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Abstract

Quantum computers have the potential to solve problems that are in-
tractable to classical computers, nevertheless they have high error rates. One
significant kind of errors is known as “Readout Errors”. Current methods, as
the matrix inversion and least-squares, are used to unfold (correct) readout
errors. But these methods present many problems like oscillatory behavior
and unphysical outcomes.

In 2020 Benjamin Nachman et al. suggested a technique currently
used in HEP, to correct detector effects. This method is known as the “Iter-
ative Bayesian Unfolding” (IBU), and they have proven its effectiveness in
mitigating readout errors, avoiding problems of the mentioned methods.

Therefore, the main objective of our thesis is to mitigate readout noise of
quantum computers, using this powerful unfolding method. For this purpose
we generated a uniform distribution in the Yorktown IBM Q Machine,
for 5 Qubits, in order to unfold it by IBU after being distorted by noise.
Then we repeated the same experiment with a Gaussian distribution. Very
satisfactory results and consistent with those of B. Nachman et al., were
obtained. After that, we took a second purpose to explore unfolding in a
larger qubit system, where we succeed to unfold a uniform distribution for 7
Qubits, distorted by noise from the Melbourne IBM Q Machine. In this
case, the IBU method showed much better results than other techniques.

Keywords : Quantum computing, Qubit, Noise, Readout errors, Un-
folding, High energy physics, Iterative Bayesian Unfolding, IBM Yorktown
quantum computer, IBM Melbourne quantum computer.
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Introduction

We are in a new scientific revolution. A mystery box is open every day to enlighten a new
era of science. Interdisciplinary research with collaboration and a spirit of a lifelong learner
are the keys to gain a more well-developed perspective and solving problems whose solutions
transcend the scope of a single discipline.

Forty years on, the theoretical physicist Richard Feynman published a paper: simulating
physics with computers [1]. He suggested that to simulate the quantum behavior of a physical
system, we need to use quantum computers. One of the significant advantages of quantum
computing is the ability to massively parallel computations, using quantum superposition. In
the last years, simulations of chemistry and condensed materials have developed as one of the
dominant applications of quantum computing, offering an exponential speedup of solutions.
However, quantum computers are noisy in consequence the results of calculations will have
errors. One of the most important classes of errors are the readout errors.

For years several methods have been proposed in order to minimize these readout errors and
to approach as close as possible to the true value after the correction of the measurement. This
problem is known as the inverse problem and a well-known method is the Matrix inversion.
This method leads to unphysical entries (negative values) and has oscillatory behavior. For this,
we need a new method that will give us better results to reduce readout errors.

In 2020, Ben. Nachman et al. published a paper where he explained how they use a
well-known method used in HEP and applied to quantum computing. The study focuses
on a technique called “iterative Bayesian unfolding” (IBU). In their study, they simulated a
quantum computer to compare the performance of three different error-correction: Matrix
inversion, ignis, and IBU. The iterative Bayesian unfolding method have been proven very
successful compared to the two other methods.

In this thesis, we want to explore more about this method by unfolding errors from a real
quantum computer. That means we want to use measured data from a quantum computer
and correct them with the three unfolding methods.

It is interesting to see the effect of noise in a real quantum computer on our data. For this,
we will use two distributions as true data. The first one will be the uniform distribution, and
the second one will be the Gaussian distribution. After the measurement, we will see how a
noisy quantum computer will affect our data. Finally, we will use the unfolding methods to
correct our data, and then, we will compare the three methods.

1



In summary, the plan of this thesis to reach our objective is as follows:

• Chapter 1

In the first chapter, we will present an overview of quantum computing and quantum
information. We start with fundamental concepts of quantum mechanics: superposition
and entanglement. Then, we will explain what is the difference between quantum and
classical bit. Next, we will see the most famous quantum gates and examples of quantum
circuits. After that, we briefly review examples of quantum Algorithms. We finish this
chapter by explaining the concepts of error detection and correction.

• Chapter 2

This chapter is an introduction to unfolding for high-energy physics. First, we explain the
concept of the inverse problem and unfolding methods. Then, we introduce two methods,
the first one is the matrix inversion and the second one is the iterative Bayesian unfolding.
The IBU method is what interests us the most.

• Chapter 3

After having all the needed tools, the last chapter is about applying unfolding methods
from High Energy Physics to quantum information science (QIS). We start by explaining
what is a readout error and the methodology to construct a calibration matrix of a
real quantum computer. Then, we will see how to use unfolding methods from HEP to
Quantum computing. Next, we will see how to simulate the unfolding process with python.
Finally, we apply unfolding techniques to mitigate the readout noise of the 5 Yorktown
IBM Q machine with 5 qubits and the 16 Melbourne IBM Q machine with 7 qubits.

Finally, we draw our conclusion and, additional details are submitted in appendices.
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Quantum information science QIS is a new field that combines quantum physics with classical
information science. The foundations of quantum information theory were established in the
late 1980s by Charles Bennett and others [2].

In this chapter, we introduce the basic elements of QIS: qubit, quantum logic gates, quantum
circuit, quantum algorithms, quantum error correction. But before tackling any of these topics,
we first provide a glimpse of their classical analogs.

This chapter represents a reference to all that will follow because it provides us with all
the necessary tools to achieve the goal of this thesis.

The quantum mechanics concepts on which QIS stands are superposition and entanglement,
we, therefore, begin the chapter by recalling them.

3



4 Overview of Quantum Computing and Quantum Information

1.1 Superposition and Entanglement

In this section, we recall the two concepts of quantum mechanics superposition and entanglement,
then, we present Bell states.

1.1.1 Quantum Superposition Principle

The principle of superposition of states is a fundamental principle in quantum mechanics, which
represents a property that every quantum object has. If a quantum object can be either in
a state ψ1 or in another state ψ2, then the superposition principle announce that this object
is partially in ψ1 and partially in ψ2, and the general description of its state must be viewed
as the result of a superposition of the two original states

Ψ = c1ψ1 + c2ψ2 (1.1)

where c1, c2 are complex coefficients.

The new state Ψ is completely defined by the original states ψ1 and ψ2 and has intermediate
properties which are closer to the state with the greatest probability amplitude (c1, c2) [3].

We can cite illustrative examples of the superposition of states such as:

• An electron can be in a state of spin-up | ↑ 〉 and spin-down | ↓ 〉, simultaneously.

|Φ〉S = a | ↑ 〉+ b | ↓ 〉

• An atom that can be both excited |φ(1)〉 or not-excited |φ(0)〉.

|Φ〉E = a |φ(0)〉+ b |φ(1)〉

• A photon which can be in a superposition of linear polarization states; polarized horizontally
|↔〉 and vertically | l 〉, at the same time.

|Φ〉P = a |↔〉+ b | l 〉

We can generalize this concept to a number n (n ∈ N) of states {ψ1 , ψ2 , ..., ψn} that can a sys-
tem occupy:

Ψ =
∑
n

cn ψn ; cn ∈ C (1.2)

It expresses the general state Ψ as a linear combination of the discrete original states ψn.
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Although the superposition principle exists in classical mechanics, it is fundamentally different
from any classical property, Dirac wrote about the non-classical nature of superposition:

“the superposition that occurs in quantum mechanics is of an essentially different nature from
any occurring in the classical theory, as is shown by the fact that the quantum superposition
principle” [3].

The simplest experiment demonstrating this principle is the “double-slit experiment”, where
we emit from a source a beam of monochromatic light to pass through an intermediate screen
with two identical slits, that must be very thin, to finally hits a detection screen, Figure 1.1.

Figure 1.1: The Double-Slit experiment.

When crossing the two slits, the beam splits into two components and the two components
are then caused to interfere. We need the corpuscular aspect of light, so consider a single
photon γ. Arriving at the first screen, the photon will be in a superposition of the two paths;
the photon is in a general state given by the sum of the two states associated with the two
paths. This superposition leaves marks in the form of interference fringes in the detection
screen, when we measure the position of the photons.

The principle of superposition gives rise to an important concept, called “entanglement”.

1.1.2 Quantum Entanglement

The entanglement phenomenon is a direct consequence of the superposition principle applied to
composite systems, that occurs when a pair or group of particles is generated, and which are
considered as an inseparable whole; where each constituent cannot be fully described without
considering the other.
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Quantum systems can become entangled through various types of interactions between subatomic
particles. Experimentally there are various methods; we can cite a well-known one, named “the
spontaneous parametric down-conversion” (SPDC) which is an optical process that converts
one photon of higher energy into a pair of entangled photons of lower energy. In nature, a
pair of entangled particles can be created for example by the decaying phenomena as the
“pair production process” [4]:

γ −→ e+ + e−

where the pair ( e+, e−) are entangled; they form a single system.

For the mathematical aspect, consider a system formed by two particles, where the first
particle is in the state ψ ∈ H1 and the second particle is in the state φ ∈ H2 , where H1

and H2 are respectively their Hilbert-spaces. To represent the general state of the two-
particle system, we define the “Tensor product” of the two particles states ψ ⊗ φ , which is a
vector in a new Hilbert-space written H1 ⊗ H2 that will carry the description of the quantum
states of this composite system. This state is expressed as a linear superposition of the
product of the two-particle states ψi ⊗ φj :

Υ =
∑
i j

αij ψi ⊗ φj ; Υ ∈ H1 ⊗ H2 (1.3)

where αi j are the corresponding scalar components.

If Υ is an entangled state of the two particles, then it cannot be dissociated into separate
states of each of them. Conversely, if one can write it as a single term ψ∗⊗ φ∗ for some ψ∗ ∈ H1

and φ∗ ∈ H2 ; which means that the description of the particles state in Υ can be written
independently (each particle in its state), hence, in the state Υ the particles are not entangled
[5]. Otherwise, Υ is not entangled if and only if αij = αi αj , which leads to:

Υ = Ψ ⊗ Φ (1.4)

where Ψ = ∑
i αi ψi and Φ = ∑

j αj φj

And vice versa, if αij 6= αi αj , then the separation will be impossible.

We can illustrate this reasoning by taking two-dimensional Hilbert-spaces H1 and H2. Let
(e1, e2) the basis for H1 and (s1, s2) basis for H2. Then, the general state is written as:

ΥG = g11 e1 ⊗ s1 + g12 e1 ⊗ s2 + g21 e2 ⊗ s1 + g22 e2 ⊗ s2 (1.5)
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This state is encoded by a matrix of coefficients:

G =
(
g11 g12
g21 g22

)
(1.6)

If we have understood the reasoning above, the state is not entangled if there exist arbitrary
constants α1, α2, β1, β2 such that:

ΥG = (α1 e1 + α2 e2) ⊗ (β1 s1 + β2 s2) (1.7)

By expanding the expression (1.7) than identifying the constants with (1.5), we find the four equal-
ities below:

g11 = α1 β1 ; g12 = α1 β2 ; g21 = α2 β1 ; g22 = α2 β2 (1.8)

Which therefore leads to the following condition:

G =
(
α1 β1 α1 β2
α2 β1 α2 β2

)
−→ det(G ) = 0 (1.9)

So we conclude that ΥG is not entangled if and only if det(G ) = 0 . This result is available
just for two-dimensional vector spaces [5].

We will introduce at next the most important feature of the entanglement phe-
nomenon. For this let’s take the example of the neutral meson η 0 decay, which decays into
an entangled pair of a muon µ− and an anti-muon µ+ .

η 0 −→ µ− + µ+ (1.10)

In this decay process, the various conservation laws are respected ( total energy, momenta, spin,
. . . ). As known the η 0 is spinless and which decays to two particles with spin-(1/2) , Since the
conservation laws require that the total initial and final spins must be zero. Thus if we found
after a measurement that the 1st particle is spin-up on some axis, then the 2nd particle is found
to be spin-down when measured on the same axis [5].
We can check this mathematically by firstly describing the entangled pair (µ+, µ−) state
of total spin zero as follow:

|ψ〉 = 1√
2

( |+〉 ⊗ |−〉 − |−〉 ⊗ |+〉 ) (1.11)

where |+〉 ≡ | ↑ 〉 and |−〉 ≡ | ↓ 〉 are respectively, the spin-up and spin-down states. Also,
STn |ψ〉 = 0, where STn is the total n-component of spin angular momentum, given by STn =
Sn ⊗ 11 + 11⊗ Sn and n an arbitrary direction.

If we measure |ψ〉 along the basis {|+〉, |−〉}, then the probability P of |ψ〉 to be in the
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states | ± ± 〉 , | ± ∓ 〉 and |ψ〉 after measurement are respectively:

P±± = |〈 ± ± |ψ〉| 2 = 0 ; |ψ〉 −→ |ψ〉±± = 0 (1.12)

P±∓ = |〈 ± ∓ |ψ〉| 2 = 1
2 ; |ψ〉 −→ |ψ〉±∓ = ± | ± ∓ 〉 (1.13)

These results allow us to say that the two entangled particles have always opposite spins. Hence,
the measurement of one of them will affect the other, regardless of how much further they are
apart ! Hence the entangled particles are perfectly correlated1.

Alain Aspect describes the difference between classical and quantum correlations in
bipartite systems as follows:

“If we have a pair of identical twins we do not know what their blood type is before testing
them, but if we determine the type of one, we know for sure that the other is the same type.
We explain this by the fact that they were born with, and still carry along, the same specific
chromosomes that determine their blood type. Two entangled photons are not two distinct
systems carrying identical copies of the same parameter. A pair of entangled photons must
instead be considered as a single, inseparable system, described by a global wave function that
cannot be factorized into single-photon states” [7].

1.1.2.1 Bell States

Bell states are defined as a set of maximally entangled basis states. Named after the Irish
physicist John Stewart Bell [5].

We aim in what follows, to construct these states in the particular case of a two-particles
system of spin-(1/2), which are described in the Hilbert-space (H1 ⊗ H2), where H1 and H2

are both two-dimensional Hilbert-spaces. Let’s suppose that these two particles are produced
in the specific normalized and entangled state below:

|Φ0〉 = 1√
2

( |+〉1 |+〉2 + |−〉1 |−〉2) (1.14)

We can quickly verify these two properties, respectively:

〈Φ0 |Φ0〉 = 1
2 〈++|++〉 + 1

2 〈−−|−−〉 = 1 (1.15)

G =
( 1√

2 0
0 1√

2

)
−→ det(G) = 1

2 (1.16)

1 This entanglement feature seems to violate the local realism which gave rise in 1935 to what has
been known as the Einstein-Podolsky-Rosen (EPR) paradox [6].
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The dimensionality of (H1 ⊗ H2) can be calculated by the following relation:

dim(H1 ⊗H2) = dim(H1)× dim(H2)

Since dim(H1 ⊗ H2) = 4 , we therefore need four entangled states to construct our Bell
basis. If we consider the state |Φ0〉 as the first one, then the other three can be generated
by applying the operators ( 11 ⊗ σk) on |Φ0〉 [5].

|Φ
k
〉 = ( 11⊗ σk) |Φ0〉 ; k = 1, 2, 3 (1.17)

where σk are the Pauli matrices, and their actions on |±〉 are as follows:

σ1 |±〉 = |∓〉 ; σ2 |±〉 = ± i |∓〉 ; σ3 |±〉 = ± |±〉 (1.18)

where σ1 = σx , σ2 = σy , σ3 = σz .

Applying this, we get the full list of Bell states, which are explicitly written:

|Φ0〉 = ( 11⊗ 11 ) |Φ0〉 = 1√
2

( |+〉1 |+〉2 + |−〉1 |−〉2 ) (1.19)

|Φ1〉 = ( 11⊗ σ1) |Φ0〉 = 1√
2

( |+〉1 |−〉2 + |−〉1 |+〉2 ) (1.20)

|Φ2〉 = ( 11⊗ σ2) |Φ0〉 = i√
2

( |+〉1 |−〉2 − |−〉1 |+〉2 ) (1.21)

|Φ3〉 = ( 11⊗ σ3) |Φ0〉 = 1√
2

( |+〉1 |+〉2 − |−〉1 |−〉2 ) (1.22)

By a simple calculation it will be clear that they form an orthonormal basis

〈Φµ|Φν〉 = δµν (1.23)

where
|Φµ〉 = ( 11⊗ σµ) |Φ0〉 ; µ = 0, 1, 2, 3 (1.24)

and σ0 = 11 .
Finally, we have an orthonormal basis of entangled states which defines the Bell basis.
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1.2 The Quantum Bit (Qubit)

In this section, we introduce the basic information unit of QIS the “qubit”, then we explore its
physical implementation. But before that, let’s take a look at its classical equivalent, the “bit”.

1.2.1 Classical Bit

In our daily life, we use decimal numbers for almost everything: weight, height, phone number,
etc. These numbers are written in Base-ten. For this, we use ten digits: from 0 to 9, all
of the numbers use some combination of these ten digits; each number can be decomposed
into successive powers of 10. For example:

2021 = 2× 103 + 0× 102 + 2× 101 + 1× 100. (1.25)

The number 9 is the last digit in base-ten. To go beyond 9, we need to change the row. If the row
of units is complete, we start the row of tens, and we put the units back to zero. We continue the
counting until 99, when we run out of digits, we add another 0 and one on the left (100) and so on.

In decimal, at every change of powers of 10, one passes from the units (100) to the tens (101),
then to the hundreds (102). It is the same thing for base-2, but they are the powers of 2.

For example,

(1011)2 = 1× 23 + 0× 22 + 1× 21 + 1× 20 = (11)10. (1.26)

A computer works with electric current, and to communicate with an electronic device, we
must send electric signals to it. A computer’s processor is made up of transistors; we can
imagine these transistors as small switches that can be turned on or off; they let the current
pass or not like a light switch. The processor interprets and executes the instructions by
turning millions of connected transistors on and off.

In the language of a computer, on and off are represented by the numbers 1 and 0. This
language is called the binary language; the computer does not work with decimal numbers
but uses the binary system. A single binary value is called a “bit”.

A bit (binary digit) is the most basic unit of information in classical computing. To store the
value of the bit, we use a capacitor inside a memory device. The value is stored as either above or
below a specific level of electric charge in a capacitor; it can hold only one of two values: 0 or 1.

Any number from our decimal system can be represented in binary; 0 in decimal is 0 in
binary. Similarly, 1 in decimal is 1 in binary. 2 in decimal becomes 10 in binary2.

The table below shows how decimal numbers convert to binary.

Decimal 0 1 2 3 4 5 6 7 8 ... 15
Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 ... 1111

2Create a new column and start afresh, using 1 and 0.
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Bits are so small, it is uncommon to work with only one. Bits are usually put together in a
series of eight-bit, to form a “byte”. A byte contains sufficient information to store a single
ASCII character3, such as “O”: 01001111 and “B”: 01000010.

There is a unique binary number for each letter in upper and lower case. By knowing the
binary number, we can write complete words with a series of 1s and 0s. For example:

• Benaissa: 01000010 01100101 01101110 01100001 01101001 01110011 01110011 01100001

• Ouadah: 01001111 01110101 01100001 01100100 01100001 01101000

Physical Implementation of Bit

Computers represent data as voltage or current signals at the hardware level. They could be
analog, digital, or hybrid. Computers that use analog representations exclusively are uncommon.
It is challenging to control physical signals with a high degree of accuracy.

In a digital computer, the input is converted and transmitted as electrical pulses and
represented by two individual states, on and off. The sequence of on and off forms the
electrical signals that the computer can understand.

In positive logic, the presence of a voltage is called: “1”, true or high state. If the voltage
is absent then this is called the “0”, false or low state. The Figure 1.2 shows the output of
a typical complementary metal-oxide-semiconductor (CMOS) circuit. The left side shows the
condition with a true bit, and the right side shows a false. The output of each digital circuit
consists of a P-type transistor “on top of” an N-type transistor.

In digital circuits, each transistor is essentially on or off. If the transistor is on, it is
equivalent to a short circuit between its two output pins. If the transistor is off, it is equivalent
to an open circuit between its outputs pins.

True

ON

OFF

+ 3.3 V

Out = 3.3 V

P-type

N-type

Equivalence

Out = 3.3 V

Short

Open

+ 3.3 V

False

OFF

ON

+ 3.3 V

Out = 0 V

P-type

N-type

Equivalence

Out = 0 V

Short

Open

+ 3.3 V

Figure 1.2: A binary bit is true if a voltage is present and false if the voltage is absent.

3Stands for "American Standard Code for Information Interchange" ASCII is a character encoding that
uses numeric codes to represent characters.
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1.2.2 Single Qubit

We saw that a classical bit is the elementary unit of information, which can be in one of two
defined states 0 or 1. Similarly, a quantum bit or “ qubit ” is the elementary unit of quantum
information in quantum computers, and which can be unlike the classical bit, in infinite states,
but gives only an observed output of 0 or 1 [8].
A qubit is a two-level system that can be expressed using two orthonormal basis states:

|0〉 =
(

1
0

)
; |1〉 =

(
0
1

)
, (1.27)

where |0〉 is the qubit state which is certain to give 0 when measured, and |1〉 the qubit state
that give 1 with certainty. The states |0〉 and |1〉 are called the “computational basis states”4.
In the quantum realm, the qubit is in a coherent superposition of these two states; hence the
state describing it can be written as a linear combination of the vectors |0〉, |1〉∈C2 [8]:

|ψ〉 = a |0〉 + b |1〉 ; a, b ∈ C (1.28)

When performing a measurement, the state |ψ〉 collapses irreversibly to either |0〉 or |1〉, with
corresponding probabilities |a|2 and |b|2, respectively, where a and b represent the probability
amplitudes. Furthermore, they achieve the relation |a|2 + |b|2 = 1 , from the normalization
condition, and which describes the probability conservation.
The fact that the qubit can be in infinite states, leads us to look for a representation, that is
able to show the enormous flexibility of the qubit, in comparison with a classical bit.
Firstly, we can express the complex numbers (a, b) in polar coordinates; a = |a| eiφa and
b = |b| eiφb , then |ψ〉 becomes:

|ψ〉 = |a| eiφa |0〉+ |b| eiφb |1〉

= eiφa (|a| |0〉+ |b| eiφ |1〉) = eiφa |χ〉

where φ = φb − φa .
If we calculate the probability of measuring |ψ〉 in the state | q 〉; q = 0, 1 :

Pq = |〈q|ψ〉|2 = |eiφa〈q|χ〉 |2 = |〈q|χ〉|2 (1.29)

where |eiφk | = 1; k = a, b .
From this result, we can see that the probability for the state |χ〉 is identical to that for the
state (eiφa |χ〉). Hence, we conclude that the two states are equivalent |χ〉 ≡ eiφa |χ〉 , ∀φa ∈ R ;
we cannot differentiate between |χ〉 and eiφa |χ〉 when we measure.
The factor eiφa is called the “global phase” and it’s not observable. What we can measure

4 We can assign |0〉 and |1〉, respectively, to the spin-up | ↑ 〉 and spin-down | ↓ 〉 states of an electron, or the
horizontal polarization |↔ 〉 and the vertical polarization | l 〉 of a photon.
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is the phase difference (ei(φb−φa)) between the states |0〉 and |1〉, which is called the “relative
phase” [8].
From this fact, we can choose the complex coefficient a to be real, then the normalization
condition |a|2 + |b|2 = 1 , can be identified with the trigonometric identity cos2(x) + sin2(x) = 1.
Since |a|2 and |b|2 are probabilities, their values are confined between 0 and 1, i.e.

0 ≤ ( |a| =
√
P0 ; |b| =

√
P1 ) ≤ 1 =⇒ 0 ≤ ( cos(x) ; sin(x) ) ≤ 1

So 0 ≤ x ≤ π/2. For later reasons we take x = θ/2, thus we can write:

|a| = cos(θ/2) ; |b| = sin(θ/2)

We can now describe the state of any qubit through the two variables φ and θ :

|ψ〉 = cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉, (1.30)

where 0 ≤ θ ≤ π , 0 ≤ φ < 2π. If we interpret θ and φ as spherical coordinates (with
r = 〈ψ|ψ〉 = 1), then we can plot any single-qubit state on the surface of a unit sphere, known
as the “Bloch sphere”. Each point on its surface represents a qubit state [8].

Figure 1.3: Geometrical representation of the 2D complex state vector |ψ〉, mapped by the Bloch
vector onto real 3D space called the Bloch sphere, of radius r = 1, colatitude angle θ , and azimuth
angle φ . Each qubit state is represented by a point. The state |0〉 is at the north pole, and |1〉 at the
south pole.

The two extreme cases are when the qubit is completely in either the state |0〉 or |1〉, which
can be obtained respectively, for (θ=0)→ |ψ〉 = |0〉 and (θ=π)→ |ψ〉 = |1〉, for any angle φ;
since the vectors |0〉 and |1〉 are perpendicular5 to the plane (x, y), as shown in Figure 1.4:

5They are orthogonal in Hilbert-space. while, in the Bloch sphere, they are perpendicular, because the
angles in the Bloch sphere are double those in the Hilbert-space (i.e., θb = θ; θh = θ/2).
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Figure 1.4: The two extremum states of the qubit. In the left: the Bloch vector of the state |ψ〉 = |0〉.
In the right: the Bloch vector of the state |ψ〉 = |1〉, for (θ = 0, π; ∀φ), respectively.

These two states are those in which a classical bit is confined. But, the qubit can be
in any point of coordinates (θ, φ, r = 1) on the Bloch sphere. This clearly shows the large
difference between the qubit and its classical equivalent. We can take for example (π/2, 0, 1)
which gives from equation (1.30) the state |ψ〉 = 1√

2 |0〉+ 1√
2 |1〉 (which is usually noted |+〉)6.

This state is characterized by an equal probabilities P0,1 = 1
2 , hence, the qubit is in perfect

superpositions equilibrium of the two states |0〉, |1〉.

Figure 1.5: Representation of a superposition balance state |+〉 for (θ = π
2 , φ = 0, r = 1).

If we measure this specific qubit state or any other one, it will collapse to either |0〉 or |1〉.
One may think: “if the qubit does eventually produce only a 0 or 1 when measured, then
what can bring to us more than a classical bit ?”. We say that the quantum properties of the
qubit allow us to manipulate it behind the classical limits, in ways that can only be described
through quantum mechanics; in other words, the modest 0 or 1 values, that we observe are

6To avoid any confusion, the state |+〉 represents an equal superposition state of a qubit, which has no
relation to that of subsection 1.1.2, which represents a spin-up state of a spin-(1/2) particle.
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very special; by virtue of the remarkable quantum manipulations that allowed us to get them.
Therefore, quantum computing is the art of exploiting these quantum properties to perform
tasks that are impossible by the classical equivalent.

1.2.3 Multiple Qubits

A qubit by itself is not enough to represent the useful information needed. How much can a
single letter tell us ? Almost nothing. But if we have two or more letters, we can then form a
meaningful word. By grouping words, we can syntax a sentence, which is able to give us
significant information. With those sentences you just read, we were able to provide adequate
information to illustrate this fact. In classical information processing, one bit can give us just a
0 or 1, but by grouping bits together we can represent useful information. The same reasoning
is going on quantum information processing, where the power of quantum computing appears
when considering multi-qubit systems, in which the qubits interact with each other in a way
that cannot be achieved by classical bits.

To understand how can multi-qubit systems make quantum computing more powerful than their
classical equivalents, let’s take a 2-qubit system, where the two qubits are noted q1 and q2 , with
their corresponding states |ψ〉1, |ψ〉2, and basis { |0〉1, |1〉1} ∈ H1 and { |0〉2, |1〉2} ∈ H2, respec-
tively, where H1, H2 are two-dimensional Hilbert spaces. The two-qubit states are expressed:

|ψ〉1 = a1 |0〉1 + b1 |1〉1 ; |ψ〉2 = a2 |0〉2 + b2 |1〉2 ; a1, a2, b1, b2 ∈ C

From the normalization condition we get |a1|2 + |b1|2 = 1; |a2|2 + |b2|2 = 1.
As seen in subsection 1.1.2, composite systems are built by applying the “tensor product”, where
the 2-qubit system is described by the state |ψ〉1 ⊗ |ψ〉2 , which lives in the four-dimensional7

complex vector space (Hilbert-space) H1 ⊗ H2 , with basis:

{ |0〉1 ⊗ |0〉2 , |0〉1 ⊗ |1〉2 , |1〉1 ⊗ |0〉2 , |1〉1 ⊗ |1〉2 }

For brevity of notation we will omit the symbol “⊗” between the kets |0〉, |1〉, and the subscripts
1, 2 on them:

{ |00〉 , |01〉 , |10〉 , |11〉 } (1.31)

To explicit the form of these basis states, we compute their tensor product. Let’s calculate the first
one:

|00〉 = |0〉 ⊗ |0〉 =
(

1
0

)
⊗
(

1
0

)
=


1×

(
1
0

)

0×
(

1
0

)
 =


1
0
0
0

 ,

7 Dimensions in a tensor product are multiplied: dim(H1 ⊗H2) = dim(H1)× dim(H2)
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By analogous calculations, we obtain the explicit form of the four orthonormal basis states:

|00〉 =


1
0
0
0

 ; |01〉 =


0
1
0
0

 ; |10〉 =


0
0
1
0

 ; |11〉 =


0
0
0
1

 , (1.32)

The general state of the 2-qubit system can be written as:

|Υ〉 = |ψ〉1 ⊗ |ψ〉2 (1.33)

= a1 a2 |00〉+ a1b2 |01〉+ b1 a2 |10〉+ b1 b2 |11〉, (1.34)

Similar to the single-qubit state, the coefficients (a1a2, a1b2, b1a2, b1b2) represent the probability
amplitudes.
The state |Υ〉 is of course normalized, which lead to the relation below:

〈Υ|Υ〉 = |a1 a2|2 + |a1 b2|2 + |b1 a2|2 + |b1 b2|2 = 1, (1.35)

which can be seen as probability conservation.

When performing a measure, this state will collapse through projection to one of the states
|00〉 , |01〉 , |10〉 , |11〉, with respective probabilities

P00 = |a1 a2|2 ; P01 = |a1 b2|2 ; P10 = |b1 a2|2 ; P11 = |b1 b2|2.

Unlike classical bits, the qubits have a remarkable feature, which is the entanglement; where
the qubits are tightly correlated in a way that we need all of the constituents to have the
complete information of the whole system.
We know from the subsection 1.1.2 that a state is not entangled if we can separate it, like the exam-
ple below:

|Υ〉 = 1√
2 |00〉+ 1√

2 |10〉 = 1√
2 (|0〉+ |1〉)⊗ |0〉 = |+〉 ⊗ |0〉,

where the state of the qubit q1 is |ψ〉1 = |+〉 and q2 is |ψ〉2 = |0〉.
Contrary to an entangled state, which is a mixed state and cannot be factorized into pur states:

|Υ〉 = 1√
2 |00〉+ 1√

2 |11〉 (1.36)

If we measure the First qubit and find it to be in the state |0〉, then the second one will be in |0〉
with certainty.

|Υ〉 measure−−−−−→ |00〉

the same can be said for the state |1〉.
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This state is one of four entangled orthonormal states known as the “Bell states”.

|Φ+〉 = 1√
2 ( |00〉+ |11〉 ) ; |Φ−〉 = 1√

2 ( |00〉 − |11〉 ) (1.37)

|Ψ+〉 = 1√
2 ( |01〉+ |10〉 ) ; |Ψ−〉 = 1√

2 ( |01〉 − |10〉 ) (1.38)

To visualize a 2-qubit system or more, we can think in the Bloch sphere, which was perfect to
represent the state of 1-qubit system. But what for more than a single qubit?.
On the one hand, for a multi-qubit system, the entanglement applies to the qubits to be
correlated; we cannot describe their states separately. On the other hand, the Bloch sphere gives
a local view, where each qubit state is represented on its own Bloch sphere; therefore, we miss
the important effect of correlation between the qubits when mapping them on separate Bloch
spheres.
For this reason, we have to look for another model of visualization. The Q-sphere is the primary
visualization method, that provides a global viewpoint of multi-qubit systems8.

Figure 1.6: The Q-sphere : a visualization of the entangled 2-qubit state |Φ−〉.

• Each computational basis state is associated with a point on the surface of the
sphere9, where the state with all zeros is at the north pole and that with all ones is at
the south pole10.

• At each point there is a node, that represents the probability amplitude, and its radius is
proportional to the probability P of its basis states.

• The color of the nodes represents the quantum phase of each computational basis
state.

8The Q-sphere is limited to a small number of qubits.
9The spherical shape has no importance, it’s just a nice way to organize the nodes.

10The basis states with the same number of zeros or ones that lie on a shared latitude of the Q-sphere (e.g.,
|011〉, |101〉, |110〉).
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The Q-sphere gives us complete information of the system state, at each given manipulation of the
qubits.

We now move from the 2-qubit to the 3-qubit system in order to generalize these cases
to an n-qubit system. Analogous to what we said above, the Hilbert-space associated with
the 3-qubit system is written as H1 ⊗ H2 ⊗ H3, with dimensionality 2 × 2 × 2 = 23 = 8.
The computational basis of this space is

{ |000〉 ; |001〉 ; |010〉 ; |011〉 ; |100〉 ; |101〉 ; |110〉 ; |111〉 }, (1.39)

each of these kets is an eight-dimensional column.
The general state of the 3-qubit system is expressed:

|Υ〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ |ψ〉3 .

We can follow the same reasoning of separability to verify if it is entangled or not.
Now for the generalization to an n-qubit system. Let’s have n qubit, where n > 1, with n ∈ N,
and their general state is constructed by the tensor product of the n single-qubit states; i.e.

|ψ〉1 ⊗ |ψ〉2 ⊗ · · · ⊗ |ψ〉n−1 ⊗ |ψ〉n .

This n-qubit state lives in the Hilbert-space H1 ⊗ H2 ⊗ · · · ⊗ Hn−1 ⊗ Hn, which can briefly
be written as H ⊗n H ≡ H⊗n . The dimensionality of the n-qubit space is 2 × ... × 2 = 2n,
which is the same as the n-qubit state. So the dimensionality of the state vector is increasing
exponentially every time we add a qubit to the system [8]. The difficulty to simulate a quantum
computer appears when considering a system of a large number of qubits. A modern laptop can
easily simulate a general quantum state of 20 qubits, but simulating 100 qubits is too difficult
for the largest supercomputers!
The essence power of quantum computers lies in the superposition feature of the qubits and
which gives rise to the entanglement phenomenon, when considering multi-qubit systems.

1.2.4 Physical Implementation of Qubit

In quantum information theory, the qubit is often described abstractly as a two-state (or two-
level) quantum mechanical system, in the beginning, we should not worry too much about the
characteristics of these states or what their energies are. We assume that they are eigenstates
of the Hamiltonian system with known eigenvalues. This approach allows us to concentrate
on the fundamental properties of the system without getting lost in the details.

In 1994, the mathematician Peter Shor presented two results [9] [10]: the first, showing
that a quantum computer would provide exponential speedup for number factorization. The
second, showing that quantum error correction could overcome decoherence. After that, the
scientific community started to come up with ideas to build a quantum computer.
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In this part, we introduce the notion of a physical qubit and distinguishes its relation
with the logical qubit (described in subsection 1.2.2). We identify the essential criteria to
realize quantum computing. Additional information on the technologies used to perform the
physical implementation of qubits are provides in the Appendix C.

Physical and Logical Qubit

Figure 1.7: Layout of IBM’s four
superconducting Qubit device11.

In quantum circuits and quantum algorithms, we use a
logical Qubit. It specifies how a single Qubit should
behave with quantum logical operations. We can use them
indefinitely, they never lose state when they are not used,
and we can apply as many gates to them as we wish.

A physical Qubit is a real Qubit produced by one of the
implementation technologies and is physical hardware device.
The Qubits used in quantum computers are constructed
from microscopic degrees of freedom like the spin of electrons
or nuclei, transition dipoles of atoms or ions in a vacuum.
These degrees of freedom are naturally isolated from their
environment and lead to slow decoherence [11].

It is possible to create objects that act like logical qubits
from physical, but it will require hundreds to thousands of physical qubits to make one logical
Qubit. We use error-correcting schemes to have many physical qubits work together to create a
virtual logical qubit. Hence, A physical qubit is the hardware implementation of logical qubits [8].

The quantum state of a physical qubit decays quickly and inevitably; for this, the main
objective of researchers and engineers in quantum computing is to slow down this decay and
correct the effects of the decoherence of qubits through the execution of circuits.

Criteria to Realize Quantum Computing:

In 2018, the theoretical physicist David DiVincenzo published a brief retrospective on creating and
implementing quantum computers that respected some criteria. He laid out five requirements
for the implementation of quantum computation [12].

The DiVincenzo Criteria that a quantum computer implementation must satisfy are as follows:

1. A scalable physical system with well-characterized qubits.
We should be able to add over time, qubits in our quantum system without any restriction.
With a limited number of Qubits, we cannot make useful quantum calculations.

2. The ability to initialize the state of the qubits to a simple fiducial state.
It is common for algorithms, to start with a qubit in state |0〉 but sometimes we need to

11https://search.creativecommons.org/photos/30f43527-9f8d-4e77-859a-a85f0a0ada4c

https://search.creativecommons.org/photos/30f43527-9f8d-4e77-859a-a85f0a0ada4c
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use |1〉 instead |0〉. For this, we must be able to initialize the qubit to a known initial
state with a very high probability. This is called high-fidelity state preparation.

3. Long decoherence time
A quantum superposition state has a lifetime. This time is called the coherence time and
depends on the environment of the qubit. Environmental disruptions cause a quantum
superposition to dissipate and the final state will no longer in a coherent superposition. If
we have a long coherence time, but our gates take a long time to execute, that may be
equivalent to a short coherence time but with fast gates. Long coherence, fast enough gates,
and low error rates will be the key to success with Noisy Intermediate-Scale Quantum
computers (NISQ).

4. A universal set of quantum gates
Without quantum logic gates, we cannot do quantum programming; that means, we cannot
build quantum algorithms unless we have a sufficiently complete set of gates.

5. A qubit-specific measurement capability
When we measure a quantum system we force the state to take one of the basic orthogonal
states. we must be able to force the qubit into one of the two orthogonal states |0〉 and
|1〉. The error rate of this operation must be low enough to allow for useful quantum
computation, if we get the wrong measurement answer fifty percent of the time, all the
previous work on executing the circuit is lost. This is called high fidelity readout.

1.3 Quantum Gates and Quantum Circuits

Now that we understand what a qubit is, it’s time to present the operators that manipulate
its state called “quantum logic gates”. Next, we introduce “quantum circuits” and see some
examples. To understand this, we give a glimpse of “classical gates”.

1.3.1 Classical Gates

In numerical systems, algebra describes the arithmetic operation on variables that can take any
defined value. For Boolean algebra, it is the same thing except that the variables cannot take
more than two values. Those variables are called logical variables. A logical variable can be
presented in several ways, for example, 0 and 1 or true and false and it indicates the state
of the system like voltage in a circuit. Boolean algebra has only three fundamental operators:
NOT, AND, OR. We need to manipulate data using operators (like in mathematics); this
operator is called “gates”. Digital technologies are based on repeatedly applying the three
operators (NOT, AND, OR) in various combinations.
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Logic Gates

A logic gate is an electronic circuit which is composed of transistors and resistors, and they
are represented in schematic symbols. Each gate has one output that depends on its inputs;
the output voltage depends on input voltage. A circuit or a digital system can be made using
the three basic gates: and, or, not [13]. Other fundamental gates can be listed: nand, nor,
xor. These gates can be constructed using the three basic gates. To describe the output of
a logical circuit, we need a truth table. We will see in this part the logic gates that are the
most commonly used, their symbol, and their truth table12.

1. NOT Gate

A not gate is a logic gate that inverts the digital
input signal. If the input of a not gate is
considered as A, then the output of the gate
will be Ā. When the input signal A is controlled
by the not operation, the output O can be
expressed as: O = Ā = A′.
If the value of A is 1 then Ā = 0 and in the
opposite if the value of A is 0 then Ā = 1.

A Output
0 1
1 0
not gate symbol and truth table

2. AND Gate

An and gate is a logic gate with two or more
inputs and a single output, it can have any
number of inputs, but the most common is
2 and 3. The and gate operates on logical
multiplication rules that mean the output of
the gate, O, will be 0 unless all (both A and B)
inputs are 1. The output can be expressed as
O = A.B, which means: output O equals A and
B. The “.” sign stands for the and operation.

A B Output
0 0 0
0 1 0
1 0 0
1 1 1
and gate symbol and truth table

3. OR Gate

An or gate is a logic gate that performs logical
or operation. Just like an and gate, an or gate
may have any input but only one output. When
any of the or gate inputs is 1, the output of the
or gate will be 1. However, the output of the
or gate is 0 only when all the input variables are
0. The output can be expressed as O = A+B,
which means: output O equals A or B. The
“+” sign stands for the or operation, and it is
not an arithmetic addition.

A B Output
0 0 0
0 1 1
1 0 1
1 1 1
or gate symbol and truth table

12Truth tables list the output of a particular digital logic circuit for all the possible combinations of its inputs.
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4. NAND Gate

The nand gate is the inverse of the and gate.
Just like an and gate, a nand gate may have
any number of inputs but only one output. The
output of the gate, O, will be 1 when at least one
input is 0 (A or B). The output can be expressed
as O = A.B, which means: the output O equals
A.B bar. The small circle at the output mean
the inverted operation of output.

A B Output
0 0 1
0 1 1
1 0 1
1 1 0
nand gate symbol and truth table

5. NOR Gate

A nor gate is the inverse of the or gate, and
its circuit is produced by connecting an or gate
to a not gate. The nor gate produces 1 only if
all its inputs are 0, and 0 otherwise. The output
can be expressed as O = A+B, which means:
the output O equals A+B bar. This gate has
a small circle on the output. This small circle
represents the inversion operation.

A B Output
0 0 1
0 1 0
1 0 0
1 1 0
nor gate symbol and truth table

6. XOR Gate

A xor (pronounced as Exclusive or) is the logic
gate that produces 1 in the output if and only
if an odd number of inputs are 1. If both inputs
are 1 or both inputs are 0, the output is 0. So a
two-input xor gate is quite different from the
or gate. xor represents the inequality function,
which means that the output is true if the inputs
are not similar. The Boolean expression for
the output from a two-input xor gate is O =
A.B̄ + Ā.B

A B Output
0 0 0
0 1 1
1 0 1
1 1 0
xor gate symbol and truth table

1.3.2 Quantum Gates

Now after we have seen classical gates we can have a better understanding of quantum gates.
We know that classical logic gates manipulate the classical bit values 0 or 1. Likewise, quantum
gates act on qubits and transform their states. For example by a rotation around the Bloch
sphere. The main difference between classical and quantum gates is that quantum gates can
manipulate multi-quantum states. Quantum gates are represented by unitary matrices (the
inverse equals the conjugate transpose) and therefore, any quantum gate is reversible. When we
apply a gate/operator G on an arbitrary state |ψIn〉, the input state will be transformed as follow:
|ψ

Out
〉 = G |ψ

In
〉. We can reconstruct the input state from the output as |ψ

In
〉 = G† |ψ

Out
〉 [14].

In this part, we will see almost all the quantum gates provided by IBM quantum composer.
Then, we will see some examples of quantum circuits that are very known in QIS.
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Single-Qubit Gates

Identity Gate
The first gate is the identity gate, it is represented by the identity matrix
and defined for a single qubit as follow:

I =
(

1 0
0 1

)
; I.I = I (1.40)

When we apply this gate to the computational basis states |0〉 and |1〉, it leaves the states
unchanged.

I |0〉 =
(

1 0
0 1

)(
1
0

)
=
(

1
0

)
= |0〉 (1.41)

I |1〉 =
(

1 0
0 1

)(
0
1

)
=
(

0
1

)
= |1〉 (1.42)

This gate is useful for two reasons, one to prove that a gate is its own inverse. Second, it
is useful to have a do-nothing operation, especially for the error models. This can be used
as a simple version of decoherence of the qubit.

Figure 1.8: A visualization of the resulting states from the I action on the states |0〉 and |1〉,
respectively.

The X Gate
The not gate is the quantum equivalent of the classical not gate, it is also
known as the Pauli X gate. Its matrix representation is given by:

X =
(

0 1
1 0

)
; X.X = I (1.43)

It acts in a single qubit by switching the amplitudes of the |0〉 and |1〉 basis.

X |0〉 =
(

0 1
1 0

)(
1
0

)
=
(

0
1

)
= |1〉 (1.44)
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X |1〉 =
(

0 1
1 0

)(
0
1

)
=
(

1
0

)
= |0〉 (1.45)

The X gate rotates the qubit state by π radians around the x-axis. It is sometimes called
bit-flip gate as it maps |0〉 to |1〉 and |1〉 to |0〉.

Figure 1.9: A visualization of the resulting states from the X action on the states |0〉 and |1〉,
respectively.

The Y Gate
The Pauli Y gate rotates the qubit around the y-axis by π radians. It is
represented by the following matrix:

Y =
(

0 −i
i 0

)
; Y.Y = I (1.46)

When we apply this gate to the computational basis states |0〉 and |1〉, we get:

Y |0〉 =
(

0 −i
i 0

)(
1
0

)
=
(

0
+i

)
= +i |1〉 (1.47)

Y |1〉 =
(

0 −i
i 0

)(
0
1

)
=
(
−i
0

)
= −i |0〉 (1.48)

This gate maps |0〉 to i |1〉 and |1〉 to −i |0〉.
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Figure 1.10: A visualization of the resulting states from the Y action on the states |0〉 and |1〉,
respectively.

The Z Gate
The Pauli Z gate is represented by the diagonal matrix:

Z =
(

1 0
0 −1

)
; Z.Z = I (1.49)

Let’s observe its action on the computational basis states |0〉 and |1〉.

Z |0〉 =
(

1 0
0 −1

)(
1
0

)
=
(

+1
0

)
= + |0〉

Z |1〉 =
(

1 0
0 −1

)(
0
1

)
=
(

0
−1

)
= − |1〉

So, this gate acts as an I on |0〉, and applies a phase of π on |1〉. Moreover, its action can be
seen as a rotation of the qubit state by π around the z-axis on the Bloch sphere. Therefore,
its action on the states |+〉 and |−〉 (recalling that |±〉 = 1√

2 ( |0〉 ± |1〉 ))

Z |+〉 =
(

1 0
0 −1

)(
+ 1√

2
+ 1√

2

)
=
(

+ 1√
2

− 1√
2

)
= |−〉

Z |−〉 =
(

1 0
0 −1

)(
+ 1√

2
− 1√

2

)
=
(

+ 1√
2

+ 1√
2

)
= |+〉

The Z gate swaps these two states |+〉� |−〉. Since it reverses the sign of the 2nd amplitude,
it is also called sign-flip gate.
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Figure 1.11: A visualization of the resulting states from the Z action on the states |+〉 and |−〉,
respectively.

Hadamard Gate
The Hadamard gate is represented by the matrix below:

H = 1√
2

(
1 1
1 −1

)
; H.H = I (1.50)

Applied to the two computational basis states |0〉 , |1〉 gives:

H |0〉 = 1√
2

(
1 1
1 −1

)(
1
0

)
= 1√

2
(|0〉+ |1〉) = |+〉

H |1〉 = 1√
2

(
1 1
1 −1

)(
0
1

)
= 1√

2
(|0〉 − |1〉) = |−〉

Therefore, the Hadamard gate puts the qubit in an equal superposition. The trans-
formations |0〉 → |+〉 and |1〉 → |−〉 can be seen as a rotation around the Bloch vector of
coordinates (1, 0, 1) by an angle π. Without this gate, the qubit would still behave like a
classical bit. Hence, implementing the Hadamard gate in any given classical circuit at
any position will transform it into a quantum circuit.

Figure 1.12: A visualization of the resulting states from the H action on the states |0〉 and |1〉,
respectively.
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The S Gate
The S gate is represented by the following complex matrix:

S =
(

1 0
0 i

)
(1.51)

When applied to the basis states |0〉 and |1〉, one obtains

S |0〉 =
(

1 0
0 i

)(
1
0

)
=
(

1
0

)
= 1 |0〉

S |1〉 =
(

1 0
0 i

)(
0
1

)
=
(

0
i

)
= i |1〉

Thus, this gate induces a phase of (π2 ) just on |1〉, which is equivalent to a (π2 ) rotation around
the z-axis. If it is applied on the states |+〉 and |−〉, we obtain

S |+〉 =
(

1 0
0 i

)( 1√
2

1√
2

)
=
( 1√

2
i√
2

)
= |+i〉

S |−〉 =
(

1 0
0 i

)( 1√
2
−1√

2

)
=
( 1√

2
−i√

2

)
= |−i〉

Let’s calculate its square

S 2 =
(

1 0
0 i

)(
1 0
0 i

)
=
(

1 0
0 −1

)
= Z

Therefore, the S gate is not hermitian, and its conjugate-transpose defines the S-dagger
or Sdg gate, given by the matrix:

S† =
(

1 0
0 −i

)
=
(

1 0
0 ei

3π
2

)
; S† = S 3 (1.52)

That applies a (3π
2 ) rotation around the z-axis.

Figure 1.13: A visualization of the resulting states from the S action on the states |+〉 and |−〉,
respectively. (For the S† gate, the figures will be inversed).
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The T Gate
The only difference between the S gate and the T gate is the induced

phase, where this gate applies a phase of (π4 ), hence, we can write

T =
(

1 0
0 ei

π
4

)
(1.53)

Thus, for its action on |0〉 and |1〉, the outputs are

T |0〉 =
(

1 0
0 ei

π
4

)(
1
0

)
=
(

1
0

)
= |0〉

T |1〉 =
(

1 0
0 ei

π
4

)(
0
1

)
=
(

0
i

)
= ei

π
4 |1〉

which is a rotation of (π4 ) around the z-axis. Applied on the states |+〉 and |−〉, gives

T |±〉 =
(

1 0
0 ei

π
4

)(
+ 1√

2
± 1√

2

)
= 1√

2 ( |0〉 ± eiπ4 |1〉 )

Figure 1.14: A visualization of the resulting states from the T action on the states |+〉 and |−〉,
respectively.

When calculating its square, we get

T 2 =
(

1 0
0 ei

π
4

)(
1 0
0 ei

π
4

)
=
(

1 0
0 ei

π
2

)
= S

This means that the T gate is not hermitian, and its conjugate-transpose defines the T-dagger
or Tdg gate, given by the adjoint of T

T† =
(

1 0
0 e−i

π
4

)
=
(

1 0
0 ei

7π
4

)
; T† = T 7 (1.54)

Which rotates the qubit state by (7π
4 ) around the z-axis on the Bloch sphere.
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Figure 1.15: A visualization of the resulting states from the T† action on the states |+〉 and |−〉,
respectively.

The P Gate
The generalization for a gate that applies any phase (θ), can be written as:

Pθ =
(

1 0
0 eiθ

)
; 0 6 θ 6 2π (1.55)

This gate is known as the Phase gate, and which leads for specific values of θ to

P0, 2π = I ; Pπ = Z ; Pπ
2

= S ; P 3π
2

= S† ; Pπ
4

= T ; P 7π
4

= T†

The Phase gate rotates the qubit state by θ around the z-axis on the Bloch sphere. Like
any quantum gate, the matrix P is of course unitary

P.P† =
(

1 0
0 eiθ

)(
1 0
0 e−iθ

)
=
(

1 0
0 1

)
= I

Square-Root NOT Gate
As the name suggests, it is the square root of the not gate, therefore

its square gives the not gate

√
X .
√
X = X

It is represented by the matrix below :
√
NOT ≡

√
X = 1

2

(
1 + i 1− i
1− i 1 + i

)
(1.56)

√
X |0〉 = 1√

2
(eiπ4 |0〉+ ei

7π
4 |1〉)

√
X |1〉 = 1√

2
(ei 7π

4 |0〉+ ei
π
4 |1〉)

It creates an equal superposition state, but the only difference with the Hadamard gate, is
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that it applies a different relative phase. This gate is natively implemented in some hardware.

Figure 1.16: A visualization of the resulting states from the
√
X action on the states |0〉 and |1〉,

respectively.

Square-Root NOT-Dagger Gate
This gate is the inverse of

√
X gate, so

√
X†.
√
X =

√
X.
√
X† = I and its

square also gives the not gate
√
X †.
√
X † = X. Its matrix representation

is given below:
√
NOT

†
≡
√
X
†

= 1
2

(
1− i 1 + i
1 + i 1− i

)
(1.57)

√
X
†
|0〉 = 1√

2
(ei 7π

4 |0〉+ ei
π
4 |1〉)

√
X
†
|1〉 = 1√

2
(eiπ4 |0〉+ ei

7π
4 |1〉)

We see that it also creates an equal superposition state, but with relative phases reversed
with respect to

√
X. Therefore, the Q-spheres of

√
X† are also reversed.

Two-Qubit Gates

SWAP Gate
The Swap gate is a two-qubit gate, so it is represented by a 4 × 4

dimensional unitary matrix, given by

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ; (SWAP)2 = I (1.58)

Let’s observe its action on a two-qubit state

|ψ〉 = |φ〉
0
⊗ |φ〉

1
= c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 ; c

kl
= a

k
b
l
(k, l = 0, 1)
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where |φ〉
0
and |φ〉

1
are the states of the qubits q0 and q1, respectively.

(SWAP) |ψ〉 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



a0 b0

a0 b1

a1 b0

a1 b1

 =


a0 b0

a1 b0

a0 b1

a1 b1


= c00 |00〉+ c10 |01〉+ c01 |10〉+ c11 |11〉 = |φ〉

1
⊗ |φ〉

0

So this gate switches the states of two qubits

( |φ〉
0
⊗ |φ〉

1
) SWAP−−−→ ( |φ〉

1
⊗ |φ〉

0
)

Figure 1.17: A visualization of all 4 possible resulting states from the SWAP action on the 2-qubit
state |αβ〉 ; α, β = 0, 1.

Controlled-NOT Gate
The cnot or cx gate is a two-qubit gate, acting in the 22 dimensional

Hilbert-space. The cnot gate is represented by the matrix of dimension
4 × 4 below:

CNOT ≡ CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ; (CX)2 = I (1.59)

When the 2-qubit state |ψ〉 pass through this gate it becomes:

CX |ψ〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



a0 b0

a0 b1

a1 b0

a1 b1

 =


a0 b0

a0 b1

a1 b1

a1 b0


We see that this gate swaps the two amplitudes of q1 in the states |10〉 and |11〉 which is a not
operation on q1. Moreover, it’s applied only when q0 is in |1〉. Therefore the cnot gate is a
conditional gate, where q0 and q1 are called control and target, respectively. If the control
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qubit is in the state |1〉 the cnot gate executes a not on the target qubit, otherwise it acts as
an I on the target.
If we turn the roles (control ↔ target), then this gate will become what we call a reverse
cnot gate and its matrix is given by :

RCNOT ≡ RCX =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


The cnot gate is the gateway that entangles 2-qubits, only when the control qubit is in a
superposition.

Figure 1.18: A visualization of all 4 possible resulting states from the CX action on the 2-qubit state
|αβ〉 ; α, β = 0, 1.

Three-Qubit Gates

Controlled-Controlled-NOT Gate
The ccnot or ccx is a conditional three-qubit gate, with two control

qubits and one target. It performs a not to the target if and only if the
two control qubits are in |1〉, otherwise it acts as an I on the target. It is
represented by the matrix of dimension 8 × 8 below:

CCNOT ≡ CCX =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


; (CCX)2 = I (1.60)

The ccnot is a reversible version of classical computing’s and and nand gates. This is a
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universal gate for classical computation, meaning that any program can be built from many
instances of this gate.

Figure 1.19: A visualization of all 8 possible resulting states from the CCX action on the 3-qubit
state |αβ γ〉 ; α, β, γ = 0, 1.

1.3.3 Quantum Circuit Diagrams

A quantum circuit is a sequence of gates applied to one qubit or more. The collection of qubits
in a circuit is called a quantum register. So, to perform calculations in quantum computers,
we need to manipulate qubits (inside a quantum register) by applying a serie of gates. All
qubits in the quantum register are initialized in the state |0〉 and by convention, we number
the qubits in the register as q0, q1, q2, ...,qn. To visualize quantum circuits, we need a quantum
circuit diagram. In what follows, we will use the interactive interface of the IBM quantum
composer13 to represent these quantum circuits.
The following figure show an “empty” quantum circuit; we haven’t added any gates yet.

Figure 1.20: The interactive interface of IBM quantum composer.

13https://quantum-computing.ibm.com/composer/files/new

https://quantum-computing.ibm.com/composer/files/new
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Let us describe each part of this empty circuit.

1. First, on the left-hand side, we see two qubits, the numbering starts from zero: q0, q1.
Each of these qubits is initialized to be in the |0〉 state.

2. In the right-hand side, we have two wires. In these wires we can place gates and
measurements.

3. At the top, we see some of the quantum gates that we have already discussed.

4. On the bottom we see a C2, indicating that it is a classical register, a C4 will indicate that
the register contains four bits all initialized to zero, and a wire with a line through it will
indicate that the register contains multiple bits. When we do the measurement a line will
be drawn down to the classical register, indicating that the measurement is stored there.

Now let us see our quantum circuit with some gates on it.

Figure 1.21: Types of quantum gates.

We have divided the circuit into four blocks.

• The first block includes single-qubit gates. These gates are applied from the left to the
right, we apply first the closest gate to the qubit. On the other hand from the algebra
perspective, we apply gates from the right to left. For example, the first line in the first
block reads as XIH |0〉 which means we apply the Hadamard first then the identity
gate, and finally the not gate. The first operation from the left |0〉 returns a qubit to
state |0〉, independently of its state before the operation was applied. It is not a reversible
operation, so it is not a gate. The not gate is drawn graphically as (⊕).

• The second block contains, two-qubit gates that span two wires. From the right to the
left the cnot and swap gate. The cnot gate graphic contains the sign (•) denoting the
control qubit and the sign (⊕) denoting the target qubit. If we draw it upside down,
we will get the reverse cnot.
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• The third block contains, the ccnot gate it operates on three qubits. If the first two
qubits are |1〉 then it flips the third, otherwise, it does nothing. The only difference
between cnot and ccnot gate is that there are two control qubits (• •).

• Finally, the measurement operation returns a |0〉 or |1〉. The Measurement operation
must always be at the end of any quantum circuit.

In quantum computing, all operations between initialization and measurement are reversible.
The following table shows the gates and it inverses.

Gate I X Y Z H S S† T T†
Reverse I X Y Z H S† S T† T

Examples of Quantum Circuits

To explain how quantum circuits work, let’s take two examples:

• The first example illustrate the succession of operations:

A qubit is initialized at the state |ψ〉 = |0〉. Then each gate will act on its state and
transform it according to its functionality. Mathematically we have:

|0〉 → ZTSH |0〉 = ZTS |+〉 = ZT |+i 〉

= 1√
2 Z (|0〉+ i ei

π
4 |1〉) = 1√

2 (|0〉+ ei
7π
4 |1〉)

• The second example illustrate the equivalence:

This circuit swaps two qubits. That means if we started in the |01〉 state, we would end
up in the |10〉 state and vice versa. Inputs of |00〉 or |11〉 would be unchanged as swapping
would have no effect. Note that for the first and third CNOTs, the control qubit is the first
qubit and the target qubit is the second, while for the second CNOT, the control qubit is
the second and the target qubit is the first.
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Let’s trace it out step by step:

Input After first CNOT After second CNOT After the third CNOT (output)
00 00 00 00
01 01 11 10
10 11 01 01
11 10 10 11

If we calculate the matrix product, we will found certainly the SWAP matrix.

CX.RCX.CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = SWAP

Therefore
SWAP = CX .RCX .CX

Bell States Circuits

The central object of this part will be to construct quantum circuits that generate the four
Bell states: |Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉, which describe an entangled pair of qubits. We have seen
previously simple manipulations on a single or two qubits system. But creating entanglement

between two qubits, seems difficult at first glance, and one may think that we will use a varied
assortment of quantum gates. But in fact, it is extraordinary simple.

Firstly, let’s have two qubits, noted q0 and q1, which are initialized in the state |0〉, so we have
q0 in the state |ψ〉0 = |0〉0 and q1 in |ψ〉1 = |0〉1 . The initial 2-qubit state is of course separable
|ψ〉0 ⊗ |ψ〉1 = |0〉

0
⊗ |0〉

1
= |00〉, and we want to construct the specific Bell state |Φ+〉, written

|Φ+〉 = 1√
2 ( |00〉+ |11〉 ) (1.61)

which is inseparable. But we can think of applying operators/gates to separate it into two
distinct qubit states, and vis versa; by acting gates on the initial sparable state, it will be
transformed into an inseparable (entangled) state, i.e.

|Φ+〉 = Ĝ |00〉 → |00〉 = Ĝ−1|Φ+〉 (1.62)

where Ĝ is a combination of quantum gates, and Ĝ−1 its inverse.

We saw previously a gate that links two qubits, through a condition, it is the cnot gate
(noted CNOT ≡ CX), so it is a good candidate for the linking and the separation.
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For the 1st example, we will try the inverse way; going from the inseparable state |Φ+〉
to the initial separate state |00〉, thus we apply the inverse of CX. But we know that it
is its own inverse CX = (CX)−1.

(CX)−1
∣∣∣Φ+

〉
≡ CX |Φ+〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0
0
1√
2

 =


1√
2

0
1√
2

0

 = 1√
2 ( |00〉+ |10〉 ), (1.63)

which is clrearly separable

CX |Φ+〉 = 1√
2 ( |0〉+ |1〉 )⊗ |0〉 = |+〉 ⊗ |0〉. (1.64)

We can rewrite it in terms of the two initial separate states:

|Φ+〉 = CX ( |+〉 ⊗ |0〉 )

= CX (H |0〉 ⊗ I |0〉 )

= CX (H⊗ I ) ( |0〉 ⊗ |0〉),

where H |0〉 = |+〉.
So by acting the Hadamard gate H, only on the q0 state |0〉0 , it becomes |+〉0 . Then by

acting CX on the new state |+〉 ⊗ |0〉, we obtain the entangled state |Φ+〉.
We can now apply this reasoning into a quantum circuit:

Figure 1.22: The quantum circuit that generates the Bell state |Φ+〉.

For the interpretation, we need some philosophy. We have a qubit q0 in the state |0〉
0
subjected

to the action of the Hadamard gate, which will make it in a superposition balance. The
second secret of the entanglement process lies in the cnot gate, which leaves q1 in |0〉

1
if q0 is

in |0〉
0
and turns q1 to |1〉

1
if q0 is |1〉

0
. But we know that q0 is both in |0〉

0
and |1〉

0
; therefore,

the cnot gate simultaneously turn and don’t turn the q1 state!, which makes q0 also in
a superposition balance; that is to say, the cnot gate transmits the power of superposition
from q0 to q1. Since q1 depends directly on q0, they are therefore linked, which makes them
entangled.
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The steps followed to obtain |Φ+〉, begins by acting H on |0〉0 . But what if, instead, we
act H on |1〉0 , what will be the resulting state?

For the 2nd example, we will take the direct way. Firstly, we can write H |1〉 = H (X |0〉) .
Since the operation must act just on q0, therefore, our operator takes the form (HX⊗ I).

|00〉 −→ (HX⊗ I) |00〉 = HX |0〉 ⊗ I |0〉 = H |1〉 ⊗ |0〉 = |−〉 ⊗ |0〉 (1.65)

CX |− 0 〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

0
−1√

2
0

 =


1√
2

0
0
−1√

2

 (1.66)

which gives |Φ−〉

CX |− 0 〉 = 1√
2 ( |00〉 − |11〉 ) = |Φ−〉 (1.67)

Therefore, the gates that take us from |00〉 to |Φ−〉 are:

|Φ−〉 = CX (HX⊗ I ) |00〉 (1.68)

If we draw the corresponding quantum circuit of this state, then the only difference compared
to that of |Φ+〉, is the action of a not gate before the Hadamard gate. This circuit
is drawn on the left side of the figure below:

Figure 1.23: Two equivalent quantum circuits that generate the Bell state |Φ−〉.

We can mathematically prove that the state |Φ−〉, can be produced by the equivalent
circuit, shown on the right above. Firstly, we recall that Z |±〉 = |∓〉; hence, we can write
|−〉 = Z |+〉 = Z (H |0〉) and we know that |−〉 = H (X |0〉), therefore

ZH = HX

Then we can obtain |Φ−〉, by applying the transformation below on |00〉:

|Φ−〉 = CX (ZH⊗ I ) |00〉 (1.69)

This clearly explains the circuit on the right side.
We can plot the two states |Φ±〉 in the Q-sphere:
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Figure 1.24: A visualization of the Bell states: |Φ+〉 (on the left) and |Φ−〉 (on the right).

In the Q-sphere, we represent the basis state with all zeros |00〉 at the north pole and that
with all ones |11〉 at the south pole. On the left side, we see a representation of |Φ+〉, where the
phase of |0〉 and |1〉 are both = 0. The right side concerns that of |Φ−〉, where the phase of
|0〉 is 0 and that for |1〉 is π, which is reflected as a red color on the |11〉 node.

The 3rd and 4th examples relate to the states |Ψ±〉. Recalling that we have found |Φ±〉
by acting CNOT on the states | ± 0 〉, i.e.

|Φ±〉 = CX | ± 0 〉

What if we apply it on | ± 1 〉 ?

CX | ± 1 〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0
1√
2

0
±1√

2

 =


0
1√
2
±1√

2
0

 = 1√
2 ( |01〉 ± |10〉 ) (1.70)

which is clearly the states |Ψ±〉 = 1√
2 ( |01〉 ± |10〉 ).

We want to write it in terms of the initial states |00〉. We have two distinct states:

|Ψ+〉 = CX |+ 1 〉 ; |Ψ−〉 = CX | − 1 〉 (1.71)

|Ψ+〉 = CX ( |+〉 ⊗ |1〉 ) = CX (H |0〉 ⊗ X |0〉 ) = CX (H⊗ X ) |00〉 (1.72)

|Ψ−〉 = CX ( |−〉 ⊗ |1〉 ) = CX (H |1〉 ⊗ X |0〉 ) = CX (HX⊗ X ) |00〉 (1.73)

For the first case, we apply a Hadamard gate H on q0, and a not gate X on q1. Then
by acting CX on the resulting state | + 1 〉, we finally get the entangled state |Ψ+〉. The
corresponding circuit is drawn below:
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Figure 1.25: The quantum circuit that generates the Bell state |Ψ+〉.

In the second case, it is the same process, except that we apply a not gate before H. Or
like the 2nd example, where we apply a Z gate after H, i.e.

|Ψ−〉 = CX (HX⊗ X ) |00〉 = CX (ZH⊗ X ) |00〉

The corresponding quantum circuits are drawn in the figure below:

Figure 1.26: Two equivalent quantum circuits that generate the Bell state |Ψ−〉.

We can represent the two states |Ψ±〉 on the Q-sphere, in order to compare them with those of
the states |Φ±〉.

Figure 1.27: A visualization of the Bell states: |Ψ+〉 (on the left) and |Ψ−〉 (on the right).

If the basis state with all zeros |00〉 is represented at the north pole and that with all
ones |11〉 at the south pole, then the basis states with an equal number of 0s and 1s (i.e.,
|01〉, |10〉) are represented at the equator, which explains our situation here. Another thing is
the quantum phase, where in the left side, it is 0 for both |0〉, |1〉 and in the right side, it’s 0
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for |0〉 and π for |1〉, which explains the difference between the two colors.

Finally, we built the four quantum circuits that generate the four Bell states. As seen the
two necessary gates to create entanglement, are the Hadamard Gate that played the role
of the “source” of the superposition property, and the Cnot Gate that played the role of
a “key” that close/entangle or open/disentangle two qubit states.

We have seen in this section some remarkable quantum gates. But we are far from
seeing the full picture; because there are many more gates than one can imagine, as the
CH, CZ, CT, CS, CSWAP, . . ., which we can find in the IBM quantum composer.

Figure 1.28: A variety of controlled gates (from the left to the right): RCH, CS, CSWAP, CZ, C
√
X.

Unlike gates like C
√
X†, CCH, CXHT, . . ., and also gates of 4 and 5 qubits. But as shown

in the swap gate example, we can create them through the existing basic gates. The figure14

below clearly explains this concept:

Figure 1.29: The Toffoli gate (on the left) and its implementation (on the right).

This figure shows the real face behind the ccnot or as called the toffoli gate. This master-
piece was invented by Tommaso Toffoli in 198015. Therefore any specific multi-qubit gate is
valuable. The challenge lies in how to combine the basic gates in order to create a desired gate?

14https://qiskit.org/textbook/ch-gates/more-circuit-identities.html
15https://medium.com/qiskit/ibm-quantum-challenge-2021-heres-what-to-expect-65a303753ffb

https://qiskit.org/textbook/ch-gates/more-circuit-identities.html
https://medium.com/qiskit/ibm-quantum-challenge-2021-heres-what-to-expect-65a303753ffb
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1.4 Quantum Algorithms

A classical algorithm is a procedure or a finite sequence of instructions used in problem-solving.
All of these instructions can be executed on classical computers. A quantum algorithm is also
a step-by-step instruction but, it is performed in quantum computers. Quantum algorithms
can solve some computational issues faster than their classical counterparts. For example,
integers factorization is exponentially faster, and an unordered search is quadratically faster
than any classical algorithm.

1.4.1 Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm was the first quantum algorithm that showed that quantum
computing works better than the best classical algorithm and demonstrates exponential
acceleration compared to a classical deterministic algorithm [15].

• Deutsch-Jozsa Problem
A hidden boolean function f(x1, ..., xn) takes as input a string of bits and returns 0 or 1, where
xn are 0 or 1. If the function returns all 0 or all 1 for any input, then it is a constant function. If
the function returns 0 for exactly half of all inputs and 1 for the other half, then it is a balanced
function. Our goal here is to determine if a given function is balanced or constant.

• The Classical Solution: If the task is performed with a classical algorithm on a classical
computer, we can solve this problem after two calls to the function f . For example, if we
find 0 as output for the first combination and 1 in the second combination, then the function
f , is balanced. This is the best case. In the worst case, if we continue to see the same
output for each input we try, we will have to check exactly half of all possible inputs plus
one in order to be certain that f is constant.

• The Quantum Solution: We can solve this problem using quantum computing after
only one call to the function f . This function is implemented as a quantum oracle, it maps
the state from |x〉|y〉 to |x〉|y ⊕ f(x)〉 16.

Figure 1.30: Generic circuit for the Deutsch-Jozsa algorithm17.

16https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html

https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html
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Now, let’s go through the steps of the algorithm:

• Prepare two quantum registers. The first is an n-qubit register initialized to |0〉, and the
second is a one-qubit register initialized to |1〉

|ψ0〉 = |0〉⊗n|1〉 (1.74)

• Apply a Hadamard gate to each qubit:

|ψ1〉 = (H⊗n |0〉⊗n)(H |1〉) (1.75)

= (H |0〉 ⊗H |0〉 ⊗ · · · ⊗H |0〉) (H |1〉)

=
(
|0〉+ |1〉√

2
⊗ |0〉+ |1〉√

2
⊗ · · · ⊗ |0〉+ |1〉√

2

)(
|0〉 − |1〉√

2

)

=
(

1√
2n

2n−1∑
x=0
|x〉
)(
|0〉 − |1〉√

2

)

|ψ1〉 = 1√
2n+1

2n−1∑
x=0
|x〉 (|0〉 − |1〉) (1.76)

• Apply the quantum oracle |x〉|y〉 to |x〉|y ⊕ f(x)〉:

|ψ2〉 = 1√
2n+1

2n−1∑
x=0
|x〉 (|0⊕ f(x)〉 − |1⊕ f(x)〉)

= 1√
2n+1

2n−1∑
x=0

(−1)f(x)|x〉 (|0〉 − |1〉) (1.77)

Since for each x, f(x) is either 0 or 1. At this point the second single qubit register may
be ignored.

• Apply a Hadamard gate to each qubit in the first register:

|ψ3〉 = 1
2n

2n−1∑
x=0

(−1)f(x)

2n−1∑
y=0

(−1)x·y|y〉


= 1
2n

2n−1∑
y=0

[2n−1∑
x=0

(−1)f(x)(−1)x·y
]
|y〉 (1.78)

with H |x〉 = ∑2n−1
y=0

(−1)x.y |y〉√
2 and H⊗n |x〉 = ∑2n−1

y=0
(−1)xy |y〉√

2n

Where x · y = x0 y0 ⊕ x1 y1 ⊕ . . .⊕ xn−1 yn−1 is the sum of the bitwise product.

• Measure the first register. Notice that the probability of measuring |0〉⊗n = | 1
2n
∑2n−1
x=0 (−1)f(x)|2,

which evaluates to 1 if f(x) is constant and 0 if f(x) is balanced.

17https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html

https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html
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Example for n = 1
To better understand the Deutsch-Jozsa algorithm, let us take a simple example for a single

input (n = 1). The quantum circuit that we need to use to solve the problem is very simple:

Figure 1.31: Deutsch-Jozsa circuit example for a single input (n=1).

The algorithm is divided by four steps. Let’s look at what happens in each numbered state.
Step 1:

In this step, we prepare two quantum registers. The first is a one-qubit register initialized
to |0〉, and the second is one-qubit register initialized to |1〉. The initial state is:

|ψ0〉 = |0〉 |1〉 (1.79)

Step 2:
The next step is to apply the Hadamard gates, we get the following result:

|ψ1〉 = (|0〉+ |1〉)√
2

(|0〉 − |1〉)√
2

= (|0〉+ |1〉)(|0〉 − |1〉)
2

= |0〉 (|0〉 − |1〉)2 + |1〉 (|0〉 − |1〉)2 (1.80)

Step 3:
The next step is to apply the oracle function, the input (x, y) will become to (x, y⊕ f(x))

in the output. The state before the oracle function is

|ψ1〉 = |0〉 (|0〉 − |1〉)2 + |1〉 (|0〉 − |1〉)2 (1.81)

Now let us see the effect of the oracle function. When we apply the oracle function, by linearity we
obtain:

|0〉 (|0⊕ f(0)〉 − |1⊕ f(0)〉)
2 + |1〉 (|0⊕ f(1)〉 − |1⊕ f(1)〉)

2 (1.82)

• When f(0) = 0, we get |0⊕ f(0)〉 − |1⊕ f(0)〉 = |0〉 − |1〉.

• When f(0) = 1, we have |0⊕ f(0)〉−|1⊕ f(0)〉 = |0⊕ 1〉−|1⊕ 1〉 = |1〉−|0〉 = −(|0〉−|1〉).
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• For the f(1) we do the same thing, so our global state can be writen as

|ψ3〉 = (−1)f(0) |0〉 (|0〉 − |1〉)
2 + (−1)f(1) |1〉 (|0〉 − |1〉)

2 . (1.83)

This expression can be also written as

|0〉 (|0〉 − |1〉)
2 + (−1)f(0)+f(1) |1〉 (|0〉 − |1〉)

2 (1.84)

• If f(0) = f(1), we will get

|0〉 (|0〉 − |1〉)
2 + |1〉 (|0〉 − |1〉)2 = (|0〉+ |1〉)(|0〉 − |1〉)

2 (1.85)

Lets summarize what happen when f(x) is constant or balanced.
When constant:
f(0) = 0 and f(1) = 0 → |0〉+|1〉√

2 also f(0) = 1 and f(1) = 1 → −|0〉−|1〉√
2

When balanced:
f(0) = 0 and f(1) = 1 → |0〉−|1〉√

2 also f(0) = 1 and f(1) = 0 → −|0〉+|1〉√
2

Step 4: The final step is to apply the Hadamard gate and the measure.
When we apply the Hadamard gate, we get the state |1〉 if it is balanced and |0〉 if it is

constant. We can verifier this result by the measurement.

1.4.2 Shor’s Algorithm

Shor’s Factorization Algorithm is proposed by Peter Shor. It suggests that quantum mechanics
allows the factorization to be performed in polynomial time, rather than exponential time
achieved after using classical algorithms [15].

• The basic idea of Shor’s algorithm:

The main problem to be solved by Shor’s algorithm is given an integer N , we want to find
its prime factor. In other words, we want to determine the two prime factors p1 and p2

which satisfy p1.p2 = N for a given large number of N in polynomial time.

Shor algorithm is a hybrid quantum-classical algorithm. It begins with some classical
processing, then uses the quantum computer to execute a particular part of the algorithm
(a subroutine18). This subroutine is difficult to perform on classical computers, but it can
be solved with a fast quantum algorithm using the quantum Fourier transform (QFT).
The quantum computer essentially serves as a co-processor to the classical computer.

In the case of Shor’s algorithm, the quantum subroutine is known as the period finding
routine, which uses an important technique known as the quantum Fourier transform, or

18A sequence of computer instructions for performing a specified task that can be used repeatedly.
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QFT, to create interference that gives us the period. We then use a classical technique
known as Euclid’s algorithm to find the prime factors of the number. It turns out that, if
we can find the period r of a function f(x) = axmod N as we increment the variable x,
then we can find the factors of N with a is selected prime number inferior of N .

• Steps for Shor algorithm

The algorithm consists of two parts, a classical and quantum part. The classical part
reduces the factorization to a problem of finding the period of the function. This is done
classically using a classical computer. Quantum part which uses a quantum computer to
find the period using the Quantum Fourier Transform.

Let’s assume we’re trying to factor a number N . The algorithm consists of the following steps:

1. Pick a random number a such that a < N .

2. Use Euclid’s algorithm to check if is a factor of N ; if so, you’re done.

3. Otherwise, prepare your quantum computer and a program for it to execute quantum
period finding.

4. The first important quantum step is to calculate the superposition of ax for all values of
x, all done modulo N . |x〉 and the remainder both appear in our quantum register.

5. Measure the remainder (Technically, this is unnecessary).

6. Take the quantum Fourier transform (QFT) of |x〉.

7. Measure the register |x〉; call the result r, which should be a multiple of the period of the
modular exponentiation function.

8. If r is even and greater than zero, calculate the numbers a(r/2) + 1 and a(r/2) − 1; if not,
repeat the quantum portion of the algorithm to find a new r.

9. Use Euclid’s algorithm to calculate the GCD (Great Common Divider) of each of those
numbers and N , and we should have two factors of N !.

The quantum circuit for Shor’s algorithm is represented in the following figure [16]:
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• The first t qubits, which form the first register, will hold the exponents to which we are
raising a. The measurement at the end will yield (with high probability) some value y such
that y

2t is close to a rational number s
r
, where is the period of a (mod N). Thus increasing

the number of these qubits, will simply increase the accuracy of this approximation.

• The last n qubits (initialized to be |0 · · · 01〉), which form the second register, will be
where the powers aj (mod N) get stored. Hence we can take n = dlog2 Ne, the number
of binary digits of N .

• First, we apply H to each qubit in the input. The result will be that the first t qubits will
each become H |0〉 = 1√

2(|0〉+ |1〉). The first t qubits taken together will be in the state

1
2t/2 (|0〉+ |1〉)⊗ (|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉) = (1.86)

1
2t/2 (|0 · · · 00〉+ |0 · · · 01〉+ · · ·+ |1 · · · 11〉) = 1

2t/2

2t−1∑
j=0
|j〉 . (1.87)

In other words, it will be in a balanced superposition of all the basis states.

• Then, we have a number of controlled Ux-gates. The gate Ux performs multiplication by
x (mod N). That mean, Ux |y〉 = |x y mod N〉, for 0 ≤ y < N .

We can construct such gates efficiently since we can efficiently multiply two n digit numbers,
and we can compute each x = a2k simply by squaring a (mod N).

• For example suppose |j〉 = |jt−1 · · · j2 j1 j0〉 is the content of the first register. Then the
controlled Ux-gates will multiply the second register by a if j0 = 0, then by a2 if j1 = 1,
then by a4 if j2 = 1, and so forth. The result is that the second register will become
a
∑

jk2k = aj.

• After these gates, the total state of the system will be a superposition of the form:

1
2t/2

2t−1∑
j=0
|j〉
∣∣∣aj mod N

〉
. (1.88)
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We can write it as:

1
2t/2

∑
j,b

x
(b)
j |j〉 |b〉 , (1.89)

where x(b)
j = 1 if b = aj (mod N), otherwise x(b)

j = 0. Thus, for any fixed b, the sequence
{x(b)

j }2t−1
j=0 will be periodic (in j) with period r.

• In this step, we input the first register into the QFT. This will send the state to

1
2t/2

∑
k,b

y
(b)
k |k〉 |b〉 , (1.90)

where, for any fixed b, {y(b)
k } is the discrete Fourier transform of {x(b)

j }. Since {x
(b)
j } was

periodic with period r, |y(b)
k | will be large when yk is approximately a multiple of 2t

r
.

Let N = 2t The quantum Fourier transform (QFT) is the linear transformation (acting on
t qubits) that acts on the computational basis |0〉 , |1〉 , . . . , |N − 1〉 by

|j〉 7→ 1√
N

N−1∑
k=0

e2πijk/N |k〉 . (1.91)

This gives
N−1∑
j=0

xj |j〉 7→
N−1∑
k=0

yk |k〉 , (1.92)

where {yk}N−1
k=0 is the discrete Fourier transform of {xj}N−1

j=0 .

• Finally, we measure the first register. With high probability, this will give a value k such
that k is approximately a multiple of 2t

r
, that is, such that k

2t is close to a rational number
with r as the denominator.

Once we have this value of k, we compute the continued fraction expansion of k
2t to

approximate it by a rational number with a relatively small denominator r. Then we test
to make sure that ar ≡ 1 (mod N).

1.5 Error Detection and Correction

In 1948, Claude Shannon proved that a reliable transmission of information over noisy
classical channels is feasible. This discovery led to the search for classical error correction
(CEC) codes. Then, in the mid-1990s Peter Shor and Andrew Steane showed that
quantum error correction (QEC) is possible [2]. So, in this section, we will give a glimpse
of CEC and then we tackle QEC.
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1.5.1 Classical Error Correction

Noise refers to any external and undesired disturbance superimposed on a useful signal, created
by the operating environment and which leads to errors. In data communication, the four most
important kind of noise are: thermal noise, intermodulation noise, impulse noise and crosstalk.
If there are defects in the hardware, either original or acquired, this can cause errors as well.

To correct these errors, we use coding theory which is critical for reliable communication,
information storage, and processing. Software within the storage devices can often detect and
correct errors quickly using as small extra data as possible. This is called “fault-tolerance” [8].

The aspects of error correction process can be sited in the 4 points below:

• An initial information to be sent, stored, or processed.

• Encoding the information in a larger system to protect it against noise.

• A noise process that alters information.

• Decoding the information, and correct it, which reduces the effects of noise.

Figure 1.32: The classical error correction process.

The trivial strategy for encoding information is to repeat it several times then the decoding
is done by majority decision. This is known as a “repetition code”. For example, if we want
to transmit the information 01101 through a noisy channel that corrupt the transmission in
some places, we have to repeat it in order to reduce the error rate [8].

[ 01101 01101 01101 ]→ 〈 noisy channel 〉 → [ 01101 01100 01101 ]

An error occurred in one of The three copies, so we conclude that the original data is that
occurs most often, which is 01101. We see clearly the weak point of this code; if there are one
more errors than we cannot correct, but we can avoid this by more redundancy. Generally, for a
repetition of length n, the error correction capacity is n−1

2 .

To detect an error there is another simple method is the use of an even parity bit [8]:

• If the data contains an even number of 1 bits, we precede it with a 0, e.g. 10100 →
010100.
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• If the data contains an odd number of 1 bits, we precede it with a 1, e.g. 10110 → 110110.

In the two we have an even number of 1s, so if there is an odd number of 1s after the
transmission, then at least one bit flip has occurred, anywhere. But if there is 2 or any even
number of bit flips, then we will not know.
There are more powerful codes that protect information. The characteristics of a good code are:

1. The number of repetitions in the original message must be minimal.

2. Ease of encoding and decoding information.

The concepts of classical error detection (CED) and correction (CEC) introduced above
are useless in the quantum case, because detecting errors in transmited information requires
measurement. But in the quantum case, this causes a collapsing of the transmitted qubit state,
so we lost any information stored in its coefficients [17]. The philosophy of quantum error
correction is to detect and correct information without measuring it!

1.5.2 Quantum Error Correction

Physical qubits are characterized by decoherence, which occurs when a state is affected by
physical processes, and which cannot be reversed. For example, the effect of measures. In the
current era of quantum computing, we are using a large number of noisy physical qubits to
encode one logical qubit, through the process of quantum error correction (QEC) [8].

The decoherence is due to the entanglement of the qubit with its environment, which
attempts to alter the state of the system. But as we will see, the encoding of logical qubits is
maintained by constantly putting the physical qubits through a highly entangling circuit. Peter
Shor summarizes the fundamental idea of QEC as to “fight entanglement with entanglement” [2].

We have seen that to protect an information against noise requires creating multiple copies
of it, in a way that decreases the probability of errors. But in quantum mechanics, the
No-Cloning Theorem announces that a quantum state cannot be copied.

|ψ〉 = a |0〉+ b |1〉 6−→ |ψ〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉

For this, a formulation of QEC was suspected that is not possible. Therefore, we need another
way to employ the reasoning of redundancy of classical error correction in QEC, and it turns out
that this way is entanglement; indeed, instead of coping the state of a qubit multiple times, we
can spread it onto a highly entangled state of multiple-qubits [8][2]. The encoding in QEC
combines the concept of redundancy and entanglement, i.e.

|ψ〉 = a |0〉+ b |1〉 encoding−−−−−→ |ψ〉 = a |000 · · ·〉+ b |111 · · ·〉
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So we entangle one qubit carrying information, with (n− 1) qubits of state |0〉, and create an
n-qubit quantum state that is more resilient to errors.
The qubit state is prone to two types of quantum errors: bit-flips and sign-flips [18][19].

1.5.2.1 Single Bit-Flip Error Correction Code

Bit flips are the only kind of errors that occurs in the classical case and makes the interchange of
0� 1. This bit-flip can be traduced in the quantum case as the interchange of |0〉� |1〉; which
means that a state a |0〉+ b |1〉 becomes a |1〉+ b |0〉, where the amplitudes are switched, which
is a not action; the X gate leads to a bit-flip error, and that can be corrected by applying
another X gate, since X.X = I [8].

In 1985 Asher Peres proposed a method called “3-qubit bit-flip code” that corrects a single
bit-flip error. For a given transmitted state |ψ〉 this method consists of the following steps:

1. Encoding |ψ〉 to an entangled 3-qubit state.

2. The Noisy channel cause just bit-flip errors.

3. Decoding the transmitted state.

For the 1st step, we have to entangle the qubit q0 with both q1 and q2, Therefore

|ψ 0 0 〉 → (CX[0,2])(CX[0,1]) (|ψ〉
0
⊗ |0〉

1
⊗ |0〉

2
)

where
CX[0,1] = (CX⊗ I ) = ( |0〉〈0| ⊗ I + |1〉〈1| ⊗ X )⊗ I

CX[0,2] = ( |0〉〈0| ⊗ I⊗ I + |1〉〈1| ⊗ I⊗ X )

hence

(CX[0,2])(CX ⊗ I ) (|ψ 0 〉
01
⊗ |0〉

2
) = (CX[0,2]) ((a |00〉

01
+ b |11〉

01
)⊗ |0〉

2
) = a |000〉+ b |111〉

This correspond to the 1st block in the circuit below:
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Figure 1.33: Single bit flip error correction circuit.

After encoding one logical qubit as 3 physical qubits, this one will pass through a noisy
environment that may cause bit-flips. The decoding step consists of disentangling the affected
state via the cnot gates. The role of Toffoli gate is detection and correction of errors;
where the 2 control parts work for detection and the target part is for correction.

|ψ〉 Nbr of Errors Step 1 Step 2 Step 3 Step 4 Step 5

0 Errors |000〉 |000〉 |000〉 |000〉 |0 00〉

|0〉 1 Error |000〉 |100〉 |110〉 |111〉 |0 11〉
|000〉 |010〉 |010〉 |010〉 |0 10〉
|000〉 |001〉 |001〉 |001〉 |0 01〉

2 Errors |000〉 |110〉 |100〉 |101〉 |1 01〉
|000〉 |101〉 |111〉 |110〉 |1 10〉
|000〉 |011〉 |011〉 |011〉 |1 11〉

3 Errors |000〉 |111〉 |101〉 |100〉 |1 00〉

0 Errors |111〉 |111〉 |111〉 |111〉 |1 11〉

|1〉 1 Error |111〉 |011〉 |011〉 |011〉 |1 11〉
|111〉 |101〉 |111〉 |110〉 |1 10〉
|111〉 |110〉 |100〉 |101〉 |1 01〉

2 Errors |111〉 |001〉 |001〉 |001〉 |0 01〉
|111〉 |010〉 |010〉 |010〉 |0 10〉
|111〉 |100〉 |110〉 |111〉 |0 11〉

3 Errors |111〉 |000〉 |000〉 |000〉 |0 00〉

Here we can clearly understand what we have said before, about the fact that detection
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and correction in QEC is done without any measurement. We see that the error correction
capacity of this circuit does not exceed one bit flip. Furthermore, the correction concerns
just q0, which is reasonable.

1.5.2.2 Single Sign-Flip Error Correction Code

Another kind of errors that can occur in quantum computers, it is the sign-flip or phase-flip,
which is a π phase error that makes the interchange (a |0〉 + b |1〉) � (a |0〉 − b |1〉), which
describes the action of the Z gate. Unlike bit-flips, this one exists only in the quantum
case [8]. To construct the error correction circuit of sign-flips errors, we have to understand
the identity obtained in subsection 1.3.3.

HX = ZH −→ X = HZH

This means that the action of X (bit-flip) on the computational basis {|0〉 , |1〉} is equivalent
to the action of Z (sign-flip) on the Hadamard basis {|+〉 , |−〉}; hence, to convert bit-flips
to sign-flips, we have just to change the basis [8].

Figure 1.34: Single sign flip error correction circuit.

The encoding used in this case consist of the following mapping:

|ψ〉 = a |0〉+ b |1〉 → |Ψ〉bf = a |000〉+ b |111〉

|Ψ〉bf → (H⊗H⊗H) |Ψ〉bf = |Ψ〉sf = a |+ + +〉+ b |− − −〉

As the bit-flip error correction circuit, this circuit corrects up to one sign-flip error in q0.

1.5.2.3 The 9-Qubit Error Correction Shor Code

In 1995 the mathematician Peter Shor published work on an error correction circuit that
can correct, a single bit-flip (X), a single sign-flip (Z) or both (Y) [8][2]. This general error
can be modeled as a unitary transform E, that act on the qubit, and which expresses as
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a linear combination of each error type.

E = α I + β X + µ Z + ν Y ; α, β, µ, ν ∈ C

The Shor code, encodes the information of one-qubit onto a highly entangled 9-qubit state. The
followed steps are:

1. The qubit q0 state to be transmitted is encoded by 2-qubits (q3 and q6) via the circuit of
Sign-flip error correction.

2. Each of the 3 qubits (q0, q3, q6) is encoded via the Bit-flip error correction code, which
gives 3 bit-flip code groups : {(q0, q1, q2); (q3, q4, q5); (q6, q7, q8)}, respectively.

3. Each of these bit-flip groups receives its own error correction.

4. At the end, a global sign-flip correction is carried out.

Figure 1.35: Shor error correction circuit.

The Shor code encoding requires the following transformation:

|0〉 → |0〉Shor = 1√
23

(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

|1〉 → |1〉Shor = 1√
23

(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)

The encoded qubit state is written

|ψ〉 = a |0〉+ b |1〉 −→ |Ψ〉Shor = a |0〉Shor+ b |1〉Shor
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For this, the 9-Qubit Shor Code is able to correct any arbitrary error.

After understanding the QEC basic error correction codes, the problem that appears is that
to correct the errors of a given qubit, we need 2 correction-qubits, then we need 2 more for
each correction-qubit, and so on. Therefore, other methods are used, like the “surface codes”
based on group theory and topology19.

Another important kind of errors occurs when reading out data from a quantum computer,
they are known as “Readout Errors” [20][21]. This type of error represents a central problem
in quantum computing, because it intervenes when extracting an outcome after any quantum
computation, and gives us results that are not entirely correct. Readout errors and their
correction methods, will be developed in depth in chapter 3.

19Lecture Notes 5: https://qiskit.org/learn/intro-qc-qh

https://qiskit.org/learn/intro-qc-qh
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In the Large Hadron Collider (LHC), beams of particles are accelerated and collide to
make debris of new particles; these particles fly out from the collision point in all directions.
Detectors are situated where the beams can be crossed. When a particle interacts with the
detector, an electrical signal is produced and sent to a readout system. They are digitized
and read out by a computer and stored on a hard disk.

The measurements of the detector are grouped into events containing all information associated
with one scattering process, and events are grouped into certain regions of phase-space, called
bins. The measurement of distributions f(x) of some kinematical quantity x is affected by the
finite resolution of the particle detectors. If we have an ideal detector then we could measure
this quantity in every event and could obtain the distribution by a histogram. But, with a real
detector, determination of a distribution f(x) is more difficult because of three factors [22]:

• Finite resolution of the detector: There is only a statistical relation between the true
kinematical variable x and the measured quantity y. The measured quantity y is smeared
out due to the limited measurement accuracy of the detector.

• Limited acceptance of the detector: Acceptance of a detector is the range of the
kinematic parameters which particles are potentially detectable in it. The probability to
observe a given event in a region is called acceptance.

• Non-linear response: The transformation from x to y can be caused by the non-linear
response of a detector component. Instead of the quantity x we found a different quantity
y in measurement.

To solve this problem and to estimate truth distribution (for example, cross-sections) from
measurement, we use a statistical technique called unfolding methods.

57
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Figure 2.1: Representation of an example of Smeared and True histogram [23].

2.1 Inverse Problem and Unfolding Methods

Unfolding is the ensemble of statistical techniques used to estimate the true spectrum using the
smeared observations. The distribution f(x) of the true variable x is related to the measurement
distribution g(y) of the measured quantity y by a Fredholm integral equation of the first kind:

g(y) =
∫
ω
R(y, x) f(x) dx (2.1)

The problem to determine the distribution f(x) from measured distribution g(y) is an inverse
problem and it is called unfolding. R(y, x) represents the detector effect.

The equation is usually discretized when we want to represent the probability density functions
f(x) and g(y) in histograms. We can construct a histogram of y with M bins.

The integral equation becomes:

mi =
M∑
j=1
Rijtj i = 1, ..., N. (2.2)

The response matrix R could be interpreted simply as a conditional probability:

Rij = P(measured in bin i|true value in bin j) (2.3)

where t = (t1, ..., tM) is the expectation values for the histogram of x and m = (m1, ...,mN)
gives the expected number of events in bins of the observed variable y. The data are given
as a vector of numbers n = (n1, ..., nN).

The efficiency εj is obtained by summing Rij:

N∑
i

Rij = P(observed anywhere|true value in bin j) = εj (2.4)
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In the general form, the equation (2.2) should include a number of background events as follow:

m = Rt+ β. (2.5)

Unfolding is useful when we want to compare the measurement with other experiments, or to
compare the measurement with future theories. It is most often used in measurement analyses.

2.2 Unfolding with Matrix Inversion

There are many unfolding methods and the most simple is the matrix inversion. This is possible
only if the number of bins observed is equal to the number of bins on the truth level.

We assume that the equation m = Rt + β can be inverted [24]:

t = R−1(m− β) (2.6)

The matrix inversion returns an unbiased result, because it is a simple linear transformation of the
result.

Figure 2.2: Unfolding using matrix inversion: The true distribution (upper left), smeared distribution
and points are data drawn from this distribution (upper right), unfolded data from matrix inversion
with true distribution (Bottom left), error bars for the unfolded data (Bottom right) [25].
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2.3 Iterative Bayesian Unfolding Method

In 1994 Giulio D’agostini proposed an iterative method based on Bayes’ theorem, known in
HEP as the Iterative Bayesian Unfolding (IBU). This technique gives approximations very close
to that of the true distributions. The notable advantage of IBU over the matrix inversion is that
the outcome is a probability (i.e., normalization and non-negativeness). This Bayes approach
requires knowledge of the initial distribution, but D’agostini has overcome this problem by
using an iterative procedure [26] [27] [28].

For an illustration, we start by stating the Bayes’ Theorem, using a picture of causes
and effects, where multiple independent causes ci (i = 1, 2, 3, ..., nc), which can produce
a single effect (e1). The initial probability of the causes P(ci) is assumed to be known, as
well as the conditional probability of the ith cause to produce the effect P(e1|ci), then Bayes
formula is written in the form [26]:

P(ci|e1) = P(e1|ci) . P(ci)∑nc
k P(e1|ck) . P(ck)

where P(ci|e1) represents the probability that a single effect e1 has been due to the ith cause ci.
Moreover, many possible effects ej (j = 1, 2, ..., ne) can be created from a given cause ci, then
the above formula can be generalized by the change e1 → ej.

The causes correspond to the true bin counts before the distortion from detector effects,
noted (ti), and effects correspond to the measured bin counts, noted (mj). Then the
previous formula becomes

P(ti|mj) = P(mj|ti) . P(ti)∑nt
k P(mj|tk) . P(tk)

(2.7)

From the law of total probability, we can write P(ti) as

P(ti) =
∑
j

P(ti ∩mj) =
∑
j

P(ti|mj) . P(mj)

where we used the definition of conditional probability : P(a|b) def= P(a ∩ b)
P(b) ; P(b) 6= 0.

Therefore, if we replace the expression of P(ti|mj) in the one above, we will have

P(ti) =
∑
j

(
P(mj|ti) . P(ti)∑nt
k P(mj|tk) . P(tk)

)
× P(mj) (2.8)

The probabilities P(mj|ti) must be calculated or estimated with Monte Carlo methods [26].
The desired solution P(ti), is also unknown, so we have to use an estimate of it, therefore we can
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write
Pn+1(ti) =

∑
j

(
P(mj|ti) . Pn(ti)∑nt
k P(mj|tk) . Pn(tk)

)
× P(mj) ; n ∈ N (2.9)

This leads to an iterative procedure, where the choice commonly used to estimate the initial
probability P 0(ti) is the uniform distribution, so P 0(ti) = 1/nt [26] [28][20].
Recalling that the response matrix is written as Rkl = P(mk|tl), and with tl = P(tl), ml =
P(ml), then we can write :

tn+1
i =

∑
j

(
Rji t

n
i∑

k Rjk tnk

)
×mj (2.10)

where n is the number of iterations. The unfolding procedure starts by choosing a prior truth
spectrum t0i = P 0(ti) from the best knowledge of the process under study, otherwise, one can take
P 0(ti) = 1/nt. The number of iterations needed to converge depends on the desired precision.
It is important to highlight that despite of the fact that the outcome is a probability, the
unfolded outcome can have negative entries, because the measured bin counts may have negative
entries, which results from background subtraction, so the result is positive only when m > 0 [20].

D’agostini mentioned in his paper 10 advantages of the IBU, in comparison with other unfold-
ing methods [26]:

1. It is theoretically well-grounded.

2. Can be applied to multidimensional problems.

3. It can use cells of different sizes for the distribution of the true and the experimental
values.

4. The domain of the definition of the experimental values can differ from that of the true
values.

5. It can take into account any kind of smearing and migration from the true values to the
measured ones.

6. In terms of its ability to reproduce the true distribution, it gives the best results if one
makes a realistic guess about the distribution that the true values follow. But, in case of
total ignorance, satisfactory results are obtained even starting from a uniform distribution.

7. Can take different sources of background into account.

8. Does not require matrix inversion.

9. Provides the correlation matrix of the results.
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10. Can be implemented in a short, simple and fast program, which deals directly with
distributions and not with individual events.

These advantages made the IBU a widely used method in HEP, as well as statistical astronomy
in rectification and deconvolution problems [27]. The next step will be to implement it in
quantum information science (QIS).



3
Unfolding Quantum Computer Readout Noise

Contents
3.1 Readout Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Constructing the Calibration Matrix R . . . . . . . . . . . . . . . . 65

3.2.1 One Qubit Calibration Matrix . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Two Qubit Calibration Matrix . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Unfolding Methods for QIS . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Unfolding with Matrix Inversion Method . . . . . . . . . . . . . . . . 69
3.3.2 Unfolding with IBU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Simulation of the Unfolding Process with Python . . . . . . . . . 76
3.4.1 Noise Generation with Python . . . . . . . . . . . . . . . . . . . . . . 76
3.4.2 Constructing R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.3 Unfolding Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Unfolding Readout Errors from the Yorktown IBM Q Machine . 86
3.5.1 Construction of the Response Matrix from the Yorktown IBM Q Machine 87
3.5.2 Unfolding a Uniform Distribution . . . . . . . . . . . . . . . . . . . . . 92
3.5.3 Unfolding a Gaussian Distribution . . . . . . . . . . . . . . . . . . . . 101

3.6 Unfolding Readout Errors from The Melbourne IBM Q Machine 118

Quantum computers use the principle of superposition and entanglement to solve complex
problems. But today’s quantum computers are noisy. Their are two sources of this noise
“qubit decoherence” and “gate infidelity”. One important type of errors that arise from qubit
decoherence are known as “Readout Errors”. These errors are similar to those caused
by detector effects in HEP.

In this chapter we will introduce the so-called “readout errors”, where their effects can be
represented by a matrix called “calibration matrix”. Then we try to use the unfolding methods
from HEP to QIS. We also provide a simulation of an unfolding process, Finally, we mitigate
readout noise through HEP unfolding methods in order to achieve the objective of this thesis.

3.1 Readout Errors

After performing any quantum computation we have to get an outcome, so we have to measure
our system of qubits, which cause a collapse of the system state to either 0 or 1. But we know
that the measurement operation will take a certain time. On the other hand, qubits have a
coherence time, and which is negligible compared to the measurement times; this means that
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during a measurement a qubit in the state |0〉 can decay to |1〉, and vice versa (i.e., a bit-flip
error). In addition, the probability distributions of measured physical quantities corresponding
to the states |0〉 and |1〉 have an overlapping support and there is a low probability of measuring
the opposite value. This leads to biased outcomes, which therefore change our interpretation of
these results [20][21]. We can investigate this fact directly, through the circuit below:

Figure 3.1: Measuring a 3-Qubit system of state |000〉.

In this circuit we have a system of 3-qubits initialized in the state |000〉, when performing
a measurement, we expect to find them 100% in this state. But for the reasoning mentioned
above, we will get the following values:

Figure 3.2: The Frequency of measuring each basis state from the IBM Q 5 Yorktown Machine,
for 8000 shots.

We executed the circuit above in the IBM Q 5 Yorktown Machine that runs it 8000 times
(the number of shots is proportional to the precision of the output probability distribution). We
see in this histogram the frequency F of measuring each basis state, where F is proportional
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to the probability, which achieves the following relation

P = F
Nshot

where Nshot is the total number of shots1.
Due to the effects of noise, instead of having a probability of 1 to measure the state |000〉,

we get P000 ' 0.7909. This means that bit-flips have occurred during the measurement. For a
single bit-flip on the state |000〉, we can get |001〉 , |010〉 , |100〉, with respective probabilities2

P001 ' 0.1219 , P010 ' 0.019 , P100 ' 0.0563

If two bit-flips occurs, we get |011〉 , |101〉 , |110〉, with respective probabilities:

P011 ' 0.0025 , P101 ' 0.0081 , P110 ' 0.0001

If three bit-flips occurs, we get |111〉, with the corresponding probability:

P111 ' 25× 10−5

The probability that more than a single bit-flip will occur is very low. For simple manipulations
it is not significant, but for more complex manipulations (where we are in total ignorance of
the results) it represents a challenge for interpreting results of experiments.

The methods of correcting readout errors will be discussed in section 3.3. But before
that, let’s explore how to construct the central object of the unfolding process, the so-
called “calibration matrix”.

3.2 Constructing the Calibration Matrix R

The calibration matrix is the essential tool in the mitigation of readout errors, which transforms
true data into noisy data, so it is equivalent to the response matrix in HEP. This matrix is
specific for each quantum computer; it depends directly on the hardware. Furthermore, for a
given hardware, its elements changes every time due to calibration drift. The method often
used to measure this matrix consist of constructing a set of quantum circuits called “calibration
circuits”, where for an n-qubit system, we must construct 2n calibration circuit that generates
all the corresponding computational basis states of the system, where this configurations are
produced via the application of the X gate [20][21].

To illustrate how the construction of the calibration matrix works we will take two in-
stances. In the reste of this section, we will use the 5 Yorktown IBM Q Machine,
and a number of 8000 of total shots.

1The number of shots defines how many times a quantum circuit is executed in a quantum computer.
2The probabilities are not equal because the qubits are not identical; they have different decoherence times.
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3.2.1 One Qubit Calibration Matrix

Let’s have a system of one qubit which is initialized in the state |0〉, then we perform a
measurement on it, as shown in the circuit below:

Figure 3.3: Measuring a qubit in the state |0〉.

After running this circuit in real hardware, we get the following outcomes:

As we said in the previous section, this qubit can decay to the state |1〉, during a measurement.

The calibration matrix R is interpreted as a conditional probability, where the coefficient Rij

represents the probability of measuring the value i under the condition that the true value is j

Rij = P (measured is : i |true is : j ) = P (m = i|t = j)

Therefore, the above results can be translated into a column vector

Ri0 =

R00

R10

 =

P(0|0)

P(1|0)

 =


6892
8000

1108
8000

 =

0.861500

0.138500


The second step consists of building the circuit generating the other basis state |1〉, and which

can be done by applying an X gate, before measuring the one-qubit system, as shown below:
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These results represent the second column of the calibration matrix

Ri1 =

R01

R11

 =

P(0|1)

P(1|1)

 =


895
8000

7105
8000

 =

0.111875

0.888125


Finally, with these two columns, we can now construct the 2× 2 calibration matrix of a single

qubit system:

R1Q =

R00 R01

R10 R11

 =

 0.86150 0.111875

0.13850 0.888125

 (3.1)

If there was no noise, then we will have : P(0|0) = P(1|1) = 1 and P(1|0) = P(0|1) = 0,
which leads to an identity matrix.

R1Q =
(

1 0
0 1

)
= 11

3.2.2 Two Qubit Calibration Matrix

Let’s have two qubits that are initialized in the state |00〉, when we measure them, instead of
having a probability of 1 for the state |00〉, this probability will be distributed to the 22 possible
computational basis states (|00〉, |01〉, |10〉, |11〉). To construct the calibration matrix we have
to build 22 calibration circuits, where we use the X gate to prepare these 4 qubit configurations.
After the readout, we get the corresponding column of each calibration circuits.

It is important to note that in the IBM quantum composer, the convention used of the
qubit order is that qubits start from the left to the right, which is the opposite of our convention,
i.e., | q0 q1 〉 7−→ | q1 q0 〉IBM

. For brevity of notation, we will write the binary numbers i, j
of the matrix elements Rij, in the decimal base, (i.e., (00)2 = (0)10 , (01)2 = (1)10 , (10)2 =
(2)10 , (11)2 = (3)10).
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The figure below shows the calibration circuits and their measurement outcomes which
correspond respectively to the computational basis states |00〉, |01〉, |10〉, |11〉:
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R2Q =



0.851000 0.118500 0.064250 0.013500

0.127625 0.855375 0.008875 0.053250

0.019000 0.005250 0.816000 0.116250

0.002375 0.020875 0.110875 0.817000


(3.2)

Finally, we get the 22 × 22 calibration matrix, where we see that the correct results (located
in the diagonal) have the greatest probability. As the number of qubits is fixed, the calibration
matrix is always square. Moreover, it is reduced to an identity matrix Rij = δij, in the absence
of noise.

In the next section, we will discuss how to correct readout errors (“Unfolding”), and show
how it is done through the calibration matrix.

3.3 Unfolding Methods for QIS

Unfolding is a method of determining approximately the true distribution from the measured
disturbed distribution (after distortions from readout noise). Several methods are used to achieve
this approximation [29], and which are mainly based on knowledge of the calibration matrix
(a.k.a., correction matrix). The most basic and commonly used method to correct readout
errors is matrix inversion. In 2020, physicist Benjamin Nachman et al. investigated various
unfolding methods currently used in HEP, in order to connect them with current methods
used in the field of quantum information science (QIS), because current QIS methods have
pathologies that can be avoided with HEP techniques. The iterative Bayesian unfolding method,
introduced in chapter 2, is shown to avoid pathologies from the matrix Inversion method [20].

By way of illustration, we will apply in what follows these two unfolding methods (MI,
IBU), in a specific case. As we have built the Yorktown device-specific response matrix,
we will continue to use it.3

3.3.1 Unfolding with Matrix Inversion Method

The Matrix Inversion is the most naive unfolding method, it assumes that the true bin counts (t)
and its corresponding measured counts (m) are related by a calibration matrix R as m = R t .
The additional assumption of this method is that R is regular. Hence, it can be inverted to

3It is clear that each device has its specific response matrix; it makes no sense to unfold readout errors of
the Santiago device (for example) using the Yorktown device response matrix.
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give us an approximation of the true counts, denoted by t̂MI .

t̂MI = R -1 m (3.3)

To illustrate the unfolding procedure through this method, let’s take the following example,
where we want to mitigate the readout errors of two-qubit system generated in the specific
Bell state |Ψ+〉, written as:

∣∣∣Ψ+
〉

= 1√
2
|01〉+ 1√

2
|10〉

The probability of finding the two qubits in different states (i.e., |01〉, |10〉), and that of finding
them in the same states (i.e., |00〉, |11〉), are given respectively:

P01 = P10 = 0.5 ; P00 = P11 = 0

Hence, the vector representing the true bin counts can be expressed as:

t =


0

0.5
0.5
0


After building the circuit of |Ψ+〉 and running it on the 5 Yorktown IBM Q Machine
for 8000 shots, the following results are obtained:
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As before, these measured bin counts can be translated into a column vector. But for a
better observation of the changes, we express its element in terms of frequency instead of
probability, the same thing for the true bin counts.

m =


606
3115
3656
623

 ; t =


0

4000
4000

0


We have a two-qubit system, so, we are going to use R2Q , and all we have to do is simply
to invert this matrix, in order to multiply it by the measured vector m. But before this, we
have to check if R2Q is regular by calculating its determinant: det

(
R2Q

)
' 0.46448 6= 0 , it

is therefore not singular, and its inverse is given below

R−1
2Q

=



+1.20206606 −0.16605952 −0.09341977 +0.00425315

−0.17936727 +1.19572556 +0.01152758 −0.07661078

−0.02752246 +0.00046624 +1.25179634 −0.17769229

+0.00482367 −0.03013228 −0.16990414 +1.25004992


(3.4)

We can now calculate the approximation of the true bin counts t.

t̂MI = R-1
2Q
m =


−0127. 716
+ 3610. 404
+ 4450. 638
+ 0066. 672

 (3.5)
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Figure 3.4: Measured and unfolded counts via the matrix inversion method.

After unfolding the readout noise, we notice that the frequencies of the computational
basis state |01〉 , |10〉 have increased, unlike the basis state |00〉 , |11〉, where their frequencies
has decreased, which is suitable. But, we also notice that for the state |00〉, the mitigation
causes it to decrease to a negative frequency, which is not physical. But that happens just
in some cases; for example, if one gets after a measurement m = [ 750, 3100, 3550, 600 ]t,
then the predicted counts will be

t̂IBU = [ 57.676 , 3567.180 , 4318.065 , 57.077 ]t

which is free from unphysical outcomes. But the fact remains that the opposite can be found.

3.3.2 Unfolding with IBU

The iterative Bayesian unfolding IBU, which was introduced in chapter 2, it is an iterative tech-
nique, where the approximate (predicted) true counts vector t̂IBU is updated with each iteration in
order to converge to the real counts t, recalling that the initial probability t0i = P0(true value is i),
is often chosen as a uniform distribution. The IBU formula is written in the form

tn+1
i =

∑
j

(
Rji t

n
i∑

k Rjk tnk

)
mj ; n ∈ N (3.6)

where n is the number of iterations.
We will take the same example of |Ψ+〉, with the same outcomes in order to compare

the two methods. But before that, let’s take, for simplicity, an instance of a one qubit
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system prepared in the state

|+〉 = H |0〉 = 1√
2 |0〉+ 1√

2 |1〉 (3.7)

The probabilities that the qubit is in the states (|0〉, |1〉) are given respectively:

P0 = P1 = 0.5

After running the corresponding circuit of |+〉 in the same device and with the same number
of shots (8000), we get m = [ 4151, 3849 ]t, while the true values are t = [ 4000, 4000 ]t. As
we have a one qubit system, we will use for the unfolding the matrix

R1Q =

 0.86150 0.111875

0.13850 0.888125


The IBU formula gives us the approximate components of the true vector t, these components
construct the predicted vector t̂IBU , which is a two-dimensional column vector in our case. By
expanding the IBU equation for (i, j, k = 0, 1), we obtain:

tn+1
i =

1∑
j=0

(
Rji t

n
i

Rj0 tn0 +Rj1 tn1

)
mj (3.8)

tn+1
0 =

(
R00 t

n
0

R00 tn0 + R01 tn1

)
m0 +

(
R10 t

n
0

R10 tn0 + R11 tn1

)
m1

tn+1
1 =

(
R01 t

n
1

R00 tn0 + R01 tn1

)
m0 +

(
R11 t

n
1

R10 tn0 + R11 tn1

)
m1

We can schematize this iteration procedure as follows:

t̂ 0
IBU

=

t
0
0

t01

 −→ t̂ 1
IBU

=

t
1
0

t11

 −→ t̂ 2
IBU

=

t
2
0

t21

 −→ · · · −→ t̂n+1
IBU

=

t
n+1
0

tn+1
1

 ≈ t

Since we express the elements of vectors t and m in terms of frequency, the range of the
uniform distribution will be extended from [ 0 , 1 ] to [ 0 , 8000 ], and any value of t0i ∈] 0 , 8000 ]
hold for the iteration procedure, so we can choose

t00 = 1 ; t01 = 1

For n = 0 :

t10 = 4193.165 ; t11 = 3806.834

In the 1st iteration these new values will replace the old ones ( t00 , t01 )→ ( t10 , t11 ). So, we have:
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For n = 1 :

t20 = 4277.457 ; t21 = 3722.542

For n = 2 :

t30 = 4314.417 ; t31 = 3685.582

and so on

... ... ... ; ... ... ...

For n = 9 :

t10
0 = 4343.410 ; t10

1 = 3656.589

We notice that the values closest to the truth t = [4000, 4000]t are obtained for just 1
iteration, and the subsequent iterations diverge from t, where the values of tn0 are increasing,
while those of tn1 are decreasing, which is the opposite of what we want.

We can now understand the unfolding example of the Bell state |Ψ+〉 via the IBU technique.
In this case, the vectors m, t and t̂IBU are four-dimensional, so we are going to use an algorithm,
written with python language. In doing so, we found the following results for 1, 5 , 10 , 100 , 1000
iterations, where we take the prior truth vector t̂ 0

IBU
as a uniform distribution.

t̂ 0
IBU

=
[

001.000, 0001.000, 0001.000, 0001.000
]t

t̂ 1
IBU

=
[

947.003, 2651.760, 3255.226, 1146.008
]t

t̂ 5
IBU

=
[

187.168, 3366.011, 4151.338, 0295.481
]t

t̂101

IBU
=
[

065.849, 3468.337, 4302.088, 0163.724
]t

t̂102

IBU
=
[

000.001, 3524.170, 4400.027, 0075.801
]t

t̂103

IBU
=
[

10−50, 3524.179, 4400.088, 0075.731
]t

Note that this is the opposite of the previous example, where the t̂ 1
IBU

is not the closest
vector to the truth t. But the iterations converges it more and more to t. Also, note that
the amount of improvement decreases with each iteration. For our situation, the values
stabilize for n > 103, i.e., subsequent iterations will give the same outcomes. Hence, t̂ 103

IBU

is the maximum approximation of t.

t =
[

000.000, 4000.000, 4000.000, 000.000
]t
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Finally, we can represent the predicted values in a histogram in order to compare the
two methods MI and IBU.

Figure 3.5: Measured and predicted bin counts via MI and IBU for 103 iterations.

We notice that in this specific example of |Ψ+〉, the predicted values from matrix inversion
method t̂MI and that from IBU t̂IBU , are very close. Furthermore, no negative outcomes for
IBU, if we look at state |00〉, for IBU its error attenuation has reached 100%. The reason of
the non-negativeness of the IBU outcomes, as we have mentioned before, is that the results are
probabilities, which are always positive.

The difference in the behavior of IBU between the 1st and 2nd example comes from the choice
of t̂ 0

IBU
, where in the 1st one, both t̂ 0

IBU
and t where uniform distributions. But for the 2nd example

t was not uniform, unlike t̂ 0
IBU
. If we took t̂ 0

IBU
similar to t, e.g. [0, 1, 1, 0]t, then we get:

t̂1
IBU

=
[

0, 3598.040, 4401.959, 0
]t

t̂10
IBU

=
[

0, 3533.524, 4466.475, 0
]t

which shows the same behavior as in the 1st example. We see that it gives better results
than before, for one iteration.
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3.4 Simulation of the Unfolding Process with Python

In this section, we will explain how to simulate the unfolding process with python. To perform
unfolding, we need the calibration matrix. So, in this simulation, we will assume that we know
this matrix exactly and we will use it in the three unfolding methods: Matrix Inversion,
IBU, and Ignis from Qiskit.

It is interesting to see the effect of noise in data, so we will generate some noise using a pseudo-
random generator provided by python tools, this will conduct us to simulate the measured data.
Then, we will see how to use an arbitrary response matrix in the unfolding methods. The matrix
will be constructed with python code, but we know precisely its values. Finally, we will compare
the output of the tree unfolding methods with the measured and the true data in the histograms.

3.4.1 Noise Generation with Python

The purpose of this part is to produce noisy data using python tools. The first step consists of
generating pseudo-random numbers for true data which follow the normal law, named true_data.
In a second step, we generate pseudo-random numbers that follow the uniform law, named as
randnoise. We will modify the randnoise by using conditions on it using true data the outcome is
the reconstructed noisy data. To visualize the result, we will represent it in a histogram.

Python packages

Before starting, it is necessary to import some packages. We will need only two packages.
The first is numpy which provides mathematical computations on arrays and matrices. The
second is matplotlib for data visualization.

1 import numpy as np
2 import matplotlib.pyplot as plt

True Data

It is easier to visualize a little number of data so for the first example we will use N = 100.
The true data is generated using the function np.random.randn(N_data)*sigma, the variable
follow the normal law with sigma =3 the result will be clipped to the interval [−10, 10] using
the function np.clip() and will be named as true_data. The final step is to round the data
to the nearest integer numbers by the function round().

1 N_data = 100
2 sigma = 3
3 true_data = np.clip(np.random.randn(N_data)*sigma,-10.,10.)
4 true_data_int = [round(x) for x in true_data]
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Now we can visualize the result by the print command as follow:

1 print("true_data =\n",true_data)

The output for the true_data:

1 true_data =
2 [ 5.36588542 1.30952955 0.2894924 -5.59047811 -0.83216461 -1.06427694
3 -0.24822444 -1.88100203 -0.13145451 -1.43165409 -3.94159426 2.65386714
4 2.64395413 5.12871919 0.15010093 -1.21403224 -1.63607984 -4.63943195
5 2.9471023 -3.30320289 -3.55513958 -0.6169497 4.45844507 0.7101488
6 -3.07135542 -2.1389796 1.8757349 -0.48154009 -2.30650905 -0.69009217
7 2.2351688 5.92833235 -3.73236999 -1.87925073 -2.41129828 -7.25724952
8 -2.77137607 -3.07162728 3.37193388 -0.3957427 -4.86985634 1.94002636
9 -1.06881228 -5.22942311 -1.78994893 -1.76578314 -2.62164689 0.08914145

10 -6.7447733 -0.80328559 3.03955033 2.55839352 3.3245625 3.35817197
11 4.4626294 -3.35490205 2.53750022 -5.58266859 -1.80865531 -5.74341613
12 3.14444254 4.00121346 -0.59224404 5.32393509 -2.02418253 0.4518506
13 0.45883711 -3.19258582 1.31383983 5.81693538 -3.07479262 2.69801534
14 -0.46352056 5.30888191 1.45136504 2.0286492 1.92948984 0.74726012
15 -4.18729051 4.17498872 -4.11200704 0.71568958 1.84223126 -2.51373682
16 0.43518964 3.50364686 -0.07231341 -2.66597225 -8.74721326 -2.91552151
17 -1.77323622 -1.5492521 -2.87998854 1.1318857 -1.72412526 -0.328363
18 2.0372148 -2.56631151 -0.90061822 6.47444803]

The output for the true_data_int:

1 true_data_int =
2 [5, 1, 0, -6, -1, -1, 0, -2, 0, -1, -4, 3, 3, 5, 0, -1, -2, -5, 3, -3, -4, -1,
3 4, 1, -3, -2, 2, 0, -2, -1, 2, 6, -4, -2, -2, -7, -3, -3, 3, 0, -5, 2, -1, -5,
4 -2, -2, -3, 0, -7, -1, 3, 3, 3, 3, 4, -3, 3, -6, -2, -6, 3, 4, -1, 5, -2, 0, 0,
5 -3, 1, 6, -3, 3, 0, 5, 1, 2, 2, 1, -4, 4, -4, 1, 2, -3, 0, 4, 0, -3, -9, -3, -2,
6 -2, -3, 1, -2, 0, 2, -3, -1, 6]

Noisy Data

In this part, we want to construct noisy data from true data, this will represent our measured
data. Later, in the unfolding part, we will see how to correct this noisy data. So, now let’s
see how to generate some noise starting from the true data with python tools.

First, we generate N pseudo-random numbers (which represent the noise) that follows the
uniform law. The seed is equal to 5 and the values of this data are in the interval [0, 1].

1 np.random.seed(5)
2 randnoise = np.random.uniform(0.,1.,N_data)
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The output for the randnoise:

1 randnoise =
2 [2.74780505e-01 6.52223125e-01 9.56449511e-01 4.35520556e-01
3 7.01325051e-02 5.77314878e-02 8.28710188e-02 9.59707187e-01
4 5.40760836e-01 8.37462433e-01 1.70033544e-01 2.60345073e-01
5 6.91977512e-01 8.95570328e-01 3.40688484e-01 6.46731980e-02
6 8.64119669e-01 2.90872446e-01 7.41082406e-01 1.58033655e-01
7 6.94963435e-01 8.41419619e-01 7.27152079e-01 3.59107525e-01
8 7.26689751e-01 1.39467124e-01 3.13819115e-01 4.19582757e-01
9 8.77212039e-01 1.53740209e-01 8.80124790e-01 7.98964319e-01

10 9.71624297e-01 3.67702983e-01 2.04939769e-01 2.40570320e-01
11 8.27862801e-01 9.65228149e-01 6.98809998e-01 4.82497042e-01
12 2.87049765e-01 8.33687884e-01 8.72179508e-01 9.21315918e-02
13 2.15949471e-01 8.31761090e-01 8.48303897e-01 3.14652999e-01
14 2.79294597e-01 4.30815022e-01 5.39446500e-01 9.55668150e-02
15 8.36912139e-01 5.34734870e-01 7.74967815e-01 2.30836266e-01
16 9.65293351e-01 7.51027307e-01 3.43093864e-01 9.48527647e-01
17 7.00511779e-01 8.40561085e-01 4.54973059e-02 5.56415411e-02
18 7.42737274e-01 3.04686433e-01 5.16784366e-01 1.56262424e-01
19 9.77952410e-01 5.02751048e-01 8.29001078e-01 7.40377963e-02
20 4.78915452e-01 6.22794804e-02 8.84241431e-01 4.45810179e-01
21 6.85499183e-02 7.64962823e-02 5.38792658e-01 7.55664045e-02
22 1.83772318e-01 4.36357084e-01 4.97782831e-01 5.83311915e-01
23 6.20512681e-01 3.72811500e-01 6.18736583e-01 1.57244658e-01
24 2.75508475e-01 7.98718271e-01 1.53089301e-01 2.23322973e-01
25 2.42978180e-01 4.79507305e-01 7.45522042e-04 3.03113605e-02
26 4.61548152e-01 1.62520685e-01 6.79501804e-01 7.95204587e-01]

The second step is to build new data using conditions on the real data and the random noise.
That means, each value in the coordinate i will be added or subtracted by 1, this will depend
on the condition between the random noise and the true value. The new reconstructed
data is the measured data.

1 reco_data_int = []
2 for i in range(len(true_data_int)):
3 reco_data_int+=[true_data_int[i]]
4 if (true_data_int[i]==-10 and randnoise[i]<0.2):
5 reco_data_int[i]+=1
6 elif (true_data_int[i]==10 and randnoise[i]<0.3):
7 reco_data_int[i]-=1
8 elif (abs(true_data_int[i]) < 10 and randnoise[i]<0.2):
9 reco_data_int[i]-=1

10 elif (abs(true_data_int[i]) < 10 and randnoise[i]<0.8):
11 reco_data_int[i]+=1
12 pass
13 pass

Before seeing the result let us reproduce the Reconstructed data by hand for the five
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values using the preview conditions.

i 0 1 2 3 4
True Data 5 1 0 -6 -1

Random Noise 2.74780505e-01 6.52223125e-01 9.56449511e-01 4.35520556e-01 7.01325051e-02
Reconstructed Data 5+1=6 1+1=2 0 (pass) -6+1=-5 -1-1= -2

The output for the Reconstructed Noisy data:

1 reco_data_int =
2 [6, 2, 0, -5, -2, -2, -1, -2, 1, -1, -5, 4, 4, 5, 1, -2, -2, -4, 4, -4, -3, -1,
3 5, 2, -2, -3, 3, 1, -2, -2, 2, 7, -4, -1, -1, -6, -3, -3, 4, 1, -4, 2, -1, -6,
4 -1, -2, -3, 1, -6, 0, 4, 2, 3, 4, 5, -2, 3, -5, -1, -6, 4, 4, -2, 4, -1, 1, 1,
5 -4, 1, 7, -3, 2, 1, 4, 1, 3, 1, 0, -3, 3, -5, 2, 3, -2, 1, 5, 1, -4, -8, -2, -3,
6 -1, -2, 2, -3, -1, 3, -4, 0, 7]

The Plot

To visualize the effect of noise and the true data together, we will represent the result in
two histograms. The true data t and the measured data m are discretized with 15 uniform
unit width bins spanning the interval [−10, 10].

The code that we use to draw the histograms is as follow:

1 m,b,_ = plt.hist(reco_data_int,bins=np.linspace(-10.5,10.5,16),facecolor="orange",
2 edgecolor='none',label='m')
3 t,b,_ = plt.hist(true_data_int,bins=np.linspace(-10.5,10.5,16),facecolor="none",
4 edgecolor='black',label="t")
5 plt.legend(frameon=False)
6 plt.xlabel('Value')
7 plt.ylabel('Counts')

Figure 3.6: Histogram representation of simulated true data and measured data.
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We can see that the noise changed the real values to the point where it is not possible to see
the pattern of the distortion in the histogram. So, we will need to solve this inverse problem by
applying the unfolding technique. For the next example, we will show only the histograms4.
But first, let us see how to construct the response matrix with python.

3.4.2 Constructing R

We assume that we know our calibration matrix and will use the previews information about
true and measured data. The dimension of m is equal to the dimension of t and they are
related by the equation m = R t.

The elements of the matrix are constructed with the following python code:

1 R = []
2 for i in range(len(m)):
3 R += [[]]
4 for j in range(len(t)):
5 if (i==0):
6 if (j==0):
7 R[i] += [0.75]
8 elif (j==1):
9 R[i] += [0.25]

10 else:
11 R[i] += [0.]
12 elif (i==len(t)-1):
13 if (j==len(t)-1):
14 R[i] += [0.75]
15 elif (j==len(t)-2):
16 R[i] += [0.25]
17 else:
18 R[i] += [0.]
19 else:
20 if (abs(i-j)==0):
21 R[i] += [0.5]
22 elif (abs(i-j)==1):
23 R[i] += [0.25]
24 else:
25 R[i] += [0.]

The index i takes values from 0 to dim(m) and the index j takes values from 0 to dim(t). In
our case, the calibration matrix will have dimension 15 × 15.

The output of the calibration matrix:

1 [[0.75, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
2 [0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
3 [0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
4 [0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],

4Because it is not practical to see data in dozens of pages.
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5 [0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
6 [0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
7 [0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
8 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
9 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0, 0.0],

10 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0, 0.0],
11 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.0],
12 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.0],
13 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0],
14 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.5, 0.25],
15 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.75]]

We can also introduce each value of a calibration matrix by hand like the following example:

1 R = [[0.75, 0.25, 0.00, 0.00],
2 [0.25, 0.50, 0.25, 0.00],
3 [0.00, 0.25, 0.50, 0.25],
4 [0.00, 0.00, 0.25, 0.75]]

3.4.3 Unfolding Methods

In this part, we will use three unfolding methods to correct the measured data. Each unfolding
method can be defined as a function in python. Here, we will change the number of data
N_data (from 100 to 10000) and the number of bins (from 15 to 21) and also the measured data
(Reconstructed Data). All the other parameters from the previews code will remain unchanged.
The new histograms of measured and true data are represented as follow:

Figure 3.7: Histogram representation of simulated true data and measured data.
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Matrix Inversion

One of the methods to unfold the true distribution from experimental data is to calculate
the inverse of the response matrix, then we will get the true distribution using the fol-
lowing equation t̂ = R−1m.

To calculate the inverse of a matrix in python we use np.linalg.inv() function. The multiplication
between the inverse of the matrix and the measured distribution vector is performed by the
function: np.matmul(). The np.ravel return a contiguous flattened 1-D array, containing all
the elements of the input.

1 def MatrixInversion(ymes,Rin):
2 return np.ravel(np.matmul(np.linalg.inv(np.matrix(Rin)),ymes))

Ignis Function

The ignis function uses the Sequential Least SQuares Programming (SLSQP) method. This
code can be found in qiskit-ignis5.

1 def fun(x,ymes,Rin):
2 mat_dot_x = np.ravel(np.matmul(Rin,x))
3 return sum((ymes - mat_dot_x)**2)
4

5 def Ignis(ymes,Rin):
6 x0 = np.random.rand(len(ymes))
7 x0 = x0 / sum(x0)
8 nshots = sum(ymes)
9 cons = ({'type': 'eq', 'fun': lambda x: nshots - sum(x)})

10 bnds = tuple((0, nshots) for x in x0)
11 res = minimize(fun, x0, method='SLSQP',constraints=cons,
12 bounds=bnds, tol=1e-6,args=(ymes,Rin))
13 return res.x

IBU Function

The iterative Bayesian unfolding function is defined in this code as IBU. Its input parameters
are the measured data ymes and the t0 is an initial truth spectrum of the process, in our
case, it is an array of ones. The third parameter is the response matrix, and finally n is the
number of iterations. The lines from 3 to 9 are for initialization. The IBU method start in
line ten. The code for the IBU function is as follow:

5https://github.com/Qiskit/qiskit-ignis/blob/master/qiskit/ignis/mitigation/measurement/
filters.py

https://github.com/Qiskit/qiskit-ignis/blob/master/qiskit/ignis/mitigation/measurement/filters.py
https://github.com/Qiskit/qiskit-ignis/blob/master/qiskit/ignis/mitigation/measurement/filters.py
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1 def IBU(ymes,t0,Rin,n):
2

3 tn = t0
4 for q in range(n):
5 out = []
6 for j in range(len(t0)):
7 mynum = 0.
8 for i in range(len(ymes)):
9 myden = 0.

10 for k in range(len(t0)):
11 myden+=Rin[i][k]*tn[k]
12 pass
13 mynum+=Rin[i][j]*tn[j]*ymes[i]/myden
14 pass
15 out+=[mynum]
16 tn = out
17 pass
18

19 return tn

We recall the expression of this unfolding method:

Now, let us unfold by including the measured data and the calibration matrix to our functions.
The matrix inversion and ignis have two parameters m and R. For IBU it has four parameters:
first the measured data m, the initial truth data t0 that we choose it as a vector of elements 1
(uniform distribution) and which have the same dimension as the measured data, the response
matrix, and finally the number of iterations n=10.

1 MI = MatrixInversion(m, R)
2 ignis = Ignis(m, R)
3 ibu = IBU(m, np.ones(len(m)), R, 10)

To see the result of the three unfolding methods, we use the print function.
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Matrix Inversion

1 print(MI)
2

3 [2.36190476e+01 -3.48571429e+01 1.50095238e+02 -1.21333333e+02
4 4.80571429e+02 1.90476190e-01 9.67047619e+02 2.89714286e+02
5 1.77752381e+03 6.71238095e+02 1.77600000e+03 7.88761905e+02
6 1.65447619e+03 1.82285714e+02 9.60952381e+02 -2.01904762e+01
7 3.83428571e+02 -2.26666667e+01 1.01904762e+02 -3.71428571e+01
8 2.83809524e+01]

Ignis

1 print(ignis)
2

3 [4.6175683800 21.291404430 59.2658346200 0. 334.52132545
4 165.440539820 787.74328185 478.197504920 1584.36645844 864.83510512
5 1585.82646343 971.91899933 1481.55800967 342.012482900 816.99820065
6 105.680456820 277.58084116 61.4881026600 40.7416841000 0.
7 15.9157361800]

IBU

1 print(ibu)
2

3 [5.259372656831409, 25.388591380196175, 33.557337461054985,
4 67.96709437048914, 208.8410238062819, 356.97817161684395,
5 521.2370635355416, 822.9011004066444, 1193.1006184446076,
6 1246.8670968072922, 1232.6156342943655, 1329.7638967204725,
7 1095.5138161773816, 719.1611893853731, 514.3011592136613,
8 299.016654127236, 181.16794027605107, 100.54732163607031,
9 23.88223196059284, 9.002561105297106, 12.930124617715322]

The True Data

1 bins=np.linspace(-10.5,10.5,22)
2 np.histogram(true_data,bins)
3

4 (array([ 5, 23, 32, 78, 219, 329, 571, 837, 1089, 1287, 1292,
5 1260, 1052, 783, 500, 324, 182, 83, 32, 14, 8]),
6 array([-10.5, -9.5, -8.5, -7.5, -6.5, -5.5, -4.5, -3.5, -2.5,
7 -1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
8 7.5, 8.5, 9.5, 10.5]))
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The plot of the truth and measured data with the result of the three unfolding methods.

Figure 3.8: Unfolding results of a Gaussian distribution using three methods: Matrix inversion
(t̂matrix), ignis (t̂ignis), and IBU (t̂IBU ) with 10 iterations and a uniform prior truth spectrum.

We can clearly see that the IBU results are close to the real spectrum compared to matrix
inversion and ignis. We can also see that the results of ignis and matrix inversion show large
oscillations. We also notice that matrix inversion give negative outcomes, while IBU does
not encounter this problems. Finally, we can deduce that the IBU leads us to better results
compared to the other two methods in this simulation.
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3.5 Unfolding Readout Errors from the Yorktown IBM
Q Machine

The central objective of the article [20] published in 2020 by Benjamin Nachman et al., is to
provide a more powerful technique to mitigating readout errors in the field of QIS. This technique
is the iterative Bayesian unfolding IBU. They studied three techniques: matrix inversion, ignis,
and IBU in order to compare them. This study is based on Qiskit Simulator6, to mitigate readout
errors for 5 qubits generated in a gaussian distribution. The unfolding was done through
a realistic response matrix (from the Johannesburg IBM Q Machine), and also for an
artificial response matrix, and they demonstrated the advantages of the IBU over other methods.

But it is very interesting to explore the behavior of unfolding techniques, through real noise
coming from a real quantum computer. The International Business Machines corporation
(IBM) provide us with 9 devices that we can use. In the following, we will be using the
Yorktown IBM Q machine (a.k.a. IBMQX2). The reason we chose it is because it has the
highest value of readout errors (average 5.826× 10−2).

We will start our study with a uniform distribution as the true distribution, then we will
tackle the Gaussian distribution, both are based on 5 qubits. The number of shots taken in all
experiments is fixed at 81927.

Another interesting question we are trying to answer is how do these unfolding methods
behave for a system beyond 5-qubits. We will use for this purpose the 16 Melbourne IBMQ
machine, which is a 15-Qubit quantum computer, we will study the unfolding a 7-qubit system,
in the specific case of a uniform distribution. In this situation, we are dealing with readout
noise described by a 27 × 27 dimensional response matrix, which represents a challenge for any
unfolding technique.

Our work can be schematized in 4 steps:

1. Constructing the response matrix R.

2. Generating the desired distribution to be the truth.

3. Distortion of the true distribution by readout noise.

4. Unfolding readout errors via MI, Ignis, IBU.

6A local simulation is provided by Aer. In the article [20] they used the so-called “qasm_simulator”.
7This is the maximum number allowed.
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3.5.1 Construction of the Response Matrix from the Yorktown IBM
Q Machine

In this part, we will explain how to extract a calibration matrix from a quantum computer.
In our work, we will use the IBM 5 Yorktown system. This system contains 5 qubits, and
we will use all the five qubits to build this matrix. So the calibration matrix we want to build
has dimension 25 × 25. The process will be done in IBM quantum Lab8. The response matrix
will be applied later to unfold distorted distributions by readout noise.

Now, let us explore how to construct the calibration matrix of the IBM Yorktown system step
by step.

Step 1: Import the packages

The first step as always is to import the packages that we will need in our code. When we
open a new file in the IBM quantum lab, a list of packages will be available in the notebook.

1 import numpy as np
2 # Importing standard Qiskit libraries
3 from qiskit import QuantumCircuit, transpile, Aer, IBMQ
4 from qiskit.tools.jupyter import *
5 from qiskit.visualization import *
6 from ibm_quantum_widgets import *
7 # Loading your IBM Quantum account(s)
8 IBMQ.load_account()

We will add additional packages as we need more qiskit modules to construct the calibration
matrix. The imported modules are qiskit ignis, and the measurement calibration for the
complete measurement calibration. The execute module is to execute the circuit, matplotlib
and seaborn to visualize the results.

1 import qiskit
2 from qiskit import QuantumRegister
3 # Execute a list of circuits or pulse schedules on a backend
4 from qiskit import execute
5 # Measurement calibration modules.
6 from qiskit.ignis.mitigation.measurement import complete_meas_cal
7 from qiskit.ignis.mitigation.measurement import CompleteMeasFitter
8 # For data visualization
9 import matplotlib.pyplot as plt

10 import seaborn as sns

8https://quantum-computing.ibm.com

https://quantum-computing.ibm.com
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Now let us see how to construct the calibration circuits with 5-qubits for the ibmq Yorktown sys-
tem.

Step 2: Construct the calibration circuits

The first step after importing the packages is to access to quantum devices by a provider. All
IBMQ providers are specified by a hub, group, and project. To access a given provider we
should use the get_provider() function of the IBMQ account. In our case, our provider gives
us access to the public IBM Quantum devices available to all IBM quantum users.

1 provider = IBMQ.get_provider(hub='ibm-q')
2 # List of all available providers
3 IBMQ.providers()

To see all available quantum computers, we use the following function:

1 provider.backends(simulator = False)

We get the whole list of systems without simulators:

1 [<IBMQBackend('ibmqx2') from IBMQ(hub='ibm-q', group='open', project='main')>,
2 <IBMQBackend('ibmq_16_melbourne') from IBMQ(hub='ibm-q', group='open',

project='main')>,↪→

3 <IBMQBackend('ibmq_armonk') from IBMQ(hub='ibm-q', group='open', project='main')>,
4 <IBMQBackend('ibmq_athens') from IBMQ(hub='ibm-q', group='open', project='main')>,
5 <IBMQBackend('ibmq_santiago') from IBMQ(hub='ibm-q', group='open',

project='main')>,↪→

6 <IBMQBackend('ibmq_lima') from IBMQ(hub='ibm-q', group='open', project='main')>,
7 <IBMQBackend('ibmq_belem') from IBMQ(hub='ibm-q', group='open', project='main')>,
8 <IBMQBackend('ibmq_quito') from IBMQ(hub='ibm-q', group='open', project='main')>,
9 <IBMQBackend('ibmq_manila') from IBMQ(hub='ibm-q', group='open', project='main')>]

Now we will generate a list of measurement calibration circuits for the full Hilbert space.
Each circuit creates a basis state. For 5 qubits, we get 25 calibration circuits.

1 qr = qiskit.QuantumRegister(5)
2 qubit_list = [0,1,2,3,4]
3 meas_calibs, state_labels = complete_meas_cal(qubit_list, qr, circlabel='mcal')

ibmq_5_yorktown system (ibmqx2) contains five qubits, and we want to use all the qubits to
build our calibration matrix. So, we need five quantum registers. The qubit list is a list of
qubits to perform the measurement on, and the last function return a list of objects containing
the calibration circuits, and a list of the calibration state labels.
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Step 3: Calculate the Calibration Matrix

Now, we can execute the calibration circuits, we choose the ibmq_5_yorktown backend to run
our circuit, and we specify the maximum number of shots9.

1 backend = provider.get_backend('ibmq_5_yorktown')
2 job = qiskit.execute(meas_calibs, backend, shots=8192)

To get the result from the job, we use the result() function:

1 cal_results=job.result()
2 counts=cal_results.get_counts()

After we run the calibration circuits and obtain the results cal_results, we can construct the
calibration matrix and it will be ordered according to the state_labels.

1 meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
2 R= meas_fitter.cal_matrix
3 print(R)

Finally, our response matrix for the IBM Yorktown quantum computer is as follows:

1 array([[7.23632812e-01, 1.22558594e-01, 3.18603516e-02, ...,
2 2.44140625e-04, 0.00000000e+00, 0.00000000e+00],
3 [7.58056641e-02, 7.46582031e-01, 3.05175781e-03, ...,
4 1.46484375e-03, 0.00000000e+00, 1.22070312e-04],
5 [3.51562500e-02, 6.22558594e-03, 7.75512695e-01, ...,
6 0.00000000e+00, 9.76562500e-04, 0.00000000e+00],
7 ...,
8 [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
9 6.40136719e-01, 4.63867188e-03, 3.78417969e-02],

10 [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
11 3.54003906e-03, 6.21093750e-01, 8.39843750e-02],
12 [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ...,
13 1.48925781e-02, 8.98437500e-02, 6.16088867e-01]])

To better visualize the result we will use the code provided with the article to represent
the matrix in the form of a heatmap.

Step 4: Heatmap Representation of the Response Matrix

First, we need some functions that will help us to represent the heatmap.
The following code allows us to construct the state labels for the heatmap. Let us print

the output to better understand what this function is doing.

9How many times an algorithm is run to get a probability distribution of results.
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1 nqbits = 5
2 def mybin(input,q,r=1):
3 if (r==0):
4 return bin(input).split('b')[1].zfill(q)
5 else:
6 return bin(input).split('b')[1].zfill(q)[::-1]
7 xvals = []
8 xlabs = []
9 for i in range(2**nqbits):

10 xvals+=[i+0.5]
11 xlabs+=[r'$|'+mybin(i,nqbits)+r'\rangle$']
12 pass

The bin() function returns the binary version of a specified integer. The result will always start
with the prefix 0b. For example, if input=7 the result will be as follow:

1 '0b111'

We do not need the prefix 0b so we will divide the result and we will retain the second part
in position 1 (position 0 is for the first part 0b)

1 bin(7).split('b')[1]

And the result is as follows:

1 '111'

And the zfill will fill the string with zeros until it is (q) characters long, for example, zfill(5) will give
us:

1 bin(7).split('b')[1].zfill(5)

That will give us:

1 '00111'

Finally, let us see how the mybin() function works. For input=7, q=5, and r=1 and r=0:

1 mybin(7,5,0)
2 mybin(7,5,1)
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We get the following result:

1 '11100'
2 '00111'

The following code allows us to generate labels for the heatmap:

1 response_normalized = np.zeros((2**nqbits,2**nqbits))
2 response_normalized_reversed = np.zeros((2**nqbits,2**nqbits))
3 response_labels = np.zeros((2**nqbits,2**nqbits))
4 for i in range(2**nqbits):
5 mysum = 0.
6 for j in range(2**nqbits):
7 mysum+=meas_fitter.cal_matrix[j,i]
8 pass
9 for j in range(2**nqbits):

10 response_labels[j][i] = '0'
11 if (mysum > 0):
12 response_normalized[j,i] = 100.*meas_fitter.cal_matrix[j,i]/mysum
13 response_normalized_reversed[i,j] = response_normalized[j,i]
14 response_labels[j][i] = '%1.0f' % (response_normalized[j,i])
15 pass
16 pass
17 pass

Finally, we used this code to represent the response matrix for the Yorktown quantum computer
in heatmap representation.

1 f = plt.figure(figsize=(20, 20))
2 sns.set(font_scale=1.5)
3 ax = sns.heatmap(R,annot=response_labels,annot_kws={"size": 15}
4 ,cmap="rocket_r")
5

6 ax.figure.axes[-1].yaxis.label.set_size(18)
7 cbar = ax.collections[0].colorbar
8 cbar.set_label('Pr(Measured | True) [%]', labelpad=30)
9

10 plt.xticks(xvals,xlabs,rotation='vertical',fontsize=15)
11 plt.yticks(xvals,xlabs,rotation='horizontal',fontsize=15)
12 plt.xlabel('True',fontsize=18)
13 plt.ylabel('Measured',fontsize=18)
14

15 plt.subplots_adjust(bottom=0.18,left=0.18)
16 plt.savefig("York_Calibration.pdf",bbox_inches='tight')
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Figure 3.9: Response matrix for 5 qubits from the IBM Q Yorktown machine.

This is the result of our calibration matrix from the Yorktown machine for 5 qubits. The
dimension of this matrix is 25 × 25. First, we can see that the probability is high in the
diagonal component, when the measured and true states are the same. Secondly, we observe
that the diagonal stripes with transition probabilities of about 4− 11% are the result of the
qubit flipping from 0 to 1 and vice versa. For a number of flips equal to 2 or more, the
probability is almost zero in this transition matrix.

3.5.2 Unfolding a Uniform Distribution

In this part, we will use the unfolding methods on measured data that is obtained from the
Yorktown quantum computer. First, we construct a quantum circuit, theoretically, this circuit
will generate a uniform distribution (but quantum computer is noisy so it will destroy the



3.5 Unfolding Readout Errors from the Yorktown IBM Q Machine 93

distribution). Then, the circuit will be launched in the IBM Yorktown computer, and after the
data collection, we will use our calibration matrix. Finally we will use the code provided by Ben.
Nachman et al., to unfold our data by the three techniques: Matrix inversion, Ignis and IBU.

Packages

First, we complete our needed packages, some of them are needed to build our quantum circuit
and other packages are for data visualization.

1 from qiskit import QuantumCircuit, QuantumRegister
2 from qiskit.circuit import ClassicalRegister
3 #---------------------------------------------------------------
4 # Packages for ploting
5 from matplotlib.gridspec import GridSpec
6 from mpl_toolkits.axes_grid1 import make_axes_locatable
7 import matplotlib.lines as mlines
8 #---------------------------------------------------------------
9 from scipy.optimize import minimize

Generation of a uniform distribution with a quantum circuit

The quantum circuit that we want to construct is five Hadamard gates in parallel. Initially,
all the five qubits are in the |0〉 state. When we apply a Hadamard gate on the first qubit it
will give us an equal superposition state |+〉 = (|0〉+|1〉)√

2 . For five Hadamard gates in parallel
acting on |0〉⊗5, we have the tensor product H⊗5 |0〉⊗5 = 1√

25

∑
x |x〉.

The code below is for creating this quantum circuit. We need five quantum registers and
five classical registers. We first apply a Hadamard gate in each quantum register. Then we
measure each qubit and we store the result in the classical registers.

1 qreg_q = QuantumRegister(5, 'q')
2 creg_c = ClassicalRegister(5, 'c')
3 circuit = QuantumCircuit(qreg_q, creg_c)
4 circuit.h(qreg_q[0])
5 circuit.h(qreg_q[1])
6 circuit.h(qreg_q[2])
7 circuit.h(qreg_q[3])
8 circuit.h(qreg_q[4])
9 circuit.measure(qreg_q[0], creg_c[0])

10 circuit.measure(qreg_q[1], creg_c[1])
11 circuit.measure(qreg_q[2], creg_c[2])
12 circuit.measure(qreg_q[3], creg_c[3])
13 circuit.measure(qreg_q[4], creg_c[4])
14

15 circuit.draw(output='mpl')
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The circuit diagram of five Hadamard gates in parallel is displayed as follow:

Figure 3.10: A circuit that generates a uniform distribution based on 5 qubits.

This circuit will create a uniform distribution, where the amplitude of each basis state will
be a = 1√

25 ≈ 0.177 and the equal probability is P = |a|2 ≈ 0.031.

Executing the circuit in the IBM Yorktown QC

We will now run the circuit in the Yorktown quantum computer with 8192 shots. If the computer
has no noise, we will have equal probabilities. That means each state among the 25 = 32 states
will have the same number of counts and it is equal to 8192/32 = 256. In a real quantum
computer, this is not the case because it is very noisy so the result will not be what we expect.
This is why unfolding is so important to get closer to the true data. The following code allows
us to execute the circuit in the IBM Yorktown system.

1 # We use the Yorktown quantum computer
2 backend = provider.get_backend('ibmqx2')
3 # Number of shots to run the program (experiment); maximum is 8192 shots.
4 shots = 8192
5 job = execute(circuit, backend, shots)

The result of the measurement

The results do not appear directly. We have to wait in a chain and then wait for the execution
time (Sometimes it takes 5 minutes and sometimes it takes hours). The total time differs
depending on the number of people on the waiting list and the speed of the quantum computer.
We use the following code to collect the measurement.
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1 m=job.result().get_counts(circuit)

When we print m we get our result for a uniform distribution. We can see that the counts are not
equal because of readout noise from the quantum device, so they will not be uniformly distributed.

1 {'00000': 324, '00001': 220, '10000': 264, '10001': 240,
2 '10010': 265, '10011': 274, '10100': 281, '10101': 268,
3 '10110': 299, '10111': 289, '11000': 220, '11001': 211,
4 '11010': 224, '11011': 216, '11100': 242, '11101': 196,
5 '11110': 222, '11111': 221, '00010': 306, '00011': 262,
6 '00100': 309, '00101': 294, '00110': 342, '00111': 311,
7 '01000': 243, '01001': 188, '01010': 236, '01011': 215,
8 '01100': 283, '01101': 218, '01110': 267, '01111': 242}

Data Organization by label

The labeled measures are not arranged according to the binary system, so we will use the
following code to arrange our measurement.

1 M = {val[0] : val[1] for val in sorted(m.items(), key = lambda x: (x[0], x[1]))}

After the arrangement we get:

1 {'00000': 324, '00001': 220, '00010': 306, '00011': 262,
2 '00100': 309, '00101': 294, '00110': 342, '00111': 311,
3 '01000': 243, '01001': 188, '01010': 236, '01011': 215,
4 '01100': 283, '01101': 218, '01110': 267, '01111': 242,
5 '10000': 264, '10001': 240, '10010': 265, '10011': 274,
6 '10100': 281, '10101': 268, '10110': 299, '10111': 289,
7 '11000': 220, '11001': 211, '11010': 224, '11011': 216,
8 '11100': 242, '11101': 196, '11110': 222, '11111': 221}

Counts extraction from the measurement

Now, we will extract the counts from the arranged data, but we will keep the same order.
The following code will allow us to do this.

1 m_u =[]
2 for key in M.keys()
3 m_u.append(M[key])
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Finally, our measures are ready to use in the unfolding methods.

1 [324, 220, 306, 262, 309, 294, 342, 311, 243, 188, 236,
2 215, 283, 218, 267, 242, 264, 240, 265, 274, 281, 268,
3 299, 289, 220, 211, 224, 216, 242, 196, 222, 221]

Now, let us prepare our true data for a uniform distribution.

The true count

The true data is a uniform dist. That means for a number of shots equal to 8192, every
state will have 8192/25 = 256 of counts.

1 t_u = [8192/32 for i in range(32)]

The result:

1 [256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0,
2 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0,
3 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0, 256.0]

If we want to represent the true counts in a histogram, we need to label each state:

1 T_u = {
2 '00000': 256.0, '00001': 256.0, '00010': 256.0, '00011': 256.0, '00100': 256.0,
3 '00101': 256.0, '00110': 256.0, '00111': 256.0, '01000': 256.0, '01001': 256.0,
4 '01010': 256.0, '01011': 256.0, '01100': 256.0, '01101': 256.0, '01110': 256.0,
5 '01111': 256.0, '10000': 256.0, '10001': 256.0, '10010': 256.0, '10011': 256.0,
6 '10100': 256.0, '10101': 256.0, '10110': 256.0, '10111': 256.0, '11000': 256.0,
7 '11001': 256.0, '11010': 256.0, '11011': 256.0, '11100': 256.0, '11101': 256.0;
8 '11110': 256.0, '11111': 256.0}

We can see the representation of our data in the histogram by the plot_histogram() function:

1 plot_histogram(T_u,figsize=(35,7))
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The measured data are represented also in the following histogram:

1 plot_histogram(M,figsize=(30,6))

We can see clearly the effect of noise from the quantum computers by comparing true and mea-
sured data.

Unfolding functions

Now, we will use the unfolding functions provided by Ben. Nachman et al., to unfold our
measured data from a real quantum computer. This part of the code is already explained in the
python simulation section. The matrix inversion and the ignis function have two arguments (m_u,
R). The IBU have four arguments (m_u, t0, R, n). At this point, we have all the ingredients
for the unfolding methods. We can choose any t0 and any n. But we will fix the number of
iterations to n=1. The unfolding methods are defined as follow:

1 def MatrixInversion(ymes,Rin):
2 return np.ravel(np.matmul(np.linalg.inv(np.matrix(Rin)),ymes))
3

4 def fun(x,ymes,Rin):
5 mat_dot_x = np.ravel(np.matmul(Rin,x))
6 return sum((ymes - mat_dot_x)**2)
7

8 def Ignis(ymes,Rin):
9

10 x0 = np.random.rand(len(ymes))
11 x0 = x0 / sum(x0)
12 nshots = sum(ymes)
13 cons = ({'type': 'eq', 'fun': lambda x: nshots - sum(x)})
14 bnds = tuple((0, nshots) for x in x0)
15 res = minimize(fun, x0, method='SLSQP',constraints=cons, bounds=bnds, tol=1e-6,
16 args=(ymes,Rin))
17 return res.x
18

19 def IBU(ymes,t0,Rin,n):
20

21 tn = t0
22 for q in range(n):
23 out = []
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24 for j in range(len(t0)):
25 mynum = 0.
26 for i in range(len(ymes)):
27 myden = 0.
28 for k in range(len(t0)):
29 myden+=Rin[i][k]*tn[k]
30 pass
31 mynum+=Rin[i][j]*tn[j]*ymes[i]/myden
32 pass
33 out+=[mynum]
34 tn = out
35 pass
36 return tn

Unfolding a uniform distribution

Now, let us unfold our measured distribution by the three unfolding methods. For matrix
inversion and Ignis we need only m_u and the response matrix. For IBU, we additionally
need t0 and n. These is all our ingredients in one place:

The true data t_u:

1 array([256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256,
2 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256,
3 256, 256, 256, 256, 256, 256])

The measuresd data m_u:

1 array([324, 220, 306, 262, 309, 294, 342, 311, 243, 188, 236,
2 215, 283, 218, 267, 242, 264, 240, 265, 274, 281, 268,
3 299, 289, 220, 211, 224, 216, 242, 196, 222, 221])

The response matrix R:

1 array([[7.39257812e-01 1.07177734e-01 4.65087891e-02 ... 0.00000000e+00
2 0.00000000e+00 0.00000000e+00]
3 [7.34863281e-02 7.59277344e-01 4.39453125e-03 ... 1.09863281e-03
4 0.00000000e+00 2.44140625e-04]
5 [3.97949219e-02 7.32421875e-03 7.72827148e-01 ... 0.00000000e+00
6 8.54492188e-04 1.22070312e-04]
7 ...
8 [0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 6.33178711e-01
9 5.24902344e-03 4.82177734e-02]

10 [1.22070312e-04 0.00000000e+00 0.00000000e+00 ... 5.24902344e-03
11 6.30249023e-01 8.23974609e-02]
12 [0.00000000e+00 0.00000000e+00 0.00000000e+00 ... 2.61230469e-02
13 9.57031250e-02 6.31103516e-01]])
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We choose the prior truth distribution t0, as a uniform distribution.

1 array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1])↪→

Let us see our output of the three unfolding methods:

1 unfolded_Matrix_r = MatrixInversion(m_u, R)
2 unfolded_IBU_r = IBU(m_u, np.ones(len(m_u)), R, 1)
3 unfolded_ignis_r = Ignis(m_u, R)

Visual representation of unfolding result

In this part, we will compare the three unfolding methods by representing the results of
unfolded data graphically.

We will need the following code to label our histograms.

1 nqubits_r = 5
2

3 mymapping_r = {}
4 mymapping_inverse_r = {}
5 for i in range(2**nqubits_r):
6 mymapping_r[i] = bin(i).split('b')[1]
7 mymapping_inverse_r[bin(i).split('b')[1]] = i
8 pass
9

10 xvals_r = []
11 xlabs_r = []
12 xlabs0_r = []
13 for i in range(2**nqubits_r):
14 xvals_r+=[i]
15 xlabs_r+=[r'$|'+mybin(i,nqubits_r)+r'\rangle$']
16 xlabs0_r+['']
17 pass

The following code allow us to represent the measured data, the true data and the unfolded
data via the three unfolding methods.

1 def myre(x):
2 return np.concatenate([[x[0]],x])
3 bincenters_r = np.array(xvals_r)+0.5
4 sns.set_style("white")
5 f = plt.figure(figsize=(8.5, 8.5))
6 gs = GridSpec(2, 1, width_ratios=[1], height_ratios=[3.5, 1])
7 ax1 = plt.subplot(gs[0])
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8 ax1.set_xticklabels( () )
9

10 mybincenters = np.linspace(-0.5,31.5,33)
11 plt.step(mybincenters,myre(t_u),color='black',label=r"t")
12 plt.errorbar(0.5*(mybincenters[1:]+mybincenters[:-1]),m_u,yerr=np.sqrt(m_u),
13 label='m',marker='o',linestyle='none',color='black')
14 plt.step(mybincenters,myre(unfolded_Matrix_r),color='blue',linestyle=':'
15 ,label=r"$\hat{t}_{matrix}$",linewidth=3.0)
16 plt.step(mybincenters,myre(unfolded_ignis_r),color='red',linestyle='--'
17 ,label=r"$\hat{t}_{ignis}$")
18 plt.step(mybincenters,myre(unfolded_IBU_r),color='green',linestyle='-.'
19 ,label=r"$\hat{t}_{IBU}$")
20

21 _=plt.xticks(xvals_r,xlabs0_r,rotation='vertical',fontsize=10)
22 plt.ylabel('Counts')
23 plt.ylim([0,2.*max(t_u)])
24 plt.legend(loc='upper left',fontsize=12,frameon=False)
25 _=plt.text(20., max(t_u)*1.8, "5 Yorktown Machine", fontsize=18)
26 _=plt.text(20., max(t_u)*1.7, "IBMQ Yorktown Readout Errors", fontsize=12)
27

28 ax2 = plt.subplot(gs[1])
29 ratio_ignis2_r = np.zeros(2**nqubits_r)
30 ratio_ignis_r = np.zeros(2**nqubits_r)
31 ratio_matrix_r = np.zeros(2**nqubits_r)
32 ratio_unfold_r = np.zeros(2**nqubits_r)
33 for i in range(len(ratio_unfold_r)):
34 ratio_unfold_r[i]=1.
35 ratio_matrix_r[i]=1.
36 ratio_ignis_r[i]=1.
37 ratio_ignis2_r[i]=1.
38 if (t_u[i] > 0):
39 ratio_unfold_r[i] = unfolded_IBU_r[i]/t_u[i]
40 ratio_matrix_r[i] = unfolded_Matrix_r[i]/t_u[i]
41 ratio_ignis_r[i] = unfolded_ignis_r[i]/t_u[i]
42 pass
43 pass
44

45 plt.ylim([0.8,1.2])
46 plt.step(mybincenters,myre(ratio_ignis_r),color='red',linestyle="--")
47 plt.step(mybincenters,myre(ratio_matrix_r),color='blue',linestyle=":",linewidth=3.0)
48 plt.step(mybincenters,myre(ratio_unfold_r),color='green')
49 plt.ylabel('Extracted / Truth')
50 xx2 = [1.,1.]
51 plt.plot([xvals_r[0],xvals_r[len(xvals_r)-1]],xx2,color='black',linestyle=':')
52 _=plt.xticks(xvals_r,xlabs_r,rotation='vertical',fontsize=12)
53 plt.savefig("Unfold_york.pdf",bbox_inches='tight')
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Figure 3.11: Unfolding results of a uniform distribution using three methods: Matrix inversion, ignis,
and IBU with one iteration and a uniform prior truth spectrum.

Now, let us compare the three unfolding methods. First, we can see clearly that the values
of the unfolded data with ignis and Matrix inversion are nearly identical. For IBU, the result
is better than the two previous methods. where its values are near to the true data. The
number of iterations that we used here is n=1 and the test data (t0) is an array of 32 ones.
We noticed that these parameters give better results for IBU.

3.5.3 Unfolding a Gaussian Distribution

In this part we will study unfolding in the case of a Gaussian distribution (the ground state of a
harmonic oscillator), the steps followed are similar to that of a uniform distribution. But we
will use a more developed tool to build the circuit corresponding to the Gaussian case. The
general idea is that we can initialize our 5-qubit system in any desired state vector, specifying
the complex amplitudes of the general 5-qubit state.

|ψ〉 = α00000 |00000〉 + · · ·+ α11111 |11111〉

We will explain this concept as we go along. But first, let’s define our quantum circuit
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with its corresponding quantum and classical registers.

1 nq = 5
2

3 qr = QuantumRegister(nq, 'qr')
4 cr = ClassicalRegister(nq, 'cr')
5 circuit_g = QuantumCircuit(qr, cr)

Since we want a Gaussian distribution, we define the function: HOgs(x) = e−
x2
2

1 def HO_groundstate(x):
2 return np.exp(-x**2/2)

which represents the harmonic oscillator ground state. The general form of the Gaussian
distribution probability density function is written as

f(z) ∼ e−
1
2( z−µσ )2

,

where µ is the mean, and σ is the standard deviation.

Instead of having z continuous in our specific case it is discrete, where z ∈ [0, 31]. We
will plot the Gaussian in this interval, therefore, to center it we take µ = (31/2), and we
can choose σ = 8. So we have

x = z − µ
σ

= z − (16− 0.5)
8 = 2

(
z + 0.5− 24

24

)
.

We now define our desired vector, as the vector of elements e−
1
2( z−µσ )2

, z ∈ [ 0, 31 ]:

1 desired_vector = []
2 for z in range(2**nq):
3 desired_vector += [HO_groundstate(2.*( z+ 0.5-2**(nq-1))/2**(nq-1))]
4 pass

The above algorithm creates the vector

desired_vector = [ e−
1
2( 0−µ

σ )2

, e−
1
2( 1−µ

σ )2

, e−
1
2( 2−µ

σ )2

, · · · , e−
1
2( 31−µ

σ )2

]

1 print(desired_vector)
2

3 [0.15305573773635817, 0.19348058160704673, 0.24079047427224856, 0.295022
4 65617444284, 0.35586525214213843, 0.4226004432231888, 0.4940699735316383
5 4, 0.568671053718672, 0.6443887248251953, 0.7188675697091758, 0.78952156
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6 96607879, 0.8536763613451477, 0.9087337563610701, 0.9523447998951764, 0.
7 9825754689579004, 0.9980487811074755, 0.9980487811074755, 0.982575468957
8 9004, 0.9523447998951764, 0.9087337563610701, 0.8536763613451477, 0.7895
9 215696607879, 0.7188675697091758, 0.6443887248251953, 0.568671053718672,

10 0.49406997353163834, 0.4226004432231888, 0.35586525214213843, 0.29502265
11 617444284, 0.24079047427224856, 0.19348058160704673, 0.1530557377363581]

Since these components represent complex amplitudes, they must check the normalization condi-
tion:

|α00000 |2 + |α00001 |2 + · · · + |α11111 |2 = 1

Thus, we need to normalize our desired vector ( desired_vector/
√∑31

k=0 v
2
k ).

1 desired_vector /= np.sqrt(np.sum([v**2 for v in desired_vector]))
2

3 print(desired_vector)

Output

1 [0.04074024 0.05150049 0.06409340 0.07852887 0.09472390 0.11248742
2 0.13151111 0.15136836 0.17152283 0.19134754 0.21015416 0.22723083
3 0.24188595 0.25349430 0.26154108 0.26565975 0.26565975 0.26154108
4 0.25349430 0.24188595 0.22723083 0.21015416 0.19134754 0.17152283
5 0.15136836 0.13151111 0.11248742 0.09472390 0.07852887 0.06409340
6 0.05150049 0.04074024]

To configure the general 5-qubit state |ψ〉 in this desired vector, we use the initialize instruction,
which requires a vector of complex amplitudes (desired_vector) and a list of qubits, which
can be done by the loop below:

1 qrs = []
2 for i in range(nq):
3 qrs+=[qr[i]]
4 pass
5 print(qrs)

Output

1 [Qubit(QuantumRegister(5, 'qr'), 0), Qubit(QuantumRegister(5, 'qr'), 1),
2 Qubit(QuantumRegister(5, 'qr'), 2), Qubit(QuantumRegister(5, 'qr'), 3),
3 Qubit(QuantumRegister(5, 'qr'), 4)]

We have therefore defined a list of 5 qubits [ q0, q1, q2, q3, q4 ]. We can now initialize them
in a Gaussian distribution, through the following input:
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1 circuit_g.initialize(desired_vector, qrs)

Once the initialization is done, the last thing to do is to measure the system. Here we are
using the measure() function, with the parameters (qr,cr), which represent a shorthand that
allow us to implement a measurement operation on each qubit.

1 circuit_g.measure(qr, cr)

Since we are curious to see this circuit, we visualize it.

1 circuit_g.draw('latex')

Figure 3.12: A circuit that generates a Gaussian distribution based on 5 qubits.

Note that initialize contains a reset instruction, which is not unitary, therefore it is an
Instruction and not a Gate.

Simulators are characterized by negligible readout noise, therefore, we can use one of them
to get the true Gaussian distribution, denoted by t_g. Here we are using the simulator
called “qasm_simmulator” provided by Aer. To use it we enter the same commands that
allow us to use a real quantum computer, with the only difference instead of the command
provider= IBMQ.load_account(), we use Aer.10

1 simulator = Aer.get_backend('qasm_simulator')
2 result = execute(circuit_g, simulator,shots=8192).result()
3 count_s = result.get_counts(circuit_g)
4 print(count_s)

10For simulators provided by IBM Q (non-local), we use the provider = IBMQ.load_account().
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Output

1 {'00000': 12, '00001': 18, '10000': 603, '10001': 563,'10010': 540,'10011
2 ': 470, '10100': 449,'10101': 369, '10110': 324, '10111': 236,'11000': 19
3 0, '11001': 150, '11010': 96, '11011': 67, '11100': 50, '11101': 25, '111
4 10': 21, '11111': 11, '00010': 31, '00011': 51, '00100': 75, '00101': 103
5 , '00110': 141, '00111': 195, '01000': 240, '01001': 288, '01010': 342,
6 '01011': 429, '01100': 449, '01101': 527, '01110': 566, '01111': 561}

To plot this distribution, we write the following code:

1 nq=5
2 xvals = []
3 yvals = []
4 for j in range(2**nq):
5 xvals+=[j]
6 yvals+=[count_s[mybin(j,nq)[::-1]]]
7

8 sns.set_style("white")
9 plt.errorbar(xvals,yvals,yerr=np.sqrt(yvals),linestyle='none',marker='o')

1 plot_histogram(count_s,figsize=(25,6))
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We have now confirmed that we really have a Gaussian distribution.

The readout noise from the Yorktown machine will distort this perfect Gaussian and gives us
a disturbed distribution, denoted by m_g. To realize this, we execute our circuit (circuit_g)
in the “ibmq_5_yorktown” machine.

1 backend = provider.get_backend('ibmq_5_yorktown') #or:'ibmqx2'
2 result = execute(circuit_g, backend,shots=8192).result()
3 count_y = result.get_counts(circuit_g)
4 print(count_y)

Output

1 {'00000': 223, '00001': 327, '10000': 356, '10001': 371, '10010': 353, '
2 10011': 419, '10100': 282, '10101': 325, '10110': 270, '10111': 254, '11
3 000': 149, '11001': 120, '11010': 129, '11011': 88, '11100': 77, '11101'
4 : 59, '11110': 49, '11111': 43, '00010': 266, '00011': 383, '00100': 291
5 , '00101': 346, '00110': 281, '00111': 289, '01000': 282, '01001': 329,
6 '01010': 249, '01011': 409, '01100': 298, '01101': 330, '01110': 272, '0
7 1111': 273}

Same inputs for visualization:

1 xvals = []
2 yvals = []
3 for j in range(2**nq):
4 xvals+=[j]
5 yvals+=[count_y[mybin(j,nq)[::-1]]]
6

7 sns.set_style("white")
8 plt.errorbar(xvals,yvals,yerr=np.sqrt(yvals),linestyle='none',marker='o')
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1 plot_histogram(count_y,figsize=(25,6))

We notice that the readout noise has distorted the Gaussian (true) distribution to the point
that we cannot recognize its original shape.

Now we have just to extract the frequencies from (count_s) and (count_y), so we use the
same code seen for the uniform case, in order to finally obtain the vectors t_g, and m_g.

1 true_g= {val[0] : val[1] for val in sorted(count_s.items(), key = lambda
2 x: (x[0], x[1]))}
3 t_g = []
4 for key in true_g.keys() :
5 t_g.append(true_g[key])
6 pass
7 print(t_g)
8

9 [12, 18, 31, 51, 75, 103, 141, 195, 240, 288, 342, 429, 449, 527, 566,
10 561, 603, 563, 540, 470, 449, 369, 324, 236, 190, 150, 96, 67, 50, 25,
11 21, 11]

We now extract the measured distribution vector m_g:

1 meas_g= {val[0] : val[1] for val in sorted(count_y.items(), key = lambda
2 x: (x[0], x[1]))}
3 m_g = []
4 for key in meas_g.keys() :
5 m_g.append(meas_g[key])
6 pass
7 print(m_g)
8

9 [223, 327, 266, 383, 291, 346, 281, 289, 282, 329, 249, 409, 298, 330, 2
10 72, 273, 356, 371, 353, 419, 282, 325, 270, 254, 149, 120, 129, 88, 77,
11 59, 49, 43]

Here we are at the crucial part of this experience; the reconstruction of truth “Unfolding”.
For this objective, we need the Yorktown response matrix and the result obtained from the
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Yorktown readout noise. The two unfolding methods MatrixInversion and Ignis (commonly
used in QIS), give us the following outputs:

1 MatrixInversion(m_g,R)
2

3 array([151.96727863, 278.69220815, 183.01138799, 361.83956380,
4 231.16886853, 318.11018472, 228.28325324, 261.47569561,
5 262.90470574, 336.10572204, 204.19246932, 511.82630002,
6 303.77496880, 395.06103499, 303.84402141, 307.09007413,
7 383.34934568, 372.73466745, 360.07688363, 510.94824455,
8 271.18915214, 358.70672324, 295.37171705, 251.92702464,
9 176.83096465, 128.69790459, 163.81956139, 87.15086908,

10 75.30630507, 42.56811204, 38.78854417, 35.18624349])

1 Ignis(m_g,R)
2

3 array([151.96736728, 278.69210044, 183.01138211, 361.83954193,
4 231.16889604, 318.11019459, 228.28326267, 261.47568405,
5 262.90461210, 336.10575357, 204.19247446, 511.82626943,
6 303.77501047, 395.06101942, 303.84403513, 307.09006300,
7 383.34934156, 372.73459805, 360.07668674, 510.94840325,
8 271.18909030, 358.70681406, 295.37191834, 251.92685430,
9 176.83112506, 128.69782248, 163.81966319, 87.15077385,

10 75.30624717, 42.56814870, 38.78852282, 35.18632344])

We notice that the unfolding results for MatrixInversion and Ignis are very close, despite the fact
that these are two different methods.

The IBU from HEP have 4 parameters (m_g, t0, R, n), the only parameters we are free
to choose are the number of iterations (n) and the prior truth distribution (t0). We recall
the 6th advantage of the IBU mentioned by D’agostini in his article [26], where he states
that satisfactory results are obtained if we start from a uniform distribution. But it gives
the best results if one makes a realistic guess about the true distribution. Therefore, we
can choose t0 for example [ 0, 1, 2, · · · , 2, 1, 0 ], which is of course a 25dimensional vector. In
python it can be produced as follows:

1 c =[]
2 for s in range(16):
3 c.append(s)
4 pass
5 t_s=[ *c , *c[::-1] ]
6 print(t_s)
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Output

1 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 14, 13, 12,
2 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

In the algorithm above, we are adding the elements s to the empty vector c by the function
append(). The object [: : -1] reverse the elements of c, we can then concatenate the two vectors.

The second parameter to set, is the number of iterations, where we just take n=1.

1 print(IBU(m_g,t_s,R,1))
2

3 [0.0, 87.29209365373235, 115.43210028814272, 210.70351275475588
4 , 208.88814802549277, 285.4138302647153, 238.21228525158762, 30
5 0.7623880678843, 279.92435625976367, 353.78385668972953, 285.58
6 200778083545, 433.46993222855866, 351.6549239367971, 424.667582
7 80482253, 346.4533319644723, 406.80177950302266, 454.7858110448
8 58, 474.61896151747544, 430.9510312411226, 481.0646239820014, 3
9 29.50013439662126, 344.7721592177831, 294.3503960979849, 278.53

10 393415499374, 184.08290907346077, 151.61192190751058, 153.01420
11 394758765, 121.38914195438865, 78.25374972502975, 52.2064547630
12 8817, 33.82243750178114, 0.0]

These values are clearly different from the two previous methods. We have now to visualize
the three unfolding results in ordrer to get a more accurate observation of their behavior and
to compare them. We use the same algorithm as the uniform case, where the only changes to
be made are the true and measured distribution t_g, m_g, and the prior truth distribution
t0 = ts.

1 unfolded_Matrix = MatrixInversion(m_g, R)
2 unfolded_IBU = IBU(m_g, t_s, R, 1)
3 unfolded_ignis = Ignis(m_g, R)
4

5

6 bincenters_r = np.array(xvals_r)+0.5
7 sns.set_style("white")
8 f = plt.figure(figsize=(8.5, 8.5))
9 gs = GridSpec(2, 1, width_ratios=[1], height_ratios=[3.5, 1])

10 ax1 = plt.subplot(gs[0])
11 ax1.set_xticklabels( () )
12

13 def myre(x):
14 return np.concatenate([[x[0]],x])
15

16 mybincenters = np.linspace(-0.5,31.5,33)
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17

18 plt.step(mybincenters,myre(t_g),color='black',label=r"t")
19 plt.errorbar(0.5*(mybincenters[1:]+mybincenters[:-1]),m_g,yerr=np.sqrt(m
20 _g),label='m',marker='o',linestyle ='none',color='black')
21 plt.step(mybincenters,myre(unfolded_Matrix),color='blue',linestyle=':',
22 label=r"$\hat{t}_{matrix}$",linewidth=3.0)
23 plt.step(mybincenters,myre(unfolded_ignis),color='red',linestyle='--',
24 label=r"$\hat{t}_{ignis}$")
25 plt.step(mybincenters,myre(unfolded_IBU),color='green',linestyle='-.',
26 label=r"$\hat{t}_{IBU}$")
27

28 _=plt.xticks(xvals_r,xlabs0_r,rotation='vertical',fontsize=10)
29 plt.ylabel('Counts')
30 plt.ylim([0,2.*max(t_g)])
31 plt.legend(loc='upper left',fontsize=12,frameon=False)
32 _=plt.text(20., max(t_g)*1.8, "5 Yorktown Machine", fontsize=18)
33 _=plt.text(20., max(t_g)*1.7, "IBMQ Yorktown Readout Errors", fontsize=12)
34

35 nqubits = 5
36

37 ax2 = plt.subplot(gs[1])
38 ratio_ignis2 = np.zeros(2**nqubits)
39 ratio_ignis = np.zeros(2**nqubits)
40 ratio_matrix = np.zeros(2**nqubits)
41 ratio_unfold = np.zeros(2**nqubits)
42 for i in range(len(ratio_unfold)):
43 ratio_unfold[i]=1.
44 ratio_matrix[i]=1.
45 ratio_ignis[i] =1.
46 ratio_ignis2[i]=1.
47 if (t_g[i] > 0):
48 ratio_unfold[i] = unfolded_IBU[i]/t_g[i]
49 ratio_matrix[i] = unfolded_Matrix[i]/t_g[i]
50 ratio_ignis[i] = unfolded_ignis[i]/t_g[i]
51 pass
52 pass
53

54 plt.ylim([0.8,1.2])
55 plt.step(mybincenters,myre(ratio_ignis),color='red',linestyle="--")
56 plt.step(mybincenters,myre(ratio_matrix),color='blue',linestyle=":"
57 ,linewidth=3.0)
58 plt.step(mybincenters,myre(ratio_unfold),color='green')
59 plt.ylabel('Extracted / Truth')
60 xx2 = [1.,1.]
61 plt.plot([xvals_r[0],xvals_r[len(xvals_r)-1]],xx2,color='black',lines
62 tyle=':')
63 _=plt.xticks(xvals_r,xlabs_r,rotation='vertical',fontsize=12)
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Figure 3.13: Unfolding results of a Gaussian distribution using three methods: Matrix inversion,
ignis, and IBU with one iteration and a prior truth spectrum t0=t_s.

Note that the values of MatrixInversion and Ignis are identical. Moreover, the unfolding
amount is very low. In the case of IBU, its values are closer to the true distribution and give a
more important unfolding compared the other two methods, and for only 1 iteration.

In the second graph (Extracted/truth) we are dividing the components of each resulting
vector by the component of the vector t_g, so if they are equal we get 1. Hence, we are
representing a Gaussian distribution as a uniform one. If we look at this graph we see that
the values closest to 1 in the majority of the time are those of IBU.

The results obtained above, concern the choice t0=t_s. But what if we tried another vector
t0, knowing that taking the vector λ.t0, where λ ∈ R∗, will not change the results, this fact
can be directly verified from the formula of IBU for one iteration

t1i =
∑
j

(
Rji t

0
i∑

k Rjk t 0
k

)
mj −→

∑
j

(
Rji (λ.t 0

i )∑
k Rjk (λ.t 0

k )

)
mj ≡ t1i . (3.9)

So we have to try a different vector, for example, a vector which takes triangular numbers11

11Triangular numbers are generated by the formula: Tn =
∑n

p=0 p = 0 + 1 + · · ·+ n = n(n+1)
2 .
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as elements, where the values are increasing until the 16th element, then decreasing, i.e.

t_trig = [ 0, 1, 3, 6, · · · , 6, 3, 1, 0 ]

This can be obtained by the following algorithm:

1 b =0; p =[]
2 for n in range(16):
3 b = b + n
4 p.append(b)
5 t_trig = [*p,*p[::-1]]
6 print(t_trig)

Output

1 [0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 120, 105,
2 91, 78, 66, 55, 45, 36, 28, 21, 15, 10, 6, 3, 1, 0]

Let’s try this new prior truth distribution in the previous algorithm, where it suffices to change t_s
to t_trig:

Figure 3.14: Unfolding results of a Gaussian distribution using three methods: Matrix inversion,
ignis, and IBU with one iteration and a prior truth spectrum t0=t_trig.
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With this specific initial truth spectrum (t0), IBU really gives the best unfolding results,
the amount of unfolding is very important. From these two results, we conclude that IBU is
very sensitive to the choice of t0. To observe this fact let’s take 3 possible t0’s:

t_unif = [ 1, 1, 1, · · · , 1, 1, 1 ]

t_s = [ 0, 1, 2, · · · , 2, 1, 0 ]

t_trig = [ 0, 1, 3, · · · , 3, 1, 0 ]

We will apply unfolding via IBU with these 3 t0’s, and for n=1:

1 unfolded_IBU_a = IBU(m_g, t_unif, R, 1)
2 unfolded_IBU_b = IBU(m_g, t_s , R, 1)
3 unfolded_IBU_c = IBU(m_g, t_trig, R, 1)

After visualizing the results using the same algorithm, we get:

Figure 3.15: A comparison of unfolding results for a Gaussian distribution using IBU with three prior
truth distributions: t_unif, t_s, t_trig and with 1 iteration.
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The worst unfolding results are when we take t0 as a uniform distribution. In our case, we know
t_g, but in real experiences, we ignore it, so a good idea is to take the measured distribution as
the prior truth distribution i.e., t0 = m_g . But its effectiveness depends on the amount of noise.

Another property to note and which appears when the number of iterations increases, where
the three prior truth distributions converge towards the same result, as seen below for 10 itera-
tions:

Figure 3.16: A comparison of unfolding results for a Gaussian distribution using IBU with three prior
truth distributions: t_unif, t_s, t_trig and with 10 iterations.

Now let’s investigate the behavior of the IBU, depending on the number of iterations. For
this purpose we first do an unfolding on a uniform distribution, then we tackle the Gaussian one,
keeping the same parameters (t_u, m_u, t_g, m_g), and we just vary the number of iterations,
where we will take 1, 2, 3, and 10 iterations. Thus, for the first distribution, we have

1 t0=np.ones(len(m_u))
2

3 unfolded_IBU1 = IBU(m_u,t0,R, 1)
4 unfolded_IBU2 = IBU(m_u,t0,R, 2)
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5 unfolded_IBU3 = IBU(m_u,t0,R, 3)
6 unfolded_IBU10 = IBU(m_u,t0,R,10)

The visualization algorithm:

1 bincenters_r = np.array(xvals_r)+0.5
2 sns.set_style("white")
3 f = plt.figure(figsize=(8.5, 8.5))
4 gs = GridSpec(2, 1, width_ratios=[1], height_ratios=[3.5, 1])
5 ax1 = plt.subplot(gs[0])
6 ax1.set_xticklabels( () )
7

8 mybincenters = np.linspace(-0.5,31.5,33)
9

10 plt.step(mybincenters,myre(t_u),color='black',label=r"t")
11 plt.errorbar(0.5*(mybincenters[1:]+mybincenters[:-1]),m_u,yerr=np.sqrt(
12 m_u),label='m',marker='o',linestyle='none',color='black')
13 plt.step(mybincenters,myre(unfolded_IBU1),color='red',linestyle='-.',la
14 bel=r"$\hat{t}_{IBU}\,$(n=1)")
15 plt.step(mybincenters,myre(unfolded_IBU2),color='blue',linestyle='-.',l
16 abel=r"$\hat{t}_{IBU}\,$(n=2)")
17 plt.step(mybincenters,myre(unfolded_IBU3),color='orange',linestyle='-.'
18 ,label=r"$\hat{t}_{IBU}\,$(n=3)")
19 plt.step(mybincenters,myre(unfolded_IBU10),color='green',linestyle='-.'
20 ,label=r"$\hat{t}_{IBU}\,$(n=10)")
21 _=plt.xticks(xvals_r,xlabs0_r,rotation='vertical',fontsize=10)
22

23 plt.ylabel('Counts')
24 plt.ylim([0,2.*max(t_u)])
25 plt.legend(loc='upper left',fontsize=8,frameon=False)
26 _=plt.text(20., max(t_u)*1.8, "5 Yorktown Machine", fontsize=18)
27 _=plt.text(20., max(t_u)*1.7, "IBMQ Yorktown Readout Errors",fontsize=12)
28

29 ax2 = plt.subplot(gs[1])
30 ratio_unfold1 = np.zeros(2**nqubits)
31 ratio_unfold2 = np.zeros(2**nqubits)
32 ratio_unfold3 = np.zeros(2**nqubits)
33 ratio_unfold10 = np.zeros(2**nqubits)
34

35 for i in range(len(ratio_unfold1)):
36 ratio_unfold1[i] =1.
37 ratio_unfold2[i] =1.
38 ratio_unfold3[i] =1.
39 ratio_unfold10[i]=1.
40 if (t_u[i] > 0):
41 ratio_unfold1[i] = unfolded_IBU1[i]/t_u[i]
42 ratio_unfold2[i] = unfolded_IBU2[i]/t_u[i]
43 ratio_unfold3[i] = unfolded_IBU3[i]/t_u[i]
44 ratio_unfold10[i] = unfolded_IBU10[i]/t_u[i]
45 pass
46 pass
47
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48 plt.ylim([0.8,1.2])
49 plt.step(mybincenters,myre(ratio_unfold1 ),color='red' )
50 plt.step(mybincenters,myre(ratio_unfold2 ),color='blue')
51 plt.step(mybincenters,myre(ratio_unfold3 ),color='orange')
52 plt.step(mybincenters,myre(ratio_unfold10),color='green' )
53 plt.ylabel('Extracted / Truth')
54

55 xx2 = [1.,1.]
56 plt.plot([xvals_r[0],xvals_r[len(xvals_r)-1]],xx2,color='black'
57 ,linestyle=':')
58 _=plt.xticks(xvals_r,xlabs_r,rotation='vertical',fontsize=12)

Figure 3.17: Unfolding results for a uniform distribution using IBU with 1,2,3,10 iterations and a
uniform prior truth spectrum.
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Now, for the Gaussian distribution:

Figure 3.18: Unfolding results for a Gaussian distribution using IBU with 1,2,3,10 iterations and a
prior truth spectrum t0=t_trig.

Note that for the two distributions, the most efficient unfolding is for n = 1, where further
iterations diverge more and more from the truth t until we finish with results identical to that
obtained by MI and Ignis. Therefore, just 1 iteration is needed to get satisfactory results.
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3.6 Unfolding Readout Errors from TheMelbourne IBM
Q Machine

In this section, we want to explore more about unfolding methods for the IBM Melbourne
quantum computer. This quantum computer has 15 qubits, but we will construct a response
matrix for 7 qubits (we can not visualize clearly the result for more then 7 qubits). Then,
we will follow the same steps to unfold the readout errors from the Melbourne quantum
machine and represent the result graphically.

The Response Matrix

To construct the response matrix we follow the same steps as the Yorktown QC with the
only difference is that we should split ours measurement calibration circuits generated by
complete_meas_cal. We do this step because the number of experiments supported by the
device is 75 which means for a number of qubits greater than 6 we should split the experiment.
(75 is between 26 = 64 and 27 = 128).

We split our measurement calibration circuits generated by complete_meas_cal into two
batches:

1 device=provider.get_backend('ibmq_16_melbourne')
2 job1_res = qiskit.execute(meas_calibs[0:64], backend=device,

shots=8192,optimization_level=0).result()↪→

3 job2_res = qiskit.execute(meas_calibs[64:128], backend=device,
shots=8192,optimization_level=0).result()↪→

Now, we use the results to initialize a measurement correction fitter with CompleteMeasFitter
with the first 64 circuits:

1 meas_fitter = CompleteMeasFitter(job1_res, state_labels,circlabel='mcal')

In this step we use the CompleteMeasFitter.add_data function to update the measurement
correction fitter with the rest of calibration circuit batches.

1 meas_fitter.add_data(new_results=job2_res)

We need to update the fitter with the last batch of calibration circuits to see the full calibration
matrix. If we plot the calibration matrix after initializing the measurement correction fitter
with the first batch of calibration circuits, we will see a half-calibration matrix.

Finally, we use the same code as Yorktown QC to plot the heatmap of the Melbourne response
matrix, the only change is the number of the qubits. The matrix will have a dimension of 27×27.



3.6 Unfolding Readout Errors from The Melbourne IBM Q Machine 119

Figure 3.19: Response matrix for 7 qubits from the IBM Q Melbourne machine.

We notice that as the preview calibration matrix, there is a significant diagonal component with
high probability and also many off-diagonal components with a non-zero probability of transitions.

Unfolding a Uniform Distribution

First, we create a quantum circuit that generates a uniform distribution. The output will be
a uniform distribution only if quantum computers was perfect, but this is not the case. So,
the distribution will be distorted by the noisy Melbourne quantum machine.

The circuit for seven qubits which generate uniform distribution is represented as follow:
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Figure 3.20: A circuit that generates a uniform distribution based on 7 qubits.

After the measurement, we organize the data and, extract the count. We get the following
data from IBM Melbourne quantum computer:

1 [73, 74, 100, 84, 69, 79, 70, 72, 79, 62, 87, 68, 82, 63, 60, 62, 61, 70, 67, 76,
68, 72, 64, 74, 54, 82, 69, 65, 61, 72, 54, 64, 74, 57, 52, 66, 60, 77, 85, 75,
88, 63, 67, 50, 75, 52, 48, 46, 57, 47, 67, 52, 90, 68, 59, 80, 70, 69, 68, 82,
57, 79, 48, 57, 54, 63, 41, 66, 64, 75, 82, 73, 68, 64, 78, 62, 73, 78, 61, 61,
56, 60, 66, 58, 65, 50, 82, 75, 67, 78, 61, 67, 49, 65, 48, 59, 52, 56, 43, 60,
63, 50, 29, 63, 65, 63, 61, 48, 67, 63, 59, 50, 49, 48, 35, 47, 65, 35, 47, 41,
71, 62, 61, 60, 62, 71, 68, 67]

↪→

↪→

↪→

↪→

↪→

↪→

We can represent the result of the measurement in a histogram:

1 plot_histogram(m,figsize=(45,10))

The output of the plot:
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We recall that our true distribution can be generated using the following code:

1 t_u = [8192/128 for i in range(128)]

The output after using the print function:

1 [64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0,
64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0, 64.0]

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Finally, after using the three unfolding methods, the result is represented in the following graphics:
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Figure 3.21: Unfolding results of a uniform distribution based on seven-qubits using 3 methods:
Matrix inversion, ignis, and IBU with one iteration and a uniform prior truth spectrum.
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This is clearly different from the previous situation of 5 Qubits. First, we notice that the
uncertainties on the measured distribution values are very high. Secondly the two unfolding
methods MI and ignis show large oscillations. Unlike the case of 5 Qubits, their values, in
this case, are not completely identical. Neither technique was able to unfold this measured
distribution. The IBU does not exhibit large oscillations, and it was able to unfold a certain
extent although the great uncertainties on m_u.

So, after increasing the number of qubits we notice that the first two methods have difficulties
to unfold; for the IBU, its ability to unfold has decreased but compared to the two other methods,
its unfolding is important.

After these several experiences which generally aim to deal with readout noise of quantum
computers, and especially to study the Iterative Bayesian Unfolding method. We can
recap what we have learned about this unfolding technique:

• IBU is very sensitive to the choice of the prior truth distribution t0, as well as to the
number of iterations n.

• Unfolding with the vector t0 or with λ.t0 gives the same values, ∀λ ∈ R∗.

• If the i th component of the vector t0≡ t0 equal to 0 then the i th component of the vector
resulting from the unfolding process is equal to 0, i.e.

t0 = [ α, 0, β, γ, 0, 0 ] IBU−−→ t̂ n
IBU = [ α′, 0, β′, γ′, 0, 0 ]

• If the chosen t0 is of the same nature of the truth t, then one have to take the minimum
number of iterations, and vice versa.

• For a higher number of iterations (n� 1) all chosen prior truth distributions converge
towards the same result. Moreover, this common result is identical to that obtained by MI
and Ignis.



Conclusion

The invention of the Quantum Computer represents a leap for human civilization, which will
open new horizons and allow the emergence of a new era, not only in physics, but will contribute
to the development of all sciences. However, current challenges limit its effectiveness, and one
of the important limitations is the rate of errors.

In this master thesis, our objective was to mitigate Quantum Computer Readout Errors,
using of Unfolding Methods from the field of High Energy Physics. To achieve this goal, we first
had to understand the basic concepts of Classical and Quantum Information Science QIS at the
same time. The final subject in this overview was Classical and Quantum Error Detection and
Correction, where we explored the differences between the classical and quantum situation.

After this we visited the field of High Energy Physics, to understand the concept of unfolding,
where we saw the simplest method called “Matrix Inversion” and a more advanced one called
“Iterative Bayesian Unfolding” (IBU), which represented a promising technique for mitigating
readout errors in QIS.

Then we investigated readout errors in the field of QIS, where we tried to understand their
nature and their sources and how to construct the response matrix in order to mitigate these
errors.

Finally, we studied three unfolding methods (MI, ignis, IBU) through a real Quantum
Computer Readout Noise, for a uniform and Gaussian distribution, and we found that it gives
an excellent unfolding compared to MI and ignis, which contribute to confirm the results of the
researchers Benjamin Nachman et al. in 2020. After achieving this, we took a small step
beyond these results to explore in particular the behavior of IBU in a larger system of qubits,
where we found that IBU maintained its effectiveness.

Our work is a small step to move beyond the era of Noisy Intermediate-Scale Quantum
computers. Further studies are needed to overcome the noise of quantum computers.

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

Alan Turing
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A
Boolean Algebra

A boolean algebra represents the mathematical rules between two-state quantities to solve logical
problems. These quantities are known as Boolean logic variables and can be represented by
0 and 1 or true and false. Boolean algebra use only three operators: not, and, or. The
and and or operators work on two or more variable, the not operator operate on a single
variable. These operators are represented in table A.1 as follow [30]:

Operator Symbol Usage Spoken as
not ¯ Ā A bar , or not A
or + A+B A or B

and . A.B A and B
Table A.1: Boolean variables and operators.

• The NOT Operator: A boolean variable can be 0 or 1. If we want to switch the state
from 0 to 1, we need an operator that produces the complement of the variable 0. In the same
way, we apply not to the state 1 to get 0. In the general form, every variable A has an opposite
value denoted as A-not or A-bar, or A-prime. If A = 1 then Ā = 0 or if A = 0 then Ā = 1.

• The OR Operator: The or operator acts on at least two inputs variables and produces
only one output. The result depends on the variables; if there is at least one variable with the
value 1, the result will be 1. If all the variables are 0, the result will be 0. The equation for
or operation (for two variables) is A + B = R with A and B the inputs, and they take the
value 0 or 1. The «+» sign stands for the or operation and R for the boolean result. We can
see that this logical function acts according to these two boolean conditions: X + 1 = 1 and
X+0 = X. The inputX takes the value 0 or 1 [31]. We will see this condition in the Boolean lows.

• The AND Operator: The and operator works as a product of two or more variables.
If all variables are 1, the result will also be 1. However, if at least one of the variables is 0,
the result will be 0. The equation for and operation (for two variables) is A.B = R with A,
B, the input, and they take the value 0 or 1. The «.» sign stands for the and operation, and
R is the boolean result. The and function acts according to the following relation: X.1 = X

and X.0 = 0. The variable X takes the value 0 or 1.
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B
Boolean Lows

In this part, we will see the boolean laws that describe how operators act on boolean variables.
There are two categories of boolean laws; the first describes operations on a single variable,
and the second, for multivariable [30].

1. Single variable

This part will explain the rules that describe the logic operation for only one variable.
There are three laws for a single variable: idempotent, Inverse, Involution. These lows are
represented as follow:

• Idempotent

Idem means “same” in Latin. These laws describe the effect of an operator when the
same variable goes to all inputs. Let’s take two-input or for example: A+ A = S

this will give 1 if A = 1, and 0 if A = 0; therefore A+ A = A = S.

• Inverse elements

This law is about the effect of an operator on a variable A with its complement Ā.
Let us take and as example, the expression is written as follow: R = A.Ā. If R = 0
then either A or Ā must have 0 because they have a complementary values.

• Involution law

When we apply the not for the first time on a variable A, we obtain Ā, but by
applying it for the second time, this will return the variable to its original state
¯̄A = A.

2. Multivariable

Multi-variable theorems are about operations on more than one variable, and these laws
are: commutative law, associative, distributive, De Morgan’s laws, Absorption.

• Commutative law

when applying the operators or, and between two variables; the order of these
variables does not matter. So R = A.B = B.A and S = A+B = B + A.
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• Associative law

These laws show how the operations can be grouped, and it is the same as for
conventional algebra. For example: A + (B + C) = (A + B) + C and A.(B.C) =
(A.B).C.

• Distributive law

Distribution is used to expand and simplify the boolean expression. Example:
A.(B + C) = A.B + A.C.

• De Morgan’s law

This theorem is about complementation and announces that, complementing A.B is
equivalent to Ā+ B̄ and complementing A+B is equivalent to Ā.B̄.

• Absorption

These laws are used for circuit simplification to increase the reliability of the logic
circuit and decrease the cost of manufacture. To understand the laws of Absorption,
let us develop some expressions.

A+ A.B = A.(1 +B) = A.1 = A

A.(A+B) = A.A+ A.B = A+ A.B = A.(1 +B) = A

A.(Ā+B) = A.Ā+ A.B = 0 + A.B = A.B

A.B + B̄ = B̄.(B.A.B + 1) = B̄.(B.A+ 1) = A+ B̄

A+ Ā.B = (Ā+ A).(A+B) = 1.(A+B) = A+B



C
Qubit Design

Due to the complexity of quantum mechanics, it is not easy to build a practical quantum
computer. There is great competition and enormous effort from large companies to accelerate
the development of quantum programming. Today several types of Qubits are available. We
site the most common types of qubits:

• Superconducting Loops
Superconducting quantum computing is an implementation of a quantum computer in super-
conducting electronic circuits. Superconducting quantum circuits use Josephson junction to
create a non-linear inductance which allows a design of anharmonic oscillators. A quantum
harmonic oscillator cannot be used as a qubit, as there is no way to address only two of
its states. A microwave pulse is injected which excites the current into a superposition of
states. This design is used by IBM.

• Trapped Ions
Ion trap uses a combination of electric or magnetic fields to capture ions or charged atomic
particles in a system (isolated from the external environment). Qubits are stored in stable
electronic states of each ion, and quantum information can be transferred through interacting
by the Coulomb force. To induce coupling between the qubit states, we apply lasers for
single-qubit operations or entanglement between qubits.

• Silicon Quantum Dots
Quantum dots are semiconductor devices at the nanoscale. Electrons are vertically confined
to the ground state of quantum gallium arsenide (GaAs) and form a two-dimensional electron
gas (2DEG). This gas is free to move in two dimensions but tightly confined in the third. This
confinement leads to quantized energy levels for movement in the third direction.

• Diamond Vacancies
This multiqubit system is based on a nitrogen-vacancy (NV) center in diamond. The NV
center’s electron spin constitutes the central qubit, while the nuclear spins of the nitrogen
and surrounding carbon atoms form the other qubits. Electron spin responds optically, so the
quantum state can be programmed and read out quickly using a laser, the electron spin is used as
a bus, that can be coupled through magnetic interaction. For quantum memory and processing,
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we use the nuclear spin, which does not respond optically and has longer coherence times.

Superconducting Qubit

Qubit design significantly impacts creating devices with high performance, like long coherence
time and high controllability. There are many quantum computing platforms, but the most
famous one is based on superconducting Qubits. Because of its advantages, superconducting
Qubit became the leading candidate for a scalable quantum processor. Like any quantum
mechanical object, superconducting qubits can be controlled, placed into quantum superposition
states, exhibit quantum interference effects, and become entangled [32].

•What is superconducting quantum computing?
A superconducting quantum computer is a connected artificial atom (rather than natural atoms).
Each artificial atom is represented as a non-linear inductor-capacitor circuit. The inductor-
capacitor circuits are harmonic and the energy levels are equally spaced if we add a non-linear
element in the circuit; therefore, the energy separation between pairs of levels differ from each
other, therefore the transitions between pairs of energy levels can be separately addressed [33].

Figure C.1: Harmonic and anharmonic systems and their suitability as qubits [34].

(a) In the quadratic potential (black curve) of a harmonic system, the energy levels (red
lines) are equally spaced, i.e. ωj,j+1 = ω01, where ωjk is the transition frequency between
energy levels j and k. A signal at frequency ω01 will thus not only transfer population from
|0〉 to |1〉, but also from |1〉 to |2〉, etc.

(b) In the potential of an anharmonic system, e.g., the cosine potential characteristic of
a Josephson junction, ω01 6= ω12 . A signal at frequency ω01 will thus only drive transitions
between |0〉 to |1〉 and not affect any other levels in the system (provided that the signal
is not too strong). This limits the dynamics to the two-level system formed by |0〉 and |1〉,
which can be interpreted as a qubit [33].

•Why we use superconductors?
A superconductor enables an electric current in a circuit loop to circulate without resistance.
Depends on the inductance and the capacitance of the electric circuit, the electric field oscillates



132 Qubit Design

with a specific frequency and the electric current experiences no resistance during its oscillation
and is called a supercurrent. If the supercurrent is counter-clockwise then it generates an
upward magnetic flux, and a clockwise supercurrent generates a downward magnetic flux.
Superposing clockwise and counter-clockwise supercurrents creates a superposition of up and
down magnetic fields. For a small circuit, the magnetic flux is quantized and equally spaced
which does not help make a two-level qubit. To make the spacing unequal, a Josephson
junction is placed into the circuit.

• What is Josephson junction?
A Josephson junction contains two superconducting materials weakly linked via another medium,
such as an insulator. The supercurrent in a loop faces an energy barrier at this weak link, which
modifies the harmonic supercurrent oscillation to an anharmonic dynamic. This results in
unequally spaced magnetic flux levels. For sufficiently high anharmonicity, just the two lowest
levels play a role in the dynamics so we have an effective two-level atom that functions as a
flux qubit. The downward magnetic flux serves as |0〉 and the upward flux as |1〉 [35].

The Basic Josephson-Junction Qubits

There are three basic designs for Josephson-junction qubits. The three are known as a charge
qubit, a flux qubit, and a phase qubit. The charge qubit is a box for charge, controlled by
an external voltage Vg; the flux qubit is a loop controlled by an external magnetic flux φext;
and the phase qubit is a Josephson junction biased by a current Ib [34].

Figure C.2: The three basic Josephson-junction qubit circuits and their potential-energy
landscapes, with the two lowest energy levels marked in red. (a) Charge qubit. (b) Flux qubit.
(c) Phase qubit. For simplicity, the capacitance CJ is only shown in panel (a), although it is also
present in the circuits in panels (b) and (c) [34].
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Quantum Processor

IBM’s quantum chips consist of a silicon wafer that contains qubits and resonators composed
of aluminum and niobium. A resonator is connected to each qubit to deliver the control
pulses that govern the qubit’s state.

An entangled qubit’s state cannot be described independently of its paired qubit. If the
state of the first qubit is measured, measuring the state of the second qubit is correlated to
that of the first. Practical quantum computations often involve executing conditional logic
operations in which one qubit’s state depends on that of another qubit.

To determine the result of a qubit’s operation, a measurement signal is sent as a microwave
pulse to the qubit’s resonator. The measurement destroys the qubit’s superposition and collapses
the qubit’s state to 0 or 1. The reflected signal travels back up the dilution refrigerator,
passing through isolators that protect the qubits from noise as well as amplifiers that boost
the signal’s strength enough to read the qubit’s state accurately. The signal then passes back
through the stack of microwave electronics, this time to be converted from microwave
frequency to a digital signal that is sent over the internet to the local computer to display
the result of the quantum calculation1.

1https://electronics360.globalspec.com/article/13553/how-quantum-computers-work

https://electronics360.globalspec.com/article/13553/how-quantum-computers-work


D
Python and Qiskit toolkit

In this part, we will see the most used python and qiskit functions.

Qiskit packages

• Aer: is an element that provides quantum computing simulators with realistic noise
models.

• ClassicalRegister: Implement a classical register.

• QuantumCircuit: Holds quantum operations and instructions for the quantum system.

• QuantumRegister: Implement a quantum register.

• qiskit.ignis.mitigation.measurement: The Qiskit Ignis Measurement Calibration module
and mitigation is used to calibrate measurement errors via a series of basis state measure-
ments and then apply that calibration to correct the average results of another experiment
of interest.

• qiskit.providers.aer: This module contains classes and functions to build a noise model for
simulating a Qiskit quantum circuit in the presence of errors.

• readout_error: Readout error class for Qiskit Aer noise model.

Python tools

• NumPy: which stands for Numerical Python, is a library consisting of multidimensional
array objects and a collection of routines for processing those arrays. Using NumPy,
mathematical and logical operations on arrays can be performed.

• SLSQP: Sequential Least-Squares Quadratic Programming algorithm for nonlinearly con-
strained, gradient-based optimization, supporting both equality and inequality constraints.

• SciPy optimize: provides functions for minimizing (or maximizing) objective functions,
possibly subject to constraints. It includes solvers for nonlinear problems (with support
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for both local and global optimization algorithms), linear programing, constrained and
nonlinear least-squares, root finding, and curve fitting.

• len: Return the number of items in a list.

• make_axes_locatable: takes an existing axes instance and creates a divider for it. It
provides append_axes() method that creates a new axes on the given side (“top”, “right”,
“bottom” and “left”) of the original axes.

• matplotlib.gridspec: is used to specify the grid’s geometry to place a subplot. We need to
set the number of rows and columns of the grid.

• matplotlib.lines: This module contains all the 2D line class which can draw with a variety
of line styles, markers and colors.

• matplotlib.pyplot: is a collection of command style functions that make Matplotlib work
like MATLAB. Each Pyplot function makes some change to a figure. For example, a
function creates a figure, a plotting area in a figure, plots some lines in a plotting area,
decorates the plot with labels, etc.

• matplotlib: is a library for creating static, animated, and interactive visualizations in
Python.

• mpl_toolkits.axes_grid1: is a collection of helper classes to ease displaying (multiple)
images with matplotlib. In matplotlib, the axes location (and size) is specified in the
normalized figure coordinates, which may not be ideal for displaying images that needs to
have a given aspect ratio.

• np.clip: function is used to Clip (limit) the values in an array. Given an interval, values
outside the interval are clipped to the interval edges. For example, if an interval of [0, 1] is
specified, values smaller than 0 become 0, and values larger than 1 become 1.

• np.linspace: Return evenly spaced numbers over a specified interval.

• np.matmul: is Matrix product of two arrays.

• np.random.rand: Create an array of a given shape and populate it with random samples
from a uniform distribution over [0, 1).

• np.random.randn: Return a sample (or samples) from the “standard normal” distribution.

• np.random.seed(): generate random numbers based on “pseudo-random number generators”
algorithms. The seed() is used to initialize the random number generator to be able to
generate a random number.
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• np.ravel: return 1D array with all the input-array elements and with the same type as it.

• plt.hist: function in pyplot module of matplotlib library is used to plot a histogram.

• random.uniform(low, high, size): Draw samples from a uniform distribution. Samples are
uniformly distributed over the half-open interval [low, high) (includes low, but excludes
high). In other words, any value within the given interval is equally likely to be drawn by
uniform.

• round: returns a floating point number that is a rounded version of the specified number.

• seaborn: Seaborn is a Python data visualization library based on matplotlib. It provides
a high-level interface for drawing attractive and informative statistical graphics.

• sum(): to calculate the sum of an iterable like range and list.

• tol: is the tolerance for the stopping criteria. This tells scikit to stop searching for a
minimum (or maximum) once some tolerance is achieved.

• tuple: Tuples are used to store multiple items in a single variable. Items are ordered,
unchangeable, and allow duplicate values.



E
Glossary

|A |B |C |D |E |F |G |H | I | J |K | L |M |N |O |P |Q |R | S |T |U |V |W |X |Y |Z |

• Aer:

Aer is an element of Qiskit, which provides high-performance quantum computing simu-
lators with realistic noise models.

• Backend:

The term backend can refer to either a quantum computer or a high-performance
classical simulator of a quantum computer.

• Classical Register:

A classical register consists of bits that can be written to and read within the coherence
time of the quantum circuit.

• Frequency:

In IBM Quantum, a frequency (or counts) of a job is defined as the number of times a
given basis state is observed after measurement.

• Job:

A job ties together all of the relevant information about a computation on IBM Q: a
quantum circuit, choice of backend, the choice of how many shots to execute on the
backend, and the results upon executing the quantum circuit on the backend.

• Jupyter Notebook:

Jupyter Notebook is a web-based interactive computational environment for creating
notebook documents.

• Hub:

A hub is the top level of a given organization and contains within it one or more groups.
These groups are in turn populated with projects.
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• IBM Quantum Experience:

IBM Q Experience is an online platform that allow public and premium access to cloud-
based quantum computing services. Users interact with a quantum processor through
the quantum circuit model of computation. Circuits can be created either using a
graphically with the Quantum Composer, or programmatically within the Jupyter
notebooks of the Quantum Lab.

• Provider:

Access to the various services offered by IBM Q is controlled by the providers to which
you are assigned. A provider is defined by a hierarchical organization of hub, group, and
project. Users can belong to more than one provider at any given time.

• Python:

Python is an interpreted, multi-paradigm, cross-platform programming language.

• Qiskit:

Qiskit is an open-source software development kit (SDK) for working with quantum
computers at the level of circuits, pulses, and algorithms. It provides tools for
creating and manipulating quantum programs and running them on prototype quantum
devices on IBM Quantum Experience or on simulators on a local computer.

• Quantum Circuit:

A quantum circuit is an ordered sequence of quantum gates, measurements, and
resets.

• Quantum Gate:

A quantum gate is a unitary operation that can act on a single or multiple qubits.

• Qubit:

A qubit is the basic unit of quantum information. A qubit is defined as a two-level
quantum system.

• Quantum Register:

A quantum register is a collection of qubits on which gates and other operations act.

• Shot:

The number of shots defines how many times a quantum circuit is executed in a quantum
computer.
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