilities and their parallelism, neural 

networks have achieved a great success in many areas. They have been successfully used in 

many applications, such as classification, noise filtering, system modeling and control … 

etc. One of the fields where neural networks have received increasing interest is that of 

systems modeling and control. Indeed, significant research in this field has been carried out 

and several control applications based on neural networks have been developed. Most neural 

control methods, that were proposed, can be classified in two main categories:  

 Direct control: in this class, the controller is a neural network that delivers the control 

signals. 

 Indirect control: in this class, the design of the control law is based on the use of a 

neural model of the system to be controlled.   

In the rest of this section, some of the common neural control structures are presented. 

2.1. Neural control structures  

Generally, a neural control structure contains one or more neural networks. Each neural 

network is used to perform one of the following specified tasks:  

 Generation of control signals: the neural network is used to compute the control 

signals that minimize the control error given by the difference between the 

system outputs and the reference trajectories. The inputs of this neural network 

can be the actual and the past values of the reference trajectories and the actual 

and the past values of the system outputs or the actual and the past values of the 

control error (figure 1.1 (a) and (b)).  

 System emulation: In this case, the neural network is trained and used as an 

emulator of the dynamics of the controlled system. Any of the common neural 

network architectures, such as feed forward neural networks or recurrent neural 

networks, can be used. In general, the inputs to this neural network are the actual 

values of the control signals and the system outputs and their delayed values 

(figure 1.2).  

 Reference model: the neural network is used to modify the desired reference 

trajectories for the purpose of improving the control performance. This neural 

network receives the actual and the past values of all or some reference 

trajectories as inputs and generates a modified reference trajectory (figure 1.3).  
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Figure 1.1 

Figure 1. 1 : Inputs and outputs of the neural network controllers. 

 

 

Figure 1. 2 : Inputs and outputs of the emulator. 

Several architectures of NNC can be built according to the number of the used NNs 

in the control block diagram and the task given to each NN. Hence, some types of the NNC 

are presented in the following subsections.  
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Figure 1. 3 : Neural network as a model reference. 

2.1.1. Direct control using the inverse dynamic model (general learning) 

Direct control using the inverse dynamic model [111–114] is also known with the general 

learning architecture. It is built in two successive stages. First, using a neural network, the 

inverse dynamic model of the controlled system is constructed (figure 1.4.a). The neural 

network is trained using the backpropagation algorithm in order to produce an output as 

close as possible to the control signal. In a second step, the trained neural network is 

implemented for the purpose of controlling the system in an open-loop configuration (figure 

1.4.b). Several variants of this control strategy can be found in the control literature. The 

main difference between these variants is the architecture of the used neural network. 

Often, it is not easy to obtain an inverse model to all dynamic systems.  Even if the inverse 

dynamics has been successfully modeled, a small disturbance leads to poor control 

performance. To deal with this problem, a new neural network is added to the control scheme 

to online update the weights of the inverse model controller (figure 1.4.c).  

 

Figure 1. 4 : Direct control using the inverse dynamic model. 
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2.1.2. Supervised control  

The neural network based supervised control strategy (figure 1.5) aims to emulate and 

substitute an already existing controller (for example a human operator) using a neural 

network [115,116].  

This method is useful in many cases, such as:  

 The original controller, which was used to train the neural network, can be 

complex and hard to implement.  

 The computation process of the original controller includes high level operators 

(e.g. integral) that requires an important computing time.   

 The original controller can be a human operator who cannot be permanently 

assigned to the control task.  

 

Figure 1. 5 : Supervised Control strategy: (a) training the controller, (b) substitution of the 

existing controller. 

 

2.1.3. Direct control using the inverse dynamic model (specialized learning) 

The control block diagram of this strategy is given in figure 1.6, where the neural 

network drives directly the controlled system [117]. The error signal between the system 

output and the desired reference trajectory is used to adjust the weights of the neural network 

controller. 

Using this strategy, most of the drawbacks of the general learning strategy are omitted. 

The offline adaptation can be ignored, the controller is online adapted and the control 

objective is directly handled. However, this strategy requires a priori knowledge of the 
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controlled system to train and adapt the weights of the neural network controller. In this 

control strategy, a neural network that emulates the system dynamic is used in the neural 

network controller training process.  

 

Figure 1. 6 : Direct control using the inverse dynamic model (specialized learning). 

The specialized learning control approach can be achieved in two successive phases: an 

identification phase for the neural network emulator (figure 1.6.a), followed by the neural 

network controller learning phase (figure 1.6.b). In fact, both phases can be merged into one 

step as it is indicated in (figure 1.6.c).  
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2.1.4. Model reference adaptive control  

In this strategy, a reference model is used to specify the desired behavior of the controlled 

system, and the neural network controller is used to force the output of the system to follow 

that of the reference model [118,119]. Based on this principle, two control structures have 

been proposed; the direct (figure 1.7 (a)) and the indirect methods (figure 1.7 (b)). 

 

Figure 1. 7 : Model reference adaptive control. 

In the direct Model Reference Adaptive Control (MRAC) strategy, the weights of the 

neural network controller are directly adjusted to reduce the error between the system output 

and the reference model output. Once the learning phase is completed, the neural network 

controller generates the control signal so that the output of the system follows that of the 

reference model. Since the system is placed between the neural network controller and the 

output error, using the back-propagation algorithm, the system Jacobian is required to directly 

adapt the weights of the neural network controller. To avoid this problem, the indirect MRAC 

structure has been developed.  

The indirect MRAC structure uses a first neural network to identify the direct dynamics of 

the controlled system (emulator) and a second one to derive the control signal (neural network 

controller). The weights of the emulator can be adapted online to continuously follow the 
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dynamic behavior of the system and those of the neural network controller are adapted by 

back propagating the control error throw the emulator.  

2.1.5. Other approaches 

Several other neural network controllers, which are modified versions of the previous 

approaches, were developed and used in many control applications. Among the most 

interesting techniques, we mention the following three strategies:  

The first one (figure 1.8.(a)) is the neural network controller proposed in [120,121]. 

In this control method, a neural network is used to generate a modified reference trajectory 

and a classical controller, such as the PID controller, or other advanced controller is used to 

drive the system.  

In the control structure given by figure 1.8 (b), an optimal linear controller is 

combined with a neural network controller [122].  This strategy is based on the principle of 

compensating the uncertainties that are not considered during the design of the linear 

controller by using two neural networks. The first one is placed in parallel with the controlled 

system to model the nonlinearities of the system, and the second one is placed in parallel 

with the linear controller to compensate the effect of the uncertainties by adding a variation 

Δ𝑈(𝑘) to the linear control signal 𝑈(𝑘).  

The control strategy presented in figure 1.8 (c) uses a neural network to optimize the 

parameters of a classic controller [123,124]. The neural network receives the control errors 

and the control signals as inputs and generates the parameters of the classical controller as 

outputs.  

3. Fuzzy Logic Control   

Fuzzy Logic Control (FLC) is a relatively recent approach that easily integrates 

knowledge and key elements of human thought into the design of nonlinear controllers. 

Qualitative and heuristic knowledge, which cannot be addressed by conventional control 

theory, can be used for control purposes in a systematic way, using fuzzy logic concepts. 

The main advantages of fuzzy logic control are that it does not require an accurate 

mathematical model, can handle imprecise inputs and nonlinearity, and is less sensitive to 

external disturbances than the most nonlinear controllers. The design of fuzzy logic 

controllers is based on fuzzy sets theory and can be achieved according to the following 

steps (figure 1.9): 

The first step is to define the inputs and outputs of the controller. There are no general 

rules to select the controller inputs; however, the states of the system to be controlled, their 

errors and variation errors are often used. The use of rules that are expressed using linguistic 

terms implies the fuzzification step to map the crisp values of inputs to suitable linguistic 

values. After that, using an inference engine, the rules are evaluated to obtain the fuzzy 

control action. A defuzzification step is then required to obtain a crisp value for the control 

action. 

Most of fuzzy logic controllers are designed based on knowledge about the controlled 

system. The universes of discourse of inputs and outputs and the membership functions 

cannot be chosen without having some available information about the system dynamics. 

However, after choosing the membership functions and establishing the rules base, the 

control action can be easily computed.  Therefore, to implement a fuzzy logic controller, a 

high-end processor is not required, unlike most other complex nonlinear controllers. 
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Figure 1. 8 : Other Neural Network Controllers. 

 

Figure 1. 9 : Typical fuzzy logic system structure. 
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3.1. Fuzzy Logic Controllers   

Fuzzy logic controllers are used with great success in various applications. Some of these 

applications include controlling temperature room, anti-braking system used in vehicles, 

washing machines and almost all the consumer products. Over the last few decades, 

numerous interesting design techniques of fuzzy logic controllers were introduced and many 

efficient methods that deal with the robustness, the stability, and the time delay of these 

controllers were developed. In the following subsections, some of the well known fuzzy 

control methods are presented.  

3.1.1. Fuzzy inverse model control 

In this control strategy, a fuzzy inverse dynamic model of the controlled system is 

designed using the available knowledge about the system [125]. The obtained inverse model 

is used to control the system; it receives the reference signals as inputs and generates the 

control signals as outputs (figure 1.10.a). In most fuzzy inverse model controllers, in addition 

to the reference signals, the state vector of the controlled system is used as input of the 

controller (figure 1.10.b).  

Constructing a fuzzy inverse model is difficult and not possible for all dynamic systems. 

Even if the inverse dynamics have been successfully modeled, a small disturbance leads to 

poor control performance. In several applications that use a fuzzy inverse model controller, 

an adaptation process is used to compensate the effect of the external disturbances.  

 

Figure 1. 10 : Direct control using fuzzy inverse dynamic model. 



15 
 

The main drawbacks of this control strategy are:  

 The number and the complexity of rules increase with the complexity of the 

controlled system.  

 A good knowledge of the system dynamics is required. 

 Sensitivity to external disturbances.   

 

3.1.2. Model free fuzzy control 

Due to its simplicity, ease of implementation and ability to handle a large class of 

nonlinear systems, the model free fuzzy control [126] is used in various real-time 

applications. The control bloc diagram of this approach is given in figure 1.11, where the 

controller, usually having as inputs the error and its variations, is a fuzzy system.  

 

Figure 1. 11 : Control block diagram of the model free fuzzy controller. 

The design steps for such controllers are summarized as follows: 

3.1.2.1. Normalization and Denormalization   

In this step, the universe of discourse of the inputs of the fuzzy controller is restricted 

to a given interval. In general, the normalized universe is identical to the real operating 

ranges of inputs/outputs variables, but in most applications is restricted to the interval 

[−1 1]. The outputs of the fuzzy controller are denormalized in order to transform the 

normalized values of the control signals into values belonging to their respective physical 

domain.  

3.1.2.2. Fuzzy rules design  

Constructing a fuzzy rules base has a critical role in fuzzy logic controller design and 

has been extensively considered. In most cases, fuzzy rules can be generated using 

knowledge on the system operating and by understanding of its dynamics. If each of the two 

input variables 𝐸 and Δ𝐸 of the controller is partitioned to five fuzzy sets(BN,N, Z, P, BP), 
then a total of 25 rules is required to generate a fuzzy output. For example, when the output 

ΔU is quantized to nine fuzzy sets (𝐵𝐵𝐺𝑁, 𝐵𝐺𝑁, BN, N, Z, P, BP, BGP, BBGP), the inference 

matrix can be given by table 1.1 if the system's output follows the same direction of variation 

of the control signal, otherwise it can be given by table 1.2.  
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  Δ𝐸 

  𝐵𝑁 𝑁 𝑍 𝑃 𝐵𝑃 

𝐸 

𝐵𝑁 𝐵𝐵𝐺𝑁 BGN BN N Z 

𝑁 BGN BN N Z P 

𝑍 BN N Z P BP 

𝑃 N Z P BP BGP 

𝐵𝑃 Z P BP BGP 𝐵𝐵𝐺𝑃 

Table 1. 1 : Inference matrix for a system with direct response to the control signal. 

  Δ𝐸 

  𝐵𝑁 𝑁 𝑍 𝑃 𝐵𝑃 

𝐸 

𝐵𝑁 𝐵𝐵𝐺𝑃 BGP BP 𝑃 Z 

𝑁 BGP BP 𝑃 Z 𝑁 

𝑍 BP 𝑃 Z 𝑁 BN 

𝑃 𝑃 Z 𝑁 BN BGN 

𝐵𝑃 Z 𝑁 BN BGN 𝐵𝐵𝐺𝑁 

Table 1. 2 : Inference matrix for a system with inverse response to the control signal. 

3.1.3. Adaptive fuzzy control  

Adaptive control is based on the use of an adaptation mechanism to control partially 

known systems and to compensate the effects of different disturbances. Adaptive control of 

linear systems and some special classes of nonlinear systems has been well developed in the 

literature. However, developing a good adaptive controller for the majority of nonlinear 

systems is a challenging task.  

Adaptive fuzzy control [127–129] approximates the  unknown nonlinearities of the 

controlled system and apply the well-developed techniques of adaptive control. Adaptive 

fuzzy controllers can be divided into two classes: 

 Direct adaptive fuzzy controllers [128]: the parameters of these controllers are 

tuned online in order to minimize the error between the reference model and the 

controlled system.  

 Indirect adaptive fuzzy controllers [129]: in this case, the parameters of the 

controlled system are estimated using a fuzzy model and the control signal is 

generated based on these parameters. 

 

3.1.4. Fuzzy PID controller 

The main difficulty in designing a PID controller lies in obtaining the PID gains that 

give the best control performance, especially in case of high order and nonlinear systems. 

Obtaining the PID controller gains becomes more difficult when the system is subject to 

external disturbances or to variation of its parameters.  

To compensate the effect of external disturbances and variation of the system 

parameters, several techniques using fuzzy logic have been proposed to obtain and online 

adjust the gains of the conventional PID controller [130,131]. Figure 1.12 (a and b) illustrates 

the structure of two well known fuzzy PID controllers.  In order to enhance the control 
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performance, an adaptive fuzzy system is added to the control loop. In figure 1.12.b an 

emulator is used to approximate the system Jacobian. 

 

Figure 1. 12 : Fuzzy PID controller. 

3.1.5. Feed-forward compensation based on fuzzy logic controller  

In this architecture [132], the FLC is used in parallel with another controller (in 

general, a conventional controller) to improve the control performance (figure 1.13). The 

resulting control algorithm is a hybrid between the FLC and the conventional controller.  

 

Figure 1. 13 : Fuzzy control using feed-forward compensation. 
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4. Fuzzy neural network control   

A Fuzzy Neural Network Controller (FNNC) is a hybrid intelligent algorithm that 

combines the simplicity and the human based reasoning of the fuzzy logic and the learning 

ability and connectionist architecture of the neural networks. Other denominations of this 

approach, such as the neuro-fuzzy control and the neural network fuzzy logic control are 

used. The fuzzy neural network controllers have the following properties: 

 A FNNC is based on the FLC, which is trained using a learning algorithm derived 

from neural networks. 

 The FNNC architecture can be organized into three layered neural network. Each 

layer represents the input variables, the fuzzy rules, and the output variables. 

However, the FNNC architecture can be viewed as a five-layered neural network, 

where the two additional layers represent the fuzzy subsets. 

 A FNNC is always interpreted as a process of fuzzy rules before and after 

learning.  

 A FNNC approximates an n-dimensional function, which is partially defined by 

a training database.  

 A FNNC can be created using the training database. The FNNC parameters can 

be initialized using prior knowledge about the dynamics of the controlled system. 

Fuzzy neural network controllers combine the advantages of the fuzzy logic controllers 

and the neural network controllers in one control algorithm. The main advantages of Fuzzy 

neural network control algorithms are given as follows: 

 Fuzzy neural network systems are universal approximators, hence the fuzzy 

neural network controllers are universal controllers with the ability of 

interpreting fuzzy rules.   

 Fuzzy neural network controllers can be initialized with or without prior 

knowledge about the controlled system dynamics. 

 Due to the fuzzy neural network controller architecture that resembles a neural 

network, a learning algorithm is used to adapt the controller parameters. Hence, 

the fuzzy neural network controllers are adaptive, which make them robust 

controllers with good control performances.  

The FNNC can be a Mamdani or a Sugeno type. However, nowadays Sugeno-type 

fuzzy neural network controllers are the most used; due to the simplicity and the precision 

offered by the Sugeno architecture. Several Evolving Fuzzy Logic approaches can be found 

in [133,134]. The modern fuzzy neural network controller architectures are usually presented 

as a special multilayer perceptron, such as:  

 The Adaptive Neuro Fuzzy Inference System (ANFIS) [72]. 

 Fuzzy Neural system (FuNe-I) [135]. 

 Fuzzy RuleNet [136]. 

 Generalized Approximate Reasoning-based Intelligent Control (GARIC) [137]. 

 NEuro Fuzzy CONtrol (NEFCON) [138]. 

4.1. Adaptive neuro fuzzy inference system  

Adaptive neuro fuzzy inference system, developed in 1993 by JSR Jang [72], it is an 

artificial neural network based on the Sugeno-type fuzzy logic system. Its operating principle 
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is based on a set of fuzzy IF-THEN rules that have learning capability and can approximate 

nonlinear functions. The architecture of an ANFIS is a five-layered network; it is given by 

figure 1.14.  

 

Figure 1. 14 : Architecture of adaptive neuro fuzzy inference system. 

The first layer, called the fuzzification layer, takes the input values and generates the 

membership degrees of each input. Hence, the activation functions of the first layer’ neurons 

are the membership functions associated to the inputs. The second layer, called the rule layer, 

generates the result of the premise of each rule. The product is used to calculate the AND 

operator.  The results of the rules premises are normalized in the third layer. In the fourth 

layer, for each rule, the product between the normalized premise result and the rule 

conclusion result is calculated. Finally, in the fifth layer, the sum of the fourth layer outputs 

is calculated. 

Generally, when using an ANFIS as a controller, the inputs are chosen as the error 𝑒(𝑘) 
between the desired reference trajectory and the system output, and its variation Δ𝑒(𝑘). The 

output is the increment of the control signal Δ𝑢(𝑘). When using the ANFIS as a controller, 

the system jacobian is added to the learning algorithm. Many applications of the ANFIS 

controller can be found in [73,74,139–141]. 

4.2. Fuzzy neural system  

FuNe-I is a special MLP that was used to mimic a fuzzy system (figure 1.15) [135]. 

FuNe-I’s fuzzy rules could be extracted using an input/output database and a supervised 

learning algorithm. This structure is used to identify the rules without a prior knowledge. 

Therefore, FuNe-I controllers are ideally suited for controlling systems with unknown 

dynamics. Furthermore, an optimization process can be implemented by tuning the 

parameters of the membership functions. Hence, FuNe-I controllers are adaptive and robust. 

Although, expert knowledge of the system dynamics is not required to create a FuNe-I 

controller, this knowledge can be included in the process of creating the FuNe-I control 

algorithm. Several control applications using FuNe-I can be found in the literature [142,143].  

The gradient descent method is used to train the FuNe-I parameters, it is detailed in [135]. 

The structure of FuNe-I is based on positive type (if) rules and negative type (if not) rules. 
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Each rule is weighted by a negative or positive real number; these weights are optimized 

using the learning algorithm. The 𝑖𝑡ℎ FuNe-l output (𝑦𝑖) is generated by calculating the 

sigmoid of the sum of the “𝑟” rules weighted results (𝑊𝑖𝑗𝐾𝑗) as follows:  

𝑦𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∑𝑊𝑖𝑗𝐾𝑗

𝑟

𝑗=1

) (1.1) 

 

 

Figure 1. 15 : Fuzzy neural system architecture. 

In figure 1.15, the blue connection lines are adjustable weights, the others are fixed 

weights.  The empty black circles are neurons with sigmoid activation functions, and the 

other empty circles are neurons with linear activation functions.  The neurons with (∪) and 

(∩) calculate the soft max and the soft min, respectively.  

 

4.3. NEuro Fuzzy CONtrol (NEFCON) 

NEFCON is a Neuro Fuzzy controller developed by Nauck et al. [138]. Its architecture 

is based on the generic fuzzy perceptron, which is an MLP with one hidden layer. The inputs 

of the NEFCON are the state variables of the controlled system and the outputs are the 

control signals. The neurons of the hidden layer represent the fuzzy rules. The weights in the 

NEFCON architecture are fuzzy subsets instead of real numbers. Therefore, the weights 

between the input layer and the hidden layer are the fuzzy subsets associated to the inputs, 

and the weights between the hidden layer and the output layer are the fuzzy subsets 
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associated to the outputs (figure 1.16). The NEFCON algorithm is based on the Mamdani 

type fuzzy system.  

 

Figure 1. 16 : Neuro fuzzy Control architecture. 

The NEFCON learning algorithm is based on the reinforcement learning, which does not 

require any supervision. Due to the nature of the network weights (fuzzy subsets), the 

learning algorithm uses a fuzzy error instead of crisp error in order to learn and optimize the 

fuzzy rule base.  The NEFCON learning algorithm is detailed in [144]. 

5. AI-based Nonlinear Model Predictive Control (AI-NMPC) 

AI-based NMPC algorithms are nonlinear model predictive controllers were at least one 

AI tool was used to design the control algorithm. Three major approaches of AI-NMPC can 

be distinguished and are given as follows:  

 NMPC based on AI prediction models: in this approach, the used model to predict 

the future behavior of the controlled system is based on an AI method. Several 

AI- based prediction models can be found in the literature, such as:  

 Neural Network Based NMPC (NNMPC) [58,99–103,145,146]. 

 Fuzzy model Based NMPC (FMPC) [96,97,147]. 

 Fuzzy Neural Network based NMPC (FNNMPC) [148–150]. 

 NMPC based on AI optimization algorithms to solve the optimization problem: 

in this approach, a meta-heuristic algorithm is used to solve the optimization 

problem of the NMPC. Several NMPC using meta-heuristic algorithms exists, 

some of them are given as follows:  

 NMPC based on Genetic algorithm [104,105]. 

 NMPC based on Particle Swarm Optimization algorithm [90,106,107]. 

 NMPC based on Artificial Bee Colony [96,97]. 

 NMPC based on Evolutionary Algorithm [108]. 

 NMPC based on AI optimization algorithms to determine the optimal values of 

the design parameters of the predictive controller: Some variants of this strategy 

are: 
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  NMPC using Imperialist Competitive algorithm to find optimal control 

parameters [151]. 

 NMPC based on sequential parameter optimization to find optimal 

control parameters [152]. 

Other AI-NMPC strategies can be found in the literature, which are generally hybrid 

versions of the above-mentioned strategies.  

6. Conclusion 

In this chapter, four AI-based control techniques were introduced; namely the neural 

network control strategy, the fuzzy logic control technique, the adaptive neuro-fuzzy 

inference system and the AI-based nonlinear model predictive control.   

The use of artificial intelligence tools has allowed developing powerful, efficient, robust 

and adaptive control algorithms. These algorithms can be used to control a large class of 

nonlinear systems. The development of powerful processors allows the implementation of 

these algorithms, even complex ones, for real-time control applications. 
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CHAPTER 2 

META-HEURISTIC OPTIMIZATION ALGORITHMS 

 

1. Introduction 

In this chapter, the fundamental concepts of meta-heuristic optimization algorithms and 

the formulation of the corresponding optimization problem are introduced. Some well-

known meta-heuristic algorithms, namely the Particle Swarm Optimization (PSO), the 

Teaching Learning Based Optimization (TLBO) and some of their variants, are given. A 

proposed version of the TLBO algorithm, called the Enhanced TLBO (ETLBO), is presented 

in the last section of this chapter.  

2. Basics of meta-heuristic optimization algorithms  

Find an optimal solution for optimization problems is often a complex and a time-

consuming task. Since, it is not possible to find an analytical solution to all optimization 

problems; several numerical methods have been developed.  Besides most of these methods 

require the calculation of the cost function derivative, they suffer from the problem of 

convergence towards local minima. In fact, meta-heuristic algorithms have been proposed 

to deal with these problems and find good solutions at a reasonable computational cost.  The 

concept of meta-heuristic has been introduced in 1945 [153] and has known, since then, wide 

dissemination among the research community. This interest has led to the emergence of 

several meta-heuristic algorithms that try to solve complex optimization problems.  

The composed term “meta-heuristic”, in which the suffix “meta” is a Greek word that 

means “upper level methodology”, has been introduced by Glover in 1986 [154]. In 

mathematical optimization and computer science fields, meta-heuristic refers to a more 

efficient, higher level and general purpose optimization algorithms that may give a good 

solution to an optimization problem, especially with incomplete information or limited 

computation capacity. Meta-heuristic algorithms are iterative generation processes, which 

explore and exploit the search space to find efficient near-optimal solutions using learning 

strategies. They are based on the classical heuristic algorithms, the biological evolutions, the 

neural systems, and the statistical process [155]. 

2.1. Classification  

Meta-heuristic algorithms can be classified according to several criteria:  

2.1.1. Local search and global search 

Meta-heuristic algorithms can be classified according to the used search strategy. 

Local search methods, such as the simulated annealing algorithm [156], the Tabu-search 

strategy [154], the variable neighborhood search algorithm [157] and the Greedy 

Randomized Adaptive Search Procedure (GRASP) [158] are used to find the local optimum. 

The Second class of meta-heuristic algorithms uses global searching methods, such as: Ant 

Colony Optimization (ACO) algorithm [159], particle swarm optimization (PSO) algorithm 

[160], Artificial Bee Colony (ABC) algorithm [161] and teaching learning based 

optimization algorithm [109,110]. 
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2.1.2. Single solution and population based  

Another classification is based on the number of candidate solutions. In fact, there 

are some algorithms that use a single candidate solution and other algorithms that use 

population of candidate solutions, to solve the optimization problem. Among the algorithms 

of the first class we can mention: the simulated annealing and the variable neighborhood 

search. These types of algorithms allow a deep search of local regions compared to 

algorithms based on population search. The population based search algorithms aim to solve 

the optimization problem using a group of candidate solutions called population.  As 

examples of population based algorithms we can mention: the genetic algorithm, the ant 

colony optimization, the particle swarm optimization, the artificial bee colony, the teaching 

learning based optimization, etc. The single candidate solution based algorithms allow a 

deep search of local regions while the population based algorithms allow more efficient 

exploration of the search space.  

2.1.3. Memory usage and memory less algorithms  

This classification is based on the state of existence of memory units. Some meta-

heuristic algorithms do not require information that is already collected, on the search space 

(for example the simulated annealing algorithm). However, other meta-heuristic algorithms 

require the previous extracted information to generate a new one, such as the PSO algorithm.      

2.1.4. Hybridization and mimetic algorithms 

Hybrid meta-heuristic algorithms combine a meta-heuristic method with other 

optimization techniques. Among these algorithms we find: the mathematical programming 

methods [162] and the constraint logic programming [163]. The components of a hybrid 

meta-heuristic algorithm can simultaneously operate and exchange information to solve the 

optimization problem. On the other hand, mimetic algorithms use only a meta-heuristic 

method to solve the optimization problem.  

2.1.5. Deterministic and stochastic algorithms 

Another classification is based on the state of existence of random operations. A 

stochastic meta-heuristic algorithm uses random parameters or distributions during the 

search. On the other hand, a deterministic meta-heuristic algorithm uses only deterministic 

decisions.  

2.1.6. Iterative and greedy algorithms 

Iterative meta-heuristic algorithms start with an initial solution and, using some 

search operators, iteratively adjust this solution until some criteria are verified. In greedy 

meta-heuristic algorithms, starting from an empty solution and assigning a single variable of 

the optimization problem in each step, the solution is built step by step.  

2.1.7. Nature-inspired and non-nature-inspired algorithms 

Another classification of meta-heuristic algorithms is based on whether they are 

inspired from the nature or not. Some of them, such as the ABC and the PSO are inspired 

from swarm intelligence; while others such as the simulated annealing is inspired from 

physics.  

In this thesis, only stochastic iterative population-based meta-heuristic algorithms 

are used.  
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2.2. Population based meta-heuristic algorithms  

Starting from an initial population of candidate solutions, the population based meta-

heuristic algorithms iteratively manipulate the current population, using some search 

operators, to obtain better solutions. A part (or all) of the current population is replaced from 

the new generated population. This process of generation and replacement is continued until 

a stopping criterion is verified.  

The main difference between all based meta-heuristic algorithms lies in the used 

generation/replacement strategy. Below are given the common steps of such algorithms.  

Algorithm 2.1 

Step 0: initialization 

 Set 𝑖 = 0 

 Set the initial population (𝑋𝑖=0) 

Step 1: generation/replacement  

 For 𝑖 = 1: maximum number of iterations  

o Generate the new population (𝑛𝑒𝑤𝑋𝑖) 
o Update some or all of the old population (𝑋𝑖) using the new generated one 

(𝑛𝑒𝑤𝑋𝑖) 
o If the stopping criterion is satisfied, go to step 2.  

 End 

Step2: output the best solution 

2.2.1. Initial population  

Regardless of the used meta-heuristic algorithm, a special attention must be given to 

the step of generating the initial population. An inappropriate choice of this population could 

greatly affect the efficiency of a given meta-heuristic algorithm; if the search space is not 

well covered, the optimization algorithm could converge towards a local optimum, or take a 

long time to find the appropriate solution. Despite the importance of this step in the 

implementation of any meta-heuristic optimization algorithm, there is only few published 

works that addresses the problem of how to generate a good initial population [164–166].  

According to [167], the following four approaches to generate an initial population 

can be considered:  

 Random generation 

 Sequential diversification  

 Parallel diversification 

 Heuristic initialization  

2.2.2. Population size  

The population size is one of the most critical parameters of any population-based 

meta-heuristic algorithm; a large size could gives good solutions of the optimization 

problem, but at the expense of increasing the computational time, while a small one could 

generate poor solutions. In real-time applications, a balance has to be found between the 
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computational time and the accuracy of solutions. There is no general strategy to determine 

the optimal size of the population according to the considered optimization problem. 

However, some particular strategies, which depend on the used meta-heuristic algorithm and 

the optimization problem dimension, have been proposed [167–169]. Instead of using a 

population with a fixed size, some works have suggested dynamically increasing and 

decreasing the population size during the optimization process [170]. In most applications, 

the population size is chosen according to the dimension of the optimization problem [171].  

2.2.3. Exploration and exploitation  

Population based meta-heuristic algorithms are characterized by their ability to 

explore the search space looking for regions of interest, and exploit these regions to find the 

optimum, or the near optimum, solution. These proprieties are somewhat exclusive and a 

tradeoff between the exploration and the exploitation should be established to have an 

efficient optimization algorithm. Meta-heuristic algorithms use several mechanisms to make 

this balance. If the exploration has not been thorough, one or more regions of interest could 

be missed and consequently the global optimum or even a solution in its vicinity cannot be 

found; the algorithm will be trapped in local optimum causing its premature convergence. 

The convergence speed could also be affected by an inappropriate exploration; the algorithm 

will take more time to search the regions of interest. On the other hand, if the exploitation 

process is prematurely stopped, the algorithm may miss a good, or even, an optimum 

solution. So, it is important to give sufficient time for the exploitation operation. It is obvious 

that an excessive exploitation slows down the convergence speed of the algorithm.   

2.2.4. Stopping criteria   

According to the nature of the optimization problem, several strategies to stop the 

optimization process can be used [167]. Some of them are given as follows:  

 Static strategy: in this case, the end of the optimization process is known a priori. 

Several criteria for this strategy can be used, such as the maximum number of 

iterations and the fixed number of objective function evaluations. This strategy is 

used in real time applications, where the maximum time for the optimization process 

is limited.  

 Adaptive strategy: in this case, the end of the optimization process cannot be known 

a priori.  Several criteria for this strategy can be used, such as the maximum number 

of non-improving iterations and the error tolerance that indicates a satisfactory 

solution is reached.  

3. Solving an optimization problem using meta-heuristic algorithms  

3.1. Formulating of the optimization problem and basic algorithm  

The standard form of any optimization (in this case minimization) problem is given as 

follows:  

𝑚𝑖𝑛𝑋 𝐹(𝑋) (2.1) 

Subject to:  

𝐺(𝑋) = 0 

𝐻(𝑋) ≤ 0 
(2.2) 
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where: 𝑋 ∈ ℝ𝑛  are the variables to be optimized, 𝑛 is the number of optimized variables, 

𝐹(𝑋) is the cost function and 𝐺(𝑋) and 𝐻(𝑋) are the constraints functions. 

Assuming that 𝑆 ⊂ ℝ𝑛 is the subset of admissible solutions that satisfy the 

constraints given by equation (2.2) and 𝑛𝑝 is the chosen population size. Using a population 

based meta-heuristic algorithm, the basic steps needed to solve the above optimization 

problem are summarized as follows:  

Algorithm 2.2 

Step 0: initialization 

 Set 𝑖 = 0 

 For 𝑗 = 1: 𝑛𝑝 

o Choose the initial solution (𝑋0
𝑗
) from 𝑆, such as 𝑋0

𝑗
∈ 𝑆. 

 End 

Step 1: cost function evaluation  

 For 𝑗 = 1: 𝑛𝑝  

o Using the candidate solution (𝑋𝑖
𝑗
), evaluate the cost function given by equation 

(2.1). 

 End 

Step 2: generation/replacement  

 For 𝑗 = 1: 𝑛𝑝  

o Generate a new candidate solution (𝑛𝑒𝑤𝑋𝑖
𝑗
) 

o Apply an updating strategy. 

o If the replacement is necessary 

 𝑋𝑖
𝑗
= 𝑛𝑒𝑤𝑋𝑖

𝑗
 

o End if 

 End 

Step 3: finding the best solution   

 𝑋𝑖
𝑏𝑒𝑠𝑡 = 𝑋𝑖

1 

 For 𝑗 = 2: 𝑛𝑝  

o If 𝐹(𝑋𝑖
𝑗
)<𝐹(𝑋𝑖

𝑏𝑒𝑠𝑡) 

 𝑋𝑖
𝑏𝑒𝑠𝑡 = 𝑋𝑖

𝑗
 

o End if 

 End 

Step 4:  

 If stopping criteria is satisfied  

o Report 𝑋𝑖
𝑏𝑒𝑠𝑡 as the solution 

o Exit the optimization process 

 Else  
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o 𝑖 = 𝑖 + 1 

o Go to step 1. 

 End if  

As each algorithm has its own particularities, algorithm 2.2 does not accurately describe 

all existing population based algorithms. 

3.2. Constraints handling 

In order to solve the optimization problem given by equations (2.1) and (2.2), algorithm 

2.2 has been given under the assumption that the subset 𝑆 of all admissible solutions is 

known a priori. However, it is very hard and sometimes impossible to create the subset 𝑆. 

Indeed, even if this subset is known a priori, several difficulties could appear while 

generating the new candidate solutions. There are several approaches that can be used to 

handle constraints, they can be grouped into the following categories [167]:  

 Reject strategy: it also called the death penalty approach. It is based on the rejection 

of all unfeasible candidate solutions (solutions that do not satisfy the constraints 

given by equation (2.2)). This approach can only be used if the majority of the search 

space is feasible. The unfeasible solutions are not used to gather information about 

global solutions that can be either on the boundary between feasible and infeasible 

solutions, or on another independent feasible region, if the admissible set contains 

discontinuous regions. This approach is unsuccessful with most of the optimization 

problems. 

 Penalizing strategy: this approach is the most popular and used method to handle the 

imposed constraints. In this method, both feasible and unfeasible solutions could be 

considered, and the original cost function is modified to include new terms that will 

heavily penalize infeasible solutions.  

 Repairing strategy: this approach deals with unfeasible solutions by transforming 

them into feasible solutions using custom build heuristic algorithms. Therefore, the 

optimization performance is highly depending on the efficiency of the custom 

algorithms. Due to the added step of repairing unfeasible solutions, this approach 

takes more computing time than other approaches, making it impractical for fast real-

time applications. 

 Preserving strategy: in this approach, using some specific knowledge about the 

handled problem, the optimization algorithm is modified to ensure that all generated 

candidate solutions are feasible. Clearly, the modified optimization algorithm cannot 

be used for a different optimization problem. In addition, the initial solutions must 

also be feasible. 

4. Variants of meta-heuristic algorithms  

In the aim of designing efficient optimization algorithms, several meta-heuristic 

optimizers have been developed and compared.  It has observed that each meta-heuristic 

optimizer outperforms the others on some other cost functions. Based on the “no free lunch 

theorem”, Wolpert and Macready have stated that all meta-heuristic algorithms perform 

exactly the same, according to any performance measure, when averaged over all possible 

cost functions [172,173]. However, in practical situations, the number of interesting cost 

functions is quite small and the goal is to determine the best optimization meta-heuristic 

algorithm against these functions. 
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4.1. Particle swarm optimization algorithm  

4.1.1. Original PSO algorithm 

Particle Swarm Optimization is an iterative, stochastic, population-based meta-

heuristic algorithm that have developed by Kennedy J. and Eberhart R. [160,174] to solve a 

continuous single-objective problem. PSO mimics the behavior of swarms when 

collaboratively searching for food sources, such as: swarm of insects, flocks of birds, herds 

of animals and schools of fish. Each member of the swarm, called particle, tries to find the 

best food source by learning from his or her personal experience and the global swarms’ 

experience. This phenomenon has been mathematically modeled in the form of an 

optimization algorithm.  

In the PSO algorithm, a randomly distributed population (called a swarm) of 

candidate solutions (called particles) is generated. These particles are moved around in the 

search space and their suitability is evaluated using an appropriate fitness function. The best 

position, founded by the whole swarm, represents the global optimum of the considered 

optimization problem. The particles change their positions in the search space to improve 

their fitness' values and provide more accurate solutions. This change is based on the best 

position of each particle in the search space, the entire swarm's best position and some 

random behavior. The discovered improved positions will guide the swarm's movements in 

the next iteration. This process is iteratively repeated until a satisfactory solution is found.  

The first step of the PSO algorithm is to generate a random initial population using 

the following equation:  

𝑋𝑖
𝑗
= 𝑟𝑎𝑛𝑑𝑖

𝑗
(𝑋𝑚𝑎𝑥

𝑗
− 𝑋𝑚𝑖𝑛

𝑗
) + 𝑋𝑚𝑖𝑛

𝑗
 (2.3) 

such as  𝑖 = [1,2, … , 𝑛𝑝] and 𝑗 = [1,2, … , 𝐷]. 

The function 𝑟𝑎𝑛𝑑𝑖
𝑗
 generates a random number in the range [0, 1], 𝐷 is the 

dimension of the optimization problem, 𝑛𝑝is the number of particles (the population size), 

and  𝑋𝑚𝑎𝑥
𝑗

 and 𝑋𝑚𝑖𝑛
𝑗

 are the upper limit and the lower limit of the 𝑗𝑡ℎ dimension’ search 

space, respectively. 

The second step is to evaluate the fitness of each particle (𝐹(𝑋𝑖)), where 𝑋𝑖 =
[𝑋𝑖

1, 𝑋𝑖
2, … , 𝑋𝑖

𝐷], determine the personal best solution of every particle (𝑃𝑖 = [𝑃𝑖
1, 𝑃𝑖

2, … , 𝑃𝑖
𝐷]) 

and find the global best solution (𝐺 = [𝐺1, 𝐺2, … , 𝐺𝐷]). This step is performed for all 

particles in the swarm (𝑖 = 1,2, … , 𝑛𝑝) and the entire dimension of the optimization problem 

(𝑗 = 1,2, … , 𝐷). 

The third step is to update the velocity (𝑉𝑖 = [𝑉𝑖
1, 𝑉𝑖

2, … , 𝑉𝑖
𝐷]) and the position (𝑋𝑖 =

[𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝐷]) of each particle (𝑖 = 1,2, … , 𝑛𝑝) in the entire dimension of the search space 

(𝑗 = 1,2, … , 𝐷), according to the following equations:  

𝑉𝑖
𝑗(𝑘 + 1) = 𝑉𝑖

𝑗(𝑘) + 𝑐1𝑟𝑎𝑛𝑑1𝑖
𝑗
(𝑃𝑖

𝑗
− 𝑋𝑖

𝑗
) + 𝑐2𝑟𝑎𝑛𝑑2𝑖

𝑗
(𝐺𝑗 − 𝑋𝑖

𝑗
) (2.4) 

 

𝑋𝑖
𝑗(𝑘 + 1) = 𝑋𝑖

𝑗(𝑘) + 𝑉𝑖
𝑗(𝑘 + 1) (2.5) 

Where: 
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𝑟𝑎𝑛𝑑1𝑖
𝑗
, 𝑟𝑎𝑛𝑑2𝑖

𝑗
 are random numbers in the range [0, 1], and 𝑐1, 𝑐2 are acceleration 

constants. It is up to the user to determine these parameters according to the handled 

optimization problem. 

The complete steps of the PSO algorithm are summarized by the flowchart given in figure 

2.1.  

 

Figure 2. 1 : Flow chart of the PSO algorithm. 
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4.1.2. Some variants of the PSO algorithm  

The original PSO algorithm has a problem of balance between the exploration of the 

search space and the exploitation of prominent regions [175,176]. It can be trapped in local 

optimums, especially in the case of multimodal, rugged, and non-separable optimization 

problems. To deal with this problem, several variants of the PSO algorithm have been 

proposed. The main changes in three variants of the PSO algorithm are summarized as 

follows:  

 A modified particle swarm optimizer using a fixed inertia weight [177]: in this 

version, a new parameter, called inertia weight, has been added to the velocity 

updating equation of the original PSO algorithm. This equation becomes: 

𝑉𝑖
𝑗(𝑘 + 1) = 𝜔 ⋅ 𝑉𝑖

𝑗(𝑘) + 𝑐1𝑟𝑎𝑛𝑑1𝑖
𝑗
(𝑃𝑖

𝑗
− 𝑋𝑖

𝑗
) + 𝑐2𝑟𝑎𝑛𝑑2𝑖

𝑗
(𝐺𝑗 − 𝑋𝑖

𝑗
) (2.6) 

Exploration and exploitation abilities have been balanced using the inertia weight 

(𝜔), where, a small value of 𝜔 gives more importance to exploitation than to 

exploration (local search) and a large number of 𝜔 gives more importance to 

exploration than to exploitation (global search).  

 Adaptive particle swarm optimization [177,178]: this method has the same velocity 

updating equation as the modified particle swarm optimizer using a fixed inertia 

weight. However, instead of using the fixed inertia weight during the optimization 

process, a dynamic 𝜔 is used. Several methods for changing the value of 𝜔 have been 

proposed. The most common is the linearly decreasing technique [177], it is given 

by the following equation:   

𝜔(𝑘 + 1) = 𝜔𝑑 ⋅ 𝜔(𝑘) (2.7) 

where: 𝜔𝑑 is a constant belongs to [0, 1]. 

Other methods, such as the fuzzy adaptive particle swarm optimization [178], can be 

found in the literature.    

 Comprehensive learning particle swarm optimizer [179]: this strategy is based on the 

comprehensive learning strategy. The velocity updating equation is given as follows: 

𝑉𝑖
𝑗(𝑘 + 1) = 𝜔 ⋅ 𝑉𝑖

𝑗(𝑘) + 𝑐 ⋅ 𝑟𝑎𝑛𝑑𝑖
𝑗
(𝑃𝑓𝑖(𝑗)

𝑗
− 𝑋𝑖

𝑗
) (2.8) 

where: 𝑓𝑖 = [𝑓𝑖(1), 𝑓𝑖(2), … , 𝑓𝑖(𝐷)] defines which particle’ personal best (𝑃𝑖
𝑗
) that 

the particle (𝑋𝑖
𝑗
) should follow.  

In the original PSO algorithm, each particle follows its own personal best and the 

global best. However, in this variant, each particle can follow the personal best of 

any particle of the swarm, including its own. This process is randomly performed 

according to the following equation:  

𝑓𝑖(𝑗) = 𝑟𝑎𝑛𝑑𝑖
𝑗
 (2.9) 

If 𝑓𝑖(𝑗) > 𝑃𝑐𝑖
𝑗
: the particle (𝑋𝑖

𝑗
) will learn from its own personal best (𝑃𝑖

𝑗
). 

If 𝑓𝑖(𝑗) < 𝑃𝑐𝑖
𝑗
: the particle (𝑋𝑖

𝑗
) will learn from another particle’ personal best (𝑃𝑖

𝑗
) 

using the tournament selection procedure as explained in [179]. 

𝑟𝑎𝑛𝑑𝑖
𝑗
 is a random number in the range [0 1], 𝑃𝑐 is the learning probability, which 

can take different values for different particles.   
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4.2. Teaching Learning Based Optimization algorithm 

The TLBO is a teaching-learning process inspired algorithm that was proposed by Rao 

et al. [109,110]. TLBO is a meta-heuristic algorithm that uses a group of individuals 

(population) to search for the global solution. Its population is considered as a group of 

students. The TLBO working principle is divided into two phases, teacher and learners 

phases. In the teacher phase, students learn from their teacher, the teacher gives the best 

performance in the population. In the learners phase, students learn by randomly interacting 

between themselves. The cost function variables are the taught subjects, and the fitness value 

of the optimization problem is considered as the students’ results.  

4.2.1. Teacher phase  

The TLBO algorithm begins with the teacher phase where students learn from their 

teacher. Assuming that the optimization problem is formulated as follows: 

 m variables (subjects to be taught) exist with n students (population size), at any iteration i, 

this phase is decomposed into the following steps: 

 A teacher is selected from the population by choosing the student who gives the best 

fitness 𝑋𝑗 𝑘𝑏𝑒𝑠𝑡
𝑖 (𝑗 = 1,… ,𝑚, 𝑘 = 1,… , 𝑛). 

 Calculate the students mean result 𝑀𝑗
𝑖 and the difference mean 𝑑𝑗 𝑘

𝑖  for each subject 

as follows:  

𝑀𝑗
𝑖 =

∑ 𝑋𝑗 𝑘
𝑖𝑛

𝑘=1

𝑛
 (2.10) 

𝑑𝑗 𝑘
𝑖 = 𝑟(𝑋𝑗 𝑘𝑏𝑒𝑠𝑡

𝑖 − 𝑇𝐹𝑀𝑗
𝑖) (2.11) 

 

where 𝑟 is a random number between 0 and 1, the Teaching Factor 𝑇𝐹 is a random 

integer number between 1 and 2. 

 Updating each existing solution as follows:  

𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖 = 𝑋𝑗 𝑘

𝑖 + 𝑑𝑗 𝑘
𝑖  (2.12) 

 A greedy selection is applied between the old and the new solution (𝑋𝑗 𝑘
𝑖 ,

𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖 ) in order to keep the best solution. 

 

4.2.2. Learners phase  

In this phase, students try to improve themselves by interacting with each other. The 

student 𝑋𝐴 choose randomly to interact with the student 𝑋𝐵 and learn from him. This phase 

is decomposed into the following steps: 

 Choose randomly q pairs of solutions such that : 𝐹𝐴
𝑖 ≠ 𝐹𝐵

𝑖 , where  𝐹𝐴
𝑖  and 𝐹𝐵

𝑖  are the 

fitness values of 𝑋𝐴 and 𝑋𝐵 , respectively. 

 In case of minimization problem, and for each pair, update the solutions using the 

following equations:  

𝑋𝑛𝑒𝑤𝑗 𝐴
𝑖 = 𝑋𝑗 𝐴

𝑖 + 𝑟(𝑋𝑗 𝐴
𝑖 − 𝑋𝑗 𝐵

𝑖 ),     𝑖𝑓       𝐹𝐴
𝑖 < 𝐹𝐵

𝑖  (2.13) 

𝑋𝑛𝑒𝑤𝑗 𝐴
𝑖 = 𝑋𝑗 𝐴

𝑖 + 𝑟(𝑋𝑗 𝐵
𝑖 − 𝑋𝑗 𝐴

𝑖 ),     𝑖𝑓       𝐹𝐵
𝑖 < 𝐹𝐴

𝑖 (2.14) 

 A greedy selection is applied between the old and the new solution to keep the best 

solution. 
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4.2.3. Initialization step  

Before starting the TLBO algorithm, the following parameters must be initialized: 

 the dimension "𝑚" of the optimization problem (𝑚 = number of optimized variables). 

 the population size "𝑛". The choice of the population size has a large impact on the 

meta-heuristic algorithms performance. So choosing the population size depend on 

several factors, two of them are the converging speed and the solution accuracy 

[180,181].  

 the maximum number of iterations 𝑘𝑚𝑎𝑥. The choice of the value of this parameter 

depends on the chosen sampling time. 

 the admissible maximum and minimum values for each variable 𝑋𝑗𝑚𝑖𝑛 and 𝑋𝑗𝑚𝑎𝑥.  

 the initial solutions  𝑋𝑗 𝑘
1   are randomly chosen using the following equation:  

𝑋𝑗 𝑘
1 = 𝑟𝑎𝑛𝑑(0,1) ∗ ( 𝑋𝑗𝑚𝑎𝑥 −  𝑋𝑗𝑚𝑖𝑛) +  𝑋𝑗𝑚𝑖𝑛                                     (2.15) 

 the termination criterion 휀. 

To illustrate the different steps of the TLBO method, its flow chart is given in figure (2.2). 

4.3. Improved teaching-learning-based optimization algorithm  

In order to enhance the optimization performance of the original TLBO algorithm, 

Rao and Patel proposed an Improved TLBO (I-TLBO) to solve unconstrained optimization 

problems [182]. In this variant, the exploration and the exploitation capabilities were 

enhanced by introducing the concept of multi-teachers, an adaptive teaching factor, tutorial 

training and self-motivated learning. Using several unconstrained benchmark functions, it 

has been proven that the improved TLBO algorithm gives better optimization performance 

than the original TLBO, the ABC algorithm, the modified ABC algorithm, several versions 

of the PSO and other optimization algorithms [182]. 

The modifications to the basic TLBO algorithm are given as follows: 

 Number of teachers: in the original TLBO algorithm, only one teacher is chosen to 

teach the entire population. However, in the I-TLBO algorithm, several teachers are 

selected. Assuming that the chosen number of teachers is equal to "𝑇𝑛", the best 

candidate solution is selected as the first teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 such as 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 =

𝐹𝑏𝑒𝑠𝑡, where 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1  is the first teacher’ fitness value and 𝐹𝑏𝑒𝑠𝑡 is the fitness value 

of the best candidate solution. The remaining (𝑇𝑛 − 1) teachers are selected as 

follows:  

 

𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑠 = 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 − 𝑟𝑎𝑛𝑑
∗ (2.16) 

where: 𝑠 = 2,3, … , 𝑇𝑛 and 𝑟𝑎𝑛𝑑∗ is a random number in the range [0, (𝐹𝑚𝑎𝑥 −
𝐹𝑚𝑖𝑛)]. 𝐹𝑚𝑎𝑥 and 𝐹𝑚𝑖𝑛 are the maximum fitness and the minimum fitness of all 

learners, respectively. 

If the equality is not satisfied, select (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑠 as the element that gives the closest 

value to 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑠  calculated above. After that, assign a group of learners to each 

teacher as follows: 

For 𝑘 = 1: (𝑛 − 𝑇𝑛) 
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o If 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 ≥ 𝐹(𝑋)𝑘 > 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)2 

 Assign the learner (𝑋)𝑘 to the teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 

o Else, If 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)2 ≥ 𝐹(𝑋)𝑘 > 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)3 

 Assign the learner (𝑋)𝑘 to the teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)2 

⋮ 

o Else, If 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑇𝑛−1 ≥ 𝐹(𝑋)𝑘 > 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑇𝑛  

 Assign the learner (𝑋)𝑘 to the teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑇𝑛−1 

o Else  

 Assign the learner (𝑋)𝑘 to the teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑇𝑛 

End  

 Adaptive teaching factor (𝑇𝐹): the second change is related to the teaching factor. 

Such as, in the basic TLBO algorithm the teaching factor is chosen randomly and it 

can be either one or two. Although, in the I-TLBO algorithm, for each teacher, the 

teaching factor is calculated as follows  

If 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑘 ≠ 0 

(𝑇𝐹)𝑘 =
𝐹(𝑋)𝑟𝑎𝑛𝑑
𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑘

 (2.17) 

where:𝑘 = 1: 𝑇𝑛, 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑘is the fitness value of the 𝑘𝑡ℎ teacher, and 𝐹(𝑋)𝑟𝑎𝑛𝑑 : is 

the fitness value of a random learner who is assigned to the 𝑘𝑡ℎ teacher. 

 Learning through tutorial: the third modification is based on the fact that, during 

tutorial hours, learners can learn by interacting with themselves or with their 

teachers. Therefore, equation (2.12) becomes: 

 

(𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖 )𝑠 = (𝑋𝑗 𝑘

𝑖 + 𝑑𝑗 𝑘
𝑖 )𝑠 + 𝑟𝑎𝑛𝑑 ⋅ (𝑋𝑗 ℎℎ

𝑖 − 𝑋𝑗 𝑘
𝑖 ), 𝑖𝑓 𝐹(𝑋)ℎℎ > 𝐹(𝑋)𝑘 (2.18) 

 

(𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖 )𝑠 = (𝑋𝑗 𝑘

𝑖 + 𝑑𝑗 𝑘
𝑖 )𝑠 − 𝑟𝑎𝑛𝑑 ⋅ (𝑋𝑗 ℎℎ

𝑖 − 𝑋𝑗 𝑘
𝑖 ), 𝑖𝑓 𝐹(𝑋)ℎℎ < 𝐹(𝑋)𝑘  (2.19) 

where:  

𝑖: is the current iteration, 𝑗 = 1,… ,𝑚, 𝑘 = 1,… , 𝑛, 𝑚 is the number of variables,  𝑛 

is the population size, 𝑠 = 1,… , 𝑇𝑛, and 𝑋𝑗 ℎℎ
𝑖  is a random learner.  

 Self-motivated learning: in the original TLBO algorithm, learners can improve their 

grades (fitness) by learning from their teacher or by interacting with themselves. In 

the I-TLBO algorithm, the student can also improve their grades by self-learning.  

Hence, equations (2.13) and (2.14) become:   

𝑋𝑛𝑒𝑤𝑗 𝐴
𝑖 = 𝑋𝑗 𝐴

𝑖 + 𝑟𝑎𝑛𝑑(𝑋𝑗 𝐴
𝑖 − 𝑋𝑗 𝐵

𝑖 ) + 𝑟𝑎𝑛𝑑((𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 − 𝐸𝐹𝑋𝑗 𝐴
𝑖 ),      𝑖𝑓      𝐹𝐴

𝑖 < 𝐹𝐵
𝑖  (2.20) 

  

 𝑋𝑛𝑒𝑤𝑗 𝐴
𝑖 = 𝑋𝑗 𝐴

𝑖 + 𝑟𝑎𝑛𝑑(𝑋𝑗 𝐵
𝑖 − 𝑋𝑗 𝐴

𝑖 ) + 𝑟𝑎𝑛𝑑((𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 − 𝐸𝐹𝑋𝑗 𝐴
𝑖 ),      𝑖𝑓       𝐹𝐵

𝑖 < 𝐹𝐴
𝑖 

 

(2.21) 
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Figure 2. 2 : Flow chart of the TLBO algorithm. 
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4.4. The proposed Enhanced Teaching Learning Based Optimization (ETLBO) 

In order to improve the performance of the TLBO algorithm, mainly the convergence 

rate, the selecting process of the students’ pairs of the original algorithm is modified as 

follows. 

4.4.1. Students pairs selecting process 

The learners' phase of the original TLBO algorithm is based on three steps: randomly 

selecting of q pairs of solutions, updating these solutions according to equations (2.13) and 

(2.14), and Appling a greedy selection to the new obtained solutions.  

The choice of the students’ pairs in the learners' phase of the ETLBO algorithm is a 

critical task. Instead of using a random approach to choose these pairs, a more selectable 

approach, based on each student grade during the optimization process, is applied. It would 

be more interesting if students interact with their pairs having a good grade. This idea can 

be performed by introducing a new factor, named student grade “𝑆𝐺”, it is given by:  

𝑆𝐺𝑘
𝑖 =  100

(max(𝐹𝑖) − 𝐹𝑘
𝑖)

(max(𝐹𝑖) + 휀)
 (2.22) 

Such as:  

𝐹𝑖 = [𝐹1
𝑖, 𝐹2

𝑖 , … , 𝐹𝑘
𝑖 , … , 𝐹𝑛

𝑖], 𝑖 = 1,… , 𝑘𝑚𝑎𝑥 , 𝑘 = 1,… , 𝑛, 𝑘𝑚𝑎𝑥 is the maximum number of 

iterations, 𝑛 is the population size and 휀 is a positive small number. 

 

The pairs of students are chosen according to the following steps:  

 Rank the students, from best to worst, according to their 𝑆𝐺𝑘
𝑖  values. The biggest 𝑆𝐺𝑘

𝑖  

value indicates the best student and the lowest indicates the worst student.  

 Randomly choose a percentage (𝐼𝐹  ∈ [30%, 50%]) to split the population into two 

groups, good and bad students, according to theirs grades, such as: 

𝐺𝑆 =
𝐼𝐹
100

∗ 𝑛,   𝐵𝑠 = (1 −
𝐼𝐹
100

) ∗ 𝑛 (2.23) 

where: 

𝐺𝑆 is the number of good students and 𝐵𝑠 is the number of bad students.  

 Choose q pairs of solutions 𝑋𝐴 and 𝑋𝐵.  𝑋𝐴  and 𝑋𝐵 are randomly chosen from the 

whole population and the group of good students, respectively. 

5. Experimental study using several benchmark functions  

In this section, using eight benchmark functions with different dimensions and search 

spaces, the quality of the proposed ETLBO algorithm is investigated. The obtained results 

using the ETLBO algorithm are compared with the results of the original TLBO algorithm, 

the I-TLBO algorithm for (𝑇𝑛 = 1 and 𝑇𝑛 = 2), and the modified PSO algorithm (w-PSO). 

Using multiple tests, the parameters of w-PSO are chosen as follow:  

𝜔(0) = 1,   𝜔𝑑 = 0.99,    𝑉𝑚𝑎𝑥 = 10,    𝑐1 = 2,   𝑐2 = 2, and |𝑉𝑖
𝑑| = 𝑉𝑚𝑎𝑥 for |𝑉𝑖

𝑑| > 𝑉𝑚𝑎𝑥.   

5.1. Benchmark functions description  

The following eight well-known benchmark functions are used:   

 Sphere function:  
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𝑓1(𝑋) =  ∑𝑥𝑖
2

𝐷

𝑖=1

 ,           − 100 ≤ 𝑥𝑖 ≤ 100 (2.24) 

𝑓1(𝑋) is a separable and multimodal function. 

 Rosenbrock function:  

𝑓2(𝑋) = ∑100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2

𝐷−1

𝑖=1

 ,      − 2.048 ≤ 𝑥𝑖 ≤ 2.048 (2.25) 

𝑓2(𝑋) is a non-separable and unimodal function 

 Ackley function:  

𝑓3(𝑋) = 20 + exp(1) − 20 exp

(

 −0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 − exp(
1

𝐷
∑𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝐷

𝑖=1

) 

𝑠𝑢𝑐ℎ 𝑎𝑠 − 32.768 ≤ 𝑥𝑖 ≤ 32.768 

(2.26) 

𝑓3(𝑋) is a non-separable and multimodal benchmark function. 

 Griewank function:  

𝑓4(𝑋) = 1 +
1

4000
(∑(𝑥𝑖 − 100)

2

𝐷

𝑖=1

) − (∏cos (
𝑥𝑖 − 100

√𝑖
)

𝐷

𝑖=1

)  

𝑠𝑢𝑐ℎ 𝑎𝑠 − 600 ≤ 𝑥𝑖 ≤ 600 

(2.27) 

𝑓4(𝑋) is a non-separable and multimodal function. 

 Weierstrass function:  

𝑓5(𝑋) =∑(∑[0.5𝑘 cos(2𝜋3𝑘(𝑥𝑖 + 0.5))]

20

𝑘=0

) − 𝐷

𝐷

𝑖=1

∑[0.5𝑘 cos(3𝑘𝜋)]

20

𝑘=0

 

𝑠𝑢𝑐ℎ 𝑎𝑠   − 0.5 ≤ 𝑥𝑖 ≤ 0.5 

(2.28) 

𝑓5(𝑋) is a separable and multimodal function. 

 Rastrigin function:  

𝑓6(𝑋) =∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

,         − 5.12 ≤ 𝑥𝑖 ≤ 5.12 (2.29) 

𝑓6(𝑋) is a separable and multimodal benchmark function. 

 NCrastrigin function:  

𝑓7(𝑋) =∑(𝑦𝑖
2 − 10 cos(2𝜋𝑦𝑖) + 10)

𝐷

𝑖=1

,  

𝑦𝑖 = {
𝑥𝑖 ,                       𝑖𝑓    |𝑥𝑖| < 0.5
𝑟𝑜𝑢𝑛𝑑(2𝑥𝑖)

2
,    𝑖𝑓    |𝑥𝑖| ≥ 0.5 

 𝑠𝑢𝑐ℎ 𝑎𝑠 − 5.12 ≤ 𝑥𝑖 ≤ 5.12 

 

(2.30) 

𝑓7(𝑋) is a separable and multimodal benchmark function. 

 Schwefel function:  

𝑓8(𝑋) = −∑(𝑥𝑖 sin (√|𝑥𝑖|))

𝐷

𝑖=1

  ,              − 500 ≤ 𝑥𝑖 ≤ 500 (2.31) 

Where:  

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷], D denote the dimension of all benchmark functions mentioned above.  

𝑓8(𝑋)is a separable and multimodal function. 
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The global minimum of all these benchmark functions is equal to zero at 𝑋 = [0,0, … , 0], 
except in the case of the Rosenbrock function 𝑋 = [1,1, … , 1]. 

5.2. Numerical Results 

For all considered algorithms the population size is equal to 40 and the maximum 

number of iterations 𝑘𝑚𝑎𝑥 is equal to 1000. Using the same software and hardware 

configuration, the optimization process of all considered benchmark functions is repeated 

500 times. If the value of the evaluated function drops below 2.22e-16, it is reported as 0.  

The obtained results are presented in table 2.1, where Mean and SD denote the mean 

value and the standard deviation of each benchmark function. In each row, the minimum 

mean value is indicated using a bold font. If the obtained mean value is equal to zero for 

more than one algorithm, the reported best result is that of the algorithm which requires less 

iterations to achieve the objective.  

 
 

Figure 2. 3 : Convergence speed (D=2 for Rosenbrock function and D=5 for other 

functions).
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 D ETLBO TLBO I-TLBO (𝑇𝑛 = 1) I-TLBO (𝑇𝑛 = 2) w-PSO 

Mean SD Mean SD Mean SD Mean SD Mean SD 

𝑓1 5 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1.22e-14 2.2e-13 

25 0 0 0 0 0 0 0 0 8.76e-4 3.29e-3 

𝑓2 2 0 0 0 0 0 0 0 0 0 0 

3 1.89e-9 6.15e-9 5.85e-9 6.06e-8 3.12e-7 2.26e-6 2.90e-7 2.75e-6 2.67e-3 3.09e-3 

10 6.81e0 0.35e0 3.016e0 1.129e0 2.86e0 7.76e-1 2.60e0 7.14e-1 4.52e0 1.51e0 

𝑓3 5 1.71e-15 1.49e-15 9.02e-16 2.24e-16 8.88e-16 0 8.88e-16 0 2.20e-15 1.72e-15 

10 4.17e-15 9.65e-16 4.31e-15 6.62e-16 2.45e-15 1.76e-15 2.57e-15 1.77e-15 3.29e-3 7.36e-2 

25 4.43e-15 1.59e-16 4.45e-15 1.59e-16 4.44e-15 0 4.44e-15 4.44e-15 3.05e-1 5.65e-1 

𝑓4 5 2.70e-4 2.1e-3 1.96e-2 1.19e-2 1.41e-2 2.03e-2 1.69e-2 2.13e-2 1.08e-1 8.52e-2 

10 1.70e-4 1.8e-3 1.21e-2 1.62e-2 4.91e-3 1.66e-2 8.97e-3 2.81e-2 1.98e-1 1.53e-1 

25 0 0 1.38e-4 2.13e-3 0 0 0 0 1.15e0 6.31e-1 

𝑓5 5 6.16e-4 7e-3 1.30e-13 2.90e-12 2.67e-2 1.23e-1 4.58e-3 3.01e-2 2.42e-3 1.95e-2 

10 2.00e-4 3.3e-3 5.65e-4 6.09e-3 1.74e-3 1.94e-2 3.71e-3 3.70e-3 1.05e-1 1.96e-1 

25 0 0 0 0 0 0 0 0 2.69e0 1.56e0 

𝑓6 5 6.52e-3 1.45e-1 7.28e-2 2.63e-1 9.95e-3 2.22e-1 0 0 5.51e-1 6.92e-1 

10 0 0 2.81e0 1.68e0 9.91e-1 2.60e0 1.29e0 2.90e0 5.14e0 2.48e0 

25 0 0 11.02e0 4.85e0 4.73e0 9.11e0 8.67e0 16.28e0 33.16 11.20 

𝑓7 5 7.34e-2 3.82e-1 2.29e-1 4.32e-1 0 0 0 0 7.28e-1 7.06e-1 

10 1.25e0 3.13e0 5.22e0 1.07e0 4.37e0 3.04e0 6.12e0 2.84e0 3.63e0 1.57e0 

25 10.78 25.49 17.53 5.95 24.75 21.11 45.09 28.98 42.68 14.26 

𝑓8 5 9.89e-14 2.02e-12 8.43e-3 8.02e-3 3.84e-2 7.24e-2 2.87e-2 3.93e-2 1.91e-4 6.51e-4 

10 9.83e-11 1.99e-9 1.37e-2 1.35e-2 8.33e-2 1.77e-1 4.71e-2 5.37e-2 6.17e-4 2.21e-3 

25 1.14e-5 2.55e-4 2.53e-2 2.62e-2 1.24e-1 1.53e-1 6.08e-2 5.87e-2 1.27e-3 5.87e-3 

Table 2. 1 : Optimization results.



 

According to table (2.1), it can be seen that the proposed ETLBO algorithm 

outperforms the other considered algorithms in 18 cases, while the I-TLBO (𝑇𝑛 = 2), I-

TLBO (𝑇𝑛 = 1) and the original TLBO algorithms give better performances than the 

proposed ETLBO algorithm in 3 cases, 2cases, and one case, respectively.  

Figures (2.3), (2.4) and (2.5) show the convergence speed of each algorithm. It is 

clear that the proposed ETLBO algorithm has a better convergence speed than the other 

considered meta-heuristic algorithms, in all considered cases of the dimensions of the 

optimization problem. 

 

 

Figure 2. 4 : Convergence speed (D=3 for Rosenbrock function and D=10 for other 

functions). 
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Figure 2. 5 : Convergence speed (D=10 for Rosenbrock function and D=25 for other 

functions). 

6. Conclusion  

In this chapter, an enhanced variant of the TLBO algorithm has been proposed.  In 

this algorithm, the random selecting process of learners’ pairs was replaced by a more 

efficient approach based on each student’s grade during the optimization process, such that 

the students only interact with their pairs having a good grade.  This modification allows 

improving the convergence rate and the exploitation quality of the algorithm. 

The convergence rate and the efficiency of the proposed algorithm were assessed by 

considering eight well-known benchmark functions. The obtained results have showed that 

the proposed ETLBO algorithm outperforms the other considered algorithms; namely the 

original TLBO, the I-TLBO with one and two teachers, and the w-PSO algorithm. 
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CHAPTER 3 

ARTIFICIAL INTELLIGENT BASED PID CONTROLLERS 

 

1. Introduction  

Due to its popularity, simple design procedure, ease of implementation and good control 

performances, Proportional Integral Derivative (PID) controller is still widely used and the 

most popular in many industrial applications [183–186]. However, in case of complex highly 

nonlinear systems, satisfactory control performance cannot be achieved using the 

conventional linear methods to tune the PID’ parameters. Moreover, all linear tuning 

methods, such as Ziegler-Nicholas technique, gain-phase margin, root locus, minimum 

variance and gain scheduling, are based on the linearization of the controlled system around 

the operating point. 

In order to achieve good control performance of the conventional PID controller, several 

methods, which online tune the PID gains to compensate the effect of the modelling 

uncertainties and the system parameters variation, have been proposed [183,187–189]. 

These techniques include linear self-tuning methods, non-linear structures of PID 

controllers, and other methods.  

Different types of PID controllers have been proposed to improve the control 

performance [25,190,191]. Among these types we can find the fractional PID controller 

[189,192,193], the nonlinear neural network based PID controller [124,194–197], the fuzzy 

PID controller [198–202], the nonlinear PID controller that uses special nonlinear functions 

[203], etc.  

In the fractional PID controller (𝑃𝐼𝜆𝐷𝜇), the gains, the integral and the derivative actions 

are obtained using non-integer integration and differentiation orders [188,189]. The 

fractional PID controller contains more parameters than the conventional PID. Therefore, by 

tuning these parameters, good control performance could be achieved. However, computing 

the fractional integral and derivative is a time consuming and a complex process, especially 

in real-time applications. Indeed, several methods, to compute the fractional integral and the 

fractional derivative, such as the Grünwald-Letnikov [204], the Riemann–Liouville and 

Caputo [205,206] and others [207], have been proposed.  

Several other versions of the PID controller, were proposed and used in many real-time 

applications [208–211]. In fact, these PID versions can be classified according to the 

technique used to tune the PID gains. Some of them are given as follows: 

 Neural Network based PID controller (NNPID) [124,194–196,210,212]: two 

different architectures of the NNPID can be distinguished. In the first architecture, 

the connections and the activation functions of the neural network are chosen to 

mimic the PID. The output of the neural network is exactly the same as the control 

law of the PID. Therefore, the PID gains are the weights of the neural network and 

they are optimized using, in most cases, the back propagation algorithm. In the 

second architecture, the neural network has three outputs; each one calculates one of 

the PID gains.  
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 Fuzzy PID controller (FPID) [200,211,213,214]: usually, the control block diagram 

of the FPID contains three essential blocks; the controlled system, the conventional 

PID and the fuzzy logic system. The gains of the conventional PID are computed 

using the fuzzy logic system. Due to its simplicity, the Sugeno type FPID controller 

is more popular than the Mamdani type.  

 Meta-heuristic based PID controller [208,215–223]: using a meta-heuristic 

algorithm, the parameters of the PID are directly optimized. However, in case of an 

online optimization process and due to the working principle of meta-heuristic-

algorithms, an emulator of the controlled system is required. Several meta-heuristic 

based PID controllers, such as the PSO based PID controller [198,215,217], the Gray 

Wolf Optimizer (GWO) based PID controller [218,219], the TLBO based PID 

controller [220,221], the Artificial Bee Colony (ABC) based PID controller 

[222,223], have been proposed. 

Hybrid versions of PID controllers, that combine neural networks, fuzzy logic systems, 

and meta-heuristic algorithms, have also been proposed [194,215,224–227].  

In this chapter, the adaptive neural network PID (ANNPID) controller, the adaptive 

Fourier series neural network PID (AFSNNPID) controller and the PSO based PID controller 

are presented and detailed. To assess the effectiveness of the ANNPID, the AFSNNPID and 

the PSO based PID controllers, the control of the continuous stirred tank reactor (CSTR) and 

the 3-DOF robot arm manipulator, through simulation and experimental studies, is 

considered. In addition, a comparative study is carried out.  

2. Adaptive neural network PID controller  

The conventional PID control law is given by: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

+ 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 (3.1) 

where 𝑒(𝑡) represents the tracking error and (𝐾𝑝, 𝐾𝑖, 𝐾𝑑) are the controller gains. 

The discrete version of this control law, using the trapezoid method and the sampling 

period 𝑇𝑠, is given as follows: 

𝑢(𝑘) = 𝑢(𝑘 − 1) + (𝐾𝑝 +
𝐾𝑑
𝑇𝑠
+
𝐾𝑖𝑇𝑠
2
) 𝑒(𝑘) + 

(
𝐾𝑖𝑇𝑠
2

− 2
𝐾𝑑
𝑇𝑠
− 𝐾𝑝) 𝑒(𝑘 − 1) +

𝐾𝑑
𝑇𝑠
𝑒(𝑘 − 2) 

(3.2) 

To compensate the effect of the modeling uncertainties and the system parameters 

variation and get more satisfactory performance a neural network is used, as it is shown in 

figure 3.1, to tune the PID gains [124]. 

The used neural network (figure 3.2) is a feed forward network with three outputs 

(𝐾𝑝, 𝐾𝑖, 𝐾𝑑), four inputs (𝑒(𝑘), 𝑒(𝑘 − 1), 𝑢(𝑘 − 1), 𝑢(𝑘 − 2)) and one hidden layer. 
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Figure 3. 1 : Adaptive neural network PID controller in closed loop.  

 
Figure 3. 2 : Structure of the used neural network. 

The output of each node of the hidden layer is given by: 

{ 

 hj = 𝑓(𝑆𝑗)                                            

𝑆𝑗 = ∑𝑤𝑖𝑗
𝐼 𝑥𝑖 , 𝑗 = 1,… , 𝑛h

𝑛+1

𝑖=1

 (3.3) 

where: (𝑛 = 4) is the number of inputs, 𝑛h is the number of nodes in the hidden layer, 𝑓(𝑆𝑗) 

is the sigmoid activation function, 𝑤𝑖𝑗
𝐼  is the connection weight between the ith neuron of the 

input layer and the jth neuron of the hidden layer and 𝑤𝑛+1𝑗
𝐼  is the bias of the jth neuron of 

the hidden layer and 𝑥𝑖 are the inputs of the neural network. 

The input vector, at the sampling time 𝑘, is given as follows: 

𝑋(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), 𝑥3(𝑘), 𝑥4(𝑘), 𝑥5(𝑘)] = [𝑒(𝑘), 𝑒(𝑘 − 1), 𝑢(𝑘), 𝑢(𝑘 − 1), 1]    

The outputs of the neural network are given by: 

𝑜𝑗 = ∑ 𝑤𝑖𝑗
ℎℎ𝑖

𝑛h+1

𝑖=1

 ,   𝑗 = 1,… , 𝑛𝑜 (3.4) 

where: (𝑛𝑜 = 3) is the number of outputs, 𝑤𝑖𝑗
ℎ  is the connection weight between the ith neuron 
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of the hidden layer and the jth neuron of the output layer and 𝑤𝑛h+1𝑗
ℎ  is the bias of the jth output 

neuron. 

The neural network outputs represent the gains of the PID controller (𝑘𝑝 = 𝑜1, 𝑘𝑖 =

𝑜2, 𝐾𝑑 = 𝑜3). The weights values of the neural network are adjusted so that the objective 

function given by equation (3.5) is minimized.  

𝐸 =∑𝐸(𝑘)

𝑁

𝑘=0

 (3.5) 

Such as: 

𝐸(𝑘) =
1

2
𝑒(𝑘)2 =

1

2
(𝑅(𝑘) − 𝑦(𝑘))2 (3.6) 

where: 𝑅(𝑘) is the reference trajectory and 𝑦(𝑘) is the actual system output. 

The connections weights of the neural network are adapted, using the back propagation 

method, according to the following rule: 

𝑤𝑖𝑗(𝑘 + 1) = 𝑤𝑖𝑗(𝑘) − ɳ 
𝜕𝐸(𝑘)

𝜕𝑤𝑖𝑗(𝑘)
 (3.7) 

where: ɳ ∈ [0 1] is the learning rate. 

For the output layer, the term 
𝜕𝐸(𝑘)

𝜕𝑤𝑖𝑗
h (𝑘)

  can be computed as follows: 

𝜕𝐸(𝑘)

𝜕𝑤𝑖𝑗
h(𝑘)

=
𝜕𝐸(𝑘)

𝜕𝑒(𝑘)
 
𝜕𝑒(𝑘)

𝜕𝑦(𝑘)
 
𝜕𝑦(𝑘)

𝜕𝑢(𝑘)

𝜕𝑢(𝑘)

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑤𝑖𝑗
h

 (3.8) 

 

𝜕𝐸(𝑘)

𝜕𝑤𝑖𝑗
h(𝑘)

= −𝛿𝑗(𝑘) 
𝜕𝑜𝑗

𝜕𝑤𝑖𝑗
h

 (3.9) 

Such as: 

𝛿𝑗(𝑘) = 𝑒(𝑘)
𝜕𝑦(𝑘)

𝜕𝑢(𝑘)

𝜕𝑢(𝑘)

𝜕𝑜𝑗
 , 𝑗 = 1,… , 𝑛𝑜 (3.10) 

 

{
  
 

  
 
𝜕𝑢(𝑘)

𝜕𝑜1
= 𝑒(𝑘) − 𝑒(𝑘 − 1)                                  

𝜕𝑢(𝑘)

𝜕𝑜2
=
𝑇𝑠
2
(𝑒(𝑘) + 𝑒(𝑘 − 1))                        

𝜕𝑢(𝑘)

𝜕𝑜3
=
1

𝑇𝑠
(𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2))

 (3.11) 

 

𝜕𝑜𝑗

𝜕𝑤𝑖𝑗
h
= ℎ𝑖  , 𝑖 = 1,… , 𝑛h + 1, 𝑗 = 1, … , 𝑛𝑜 ,       ℎ𝑛h+1 = 1 (3.12) 

 

Finally, the adaptation equation can be written as follows: 
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𝑤𝑖𝑗
h(𝑘 + 1) = 𝑤𝑖𝑗

h(𝑘) + ɳ𝛿𝑖𝑗(𝑘)ℎ𝑖(𝑘) , 𝑖 = 1,… , 𝑛h + 1, 𝑗 = 1,… , 𝑛𝑜 (3.13) 

For the hidden layer, the gradient of the objective function is obtained as follows: 

𝜕𝐸(𝑘)

𝜕𝑤𝑖𝑗
I (𝑘)

=
𝜕𝐸(𝑘)

𝜕h𝑗(𝑘)

𝜕h𝑗(𝑘)

𝜕𝑆𝑗(𝑘)

𝜕𝑆𝑗(𝑘)

𝜕𝑤𝑖𝑗
I (𝑘)

 , 𝑖 = 1, … , 𝑛𝑖 + 1, 𝑗 = 1…𝑛h (3.14) 

The different terms of equation (3.14) can be computed as follows: 

𝜕𝐸(𝑘)

𝜕ℎ𝑗(𝑘)
=  −𝑒(𝑘)

𝜕𝑦(𝑘)

𝜕𝑢(𝑘)
∑

𝜕𝑢(𝑘)

𝜕o𝑙(𝑘)

𝑛𝑜

𝑙=1

𝑤𝑗𝑙
ℎ(𝑘) (3.15) 

𝜕ℎ𝑗(𝑘)

𝜕𝑆𝑗(𝑘)
= ℎ𝑗(𝑘)(1 − ℎ𝑗(𝑘)) (3.16) 

𝜕𝑆𝑗(𝑘)

𝜕𝑤𝑖𝑗
I (𝑘)

= 𝑥𝑖(𝑘) (3.17) 

Equation (3.14) becomes: 

𝜕𝐸(𝑘)

𝜕𝑤𝑖𝑗
I (𝑘)

= −∑𝛿𝑙(𝑘)𝑤𝑗𝑙
ℎ(𝑘)

𝑛𝑜

𝑙=1

ℎ𝑗(𝑘)(1 − ℎ𝑗(𝑘))𝑥𝑖(𝑘) (3.18) 

where: 𝛿𝑙(𝑘) ( 𝑙 = 1,… , 𝑛𝑜) is given by equation (3.10). 

Finally, the adaptation rule is given by: 

𝑤𝑖𝑗
I (𝑘 + 1) = 𝑤𝑖𝑗

I (𝑘) + ɳ𝜎𝑗(𝑘)𝑥𝑖(𝑘), 𝑖 = 1,… , 𝑛𝑜 + 1, 𝑗 = 1,… , 𝑛h (3.19) 

Such as: 

𝜎𝑗(𝑘) = ℎ𝑗(𝑘) (1 − ℎ𝑗(𝑘))∑𝛿𝑙(𝑘)𝑤𝑗𝑙
ℎ(𝑘)

𝑛𝑜

𝑙=1

, 𝑗 = 1, … , 𝑛h (3.20) 

The term 
𝜕𝑦(𝑘)

𝜕𝑢(𝑘)
 is obtained using an emulator for the system. This emulator is a feed 

forward multilayer neural network with one input, one hidden layer and one output. The neural 

network is trained, using the input-output data of the system and the back propagation 

algorithm, to approximate the system output.  

The output �̂�(𝑘) of the emulator is given by: 

�̂�(𝑘) = ∑ 𝑤𝑖
ℎ(𝑘)𝑜𝑖

ℎ

𝑚+1

𝑖=1

(𝑘) (3.21) 

where: 𝑚 is the number of nodes in the hidden layer, 𝑤𝑖
ℎ are the connections weights  

between the hidden nodes and the output node, 𝑤𝑚+1
ℎ  is the bias of the output node and 𝑜𝑖

ℎ are 

the outputs of the hidden nodes, they are given by: 

{

𝑜𝑗
ℎ(𝑘) = 𝑓(𝑠𝑗

ℎ(𝑘))                         

𝑠𝑗
ℎ(𝑘) = 𝑤𝑗

𝐼(𝑘)𝑢(𝑘), 𝑗 = 1,… ,𝑚

𝑜𝑚+1
ℎ = 1                                         

 (3.22) 
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where: 𝑤𝑗
𝐼 are the connections weights between the input node and the hidden nodes, 

𝑢(𝑘) is the input of the system and the emulator, and 𝑓(. ) is the activation function. 

The term 
𝜕𝑦(𝑘)

𝜕𝑢(𝑘)
 of equation (3.8) and (3.15) is approximated as follows: 

𝜕𝑦(𝑘)

𝜕𝑢(𝑘)
≅
𝜕�̂�(𝑘)

𝜕𝑢(𝑘)
=∑𝑤𝑖

ℎ(𝑘)𝑤𝑖
𝐼(𝑘)𝑜𝑖

ℎ(𝑘)(1 −

𝑚

𝑖=1

𝑜𝑖
ℎ(𝑘)) (3.23) 

3. Adaptive Fourier series neural network PID controller  

3.1.  Fourier series neural network 

The FSNN is a Multi Inputs Single Output (MISO) network with one hidden layer, its 

architecture (figure 3.3) is based on the topological structure of the multidimensional Fourier 

series. The input layer of the FSNN contains m input nodes receiving the network inputs 𝑥𝑖 (𝑖 =
1,2, … ,𝑚). Each input 𝑥𝑖 is scaled to the range [0 𝑇𝑖] and connected through a fixed frequency 

weight 𝜔𝑖 =
2𝜋

𝑇𝑖
 to 𝑁𝑖 harmonic neurons in the hidden layer. In addition to the harmonic 

neurons, there are 𝑙 = 2𝑚 product nodes in the hidden layer. Each of these nodes implements 

the product of 𝑚 outputs of the harmonic neurons. The single linear neuron of the output layer 

implements the weighted sum of the product nodes outputs. The connections weights 

𝑊𝑛1,…,𝑛𝑚
𝑗

 (𝑗 = 1,… , 𝑙.  𝑛𝑖 = 1,… ,𝑁𝑖) between the hidden layer and the output layer are 

adapted using an appropriate learning rule. 

 

Figure 3. 3 : Fourier series neural network architecture. 
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The network output is given by: 

 �̂� = 𝑊0 + ∑ … ∑ [𝑊𝑛1,…,𝑛𝑚
1 cos(𝑛1𝜔1𝑥1)… cos(𝑛𝑚𝜔𝑚𝑥𝑚)

𝑁𝑚

𝑛𝑚=1

𝑁1

𝑛1=1

+𝑊𝑛1,…,𝑛𝑚
2 cos(𝑛1𝜔1𝑥1)… sin(𝑛𝑚𝜔𝑚𝑥𝑚) + ⋯

+𝑊𝑛1,…,𝑛𝑚
𝑙−1 sin(𝑛1𝜔1𝑥1)… cos(𝑛𝑚𝜔𝑚𝑥𝑚)

+𝑊𝑛1,…,𝑛𝑚
𝑙 sin(𝑛1𝜔1𝑥1)… sin(𝑛𝑚𝜔𝑚𝑥𝑚)] 

(3.24) 

where: 𝑚 is the number of the network inputs, (𝑋 = [𝑥1, … , 𝑥𝑚]) is the vector of the network 

inputs, (𝜔𝑖 =
2𝜋

𝑇𝑖
, 𝑖 = 1,2, … ,𝑚) are the frequency weights, 𝑇𝑖 is the range of the input 𝑥𝑖 

(𝑥𝑖 ∈ [0 𝑇𝑖]), (𝑙 = 2
𝑚) is the number of product nodes, 𝑊𝑛1,…,𝑛𝑚

𝑗
 is the connections weights 

(state weights) between the hidden and the output layers, 𝑊0 is the network bias and 𝑁𝑖 is 

the series length. 

The number of the weights (𝑊𝑛1,…,𝑛𝑚
𝑗

) is given as follows:  

𝑁𝑤 =  𝑙 ⋅∏𝑁𝑖

𝑚

𝑖=1

 (3.25) 

Equation (3.24) could be rewritten as follows: 

 �̂� = 𝑊0 + ∑ … ∑ ∑[𝑊𝑛1,…,𝑛𝑚
𝑗

𝐻𝑗]

𝑙

𝑗=1

𝑁𝑚

𝑛𝑚=1

𝑁1

𝑛1=1

 (3.26) 

Such as: 

𝐻1 = cos(𝑛1𝜔1𝑥1) cos(𝑛2𝜔2𝑥2)… cos(𝑛𝑚−1𝜔𝑚−1𝑥𝑚−1) cos(𝑛𝑚𝜔𝑚𝑥𝑚), 

𝐻2 = cos(𝑛1𝜔1𝑥1) cos(𝑛2𝜔2𝑥2)… cos(𝑛𝑚−1𝜔𝑚−1𝑥𝑚−1) sins(𝑛𝑚𝜔𝑚𝑥𝑚), 

⋮ 

𝐻𝑙−1 = sin(𝑛1𝜔1𝑥1) sin(𝑛2𝜔2𝑥2)… sin(𝑛𝑚−1𝜔𝑚−1𝑥𝑚−1) cos(𝑛𝑚𝜔𝑚𝑥𝑚), 

𝐻𝑙 = sin(𝑛1𝜔1𝑥1) sin(𝑛2𝜔2𝑥2)… sin(𝑛𝑚−1𝜔𝑚−1𝑥𝑚−1) sin(𝑛𝑚𝜔𝑚𝑥𝑚)- 

A Multiple Inputs Multiple Outputs (MIMO) FSNN can be created using a set of 

Multiple Inputs Single Output (MISO) FSNN as shown in figure 3.4. 

 
Figure 3. 4 : MIMO FSNN. 
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The connections weights between the hidden and the output layers are adapted using 

the Delta rule (gradient descent method) so that a given cost function E is minimized. Let 

assume that a MIMO system will be modeled using a FSNN strategy. The cost function E is 

defined as follows: 

 𝐸 =∑𝐸ℎ

𝑛

ℎ=1

 (3.27) 

Where, 𝑛 is the number of the system outputs. 

At each sampling time 𝑘: 

𝐸ℎ(𝑘) =
1

2
𝑒ℎ(𝑘)

2 =
1

2
(𝑦ℎ(𝑘) − �̂�ℎ(𝑘))

2
 (3.28) 

Such as: 

𝑦ℎ is the system outputs and �̂�ℎ is the model outputs. 

The weights are adjusted according to the following rules: 

 

𝑊0(𝑘) = 𝑊0(𝑘 − 1) + Δ𝑊0(𝑘) (3.29) 

 

𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘) = 𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘 − 1) + Δ𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘) (3.30) 

where: 

 

Δ𝑊0(𝑘) = −𝜂
𝜕𝐸(𝑘)

𝜕𝑊0(𝑘)
 (3.31) 

 

Δ𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘) = −𝜂
𝜕𝐸(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘)
 (3.32) 

𝑗 = 1,2, … , 𝑙.  𝑛𝑖 = 1,2, … , 𝑁𝑖  and  𝜂 ∈ [0,1] is the learning rate. 

The term 
𝜕𝐸(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘)
 can be computed as follows: 

For each output �̂�ℎ: 

𝜕𝐸(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘)
=
𝜕𝐸(𝑘)

𝜕𝑒ℎ(𝑘)

𝜕𝑒ℎ(𝑘)

𝜕�̂�ℎ(𝑘)

𝜕�̂�ℎ(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘)
 (3.33) 

Using equations (3.26, 3.27, 3.28), equation (3.33) becomes: 

 
𝜕𝐸(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘)
= −𝑒ℎ(𝑘)𝐻𝑗(𝑘) (3.34) 

Using equations (3.34), the adaption rules are given by: 

𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘) = 𝑊𝑛1,..,𝑛𝑚
𝑗

(𝑘 − 1) + 𝜂𝑒ℎ(𝑘)𝐻𝑗(𝑘) (3.35) 

 

𝑊0(𝑘) = 𝑊0(𝑘 − 1) + 𝜂𝑒ℎ(𝑘) (3.36) 

 

3.2. AFSNNPID controller structure  

Two FSNN are used to implement the controller according to the control diagram of figure 

3.5 [228]. The FSNN on the right is the emulator FSNN, it is a MISO FSNN that allows 
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emulating the dynamic behavior of the system. 

 

Figure 3. 5 : AFSNNPID controller in closed loop. 

The input vector 𝑋𝑒 = [𝑥1, 𝑥2, … , 𝑥𝑚] of the emulator FSNN is defined as follows:  

Xe = [𝑢(𝑘), 𝑢(𝑘 − 1),… , 𝑢(𝑘 − 𝑏𝑒), 𝑦(𝑘 − 1), 𝑦(𝑘 − 2),… , 𝑦(𝑘 − 𝑎𝑒)] 

Where, 𝑚𝑒 = 1 + 𝑏𝑒 + 𝑎𝑒 is the number of the FSNN  emulator inputs. 

The output of the emulator FSNN �̂� is given by equation (3.26) and its connections weights 

are adapted using equations (3.35) and (3.36). 

The FSNN on the left is a MIMO FSNN with three outputs (𝑜1, 𝑜2, 𝑜3). It gives the PID 

Controller gains such that 𝑜1 = 𝐾𝑝, 𝑜2 = 𝐾𝑖 and 𝑜3 = 𝐾𝑑. The input vector of this network is 

given by: 

Xc = [𝑒(𝑘), 𝑒(𝑘 − 1),… , 𝑒(𝑘 − 𝑏𝑐), 𝑢(𝑘 − 1), 𝑢(𝑘 − 2),… , 𝑢(𝑘 − 𝑎𝑐)] 

where 𝑚𝑐 = 1 + 𝑏𝑐 + 𝑎𝑐 is the number of the inputs. 

The outputs of the FSNN are given by: 

𝑜ℎ = 𝑊0
ℎ + ∑ … ∑ ∑𝑊𝑛1,..,𝑛𝑚𝑐

𝑗,ℎ
𝐻𝑗

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 1: 3 (3.37) 

Such as: 

𝐻1 = cos(𝑛1𝜔1𝑥1) cos(𝑛2𝜔2𝑥2)… cos(𝑛𝑚𝑐−1𝜔𝑚𝑐−1𝑥𝑚𝑐−1) cos(𝑛𝑚𝑐
𝜔𝑚𝑐

𝑥𝑚𝑐
) 

𝐻2 = cos(𝑛1𝜔1𝑥1) cos(𝑛2𝜔2𝑥2)… cos(𝑛𝑚𝑐−1𝜔𝑚𝑐−1𝑥𝑚𝑐−1) sin(𝑛𝑚𝑐
𝜔𝑚𝑐

𝑥𝑚𝑐
) 

⋮ 

𝐻𝑙−1 = sin(𝑛1𝜔1𝑥1) sin(𝑛2𝜔2𝑥2)… sin(𝑛𝑚𝑐−1𝜔𝑚𝑐−1𝑥𝑚𝑐−1) cos(𝑛𝑚𝑐
𝜔𝑚𝑐

𝑥𝑚𝑐
) 

𝐻𝑙 = sin(𝑛1𝜔1𝑥1) sin(𝑛2𝜔2𝑥2)… sin(𝑛𝑚𝑐−1𝜔𝑚𝑐−1𝑥𝑚𝑐−1) sin(𝑛𝑚𝑐
𝜔𝑚𝑐

𝑥𝑚𝑐
) 
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where: 𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

 and 𝑊0
ℎ are the connections weights and the bias of the hth MISO FSNN, 

respectively.  

The FSNN connections weights, giving the PID controller gains, are adapted so that the 

following objective function is minimized.  

𝐸(𝑘) =
1

2
𝑒(𝑘)2 (3.38) 

where  

𝑒(𝑘) = 𝑅(𝑘) − 𝑦(𝑘) (3.39) 

The adaption rules are derived, using the Delta rule, as follow:  

𝑊0
ℎ(𝑘) = 𝑊0

ℎ(𝑘 − 1) − 𝜂 
𝜕𝐸(𝑘)

𝜕𝑊0
𝑘(𝑘)

 (3.40) 

𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

(𝑘) = 𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

(𝑘 − 1) − 𝜂 
𝜕𝐸(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

(𝑘)
 (3.41) 

The term 
𝜕𝐸(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

(𝑘)
  can be computed as follows: 

𝜕𝐸(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

(𝑘)
=
𝜕𝐸(𝑘)

𝜕𝑒(𝑘)

𝜕𝑒(𝑘)

𝜕𝑦(𝑘)

𝜕𝑦(𝑘)

𝜕𝑢(𝑘)

𝜕𝑢(𝑘)

𝜕𝑜ℎ(𝑘)

𝜕𝑜ℎ(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

(𝑘)
 (3.42) 

Using equations (3.37 to 3.39), equation (3.42) becomes: 

𝜕𝐸(𝑘)

𝜕𝑊𝑛1,..,𝑛𝑚𝑐
𝑗ℎ

(𝑘)
= −𝑒(𝑘)

𝜕𝑦(𝑘)

𝜕𝑢(𝑘)

𝜕𝑢(𝑘)

𝜕𝑜ℎ(𝑘)
𝐻𝑗 (3.43) 

𝜕𝑢(𝑘)

𝜕𝑜ℎ(𝑘)
 is given by equation (3.11).  

The term 
𝜕𝑦(𝑘)

𝜕𝑢(𝑘)
, that represents the system Jacobian at time 𝑘, is estimated using the 

FSNN model. To obtain fast convergence and good control performance of the control 

algorithm, the FSNN model must have a sufficient precision. Of course, a large estimation 

error could leads to slow convergence or divergence of the control algorithm. 

The Jacobian system is obtained as follows: 

𝜕𝑦(𝑘)

𝜕𝑢(𝑘)
≅
𝜕�̂�(𝑘)

𝜕𝑢(𝑘)
= ∑ … ∑ ∑𝑊𝑛1,..,𝑛𝑚𝑒

𝑗
(𝑘) 

𝜕𝐻𝑗(𝑘)

𝜕𝑢(𝑘)

𝑙

𝑗=1

𝑁𝑚𝑒

𝑛𝑚𝑒=1

𝑁1

𝑛1=1

 (3.44) 

Where: 

𝜕𝐻1(𝑘)

𝜕𝑢(𝑘)
= −𝑛1𝜔1sin(𝑛1𝜔1𝑥1) cos(𝑛2𝜔2𝑥2)… cos(𝑛𝑚𝑒−1𝜔𝑚𝑒−1𝑥𝑚𝑒−1) cos(𝑛𝑚𝑒

𝜔𝑚𝑒
𝑥𝑚𝑒

)  

𝜕𝐻2(𝑘)

𝜕𝑢(𝑘)
= −𝑛1𝜔1sin(𝑛1𝜔1𝑥1) cos(𝑛2𝜔2𝑥2)… cos(𝑛𝑚𝑒−1𝜔𝑚𝑒−1𝑥𝑚𝑒−1) sin(𝑛𝑚𝑒

𝜔𝑚𝑒
𝑥𝑚𝑒

)  

⋮ 

𝜕𝐻𝑙−1(𝑘)

𝜕𝑢(𝑘)
= 𝑛1𝜔1cos(𝑛1𝜔1𝑥1) sin(𝑛2𝜔2𝑥2)… sin(𝑛𝑚𝑒−1𝜔𝑚𝑒−1𝑥𝑚𝑒−1) cos(𝑛𝑚𝑒

𝜔𝑚𝑒
𝑥𝑚𝑒

)  

𝜕𝐻𝑙(𝑘)

𝜕𝑢(𝑘)
= 𝑛1𝜔1cos(𝑛1𝜔1𝑥1) sin(𝑛2𝜔2𝑥2)… sin(𝑛𝑚𝑒−1𝜔𝑚𝑒−1𝑥𝑚𝑒−1) sin(𝑛𝑚𝑒

𝜔𝑚𝑒
𝑥𝑚𝑒

)  
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Finally, the adaptation equations can be written as follows: 

𝑊0
ℎ(𝑘) = 𝑊0

ℎ(𝑘 − 1) + 𝜂 ∙ 𝑒(𝑘)
𝜕𝑦(𝑘)

𝜕𝑢(𝑘)

𝜕𝑢(𝑘)

𝜕𝑜ℎ(𝑘)
 (3.45) 

𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

(𝑘) = 𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

(𝑘 − 1) + 𝜂 ∙ 𝑒(𝑘)
𝜕𝑦(𝑘)

𝜕𝑢(𝑘)

𝜕𝑢(𝑘)

𝜕𝑜ℎ(𝑘)
𝐻𝑗 (3.46) 

3.3. Stability analysis  

In this section, the stability of the AFSNNPID controller is studied using the small gain 

theorem. The control system, given in figure 3.5, can be described by the block diagram of 

figure 3.6, where 𝑢1(𝑘) = 𝑅(𝑘), 𝑒1(𝑘) = 𝑒(𝑘), 𝑦1(𝑘) = Δ𝑢(𝑘), 𝑒2(𝑘) = 𝑢(𝑘), 𝑦2(𝑘) =
𝑦(𝑘) and 𝐺1 and 𝐺2 represent the AFSNNPID controller and the system under control, 

respectively. 

 

Figure 3. 6 : Feedback control system. 

Let suppose that 𝐺1 and 𝐺2 are both stable. According to the small gain theorem, the 

closed loop system is BIBO stable if ‖𝐺1‖ ⋅ ‖𝐺2‖ < 1. 

Assuming that the system is modelled using the FSNN model given by equation (3.26), 

according to equation (3.44), the gain ‖𝐺2‖ is given by: 

 

‖𝐺2‖ = ∑ … ∑ ∑[𝑊𝑛1,…,𝑛𝑚𝑒
𝑗 𝜕𝐻𝑗(𝑘)

𝜕𝑢(𝑘)
 ]

𝑙

𝑗=1

𝑁𝑚𝑒

𝑛𝑚𝑒=1

𝑁1

𝑛1=1

 (3.47) 

From equation (3.44), we obtain 
𝜕𝐻𝑗(𝑘)

𝜕𝑢(𝑘)
< 𝑛1𝜔1, so: 

‖𝐺2‖ < 𝐴  (3.48) 

where:  

𝐴 = ∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑒
𝑗

 ]

𝑙

𝑗=1

𝑁𝑚𝑒

𝑛𝑚𝑒=1

𝑁1

𝑛1=1

 

 

Using equation (3.2) and (3.37), the controller gain ‖𝐺1‖ is given as follows: 

‖𝐺1‖ = (𝑒(𝑘) − 𝑒(𝑘 − 1)) ⋅ ∑ … ∑ ∑[𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ 𝜕𝐻𝑗(𝑘)

𝜕𝑒(𝑘)
 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 1 

‖𝐺1‖ =
𝑇𝑠
2
(𝑒(𝑘) + 𝑒(𝑘 − 1)) ⋅ ∑ … ∑ ∑[𝑊𝑛1,…,𝑛𝑚𝑐

𝑗,ℎ 𝜕𝐻𝑗(𝑘)

𝜕𝑒(𝑘)
 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 2 

‖𝐺1‖ =
1

𝑇𝑠
(𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)) ⋅ ∑ … ∑ ∑[𝑊𝑛1,…,𝑛𝑚𝑐

𝑗,ℎ 𝜕𝐻𝑗(𝑘)

𝜕𝑒(𝑘)
 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 3 

(3.49) 
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Such as: 

𝜕𝐻1(𝑘)

𝜕𝑒(𝑘)
= −𝑛1𝜔1sin(𝑛1𝜔1𝑥1) cos(𝑛2𝜔2𝑥2)… cos(𝑛𝑚𝑐−1𝜔𝑚𝑐−1𝑥𝑚𝑐−1) cos(𝑛𝑚𝑐

𝜔𝑚𝑐
𝑥𝑚𝑐

)  

𝜕𝐻2(𝑘)

𝜕𝑒(𝑘)
= −𝑛1𝜔1sin(𝑛1𝜔1𝑥1) cos(𝑛2𝜔2𝑥2)… cos(𝑛𝑚𝑐−1𝜔𝑚𝑐−1𝑥𝑚𝑐−1) sin(𝑛𝑚𝑐

𝜔𝑚𝑐
𝑥𝑚𝑐

)  

⋮ 

𝜕𝐻𝑙−1(𝑘)

𝜕𝑒(𝑘)
= 𝑛1𝜔1cos(𝑛1𝜔1𝑥1) sin(𝑛2𝜔2𝑥2)… sin(𝑛𝑚𝑐−1𝜔𝑚𝑐−1𝑥𝑚𝑐−1) cos(𝑛𝑚𝑐

𝜔𝑚𝑐
𝑥𝑚𝑐

)  

𝜕𝐻𝑙(𝑘)

𝜕𝑒(𝑘)
= 𝑛1𝜔1cos(𝑛1𝜔1𝑥1) sin(𝑛2𝜔2𝑥2)… sin(𝑛𝑚𝑐−1𝜔𝑚𝑐−1𝑥𝑚𝑐−1) sin(𝑛𝑚𝑐

𝜔𝑚𝑐
𝑥𝑚𝑐

)  

It is clear that 
𝜕𝐻𝑗(𝑘)

𝜕𝑒(𝑘)
< 𝑛1𝜔1, hence we can write: 

 

‖𝐺1‖ = (𝑒(𝑘) − 𝑒(𝑘 − 1)) ⋅ ∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ

 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 1 

‖𝐺1‖ =
𝑇𝑠
2
(𝑒(𝑘) + 𝑒(𝑘 − 1)) ⋅ ∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐

𝑗,ℎ
 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 2 

‖𝐺1‖ =
1

𝑇𝑠
(𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)) ∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐

𝑗,ℎ
 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 3 

(3.50) 

 

Using equation (3.48) and (3.50), the term ‖𝐺1‖ ⋅ ‖𝐺2‖ becomes: 

 

‖𝐺1‖ ⋅ ‖𝐺2‖ < 𝐴(𝑒(𝑘) − 𝑒(𝑘 − 1)) ⋅ ∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ

 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 1 

‖𝐺1‖ ⋅ ‖𝐺2‖ < 𝐴
𝑇𝑠
2
(𝑒(𝑘) + 𝑒(𝑘 − 1)) ⋅ ∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐

𝑗,ℎ
 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 2 

‖𝐺1‖ ⋅ ‖𝐺2‖ <
𝐴

𝑇𝑠
(𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2))  ⋅ ∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐

𝑗,ℎ
 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

, ℎ = 3 

(3.51) 

 

In order to ensure the stability of the closed loop system, two conditions must be fulfilled 

according to the small gain theorem. 

The first condition concerns the state weights initialization of the AFSNNPID controller, 

which is illustrated in equation (3.52). 

The second condition is to ensure that the small gain theorem is respected when adapting 

the controller in real time. Using the Delta rule principle (𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ (𝑘) = 𝑊𝑛1,…,𝑛𝑚𝑐

𝑗,ℎ
 (𝑘 −

1) − 𝜂Δ𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ

 ) and equation (3.51), the second condition is given by equation (3.53). 
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∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ

 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

<
1

𝐴(𝑒(𝑘) − 𝑒(𝑘 − 1))
, ℎ = 1 

∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ

 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

<
2

𝐴𝑇𝑠(𝑒(𝑘) + 𝑒(𝑘 − 1))
, ℎ = 2 

∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ

 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

<
𝑇𝑠

𝐴(𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)) 
, ℎ

= 3 

(3.52) 

 

𝜂 <

−1

𝐴(𝑒(𝑘) − 𝑒(𝑘 − 1))
+ 𝐵ℎ

Δ𝐵ℎ
, ℎ = 1 

𝜂 <

−2

𝐴𝑇𝑠(𝑒(𝑘) + 𝑒(𝑘 − 1))
+ 𝐵ℎ

Δ𝐵ℎ
, ℎ = 2 

𝜂 <

−𝑇𝑠
𝐴(𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)) 

+ 𝐵ℎ

Δ𝐵ℎ
, ℎ = 3 

(3.53) 

 

where: 

𝐵ℎ = ∑ … ∑ ∑[𝑛1𝜔1𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ

 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

 

Δ𝐵ℎ = ∑ … ∑ ∑[𝑛1𝜔1Δ𝑊𝑛1,…,𝑛𝑚𝑐
𝑗,ℎ

 ]

𝑙

𝑗=1

𝑁𝑚𝑐

𝑛𝑚𝑐=1

𝑁1

𝑛1=1

 

 

3.4. Control algorithm  

Assuming that the FSNN emulator has been trained and the AFSNNPID parameters 

(𝑚𝑐, 𝑁1, 𝑁2, … , 𝑁𝑚𝑐
 𝑎𝑛𝑑 𝜔𝑖, 𝑖 = 1,2, …𝑚𝑐) have been chosen, the proposed AFSNNPID 

algorithm can be described by the following steps: 

Step 0:  

 Choose the initial values of the connections weights and the bias of the FSNN giving 

the PID controller gains such that the conditions (3.52) are satisfied. 

Step 1:  

 Calculate the error between the reference and the system output using equation 

(3.39).  

Step 2:  

 Calculate the approximation of the system Jacobian 
𝜕𝑦(𝑘)

𝜕𝑢(𝑘)
 using equation (3.44). 

Step 3:  

 For ℎ = 1: 3 

o Determine the value of 𝜂 which satisfy the condition given by equation (3.53). 

o Update the bias  𝑊0
ℎ of the control FSNN using equation (3.45). 



55 
 

 

o For 𝑖 = 1:𝑚𝑐 

 For 𝑛𝑖 = 1:𝑁𝑖  

 For 𝑗 = 1: 𝑙      

 Update the connections weights 𝑊𝑛1,..,𝑛𝑚𝑐
𝑗,ℎ

  using equation (3.46). 

 End  𝑗 

 End   𝑛𝑖 

o End 𝑖 

 End ℎ 

Step 4: FSNN emulator adaptation. 

 Calculate the error between the system and the FSNN emulator outputs. 

 Update the FSNN model bias 𝑊0 using equation (3.36). 

 For 𝑛𝑖 = 1:𝑁𝑖   

o For 𝑖 = 1:𝑚𝑒               

 For 𝑗 = 1: 𝑙      

 Update the connections weights 𝑊𝑛1,..,𝑛𝑚
𝑙  of the FSNN emulator using 

equation (3.35). 

 End 𝑗 

o End 𝑖 

 End 𝑛𝑖 
Step 5:  

 Calculate the value of the control law using equations (3.2, 3.37).  

 Apply the obtained control value on the system. 

 Wait for the next sampling time, and then go back to step 1. 

4. Particle Swarm Optimization based PID controller  

In this subsection, the Particle Swarm Optimization based PID (PSO-PID) control 

algorithm is given. Using the PSO algorithm given in chapter (2), section (4.1) and the control 

law of the discrete PID controller given by equation (3.2), the gains (𝐾𝑝, 𝐾𝑖, 𝐾𝑑) of the PID are 

optimized in order to obtain the best control performance. In fact, these parameters can be 

optimized offline or during the control process (online) or both.  

In general, the offline optimization is sufficient and gives good control performance. 

However, in the case of severe degradations of the parameters of the controlled system or 

important external disturbances, the control performance is greatly decreased and in some cases 

the control loop becomes unstable. This problem is solved using the online optimization, where 

the PID parameters are optimized during the control process.  

4.1. Offline optimization of the PSO based PID controller  

Assuming that, the length of the chosen reference trajectory is given by (𝑠𝑎𝑚𝑝𝑙𝑒𝑠), in most 

cases, the cost function is chosen as the mean squared error between the desired reference 

trajectory (𝑅(𝑘)) and the output of the system (𝑦(𝑘)), it is given by: 

𝑚𝑖𝑛𝑥 𝐹(𝑋) = ∑ (𝑅(𝑘) − 𝑦(𝑘))
2
 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑘=1

 (3.54) 

The optimization algorithm of the PID controller, using the PSO, is given as follows: 

Step 0: initialization 
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 The reference trajectory (𝑅) is chosen by randomly selecting some reference trajectories 

with random lengths to cover the entire workspace of the controlled system, as follows: 

o 𝑘 = 1 

o For 𝑖 = 1:𝑁𝑟  

 𝑟 = 𝑟𝑎𝑛𝑑 ⋅ (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) + 𝑦𝑚𝑖𝑛 

 For 𝑗 = 1: (𝑟𝑎𝑛𝑑 ⋅ 𝐿𝑚𝑎𝑥) 

 𝑅(𝑘) = 𝑟 

 𝑘 = 𝑘 + 1 

 End 

o End 

Where, 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the upper limit and the lower limit of the controlled system 

output, 𝑁𝑟 is the number of the reference trajectories and 𝐿𝑚𝑎𝑥 is the maximum length 

of each reference trajectory.  

 Randomly generate the initial population (𝑋𝑖) of the PSO algorithm, using equation 

(2.3). 

 Set the initial velocity (𝑉𝑖 = 0), and choose the values of 𝑐1 and 𝑐2.  

Step 1: evaluating the entire population  

 Evaluate the fitness (𝐹𝑖) for each particle (𝑋𝑖), as follows: 

o For 𝑖 = 1: 𝑛𝑝 

 𝐹𝑖 = 0 

 Use 𝑋𝑖 as the PID gains 

 For 𝑗 = 1: 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 
 Calculate the control effort using equation (3.2). 

 Apply the control effort to the system input.  

 Calculate the error (𝑒) between the system output (𝑦) and the desired 

reference trajectory (𝑅). 

 Evaluate the cost function as follows: 𝐹𝑖 = 𝐹𝑖 + (𝑅(𝑗) − 𝑦(𝑗))
2
. 

 End 

o End 

Step 2: personal best and global best updating 

 Update the values of personal best position (𝑃𝑖) of each particle and the global best (𝐺) 

of the entire population, as follows: 

o For 𝑖 = 1: 𝑛𝑝 

 If 𝐹𝑖(𝑋𝑖) < 𝐹𝑖(𝑃𝑖) 

 𝑃𝑖 = 𝑋𝑖. 

 If 𝐹𝑖(𝑃𝑖) < 𝐹𝑖(𝐺).  

 𝐺 = 𝑃𝑖. 
 End if. 

 End if. 

o End 

Step 3: positions updating 

 Update the position (𝑋𝑖) and the velocity (𝑉𝑖) of each particle personal, as follows: 
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o For 𝑖 = 1: 𝑛𝑝 

 Calculate the velocity (𝑉𝑖) using equation (2.4). 

 Calculate the position (𝑋𝑖) using equation (2.5). 

o End 

Step 4: termination criteria 

  If 𝐹𝑖(𝐺) < 휀 or 𝑘𝑚𝑎𝑥  is reached 

o Report the global best solution (𝐺). 

o Exit. 

 else 

o 𝑘 = 𝑘 + 1.  

o Go to step 1. 

 End 

4.2. Online optimization of the PSO based PID controller 

In the case of the online optimization, a model for the controlled system is required to 

evaluate the cost function at each sampling time. Several techniques, such as neural network, 

fuzzy logic, neural fuzzy system … etc, can be used to model the system. The used model must 

also be adapted online, which complicates the control process and requires a significant 

computational effort. 

In general, at each sampling time (𝑘), the used cost function in the online optimization is 

given as follows:  

𝑚𝑖𝑛𝑥 𝐹(𝑋) = (𝑅(𝑘) − 𝑦(𝑘))
2
 (3.55) 

The control algorithm is given as follows:  

Step 0: initialization 

 Select the global best position (𝐺), calculated offline, as the initial population (𝑋𝑖) of 

the PSO algorithm. If the offline phase has been neglected, randomly generate the initial 

population (𝑋𝑖), using equation (2.3). 

 Set the initial velocity (𝑉𝑖 = 0), and choose the values of 𝑐1 and 𝑐2.  

Step 1: reference reading 

 Read the current reference point (𝑅(𝑘)). 

Step 2: optimization  

 Using the system model, evaluate the fitness (𝐹𝑖) for each particle (𝑋𝑖), as follows: 

o For 𝑖 = 1: 𝑛𝑝 

 Use 𝑋𝑖 as the PID gains. 

 Calculate the control effort using equation (3.2). 

 Apply the control effort to the model input. 

 Calculate the error (𝑒(𝑘)) between the model output (�̂�(𝑘)) and the current 

reference point (𝑅(𝑘)). 

 Evaluate the cost function as follows: 𝐹𝑖 = (𝑅(𝑘) − �̂�(𝑘))2 

o End 

 Update the values of each particle personal best position (𝑃𝑖) and the global best (𝐺) of 

the entire population, as follows: 
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o For 𝑖 = 1: 𝑛𝑝 

 If 𝐹𝑖(𝑋𝑖) < 𝐹𝑖(𝑃𝑖) 

 𝑃𝑖 = 𝑋𝑖. 

 If 𝐹𝑖(𝑃𝑖) < 𝐹𝑖(𝐺).  

 𝐺 = 𝑃𝑖. 
 End if. 

 End if. 

o End 

 Update the position (𝑋𝑖) and the velocity (𝑉𝑖) of each particle personal, as follows: 

o For 𝑖 = 1: 𝑛𝑝 

 Calculate the velocity (𝑉𝑖) using equation (2.4). 

 Calculate the position (𝑋𝑖) using equation (2.5). 

o End 

  If 𝐹𝑖(𝐺) < 휀 or 𝑘𝑚𝑎𝑥  is reached 

o Report the global best solution (𝐺). 

o Exit. 

 else 

o Go to step 1. 

o 𝑘 = 𝑘 + 1. 

 End 

Step 3: system control  

 Use the global best solution (𝐺) as the PID gains. 

 Calculate the control effort using equation (3.2). 

 Apply the control effort to the system input. 

 Calculate the error between the system output and the current reference point. 

Step 4: model adaptation  

  Apply the control effort that was calculated in step 3, to the model input. 

 Calculate the error between the system output and the model output. 

 Update the model in order to reduce the error between the system output and the model 

output.  

Step 5: waiting for the next sampling time   

 Wait for the next sampling time 

 Go back to step 1. 

5. Control of the CSTR model  

In this Section, the effectiveness of the ANNPID, the AFSNNPID and the PSO based 

PID controllers are evaluated. The control of a highly nonlinear system, called the 

Continuous Stirred Tank Reactor (CSTR), is considered.  

5.1. System description  

The CSTR (figure 3.7) is a highly nonlinear chemical system, where a product A is 

converted to another product B via an exothermic chemical reaction. The volume 𝑣 of the 

reactor is constant, the mixture is considered perfect with a temperature 𝑇 that is supposed 

uniform. The reactor operates continuously, its output (the mixture concentration 𝐶𝑎) 
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changes nonlinearly according to the mixture temperature 𝑇, and the temperature changes 

according to the system input coolant flow 𝑞𝑐.  

 
Figure 3. 7 : Continuous stirred tank reactor. 

The CSTR is described by the following equation: 

�̇�𝑎(𝑡) =
𝑞

𝑣
(𝐶𝑎0 − 𝐶𝑎(𝑡)) − 𝑘0𝐶𝑎(𝑡)𝑒

−
𝐸

𝑅𝑇(𝑡) 

�̇�(𝑡) =
𝑞

𝑣
(𝑇0 − 𝑇(𝑡)) + 𝑘1𝐶𝑎(𝑡)𝑒

−
𝐸

𝑅𝑇(𝑡) + 𝑘2𝑞𝑐(𝑡) (1 − 𝑒
−
𝑘3
𝑞𝑐(𝑡) (𝑇𝑐0 − 𝑇(𝑡))) 

(3.56) 

Where, 

𝑘1 = −
Δ𝐻𝑘0
𝜌𝐶𝑝

 ,   𝑘2 =
𝜌𝑐𝐶𝑝𝑐

𝜌𝐶𝑝𝑣
   , 𝑘3 =

ℎ𝑎
𝜌𝑐𝐶𝑝𝑐

 

𝑇0 is the initial mixture temperature, 𝑇𝑐0 is the initial jacket temperature, 𝑇𝑐 is the jacket 

temperature and 𝑇(𝑡) is the mixture temperature, all temperatures values are expressed in 

Kelvin. 𝐶𝑎0 is the initial mixture concentration expressed in mol\l, 𝑣 is the reactor volume 

expressed in liter, 𝑞𝑐(𝑡) is the coolant flow expressed in 𝑙\𝑚𝑖𝑛 and 𝐶𝑎(𝑡) is the mixture 

concentration expressed in mol\l. 

The constants values are given in table 3.1. 

constant value constant value 

𝑞 100 𝜌 1000 

𝑣 100 𝜌𝑐 1000 

𝑘0 7.2e10 𝐶𝑝 1 

𝐸 10000 𝐶𝑝𝑐 1 

T0 350 ℎ𝑎 700000 

𝑇𝑐0 350 𝐶𝑎0 1 

Table 3. 1 : CSTR constants values. 

5.2. CSTR Modeling  

The first step in designing the ANNPID, the AFSNNPID and the PSO based PID 

controllers, is to obtain a model for the system to be controlled. In the case of the ANNPID and 

the AFSNNPID controllers, the obtained model is used to estimate the value of the system 
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Jacobian. In the case of the PSO based PID controller, the obtained model is used to implement 

the online adaptation of the controller.  

Using the CSTR state equations given by (3.56), two different datasets, which cover all 

possible system working regimes, have been generated. The first one is used to train two 

different models and the second one is used to test the trained models.  

The first model is a static MLP with the following configuration:  

 The input layer contains four inputs: [𝑞𝑐(𝑘), 𝑞𝑐(𝑘 − 1), 𝐶𝑎(𝑘 − 1), 𝐶𝑎(𝑘 − 2)]. 

 One hidden layer containing 10 neurons with a sigmoid activation function. 

 The output layer, which contains a single neuron with a linear activation function, 

gives the estimated output ( �̂�𝑎(𝑘)). 

This model is implemented with the ANNPID and the PSO-based PID.  

The second model is a MISO FSNN with the following configuration: 

 The input layer contains two inputs: [𝑞𝑐(𝑘), 𝐶𝑎(𝑘 − 1)]. 

 The hidden layer contains 10 nodes such as: (𝑁1 = 5 , 𝑁2 = 5).  

 The output layer, which contains a single neuron with a linear activation function, 

gives the estimated output ( �̂�𝑎(𝑘)). 

This model is implemented with the AFSNNPID controller.  

Figure 3.8 and 3.9 show the responses of the obtained models and the system using the 

second dataset. Table 3.2 gives the values of the Root Mean Square of the modeling Error 

(RMSE) and the correlation coefficient (𝑅2), for both models.  

 NN model FSNN model 

RMSE 6.909e-5 1.549123e-04 

𝑅2 0.99999943 0.99999367 

Table 3. 2 : RMSE and 𝑅2 for both models. 

 
Figure 3. 8 : Test results of the obtained NN model. 
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Figure 3. 9 : Test results of the obtained FSNN model. 

From figure (3.8) and (3.9), it can be seen that the models output and the system 

output are superposed, and the modeling error is quite small for both models. According to 

table (3.2), it can be concluded that the obtained models are quite accurate. Therefore, both 

models are validated.  

5.3. Controllers implementation 

In this subsection, the architecture of the ANNPID, the AFSNNPID and the PSO-based 

PID, are described and given.  

5.3.1. ANNPID 

In this architecture, one MLP neural network is used to determine the gains 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 

of the PID controller as shown in figure (3.10). The architecture of the neural network has the 

following configuration:  

 The input layer contains four inputs: [𝑒(𝑘), 𝑒(𝑘 − 1), 𝑞𝑐(𝑘 − 1), 𝑞𝑐(𝑘 − 2)]. 

 One hidden layer containing 10 neurons with a sigmoid activation function. 

 The output layer, which contains three neurons with a linear activation function, gives 

the values of the PID gains (𝐾𝑝, 𝐾𝑖, 𝐾𝑑). 

The weights of this NN are trained and adapted online using equations (3.13) and (3.19). 

The CSTR neural model, obtained in the previous section, is used to estimate the system 

Jacobian required to implement the control algorithm, according to equation (3.23). 

5.3.2. AFSNNPID 

     Three FSNN having the same input 𝑒(𝑘) (the error between the reference trajectory and 

the system output), with a range of 𝑇 = 0.3, are used to determine the gains 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 of the 
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PID controller as shown in figure (3.11). The three networks have the same number of hidden 

nodes (𝑁 = 5). The weights of these three FSNN are trained and adapted online using equations 

(3.45) and (3.46). The system Jacobian is estimated using the CSTR FSNN model obtained in 

the previous section according to equation (3.44). 

 
Figure 3. 10 : Control loop of the CSTR model using the ANNPID controller. 

 
Figure 3. 11 : Control loop of the CSTR model using the AFSNNPID controller. 

5.3.3. PSO-based PID 

The control law of the used PID controller is given by equation (3.2), where the PSO 

algorithm is implemented to optimize offline and online the PID gains according to the 

algorithms given in subsection (4.1) and (4.2), respectively. The cost function is given by 

equation (3.55). The control block diagram is given by figure (3.12). The chosen parameters of 

the PSO algorithm that were used to offline and online optimize the PID gains are given by 

table 3.3.   

 𝑐1 𝑐2 𝑘𝑚𝑎𝑥 휀 𝜔𝑑 

Offline optimization 2 2 100000 1e-5 0.99 

Online optimization 2 2 10 1e-7 0.99 

Table 3. 3 : Parameters values of the PSO algorithm. 
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Figure 3. 12 : Control loop of the CSTR model using the PSO-based PID controller. 

5.4. Simulation Results 

To highlight the control performance of the ANNPID, the AFSNNPID and the PSO-based 

PID controllers, a comparative study of the abovementioned controllers, considering various 

operating conditions, is carried out. In the first simulation, we have used a reference trajectory 

composed of three steps having duration of 4 min and amplitudes of 0.08, 0.1 and 0.12 mol/l, 
respectively. Figure (3.13) shows the obtained control results. Table 3.4 gives the MSE, MAE 

and RMSE values computed over the time interval of the simulation. 

 
Figure 3. 13 : Control results for the case of multistep reference trajectory. 
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 AFSNNPID ANNPID PSO-PID 

MSE (⋅ 10−5) 1.0605 1.3137 2.5413 

MAE (⋅ 10−3) 0.7637 1.0616 1.9207 

RMSE( ⋅ 10−3) 3.2566 3.6245 5.0411 

Table 3. 4 : MSE, MAE and RMSE in the case of multistep reference trajectory. 

From figure (3.13) and table (3.4), it can be seen that a good tracking accuracy of the 

reference trajectory is obtained for all implemented controllers. However, the proposed 

AFSNNPID controller has better control performance, in terms of the tracking accuracy and 

the settling time, than the other controllers. 

The aim of the second simulation is to assess the control performance when using a 

sinusoidal reference trajectory with a magnitude of 0.02 (𝑚𝑜𝑙/𝑙), a bias of 0.1 (𝑚𝑜𝑙/𝑙) and a 

frequency of 1/120 (𝐻𝑧). Figure (3.14) shows the obtained control results. Table 3.5 gives the 

MSE, MAE and RMSE values computed over the time interval of the simulation. 

 

Figure 3. 14 : Control results for the case of sinusoidal reference trajectory. 

 AFSNNPID ANNPID PSO-PID 

MSE (⋅ 10−5) 3.4897 6.1121 16.3442 

MAE (⋅ 10−3) 5.2729 6.9953 11.4289 

RMSE( ⋅ 10−3) 5.9073 7.8180 12.7845 

Table 3. 5 : MSE, MAE and RMSE in the case of sinusoidal reference trajectory. 
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According to figure (3.14) and table (3.5), it can be seen that a good tracking accuracy of 

the sinusoidal reference trajectory is obtained for both AFSNNPID and ANNPID controllers. 

However, in the case of the PSO based PID controller, degradation in the control performance 

is observed, in particular in terms of the settling time. Also, in this simulation, the proposed 

AFSNNPID controller was found to have better control performance, in terms of tracking 

accuracy and stabilization time, than the other controllers. 

In order to evaluate the robustness of these controllers against external disturbances in the 

input, in the third simulation, a step reference trajectory with a duration of 10 min and an 

amplitude of 0.11 (𝑚𝑜𝑙/𝑙), was used. During the control process, a leak in the coolant flow 𝑞𝑐 
(CSTR input) with an amplitude of 5 (𝑙\𝑚𝑖𝑛) in the time interval [4min 7min], is added. 

The obtained control results are given in figure (3.15). The MSE, MAE and RMSE values 

are computed over the time interval of the simulation and given in table (3.6). 

 
Figure 3. 15 : Control results in the presence of an input disturbance. 

 AFSNNPID ANNPID PSO-PID 

MSE (⋅ 10−5) 1.6211 1.7068 2.7426 

MAE (⋅ 10−3) 0. 8690 0. 9945 1.7972 

RMSE( ⋅ 10−3) 4.0263 4.1314 5.2369 

Table 3. 6 : MSE, MAE and RMSE in the presence of an input disturbance. 

From figure (3.15) and table (3.6), it can be concluded that the three controllers can 

compensate very quickly the input leakage and a good tracking accuracy of the reference 

trajectory is obtained, even during the perturbation. Hence, it can be concluded that these 

controllers are robust against input disturbances. However, in the case of the AFSNNPID, the 

response time needed to compensate the input disturbance is smaller than that obtained using 

the ANNPID and the PSO based PID controllers.  
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In the last simulation, the robustness of the considered controllers against output 

disturbances is evaluated. The chosen reference trajectory is exactly the same as that used in 

the third simulation. Although, in this simulation, during the control process, a leak in the 

mixture concentration  𝐶𝑎 with an amplitude of 0.011 (𝑚𝑜𝑙\𝑙) in the time interval [3min 

7min], is added. The obtained control results are given by figure (3.16). The MSE, MAE and 

RMSE values are computed over the time interval of the simulation and given by table (3.7). 

 
Figure 3. 16 : Control results in the presence of an output disturbance. 

 AFSNNPID ANNPID  PSO-PID 

MSE (⋅ 10−6) 3.9231 4.5205  8.7088 

MAE (⋅ 10−3) 0. 4475 0. 5944  1.0777 

RMSE( ⋅ 10−3) 1.9807 2.1261  2.9511 

Table 3. 7 : MSE, MAE and RMSE in the presence of an output disturbance. 

From figure (3.16) and table (3.7), it can be seen that the output disturbance is compensated 

for all considered controllers. We notice that the AFSNNPID required a smaller time to 

compensate the output disturbance than the ANNPID and the PSO based PID controllers.  

6. Control of a 3-DOF robot arm manipulator   

6.1. Experimental Setup  

To demonstrate the effectiveness of the AFSNNPID, the ANNPID and the PSO based 

PID controllers, the control of the three degrees of freedom (3-DOF) robot arm manipulator, 

shown in the experimental setup of figure (3.17), is considered. Two 24V 12RPM DC motors 

are used to generate the rotational movements of joint 1 and joint 2 of this manipulator, and 

the 12V 170RPM DC motor is used to vertically move its electromagnet end effector. The 

structure of the considered 3-DOF robot arm manipulator is shown in figure (3.18), the 

parameters values of the considered manipulator are gathered in table (3.8). In this 

experimental setup, three H-bridges DC motor drivers, the electromagnet MOSFET-based 
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switch and the DC power supply are carried out and used. The control algorithm is 

implemented using the DSP board TMS320F28335. 

parameter value parameter value 

𝑚1 2.3 (kg) 𝑙1 0.138 (m) 

𝑚2 0.6 (kg) 𝑙2 0.1965 (m) 

𝑚3 2.36 (kg) 𝑙3 0.34 (m) 

𝑑1 0.175 (m) 𝑑2 0.165 (m) 

Table 3. 8 : Parameters values of the considered manipulator. 

In order to calculate the joint coordinates for a given set of end effector coordinates, 

the inverse kinematics model, given by the following equations, is used: 

𝜃2 = acos (
(𝑥2 + 𝑦2) − (𝐿1

2 + 𝐿2
2)

2 ∗ 𝐿1 ∗ 𝐿2
) 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) − 𝑎𝑡𝑎𝑛2(𝐿2 ∗ sin(𝜃2) , 𝐿1 + 𝐿2 ∗ cos(𝜃2)) 

(3.57) 

 

where: 𝑥, 𝑦  are the end effector coordinates (expressed in meter), 𝜃1, 𝜃2 are the joints 

coordinates (expressed in rad), and  𝐿1 and 𝐿2 are the first link length and the second link 

length (expressed in meter), respectively.  

The control block diagram is given in figure 3.19, where: 𝜃1 and 𝜃2 are the angles of 

joint 1 and joint 2 respectively, 𝑧 is the end effector altitude, 𝑢1, 𝑢2, 𝑢3 are the calculated 

control voltages, 𝑢𝑒𝑚 is the applied voltage on the electromagnet end effector, 𝐾𝑝𝑗, 𝐾𝑖𝑗  and 

𝐾𝑑𝑗  for 𝑗 =  1, 2, 3 are the gains of the PID controllers, 𝑅𝜃1, 𝑅𝜃2  and 𝑅𝑧 are the reference 

trajectories for 𝜃1, 𝜃2 and 𝑧 respectively. 

 

Figure 3. 17 : 3-DOF robot arm manipulator experimental setup. 
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Figure 3. 18 : 3-DOF robot arm manipulator diagram. 

 

Figure 3. 19 : 3-DOF robot arm manipulator diagram. 
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The block, named optimizer, can be an FSNN, a NN or a PSO algorithm depending on 

the implemented controller (AFSNNPID, ANNPID or PSO-PID).  

6.2. Robot arm manipulator modeling  

As stated earlier, the first step in designing the ANNPID, the AFSNNPID and the PSO 

based PID controllers, is obtaining a model for the 3-DOF robot manipulator. In the case of 

the ANNPID and the AFSNNPID controllers, the obtained model is used to estimate the value 

of the system Jacobian. In the case of the PSO based PID controller, the obtained model is used 

to implement the online adaptation of the controller. By applying random voltages to the inputs 

of the manipulator (𝑢1, 𝑢2, 𝑢3) and measuring the corresponding outputs (𝜃1, 𝜃2, 𝑧), two 

different datasets, which cover all possible system working regimes, have been generated. 

The first is used to train the FSNN model and the NN model, the second is used to test the 

trained models.  

The NN model is a set of three MISO MLPs, (𝜃1 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙, 𝜃2 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙 , 𝑧 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙).  
 The (𝜃1 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙) has the following architecture: 

o The input layer contains four inputs: [𝑢1(𝑘), 𝑢1(𝑘 − 1), 𝜃1(𝑘 − 1), 𝜃1(𝑘 − 2)]. 
o One hidden layer containing 8 neurons with a sigmoid activation function. 

o The output layer, which contains a single neuron with a linear activation function, 

gives the estimated output ( 𝜃1(𝑘)). 

 The (𝜃2 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙) has the following architecture: 

o The input layer contains four inputs: [𝑢2(𝑘), 𝑢2(𝑘 − 1), 𝜃2(𝑘 − 1), 𝜃2(𝑘 − 2)]. 
o One hidden layer containing 8 neurons with a sigmoid activation function. 

o The output layer, which contains a single neuron with a linear activation function, 

gives the estimated output ( 𝜃2(𝑘)). 

 The (𝑧 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙) has the following architecture: 

o The input layer contains four inputs: [𝑢3(𝑘), 𝑢3(𝑘 − 1), 𝑧(𝑘 − 1), 𝑧(𝑘 − 2)]. 
o One hidden layer containing 4 neurons with a sigmoid activation function. 

o The output layer, which contains a single neuron with a linear activation function, 

gives the estimated output (�̂�(𝑘)). 

The FSNN model is a set of three MISO FSNN, (𝜃1 − 𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙, 𝜃2 − 𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙, 𝑧 −
𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙).  

 The (𝜃1 − 𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙) has the following architecture: 

o The input layer contains two inputs: [𝑢1(𝑘), 𝜃1(𝑘 − 1)]. 
o The hidden layer contains 10 nodes such as: (𝑁1 = 5 , 𝑁2 = 5). 

o The output layer, which contains a single node with a linear activation function, 

gives the estimated output ( 𝜃1(𝑘)). 

 The (𝜃2 − 𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙) has the following architecture: 

o The input layer contains two inputs: [𝑢2(𝑘), 𝜃2(𝑘 − 1)]. 
o The hidden layer contains 10 nodes such as: (𝑁1 = 5 , 𝑁2 = 5). 

o The output layer, which contains a single node with a linear activation function, 

gives the estimated output ( 𝜃2(𝑘)). 

 The (𝑧 − 𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙) has the following architecture: 

o The input layer contains two inputs: [𝑢3(𝑘), 𝑧(𝑘 − 1)]. 
o The hidden layer contains 6 nodes such as: (𝑁1 = 3 , 𝑁2 = 3). 

o The output layer, which contains a single node with a linear activation function, 

gives the estimated output (�̂�(𝑘)). 
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Figure (3.20) and (3.21) show the responses of the obtained models and the system using 

the second dataset. Table (3.9) gives the values of the RMSE and the correlation coefficient 

(𝑅2), for both models.  

 RMSE 𝑅2 

𝜃1 − 𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙 0.00706022581570082 0.999999979345815 

𝜃2 − 𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙 0.222668777573781 0.999983536274307 

𝑍 − 𝐹𝑆𝑁𝑁𝑚𝑜𝑑𝑒𝑙 0.00521404903853009 0.999998065136512 

𝜃1 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙 0.00838143327553178 0.999999970889062 

𝜃2 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙 0.721650679061039 0.999827751814977 

𝑍 − 𝑁𝑁𝑚𝑜𝑑𝑒𝑙 0.0432449726288857 0.999866805079681 

Table 3. 9 : RMSE and 𝑅2 for both 3-DOF manipulator models. 

 

Figure 3. 20 : Test results of the obtained 3-DOF manipulator NN model. 
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Figure 3. 21 : Test results of the obtained 3-DOF manipulator FSNN model. 

From figure (3.20) and (3.21), it can be seen that the models output and the system 

output are superposed, and the modeling error is quite small for all obtained models. 

According to table (3.9), it can be concluded that the obtained models are quite accurate.  

6.3. Experimental results 

The ANNPID, the POS based PID and the AFSNNPID controllers are coded and 

implemented on the TMS320F28335 DSP board using a sampling period 𝑇𝑠  =  10𝑚𝑠, the 

FSNN and NN models previously obtained. The PWM (Pulse Width Modulation) signals 

required to drive the H-bridges are generated using this board, with the appropriate duty 

cycle value given by the implemented controllers. The DSP board is also used to measure 

the joints angles and the end effector z-position of the robot arm manipulator. The parameters 

values of the three FSNN used to compute the three AFSNNPID controllers are given in 

Table 3.10. 

 𝑇1 𝜔1 𝑁1 

First FSNN 720 0.0087 5 

Second FSNN 720 0.0087 5 

Third FSNN 800 0.00785 3 

Table 3. 10 : Parameters values of the three FSNN used to compute the three AFSNNPID 

controllers. 
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To highlight the control performance of the implemented controllers, a comparative 

study of these controllers, considering various operating conditions, is carried out. In the 

first experiment, sinusoidal reference trajectories are used and the robot arm manipulator is 

free of load. Disturbances with amplitudes equal to [30𝑜; 30𝑜; 30 𝑚𝑚] are added to 𝜃1 and 

𝜃2 and 𝑍 − 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 respectively, at the time interval [10s; 20s]. The obtained results are 

given in figure (3.22). For each controller and for the same initial conditions, the values of 

the MSE, the MAE and the RMSE are computed over the considered control interval and 

gathered in table (3.11). The execution time of the control algorithm is very important 

parameter to evaluate its computing efficiency and real time applicability. Starting the 

considered control algorithms from the same initial conditions, the required time to obtain a 

value of the control signal, using the TMS320F28335 DSP, is evaluated for each control and 

given in table (3.11). 

 AFSNNPID ANNPID PSO-based PID 

MSE 174.3711 181.6585 188.8117 

MAE 8.5154 9.8597 9.1733 

RMSE 13.2050 13.4781 13.7409 

Computing time(𝑚𝑠) 0.7232 0.8023 3.5263 

Table 3. 11 : Computing time, MSE, MAE and RMSE values for each controller. 

It can be seen that a good tracking accuracy of the reference trajectories is achieved 

and the disturbances effect is compensated in case of the three controllers; however the 

AFSNNPID controller gives better control performance, than the other ones. It is clear from 

table (3.11) that none of the controllers exceeds the sampling time (𝑇𝑠 =  10𝑚𝑠), however, 

the AFSNNPID has the smallest computing time. 

In the second experiment, the control objective is to force the robot arm to pick and 

drop three different loads from a given initial location to a given final location. Table (3.12) 

gives the weight value, the initial location and the final location of each load. The 

corresponding reference trajectories are generated from the cinematic model of the 

manipulator. Figure (3.23) shows the control performance of each controller and table (3.13) 

gives the corresponding MSE, MAE, RMSE and the computing time values. 

 weight Initial location (𝑥, 𝑦) Final location (𝑥, 𝑦) 

Load 1 0.3 𝐾𝑔  (0.2𝑚,−0.1𝑚)  (0.2𝑚, 0.1𝑚) 

Load 2 0.4 𝐾𝑔  (0.2𝑚,−0.2𝑚)  (0.2𝑚, 0.2𝑚) 

Load 3 1.4 𝐾𝑔  (0.1𝑚,−0.15𝑚)  (0.1𝑚, 0.15𝑚) 

Table 3. 12 : Weight values and locations of the used loads. 

 AFSNNPID ANNPID PSO-based PID 

MSE 1095.8 1125.4 1086.5 

MAE 19.9691 20.6884 19.8710 

RMSE 33.1022 33.5466 32.9617 

Computing time(𝑚𝑠) 0.7276 0.7947 4.5856 

Table 3. 13 : Computing time, MSE, MAE and RMSE values in case of different loads for 

each controller. 
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Figure 3. 22 : Control results of the free load robot arm. 
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Figure 3. 23 : Control results of the robot with different loads. 
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From figure (3.23) and table (3.13), it can be seen that a good tracking accuracy of 

the corresponding reference trajectories is obtained for different load weights in case of the 

three controllers. Comparing the MSE, the MAE and the RMSE values, given in table (3.23), 

we note that the PSO based PID controller is more efficient in this experiment than the 

AFSNNPID and the ANNPID controllers. However, it can be seen that the AFSNNPID 

controller has the smallest computing time value.  

In the third experiment, in order to create a gap between the system and the model 

outputs, the model parameters values are changed to have a gap of 5𝑜 for both 𝜃1 and 𝜃2,and 

a gap of 5𝑚𝑚 for the 𝑍 − 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒. We have used a reference trajectory composed of 

four steps having a duration of 10 second and an amplitude of [40, 0 , −40, 0] degrees, for 

𝜃1 and 𝜃2, and [40, 0 , −40, 0] mm for 𝑍 − 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒. 

The computing time, the MSE, the MAE, and the RMSE values computed over the 

control interval, when the model parameters values are changed, are given in table (3.14) 

and in table (3.15) when the model parameters values are not changed. It can be seen that 

the AFSNNPID controller presents the smallest values of the computing time. 

From table (3.14) and (3.15), it can be observed that the difference between the 

values of the MSE, the MAE and the RMSE, in both cases, is small and the AFSNNPID 

controller gives better performance than the other controllers. 

 AFSNNPID ANNPID PSO-based PID 

MSE 609.7726 609.7847 615.3655 

MAE 22.8006 22.8559 23.2492 

RMSE 24.6936 24.6938 24.8066 

Computing time(𝑚𝑠) 0.7119 0.7990 8.1327 

Table 3. 14 : Computing time, MSE, MAE and RMSE values when the model parameters 

are changed. 

 AFSNNPID ANNPID PSO-based PID 

MSE 607.8042 608.6521 614.5759 

MAE 22.7684 22.7794 23.1389 

RMSE 24.6537 24.6709 24.7906 

Computing time(𝑚𝑠) 0.7094 0.7915 6.6315 

Table 3. 15 : Computing time, MSE, MAE and RMSE values when the model parameters 

are not changed. 

7. Conclusion 

In this chapter, three AI-based PID controllers, namely the ANNPID, the AFSNNPID 

and the PSO-based PID, have been considered. The AFSNNPID controller uses the Fourier 

series neural network to compute and online adjust the gains of the conventional PID 

controller. In fact, the Fourier series neural networks have a simple architecture and can be 

easily trained using the simple Delta rule. The implementation procedure of the proposed 

controller is simple and requires only designing two FSNN; the first one allows estimating 

the system Jacobian and the second is used to obtain the PID controller gains. The stability 

of the proposed controller has been proved using the small gain theorem and its effectiveness 

in controlling highly nonlinear systems has been experimentally assessed. 

To assess the effectiveness of the ANNPID, the AFSNNPID and the PSO-based PID 

controllers, the control of the continuous stirred tank reactor and the 3-DOF robot arm 

manipulator, through simulation and experimental studies, has been investigated. The 
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simulation and the experimental results have shown that these controllers give good control 

performance in terms of the tracking accuracy and the robustness against external 

disturbances and dynamic system variation. However, the proposed AFSNNPID controller 

do not require a large computing time, which allows it to be used in several real time 

applications. Indeed, the AFSNNPID controller has a simple design procedure and can be 

used to control any nonlinear system. 

 

  



77 
 

 

CHAPTER 4 

NEURAL NETWORK MODEL PREDICTIVE CONTROL BASED ON META 

HEURISTIC OPTIMIZATION 

 

1. Introduction 

In this chapter, after formulating the problem of model predictive control and using 

neural networks and the meta heuristic optimization algorithms (TLBO, I-TLBO and 

ETLBO) given in the second chapter, three nonlinear model predictive control strategies are 

developed. The design and implementation procedure of the proposed controllers is given 

and their efficiency is evaluated both in simulation and experimentally.  

2. Neural Network based model predictive control 

2.1. Model predictive control principle  

Any Model Predictive Control (MPC) strategy is based on the use of an explicit model 

to predict the future behavior (�̂�(𝑘 + 𝑖|𝑘),   (𝑖 = 1,… ,𝑁𝑝)) of the controlled system over a 

finite prediction horizon 𝑁𝑝, then a cost function is optimized over a finite control horizon 

𝑁𝑢 to obtain a control sequence (𝑢(𝑘 + 𝑖|𝑘), (𝑖 = 0,𝑁𝑢 − 1)).  

�̂�(𝑘 + 𝑖|𝑘) is the predicted value of the system output at the sampling time (𝑘 + 𝑖) which 

is calculated at the sampling time 𝑘, and 𝑢(𝑘 + 𝑖|𝑘) is the control signal value at the 

sampling time (𝑘 + 𝑖) which is calculated at the sampling time 𝑘. Usually, the control 

horizon is smaller than the prediction horizon (𝑁𝑢 ≤ 𝑁𝑝), so the control signal is taken 

constant beyond the control horizon (𝑢(𝑘 + 𝑖|𝑘) = 𝑢(𝑘 + 𝑁𝑢 − 1|𝑘) For 𝑁𝑢 ≤  𝑖 ≤ 𝑁𝑝). 

After calculating the sequence of the control signal, only the first element is applied to 

the controlled system. The MPC strategy can be summarized by the following steps: 

 Using the system model, the future values of the system outputs are calculated 

over the prediction horizon 𝑁𝑝.  

 A desired reference trajectory must be specified at least over the prediction 

horizon 𝑁𝑝. 

 A control sequence that minimizes a given cost function is computed. Only the 

first element of this sequence is applied to the controlled system.  

These steps are repeated at each sampling time.  

To simplify the notation, we use �̂�(𝑘 + 𝑖) instead of �̂�(𝑘 + 𝑖|𝑘) to denote the output future 

values obtained at the sampling time 𝑘, and  𝑢(𝑘 + 𝑖) instead of 𝑢(𝑘 + 𝑖|𝑘) to denote the 

control future values computed at the sampling time 𝑘. 

2.1.1. Cost function  

 The cost function includes all the desired control objectives over the prediction and 

the control horizons. The common used cost function is given by following quadratic form:  
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 The error between the desired reference trajectories and the predicted system 

outputs �̂�(𝑘).  

 The control signal increment (Δ𝑢(𝑘)).  

 𝐽(Δ𝑢(𝑘), �̂�(𝑘), 𝑐(𝑘)) = ∑ [(�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))
𝑇
𝑄(�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))]

𝑁2

𝑖=𝑁1

+∑[Δ𝑢(𝑘 + 𝑖 − 1)𝑇𝑅 Δ𝑢(𝑘 + 𝑖 − 1)]

𝑁𝑢

𝑖=1

 

(4.1) 

where, 𝐶(𝑘) is the desired reference trajectory, Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1) is the control 

increment, and 𝑁1 and 𝑁2 are the lower and the upper limits of the prediction horizon (𝑁𝑝 =

𝑁2 − 𝑁1 + 1), respectively. The weight matrices 𝑄 and 𝑅 are semi positive defined and 

positive defined matrices, respectively.  

Generally, the value of 𝑁1 is chosen according to the delay time of the controlled 

system and the control horizon 𝑁𝑢 must not exceed 𝑁2  (1 ≤ 𝑁𝑢 ≤ 𝑁2). In some cases, to 

reduce the complexity of the optimization problem, the weight matrix 𝑅 is chosen to be a 

NULL matrix, and the weight matrix 𝑄 is chosen to be an identity matrix. Therefore, the 

optimization problem, given by equation (4.1), become:  

𝐽(Δ𝑢(𝑘), �̂�(𝑘), 𝑐(𝑘)) = ∑‖(�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))‖
2

𝑁2

𝑖=𝑁1

 (4.2) 

2.1.2. Constraints  

One of the most important strengths of the MPC technique is its constraints handling 

capabilities. In fact, the majority of physical systems have some limitations imposed on their 

variables, which have to be included in the optimization problem in the form of different 

constraints. Most of these constraints can be characterized as follows:  

 Constraints on the inputs: 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖) ≤ 𝑢𝑚𝑎𝑥              𝑖 = 0,1, … ,𝑁𝑢 − 1 (4.3) 

  

 Constraints on the inputs increments: 

Δ𝑢𝑚𝑖𝑛 ≤ Δ𝑢(𝑘 + 𝑖) ≤ Δ𝑢𝑚𝑎𝑥             𝑖 = 0,1, … ,𝑁𝑢-1 (4.4) 

  

 Constraints on the outputs: 

𝑦𝑚𝑖𝑛 ≤ �̂�(𝑘 + 𝑖) ≤ y𝑚𝑎𝑥              𝑖 = 𝑁1, … , 𝑁2 (4.5) 

Other types of constraints could be considered, such as: constraints on the outputs 

increments, constraints on the state variables of the controlled system, constraints on the 

increments of the state variables … etc.  

By considering the source of their origin, the constraints can be classified in two 

categories: 

 Hard constraints:  they are imposed by physical limitations of the controlled 

system. Therefore, they cannot be exceeded. In case of violation of any of these 
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constraints, a physical damage in the controlled system is occurred immediately. 

Inputs constraints are usually considered as hard constraints, the origins of these 

constraints are the working limit ranges of the actuators.  

 Soft constraints:  these constraints are imposed by technological nature, safety, 

economic and environmental objectives. Hence, they can be physically exceeded. 

However, this violation must be temporary and under special conditions. Outputs 

constraints are usually considered as soft constraints.  

By tacking in account the imposed constraints, the optimization problem of MPC is 

given as follows:  

𝐽(Δ𝑢(𝑘), �̂�(𝑘), 𝑐(𝑘)) = ∑ [(�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))
𝑇
𝑄 (�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))]

𝑁2

𝑖=𝑁1

+∑[Δ𝑢(𝑘 + 𝑖 − 1)𝑇 𝑅 Δ𝑢(𝑘 + 𝑖 − 1)]

𝑁𝑢

𝑖=1

 

 

Subject to: 

 

Δ𝑢(𝑘 + 𝑖 − 1) = 0 for 𝑖 > 𝑁𝑢 

𝑦𝑚𝑖𝑛 < �̂�(𝑘 + 𝑖) < 𝑦𝑚𝑎𝑥 for  𝑖 = 𝑁1, … , 𝑁2 

𝑢𝑚𝑖𝑛 < 𝑢(𝑘 + 𝑖) < 𝑢𝑚𝑎𝑥 for  𝑖 = 0,1, … ,𝑁𝑢 − 1 

Δ𝑢𝑚𝑖𝑛 < Δ𝑢(𝑘 + 𝑖) < Δ𝑢𝑚𝑎𝑥 for 𝑖 = 0,1, … ,𝑁𝑢 − 1 

(4.6) 

 

2.1.3. Prediction model 

As mentioned above, the future outputs of the controlled system are predicted using 

a suitable model of the system. Therefore, the first step in designing any MPC algorithm is 

obtaining a model that have the ability to mimic the dynamics of the controlled system with 

negligible error. Three different approaches that can be used to design the prediction model 

are presented as follows:  

 The black box approach: The input/output database is required to build such 

models. The prior knowledge about the system dynamics are not required. 

 The white box approach: The input/output database is not needed; however, the 

system’s balance equations must be known to build this model. The white box 

model gives better performance than the black box model; however, it is difficult 

to build such models. 

 The gray box approach: this approach is a hybrid between the black box and the 

white box approaches, it requires some of the system balance equations and an 

input/output database. This approach gives good modeling performance and it is 

less complex than the white box approach.  

Several models can be used to predict the future behavior of the controlled system. 

However, the chosen prediction model should be the simplest one that can give sufficiently 

precise predictions. In case of a linear prediction model, and no imposed constraints, the 

optimization problem becomes a quadratic function, which has a unique global minimum; 

therefore, an analytical solution can be obtained. However, the most physical systems are 

nonlinear and subjected to different inputs and outputs constraints. To obtain acceptable 
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performance, nonlinear models should be used and the different constraints must be 

incorporated in the optimization problem. In this case, analytical solutions, to the non-

convex and nonlinear optimization problem, do not exist and numerical optimization 

methods should be used. 

2.2. Nonlinear model predictive control  

Although, linear MPC techniques give good control performance in many practical 

applications [87–89] , in the case of highly nonlinear systems, severe degradations in the 

control performance can be observed. Therefore, to ensure good control performance, 

nonlinear MPC (NMPC) methods that use a nonlinear prediction model should be 

investigated. In fact, a lot of attention was given to the NMPC techniques, and several control 

algorithms were proposed [90–92,140]. The main difficulties in designing any NMPC 

algorithm are obtaining an adequate nonlinear model for the system to be controlled and 

online solving the non-convex and nonlinear optimization problem. Obviously, the 

efficiency and computational requirement of the controller depend extremely on the 

accuracy and simplicity of the used model. Actually, there is no clearly suitable modeling 

approach to represent general nonlinear systems. Hence, several nonlinear models were 

developed and used in predictive control, such as: Volterra series [93–95], neural network 

models [88,90,100], fuzzy logic models [91,97,98], fuzzy neural network models [148–

150],… etc.  

Using a nonlinear prediction model implies a non-convex and nonlinear optimization 

problem, which requires a complex and time-consuming optimization algorithm to find a 

solution for the optimization problem. The objective of most NMPC techniques is to find a 

suboptimal solution that satisfies the desired control performance.  

To solve the predictive control problem, the following approaches can be envisaged:  

 NMPC using successive linearization: the goal of this method is to use a 

prediction model that gives better performance than that of a linear model and 

maintain the quadratic form of the optimization problem. Therefore, at each 

sampling time, the prediction model is linearized around the current operating 

conditions. After that, the linearized model is used with any linear MPC strategy 

[81,83,84,229,230]. Due to the approximation of the prediction model with a 

linear one, this strategy is considered as a suboptimal approach. The NMPC with 

successive linearization gives good control performance if the controlled system 

have slow dynamics, in this case, it is not required to perform the linearization at 

each sampling time, but rather after a given number of samples, this number 

depend on the dynamics rate of the controlled system. It is clear that, in the case 

of systems with fast dynamics, such approach could be insufficient.  

 NMPC using nonlinear predictions and linearization: obviously, the previous 

approach is limited especially when it comes to control nonlinear systems with 

fast dynamics. Hence, to enhance the control performance, in this approach, the 

superposition principle is used, where the system response is decomposed into 

free and forced responses. The aim of this decomposition is to facilitate solving 

the optimization problem. Therefore, a nonlinear prediction model is used to 

evaluate the free response while a linearized one is used to evaluate the forced 

response. The resulting optimization problem is quadratic and convex as in the 

precedent approach. But, due to using a nonlinear model to calculate the free 
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response, this approach gives better control performance than the precedent 

approach. 

 NMPC using nonlinear optimization method: in this approach, a nonlinear 

prediction model is used to generate the response of the controlled system, and 

the associated optimization problem is nonlinear and non convex. The 

optimization methods that can be used in this case  can be classified into the 

following two main families:  

 Deterministic numerical methods: these methods gives a numerical The 

following methods can be used to solve the optimal control problem:  

 Hamilton-Jacobi-Bellman partial differential equation [231,232].   

 Euler-Lagrange differential equation [233,234]. 

 Direct methods [235]. 

 Stochastic numerical methods: the aim of these methods is to solve the 

non-quadratic and nonlinear optimization problem using stochastic meta-

heuristic algorithms. These algorithms are based on fundamental 

elements that produce evolutionary intelligent behavior in natural 

systems. Meta heuristic algorithms are known of their ability to handle 

the most optimization problem; they have good performance, and could 

locate adequate solutions in a reasonable time. In fact, many research 

works have used meta heuristic optimization methods to solve the NMPC 

optimization problem. Particularly, the following methods have been 

used:   

 Genetic algorithm [104,105]. 

 Particle swarm optimization algorithm [90,106,107]. 

 Artificial bee colony [96,97]. 

 Evolutionary algorithm [108]. 

2.3. Neural network based model predictive control 

Neural networks are capable of approximating any given function with arbitrary 

precision [236]; they are universal approximators. Due to their simple structure and good 

precision, neural networks are very suitable for NMPC. Several architectures of neural 

networks can be found in the literature. Such as: the feed forward neural networks, the 

recurrent neural networks, the radial basis neural networks and the Elman network. Each one 

of these architectures has its own properties and can be used to build the prediction model 

used in NNMPC. To obtain such models, a training step of the network weights is required. 

Several training algorithms have been proposed, such as: the quasi-Newton method [237], 

the Levenberg-Marquardt algorithm [238] and the famous back propagation algorithm [239]. 

In the present thesis, the Multi-Layer Perceptron (MLP) with one hidden layer and the back 

propagation algorithm are used. 

Assuming that, the controlled system is a MIMO process which has 𝑚 inputs and 𝑛 

outputs, and a MLP NN is used as the prediction model, the control block diagram is given 

by figure (4.1).  
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Figure 4. 1 : Control block diagram of the NNMPC. 

2.4. Solving the NNMPC optimization problem  

The NNMPC optimization problem, generally defined by equation (4.6), must be solved 

to obtain the desired control action. 

2.4.1. Constraint handling  

One of the interesting advantages of predictive control is its ability to efficiently and 

directly handle the constraints by incorporating theme in the formulation of the optimization 

problem. In the present work, the input constraints are considered as hard constraints. They 

are directly handled by bounding the search space using a preserving strategy. The output 

constraints are considered as soft constraints; they are handled using the penalizing 

approach.  

2.4.1.1. Output constraints  

As cited above, the penalizing approach is used to handle the output constraint. In this 

approach, to heavily penalize any constraints violation, new variables, called slack variables, 

are added to the cost function. Using this approach, the optimization problem given by 

equation (4.6) is reformulated to have the following expression: 

𝐽(Δ𝑢(𝑘), �̂�(𝑘), 𝑐(𝑘)) = ∑ [(�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))
𝑇
Γ𝑦(�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))]

𝑁2

𝑖=𝑁1

+∑[Δ𝑢(𝑘 + 𝑖 − 1)𝑇𝑅 Δ𝑢(𝑘 + 𝑖 − 1)]

𝑁𝑢

𝑖=1

 

 

Subjected to: 

 

Δ𝑢(𝑘 + 𝑖 − 1) = 0 for 𝑖 > 𝑁𝑢 

𝑢𝑚𝑖𝑛 < 𝑢(𝑘 + 𝑖) < 𝑢𝑚𝑎𝑥 for  𝑖 = 0,1, , … , 𝑁𝑢 − 1 

Δ𝑢𝑚𝑖𝑛 < Δ𝑢(𝑘 + 𝑖) < Δ𝑢𝑚𝑎𝑥 for 𝑖 = 0,1, , … , 𝑁𝑢 − 1 

(4.7) 
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where, the output-dependent weight function Γ𝑦(𝑦) is chosen to replace the imposed output 

constraint and has the following expression:  

Γ𝑦(�̂�) =

(

 
 

Γ�̂�1(�̂�1) 0

0 Γ�̂�2(�̂�2)

0 ⋮

  
…      0
…      0
⋱      0

0          ⋯              0     Γ�̂�𝑞(�̂�𝑞))

 
 

 (4.8) 

  

such as:  

Γ�̂�𝑖(�̂�𝑖) = {
Γ�̂�𝑖(0)                      𝑖𝑓 𝑦 𝑚𝑖𝑛𝑖

≤ �̂�𝑖 ≤ 𝑦 𝑚𝑎𝑥𝑖
 

Γ�̂�𝑖(0) [1 + 𝐶𝑖𝑦]                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where, 𝑖 = 1,… , 𝑞 (𝑞 is the number of outputs) and 𝐶𝑖𝑦 is used to define the degree of 

penalization: 𝐶𝑖𝑦 = 0 indicates no constraint, while 𝐶𝑖𝑦 = ∞ indicates hard constraint. 

2.4.1.2. Input constraints 

In population-based algorithms the input constraints can be systematically handled by 

bounding the search space to the inputs admissible values.  The inputs constraints to be 

handled are:  

 Constraints on the input increment. 

Δ𝑢𝑚𝑖𝑛 < Δ𝑢(𝑘) < Δ𝑢𝑚𝑎𝑥 

 Constraints on the input magnitude.  

𝑢𝑚𝑖𝑛 < 𝑢(𝑘) < 𝑢𝑚𝑎𝑥 

These constraints can be combined into one single constraint as follows:  

Δ𝑢𝑚𝑖𝑛 < Δ𝑢(𝑘) < Δ𝑢𝑚𝑎𝑥 

→ Δ𝑢𝑚𝑖𝑛 + 𝑢(𝑘 − 1) < Δ𝑢(𝑘) + 𝑢(𝑘 − 1) < Δ𝑢𝑚𝑎𝑥 + 𝑢(𝑘 − 1) 

→ Δ𝑢𝑚𝑖𝑛 + 𝑢(𝑘 − 1) < 𝑢(𝑘) < Δ𝑢𝑚𝑎𝑥 + 𝑢(𝑘 − 1) 

(4.9) 

  

According to the constraint on the input magnitude and equation (4.9), the upper and 

the lower bounds of the input magnitude will be given by: 

𝐿𝑚𝑖𝑛(𝑘) < 𝑢(𝑘) < 𝐿max (𝑘) (4.10) 

  

where:  

𝐿𝑚𝑖𝑛(𝑘) = {
𝑢𝑚𝑖𝑛                       𝑖𝑓   𝑢𝑚𝑖𝑛 > Δ𝑢𝑚𝑖𝑛 + 𝑢(𝑘 − 1)

Δ𝑢𝑚𝑖𝑛 + 𝑢(𝑘 − 1)                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐿𝑚𝑎𝑥(𝑘) = {
𝑢𝑚𝑎𝑥                         𝑖𝑓   𝑢𝑚𝑎𝑥 < Δ𝑢𝑚𝑎𝑥 + 𝑢(𝑘 − 1)

Δ𝑢𝑚𝑎𝑥 + 𝑢(𝑘 − 1)                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Equation (4.10) gives the upper and lower limits of the search space. Finally the NMPC 

optimization problem becomes:  

𝐽(Δ𝑢(𝑘), �̂�(𝑘), 𝑐(𝑘)) = ∑ [(�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))
𝑇
Γ𝑦(�̂�(𝑘 + 𝑖 𝑘⁄ ) − 𝑐(𝑘 + 𝑖))]

𝑁2

𝑖=𝑁1

+∑[Δ𝑢𝑇(𝑘 + 𝑖 − 1)𝑅Δ𝑢(𝑘 + 𝑖 − 1)]

𝑁𝑢

𝑖=1

 

 

Subjected to: 

 

Δ𝑢(𝑘 + 𝑖 − 1) = 0 for 𝑖 > 𝑁𝑢 

𝐿𝑚𝑖𝑛(𝑘) < 𝑢(𝑘) < 𝐿max (𝑘)   

(4.11) 

  

3. Proposed control algorithms  

Assuming that the neural network prediction model is obtained and the parameters of the 

NNMPC  (𝑁𝑢, 𝑁1, 𝑁2, 휀, 𝐶𝑖𝑦) are chosen, the proposed control algorithms are detailed in the 

following subsections.  

3.1. TLBO based NNMPC algorithm 

In this algorithm, the basic teaching learning based optimization algorithm is used to 

solve the constrained nonlinear optimization problem given by equation (4.11). Assuming 

that the TLBO parameters (𝑚, 𝑛 and 𝑘𝑚𝑎𝑥) are established, the steps of this control strategy 

(NNMPC-TLBO) are given as follows:  

Step 1: Initialization  

 Let us take the control inputs at the sampling time k for the 𝑖𝑡ℎ iteration as 𝑋𝑗 𝑘
𝑖  , ( 𝑗 =

1, … , 𝑚), where 𝑚 denotes the number of control inputs. 

 For 𝑗=1: 𝑚                     

o For 𝑘=1: 𝑛       

 Choose the initial solution 𝑋𝑗 𝑘
1  using equation (2.15). 

o End 

 End 

 𝑖=1.                                 

Step 2: Reference trajectory  

 Specify the reference trajectory between k + 𝑁1 and k + 𝑁2. 

Step 3: Teacher phase  

 Step 3_1: Determination of the teacher  

o For 𝑘=1: 𝑛  

 Calculate the predicted values of the system outputs using the prediction 

model. 

 Evaluate the objective function 𝐹𝑘
𝑖  using equation (4.11). 

o End 

o 𝐹𝑘𝑏𝑒𝑠𝑡 = 𝐹1
𝑖 

o For 𝑘=2: n 

 If 𝐹𝑘
𝑖<𝐹𝑘𝑏𝑒𝑠𝑡  
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 𝐹𝑘𝑏𝑒𝑠𝑡 = 𝐹𝑘
𝑖  

 𝑋𝑗𝑘𝑏𝑒𝑠𝑡 = 𝑋𝑗𝑘
𝑖  

 End if 

o End 

 Step 3_2: Mean result calculation  

o For 𝑗=1: 𝑚  

 Calculate the mean result 𝑀𝑗
𝑖 using equation (2.10). 

o End 

 Step 3_3: difference mean calculation  

o For 𝑗=1: 𝑚 

 For 𝑘=1: 𝑛 

 Calculate the difference mean (𝑑𝑗 𝑘
𝑖 ) using equation (2.11). 

 End 

o End 

 Step 3_4: Solution updating 

o For 𝑗=1: 𝑚 

 For 𝑘=1: 𝑛 

 Calculate the new solutions  𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖 using equation (2.12). 

 End 

o End 

 Step 3_5: Greedy selection  

o For 𝑘=1: 𝑛  

 Using  𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖  , calculate the predicted values of the system outputs using 

the prediction model. 

 Evaluate the objective function 𝑛𝑒𝑤_𝐹𝑘
𝑖  using equation (4.11). 

 If 𝑛𝑒𝑤_𝐹𝑘
𝑖  < 𝐹𝑘

𝑖  

 𝐹𝑘
𝑖 = 𝑛𝑒𝑤

𝐹𝑘
𝑖  

 𝐹𝑗 𝑘
𝑖 = 𝑋𝑛𝑒𝑤𝑗 𝑘

𝑖    

 End if 

 If 𝐹𝑘
𝑖<𝐹𝑘𝑏𝑒𝑠𝑡  

 𝐹𝑘𝑏𝑒𝑠𝑡 = 𝐹𝑘
𝑖  

 𝑋𝑗𝑘𝑏𝑒𝑠𝑡 = 𝑋𝑗 𝑘
𝑖  

 End if 

o End 

Step 4: Learner phase 

 Step 4_1: choosing the pairs to interact  

o Choose randomly 𝑞 pairs of solutions such that 𝐹𝐴
𝑖 ≠ 𝐹𝐵

𝑖  where 𝐹𝐴
𝑖 and 𝐹𝐵

𝑖  are the 

objective function values of 𝑋𝐴 and 𝑋𝐵 respectively. 

 Step 4_2: Solutions updating 

o For ℎ=1: 𝑞 

 Update the solution 𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖  using equations (2.13) and (2.14). 

o End 

 Step 4_3: evaluating the new solutions 
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o For 𝑘=1: 𝑛  

 Using 𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖 , calculate the predicted values of the system outputs using the 

prediction model. 

 Evaluate the objective function 𝑛𝑒𝑤_𝐹𝑘
𝑖  using equation (4.11). 

o End 

o For 𝑘=1: 𝑛 

 If 𝑛𝑒𝑤_𝐹𝑘
𝑖  < 𝐹𝑘

𝑖  

 𝐹𝑘
𝑖 = 𝑛𝑒𝑤_𝐹𝑘

𝑖  

 𝑋𝑗 𝑘
𝑖 = 𝑋𝑛𝑒𝑤𝑗𝑘

𝑖  

 End if 

 If 𝐹𝑘
𝑖<𝐹𝑘𝑏𝑒𝑠𝑡  

 𝐹𝑘𝑏𝑒𝑠𝑡 = 𝐹𝑘
𝑖  

 𝑋𝑗 𝑘𝑏𝑒𝑠𝑡 = 𝑋𝑗 𝑘
𝑖  

 End if 

o End 

Step 5: iterative process  

 if 𝐹𝑘𝑏𝑒𝑠𝑡 <  휀   𝑜𝑟 𝑖 > 𝑘𝑚𝑎𝑥 

o 𝑖=1. 

o Go to step 6. 

 Else  

o 𝑖 = 𝑖 + 1. 

o Go back to step 3. 

 End 

Step 6:  

 Apply the obtained control value (the first element of  𝑋𝑗 𝑘𝑏𝑒𝑠𝑡) on the system.  

 Wait for the next sampling time, and then go back to step 2. 

3.2. I-TLBO based NNMPC algorithm  

In this algorithm, the improved teaching learning based optimization algorithm is used 

to solve the constrained nonlinear optimization problem given by equation (4.11). Assuming 

that the I-TLBO parameters (𝑇𝑛, 𝑚, 𝑛 and 𝑘𝑚𝑎𝑥) are established, the basic steps of the 

NNMPC-ITLBO are given as follows:  

Step 1: Initialization  

 Let us take the control inputs at the sampling time k for the 𝑖𝑡ℎ iteration as 𝑋𝑗 𝑘
𝑖  , ( 𝑗 =

1, … , 𝑚), where 𝑚 denotes the number of control inputs. 

 For 𝑗=1: 𝑚                     

o For 𝑘=1: 𝑛       

 Choose the initial solution 𝑋𝑗 𝑘
1  using equation (2.15). 

o End 

 End 

 𝑖=1.                                 

Step 2: Reference trajectory  

 Specify the reference trajectory between k + 𝑁1 and k + 𝑁2. 

Step 3: Determination of the first teacher  
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 For 𝑘=1: 𝑛  

o Calculate the predicted values of the system outputs using the prediction model. 

o Evaluate the objective function 𝐹𝑘
𝑖  using equation (4.11). 

 End 

 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 = 𝐹1
𝑖 

 For 𝑘=2: n 

o If 𝐹𝑘
𝑖<𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 

 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 = 𝐹𝑘
𝑖  

 (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 = 𝑋𝑗𝑘
𝑖  

o End if 

 End 

Step 4: Determination of the other (𝑇𝑛 − 1) teachers  

 Select the other teachers using equation (2.16) 

Step 5: assigning groups to the teachers  

 For 𝑘 = 1: (𝑛 − 𝑇𝑛) 

o If 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 ≥ 𝐹𝑘
𝑖 > 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)2 

 Assign the learner 𝑋𝑘
𝑖  to the teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1 

o Else, If 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)2 ≥ 𝐹𝑘
𝑖 > 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)3 

 Assign the learner 𝑋𝑘
𝑖  to the teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)2 

⋮ 

o Else, If 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑇𝑛−1 ≥ 𝐹𝑘
𝑖 > 𝐹(𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑇𝑛  

 Assign the learner 𝑋𝑘
𝑖  to the teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑇𝑛−1 

o Else  

 Assign the learner 𝑋𝑘
𝑖  to the teacher (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)𝑇𝑛 

 End  

Step 6: Mean result calculation for each group   

 For 𝑖 = 1: 𝑇𝑛 

o For 𝑗=1: 𝑚  

 Calculate the mean result 𝑀𝑗
𝑖 for each group using equation (2.10). 

o End 

 End 

Step 7: Adaptive teaching factor and difference mean calculation    

 For 𝑖 = 1: 𝑇𝑛 

o Calculate the Adaptive teaching factor using equation (2.17). 

o For 𝑗=1: 𝑚  

 For 𝑘=1: 𝑛 

 Calculate the difference mean (𝑑𝑗 𝑘
𝑖 ) for each group. 

 End 

o End 

 End 
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Step 8: Learning through tutorial hours    

 For 𝑖 = 1: 𝑇𝑛 

o For 𝑗=1: 𝑚 

 For 𝑘=1: 𝑛 

 Calculate the new solutions  𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖 using equations (2.18) and (2.19). 

 End 

o End 

 End 

Step 9: Greedy selection  

 For 𝑘=1: 𝑛  

o Using  𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖  , calculate the predicted values of the system outputs using the 

prediction model. 

o Evaluate the objective function 𝑛𝑒𝑤_𝐹𝑘
𝑖  using equation (4.11). 

o If 𝑛𝑒𝑤_𝐹𝑘
𝑖  < 𝐹𝑘

𝑖  

 𝐹𝑘
𝑖 = 𝑛𝑒𝑤

𝐹𝑘
𝑖  

 𝐹𝑗 𝑘
𝑖 = 𝑋𝑛𝑒𝑤𝑗 𝑘

𝑖    

o End if 

o If 𝐹𝑘
𝑖<𝐹𝑘𝑏𝑒𝑠𝑡  

 𝐹𝑘𝑏𝑒𝑠𝑡 = 𝐹𝑘
𝑖  

 𝑋𝑗𝑘𝑏𝑒𝑠𝑡 = 𝑋𝑗 𝑘
𝑖  

o End if 

 End 

Step 10: choosing the pairs to interact  

 Choose randomly 𝑞 pairs of solutions such that 𝐹𝐴
𝑖 ≠ 𝐹𝐵

𝑖  where 𝐹𝐴
𝑖 and 𝐹𝐵

𝑖  are the 

objective function values of 𝑋𝐴 and 𝑋𝐵 respectively. 

Step 11: Self-motivated learning 

 For ℎ=1: 𝑞 

o Update the solution 𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖  using equations (2.20) and (2.21). 

 End 

Step 12: evaluating the new solutions 

 For 𝑘=1: 𝑛  

o Using 𝑋𝑛𝑒𝑤𝑗 𝑘
𝑖 , calculate the predicted values of the system outputs using the 

prediction model. 

o Evaluate the objective function 𝑛𝑒𝑤_𝐹𝑘
𝑖  using equation (4.11). 

 End 

 For 𝑘=1: 𝑛 

o If 𝑛𝑒𝑤_𝐹𝑘
𝑖  < 𝐹𝑘

𝑖  

 𝐹𝑘
𝑖 = 𝑛𝑒𝑤_𝐹𝑘

𝑖  

 𝑋𝑗 𝑘
𝑖 = 𝑋𝑛𝑒𝑤𝑗𝑘

𝑖  

o End if 

o If 𝐹𝑘
𝑖<𝐹𝑘𝑏𝑒𝑠𝑡  

 𝐹𝑘𝑏𝑒𝑠𝑡 = 𝐹𝑘
𝑖  
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 𝑋𝑗 𝑘𝑏𝑒𝑠𝑡 = 𝑋𝑗 𝑘
𝑖  

o End if 

 End 

Step 13: iterative process  

 if 𝐹𝑘𝑏𝑒𝑠𝑡 <  휀   𝑜𝑟 𝑖 > 𝑘𝑚𝑎𝑥 

o 𝑖=1. 

o Go to step 14. 

 Else  

o 𝑖 = 𝑖 + 1. 

o Go back to step 3. 

 End 

Step 14:  

 Apply the obtained control value (the first element of (𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟)1) on the system.  

 Wait for the next sampling time, and then go back to step 2. 

3.3. ETLBO based NNMPC Algorithm  

In this algorithm, the proposed enhanced teaching learning based optimization 

algorithm is used to solve the constrained nonlinear optimization problem given by equation 

(4.11). Assuming that the ETLBO parameters (𝑚, 𝑛 and 𝑘𝑚𝑎𝑥) are established, the proposed 

NNMPC-ETLBO algorithm is described by the flow chart given in figure (4.2). 

4. Control of the 2-DOF robot arm manipulator 

4.1. System presentation  

To evaluate the performance of the proposed controller, the control of the model of 

the 2-DOF robot arm manipulator, presented in [240], is considered. This planar robotic 

manipulator is given by figure (4.3). The dynamic model of the manipulator is expressed as 

follows:  

(
𝑄11 𝑄12
𝑄21 𝑄22

) (
�̈�1
�̈�2
) + (

𝑃11
𝑃21

) + (
𝑓1
𝑓2
) + (

𝑔1𝑞
𝑔2𝑞

) = (
𝜏𝑓𝑖𝑛1
𝜏𝑓𝑖𝑛2

) (4.12) 

where: 

𝜏𝑓𝑖𝑛1 , 𝜏𝑓𝑖𝑛2  are the control torques for joints 1 and 2, respectively,  

𝑄11 = 𝐼1 + 𝐼2 +𝑚1𝑙𝑐1
2 +𝑚2𝑙1

2 +𝑚2𝑙𝑐2
2 + 2𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝜃2 +𝑚33(𝑙1

2 + 𝑙2
2 + 2𝑙1𝑙2𝑐𝑜𝑠𝜃2). 

𝑄12 = 𝑄21 = 𝐼2 +𝑚2𝑙𝑐2
2 +𝑚2𝑙1𝑙𝑐2𝑐𝑜𝑠𝜃2 +𝑚33(𝑙2

2 + 𝑙1𝑙2𝑐𝑜𝑠𝜃2).  

𝑄22 = 𝐼2 +𝑚2𝑙𝑐2
2 +𝑚33𝑙2

2.  

𝑃11 = −𝑙1(2�̇�1 + �̇�2)�̇�2𝑠𝑖𝑛𝜃2(𝑙𝑐2𝑚2 + 𝑙2𝑚33).  

𝑃21 = 𝑙1𝑙𝑐2�̇�1
2𝑠𝑖𝑛𝜃2(𝑚2 +𝑚33).  

𝑓1 = 𝑏1𝑞�̇�1.  𝑓2 = 𝑏2𝑞�̇�2.  

𝑔1𝑞 = 𝑚1𝑙𝑐1𝑔𝑐𝑜𝑠𝜃1 +𝑚2𝑔(𝑙𝑐2 cos(𝜃1 + 𝜃2) + 𝑙1𝑐𝑜𝑠𝜃1) + 𝑚33𝑔(𝑙2 cos(𝜃1 + 𝜃2) +

𝑙1𝑐𝑜𝑠𝜃1).  

𝑔2𝑞 = (𝑚2 +𝑚33)𝑔𝑙𝑐2 cos(𝜃1 + 𝜃2).   

The values of the different constants are given in table (4.1). 
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Figure 4. 2 : Flow chart of the proposed NNMPC-ETLBO algorithm. 
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Figure 4. 3 : Planar robot arm manipulator.  

parameter value parameter value 

𝑚1 0.392924 (kg) 𝑙𝑐1 0.104648 (𝑚) 

𝑚2 0.094403 (kg) 𝑙𝑐2 0.081788 (𝑚) 

𝑚33 0.2 (kg) 𝐼1 0.0011411 (kg ⋅ m2) 

𝑔 9.81 (𝑚/𝑠2) 𝐼2 0.0020247 (kg ⋅ m2) 

𝑙1 0.2032 (𝑚) 𝑏1𝑞 0.141231 (𝑁) 

𝑙2 0.1524 (𝑚) 𝑏2𝑞 0.3530776 (𝑁) 

Table 4. 1 : Parameters values of the considered manipulator. 

4.2. Neural network modeling of the robot arm manipulator  

The prediction model consists of two MLP neural networks with the following 

architecture:  

 For both MLPs, the inputs layer contains 8 neurons, and the inputs vector is defined 

by: 

 [𝜏𝑓𝑖𝑛1(𝑘), 𝜏𝑓𝑖𝑛1(𝑘 − 1), 𝜏𝑓𝑖𝑛2(𝑘), 𝜏𝑓𝑖𝑛2(𝑘 − 1), 𝜃1(𝑘), 𝜃1(𝑘 − 1), 𝜃2(𝑘), 𝜃2(𝑘 − 1)]. 

 For both MLPs, one hidden layer containing 20 neurons with a sigmoid activation 

functions, is used.   

 The output layer contains one neuron with a linear activation function for each MLP. 

The output of the first MLP gives the estimated value 𝜃1(𝑘) of 𝜃1, and the output of 

the second MLP gives the estimated value 𝜃2(𝑘) of 𝜃2. 

Using the state model, given by equation (4.12), a dataset is generated using random 

values of the system inputs (𝜏𝑓𝑖𝑛1 , 𝜏𝑓𝑖𝑛2). The generated dataset is divided into two subsets 
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to train and test the neural network models. Figure (4.4) shows a part of the test results of 

the obtained models; it can be seen that the modelling error is quite small. The values of the 

RMSE, and the 𝑅2, for the model of 𝜃1 and the model of 𝜃2 are: 0.00200654, 

0.99999950718, 0.00211524 and 0.99999277711, respectively. The values of 𝑅2 are close 

to 1 and the RMSE values are close to 0, hence the obtained models have good accuracy. 

 
Figure 4. 4 : Test results of the obtained models. 
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4.3. Controllers implementation 

The proposed controllers (NNMPC-TLBO, NNMPC-ITLBO with one teacher, 

NNMPC-ITLBO with two teachers, and NNMPC-ETLBO) are implemented to control the 

angular position 𝜃1 and 𝜃2 of the considered manipulator. 

All above-mentioned controllers use the same prediction model, the same control block 

diagram (figure 4.5) and the same values of the MPC design parameters (table 4.2). 

parameter value parameter value 

𝑁𝑢 1 𝑘𝑚𝑎𝑥 5 

𝑁1 1 𝑛 20 

𝑁2 3 𝑚 2 

𝑅    0 Sampling time 0.01s 

𝜏𝑓𝑖𝑛1_𝑚𝑖𝑛 -50 𝜏𝑓𝑖𝑛2_𝑚𝑖𝑛 -50 

𝜏𝑓𝑖𝑛1_𝑚𝑎𝑥 50 𝜏𝑓𝑖𝑛2_𝑚𝑎𝑥 50 

Table 4. 2 : MPC design parameters values. 

The Mean Cost Value (MCV) is used to compare the performance of the four 

considered algorithms, it is given by:  

𝑀𝐶𝑉 =
1

𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ 𝐽(𝑈(𝑘))

𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑘=1

 (4.13) 

 

 
Figure 4. 5 : Control block diagram of the considered robot arm manipulator. 

4.4. Simulation Results 

To highlight the control performance of the NNMPC-TLBO, the NNMPC-ITLBO and the 

NNMPC-ETLBO algorithms, a comparative study of the abovementioned controllers, 
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considering various operating conditions, is carried out. In the first simulation, no output 

constraints are imposed and two different reference trajectories are used. The obtained 

results are shown in figure (4.6) for the multistep trajectory and figure (4.7) for the sinusoidal 

trajectory. Tables (4.3) and (4.4) give the computed average values of the MSE, the MAE and 

the RMSE over a thousand randomly initialized runs for all considered controllers, for the 

multistep trajectory and for the sinusoidal trajectory, respectively.  

 NNMPC-

TLBO 

NNMPC-

ETLBO 

NNMPC-

ITLBO(𝑇𝑛 = 1) 

NNMPC-

ITLBO(𝑇𝑛 = 2) 

MSE 0.17485 0.16569 0.20023 0.17015 

MAE 0.31346 0.28133 0.34842 0.30756 

RMSE 0.41816 0.40705 0.44747 0.41249 

Table 4. 3 : Average values of MSE, MAE and RMSE in the case of multistep reference 

trajectory. 

 
Figure 4. 6 : Control performance using the considered controllers with a multistep 

trajectory. 
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 NNMPC-

TLBO 

NNMPC-

ETLBO 

NNMPC-

ITLBO(𝑇𝑛 = 1) 

NNMPC-

ITLBO(𝑇𝑛 = 2) 

MSE 0.02509 0.015511 0.029960 0.020262 

MAE 0.19696 0.149291 0.217468 0.179638 

RMSE 0.15840 0.124543 0.173090 0.142345 

Table 4. 4 : Average values of MSE, MAE and RMSE in the case of sinusoidal reference 

trajectory. 

 
Figure 4. 7 : Control performance using the considered controllers with a sinusoidal 

trajectory. 

From figures (4.6) and (4.7), it can be seen that a good tracking accuracy of the reference 

trajectories is obtained for all implemented controllers. However, the tracking error for the 

ETLBO-NNMPC controller is slightly smaller than that of the other considered controllers. 

From tables (4.3) and (4.4), it is clear that the ETLBO-NNMPC has better tracking accuracy 

than the other considered controllers. 

The aim of the second simulation is to assess the control performance when output 

constraints limiting the overshoot to no more than 1% are imposed. Step reference trajectories 
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are used and the output-dependent weight function Γ𝑦(𝑦) has the following parameters: 

𝐶1𝑦 = 100,  𝐶2𝑦 = 100.  The design parameters given in table (4.2) are used for all 

implemented controllers.  

Figure (4.8) gives the obtained control performance and table (4.5) gives the MSE 

average values over 100 randomly initialized runs. From figure (4.8) and table (4.5) it can 

be seen that all considered controllers handle the imposed constraint well. However, the 

ETLBO based controller gives better control performance than the other considered 

controllers.  

 
Figure 4. 8 : Control performance using the considered controllers with output constraints. 

 NNMPC-

TLBO 

NNMPC-

ETLBO 

NNMPC-

ITLBO(𝑇𝑛 = 1) 

NNMPC-

ITLBO(𝑇𝑛 = 2) 

MSE 0.34440 0.33527 0.34757 0.35682 

MAE 0.37612 0.35214 0.40320 0.39112 

RMSE 0.58685 0.57903 0.58955 0.59734 

Table 4. 5 : Average values of MSE, MAE and RMSE in the case of output constraints. 

In the third simulation, to evaluate the control performance of these controllers 

against different parameters of the optimization algorithm (𝑛, 𝑘𝑚𝑎𝑥), the MCV is evaluated 

for several values of the population size 𝑛 and the maximum number of iterations 𝑘𝑚𝑎𝑥. The 

chosen reference trajectories 𝑅𝜃1  and 𝑅𝜃2 for 𝜃1 and 𝜃2 are 𝑅𝜃1 = [0,
𝜋

2
, 𝜋,

3𝜋

2
], and  𝑅𝜃2 =
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[0,
𝜋

3
,
2𝜋

3
, 𝜋], respectively. Each control algorithm is executed 10 times, the average values 

of MCV are depicted in figure (4.9). It can be seen that the NNMPC-ETLBO gives better 

control performance than the other considered controllers. 

 
Figure 4. 9 : Average values of MCV corresponding to each controller. 

In the final simulation, the maximum number if iterations is fixed (𝑘𝑚𝑎𝑥 = 50), and 

a termination criterion (휀 = 0.1) is added to the above mentioned algorithms to stop the 

optimization process if the minimum cost reach a value less than the termination criterion. 

The number of iterations, needed to reach the termination criterion, is evaluated for several 

values of the population size. The same reference trajectories are used. Each control 

algorithm is executed 10 times, the average values of the iteration number are shown in 

figure (4.10). It can be seen that the ETLBO-NNMPC algorithm requires few iterations to 

reach the termination criterion than the other controllers. Therefore, we conclude that the 

ETLBO-NNMPC algorithm is faster than the other considered controllers.  

5. Experimental study  

To demonstrate further the effectiveness of the proposed controllers the experimental 

setup shown in figure 4.11 is used to control the speed of an induction motor. In addition to 

the three-phase squirrel-cage induction motor, this experimental setup contains the following 

elements : a three-phase generator, a three-phase voltage source inverter, a microcontroller 

18f4331 and a single computer board RASPBERRY PI 3B+. The control algorithm is 

implemented in the single computer board RASPBERRY and the microcontroller is used to 

generate the six required Pulse Width Modulated (PWM) and measure the motor speed. The 

control block diagram is given by figure 4.12. 
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Figure 4. 10 : Iterations number needed to reach the termination criterion for each 

controller. 

 

Figure 4. 11 : Experimental set up. 
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Figure 4. 12 : The induction motor control block diagram. 

5.1. Modeling of the induction motor  

A neural network model, for the considered induction motor is derived using the 

experimental collected data. This model is a simple static MLP with an input layer containing 

four inputs [𝑣1(𝑘), 𝑣2(𝑘), 𝑣3(𝑘),𝜔(𝑘 − 1)], a hidden layer of four neurons with sigmoid 

activation function and an output layer that contains one linear neuron representing the 

estimated angular speed �̂�(𝑘). 𝑣1(𝑘), 𝑣2(𝑘) and 𝑣3(𝑘) are the applied voltages on the motor 

at the sampling time 𝑘 and 𝜔(𝑘 − 1) is the measured angular speed of the motor. The 

response of the obtained model to the input test is given by figure 4.13, where it can be seen 

the modeling error is quite small. The RMSE and the R2 values of the obtained model are: 

11.19669 and 0.99976, respectively. Since the amplitude of the system output ranges 

between -1500tr/min and 1500tr/min, the RMSE value is acceptable. The R2 value is close 

to one, which indicates that the model has good accuracy. 

 
Figure 4. 13 : Test results of the induction motor model. 
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5.2. Controllers implementation  

The NNMPC-TLBO, the NNMPC-ITLBO (𝑇𝑛 = 2) and the NNMPC-ETLBO algorithms 

are implemented using the values of the design parameters given in table (4.6) and the 

obtained neural network model. The control objective is to force the motor speed to track 

two different reference trajectories; the sinusoidal and the multistep trajectories. The results 

are given in figure (4.14) and (4.15). Table (4.7) and (4.8) give the values of the MSE, MAE 

and RMSE using all considered controller in both cases (multistep and sinusoidal 

trajectories). 

 

Figure 4. 14 : Control performance in case of the multistep trajectory for the induction 

motor. 

parameter value parameter value 

𝑁𝑢 1 𝑘_𝑚𝑎𝑥 10 

𝑁1 1 𝑛 10 

𝑁2 3 𝑚 3 

𝑅    10 Sampling time 0.01s 

Table 4. 6 : Values of the design parameter. 

From figures (4.14) and (4.15), it can be seen that a good tracking accuracy of the 

reference trajectories is obtained for all implemented controllers. However, the tracking error 
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for the ETLBO-NNMPC controller is slightly smaller than that of the other considered 

controllers. From tables (4.7) and (4.8), it is clear that the ETLBO-NNMPC has better tracking 

accuracy than the other considered controllers. 

In the case of all considered controllers, the maximal value for the overshoot does 

not exceed 4% for both (step and sinusoidal) reference trajectories, the maximum values of 

the computing time are : 7.225ms and 6.402ms successively, which indicates that the 

proposed controllers can be implemented in real time to control systems with fast dynamics. 

 

 
Figure 4. 15 : Control performance in case of the sinusoidal trajectory for the induction 

motor. 

 NNMPC-

TLBO 

NNMPC-

ETLBO 

NNMPC-

ITLBO(𝑇𝑛 = 2) 

MSE 10414 7697.4 8625.1 

MAE 29.6762 24.8852 26.9914 

RMSE 102.0485 87.7348 92.8716 

Table 4. 7 : Values of MSE, MAE and RMSE in the case of a multistep trajectory for the 

induction motor control. 

 NNMPC-

TLBO 

NNMPC-

ETLBO 

NNMPC-

ITLBO(𝑇𝑛 = 2) 

MSE 11038 5445.2 8173.4 

MAE 38.5634 24.1720 33.1700 

RMSE 105.0597 73.7919 90.4066 

Table 4. 8 : Values of MSE, MAE and RMSE in the case of a sinusoidal trajectory for the 

induction motor control. 
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Figure 4. 16 : Control performance of the induction motor in the presence of output 

constraints. 

In a second experiment, to further reduce the observed overshoot, a constraint on the 

output, limiting the overshoot to no more than 2%, is included. A multistep reference 

trajectory and the parameter 𝐶𝑦 =  100 of the output-dependent weight function Γ𝑦(𝑦) are 

used in this experiment. The obtained control results are given by figure (4.16), where it can 

be seen that the overshoot value does not exceed 2%, and the maximum value of the 

computing time is : 5.839ms for all considered controllers.   

 NNMPC-

TLBO 

NNMPC-

ETLBO 

NNMPC-

ITLBO(𝑇𝑛 = 2) 

MSE 10684 5304.3 7721.8 

MAE 35.6002 24.8474 30.3787 

RMSE 103.3654 72.8303 87.8739 

Table 4. 9 : Values of MSE, MAE and RMSE in the presence of output constraints for the 

induction motor control. 
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Table (4.9) gives the values of the MSE, the MAE and the RMSE for the released 

experiments. From this table, we can conclude that all proposed controllers give good control 

performances and the imposed constraints are respected. However, the NNMPC-ETLBO 

algorithm gives the best control performance. 

6. Conclusion 

Within this chapter, the formulation of the constrained neural network predictive control 

based on the meta-heuristic algorithms has been given along with three proposed control 

algorithms. It has been shown, through several simulation studies, that the proposed 

controllers can be successfully used to control highly constrained nonlinear systems. Indeed, 

the control of a coupled multivariable mechanical system was considered. The obtained 

results have shown that the proposed controllers give good performance in terms of the 

tracking accuracy, the overshoot amplitude and the settling time. In addition, it has been 

shown, using experimental studies, that the proposed controllers give good control 

performance. The proposed algorithms can be successfully used to control different classes 

of nonlinear systems. Indeed, the control of a coupled multivariable mechanical system, and 

an electrical machine, were considered. 
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CONCLUSION  

 

Using artificial intelligence tools, such as neural networks and meta-heuristic 

optimization methods, the aim of this thesis was to develop efficient, simple, and robust 

control algorithms that can give satisfactory performance with a large class of nonlinear 

systems. In fact, neural networks have been used extensively in the field of identification 

and control of nonlinear systems. The extensive research carried out in this field has proven 

the feasibility and the efficiency of control systems based on neural networks. The secret to 

the success of neural networks lies in the fact that any nonlinear system can be modeled, 

with a given precision, using a simple neural network with learning and generalization 

capabilities. On the other hand, the emergence of several meta heuristic optimization 

methods has allowed to consider more complex optimization problems for which numerical 

methods cannot give acceptable solutions. The numerical approach can quickly reach its 

limits when the system to be controlled or the constraints to be respected become complex, 

or when the optimization of the system operating is required. Recently, the meta heuristic 

approach was successfully used in many control applications.  

In this thesis work, we started by studying several meta heuristic optimization 

methods, such as genetic algorithms, particle swarm optimization and several versions of the 

teaching learning based optimization method. This study allowed us to examine the limits 

and advantages of each algorithm and to propose an improvement for the teaching learning 

based optimization method. Dues to its attractive proprieties the TLBO, a meta heuristic 

method, has been used in many engineering applications and given satisfactory results.  In 

fact, except the common control parameters (population size and number of generations) the 

TLBO algorithm, unlike to other meta heuristic algorithms, does not require any algorithm 

specific-parameters. Obviously, improper tuning of algorithm-specific parameters either 

increases the computational effort or yields a local optimal solution. The improvement made 

to the TLBO algorithm consisted in replacing the random selecting process of the students’ 

pairs in the learners' phase by a new strategy based on the grade of each student obtained 

during the optimization process. This modification has allowed improving the convergence 

rate and the exploitation quality of the algorithm without altering its complexity. The 

convergence rate and the efficiency of the modified algorithm (ETLBO) have been assessed 

by considering eight well-known benchmark functions. The obtained results have showed 

that the proposed ETLBO algorithm outperforms the other considered algorithms; namely 

the original TLBO, the ITLBO with one and two teachers, and the w-PSO algorithm. 

Furthermore, the study carried out on neural networks and their application to the 

identification and the control of nonlinear systems has allowed discovering a type of these 

networks with a simple architecture and a simple learning algorithm. This neural network, 

called Fourier series neural network, is not widely used in the field of the identification and 

control of nonlinear systems. The main raison for which the use of this kind of neural 

networks could be very useful is the simplicity of their training algorithm. Indeed, Fourier 

series neural networks can be trained using the simple Delta rule algorithm.  Therefore, it 

can be easily incorporated in adaptive control systems.  

The research work done throughout this thesis has allowed developing several 

control algorithms; namely the adaptive neural network PID controller, the adaptive Fourier 

series neural network PID controller, the neural network predictive control using the TLBO 

algorithm, the neural network predictive control using the Improved TLBO and the neural 

network predictive control using the ETLBO.  
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In addition to the proposed adaptive neural network PID and the adaptive Fourier 

series neural network PID controllers, the PSO based adaptive PID controller, where the 

PSO algorithm was used to online optimize the PID controller gains, has been considered. 

In the adaptive neural network PID, the PID controller parameters are obtained from a 

multilayer perceptron (MLP) neural network and their values are online tuned using the back 

propagation method. The adaptive Fourier series neural network PID controller uses two 

FSNN; the first one allows estimating the system Jacobian and the second is used to obtain 

and online adjust the PID controller gains. The stability of the adaptive Fourier series neural 

network PID controller has been proved using the small gain theorem. To assess the 

effectiveness of the ANNPID, the AFSNNPID and the PSO-based PID controllers in 

controlling highly nonlinear systems, the control of the continuous stirred tank reactor and 

the 3-DOF robot arm manipulator, through simulation and experimental studies, has been 

investigated. The simulation and the experimental results have shown that these controllers 

give good control performance in terms of the tracking accuracy and the robustness against 

external disturbances and dynamic system variation. However, the proposed AFSNNPID 

controller do not require a large computing time, which allows it to be used in several real 

time applications. Indeed, the AFSNNPID controller has a simple design procedure and can 

be used to control any nonlinear system. 

Model predictive control is a sophisticated control technique that is widely used in 

industrial applications and still continues to raise interest of several researchers. In this 

thesis, the formulation of the constrained neural network predictive control based on the 

meta-heuristic algorithms has been given along with three proposed control algorithms; 

namely the TLBO based NNMPC, the ITLBO based and the ETLBO based NNMPC. It has 

been shown, through several simulation studies and experimental study, that the proposed 

controllers can be successfully used to control in real time highly nonlinear systems. Indeed, 

the control of a coupled multivariable mechanical system (the robot arm manipulator) and 

an electrical machine (the induction motor) were considered. The obtained results have 

shown that the proposed controllers give good performance in terms of the tracking 

accuracy, the overshoot amplitude and the settling time. 

Throughout this thesis, several artificial intelligent based control algorithms have 

been discussed and analyzed. The future possible research works are: 

 Instead of analyzing the stability of the proposed adaptive Fourier series neural 

network PID controller using the small gain theorem, the Lyapunov approach should 

be used. The small gain theorem proves the BIBO stability and assumes that the 

system and the controller are stable in an open loop architecture. However, Lyapunov 

approach proves the asymptotic stability without any assumptions. 

 Improving the proposed version of the TLBO algorithm by using the concept of 

multi-teachers instead of using a single one in the teacher phase. 

 To improve the tracking accuracy of the MPC, the Fourier series neural network 

could be used as a prediction model. 

Incorporating the stability analysis in the formulation of the proposed nonlinear model 

predictive control using the enhanced teaching learning based optimization algorithm. 
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LIST OF ABBREVIATIONS 

 

ABC Artificial Bee Colony  

ACO Ant Colony Optimization 

AFSNNPID         Adaptive Fourier Series Neural Network PID  

AI Artificial Intelligence  

ANFIS Adaptive Network based Fuzzy Inference System  

ANNPID Adaptive Neural Network based PID 

CMAC Cerebellar Model Arithmetic Computer  

CSTR Continuous Stirred Tank Reactor  

DMC Dynamic Matrix Control  

EA Evolutionary Algorithm  

ETLBO Enhanced Teaching Learning Based Optimization 

FL Fuzzy Logic  

FLC Fuzzy Logic Control  

FMPC Fuzzy model Based NMPC  

FNNC Fuzzy Neural Network Control  

FNNMPC Fuzzy Neural Network based NMPC  

FPID Fuzzy PID  

FSF Full State Feedback  

FuNe Fuzzy Neural system  

GA Genetic Algorithms  

GARIC 
Generalized Approximate Reasoning-based Intelligent 

Control  

GRASP Greedy Randomized Adaptive Search Procedure 

GWO Gray Wolf Optimizer 

INNFLC Integrated Neural Network based Fuzzy Logic Control 

ITLBO Improved Teaching Learning Based Optimization 

LMS Least Mean Square  

LQG Linear Quadratic Gaussian 

LQR Linear Quadratic Regulator 

MAC Model Algorithmic Control 

MAE Mean Absolute Error 

MCV Mean Cost Value  

MIMO Multiple Inputs Multiple Outputs  

MISO Multi Inputs Single Output  

MLP Multi Layer Perceptron  

MPC Model Predictive Control  

MRAC Model Reference Adaptive Control  

MSE Mean Squared Error 

NDTS Nonlinear Discrete-Time Systems 

NEFCON NEuro Fuzzy CONtrol 

NGPC Nonlinear Generalized Predictive Control  
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NMPC Nonlinear Model Predictive Control  

NN Neural Networks  

NNC Neural Network Control  

NNMPC Neural Network Based NMPC  

NNPID Neural Network based PID 

PD Proportional Derivative  

PID Proportional Integrate Derivative  

PSO Particle Swarm Optimization  

PWM Pulse Width Modulated  

RMSE Root Mean Square of the modeling Error  

TLBO Teaching Learning Based Optimization  
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