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Abstract:

This project provides a description of the Lattice Boltzmann Method (LBM), an alternate
numerical method to conventional CFD methods. For its promising potential, LBM has
grown in favor within the scientific community in recent years. It claims to reach the same
degree of accuracy as classical CFD while also providing new benefits such as easy
parallelization and the ability to perform complex and multiscale flows. Unlike
conventional CFD, which works on the numerical solution of the Navier Stokes Equations,
the Lattice Boltzmann Method focuses on microscopic particle interactions to reflect the

macroscopic behavior of the fluid.

The objectives of this paper is to evaluate and analyze the Lattice Boltzmann Method's
capacity to accurately simulate incompressible flows. This study describes the theoretical
foundations of this novel method, as well as a CFD simulation of classical configurations.
These configurations are developed using modified Palabos codes, with an emphasis on
matching LBM solutions with analytical or existing solutions. The results and analyses
suggest that LBM is a reliable method for modelling incompressible flows. The study also
discusses how to use the Lattice Boltzmann Method and suggests strategies to continue

the research.

Key-words: Lattice Boltzmann method, Boltzmann equation, Lattice gas automata,
Palabos, Parallelization, Computational Fluid Dynamics, CFD, numerical method,

simulation, benchmarking.



Résumé:

Ce projet fournit une description de la méthode Lattice Boltzmann (LBM), une méthode
numérique alternative aux méthodes CFD conventionnelles. En raison de son potentiel
prometteur, la LBM a gagné en popularité au sein de la communauté scientifique au cours
des dernieres années. Elle prétend atteindre le méme degré de précision que la CFD
classique tout en offrant de nouveaux avantages tels qu'une parallélisation aisée et la
possibilité de réaliser des écoulements complexes et multi-échelles. Contrairement a la
CFD classique, qui fonctionne sur la résolution numérique des équations de Navier Stokes,
la méthode Lattice Boltzmann se concentre sur les interactions microscopiques des

particules pour refléter le comportement macroscopique du fluide.

L'objectif de cet article est d'évaluer et d'analyser la capacité de la méthode Lattice
Boltzmann a simuler avec précision les écoulements incompressibles. Cette étude décrit
les fondements théoriques de cette nouvelle méthode, ainsi qu'une simulation CFD de
configurations classiques. Ces configurations sont développées a l'aide de codes Palabos
modifiés, en mettant l'accent sur la correspondance entre les solutions LBM et les
solutions analytiques ou existantes. Les résultats et les analyses suggerent que la LBM est
une méthode fiable pour la modélisation des écoulements incompressibles. L'étude aborde
également la maniere d'utiliser la méthode Lattice Boltzmann et suggére des stratégies

pour poursuivre la recherche.

Mots clés: Méthode de Lattice Boltzmann, équation de Boltzmann, Lattice gas automata,
Palabos, parallélisation, dynamique des fluides numérique, CFD, méthode numérique,

simulation, benchmarking.
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Nomenclature

Symbol Significance Unity

Re Reynolds number [-]

u Velocity [m/s]

p Density [kg/m?]
Volume [m3]

CL Lift coefficient [-]

Co Drag coefficient [-]

FL Lift force [N]

Fo Drag force [N]

Vi Finite volume [mq]

Xi Position on the ith direction [m]

ei Local velocity of the particle [m/s]

f Distribution function [kg.s>.m™]

f ed Equilibrium distribution [kg.s3.m]

f ned Non-equilibrium distribution [kg.s3.m]

Q Collision operator [kg.s2.m™]

¢ Particle velocity [m/s]

t Time [s]

h Spatial resolution [m]

T Relaxation time [s]

£ Knudsen number (smallness number) [-]

fi Discrete distribution function [-]

fi" Discrete distribution function after collision [-]

Ci Lattice velocity [m/s]

Wi Weighting function [-]

Ax, Ay, Az Lattice spacing [-]

Cs Speed of sound [m/s]




General introduction:

Computational Fluid Dynamics (CFD) is a fundamental fluid mechanics technique that
uses numerical analysis and data structures to analyze and solve a wide range of fluid flow
problems. This well-established solution is now broadening its scope, addressing anything

from environmental issues to heart diseases and aeroacoustics.

Because conventional methods are incapable of simulating all possible situations, a variety
of novel ways are emerging. A new approach to solving flow problems in the field of CFD
has gained popularity in recent years; the Lattice Boltzmann Method (LBM). And the

growing number of devoted articles is just one sign of this increasing popularity.

Instead of focusing on the macroscopic representation of the flow, LBM incorporates a
microscopic representation of the flow as well as a spatial and temporal discretization.
The approach simulates fluid physics by adopting simple physical processes including
streaming in space and billiard-like collision interactions between microscopic particles.
LBM is a model that operates on the premise that a fluid is made up of interacting

molecules that can be described using classical mechanics.

The objective of this thesis is to evaluate the LBM-BGK code’s ability to simulate
incompressible fluid flows based on well-referenced conventional CFD configurations.

To do this, the work is organized into four chapters.

The first chapter is devoted to putting into perspective the impact that computer
performance development has played in the development of CFD as an alternative to often
restrictive analytical and experimental methods. Then, in order to place the LBM within
the broad spectrum of numerical methods, a classification of the primary CFD approaches

is established.
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The second chapter is devoted to the theoretical and mathematical understanding of LBM,
as the key concepts of the method are developed and the governing equations
demonstrated. The discretization of the Boltzmann equation will then result in the
establishment of a mathematical model defining the physics governing the simulated
processes. And therefore, enable the construction of a link between a molecular
description and the fluid's macroscopic behavior, which remains the primary focus.

The third chapter discusses the transition from a set of equations to a code capable of
simulating a wide range of complex phenomena. Given that the current LBM codes,
available in open-source libraries, are written in C++, the most attractive features of the
latter are highlighted. Before being able to establish the many techniques used by Palabos
to develop a computational code that is simultaneously optimized in terms of memory
consumption, effective in its layout of simulation elements, and robust enough to model

cases with complex physics that conventional approaches struggle to simulate.

Finally, the fourth chapter focuses on the application and validation of Palabos. Following
that, a full report on the actions required to take the first steps in Palabos is established.
Then, codes for simulating two flows, namely the Poiseuille flow and the flow around a
cylinder, are run to collect data that will be compared with the results available in the
literature and used as a criterion for evaluating the reliability of the results obtained by the
LBM-BGK model using the Palabos solver.

13



Chapter |: Computational Fluid

Dynamics, methods, and solvers
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1. Introduction

The evolution of the high-speed digital computer mostly during the past century had a
significant impact on how fluid mechanics and heat transfer principles are applied to
design problems of contemporary engineering practice. Problems that would have taken
years to solve using the computational methods and processors available 30 years ago can
today be solved in a few seconds of computer time at a very low cost. Many advances
have been driven by the ready availability of previously inconceivable computational
power. These first became apparent in industry, research institutions and laboratories,
where it was pressing to solve different difficult problems. Nowadays, computer-induced
changes have recently become apparent and obvious in almost every aspect of our daily
life. [1]

Fluid mechanics equations that have been known for over a century can only be solved
for a small number of flows. Analytical flow solutions are only attainable under specific
limits and for a limited number of geometries because the behavior of these
analytical solutions is so complex. The nonlinearity of the equations, as well as the
presence of complex-shaped boundary conditions, make finding analytical solutions
extremely difficult, if not impossible in some cases. The known solutions are
tremendously helpful in understanding fluid movement, but they are rarely applicable to
engineering analysis or design. Engineers have been compelled to adopt different methods

in the past.

2. The theoretical, experimental and numerical

approaches

The most typical approach is to use simplified versions of the equations. The majority of

these are based on a combination of approximations and dimensional analysis, with
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empirical input nearly always required. Dimensional analysis, for example, reveals that

the drag force on an object can be represented by: F, = %.pSCDVZ

A similar method has emerged after noting that for many flows, non-dimensionalization
of the Navier-Stokes equations leaves the Reynolds number as the only independent
parameter. If the body shape is kept constant, an experiment on a scale model of that shape
can yield the desired findings. The required Reynolds number is obtained either by careful
selection of the fluid and flow parameters or through Reynolds number extrapolation.
These methods are extremely helpful, and they continue to be the primary methods of
practical engineering design today. The issue is that many flows require multiple
dimensionless parameters to be specified, and it may be impossible to build up an
experiment that scales the actual flow correctly. Flows around aircraft or ships are two

examples.

Another solid approach was the experimental method, as experiments are a useful tool for
determining global parameters such as lift, drag, pressure drop, and heat transfer
coefficients. Details are essential in many circumstances; it may be necessary to know
whether flow separation happens or whether the wall temperature surpasses a certain level.
Experimental development may be excessively costly and/or time demanding as
technological advancements and competitiveness involve more rigorous design
optimization. Alternatively, when new high-tech applications necessitate flow prediction

for which the database is insufficient.

Experiments are difficult, if not impossible, in other situations. For example, the
measuring equipment might interfere with the flow, or the flow could be inaccessible.
Some quantities are just not measurable or can only be measured with insufficient

precision using current techniques. [2]

Traditionally, experimental and theoretical methods have been used to produce designs
for fluid flow and heat transfer equipment and vehicles. But with the advent of electronic

computers, an alternative - or at least a complementary method - became available: the
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numerical approach (although many of the key ideas for numerical solution methods for
partial differential equations were established more than a century ago, they were of little
use before computers appeared). When complex flows are involved, experimentation is
still vital, but there is a definite trend toward relying more on computer-based predictions

in design. [1]

Since the 1950s, the performance-to-cost ratio of computers has exploded and shows no
signs of slowing down. While the first computers developed in the 1950s could only
execute a few hundred operations per second, today's machines can perform teraflops or
10* floating-point operations per second. The ability to store data has also increased
dramatically: a decade ago, ten-gigabyte hard discs were only available on
supercomputers; now, we can find hard drives with incredible speeds and capacities
measured in Terabytes on desktop PCs. A system that cost millions of dollars, took up a
lot of space and required a full-time maintenance and operation team is now available on
a PC.

The prevalence and use of numerical methods skyrocketed as the potential of computers
were realized. The computational solution of fluid mechanics equations has become so
essential that it currently attracts the attention of the vast majority of fluid mechanics
researchers, and the proportion is growing. Computational fluid dynamics is the name for

this field (CFD), which contain numerous subspecialties within it. [2]
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3.What is CFD?

Computational fluid dynamics (CFD) is a science that uses digital computers to generate
quantitative predictions of fluid-flow phenomena based on the conservation laws (mass,

momentum, and energy conservation) that govern fluid motion. [3]

The governing equations for practical flows are frequently so complex that an exact
solution is impossible to find, therefore a computer solution is required. Computational
approaches substitute the governing partial differential equations with algebraic
equations, allowing a computer to solve the problem. For local methods, like the finite
difference, finite element and finite volume methods, a grid of discrete points are
distributed throughout the computational spatial and temporal domain. Furthermore, the

algebraic equations connect values of dependent variables at neighbouring grid points.

The number of grid points necessary to obtain an accurate solution is often determined by
the dimensionality, geometric complexity, and severity of the dependent variables'
gradients. A grid of ten million points may be necessary to model the flow around an entire
aircraft. Each dependent variable, as well as a few auxiliary variables, must be stored at
each grid point. when it comes to turbulent compressible three-dimensional
flow, somewhere between five and thirty dependent variables per grid point could be

involved.

Because most classes of fluid dynamics have nonlinear governing equations, the
computational solution is typically performed iteratively. That is, the discretized equations
are used to successively correct the solution for each dependent variable at each grid point.
The iterative approach is often comparable to progressing the solution over a small time
step. The number of iterations (or time steps) might range from a few hundred to

thousands.

As long as the discrete equations are correct representations of the governing equations,
the discretization method induces an error that can be minimized in principle by refining

the grid. If the numerical algorithm that performs the iteration or advances in time is also
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stable, then by refining the grid, the computational solution can be made arbitrarily close
to the exact solution of the governing equations. [4]

4. Classification of numerical methods

A wide range of methods for obtaining fluid flow solutions has been developed to this
point. Some of these approaches are general-purpose methods that may be used to any
partial difference equation (PDE) with minimal modifications. Other approaches are more
suited to finding fluid flow solutions. While this thesis focuses on the lattice Boltzmann
method, it is just one of several methods available nowadays. Each of these methods has
its own set of advantages and disadvantages, and the LB method is no different. Taking
that into consideration, it becomes relevant to briefly present such methods in order to
give a perspective on where the Lattice Boltzmann method is situated in the methods'

landscape.

Despite the existence of a large number of simulation methods, they can be classified into
two categories according to the approach taken toward the given problem: conventional

methods and particle-based methods.

4.1. Conventional Navier-Stokes solver

the general idea is to solve the equation (or coupled system of equations) of significance
by using a particular method of approximation. The continuity equation and the Navier-
Stokes equations (or their incompressible counterparts) are the two fundamental equations
to solve in CFD. Depending on the physics to be simulated and the applied
approximations, other equations, including an energy equation and an equation of state,
may be used to supplement the fundamental equations.

Typical approaches for unsteady (i.e. time-dependent) CFD can use a variety of methods
to discretize the derivatives, allowing the aforementioned equations to be approximated
on a computer. As a result, the solution for the next time step is generated from the present
time step's solution. However, the method used to discretize the solution, i.e. how a finite

set of numbers is used to represent the solution in continuous physical space, is
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what distinguishes these conventional CFD methods. The solution variables, such as fluid
velocity u and pressure p, must be represented in such a way that their spatial derivatives

can be obtained throughout the domain in all of these methods.

This process of discretisation leads to matrix equations Ax = b for many, if not all,
conventional approaches, where A is a matrix that connects the unknown discretised
solution variables in the vector x, and b represents the impact of source termsand
boundary conditions. Resolving such matrix equations by inverting A to determine X is a
linear algebra problem, and finding efficient solution methods for such problems has been
the subject of much research. In the following section, some of these methods’ basics are

covered:

4.1.1. Finite difference method

The basis of this method is to approximate derivatives of A using linear combinations
(“finite differences”) of 4; . ”. After performing a Taylor series of 4;about x;, we can find

three simple approximations of the first-order derivatives:
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In concept, the finite difference approach is straightforward; simply take a set of equations
and replace the derivatives with finite difference approximations. Fluids, on the other
hand, are regulated by a complex system of linked equations with several variables. As a
result, in order to apply the FD method for CFD, a variety of unique techniques must be
used [5], which increases the amount of expertise and effort required to develop an FD
CFD solver. Nevertheless, when compared to other conventional methods, the FD method

can be simple and efficient [2].
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Certain mathematical errors are inherent with FD CFD. Unless extra precautions are taken,
the scheme is not conservative, which means that numerical errors allow the conservation
of quantities including mass, momentum, and energy to be compromised. The FD
approach has difficulties with complex geometries that do not fit the grid because it is
built on a regular grid. This is perhaps the most crucial reason why other CFD methods

have grown in popularity [6].
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Figure 1 : Illustration of the finite difference method implementation [7]

4.1.2. Finite volume method

In the FV method, the spatial domain would not need to be partitioned into a regular grid.
Instead, the simulated volume V is divided into multiple smaller volumes V;each with a
different shape and size. This provides for a more accurate representation of complex
geometries than, for example, the finite difference method. Each finite volume Vi has a

node in the centre where each solution variable A(x) is represented by its approximate

average value A inside that volume.
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Finite difference Finite volume

[ —

Figure 2: Simple finite difference and finite volume discretisations
of the volume inside a circular surface. The effective surface in
each case is shown as black dashed lines, and interior nodes as

white circles. To the right, the dotted lines show the finite volumes’

interior edges [6]

The FV method is not as general as the FD method, which may be used to any equation.
Whereas it could be used to solve generic hyperbolic problems, it is primarily designed to
solve conservation equations found in fluid mechanics [8]. This is primarily due to the

fact that this approach is conservative by design, suggesting that, as opposed to the FD

method, mass and momentum will always be conserved.

Furthermore, the FV method is well-suited to use with irregular grids, which implies that
complex geometries may be represented well (the grid is adjusted to the geometry), and it
is simple to "invest" more resolution on crucial locations in the simulation by refining the
grid in these parts. The disadvantage of irregular grids is that creating adequate grids for
complex geometries is a rather complex task in itself; indeed, it is an entire topic of study
and research. While FV may not be as general as FD in the solvable equations, this is

usually not a problem for the equations encountered in CFD.

4.1.3. Finite element method

PDEs are solved using finite element methods (FEM) by multiplying the PDE by a weight
function w(x) and integrating over the particular domain. In general, FEM can be applied

over an unstructured grid, with a discretised solution variable A represented at every grid

corner node x;. The variable A(x) is interpolated between the grid corners using basis
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functions ¢ (x) that meet specific conditions. The most basic 1D basis functions are linear

functions of the form: #(x) =1, #(x..;) =0 and are non-zero only in the interval (Xiz1,

j#i
Xi+1). Moreover, a wide range of nonlinear basis functions (e.g., quadratic and cubic ones)
are also possible, and the order of accuracy is often linked to the order of the basis

functions [9].

Typically, the weighting functions are designated from the basis functions themselves,

w(X) = @ (x) . This results in a system of equations, one for each unknown value 4. Each

value of A, is connected to 4, and A4, via integrals, assuming linear basis functions. The

i+1
fundamental advantage of FEM is that it is mathematically well-suited for unstructured
grids and for improving the order of accuracy using higher-order basis functions (yet these
also require more unknowns). These grids can be modified dynamically to adjust for
dynamic geometry, as when modelling a car crash. FEM, like FD methods, is not
conservative by default, whereas FV methods are. Another drawback is the method's
complexity in comparison to the FD and FV methods. In general, unstructured grids, for
example, the integrals become difficult to solve. And like with the FD and FV methods,

solving the complex Navier-Stokes equation system is not simple.

Boundaries Nodes

==
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——= Elements

Figure 3: Schematic representation of a finite element method (FEM) model
[10]
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4.2. Particle-based solvers

Particle-based solvers are not built on directly discretizing fluid dynamic equations, and
therefore use a differentiated perspective than the conventional solvers previously
discussed. Instead, these methods use particles to represent the fluid. A particle can
represent an atom, a molecule, a group of molecules, or a portion of the macroscopic fluid,
depending on the approach. Consequently, whereas conventional Navier-Stokes solvers
take a macroscopic perspective of a fluid, particle-based method typically adopt a

MICroscopic Or mesoscopic view.

This group of approaches includes the Lattice Boltzmann method. These will be
elaborated on in the section that follows:

4.2.1. Molecular dynamics
At its core, molecular dynamics (MD) is an essentially simple microscopic method for
tracking the position of particles that commonly represent atoms or molecules. These
particles interact via intermolecular forces fij(t), which are determined to be as consistent
with the actual physical forces as possible. Knowing the total force fi(t) on the ith particle
based on all other particles, its acceleration is determined using Newton's second law:

d’x.  f 1
dt :H:HZM f - (1.2)

The particle position x; is then numerically updated by integrating Newton's equation of
motion. While there are numerous integrating methods, the Verlet algorithm is a

particularly simple and effective one:

X (t+ At) = 2x () — . (t — At) + %Atz (1.3)
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Figure 4: Molecular dynamics simulation. [11]

The present and previous positions of a particle are used in this scheme to determine its
next position. The Verlet scheme can alternatively be expressed in terms of using the
particle's  previous velocity  rather  than  its  previous  position  [12].
While MD is an excellent method for simulating microscale phenomena including phase
changes, chemical reactions and protein folding, a numerical method that tracks individual
molecules is considerably too detailed for macroscopic phenomena—consider that a
single gram of water involves over 10?2 molecules. As a consequence, MD as a Navier-
Stokes solver is completely inconvenient, and more appropriate methods should be

selected for this application [13].

4.2.2. Lattice gas models
Hardy, Pomeau, and de Pazzis developed lattice gas models as an exceedingly simple
model of 2D gas dynamics in 1973. Their particular model was later called the HPP model
after its authors. In this approach, hypothetical particles exist on a square lattice where

they stream forward and collide in a form that, quite like molecules in a real gas, preserves
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mass and momentum conservation. Considering that the HPP lattice was square, each
node had four neighbors, and each particle had one of the four possible velocities c; that

would transport a particle to a neighboring node in a one-time step.

However, Frisch, Hasslacher, and Pomeau did not publish a lattice gas model which can
be used to simulate fluids until 1986. Their model was also called the FHP model after its
authors. The difference between this model and the original HPP model is minor but
significant: Instead of the HPP model's square lattice and four velocities, the FHP model
had a triangular lattice with six velocities ci. This modification provided the model with

enough lattice isotropy to perform fluid simulations [14].

H
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Figure 5:Two-dimensional lattices for the Lattice Gas Automata: (a) Square lattice for HPP model, (b)
Equilateral triangular lattice for FHP model [15].

Lattice gas Automata is constructed as a fictitious and simplified molecular dynamics
where time, space and velocity are all discrete. The domain consists of a regular network
with particles residing in the nodes. A set of Boolean variables (in computer science this

represents a variable that can take two possible states; "true” or "false™ for example) to
describe the occupancy of the particle is defined: n.(x,t) such that (i=1, 2, ...... , M) and

M being the number of directions of the particle velocities at each node.

The evolution equation for lattice gas automata is then:

n(x+e ,t+1)=n(xt)+Q (n(xt)) (1.4)
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Where:
o e are the local velocities of the particle and

o Qiis a collision operator.

This equation implies and dictates that from an initial state with a given configuration of
spaces (translated into nodes xi) and time, the configuration of the particles will evolve at

a time (t+1) in two sub-steps:

o diffusion: where each particle will move towards the nearest node in the
direction of its velocity, hence the term x+e;

e collision: which occurs when the particles arriving at a node interact and
change the direction of their velocity according to the rules of diffusion.
For simplicity, the exclusion principle is imposed and excludes that there
is more than one particle allowed at a given time and at a node with a given

velocity [16].

One of the promoted characteristics of lattice gas models is that the occupancy numbers
ni are Boolean variables (particles are either present or absent), implying that collisions
are perfect: Roundoff error in floating-point operations performed in different CFD
methods has no effect on lattice gas models. Furthermore, lattice gases can be extensively
parallelized. However, the disadvantage of these collisions is that they become out of
control as the number of velocities increases. In a node, for example, there are
224=16.8*10° potential states for a three-dimensional lattice gas with 24 velocities. In this
approach, the resolution of any collision was often determined by a search in a massive
table created by a specialized programmer.

4.2.3. Lattice Boltzmann method

The main problem with lattice gases was statistical noise. At the microscopic level, lattice
gases, like real gases, are bursting with activity. Even for gas in equilibrium, reducing the
control volume leads the density (mass per volume) inside it to fluctuate even more
severely over time: molecules are constantly moving in and out, thereby the law of large

numbers holds less true for smaller volumes. The advent of the lattice Boltzmann method
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in the late 1980s provided a more extensive solution to the problem of statistical noise.
This method was first introduced by tracking the expected value fi = ¢ nj » of the occupation
number rather than the occupation number itself, therefore removing statistical noise by
rather taking a mesoscopic approach. This was the initial way of obtaining the LBM;
lattice gases track the behavior of concrete particles, whereas the LBM tracks their
distribution.

In chapter 2, the technical aspects as well as the mathematical formalism of the Lattice
Boltzmann method will be developed. For the time being, we will just discuss its
advantages and disadvantages in comparison to the large range of available methods.

= Efficiency and simplicity:
Advantages:

0 The LBM is comparable to pseudocompressible methods for solving the
incompressible Navier-Stokes equation, which promotes simplicity and
scalability by permitting artificial compressibility [17]

0 The LBM, like pseudocompressible methods, does not incorporate the
Poisson equation, which can be difficult to solve given its non-locality
[17].

0 The LBM's costliest calculations are local, i.e. constrained to within nodes,

which further improves its parallelizability [18]

Disadvantages:

0 LBM requires a lot of RAM. A huge number of memory access events are
required for population propagation.
O Because the LBM is essentially time-dependent, it is impractical for

modelling steady flows.
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=  (Geometry
Advantages

0 The LBM excels in simulating mass-conserving flows in complex

geometries such as porous media [18].

0 Moving boundaries that conserve mass are particularly successfully
implemented in the LBM, making it an appealing tool for soft matter

simulations [19].

= Multiphase and multicomponent flow:
Advantages:

0 For the LBM, a variety of multiphase and multicomponent approaches are
available.

0 Combined with the LBM's strengths in complex geometries, it implies that
it is well adapted to reproduce multiphase and multicomponent flows in

complex geometries.
Disadvantages:

0 In multiphase and multicomponent simulations, the range of viscosities

and densities is limited.

= Sound and Compressibility:

Advantages:

0 Because the LBM is a (weakly) compressible Navier-Stokes solver, it may
be well-suited for simulating phenomena involving sound and flow, such

as aeroacoustic sound generating.
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Disadvantages:

0 The LBM is not adequate for directly simulating long-range sound
propagation at realistic viscosities.
0 The LBM is not appropriate for modelling very compressible (i.e.

transonic and supersonic) flows.

5. Conclusion:

While the lattice Boltzmann method offers significant advantages, it is not well suited for
all possible applications, as are all other numerical methods for fluids. However, the LBM
is a relatively recent method that is still developing at a quick rate, which indicates that

the spectrum of applications to which it may be used effectively is expanding.
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Chapter Il: Theoretical and

numerical aspects of LBM
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1. Introduction

This chapter focuses on the establishment of the mathematical formalism required to
comprehend the Boltzmann equation. This equation should be discretized before it can be
used as a mathematical model to describe the underlying physics adopted by the Lattice

Boltzmann method in its numerical calculations.

Therefore, the first section will be dedicated to introducing the kinetic theory of gases,
which is the cornerstone of the LBM. The Boltzmann equation is then presented in detail,

with its various terms and forms.

The second section demonstrates mathematically the transition from the Boltzmann
equation with its continuous variables to an equation discretized in velocity space,
physical space and time. This introduces the patterns, which are then followed by the
method for performing the iterative calculations required to simulate particular

phenomena.

2. Kinetic theory and the Boltzmann equation

2.1. Kinetic theory of gases

In the context of fluids, we can consider three levels of description: microscopic,
mesoscopic and macroscopic. Microscopic systems denote a molecular description based
on Newton’s dynamics. Macroscopic systems denote a fully continuum picture with
tangible quantities such as fluid density and velocity that appear in the governing Navier-
Stokes equations [20]. In between, there is the “mesoscopic” description, which does not
track individual molecules, but rather distribution or representative collections of

molecules.
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The kinetic theory of gases attempts to explain the microscopic properties of a gas in terms
of the motion of its molecules. The gas is assumed to consist of a large number of identical,
discrete particles called molecules, a molecule being the smallest unit. Maxwell,
Boltzmann and Clausius developed elements of kinetic theory between 1860-1880’s.

Kinetic theories are available for gas, solid as well as liquid.

This theory is the mesoscopic fluid description on which the LBM is based. The main
variable in it theory is the distribution function. It can be regarded as a more generalized
case of density p. We know that the density represents the density of mass in a physical
space, noted p(x,t), while the distribution function, noted, f (x,&,t), represents the
density of mass in both three-dimensional space and three-dimensional velocity space.

More fundamentally, it can be defined as the probability of finding a particle with velocity

between & and &+d¢& within a volume dx around a position x .

In dimension D, the distribution function is expresses in M.L?° T° . For example, in a 3D

space:
1 1 Kg.s®
f =K e =
L] g><msx(m/s)3 m°
D=1[de=d¢, dx = dx
For: D=2{dé=d¢& d¢, dx = dx.dy

D=3 |dé=dé.dE,dé, | |dx=dxdy.dz

Because they represent the distribution function's moments, macroscopic variables such
as density p and velocity u are linked to it. They can be obtained by integrating and
weighing it over the velocity space. The macroscopic mass density is calculated as

follows:
p(xt) = F(x.&0.d°% (21)

The integration over the three-dimensional velocity space translates the contribution of all

possible velocities to the density of particles at a position x and a time t.
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Accordingly, by taking into account all possible velocities, the contribution of &f can be

used to calculate the macroscopic momentum density as the following:
p=p(x,uxt) = j EF (X E1).d% (2.2)

Also, we can find the macroscopic total energy:

o(x,1).E(x,1) =% j [ (x,&,0).d% (2.3)

This total energy contains two types of energy; the so-called kinetic energy due to the bulk
motion of the fluid and the internal energy due to the random thermal motion of gas
particles. So, the macroscopic internal energy density can be found as:

1
o(x,1).e(x,t) = > j V[ . f(x & 1).d% (2.4)
Where vis the relative velocity, defined as: v(x,t) = &(x,t)—u(x,t).

2.2. Boltzmann equation

The Boltzmann equation defines the fluid's statistical behavior. It describes the time
evolution of the distribution function. As previously mentioned, f is a function of the
following variables: position X, particle velocity £, and time t, so we can express its total

derivative in respect to time as the following:

ﬂz(ﬁjﬂ+ of |dx, | of 1ds, 2.5)
at (at)dt (ox, ) dt | 2g, | dt

Some modifications can be made on the terms on the right-hand side; we have dt/dt =1,

. L dx, . dé, F, .
the particle velocity o =¢&,, and according to Newton’s second law —==—=, which
P

F
has a unit of: {—ﬁ} =N /Kg. In addition, the total differential term can be expressed as:
Yo

df . : .
Q(f)= i We finally obtain the Boltzmann equation:

F
i+§ﬂ.i+—ﬂ.i:§2(f) (2.6)
o e, plog,
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This can be seen as a kind of advection equation: the first two terms represent the
distribution function being advected with the velocity £ of its particles. The third term
represents forces affecting this velocity. On the right hand side, we have a source term,
which represents the local redistribution of f due to collisions. Therefore, the source term

Q(f)is called the collision operator.

2.2.1. The collision operator
The collision operator denotes the rate of change of the distribution function as a result of
a collision. If no collisions occur, the Boltzmann equation is reduced to a pure convection
equation (no diffusion). For any terrestrial fluid: Q#0.
Many physical models describe collisions. We will only consider those who adhere to the
following two criteria:
1. At equilibrium, Q is such that the distribution is the Maxwell-Boltzmann distribution.
2. There is mass, momentum, and energy conservation during a collision:
[ W, Qdxd&for ke[0,1,2,3,4]
Which can be extended into the following conservation properties:

Mass conservation: J.Q( f).dxdé=0 (2.7)
Momentum conservation: _[f.Q( f).dxdé =0 (2.8)
Total energy conservation: ﬂéz‘.Q( f)dxdé=0 (2.9

Internal energy conservation: Hvz‘.ﬂ( f).dxdé=0 (2.10)

The first collision operator expression introduced by Boltzmann accurately describes
reality, but since it is integral, it gives the Boltzmann equation an integral-differential
character that is difficult to solve both analytically and numerically. The BGK

approximation, which respects the two aforementioned properties, is the best and simplest

35



approximation, to the extent that a very large majority of LBM codes incorporate this
collision operator.

2.2.2. The BGK operator
This operator, named after its inventors Bhatnagar, Gross and Krook, introduces a very
simple and practical approximation. It entails stating that each collision modifies the

distribution function f by a factor proportional to the difference between the current
distribution f and the equilibrium distribution f*; Q.. zC.[f - feq] [21]

The dimensional analysis of the Boltzmann equation shows that Q has the dimension of f
divided by time. As a result, C is homogeneous to the inverse of the relaxation timer .
The fact that the system is stable provides us with more detail.

Consider a positive perturbation applied to an equilibrium system (f > ). Since the
system is stable, f must decrease in time in order to return to its equilibrium value f .

f . : .
We, therefore, haveg—t<0. As a result, the constant C is negative. We then write:

Qpex 5_71'[]( N feq}

We thus obtain:i+§.Vf =_—1.[f - feﬂ (2.11)
ot T

This equation is highly nonlinear since the equilibrium distribution is affected by many
variables, including density p, velocity &, and temperature T (as indicated in the expression
for the Maxwell-Boltzmann distribution). Nonetheless, this non-linearity is tolerable since
the value of f* in x is determined solely by quantities evaluated in x . Meaning that it is
local in the physical space.

Moreover, this argument specifically reflects one of the major benefits of the LBM, which
is summarized in the following sentence: "the non-linearity is local, non-locality is linear."
interactions between nodes are entirely linear, while the method’s non-linearity enters in
a local collision process within each node. This property makes the LBM very amenable

to high-performance computing on parallel architectures, including GPUs. Coupled with
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the method’s simplicity, this means that parallelized LB simulations can be tailor-made

for a particular case more quickly than simulations using a conventional method [18]

2.3. From a microscopic to a macroscopic scale

A question can now be raised: how can the Boltzmann equation explain the macroscopic

behavior of a fluid using a molecular description and the distribution function?

The response is that by manipulating the Boltzmann equation, the macroscopic equations
governing the fluid's behavior can be obtained directly. To be more specific, the mass
conservation equation is obtained directly by integrating the Boltzmann equation over
velocity space. The other macroscopic conservation equations are obtained by the
moments of the equation i.e. multiplying the equation with functions of x and integrating

over velocity space.

To deal with the force terms, we need to know the moments of the force term, which we

can find directly using multidimensional integration by parts as:

of

—d%=0 (2.12)
0%, d
O o (06, ¢4
— A% =—| 2 f 4% =—pS (2.13)
jfa% 3 Iaéﬂ £=-po,
O 5. (0068 ¢ y3r__
Jatggde=] oo 1de=20, 014

2.3.1. Mass conservation equation

As previously said, by integrating the Boltzmann equation over the velocity space we can
find the continuity equation as follows:

0 3 i 3 i i 3¢ _ 3
ajf.d§+6Xﬂj§ﬁ.f.o|§+pjafﬂ.olg_jgz(f).olg (2.15)
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The first two terms represent the moments calculated in equation (2.1) and (2.2); the force
term is equal to O as shown in equation (2.12). In addition, the integral of the right-hand
side is solved in the collision operator’s properties in (2.7). We thus obtain the following
equation, known as the mass conservation equation:

9 APU) o (216)

ot OX 4

In the above equation, it is clear that it is independent of the form of the distribution
function, a point that will prove to be useful for future material.

2.3.2. Momentum conservation equation

By similarly taking the first moment of the Boltzmann equation, we find:

oI
APU) , T _E - (217)

ot X, “

Where
o Il is the momentum flux tensor defined in the Euler equation as:

I, =puu,—o.,
o o,ls the stress tensor.
Since the Euler equation describes only reversible momentum transfer, the stress tensor

represents pressure forces, which are reversible. So for ideal fluids, we write: o, =-pJ,,
[22].

Therefore, we can finally obtain the following equation:

opu,) , Apun) __op

ot OX, OX,

+F, (2.18)

2.3.3. Energy conservation equation
When multiplying the Boltzmann equation by & .& before integrating over the velocity

space we obtain (here we directly split the moment similarly to the momentum equation):
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6(pE) n a(puﬂE) _ a(uagaﬂ)
ot OX OX

+Fu, - (2.19)

B s B

Where q is the heat flux given as: q, = %jvavavﬂ. f.d®
. . 1 .
We can eliminate the bulk motion energy component Ep‘uz‘ by subtracting the mass

conservation equation multiplied withu,, . We therefore obtain:

o(pe) , opuse) _  ou,  oq

P e
ot 6xﬂ 8xﬂ 8xﬂ

(2.20)

It is known that the Euler equations are a simplification of the more general Navier-Stokes
equations of fluid dynamics. They neglect the effects of viscosity by considering the fluid
as “ideal”. When both viscosity and the heat flux are added, The Navier-Stokes-Fourier
system is obtained.

Assuming that f ~ £, the equations previously demonstrated result in the Eulerian

momentum and energy conservation equations. In that perspective and similarly to the
macroscopic scope, it becomes clear that the phenomena of viscosity and heat diffusivity
are related to the non-equilibrium of the distribution function.

The Chapman-Enskog analysis is an established method of connecting the kinetic and

continuum pictures by finding the non-equilibrium contribution to f. Its main idea is
expressing f as a perturbation expansion about f *[6]:

f=f91ef@4e2f@ 4 (2.21)
Where ¢ is the smallness parameter, it labels each term’s order in the Knudsen number.
In the absence of an external force field, the Maxwell-Boltzmann equilibrium distribution
becomes the Maxwell distribution. It is the exponential of the ratio of kinetic and thermal

energy. We then write:

—(v-u)?
fa__ P gw ) (2.22)
(27 RT)P"
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3. The Lattice Boltzmann implementation

Unlike conventional numerical methods based on the discretization of the equations of
fluid mechanics, which can be hard to implement and parallelize, the LBM is based on

microscopic models and mesoscopic kinetic equations.

This method follows the same approach taken by Ludwig Boltzmann concerning
thermodynamic laws. The basic premise states that the collective behavior of a set of
microscopic particles is at the origin of the observed macroscopic fluid flow and that its
dynamics are not sensitive to the underlying details of microscopic physics [23].

Simple kinetic models are then constructed, which include the physics of microscopic or
mesoscopic processes so that the averaged properties behave according to the equations
of fluid dynamics on the macroscale. Despite the fact that the LBM is known as a particle-
based method, it does not monitor the behavior of each concrete particle but rather their

distribution. This is consistent with its primary focus: averaged microscopic behavior.

Analytically, the Boltzmann equation is much more difficult to solve than the NSE.
However, it is paradoxically simpler to implement. The first explanation is that most LBM
codes use a simplified version of kinetic theory in which mass and momentum are
conserved during collisions. Moreover, considering that molecules have one inner degree
of liberty, collisions are elastic and do not transport rotational or vibrational energy [24].
The second reason is that the force-free Boltzmann equation is a simple hyperbolic
equation that describes the advection of the distribution function f.

This approach prevents us from discretizing the term (u.Vu) present in conventional
methods that is a major difficulty since it introduces complicated iterative numerical

schemes along with approximation errors.
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3.1. The discretized Lattice Boltzmann Equation

To numerically implement the Boltzmann equation the continuous variables t,xand ¢
need to be discretized. The first parameter introduced here is the discrete-velocity
distribution function f; along the ith direction. Similar to the definition previously written,
it represents the density of particles with velocity c;at a time t and a position x. However,

unlike the continuous distribution, the variables here are discrete. For example, the

velocity ci belongs to a small set of discrete velocities {c; } . The points x where fi is defined

are arranged in space as a square lattice with Ax lattice spacing. Furthermore, fiis only

defined at specific times t, separated by a time step 4z.

One is free to choose the values of 4x, Ay, 4z, At, and ci independently. However, it will
be wise to correlate them. Indeed, if we can ensure that a particle moves by jumping from
one mesh node to another mesh node during the time step t, we avoid the case where a
particle is between two nodes, which would require interpolations. Therefore, with the
space steps 4x, 4y and Az chosen, each velocity ci will be made to respect the following

synchronization condition [25]:

c, IS an integer multiple of

¢, is an integer multiple of

X
t
4y
t

. . . Az
c, Is an integer multiple of o

It has previously been shown that there is a link between macroscopic quantities, such as

density, momentum and total energy, and the various moments of the distribution function
M ™ :I f.chdc

Hence, new expressions must be found to replace them when the velocities only take a

few values in finite dimensional set. The Gauss method of quadratures is one method for
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obtaining an approximate value for a continuous integral. It states that there is a set of Q

weighting coefficients wisuch that the following equality holds for alln €[0,1,2,3,4]:
Q
I f.chde=> w.f(xc,t).c (2.23)
i=1

Which defines the distribution function discretized by the relation: f.(x,t) =w..f(x,c;,t)

Discrete velocities c¢; along with weighting coefficients w; form the so-called velocity sets

{cwi}

These different velocity sets are useful to classify different lattices, each serving a specific
purpose.

They are usually denoted as DnQm, n being the number of spatial dimension and m the
number of velocities in the set. D1Q3, D2Q9, D3Q15, D3Q19, and D3Q27 are the most
widely used velocity sets for solving the Navier-Stokes equation.

(3]

v

lTi X

.
4

9 & - > s X 3

4
D1Q3 D2Q9

Figure 6: D1Q3 and D2Q?9 lattice schemes [26].
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18
D3Q15 D3Q19

D3Q27

Figure 7: Three-dimensional lattice models: D3Q15, D3Q19, and D3Q27
[27].

To reduce memory and computational requirements, it is preferable to use as few
velocities as possible. However, there is a tradeoff between higher precision and smaller
velocity sets (e.g. D3Q15) (e.g. D3Q27). D3Q19 is the most widely used velocity set in
3D.

In the following section, the demonstration of how to obtain the lattice Boltzmann
equation (LBE) by discretizing the Boltzmann equation in velocity space, physical space
and time is explained:

f.(x,y,z,t+At) - f.(x,y,2,t) e f.(X+AX,y,z,t +At) - f,(X,y,z,t + At)

At w AX
f.(X,y+Ay,z,t+At) - f,(X,y,z,t + At)
+C,,.
y Ay
e f.(X,y,Z+Az,t+At) - f,(X,y,2,t + At)
iz’ Az
Z—E[fi(X,y,Lt)_ fieq(x1 y1z’t):| (224)
T
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_ Ay

. AX Az
Given thatc, =—, C. c, =—, We get:
At At

iy T At’ iz
f.(Xy,z,t +At) - f.(Xy,2,1) N f.(X+C,.AX, Y, Z,t + At) — f,(X,y,Z,t + At)
At At
fi(x,y+c,.Ay, z,t + At) - f.(X,y,z,t + At)
+
At
N f.(X,y,z+cC,Az,t +At) - f.(X,y,z,t + Al)
At
— vzt - 1900y, 2] (2.25)
T

Knowing the definition of a total differential:
df =i.dx+i.dy+i.dz (2.26)
OX oy oz
The last three terms on the left can be replaced by the following expression:

fi(X+C,.AX, Y + ¢ Ay, Z + €, Azt + At) - f.(X,y,Z,t +At)

2.27
x (2.27)
We thus obtain:
M - fi(xy,z,t)  f(X+C.AX, Y +C Ay, Z+C, Azt + At) - \.(X\Y\Z\L-I-A\t)
+
At At
Z—E[fi(X,y,Lt)_ fieq(xvyvz’t):l (228)
T

We replace t with a dimensionless relaxation time t”, such that: 7~ =§. Finally, we

obtain the lattice Boltzmann equation:

fi(X+C . AX, Y +C Ay, Z +C, AZ,t+ Al - fi(X,y,2,1) = —%[fi(x, y,z,t) — f.4(x, y,z,t)]
(2.29)

The value of the equilibrium distribution function is crucial since it determines the model's
behavior. Then it must be discretized as well into the the specific set of velocities. For that

sake, the equilibrium distribution is approximated as:

Q Q
FO =S w. £ 5 > w=1 (2.30)
i=1 i=1
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When performing a Taylor series expansion of f™) up to second order and using the

previous approximations we obtain [28]:

2ct  2¢?

2
Foa p.Wi.[l-i- “C'fi Lue)” _uu J (2.31)
Where:

o wi;are the weights specific to the velocity set
o cithe lattice velocity
o uthe macroscopic velocity

o Csthe speed of sound (in the isothermal LBE model, it is defined by the relation:

- : 1 AX?
p =c2.pdefined in all the velocity sets above as: ¢ = §'A_)t(2' [29]

When the LBE is implemented, it is decomposed into two parts that are determined

separately and successively [30]

e The collision process is first determined, in which particles in the same position
redistribute their velocities due to interactions:

0D = Ho) —=(H0D - 9 (xD)  (232)
T
Where: fi"is the distribution function after collision.
e The streaming (or propagation) is determined, in which particles change position
due to their velocity:

f.(X+CALt+At) = f7(x,1) (2.33)
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The different steps in the LBE operations can be presented as the following: first during

the collision step, the density p and the macroscopic velocity u are calculated to determine

the equilibrium distribution function f.* and the post-collision distribution f;". We stream

the resulting distribution to neighboring nodes after collision. One time step has elapsed

since these two operations were completed, and the operations are then repeated. This

process can be summarized in the following scheme:

moment update equilibrium output
—_— eq — ’
fi— pu pu —rj[. p,u, o — disk
collision
fir ff“ - f*
new time step propagation
t+At—t F=h

Figure 8: An overview of one cycle on the LB algorithm. The dark grey boxes show
sub-steps that are necessary for the evolution of the solution. The light grey box
indicates the optimal output step. The pale boxes show steps whose details are given
later.

3.2. Boundary and initial conditions

The initialization of the Boltzmann lattice algorithm depends on the case to be simulated.

Two cases can be distinguished:

1.

If the goal is a steady-state solution, it is sufficient to bring initial populations to

equilibrium. f.(x,t =0) = f,*(p(x,t =0),u(x,t =0)) . This isa common choice for

initial macroscopic fields : p(x,t =0)=1and u(x,t =0)=0

If the goal is a time-dependent solution with non-homogeneous initial conditions,

population initialization must take into account both equilibrium and non-

equilibrium components: f,(x,t =0) = f*(x,t =0) + "™ (x,t =0)

The formulation of boundary conditions is required for the solution of any mechanical

problem. The lattice Boltzmann method can be used to describe boundary conditions of

various types by varying the values of the distribution function for the nodes
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corresponding to the system boundary. This section is dedicated to the implementation of
common boundary conditions in fluid mechanics, such as periodic conditions, no-slip

conditions at solid boundaries, and imposed pressure conditions.

3.2.1. Periodic conditions

Periodic conditions are considered in the case of a closed loop flow, where the inlet and
outlet are treated as lines of neighboring fluid nodes. Figure 9 depicts the implementation
of this condition using the example of a node at the flow's outlet. It can be seen that the
fluid particles carried by the distributions f1, fs, and fg will be advected to the three
neighboring nodes of the opposite boundary (the inlet) according to the velocity directions

C1, Cs, and cg after one time step At.

TTi:} O—0
inlet fe outlet

Figure 9: Implementation of periodic conditions

3.2.2. Bounce-back condition

The assumption of non-slip along a wall is a common application in fluid mechanics: the
velocity of the flow in the direction tangent to the wall is zero. This assumption is usually
made in conjunction with the assumption of the wall's impermeability (nullity of the
velocity component in the direction normal to the wall). The LBM algorithm normally
treats the joint implementation of these two conditions as a bounce-back of the fluid
particles along the wall. Figure 10 depicts a schematic representation of the

implementation proposed in [31].

Consider a boundary (grey line) half a length (h/2) away from the final line of fluid nodes.

The fluid particles corresponding to the distribution function's (post-collision) values fa,
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f7, and fg at time to move away from the fluid node and bounce against the solid wall at
time t+ At/ 2. They reverse their velocities (while remaining in the same direction) and
return to the same fluid particle at time t + At, as distribution function values f», fs, and fe

(respectively).

T
t=t, AN ijz
/|
f Vi,

o T’}{@
LN
t=t 4 At L LS ] T%jhﬂ

Figure 10: Implementation of bounce-back conditions

3.2.3. Pressure (velocity) condition imposed

During the LBM algorithm's propagation step, the distribution functions of a node are
advected from neighboring nodes along the discretized velocity directions. Thus, after this
step, the values of the distribution function for certain velocities (or directions) are known
at the level of the nodes at the boundary, while others remain unknown due to a lack of
information from outside the fluid domain. The unknown distribution function values
must be determined using appropriate criteria. It is possible, for example, to calculate the
unknown distribution function values in order to obtain the desired pressure or velocity.
To begin, consider a node at the flow's inlet, as shown in Figure 11 that follows.
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Figure 11: Implementation of velocity imposed conditions [32]

After a propagation step, the distributions fo, f2, f3, f4, fs, and f7 are known at this node
because they are derived from neighboring nodes within the fluid domain, whereas the
distributions f1, fs, and fg are unknown and can be adjusted to create a pin pressure or
velocity uin (or mixed pressure/velocity conditions). The case of an imposed pressure (i.e.,
the Dirichlet condition) is studied first. Such a pressure will result in an initially unknown
velocity at the flow's inlet. To complete the implementation, the two components of this
velocity {us,u2} must also be calculated. We obtain the following relationships using the

following equations:
8 m 8
p=my f u==> f.c (2.34)

and assuming that the velocity component parallel to the input boundary is zero (i.e.,
u2=0):

8

my f,=p, = o (2.35)
i-0 C,
8

m.>_ fc.e = pu,
= (2.36)
8

m.> fc.e, =0
i (2.37)
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A fourth equation is required to solve such a system of equations with four unknowns, f1,
fs, fs, and u1. The rebound condition, as proposed in [32] is applied to the non-equilibrium

part of the distribution function along the normal direction to the boundary, i.e.:

f,— =1 —f" (2.38)
Finally, the result is:
C2
u =1-(f,+f,+f, +2(f,+ f, + f,))— (2.39)
2 p
f=f 2t 2.40
ST (2.40)
1 1p,

f,=1, —E(f2 - f,) +g—52u1 (2.41)
1 1p, (2.42)

fe =T +§(f2 - f4)+gc_2u1

It is possible to impose the value of the normal component by making a simple
change to the control variable and always assuming a zero velocity component parallel to
the boundary. In this case, a different combination of (2.35) and (2.36) yields the following

equations, allowing us to determine the unknown quantities: pin, f1, fs, fs.

Pin:11 (fo+ f,+f,+2(f,+ f, + f,) (2.43)
2

f="f,+ 3 iUy (2.44)
1 1

fo =1, —=(f, = f)+=pnu (2.49)
2 6
1 1

fy =1, +§(f2 - f,) +€,oin.u1 (2.46)
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The complete process of a LB algorithm’s cycle, including the boundary condition is

shown in figure 12.

moment update
fi—pu

1

new time step
t+ At —t

1

calculate wet-node
populations

equilibrium
pu— f

T

initialisation
ou— fl’

propagation
at boundaries

output
o, u, o — disk

!

collision

fuf > 1

l

propagation

f,:*—’fi

Figure 12: an overview of one cycle of the LB algorithm, considering boundary conditions and the one-off
computation of initial conditions (center), but not considering forces. Optional sub-steps are shown in light

grey boxes.
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4.Conclusion

The understanding of the theoretical foundations of the LBM provides the essential
elements necessary for the initiation to this method and its subsequent manipulation.
While its implementation in a numerical environment proves to be particularly relevant as
it is the discretization that will establish the close link between the described physical

model and its implementation in software, which explains the high speed of execution,
associated with LBM.
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Chapter I11: Framework structure
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1. Introduction

Palabos is a solver that uses the C++ programming language in its interface; therefore, it
is critical to first understand the motives for this choice by outlining the paradigms
employed in this programming language as well as its primary features that benefit the

solver.

Understanding these features will then allow us to discuss Palabos' techniques to
appropriately laying out the main elements of a simulation as well as depicting the

structure in which they are organized.

2. The programming language

It is the type of problem that determines which programming language to employ and
which is the better option. This decision is based on the paradigm that each language is
linked with. The programming paradigm is a fundamental style of computer programming
that differs in how problem-solving processes are defined. Given the variety of paradigms
and the interdependence of their concepts, we will limit ourselves to contrasting two
paradigms that are frequently encountered in CFD works: procedural programming (found
in the FORTRAN language, for example), and object-oriented programming (found in

cases where a representation of real physical objects is required).

2.1. Procedural programming

This type of programming focuses on an algorithm that determines the logic behind a
problem's solution. The problem is broken down into numerous tasks that must be
completed in order to be solved, each of which is expressed as a function or subroutine,
which is a set of instructions that, when run, provides the required output. Accessing and
modifying data in the procedural paradigm is quite easy because there are only two types
of variables; global and local. The global variables are declared at the beginning of the
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program and are found throughout the resolution of the problem, while the local variables
are those used to perform intermediate operations.

2.2. Object-oriented programming (OOP)

A programming paradigm focuses on thinking about problems in terms of objects and
their behavior. The object is a data structure that closely mimics a physical object. Then
there are the classes that are built around the objects to define their behavior and
interactions with each other, and possibly to organize them in a hierarchy. The OOP puts
its full force behind a concrete problem that may be destructured in a hierarchical manner
and in which the data are at the heart of the problem (knowing that modifying them is
more difficult than modifying them in procedural programming). Because of these factors,

OOP is widely employed in the video game industry.

C++ is a general-purpose programming language that was created as an extension to the
C language, making it multi-paradigm (including object-oriented paradigm, procedural,
functional). It is a simple language in the sense that it allows programs to be broken down
into logical units and pieces, and it comes with a large library and a wide range of data
types. C++ is one of the fastest languages and is very near to low-level?, providing for

complete memory allocation and management control.

Inheritance and polymorphism are two of the many interesting features in C++ that will
be very relevant to our work.

Inheritance is the process of creating a new class (derived class) that inherits the features
of an existing class (base class). Inheritance enhances reusability while also reducing code
length in OOP.

Polymorphism enables an object to select the form of a function to implement at both
compile-time (overloading method) and run-time (overriding method).

1 What is a low-level language? It's a programming language with little separation between
the machine and the language itself. As a result, "close to the hardware" is a term used to
describe low-level languages.
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3. PALABQOS (Parallel Lattice Boltzmann Solver)

3.1. Introduction

Palabos is a general-purpose computational fluid dynamics (CFD) framework with a
kernel built on the lattice Boltzmann (LB) methodology. The native programming
framework of the library is written in C++. The approach is based on a molecular
representation of a fluid based on the Boltzmann equation, and it can explicitly integrate
concepts derived from an understanding of molecule interactions. It keeps the cycle
between the elaboration of a theory and the formulation of a corresponding numerical

model short.

Palabos has proved its efficiency in the field of Computational Fluid Dynamics over the
years [33]. Although LB solvers are explicitly time-dependent, Palabos' efficiency and
accuracy are comparable to that of a commercial, explicitly stationary Navier-Stokes
solver [34].

The close correlation between the physical model and the software implementation
accounts for the high execution speed of LBM implementations. The transport in space of
statistical groups of flow particles, for example, converts into copies inside a matrix-like
data structure from a cell to one of its neighbors, as an artifact of LBM's heritage from
Cellular automata. In a distributed-memory parallel computing platform, this gives direct
control over the use of computer memory and its cache hierarchies, as well as data
distribution and access.

More specifically, canonical LBM models are built on a distinction between collision,
which includes all physics but does not include data communication between cells, and
streaming, which is model-independent but communicates data between adjacent cells. As
a result, the technical aspects of the algorithm (data access and parallel communication)
are frequently incorporated into the streaming step. The Palabos kernel then takes care of
the streaming while the user concentrates on the collision model's higher-level

implementation.
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3.2. Software architecture and application development

model

Since it is designed around an efficient architecture and access to the key data chunks

identified in a simulation, the Palabos software structure can be considered data-oriented.

Two types of algorithms act on the data sets:

Pure LB models, which respect the collision /streaming cycles: they are defined at
a cell-base level (since the collision step encompasses the physics and nature of
each collision that can change from a cell to another). To deal with the large
number of collision terms used in the literature, we use an inheritance-based type
of polymorphism. Object composition, another object-oriented idiom, is used to

combine various elements of a collision model.

Non-LB algorithms: they are defined at the component level (rectangular cell
groups resulting from domain partitioning) and involve more explicit
programming efforts. Even though, as previously said, the programmer is unaware

of the implementation specifics of parallel communication and mesh homogeneity.

The software architecture is designed to be highly extensible as it allows the programmer

to incorporate a variety of models [35]. The environment (which translates into lattice

descriptors), the collision step with its physical models, and the data procession that can

be implemented in the streaming step are all the steps of a simulation where these changes

or additions can be made. As a result, we differentiate between the following mechanisms:

Using C++'s "templating mechanisms," lattice descriptors can be written to define
new data layouts.

New local LB collision terms are described using collision models.

Data processors are written to enforce coupling terms between different models or

to define new non-local algorithms (type n°2 previously defined).
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In the following section, the processes and technical aspects that were used to make the

additions of a large number of models possible will be developed:

3.2.1. Data containers: Multiblock

Different types of multiblock describe the fundamental data containers of a Palabos
simulation. It is possible to think of them as n-dimensional matrices. They hold a certain
amount of data, such as each collision model associated with each LB cell, which is
dynamically specified in terms of type and scale. There are four customizable types of
multiblock. A new mesh is allocated to each instance (object) of a multiblock, regardless
of its type. Meshes also have the same number of cells to ensure the parallel feature and

allow interactions.

e Multiblocklattice: each part of this data structure corresponds to an LB cell. The
variables of a cell, referred to as populations, constitute a discrete version of the
statistical probability density function found in the kinetic theory. Along with other
statistical details, an external force term may be introduced.

The data layout is specified by a so-called lattice descriptor, which includes both
individual cell data and global lattice information. The "ForcedD3Q219descriptor,”
for example, gives each cell 22 floating-point variables: 19 population, and a 3D
force vector. In addition, each cell has a pointer to a "dynamics"? object that

defines the collision model.

2 Values are assigned to cells in an ordinary table in a well-ordered and sequential manner. To get the value
of a cell in memory, all you have to do is look up its index. Except that in a dynamic array, things are
different. A dynamic array's size is variable. This has the benefit of adjusting the memory allocation to the
program'’s requirements. However, without pointers, the array's values are dispersed in memory. Therefore,
the values are ordered and findable thanks to these pointers. Knowing that each cell contains the value in
question as well as the previous and following pointers, we can find the value of a specific cell by knowing
the address of these.
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e Multiscalarfield: As a user-input, each element in this data structure contains a
scalar variable (integer or floating-type point). Temperature in coupled, buoyancy-
driven flows®, or temporary storage of a scalar variable in a post-processing step

are just a few examples.

e Multitensorfield: This data structure, like the multiscalarfield, contains a field of
vectors or tensors with any number of components, such as velocity or force,
during the simulation or post-processing stage. Depending on the memory layout's
performance, it might be better to store directly in the multiblocklattice cell or in

a separate multitensorfield.

e Multiparticlefield: This data container contains Langrangian particles (Lagrangian
particles are used since the Lagrangian description emphasizes trajectories.) In the
case of our simulation, this factor is just as fascinating).

They can be ranked in ascending order based on their potential impact on the flow:
» Fully passive: inert objects that have no impact on the flow and are only
present in the environment.
» One-way coupled: includes passive pointers to dynamic arrays of particles
that are coupled to the flow and have a Lagrangian definition.
» two-way coupled: contains particles that have a direct effect on the flow

and are thus coupled in a more complex way.

It is important to keep in mind that:
e All multiblocks objects, including the multiparticlefield, allocate a new mesh to
which particles are attached based on their space location.
e Due to the underlying similarity of mesh structures, particles are easily coupled

with physical objects, which are described by multiblocks objects.

3When heat is added to a fluid density that varies with the temperature, a flow can be induced due to the
gravity acting on the density variations
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e Palabos provides a 2D or 3D structure that is separate, so all multiblocks are
represented in 2D or 3D.

3.2.2. Collision model: Dynamics

These collision models are implemented as "dynamics™ classes, which means they are
attached (‘interpreted’) at runtime.

As previously mentioned, an LBM simulation follows a basic collision/stream cycle
model. The first step, collision, contains all of the physics required for the model. Since
collisions access all cells individually, this phase is entirely local in this regard.
Furthermore, the computations performed in each cell are independent of the others (the
data here is not communicated). On the other hand, the streaming step through its
component-level definition is non-local because it allows the communication of data
between adjacent cells by copying data from a cell to a local group of cells, defined by
their velocities (which are defined in the cell's data layout contained in the lattice
descriptor).

The collision model must not only explain the physics of the actual collision step, but also
define the collision model's various properties through the implementation of macroscopic
variable computation algorithms. Rescaling algorithms for populations and other
statistical variables for a given set of cells with various time and/or space scales are also
included.

The literacy is abundant with LB models and any code duplication must be avoided when
implementing different models for different individual cells. For that matter, the dynamics
classes (otherwise collision models) can be organized in a hierarchy. Since most of these
models are based on the same type of equilibrium populations, the similarity in the

computation of macroscopic variables for incompressible flows in LB models is
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represented by an ancestor inheritance. Figure 13 shows how some models are organized

hierarchically.
[ Dynamics ]
General, abstract interface ]
/ far all Dynamics classes,
| BounceBack |

For no-slip walls: this class is
so different from all other
dynamics classes that it direct-|
ly inherits from Dynamics,

| CompositeDynamics I

BasicBulkDynamics

Composite dynamics allow object
composition in the form of dynamics
chains, to achieve custom behaviar,

A basis for most lattice Boltzmann

collision steps,

[ VariableOmegaDynamics ]

[ PreparePopuIationsDynamics]

IsoThermalBulkDynamics

Change the relaxation parameter
omega before collision,

Re-attribute new values to the popu-
lations before collision,

[ OmegaFromPiDynamics ]

[ BoundarndmpositeDynamich

All the models for incompressible or
very slightly compressible Navier-
Stokes equations,

I

The value of omega depends only
on the stress tensor,

Boundary node: some populations
are unknown after streaminag,

i

SmagorinskyDynamics

[ StoreVelocityDynamics ]

Generic Smagorinsky model for LES
runs, independent of the choice of
the underlying |attice Boltzmann
madel,

The value of velocity is imposed and
stored in the dynamics object,

|

VelocityDirichletBoundary.. }

..Dynamics

Dirichlet condition for the velocity
on a boundary node,

l

RegularizedVelocityBoundary
..Dynamics

Regularized boundary condition on
a flat wall,

BGKdynamics

The well known BGK single-relaxation-
time model, which works for all lattices

D End-user classes. |

Figure 13: Inheritance graph of collision models.

Some proprieties cannot be inherited and must be constructed dynamically. For example,

using an LES model can modify the collision term. However, adding these modifications

eliminates the potential for interference or conflict. In each cell, the collision model is

replaced by an LES model that obtains a copy of the original model to perform the

collision phase. "Object composition,” which is in Palabos equivalent to "Dynamics

chains,” enables this operation.
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3.2.3. Non-local algorithms and couplings: Data processors

Data processors work on a broader level than collision models, acting on entire multiblock
modules rather than single cells. In an LB simulation, they carry out operations that go
beyond the collision/streaming paradigm. They can perform non-local operations that are
not covered by the streaming step, or they can couple individual equations.
Some examples are as follows:
e Implementing a multi-phase or multi-component flow by coupling fluid
components.
e Implementing a buoyancy-driven thermal flow by coupling a temperature and a
fluid field.
e Implementation of accurate boundary conditions.
e Data post-processing, which involves extracting flow variables from the lattice and
converting them to scalar/tensor fields before inserting them into data files.

Since data processors operate on a multi-block part basis, they have two distinct
interesting features. The first is that they can share data across multiple multiblocks (of
the same or different types) that they are working on simultaneously, which is important
for practical different coupling implementations. The second allows for a reduction in the
number of operations in the aforementioned subdomains; computation of average kinetic

energy, computation of drag force acting on an obstacle (in our case, a wing section).

3.3. Memory organization and mesh refinement

During the streaming step, a cell must be able to communicate with its neighbors at any
time. Depending on the complexity of the shapes on which the calculation is run, there are
two key approaches to guaranteeing this access in an LB simulation. For exclusively
normal shapes, since the data is organized in matrix-like data structures, simple index
arithmetic allows access to the neighbors. In the case of irregular shapes, a neighbor-list

approach is used, with pointers being used to reach all necessary neighbors. As a result,
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more memory is needed. In the most complicated shapes, only six neighbors can be
accessed directly via their pointers, while others can only be accessed indirectly. This is
due to the high memory consumption and the fact that the number of neighbor pointers

equals the number of populations (variables in a cell).

Palabos uses a more general matrix-based formalism than the LB code, in which the
technique is dependent on the type of shapes. Of course, depending on the mesh, this
formalism is revised, but the concept remains the same.

A powerful spatial hashing scheme is used for homogeneous simulations. A hash table is
a data structure that stores data in an associative manner using a hash function. The data
is stored in an array format, where each data value has its own unique index value. Access
of data becomes very fast if we know the index of the desired data. During lookup, the
key is hashed and the resulting hash indicated where the value is stored. Obviously, the
low memory allocation is a benefit of such a system.

As for mesh-refined simulations, since Palabos decomposes multiblocks into components,
it builds an octree to define* the relationships between those. The challenge then is to find
the multiblock component's size that keeps a good compromise between domain shape
and the parallel efficiency, because while the former gets optimal with small components,
the latter does with larger components.

Palabos' approach to mesh refinement is vital to the memory organization among other
factors. Palabos separates each multiblock with a different mesh level from the others and
then implements them. Consequently, each level has a memory allocated accordingly. The
fluid models shared by uniform and refined meshes are the same and remain usable at all
levels of the simulation, but they must be rescaled using the Dynamics objects that handle

communication between levels.

4 An octree is a data structure in which each internal node is recursively subdivided into 8 octants
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3.4. Parallelism

Palabos offers the convenience of parallel computing by breaking down the multiblock
components into smaller subdivisions that can be computed simultaneously by multiple
processors communicating via shared memory. Each component is therefore attributed
through an MPI (Message Passing Interface) process. The strategy of domain attribution
depends on the treated problem and relies on geometric criteria, on a principal of minimal
inter-process communication, or is in some cases random to minimize the impact of highly
imbalanced problems, such as multi-phase flows with rapidly moving inter-phase
interfaces.

To manage MPI communication, Palabos encircles the components by a ghost layer that
consists of envelope cells containing read-only only information (writing has no impact
on other components) that are accessible from bulk cells. After each collision/streaming
cycle or data processor modification of a multiblock, the information in ghost layers is
updated. Evidently, these ghost layers augment the memory allocation, therefore affecting

the computational performances and cost.

4. Conclusion:

The scope and concepts of the open-source Lattice Boltzmann library Palabos have been
described. This, in turn, allows users to claim that the data structure of this software library
is intended to combine great flexibility, spanning a wide variety of problems of interest to
the LB community and the CFD framework in general, with high computational

performances.

The understanding of the fundamental principles, schemes, and strategies utilized by
Palabos in its memory allocation and data layout provides a better understanding of how,
despite its newness, Palabos has proven its efficiency in the field of Computational Fluid

Dynamics.
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Chapter 1V: Evaluation of the
Parallel Lattice Boltzmann

Solver
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1. Introduction

Since the objective of this thesis is to evaluate the Lattice Boltzmann method on CFD
benchmark cases using the PALABOS (PArallel LAttice BOltzmann Solver), this chapter
will be divided into two sections. To begin, all of the steps required to install PALABOS
on the computer used to execute the simulations will be described in details.

The test and evaluation method will be discussed in the second section by providing the
two cases studied, namely the flow of a Poiseuille and that of a circular cylinder in 2D in
both a steady and unsteady state. The numerical data generated from the simulation, their

comparison with reference data, and their commentary are then developed.

2. First steps in Palabos
2.1. The configuration of the operating system

The University of Geneva website provides detailed documentation on how to start using
Palabos. This solver can be used in several operating systems such as Windows, Linux or
Linux-similar environments. All other prerequisites or recommended (but optional)
packages are also listed. For more information, please refer to the "Get started” > "Palabos

documentation™ section.

After some technical problems encountered when using "Visual Studio 2019" under
windows, the choice was made to use a Linux system, more precisely Ubuntu in its latest

version 20.04.

2.1.1. Ubuntu operating system

Canonical created Ubuntu in October 2004 as open-source software. It is a highly robust
operating system. This option was primarily motivated by the numerous advantages that
Ubuntu provides over Windows. To name a few, it is an open-source operating system.

Ubuntu offers a more user-friendly interface. It features a centralized software repository
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from which we may download all necessary software. And, most importantly, since the

Unix environment is the finest for programmers.
You have various options for using the Ubuntu operating system:

1. Use Ubuntu as the principal operating system or in conjunction with a Windows
system. Because this option necessitates the creation of a new partitioning on the

hard disks, and given the computer's limited storage space, it has been discarded.

2. Use a virtual machine. A virtual machine is the same as any other physical
computer, as with a laptop. It has a CPU, memory, and drives for storing data.
While the hardware components of a computer are solid and real, virtual machines
(VMs) are generally thought of as virtual computers or software-defined
computers within physical servers that exist only as code. However, given the cost
that its use can inflict on RAM and the importance of memory resource integrity,

this option is not the best choice for memory-intensive simulations.

3. As soon as the pc boots, use a USB to boot an identical image of the operating
system from the BIOS. This option was chosen due to its balance of deployment

convenience and physical resources requested for the simulations.

Creating a bootable Ubuntu USB stick from Microsoft Windows is a sensitive but feasible
task, which we will go through in the next section. The ability to boot an operating system
from a USB stick is referred to as live USB. Live USBs can be used to operate a computer,
restore specific data, or simply test an operating system without having to install it on the
computer's hard drive. The fact that system modifications, software, backups, and files are
not permanently written to the USB is a significant downside of this technique. They will

be deleted the next time you restart your computer.

However, there is a method around this limitation by editing the system file and utilizing

software to establish a USB boot with persistent live drives. In 19.10 and later versions,
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the size of a persistent partition is simply limited by the size of the drive (USB pen drive,
SSD, HDD, memory card). To achieve this, the following steps were conducted:

2.1.2. Editing the ISO file

An 1SO file (also known as an ISO image) is an archive file containing an identical copy
(or image) of data found on an optical disc, such as a CD or DVD used for installation.
First, download the ISO file for the most recent version of Ubuntu (currently Ubuntu 20.04
LTS). Edit the ISO file with HXD (a binary editor) to replace the two cosmetic boot options
‘quiet splash’ with ‘persistent’ (replace 12 characters with 12 characters). Figure 14 shows.

The window displayed once the ISO file is opened and converted to a hexadecimal code

1% HxD - [E:\Ubuntu 20.04 ISO file - Copie\ubuntu-20.04.2.0-desktop-amd64.iso] = O X

4] Fichier Editer Rechercher Affichage Analyse Outils Fenétre Aide &

i B @6 v | Windows (ANSI) v | hex v
4] ubuntu-20.04.2.0-desktop-amd64.iso Editeurs spéciaux x
Offset(h) 00 Ol 02 03 04 05 06 07 08 09 OA OB OC OD OE OF Texte D” | Inspecteur de données
2 08 00 90 90 00 00 00 00 5 SR 144 0 bl
00 00 00 00 00 00 00 00 00 B0 senaees
ED FA SE D5 BC 00 7C FB FC 66 31 DB 66 31 C9 3iuZlu. Binary (8 bit) 01000101 ~
53 66 51 06 57 8E DD 8E C5 52 BE 00 7C BF 00 f£S£Q.WZ Int8 allera: | 69
6 B9 00 01 F3 AS EA 4B 06 00 00 52 B4 41 BB AR . o¥e
31 C9 30 F6 F9 CD 13 72 16 81 FB 55 AR 75 10 UlEosuf ||UM8 allera: 69
- > fa.t.fC Int16 allera: 21061
s 1EzQ- .1 Ulnt16 allera: 21061
?Q+asRP Int24 aller a: 545349
0 -€D..,€ || yint24 allera: 545349
_ @IM Int32 allera: 545349
" | -85 -1 | int32 ller a: 545349
in miss nt3, aller a: 3
D6 rrupt.. Int64 aller a: -8029918135601049019
A e{f..i{ intRd aller 20 1041A22503R1NR5N25Q7 Y
w=free Ordre des octets
. S61{"E. (@ Little endian (O Big endian
f..d.fa
< 2 = =S SESSSS— Eiszass [[J Hexadecimal basis (for integral numbers)
Position(h): 0 Ecraser

Figure 14: The window displayed once the ISO file is opened and converted to a hexadecimal code.

e Select 'Search' from the pull-down menu, followed by 'Replace...'
e Insure to substitute 'silent splash' with 'persistent ‘. It is critical that we replace 12
characters with the same number of characters. Otherwise, the changed file cannot

be utilized to build a live system.

e Allow the binary editor to work by pressing the 'Replace all' button.

Figure 15 shows the “Replace” operation.
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X

Remplacer

Chaine-Texte Valeurs hexadécimales Nombre entier Nombr ¢ | *

Rechercher: quiet splash v ‘

Remplacer avec:[ v ‘
Options Directions
Encodage Texte (O Toutes
(Encodage Editeur) v (®) Vers I'avant

I (O Vers I'arriére
[]Sensible 3 la case

[] Confirmer le remplacement

Remplacer tout Annuler

Figure 15: “Replace” window.

There should be 12 instances of 'silent splash’ replaced with 'persistent’ in the current 20.04
version. When the user presses the OK button, the dialog box shown in figure 16 displays.

Figure 16 shows the dialog box indicating that 12 occurrences of ‘silent splash’ were

replaced.

Informations

o 12 occurences de "quiet splash™ ont été remplacées

[ ox |

Figure 16: Dialog box indicating that 12 occurrences of ‘silent splash’ were
replaced.

When the cloned drive is booted for the first time, the Ubuntu system will automatically

create a casper-rw partition with an ext4 file system.
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2.1.3. Configure the bootable USB
To begin, the designated USB to open Ubuntu is inserted. The Rufus 3.15 application® is

then run, and the device is detected instantaneously. Then we select the 1SO image that
we wish to install on it. It is critical to choose the maximum available capacity for the size
of persistent partitions. The operation can begin once the partition schemes and formatting

options have been configured. All options are shown in figure 17.

& Rufus 3.15.1812 - X

Options de Périphérique
Périphérique

USB DRIVE (G:) [16 Go] 7
Type de démarrage

ubuntu-20.04.2.0-desktop-amd64.iso i @ SELECTION

1 e

Schéma de partition Systéme de destination
MBR > BIOS ou UEFI ¥

Taille de partition persistente

v Afficher les options de périphérique avancées

Options de Formatage
Nom de volume
| Ubuntu 20.04.2.0 LTS amds4

Systéme de fichiers Taille d'unité d'allocation

FAT32 (Défaut) ~ 8192 octets (Défaut) »

v Afficher les options de formatage avancées

Statut

PRET

® 0 =

Image utilisée : ubuntu-20.04.2.0-desktop-amdé4.iso

Figure 17: Rufus display of USB configuration.

5 Rufus is a tool for formatting and creating bootable USB flash devices.

70



Wait for the "Ready" message to display, as shown in figure 18.

Statut

PRET
® O = DEMARRER FERMER
1 périphérique détecté

Figure 18: The dialog box where the "Ready" message is displayed.

The USB is now ready to be used just to run Ubuntu 20.04 and, therefore, is no longer
capable of storing data as a standard USB. Once a bootable USB is created, it may be
taken anywhere and used to run the operating system without installing it and access the
persistent stored files.

2.1.4. Run Ubuntu Live
It is imperative to ensure that the computer's BIOS is set to boot from USB devices before
inserting the USB flash drive and powering on the laptop. To boot from a USB drive, the

boot sequence in the system's BIOS is modified to configure the boot priority and make

Figure 19: Ubuntu live desktop
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the USB drive the top priority. Once the operating system is run, the desktop shown in
figure 19 is displayed on the screen.

To make the Ubuntu framework more reliable and accessible, some packages need to be
uploaded and installed from the Terminal as shown in figure 20. The following commands

are executed:

§ sudo apt update && sudo apt upgrade -y
gsudo add-apt-repository universe

gsudo add-apt-repository multiverse

$ sudo add-apt-repository "deb http://download.webmin.com/download/repository sarge contrib"”
S sudo add-apt-repository "deb http://repo.ajenti.org/ng/debian main main ubuntu”

| Following repositories might be helpful during packages testing:

S sudo add-apt-repository " http://ddebs.ubuntu.com precise main restricted universe multiverse
S sudo add-apt-repository "deb http://ddebs.ubuntu.com precise-updates main restricted universe mul
tiverse” k

S sudo add-apt-repository "deb http://ddebs.ubuntu.com precise-security main restricted universe mu
lLtiverse”

S sudo add-apt-repository "deb http://ddebs.ubuntu.com precise-proposed main restricted universe mu
Ltiverse”

GPG keys might be fetched by running:

https://dl-ssl.google.com/Llinux/linux_signing_key.pub -0- | sudo apt-key add -
http://download.virtualbox.org/virtualbox/deblan/oracle_vbox.asc -0- | sudo apt-key add -
http://www.webmin.com/jcameron-key.asc -0- | sudo apt-key add
http://repo.ajenti.org/debian/key -0- | sudo apt-key add
http://ddebs.ubuntu.com/dbgsym-release-key.asc -0- | sudo apt-key add

Figure 20: commands executed in the terminal.

2.2. Obtain the Palabos library

The only step left to do before we begin running simulations is to download the open-
source Palabos library from Gitlab. This library consists of a set of source codes that can
be directly executed or modified to meet the demands of the programmer. It is divided
into the folders detailed below and shown in figure 21:
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1. Source codes for simulating configurations tailored for the application of LBM
codes.

2. Coupled solvers, which are the contributions of researchers at the University of
Geneva to the development of LBM by combining it with other numerical methods
(such as FEM) to exploit the advantages of each in the numerical simulation of
configurations that are too expensive numerically. More details can be found in
[35].

3. External libraries, which are the work and contribution of developers and
researchers from the scientific committee from all around the world who desire to

the LBM advancement.

ttps://gitlab.com/unigespc/palabos e Y ' S
< ¢ @ © | @& https:/gitlab.com/unigespc/palab 9 % In@D e =
4 GitLab = Menu Search GitLab Q @.v Sign in / Register
P palabos P pala bos & 7 stor | 34
UI Project infermation Project ID: 14692818
B Repository -o-239 Commits F 6Branches <7 4Tags [ 176.4MBFiles E 1.9 GBStorage <7 3 Releases
O Issues 45 The Palabos library source code
e ¥ et
=~ Requirements ')
4 Clfco master palabos History | | Find file &>
@ Deployments
B2 Monitor Q Merge branch 'regression’ into 'master’ (.. @ cbbécess [
@ Packages & Registries Orestis authored 1 month ago
L Analytics
0 wik [ README | | 7 GNUAGPLv3 = [ CHANGELOG = [® CONTRIBUTING | [ CI/CD configuration
Wiki
% Snippets Name Last commit Last update
& build updated CMake, coupledsimulators, bloodFlowDefoBodies 1 year ago
& coupledsimulators/npFEM Enable regression testing 1 month ago
& dco added dco + license 1year ago
& docker Enable regression testing 1 month ago
& examples Added regression testing and also the fix for the undefined initi.. 1 month ago
& externalLibraries first huge commit 1year ago
@ src Added regression testing and also the fix for the undefined initi... 1 month ago
& utility Enable regression testing 1 month ago
« Collapse sidebar & .dockerignore Docker 9 months ago

Figure 21:Palabos repository in Gitlab.
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3. Validation of the LBM code

Verification and validation are the key methods for determining the accuracy and validity
of computational methods of simulation. This section is devoted to the validation of the
LBM code, using the LBM-BGK model based on the study of classical cases that are
suitable for CFD code validation and benchmarking.

Based on the Boltzmann lattice method algorithm detailed in the previous chapters of this
thesis, two codes were written based on the 2D codes available in the PALABOS library
and were run for the simulation of classical flow configurations for incompressible fluids,
quite used in the CFD code validation literature. Therefore, both the Poiseuille flow and
the 2D circular cylinder flow are simulated using the LBM-BGK model.

3.1. Poiseuille flow

Plane Poiseuille flow is a flow created between two infinitely long parallel plates,
separated by a distance h with a constant pressure gradient 4P being applied in the
direction of flow.

In this section, we compare the accuracy of the numerical solution generated by executing
the LBM-BGK code in PALABOS to the analytical solution available in the CFD
literature (refer to [36]).

Consider a fluid flow in a 2D duct formed by two parallel flat plates, separated by a
distance H=2Ho and length L=10Ho (see figure 22).

_ —
—_— _ \‘. _E-’Y L
- s XA = ‘.’ . I
Pp— 2H, —‘—r ,| | «— Dot
[ II.I X ];’."I / -
B .f | —
— = / -
L=10H,

Figure 22: Poiseuille flow in a 2D duct
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The flow is driven by a pressure difference AP = p, —p,,, between the inlet and outlet.

The mechanical characteristics of the fluid are similar to those of water and pressure in
normal conditions. At the walls of the pipe, the non-slip condition is applied. The
geometrical, physical and numerical parameters used in the simulation are given in the
following Table.

Parameter Value Unit
Duct width, H 4,10 [m]
Duct length, L 2.10° [m]
Density of the fluid, pr 103 [kg.m?]
Dynamic viscosity, 1 103 [N.s.m?]
Imposed pressure difference AP 1 [N.m?]
Spatial resolution, h 107 [m]
Lattice speed, ¢ 1 [m.sh
Relaxation time, 0.8 (1]

Table: geometrical, numerical and physical parameters.

The figures 23 to 27 show the code computed on Palabos, written in C++.
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48 #include "palabos2D.h"

49 #include "palabos2D.hh"

50 #include <vectors

51 #include <cmath=

52 #include <iostream=

53 #include <fstreams

54 #include <iomanip=

55

56 using namespace plb;

57 using namespace plb::descriptors;

58 using namespace std;

59

60 typedef double T;

61 #define DESCRIPTOR D2Q9Descriptor

62

63 /// Velocity on the parabolic Poiseuille profile

64 T poiseuillevelocity(plint 1Y, IncomprFlowParam<T> const& parameters) {
65 Ty = (T)iY / parameters.getResolution();

66 return 4.*parameters.getlatticeU() * (y-y*y);

67}

68

69 /// Linearly decreasing pressure profile

70 T poiseuillePressure(plint iX, IncomprFlowParam<T> const& parameters) {
71 T Lx = parameters.getNx()-1;

72 T Ly = parameters.getNy()-1;

73 return B.*parameters.getlatticeNu()*parameters.getlatticeU() / (Ly*Ly) * (Lx/(T)2-(T)iX);
74}

75

76 /// Convert pressure to density according to ideal gas law

77 T poiseuilleDensity(plint iX, IncomprFlowParam<T> const& parameters) {
78 return poiseuillePressure(iX,parameters)*DESCRIPTOR<T>::invCs2 + (T)1;
79}

80

81/// A functional, used to initialize the velocity for the boundary conditions
82 template<typename T>

83 class Poiseuillevelocity {

84 public:

85 PoiseuilleVelocity(IncomprFlowParan<T> parameters_)
86 : parameters(parameters_)

87 {1}

88 vold operator()(plint iX, plint iY, Array<T,?>& u) const {
89 u[o] = poiseuillevelocity(iY, parameters);

90 u[1] = T();

91 }

92 private:

93 IncomprFlowParam<T> parameters;

94}

95

96 /// A functional, used to initialize the density for the boundary conditions
97 template<typename T>

98 class PoiseuilleDensity {

99 public:

160 PoiseuilleDensity(IncomprFlowParam<T> parameters_)

101 : parameters(parameters_)

Figure 23: Poiseuille source code 1
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102

103 T operator()(plint iX, plint iY) const {
104 return poiseuilleDensity(iX,parameters);
105 }

106 private:

107 IncomprFlowParam<T> parameters;

108 };

109

110 /// A functional, used to create an initial condition for with zero velocity,
111 /// and linearly decreasing pressure.

112 template<typename T>

113 class PoiseuilleDensityAndZerovelocity {

114 public:

115 PoiseuilleDensityAndZeroVelocity(IncomprFlowParam<T> parameters_)
116 : parameters(parameters_)

117 {1

118 void operator()(plint iX, plint iY, T& rho, Array<T,2>& u) const {
119 rho = poiseuilleDensity(iX,parameters);

120 u[e] = T();

121 u[1] = T();

122 }

123 private:

124 IncomprFlowParam<T> parameters;

125 };

126

127 enum InletOutletT {pressure, velocity};

128

129 void channelSetup( MultiBlocklLattice2D<T,DESCRIPTOR>& lattice,

130 IncomprFlowParam<T> const& parameters,

131 OnLatticeBoundaryCondition2D<T,DESCRIPTOR>& boundaryCondition,
132 InletOutletT inletOutlet )

133 {

134 const plint nx = parameters.getNx();
135 const plint ny = parameters.getNy();

136

137 // Note: The following approach illustrated here works only with boun-
138 // daries which are located on the outmost cells of the lattice. For
139 // boundaries inside the lattice, you need to use the version of

140 /]  "setvelocityConditionOnBlockBoundaries" which takes two Box2D
141 // arguments.

142

143 /] velocity boundary condition on bottom wall.

144 boundaryCondition.setVelocityConditionOnBlockBoundaries (

145 lattice, Box2D(0, nx-1, 8, 0) );

146 // velocity boundary condition on top wall.

147 boundaryCondition.setVelocityConditionOnBlockBoundaries (

148 lattice, Box2D(0, nx-1, ny-1, ny-1) );

149

150 /] Pressure resp. velocity boundary condition on the inlet and outlet.
151 if (inletOutlet == pressure) {

152 /] Note: pressure boundary conditions are currently implemented
153 // only for edges of the boundary, and not for corner nodes.
154 boundaryCondition.setPressureConditionOnBlockBoundaries (

155 lattice, Box2D(0,0, 1,ny-2) );

Figure 24: Poiseuille source code 2
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156 boundaryCondition.setPressureConditionOnBlockBoundaries (

157 lattice, Box2D(nx-1,nx-1, 1,ny-2) );

158 }

159 else {

160 boundarycondition.setVelocityConditionOnBlockBoundaries (

161 lattice, Box2D(0,0, 1,ny-2) );

162 boundaryCondition.setVelocityConditionOnBlockBoundaries (

163 lattice, Box2D(nx-1,nx-1, 1,ny-2) );

164 }

165

166 // Define the value of the imposed density on all nodes which have previously been
167 // defined to be pressure boundary nodes.

168 setBoundaryDensity (

169 lattice, lattice.getBoundingBox(),

170 PoiseuilleDensity<T>(parameters) );

171 // Define the value of the imposed velocity on all nodes which have previously been

172 // defined to be velocity boundary nodes.
173 setBoundaryVelocity (

174 lattice, lattice.getBoundingBox(),

175 PoiseuilleVelocity<T>(parameters) );

176 // Initialize all cells at an equilibrium distribution, with a velocity and density
177 // value of the analytical Poiseuille solution.

178 initializeAtequilibrium (

179 lattice, lattice.getBoundingBox(),

180 PoiseuilleDensityAndZerovelocity<T>(parameters) );

181

182 // call initialize to get the lattice ready for the simulation.
183 lattice.initialize();

184 }

185

186 /// Produce a GIF snapshot of the velocity-norm.

187 void writeGif(MultiBlockLattice2D<T,DESCRIPTOR>& lattice, plint iter)
188 {

189 const plint imSize = 600;

190

191 ImageWriter<T> imageWriter('leeloon");

192 imageWriter.writeScaledGif(createFileName('u", iter, &),

193 *computeVelocityNorm(lattice),

194 imsize, imSize );

195}

196

197 /// Write the full velocity and the velocity-norm into a VTK file.
198 void writeVTK(MultiBlockLattice2D<T,DESCRIPTOR>& lattice,

199 IncomprFlowParam<T> const& parameters, plint iter)
200 {

201 T dx = parameters.getDeltaX();

202 T dt = parameters.getDeltaT();

203 VtkImageOutput2D<T> vtkOut(createFileName( 'vtk", iter, 6), dx);

204 vtkout.writeData<float>(*computevelocityNorm(lattice), "velocitynorm”, dx/dt);
205 vtkout.writeData<2,float>(*computevelocity(lattice), "velocity", dx/dt);

206 }
207

208 T computeRMSerror ( MultiBlockLattice2D<T,DESCRIPTOR>& lattice,
209 IncomprFlowParam<T> const& parameters )

Figure 25: Poiseuille source code 3
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210 {
211
212
213
214
215
216
217
218
219
220
221
222
223}
224
225 int
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
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243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

MultiTensorField2D<T,2> analyticalvelocity(lattice);

setToFunction( analyticalvelocity, analyticalVelocity.getBoundingBox(),
Poiseuillevelocity<T>(parameters) );

MultiTensorField2D<T,2> numericalvelocity(lattice);

computeVelocity(lattice, numericalvelocity, lattice.getBoundingBox());

// Divide by lattice velocity to normalize the error
return 1./parameters.getlatticeU() *
// Compute RMS difference between analytical and numerical solution
std::sqrt( computeAverage( *computeNormSqr(
*subtract(analyticalvelocity, numericalvelocity)

)Y %
main(int argc, char* argv[]) {
plbinit(&argc, &argv);
global::directories().setOutputDir(". /tmp/");

IncomprFlowParam<T> parameters(
(T) 2e-2, [/ uMax

(T) 5., /] Re

60, // N

3., /] x

1. I/ ly
)
const T logT = (T)0.1;
const T imSave = (T)0.5;
const T vtkSave = (T)2.;
const T maxT = (T)15.1;

/] Change this variable to "pressure" if you prefer a pressure boundary
/] condition with Poiseuille profile for the inlet and the outlet.
const InletOutletT inletOutlet = velocity;

writelLogFile(parameters, "Poiseuille flow");

MultiBlockLattice2D<T, DESCRIPTOR> lattice (
parameters.getNx(), parameters.getMy(),
new BGKdynamics<T,DESCRIPTOR>(parameters.getOmega()) );

OnLatticeBoundaryCondition2D<T,DESCRIPTOR>*
boundaryCondition = createlocalBoundaryCondition2D<T,DESCRIPTOR>();

channelSetup(lattice, parameters, *boundaryCondition, inletOutlet);

// Main loop over time iterations.
for (plint iT=0; iT*parameters.getDeltaT()<maxT; ++iT) {
if (iT%parameters.nStep(imsave)==0) {
pcout << "Saving Gif ..." << endl;
writeGif(lattice, iT);
}

if (iTxparameters.nStep(vtkSave)==0 && iT=0) {
pcout << "Saving VTK file ..." << endl;

Figure 26: Poiseuille source code 4
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265 writeVTK(lattice, parameters, iT);

266 }

267

268 if (iT%parameters.nStep(logT)==0) {

269 pcout << "step << iT

270 << "; t=" << iT*parameters.getDeltaT()

271 << "; RMS error=" << computeRMSerror(lattice, parameters);

272 Array<T,2> uCenter;

273 lattice.get(parameters.getNx()/2,parameters.getNy()/2).computeVelocity(uCenter);
274 pcout << "; center velocity=" << uCenter[0]/parameters.getLatticeU() << endl;
275 }

276

277 // Lattice Boltzmann iteration step.

278 lattice.collideAndStream();

279 }

280

281 delete boundaryCondition;

282 }

Figure 27: Poiseuille code 5

According to G. K. Batchelor in “An Introduction to Fluid Dynamics,” [36] the analytical
solution of the Poiseuille flow, taking into account the time evolution of the velocity

profile of a duct cross-section, is written as follows:

G.HZ X =, sin(s,) 5. X -8%n
u,(x,,t) = ol 1--%)-4 n? cos(—-2).ex ntt 4.1
Where:
é% ::Sfyljingf and
2
o G:—l.&
n L
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The analytical and numerical solutions are computed. The obtained results are exported

to be plotted on a graph using Plotly, which is an open source graphing tool®. The velocity

profile is displayed in the duct's center part.
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Figure 28: Comparaison between numerical results obtained by the LBM-BGK model and the analytical
solution during the transient phase at t1 = 0,015s, t2 = 0,025s, t3 = 0,035s and permanent at t4 = 0,1s.

Figure 23 illustrates a very acceptable conformity between the numerical results,
represented by the dashed lines, obtained by the LBM-BGK model and the analytical

solution, represented by dots, during the transient phase at t1 = 0,015s, t2 = 0,025s, t3 =

0,035s and permanent at t4 = 0,1s.

3.2. Flow around a circular cylinder

The flow around a circular cylinder is a frequently used case of CFD to test various solid

boundary conditions. In this study, we use the “bounce-back” condition. Curved cylinder

walls are difficult to simulate accurately, especially in LB computations, which are often

® For more information, please refer to the tutorial section in https://plotly.com/chart-studio-help/tutorials/
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performed on square lattices. The solver's performance in solving flow over complicated
geometry may then be measured using the LBM, which can be compared to other well-
known CFD methods. When the Reynolds number surpasses a critical value Recrit, an
unsteady flow occurs, resulting in a vortex street (von Karman vortex street). As a result,
the performance of unstable flows can be studied using the flow around a circular cylinder
[37].

The flow is considered to be two-dimensional, isothermal, while the fluid is a Newtonian

fluid, and of constant properties. Figure 24 shows the computational domain.

22D

flow direction —> outlet

41D

Figure 29: Computation domain

The code was tested in a simple setup—steady and unsteady 2D flow around a cylinder.
Schafer et al. [38] describe the benchmark in detail. A 2D domain with stationary no-slip
walls on the upper and down sides is generated in Palabos.

The benchmarking is carried out at two different Reynolds numbers such that

&

bm

Re 4.2)

Where:

o u, isthe average flow velocity in the x-direction at the inlet,

o D s the cylinder diameter, and

o v is the kinematic viscosity of the fluid.
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The steady - state flow benchmark is established at Repm =20, while the unsteady case is
examined at Repm =100. The values of the drag coefficient Cp and the lift coefficient C.

were tested:

2F
CL=—=
pu, D pu, D

Where:
o Fp and F_ are respectively the drag and lift components of the forces applied on
the cylinder
o p isthe fluid density.

The resulting Cp and C were the stable values in the steady case, whereas in the unsteady
case, these parameters were their maximum values, Cp™and C.™®, when a periodical
steady state was achieved (the von K&rman vortex street). The momentum exchange
approach is used in the current LBM simulation to calculate the fluid force on the circular
cylinder. Fp and FL were computed as the momentum change in a single direction during

a time period 4t using the following equations:

Fo =€ [(F(BO+ f,(N, 1)+ (f,(N,1)+ f,(N +11) ]at (4.3)
F = Zey,

J(RB)+ F(ND) +(F(ND)+ f(N +11)) Jat (4.4)

8
=1
8

I
=1

Where:
o B denotes all solid cylinder boundary nodes,
o N denotes B +eAt if the point is fluid, and

o N+1 denotes B+ 2gAt.

The benchmarks were executed at various values of the diameter D: 8, 16, 32, and 64,
which controlled the size of the domain and the grid resolution. Figures 25 and 26 depict
the flow visualization at Re=20 and Re=100 by opening the generated GIF file in
ImageMagick.
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Figure 30: Simulation of the flow around a cylinder at Re=20.

P

Figure 31: Simulation of the flow around a cylinder at Re=100.

It can be seen that in the case of flow at Re=20, there is an increase in velocity at the upper
and lower levels of the cylinder wall, which is due to the deflection of the air streamlines.
However, as no unsteady flow was created, no vortex is generated.

However, in the case of the flow at Re=100, a Von Karman vortex street is generated.
This is explained by the increase in Reynolds number, which causes an unstable flow to
appear. The oscillating motion of the conjunction zone, where both high velocity (red)
and low velocity (blue) are found, explains why only values of Cp™* and C.™® were

collected.

The reference values were acquired using a traditional FE approach with an unstructured
grid. The number of unknowns to be calculated is used to describe the grid resolution in
this case. When Re=100, as the phenomenon to be simulated becomes time-dependent, the
resolution is therefore expressed by both spatial and temporal unknowns. The

benchmarking results are showed in the following table .

84



Rebm

D

8
16
32
64

Co
5.565043
5.494948
5.538439
5.586776

20

C
- 0.000006
0.009826
0.011075
0.010525

Co™
3.320698
3.235433
3.201211
3.227876

100

c
0.596131
0.978701
1.004254
1.008553

Reference values for a FE method with unstructured grid

Unknowns

2298
6297
20487

5.4450
5.5710
5.5760

0.0200
0.0130
0.0110

2.8920
3.2470
3.2240

Spatial Time
unknowns unknowns
0.5540 2978 70
1.0740 29084 33
1.0060 29084 66

Table: Comparison of Palabos’ CL and CD results with reference values.

At Repn=20, it can be seen that the performance is the lowest at the minimal diameter D

=8, and it improves as the value of D rises. It can be also observed that the mistakes for

Cv are larger than those for Cp.

The pattern at Repm =100 is similar to that at Resm =20; higher resolution computations

performed better. Similarly, to when Repm =20 calculations were performed, the errors for

C.™are larger than those for Cp™.
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General conclusion

Despite all of the existing CFD methods, tremendous progress is being made within the
scientific community, leading to the creation of new and innovative approaches and
methods. LBM has grown in recognition in recent years, and it is now the subject of
countless theses. In light of the stakes and topicality of the method, the study conducted

in this thesis takes on its full relevance.

We were able to analyze the evolution of the MBL by consulting many sources in order
to better comprehend the method's theoretical roots. Once this knowledge was acquired,
it was possible to describe the computations that enabled the formulation of the Boltzmann

equation in discretized form, ready for implementation in a numerical environment.

The e-learning follow-up of the C++ programming language allowed the familiarisation
with its paradigms and concepts. It also allowed to identify all the subtleties used in the
Palabos library in order to develop a reliable and robust environment capable of generating
a large amount of computing power without being costly for the memory resources,

making it a tailor-made solution for complicated simulations.

After becoming acquainted with the Ubuntu interface and the Palabos library, the first
computational codes were executed, producing a set of numerical data that was compared
to the analytical and numerical data of other CFD approaches. The coherence and
uniformity of the comparative results allowed us to demonstrate the LBM's efficiency and
legitimacy as a method for modeling macroscopic flows from a mesoscopic description.
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Perspectives

There are further aspects of LBM that can be examined. One of the key advantages of
LBM is its ability to parallelize numerical calculations. Although parallelization was
restricted to two processors in this study, an analysis of the efficiency and achievable

encapsulation for a higher number of processors may be done.

Investigating the deployment of multi-phase flows or the simulation of three-dimensional

flows may be of significance in evaluating LBM's capabilities.

The Lattice Boltzmann Method for incompressible flows in classical configurations was
the focus of this project. Taking into account that lift and drag coefficients were calculated,
a future interesting perspective would be to apply this method with minor changes to
simulate the curved geometry of an airfoil and compare it the already acquired results in
the aeronautical industry.

Because the LBM can only model incompressible flows, many efforts are being
undertaken to overcome this limitation, as one of the key advantages of the LBM is its
flexibility to implement different types of fluids simply by adjusting the collision
operator. There are two potential models for implementing compressible flows in LBM:
KT-LBM (Kataoka & Tsutahara, 2004) and QU-LBM (Qu, 2009).

Palabos also provides an additional library that combines the LBM with a modified

version of FEM to model compressible fluids in supersonic speed.
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