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Abstract: 
This project provides a description of the Lattice Boltzmann Method (LBM), an alternate 

numerical method to conventional CFD methods. For its promising potential, LBM has 

grown in favor within the scientific community in recent years. It claims to reach the same 

degree of accuracy as classical CFD while also providing new benefits such as easy 

parallelization and the ability to perform complex and multiscale flows. Unlike 

conventional CFD, which works on the numerical solution of the Navier Stokes Equations, 

the Lattice Boltzmann Method focuses on microscopic particle interactions to reflect the 

macroscopic behavior of the fluid. 

The objectives of this paper is to evaluate and analyze the Lattice Boltzmann Method's 

capacity to accurately simulate incompressible flows. This study describes the theoretical 

foundations of this novel method, as well as a CFD simulation of classical configurations. 

These configurations are developed using modified Palabos codes, with an emphasis on 

matching LBM solutions with analytical or existing solutions. The results and analyses 

suggest that LBM is a reliable method for modelling incompressible flows. The study also 

discusses how to use the Lattice Boltzmann Method and suggests strategies to continue 

the research. 

 

Key-words: Lattice Boltzmann method, Boltzmann equation, Lattice gas automata, 

Palabos, Parallelization, Computational Fluid Dynamics, CFD, numerical method, 

simulation, benchmarking.  

  



 

 

Résumé:  
Ce projet fournit une description de la méthode Lattice Boltzmann (LBM), une méthode 

numérique alternative aux méthodes CFD conventionnelles. En raison de son potentiel 

prometteur, la LBM a gagné en popularité au sein de la communauté scientifique au cours 

des dernières années. Elle prétend atteindre le même degré de précision que la CFD 

classique tout en offrant de nouveaux avantages tels qu'une parallélisation aisée et la 

possibilité de réaliser des écoulements complexes et multi-échelles. Contrairement à la 

CFD classique, qui fonctionne sur la résolution numérique des équations de Navier Stokes, 

la méthode Lattice Boltzmann se concentre sur les interactions microscopiques des 

particules pour refléter le comportement macroscopique du fluide. 

L'objectif de cet article est d'évaluer et d'analyser la capacité de la méthode Lattice 

Boltzmann à simuler avec précision les écoulements incompressibles. Cette étude décrit 

les fondements théoriques de cette nouvelle méthode, ainsi qu'une simulation CFD de 

configurations classiques. Ces configurations sont développées à l'aide de codes Palabos 

modifiés, en mettant l'accent sur la correspondance entre les solutions LBM et les 

solutions analytiques ou existantes. Les résultats et les analyses suggèrent que la LBM est 

une méthode fiable pour la modélisation des écoulements incompressibles. L'étude aborde 

également la manière d'utiliser la méthode Lattice Boltzmann et suggère des stratégies 

pour poursuivre la recherche. 

Mots clés: Méthode de Lattice Boltzmann, équation de Boltzmann, Lattice gas automata, 

Palabos, parallélisation, dynamique des fluides numérique, CFD, méthode numérique, 

simulation, benchmarking.  



 

 

 الملخص: 
 

التقليدية.  CFD، وهي طريقة رقمية بديلة لطرق  Lattice Boltzmann (LBM)يقدم هذا المشروع وصفًا لطريقة 

لصالح المجتمع العلمي في السنوات الأخيرة. تدعي أنها تصل إلى نفس درجة  LBMنظرًا لإمكانياتها الواعدة ، نمت 

الكلاسيكي مع توفير مزايا جديدة مثل الموازاة السهلة والقدرة على أداء التدفقات المعقدة والمتعددة  CFDالدقة مثل 

، تركز طريقة  Navier Stokesالتقليدي ، الذي يعمل على الحل العددي لمعادلات  CFDعلى عكس  النطاقات.

Lattice Boltzmann اني للسائل.على تفاعلات الجسيمات المجهرية لتعكس السلوك العي 

على محاكاة التدفقات غير القابلة للضغط  Lattice Boltzmannتهدف هذه الورقة إلى تقييم وتحليل قدرة طريقة 

للتكوينات الكلاسيكية.  CFDبدقة. تصف هذه الدراسة الأسس النظرية لهذه الطريقة الجديدة ، بالإضافة إلى محاكاة 

مع الحلول  LBMالمعدلة ، مع التركيز على مطابقة حلول  Palabosتم تطوير هذه التكوينات باستخدام رموز 

طريقة موثوقة لنمذجة التدفقات غير القابلة للضغط. تناقش  LBMالتحليلية أو الحالية. تشير النتائج والتحليلات إلى أن 

 وتقترح استراتيجيات لمواصلة البحث. Lattice Boltzmannالدراسة أيضًا كيفية استخدام طريقة 

 

،  Palabos، أتمتة الغاز الشبكي ،  Boltzmann، معادلة  Lattice Boltzmannطريقة  :المفتاحيةالكلمات 

Parallelization  ، ديناميكيات السوائل الحسابية ،CFD الطريقة العددية ، المحاكاة ، القياس المعياري ،. 
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Nomenclature 
 
Symbol Significance Unity 

Re  Reynolds number  [-] 

u Velocity  [m/s] 

ρ Density  [kg/m3] 

V Volume  [m3] 

CL Lift coefficient  [-] 

CD Drag coefficient  [-] 

FL Lift force  [N] 

FD Drag force  [N] 

Vi Finite volume  [m3] 

xi Position on the ith direction  [m] 

ei Local velocity of the particle  [m/s] 

f Distribution function  [kg.s3.m-6] 

f eq Equilibrium distribution  [kg.s3.m-6] 

f neq Non-equilibrium distribution  [kg.s3.m-6] 

Ω Collision operator  [kg.s2.m-6] 

ξ Particle velocity  [m/s] 

t Time  [s] 

h Spatial resolution  [m] 

τ Relaxation time  [s] 

𝜀 Knudsen number (smallness number) [-] 

fi Discrete distribution function  [-] 

fi
* Discrete distribution function after collision  [-] 

ci Lattice velocity  [m/s] 

wi Weighting function  [-] 

Δx, Δy, Δz  Lattice spacing  [-] 

cs Speed of sound  [m/s] 
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General introduction:  

 

Computational Fluid Dynamics (CFD) is a fundamental fluid mechanics technique that 

uses numerical analysis and data structures to analyze and solve a wide range of fluid flow 

problems. This well-established solution is now broadening its scope, addressing anything 

from environmental issues to heart diseases and aeroacoustics.  

Because conventional methods are incapable of simulating all possible situations, a variety 

of novel ways are emerging. A new approach to solving flow problems in the field of CFD 

has gained popularity in recent years; the Lattice Boltzmann Method (LBM). And the 

growing number of devoted articles is just one sign of this increasing popularity.  

Instead of focusing on the macroscopic representation of the flow, LBM incorporates a 

microscopic representation of the flow as well as a spatial and temporal discretization. 

The approach simulates fluid physics by adopting simple physical processes including 

streaming in space and billiard-like collision interactions between microscopic particles. 

LBM is a model that operates on the premise that a fluid is made up of interacting 

molecules that can be described using classical mechanics. 

The objective of this thesis is to evaluate the LBM-BGK code’s ability to simulate 

incompressible fluid flows based on well-referenced conventional CFD configurations. 

To do this, the work is organized into four chapters. 

The first chapter is devoted to putting into perspective the impact that computer 

performance development has played in the development of CFD as an alternative to often 

restrictive analytical and experimental methods. Then, in order to place the LBM within 

the broad spectrum of numerical methods, a classification of the primary CFD approaches 

is established. 
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The second chapter is devoted to the theoretical and mathematical understanding of LBM, 

as the key concepts of the method are developed and the governing equations 

demonstrated. The discretization of the Boltzmann equation will then result in the 

establishment of a mathematical model defining the physics governing the simulated 

processes. And therefore, enable the construction of a link between a molecular 

description and the fluid's macroscopic behavior, which remains the primary focus.  

The third chapter discusses the transition from a set of equations to a code capable of 

simulating a wide range of complex phenomena. Given that the current LBM codes, 

available in open-source libraries, are written in C++, the most attractive features of the 

latter are highlighted. Before being able to establish the many techniques used by Palabos 

to develop a computational code that is simultaneously optimized in terms of memory 

consumption, effective in its layout of simulation elements, and robust enough to model 

cases with complex physics that conventional approaches struggle to simulate.  

Finally, the fourth chapter focuses on the application and validation of Palabos. Following 

that, a full report on the actions required to take the first steps in Palabos is established. 

Then, codes for simulating two flows, namely the Poiseuille flow and the flow around a 

cylinder, are run to collect data that will be compared with the results available in the 

literature and used as a criterion for evaluating the reliability of the results obtained by the 

LBM-BGK model using the Palabos solver. 
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Chapter I: Computational Fluid 

Dynamics, methods, and solvers 
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1. Introduction 

The evolution of the high-speed digital computer mostly during the past century had a 

significant impact on how fluid mechanics and heat transfer principles are applied to 

design problems of contemporary engineering practice. Problems that would have taken 

years to solve using the computational methods and processors available 30 years ago can 

today be solved in a few seconds of computer time at a very low cost. Many advances 

have been driven by the ready availability of previously inconceivable computational 

power. These first became apparent in industry, research institutions and laboratories, 

where it was pressing to solve different difficult problems. Nowadays, computer-induced 

changes have recently become apparent and obvious in almost every aspect of our daily 

life. [1]  

Fluid mechanics equations that have been known for over a century can only be solved 

for a small number of flows. Analytical flow solutions are only attainable under specific 

limits and for a limited number of geometries because the behavior of these 

analytical solutions is so complex. The nonlinearity of the equations, as well as the 

presence of complex-shaped boundary conditions, make finding analytical solutions 

extremely difficult, if not impossible in some cases. The known solutions are 

tremendously helpful in understanding fluid movement, but they are rarely applicable to 

engineering analysis or design. Engineers have been compelled to adopt different methods 

in the past. 

2. The theoretical, experimental and numerical 

approaches 

The most typical approach is to use simplified versions of the equations. The majority of 

these are based on a combination of approximations and dimensional analysis, with 
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empirical input nearly always required. Dimensional analysis, for example, reveals that 

the drag force on an object can be represented by: 21
.

2
D DF SC V   

A similar method has emerged after noting that for many flows, non-dimensionalization 

of the Navier-Stokes equations leaves the Reynolds number as the only independent 

parameter. If the body shape is kept constant, an experiment on a scale model of that shape 

can yield the desired findings. The required Reynolds number is obtained either by careful 

selection of the fluid and flow parameters or through Reynolds number extrapolation. 

These methods are extremely helpful, and they continue to be the primary methods of 

practical engineering design today. The issue is that many flows require multiple 

dimensionless parameters to be specified, and it may be impossible to build up an 

experiment that scales the actual flow correctly. Flows around aircraft or ships are two 

examples.  

Another solid approach was the experimental method, as experiments are a useful tool for 

determining global parameters such as lift, drag, pressure drop, and heat transfer 

coefficients. Details are essential in many circumstances; it may be necessary to know 

whether flow separation happens or whether the wall temperature surpasses a certain level. 

Experimental development may be excessively costly and/or time demanding as 

technological advancements and competitiveness involve more rigorous design 

optimization. Alternatively, when new high-tech applications necessitate flow prediction 

for which the database is insufficient. 

Experiments are difficult, if not impossible, in other situations. For example, the 

measuring equipment might interfere with the flow, or the flow could be inaccessible. 

Some quantities are just not measurable or can only be measured with insufficient 

precision using current techniques. [2] 

Traditionally, experimental and theoretical methods have been used to produce designs 

for fluid flow and heat transfer equipment and vehicles. But with the advent of electronic 

computers, an alternative - or at least a complementary method - became available: the 
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numerical approach (although many of the key ideas for numerical solution methods for 

partial differential equations were established more than a century ago, they were of little 

use before computers appeared). When complex flows are involved, experimentation is 

still vital, but there is a definite trend toward relying more on computer-based predictions 

in design. [1] 

Since the 1950s, the performance-to-cost ratio of computers has exploded and shows no 

signs of slowing down. While the first computers developed in the 1950s could only 

execute a few hundred operations per second, today's machines can perform teraflops or 

1012 floating-point operations per second. The ability to store data has also increased 

dramatically: a decade ago, ten-gigabyte hard discs were only available on 

supercomputers; now, we can find hard drives with incredible speeds and capacities 

measured in Terabytes on desktop PCs. A system that cost millions of dollars, took up a 

lot of space and required a full-time maintenance and operation team is now available on 

a PC. 

The prevalence and use of numerical methods skyrocketed as the potential of computers 

were realized. The computational solution of fluid mechanics equations has become so 

essential that it currently attracts the attention of the vast majority of fluid mechanics 

researchers, and the proportion is growing. Computational fluid dynamics is the name for 

this field (CFD), which contain numerous subspecialties within it. [2] 
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3. What is CFD?  

Computational fluid dynamics (CFD) is a science that uses digital computers to generate 

quantitative predictions of fluid-flow phenomena based on the conservation laws (mass, 

momentum, and energy conservation) that govern fluid motion. [3] 

The governing equations for practical flows are frequently so complex that an exact 

solution is impossible to find, therefore a computer solution is required. Computational 

approaches substitute the governing partial differential equations with algebraic 

equations, allowing a computer to solve the problem. For local methods, like the finite 

difference, finite element and finite volume methods, a grid of discrete points are 

distributed throughout the computational spatial and temporal domain. Furthermore, the 

algebraic equations connect values of dependent variables at neighbouring grid points. 

The number of grid points necessary to obtain an accurate solution is often determined by 

the dimensionality, geometric complexity, and severity of the dependent variables' 

gradients. A grid of ten million points may be necessary to model the flow around an entire 

aircraft. Each dependent variable, as well as a few auxiliary variables, must be stored at 

each grid point. when it comes to turbulent compressible three-dimensional 

flow, somewhere between five and thirty dependent variables per grid point could be 

involved.  

Because most classes of fluid dynamics have nonlinear governing equations, the 

computational solution is typically performed iteratively. That is, the discretized equations 

are used to successively correct the solution for each dependent variable at each grid point. 

The iterative approach is often comparable to progressing the solution over a small time 

step. The number of iterations (or time steps) might range from a few hundred to 

thousands.  

As long as the discrete equations are correct representations of the governing equations, 

the discretization method induces an error that can be minimized in principle by refining 

the grid. If the numerical algorithm that performs the iteration or advances in time is also 
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stable, then by refining the grid, the computational solution can be made arbitrarily close 

to the exact solution of the governing equations. [4]  

4. Classification of numerical methods  

A wide range of methods for obtaining fluid flow solutions has been developed to this 

point. Some of these approaches are general-purpose methods that may be used to any 

partial difference equation (PDE) with minimal modifications. Other approaches are more 

suited to finding fluid flow solutions. While this thesis focuses on the lattice Boltzmann 

method, it is just one of several methods available nowadays. Each of these methods has 

its own set of advantages and disadvantages, and the LB method is no different. Taking 

that into consideration, it becomes relevant to briefly present such methods in order to 

give a perspective on where the Lattice Boltzmann method is situated in the methods' 

landscape.  

Despite the existence of a large number of simulation methods, they can be classified into 

two categories according to the approach taken toward the given problem: conventional 

methods and particle-based methods.  

4.1. Conventional Navier-Stokes solver 

the general idea is to solve the equation (or coupled system of equations) of significance 

by using a particular method of approximation. The continuity equation and the Navier-

Stokes equations (or their incompressible counterparts) are the two fundamental equations 

to solve in CFD. Depending on the physics to be simulated and the applied 

approximations, other equations, including an energy equation and an equation of state, 

may be used to supplement the fundamental equations.  

Typical approaches for unsteady (i.e. time-dependent) CFD can use a variety of methods 

to discretize the derivatives, allowing the aforementioned equations to be approximated 

on a computer. As a result, the solution for the next time step is generated from the present 

time step's solution. However, the method used to discretize the solution, i.e. how a finite 

set of numbers is used to represent the solution in continuous physical space, is 
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what distinguishes these conventional CFD methods. The solution variables, such as fluid 

velocity u and pressure p, must be represented in such a way that their spatial derivatives 

can be obtained throughout the domain in all of these methods.  

This process of discretisation leads to matrix equations Ax = b for many, if not all, 

conventional approaches, where A is a matrix that connects the unknown discretised 

solution variables in the vector x, and b represents the impact of source terms and 

boundary conditions. Resolving such matrix equations by inverting A to determine x is a 

linear algebra problem, and finding efficient solution methods for such problems has been 

the subject of much research. In the following section, some of these methods’ basics are 

covered:  

4.1.1. Finite difference method 

The basis of this method is to approximate derivatives of λ using linear combinations 

(“finite differences”) of λj  . ”. After performing a Taylor series of λj about xj, we can find 

three simple approximations of the first-order derivatives: 

 

1 1 1 1
|  , |  , |

2j j j

j j j j j j

x x x
x x x x x x

              
  

     
(1.1) 

In concept, the finite difference approach is straightforward; simply take a set of equations 

and replace the derivatives with finite difference approximations. Fluids, on the other 

hand, are regulated by a complex system of linked equations with several variables. As a 

result, in order to apply the FD method for CFD, a variety of unique techniques must be 

used [5], which increases the amount of expertise and effort required to develop an FD 

CFD solver. Nevertheless, when compared to other conventional methods, the FD method 

can be simple and efficient [2].  
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Certain mathematical errors are inherent with FD CFD. Unless extra precautions are taken, 

the scheme is not conservative, which means that numerical errors allow the conservation 

of quantities including mass, momentum, and energy to be compromised. The FD 

approach has difficulties with complex geometries that do not fit the grid because it is 

built on a regular grid. This is perhaps the most crucial reason why other CFD methods 

have grown in popularity [6].  

4.1.2. Finite volume method 

In the FV method, the spatial domain would not need to be partitioned into a regular grid. 

Instead, the simulated volume V is divided into multiple smaller volumes Vi each with a 

different shape and size. This provides for a more accurate representation of complex 

geometries than, for example, the finite difference method. Each finite volume Vi has a 

node in the centre where each solution variable ( )x  is represented by its approximate 

average value i  inside that volume.  

Figure 1 : Illustration of the finite difference method implementation [7] 
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The FV method is not as general as the FD method, which may be used to any equation. 

Whereas it could be used to solve generic hyperbolic problems, it is primarily designed to 

solve conservation equations found in fluid mechanics [8]. This is primarily due to the 

fact that this approach is conservative by design, suggesting that, as opposed to the FD 

method, mass and momentum will always be conserved.  

Furthermore, the FV method is well-suited to use with irregular grids, which implies that 

complex geometries may be represented well (the grid is adjusted to the geometry), and it 

is simple to "invest" more resolution on crucial locations in the simulation by refining the 

grid in these parts. The disadvantage of irregular grids is that creating adequate grids for 

complex geometries is a rather complex task in itself; indeed, it is an entire topic of study 

and research. While FV may not be as general as FD in the solvable equations, this is 

usually not a problem for the equations encountered in CFD.  

4.1.3. Finite element method  

PDEs are solved using finite element methods (FEM) by multiplying the PDE by a weight 

function w(x) and integrating over the particular domain. In general, FEM can be applied 

over an unstructured grid, with a discretised solution variable i  represented at every grid 

corner node xi. The variable ( )x is interpolated between the grid corners using basis 

Figure 2:  Simple finite difference and finite volume discretisations 

of the volume inside a circular surface. The effective surface in 

each case is shown as black dashed lines, and interior nodes as 

white circles. To the right, the dotted lines show the finite volumes’ 

interior edges [6] 
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functions ( )i x  that meet specific conditions. The most basic 1D basis functions are linear 

functions of the form: ( ) 1 , ( ) 0i i i j ix x     and are non-zero only in the interval (xi-1 , 

xi+1 ). Moreover, a wide range of nonlinear basis functions (e.g., quadratic and cubic ones) 

are also possible, and the order of accuracy is often linked to the order of the basis 

functions [9].  

Typically, the weighting functions are designated from the basis functions themselves, 

( ) ( )iw x x . This results in a system of equations, one for each unknown value i .  Each 

value of i is connected to 1i   and 1i  via integrals, assuming linear basis functions. The 

fundamental advantage of FEM is that it is mathematically well-suited for unstructured 

grids and for improving the order of accuracy using higher-order basis functions (yet these 

also require more unknowns).  These grids can be modified dynamically to adjust for 

dynamic geometry, as when modelling a car crash. FEM, like FD methods, is not 

conservative by default, whereas FV methods are. Another drawback is the method's 

complexity in comparison to the FD and FV methods. In general, unstructured grids, for 

example, the integrals become difficult to solve. And like with the FD and FV methods, 

solving the complex Navier-Stokes equation system is not simple. 

 

 

 

 

 

 

 

 

 

Figure 3:  Schematic representation of a finite element method (FEM) model 

[10] 



 

24 

 

4.2.  Particle-based solvers 

Particle-based solvers are not built on directly discretizing fluid dynamic equations, and 

therefore use a differentiated perspective than the conventional solvers previously 

discussed. Instead, these methods use particles to represent the fluid. A particle can 

represent an atom, a molecule, a group of molecules, or a portion of the macroscopic fluid, 

depending on the approach. Consequently, whereas conventional Navier-Stokes solvers 

take a macroscopic perspective of a fluid, particle-based method typically adopt a 

microscopic or mesoscopic view. 

This group of approaches includes the Lattice Boltzmann method. These will be 

elaborated on in the section that follows:  

4.2.1. Molecular dynamics 

At its core, molecular dynamics (MD) is an essentially simple microscopic method for 

tracking the position of particles that commonly represent atoms or molecules. These 

particles interact via intermolecular forces fij(t), which are determined to be as consistent 

with the actual physical forces as possible. Knowing the total force fi(t) on the ith particle 

based on all other particles, its acceleration is determined using Newton's second law: 

2

2

1i i
ijj i

i i

d x f
f

dt m m 
   . (1.2) 

 

The particle position xi is then numerically updated by integrating Newton's equation of 

motion. While there are numerous integrating methods, the Verlet algorithm is a 

particularly simple and effective one: 

 

2( )
( ) 2 ( ) ( ) i

i i i

i

f t
x t t x t x t t t

m
         (1.3) 
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The present and previous positions of a particle are used in this scheme to determine its 

next position. The Verlet scheme can alternatively be expressed in terms of using the 

particle's previous velocity rather than its previous position [12].   

While MD is an excellent method for simulating microscale phenomena including phase 

changes, chemical reactions and protein folding, a numerical method that tracks individual 

molecules is considerably too detailed for macroscopic phenomena—consider that a 

single gram of water involves over 1022 molecules.  As a consequence, MD as a Navier-

Stokes solver is completely inconvenient, and more appropriate methods should be 

selected for this application [13].  

4.2.2. Lattice gas models 

Hardy, Pomeau, and de Pazzis developed lattice gas models as an exceedingly simple 

model of 2D gas dynamics in 1973. Their particular model was later called the HPP model 

after its authors. In this approach, hypothetical particles exist on a square lattice where 

they stream forward and collide in a form that, quite like molecules in a real gas, preserves 

Figure 4: Molecular dynamics simulation. [11] 
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mass and momentum conservation. Considering that the HPP lattice was square, each 

node had four neighbors, and each particle had one of the four possible velocities ci that 

would transport a particle to a neighboring node in a one-time step. 

However, Frisch, Hasslacher, and Pomeau did not publish a lattice gas model which can 

be used to simulate fluids until 1986. Their model was also called the FHP model after its 

authors. The difference between this model and the original HPP model is minor but 

significant: Instead of the HPP model's square lattice and four velocities, the FHP model 

had a triangular lattice with six velocities ci. This modification provided the model with 

enough lattice isotropy to perform fluid simulations [14]. 

 

Lattice gas Automata is constructed as a fictitious and simplified molecular dynamics 

where time, space and velocity are all discrete. The domain consists of a regular network 

with particles residing in the nodes. A set of Boolean variables (in computer science this 

represents a variable that can take two possible states; "true" or "false" for example) to 

describe the occupancy of the particle is defined: ( , ) such that ( 1,  2, ...... , M)in x t i  and 

M being the number of directions of the particle velocities at each node.  

The evolution equation for lattice gas automata is then:  

(  , 1) ( , ) ( ( , ))i i i i in x e t n x t n x t      (1.4) 

Figure 5:Two-dimensional lattices for the Lattice Gas Automata: (a) Square lattice for HPP model, (b) 

Equilateral triangular lattice for FHP model [15]. 
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Where:  

o ei are the local velocities of the particle and  

o Ωi is a collision operator.  

This equation implies and dictates that from an initial state with a given configuration of 

spaces (translated into nodes xi) and time, the configuration of the particles will evolve at 

a time (t+1) in two sub-steps: 

 diffusion: where each particle will move towards the nearest node in the 

direction of its velocity, hence the term x+ei 

 collision: which occurs when the particles arriving at a node interact and 

change the direction of their velocity according to the rules of diffusion. 

For simplicity, the exclusion principle is imposed and excludes that there 

is more than one particle allowed at a given time and at a node with a given 

velocity [16].  

One of the promoted characteristics of lattice gas models is that the occupancy numbers 

ni are Boolean variables (particles are either present or absent), implying that collisions 

are perfect: Roundoff error in floating-point operations performed in different CFD 

methods has no effect on lattice gas models. Furthermore, lattice gases can be extensively 

parallelized. However, the disadvantage of these collisions is that they become out of 

control as the number of velocities increases. In a node, for example, there are 

224=16.8*106 potential states for a three-dimensional lattice gas with 24 velocities. In this 

approach, the resolution of any collision was often determined by a search in a massive 

table created by a specialized programmer. 

4.2.3. Lattice Boltzmann method 

The main problem with lattice gases was statistical noise. At the microscopic level, lattice 

gases, like real gases, are bursting with activity. Even for gas in equilibrium, reducing the 

control volume leads the density (mass per volume) inside it to fluctuate even more 

severely over time: molecules are constantly moving in and out, thereby the law of large 

numbers holds less true for smaller volumes. The advent of the lattice Boltzmann method 
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in the late 1980s provided a more extensive solution to the problem of statistical noise. 

This method was first introduced by tracking the expected value fi = ‹ ni › of the occupation 

number rather than the occupation number itself, therefore removing statistical noise by 

rather taking a mesoscopic approach. This was the initial way of obtaining the LBM; 

lattice gases track the behavior of concrete particles, whereas the LBM tracks their 

distribution. 

  

In chapter 2, the technical aspects as well as the mathematical formalism of the Lattice 

Boltzmann method will be developed. For the time being, we will just discuss its 

advantages and disadvantages in comparison to the large range of available methods. 

 

 Efficiency and simplicity:  

Advantages:  

o The LBM is comparable to pseudocompressible methods for solving the 

incompressible Navier-Stokes equation, which promotes simplicity and 

scalability by permitting artificial compressibility [17] 

o The LBM, like pseudocompressible methods, does not incorporate the 

Poisson equation, which can be difficult to solve given its non-locality 

[17].  

o  The LBM's costliest calculations are local, i.e. constrained to within nodes, 

which further improves its parallelizability [18] 

          Disadvantages:  

o LBM requires a lot of RAM. A huge number of memory access events are 

required for population propagation. 

o Because the LBM is essentially time-dependent, it is impractical for 

modelling steady flows. 
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 Geometry  

Advantages 

o The LBM excels in simulating mass-conserving flows in complex 

geometries such as porous media [18].  

o Moving boundaries that conserve mass are particularly successfully 

implemented in the LBM, making it an appealing tool for soft matter 

simulations [19].  

 

 

 Multiphase and multicomponent flow: 

Advantages: 

o For the LBM, a variety of multiphase and multicomponent approaches are 

available. 

o Combined with the LBM's strengths in complex geometries, it implies that 

it is well adapted to reproduce multiphase and multicomponent flows in 

complex geometries. 

            Disadvantages: 

o In multiphase and multicomponent simulations, the range of viscosities 

and densities is limited.  

 

 Sound and Compressibility:  

Advantages:  

o Because the LBM is a (weakly) compressible Navier-Stokes solver, it may 

be well-suited for simulating phenomena involving sound and flow, such 

as aeroacoustic sound generating.  
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            Disadvantages: 

o The LBM is not adequate for directly simulating long-range sound 

propagation at realistic viscosities. 

o The LBM is not appropriate for modelling very compressible (i.e. 

transonic and supersonic) flows. 

 

 

5. Conclusion:  

While the lattice Boltzmann method offers significant advantages, it is not well suited for 

all possible applications, as are all other numerical methods for fluids. However, the LBM 

is a relatively recent method that is still developing at a quick rate, which indicates that 

the spectrum of applications to which it may be used effectively is expanding. 

 



 

31 

 

 

 

 

 

 

 

 

Chapter II: Theoretical and 

numerical aspects of LBM 
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1. Introduction  

This chapter focuses on the establishment of the mathematical formalism required to 

comprehend the Boltzmann equation. This equation should be discretized before it can be 

used as a mathematical model to describe the underlying physics adopted by the Lattice 

Boltzmann method in its numerical calculations. 

Therefore, the first section will be dedicated to introducing the kinetic theory of gases, 

which is the cornerstone of the LBM. The Boltzmann equation is then presented in detail, 

with its various terms and forms. 

The second section demonstrates mathematically the transition from the Boltzmann 

equation with its continuous variables to an equation discretized in velocity space, 

physical space and time. This introduces the patterns, which are then followed by the 

method for performing the iterative calculations required to simulate particular 

phenomena. 

  

2. Kinetic theory and the Boltzmann equation 

2.1. Kinetic theory of gases 

In the context of fluids, we can consider three levels of description: microscopic, 

mesoscopic and macroscopic. Microscopic systems denote a molecular description based 

on Newton’s dynamics. Macroscopic systems denote a fully continuum picture with 

tangible quantities such as fluid density and velocity that appear in the governing Navier-

Stokes equations [20]. In between, there is the “mesoscopic” description, which does not 

track individual molecules, but rather distribution or representative collections of 

molecules.  
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The kinetic theory of gases attempts to explain the microscopic properties of a gas in terms 

of the motion of its molecules. The gas is assumed to consist of a large number of identical, 

discrete particles called molecules, a molecule being the smallest unit. Maxwell, 

Boltzmann and Clausius developed elements of kinetic theory between 1860-1880’s. 

Kinetic theories are available for gas, solid as well as liquid.  

This theory is the mesoscopic fluid description on which the LBM is based. The main 

variable in it theory is the distribution function. It can be regarded as a more generalized 

case of density ρ. We know that the density represents the density of mass in a physical 

space, noted ( , )x t , while the distribution function, noted, ( , , )f x t , represents the 

density of mass in both three-dimensional space and three-dimensional velocity space. 

More fundamentally, it can be defined as the probability of finding a particle with velocity 

between   and d   within a volume dx  around a position x .  

In dimension D, the distribution function is expresses in 2. .D DM L T . For example, in a 3D 

space:  

  3 3

1 1

( / )
f Kg

m m s
    

3
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m
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Because they represent the distribution function's moments, macroscopic variables such 

as density ρ and velocity u are linked to it. They can be obtained by integrating and 

weighing it over the velocity space. The macroscopic mass density is calculated as 

follows: 

3( , ) ( , , ).x t f x t d     (2.1) 

The integration over the three-dimensional velocity space translates the contribution of all 

possible velocities to the density of particles at a position x and a time t.  
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Accordingly, by taking into account all possible velocities, the contribution of f can be 

used to calculate the macroscopic momentum density as the following:  

3( , ). ( , ) . ( , , ).p x t u x t f x t d       (2.2) 

Also, we can find the macroscopic total energy:  

2 31
( , ). ( , ) . ( , , ).

2
x t E x t f x t d      (2.3) 

This total energy contains two types of energy; the so-called kinetic energy due to the bulk 

motion of the fluid and the internal energy due to the random thermal motion of gas 

particles. So, the macroscopic internal energy density can be found as:  

 

2 31
( , ). ( , ) . ( , , ).

2
x t e x t v f x t d     (2.4) 

Where v is the relative velocity, defined as: ( , ) ( , ) ( , )v x t x t u x t  .  

2.2. Boltzmann equation  

The Boltzmann equation defines the fluid's statistical behavior. It describes the time 

evolution of the distribution function. As previously mentioned, f is a function of the 

following variables: position x, particle velocity , and time t, so we can express its total 

derivative in respect to time as the following:  

 

dx ddf f dt f f

dt t dt x dt dt

 

 





      
                 

  (2.5) 

 

Some modifications can be made on the terms on the right-hand side; we have dt/dt =1, 

the particle velocity 
dx

dt


=  , and according to Newton’s second law 

d

dt


=

F
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has a unit of: /
F

N Kg




 
 

 
. In addition, the total differential term can be expressed as:

( )
df

f
dt

  . We finally obtain the Boltzmann equation:  
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Ff f f
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This can be seen as a kind of advection equation: the first two terms represent the 

distribution function being advected with the velocity  of its particles. The third term 

represents forces affecting this velocity. On the right hand side, we have a source term, 

which represents the local redistribution of f due to collisions. Therefore, the source term 

( )f is called the collision operator.  

 

2.2.1. The collision operator  

The collision operator denotes the rate of change of the distribution function as a result of 

a collision. If no collisions occur, the Boltzmann equation is reduced to a pure convection 

equation (no diffusion). For any terrestrial fluid: 0  .  

Many physical models describe collisions. We will only consider those who adhere to the 

following two criteria: 

1. At equilibrium, Ω is such that the distribution is the Maxwell-Boltzmann distribution. 

2. There is mass, momentum, and energy conservation during a collision:  

. . .k dx d  for  0,1,2,3,4k  

Which can be extended into the following conservation properties:  

Mass conservation: ( ). . 0f dx d   (2.7)  

Momentum conservation: . ( ). . 0f dx d    (2.8) 

Total energy conservation: 
2 . ( ). . 0f dx d    (2.9) 

Internal energy conservation: 
2 . ( ). . 0v f dx d   (2.10) 

 

The first collision operator expression introduced by Boltzmann accurately describes 

reality, but since it is integral, it gives the Boltzmann equation an integral-differential 

character that is difficult to solve both analytically and numerically. The BGK 

approximation, which respects the two aforementioned properties, is the best and simplest 
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approximation, to the extent that a very large majority of LBM codes incorporate this 

collision operator.  

 

2.2.2. The BGK operator   

This operator, named after its inventors Bhatnagar, Gross and Krook, introduces a very 

simple and practical approximation. It entails stating that each collision modifies the 

distribution function f  by a factor proportional to the difference between the current 

distribution f and the equilibrium distribution 
eqf ; . eq

BGK C f f     . [21] 

The dimensional analysis of the Boltzmann equation shows that Ω has the dimension of f 

divided by time. As a result, C is homogeneous to the inverse of the relaxation time . 

The fact that the system is stable provides us with more detail. 

Consider a positive perturbation applied to an equilibrium system ( )eqf f . Since the 

system is stable, f must decrease in time in order to return to its equilibrium value
eqf . 

We, therefore, have 0
f

t





. As a result, the constant C is negative. We then write: 

1
. eq

BGK f f



      

 

We thus obtain:
1

. . eqf
f f f

t




 
     

 (2.11) 

 

This equation is highly nonlinear since the equilibrium distribution is affected by many 

variables, including density ρ, velocity ξ, and temperature T (as indicated in the expression 

for the Maxwell-Boltzmann distribution). Nonetheless, this non-linearity is tolerable since 

the value of 
eqf  in x  is determined solely by quantities evaluated in x . Meaning that it is 

local in the physical space.  

Moreover, this argument specifically reflects one of the major benefits of the LBM, which 

is summarized in the following sentence: "the non-linearity is local, non-locality is linear." 

interactions between nodes are entirely linear, while the method’s non-linearity enters in 

a local collision process within each node. This property makes the LBM very amenable 

to high-performance computing on parallel architectures, including GPUs. Coupled with 
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the method’s simplicity, this means that parallelized LB simulations can be tailor-made 

for a particular case more quickly than simulations using a conventional method [18] 

 

2.3. From a microscopic to a macroscopic scale 

A question can now be raised: how can the Boltzmann equation explain the macroscopic 

behavior of a fluid using a molecular description and the distribution function? 

The response is that by manipulating the Boltzmann equation, the macroscopic equations 

governing the fluid's behavior can be obtained directly. To be more specific, the mass 

conservation equation is obtained directly by integrating the Boltzmann equation over 

velocity space. The other macroscopic conservation equations are obtained by the 

moments of the equation i.e. multiplying the equation with functions of x and integrating 

over velocity space. 

To deal with the force terms, we need to know the moments of the force term, which we 

can find directly using multidimensional integration by parts as:  
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2.3.1. Mass conservation equation  

 

As previously said, by integrating the Boltzmann equation over the velocity space we can 

find the continuity equation as follows:  

 

3 3 3 3. . . . ( ).
F f

f d f d d f d
t x
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(2.13) 

(2.14) 
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The first two terms represent the moments calculated in equation (2.1) and (2.2); the force 

term is equal to 0 as shown in equation (2.12). In addition, the integral of the right-hand 

side is solved in the collision operator’s properties in (2.7). We thus obtain the following 

equation, known as the mass conservation equation:  

( )
0

u

t x





  
 

 
 (2.16) 

 

In the above equation, it is clear that it is independent of the form of the distribution 

function, a point that will prove to be useful for future material.   

 

2.3.2. Momentum conservation equation  

 

By similarly taking the first moment of the Boltzmann equation, we find:  

( )u
F

t x






 
 

 
    (2.17) 

Where  

o   is the momentum flux tensor defined in the Euler equation as: 

u u        

o   is the stress tensor.  

Since the Euler equation describes only reversible momentum transfer, the stress tensor 

represents pressure forces, which are reversible. So for ideal fluids, we write: p   

[22].  

Therefore, we can finally obtain the following equation:  

( )( ) u uu p
F

t x x

 


 

  
   

  
 (2.18) 

2.3.3. Energy conservation equation  

When multiplying the Boltzmann equation by .   before integrating over the velocity 

space we obtain (here we directly split the moment similarly to the momentum equation):  
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( ) ( )( ) u E uE q
F u

t x x x

  

 

  

    
   

   
  (2.19) 

Where q is the heat flux given as: 
31

. .
2

q v v v f d       

We can eliminate the bulk motion energy component 
21

2
u by subtracting the mass 

conservation equation multiplied withu . We therefore obtain:  

 

( . )( . ) u ee u q

t x x x

 


  




  
  

   
  (2.20) 

 

It is known that the Euler equations are a simplification of the more general Navier-Stokes 

equations of fluid dynamics. They neglect the effects of viscosity by considering the fluid 

as “ideal”. When both viscosity and the heat flux are added, The Navier-Stokes-Fourier 

system is obtained.  

Assuming that
eqf f , the equations previously demonstrated result in the Eulerian 

momentum and energy conservation equations. In that perspective and similarly to the 

macroscopic scope, it becomes clear that the phenomena of viscosity and heat diffusivity 

are related to the non-equilibrium of the distribution function.  

The Chapman-Enskog analysis is an established method of connecting the kinetic and 

continuum pictures by finding the non-equilibrium contribution to f. Its main idea is 

expressing f as a perturbation expansion about 
eqf [6]:  

(1) 2 (2) ...eqf f f f       (2.21) 

Where ε is the smallness parameter, it labels each term’s order in the Knudsen number.  

In the absence of an external force field, the Maxwell-Boltzmann equilibrium distribution 

becomes the Maxwell distribution. It is the exponential of the ratio of kinetic and thermal 

energy. We then write:  

2( )
( )

/ 2

.

(2 )

v u

eq RT

D

f e

RT





 

   (2.22)  



 

40 

 

 

3. The Lattice Boltzmann implementation 

Unlike conventional numerical methods based on the discretization of the equations of 

fluid mechanics, which can be hard to implement and parallelize, the LBM is based on 

microscopic models and mesoscopic kinetic equations.  

This method follows the same approach taken by Ludwig Boltzmann concerning 

thermodynamic laws. The basic premise states that the collective behavior of a set of 

microscopic particles is at the origin of the observed macroscopic fluid flow and that its 

dynamics are not sensitive to the underlying details of microscopic physics [23].   

Simple kinetic models are then constructed, which include the physics of microscopic or 

mesoscopic processes so that the averaged properties behave according to the equations 

of fluid dynamics on the macroscale. Despite the fact that the LBM is known as a particle-

based method, it does not monitor the behavior of each concrete particle but rather their 

distribution. This is consistent with its primary focus: averaged microscopic behavior.  

 

Analytically, the Boltzmann equation is much more difficult to solve than the NSE. 

However, it is paradoxically simpler to implement. The first explanation is that most LBM 

codes use a simplified version of kinetic theory in which mass and momentum are 

conserved during collisions. Moreover, considering that molecules have one inner degree 

of liberty, collisions are elastic and do not transport rotational or vibrational energy [24]. 

The second reason is that the force-free Boltzmann equation is a simple hyperbolic 

equation that describes the advection of the distribution function f.  

This approach prevents us from discretizing the term ( . )u u  present in conventional 

methods that is a major difficulty since it introduces complicated iterative numerical 

schemes along with approximation errors.    
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3.1. The discretized Lattice Boltzmann Equation  

 

To numerically implement the Boltzmann equation the continuous variables ,t x and c  

need to be discretized. The first parameter introduced here is the discrete-velocity 

distribution function fi along the ith direction. Similar to the definition previously written, 

it represents the density of particles with velocity ci at a time t and a position x. However, 

unlike the continuous distribution, the variables here are discrete. For example, the 

velocity ci belongs to a small set of discrete velocities ic . The points x where fi is defined 

are arranged in space as a square lattice with Δx lattice spacing. Furthermore, fi is only 

defined at specific times t, separated by a time step Δt. 

 

One is free to choose the values of Δx, Δy, Δz, Δt, and ci independently. However, it will 

be wise to correlate them. Indeed, if we can ensure that a particle moves by jumping from 

one mesh node to another mesh node during the time step t, we avoid the case where a 

particle is between two nodes, which would require interpolations. Therefore, with the 

space steps Δx, Δy and Δz chosen, each velocity ci will be made to respect the following 

synchronization condition [25]:  

 is an integer multiple of 

 is an integer multiple of 

 is an integer multiple of 

ix

iy

iz

x
c
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c

t

 
 
 

 
 

 
 

 
 

 

 

It has previously been shown that there is a link between macroscopic quantities, such as 

density, momentum and total energy, and the various moments of the distribution function 

( ) . .n nM f c dc   

Hence, new expressions must be found to replace them when the velocities only take a 

few values in finite dimensional set. The Gauss method of quadratures is one method for 
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obtaining an approximate value for a continuous integral. It states that there is a set of Q 

weighting coefficients wi such that the following equality holds for all  0,1,2,3,4n :  

1

. . . ( , , ).
Q

n n

i i i

i

f c dc w f x c t c


   (2.23) 

Which defines the distribution function discretized by the relation:  ( , ) . ( , , )i i if x t w f x c t  

Discrete velocities ci along with weighting coefficients wi form the so-called velocity sets 

 ,i ic w  

These different velocity sets are useful to classify different lattices, each serving a specific 

purpose.  

They are usually denoted as DnQm, n being the number of spatial dimension and m the 

number of velocities in the set.  D1Q3, D2Q9, D3Q15, D3Q19, and D3Q27 are the most 

widely used velocity sets for solving the Navier-Stokes equation. 

 

Figure 6: D1Q3 and D2Q9 lattice schemes [26]. 
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To reduce memory and computational requirements, it is preferable to use as few 

velocities as possible. However, there is a tradeoff between higher precision and smaller 

velocity sets (e.g. D3Q15) (e.g. D3Q27). D3Q19 is the most widely used velocity set in 

3D.  

In the following section, the demonstration of how to obtain the lattice Boltzmann 

equation (LBE) by discretizing the Boltzmann equation in velocity space, physical space 

and time is explained:  

 

( , , , ) ( , , , ) ( , , , ) ( , , , )
.i i i i

ix

f x y z t t f x y z t f x x y z t t f x y z t t
c

t x

         


 
 

            
( , , , ) ( , , , )

. i i
iy

f x y y z t t f x y z t t
c

y

      



 

            
( , , , ) ( , , , )

. i i
iz

f x y z z t t f x y z t t
c

z

      



 

             
1

( , , , ) ( , , , )eq

i if x y z t f x y z t

       (2.24) 

 

Figure 7: Three-dimensional lattice models: D3Q15, D3Q19, and D3Q27 

[27]. 



 

44 

 

Given that , ,  ix iy iz

x y z
c c c

t t t

  
  
  

, we get:  

( , , , ) ( , , , ) ( . , , , ) ( , , , )i i i ix if x y z t t f x y z t f x c x y z t t f x y z t t

t t

         


 
 

                                                
( , . , , ) ( , , , )i iy if x y c y z t t f x y z t t

t

      



 

                                                
( , , . , ) ( , , , )i iz if x y z c z t t f x y z t t

t

      



 

                                                
1

( , , , ) ( , , , )eq

i if x y z t f x y z t

       (2.25) 

 

 

Knowing the definition of a total differential: 

                             . . .
f f f

df dx dy dz
x y z

  
  
  

   (2.26) 

The last three terms on the left can be replaced by the following expression: 

( . , . , . , ) ( , , , )i ix iy iz if x c x y c y z c z t t f x y z t t

t

          


  (2.27) 

 

 

We thus obtain:  

( , , , )if x y z t t  ( , , , ) ( . , . , . , ) ( , , , )i i ix iy iz if x y z t f x c x y c y z c z t t f x y z t t

t

           


 t
 

                                                 
1

( , , , ) ( , , , )eq

i if x y z t f x y z t

       (2.28) 

We replace τ with a dimensionless relaxation time τ*, such that: 
*

t


 


. Finally, we 

obtain the lattice Boltzmann equation:  

*

1
( . , . , . , ) ( , , , ) ( , , , ) ( , , , )eq

i ix iy iz i i if x c x y c y z c z t t f x y z t f x y z t f x y z t


             

 (2.29) 

 

 

The value of the equilibrium distribution function is crucial since it determines the model's 

behavior. Then it must be discretized as well into the the specific set of velocities. For that 

sake, the equilibrium distribution is approximated as:  

( )

1 1

.   ;  1
Q Q

M eq

i i i

i i

f w f w
 

     (2.30) 
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When performing a Taylor series expansion of 
( )Mf up to second order and using the 

previous approximations we obtain [28]:  

 

                              

2

2 4 2

. ( . ) .
. . 1

2 2

eq i i
i i

s s s

u c u c u u
f w

c c c


 
    

 
    (2.31) 

 

Where: 

o wi are the weights specific to the velocity set 

o ci the lattice velocity 

o u the macroscopic velocity   

o cs the speed of sound (in the isothermal LBE model, it is defined by the relation: 

2.sp c  defined in all the velocity sets above as: 
2

2

2

1
.

3
s

x
c

t





. [29] 

 

When the LBE is implemented, it is decomposed into two parts that are determined 

separately and successively [30]  

 The collision process is first determined, in which particles in the same position 

redistribute their velocities due to interactions:  

 *

*

1
( , ) ( , ) ( , ) ( , )eq

i i i if x t f x t f x t f x t


    (2.32) 

Where:  fi
* is the distribution function after collision.  

 

 The streaming (or propagation) is determined, in which particles change position 

due to their velocity: 

                          *( . , ) ( , )i if x c t t t f x t                    (2.33) 
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The different steps in the LBE operations can be presented as the following: first during 

the collision step, the density ρ and the macroscopic velocity u are calculated to determine 

the equilibrium distribution function eq

if  and the post-collision distribution  fi
*. We stream 

the resulting distribution to neighboring nodes after collision. One time step has elapsed 

since these two operations were completed, and the operations are then repeated. This 

process can be summarized in the following scheme:  

3.2. Boundary and initial conditions 

The initialization of the Boltzmann lattice algorithm depends on the case to be simulated. 

Two cases can be distinguished:  

1. If the goal is a steady-state solution, it is sufficient to bring initial populations to 

equilibrium. ( , 0) ( ( , 0), ( , 0))eq

i if x t f x t u x t    . This is a common choice for 

initial macroscopic fields : ( , 0) 1 and ( , 0) 0x t u x t       

2. If the goal is a time-dependent solution with non-homogeneous initial conditions, 

population initialization must take into account both equilibrium and non-

equilibrium components: ( , 0) ( , 0) ( , 0)eq neq

i i if x t f x t f x t      

The formulation of boundary conditions is required for the solution of any mechanical 

problem. The lattice Boltzmann method can be used to describe boundary conditions of 

various types by varying the values of the distribution function for the nodes 

Figure 8: An overview of one cycle on the LB algorithm. The dark grey boxes show 

sub-steps that are necessary for the evolution of the solution. The light grey box 

indicates the optimal output step. The pale boxes show steps whose details are given 

later. 
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corresponding to the system boundary. This section is dedicated to the implementation of 

common boundary conditions in fluid mechanics, such as periodic conditions, no-slip 

conditions at solid boundaries, and imposed pressure conditions. 

3.2.1. Periodic conditions  

Periodic conditions are considered in the case of a closed loop flow, where the inlet and 

outlet are treated as lines of neighboring fluid nodes. Figure 9 depicts the implementation 

of this condition using the example of a node at the flow's outlet. It can be seen that the 

fluid particles carried by the distributions f1, f5, and f8 will be advected to the three 

neighboring nodes of the opposite boundary (the inlet) according to the velocity directions 

c1, c5, and c8 after one time step ∆t. 

 

3.2.2. Bounce-back condition 

The assumption of non-slip along a wall is a common application in fluid mechanics: the 

velocity of the flow in the direction tangent to the wall is zero. This assumption is usually 

made in conjunction with the assumption of the wall's impermeability (nullity of the 

velocity component in the direction normal to the wall). The LBM algorithm normally 

treats the joint implementation of these two conditions as a bounce-back of the fluid 

particles along the wall. Figure 10 depicts a schematic representation of the 

implementation proposed in [31]. 

 

Consider a boundary (grey line) half a length (h/2) away from the final line of fluid nodes. 

The fluid particles corresponding to the distribution function's (post-collision) values f4, 

Figure 9: Implementation of periodic conditions 
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f7, and f8 at time t0 move away from the fluid node and bounce against the solid wall at 

time / 2t t  . They reverse their velocities (while remaining in the same direction) and 

return to the same fluid particle at time t t  , as distribution function values f2, f5, and f6 

(respectively). 

 

 

 

 

 

 

 

 

3.2.3. Pressure (velocity) condition imposed 

During the LBM algorithm's propagation step, the distribution functions of a node are 

advected from neighboring nodes along the discretized velocity directions. Thus, after this 

step, the values of the distribution function for certain velocities (or directions) are known 

at the level of the nodes at the boundary, while others remain unknown due to a lack of 

information from outside the fluid domain. The unknown distribution function values 

must be determined using appropriate criteria. It is possible, for example, to calculate the 

unknown distribution function values in order to obtain the desired pressure or velocity. 

To begin, consider a node at the flow's inlet, as shown in Figure 11 that follows. 

Figure 10: Implementation of bounce-back conditions 
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After a propagation step, the distributions f0, f2, f3, f4, f6, and f7 are known at this node 

because they are derived from neighboring nodes within the fluid domain, whereas the 

distributions f1, f5, and f8 are unknown and can be adjusted to create a pin pressure or 

velocity uin (or mixed pressure/velocity conditions). The case of an imposed pressure (i.e., 

the Dirichlet condition) is studied first. Such a pressure will result in an initially unknown 

velocity at the flow's inlet. To complete the implementation, the two components of this 

velocity {u1,u2} must also be calculated. We obtain the following relationships using the 

following equations: 

8 8

0 0

 , .i i i

i i

m
m f u f c

 

     (2.34) 

and assuming that the velocity component parallel to the input boundary is zero (i.e., 

u2=0): 
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2
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. in
i in
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    (2.35) 
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  (2.36) 
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  (2.37) 

Figure 11: Implementation of velocity imposed conditions [32] 



 

50 

 

A fourth equation is required to solve such a system of equations with four unknowns, f1, 

f5, f8, and u1. The rebound condition, as proposed in [32] is applied to the non-equilibrium 

part of the distribution function along the normal direction to the boundary, i.e.:  

1 1 3 3

eq eqf f f f     (2.38) 

Finally, the result is:  

2

1 0 2 4 3 6 71 ( 2( )) s

in

c
u f f f f f f

p
         (2.39) 

1 3 2

2

3

in

s

p
f f

c
       (2.40) 

          5 7 2 4 12

1 1
( )

2 6

in

s

p
f f f f u

c
       (2.41) 

            (2.42)  

 

It is possible to impose the value of the normal component by making a simple 

change to the control variable and always assuming a zero velocity component parallel to 

the boundary. In this case, a different combination of (2.35) and (2.36) yields the following 

equations, allowing us to determine the unknown quantities: ρin, f1, f5, f8. 

 

0 2 4 3 6 7

1

1
( 2( )

1
in f f f f f f

u
      


  (2.43) 
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The complete process of a LB algorithm’s cycle, including the boundary condition is 

shown in figure 12.  

  

Figure 12: an overview of one cycle of the LB algorithm, considering boundary conditions and the one-off 

computation of initial conditions (center), but not considering forces. Optional sub-steps are shown in light 

grey boxes. 
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4. Conclusion 

The understanding of the theoretical foundations of the LBM provides the essential 

elements necessary for the initiation to this method and its subsequent manipulation. 

While its implementation in a numerical environment proves to be particularly relevant as 

it is the discretization that will establish the close link between the described physical 

model and its implementation in software, which explains the high speed of execution, 

associated with LBM.
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Chapter III: Framework structure 
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1. Introduction  

Palabos is a solver that uses the C++ programming language in its interface; therefore, it 

is critical to first understand the motives for this choice by outlining the paradigms 

employed in this programming language as well as its primary features that benefit the 

solver. 

Understanding these features will then allow us to discuss Palabos' techniques to 

appropriately laying out the main elements of a simulation as well as depicting the 

structure in which they are organized.  

2. The programming language  

It is the type of problem that determines which programming language to employ and 

which is the better option. This decision is based on the paradigm that each language is 

linked with. The programming paradigm is a fundamental style of computer programming 

that differs in how problem-solving processes are defined. Given the variety of paradigms 

and the interdependence of their concepts, we will limit ourselves to contrasting two 

paradigms that are frequently encountered in CFD works: procedural programming (found 

in the FORTRAN language, for example), and object-oriented programming (found in 

cases where a representation of real physical objects is required). 

 

2.1. Procedural programming  

This type of programming focuses on an algorithm that determines the logic behind a 

problem's solution. The problem is broken down into numerous tasks that must be 

completed in order to be solved, each of which is expressed as a function or subroutine, 

which is a set of instructions that, when run, provides the required output. Accessing and 

modifying data in the procedural paradigm is quite easy because there are only two types 

of variables; global and local. The global variables are declared at the beginning of the 
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program and are found throughout the resolution of the problem, while the local variables 

are those used to perform intermediate operations. 

2.2. Object-oriented programming (OOP) 

A programming paradigm focuses on thinking about problems in terms of objects and 

their behavior. The object is a data structure that closely mimics a physical object. Then 

there are the classes that are built around the objects to define their behavior and 

interactions with each other, and possibly to organize them in a hierarchy. The OOP puts 

its full force behind a concrete problem that may be destructured in a hierarchical manner 

and in which the data are at the heart of the problem (knowing that modifying them is 

more difficult than modifying them in procedural programming). Because of these factors, 

OOP is widely employed in the video game industry. 

 

C++ is a general-purpose programming language that was created as an extension to the 

C language, making it multi-paradigm (including object-oriented paradigm, procedural, 

functional). It is a simple language in the sense that it allows programs to be broken down 

into logical units and pieces, and it comes with a large library and a wide range of data 

types. C++ is one of the fastest languages and is very near to low-level1, providing for 

complete memory allocation and management control. 

 

Inheritance and polymorphism are two of the many interesting features in C++ that will 

be very relevant to our work.  

Inheritance is the process of creating a new class (derived class) that inherits the features 

of an existing class (base class). Inheritance enhances reusability while also reducing code 

length in OOP. 

Polymorphism enables an object to select the form of a function to implement at both 

compile-time (overloading method) and run-time (overriding method).  

                                                 
1 What is a low-level language? It's a programming language with little separation between 

the machine and the language itself. As a result, "close to the hardware" is a term used to 

describe low-level languages. 
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3. PALABOS (Parallel Lattice Boltzmann Solver)  
 

3.1. Introduction  

Palabos is a general-purpose computational fluid dynamics (CFD) framework with a 

kernel built on the lattice Boltzmann (LB) methodology. The native programming 

framework of the library is written in C++. The approach is based on a molecular 

representation of a fluid based on the Boltzmann equation, and it can explicitly integrate 

concepts derived from an understanding of molecule interactions. It keeps the cycle 

between the elaboration of a theory and the formulation of a corresponding numerical 

model short. 

 

Palabos has proved its efficiency in the field of Computational Fluid Dynamics over the 

years [33]. Although LB solvers are explicitly time-dependent, Palabos' efficiency and 

accuracy are comparable to that of a commercial, explicitly stationary Navier-Stokes 

solver [34].  

The close correlation between the physical model and the software implementation 

accounts for the high execution speed of LBM implementations. The transport in space of 

statistical groups of flow particles, for example, converts into copies inside a matrix-like 

data structure from a cell to one of its neighbors, as an artifact of LBM's heritage from 

Cellular automata. In a distributed-memory parallel computing platform, this gives direct 

control over the use of computer memory and its cache hierarchies, as well as data 

distribution and access.  

More specifically, canonical LBM models are built on a distinction between collision, 

which includes all physics but does not include data communication between cells, and 

streaming, which is model-independent but communicates data between adjacent cells. As 

a result, the technical aspects of the algorithm (data access and parallel communication) 

are frequently incorporated into the streaming step. The Palabos kernel then takes care of 

the streaming while the user concentrates on the collision model's higher-level 

implementation. 
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3.2. Software architecture and application development 

model  

Since it is designed around an efficient architecture and access to the key data chunks 

identified in a simulation, the Palabos software structure can be considered data-oriented. 

Two types of algorithms act on the data sets:  

 Pure LB models, which respect the collision /streaming cycles: they are defined at 

a cell-base level (since the collision step encompasses the physics and nature of 

each collision that can change from a cell to another). To deal with the large 

number of collision terms used in the literature, we use an inheritance-based type 

of polymorphism. Object composition, another object-oriented idiom, is used to 

combine various elements of a collision model. 

 Non-LB algorithms: they are defined at the component level (rectangular cell 

groups resulting from domain partitioning) and involve more explicit 

programming efforts. Even though, as previously said, the programmer is unaware 

of the implementation specifics of parallel communication and mesh homogeneity. 

 

The software architecture is designed to be highly extensible as it allows the programmer 

to incorporate a variety of models [35]. The environment (which translates into lattice 

descriptors), the collision step with its physical models, and the data procession that can 

be implemented in the streaming step are all the steps of a simulation where these changes 

or additions can be made. As a result, we differentiate between the following mechanisms: 

 Using C++'s "templating mechanisms," lattice descriptors can be written to define 

new data layouts. 

 New local LB collision terms are described using collision models. 

 Data processors are written to enforce coupling terms between different models or 

to define new non-local algorithms (type n°2 previously defined). 
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In the following section, the processes and technical aspects that were used to make the 

additions of a large number of models possible will be developed:  

 

3.2.1. Data containers: Multiblock  

Different types of multiblock describe the fundamental data containers of a Palabos 

simulation. It is possible to think of them as n-dimensional matrices. They hold a certain 

amount of data, such as each collision model associated with each LB cell, which is 

dynamically specified in terms of type and scale. There are four customizable types of 

multiblock. A new mesh is allocated to each instance (object) of a multiblock, regardless 

of its type. Meshes also have the same number of cells to ensure the parallel feature and 

allow interactions. 

 

 Multiblocklattice: each part of this data structure corresponds to an LB cell. The 

variables of a cell, referred to as populations, constitute a discrete version of the 

statistical probability density function found in the kinetic theory. Along with other 

statistical details, an external force term may be introduced. 

 

The data layout is specified by a so-called lattice descriptor, which includes both 

individual cell data and global lattice information. The "ForcedD3Q19descriptor," 

for example, gives each cell 22 floating-point variables: 19 population, and a 3D 

force vector. In addition, each cell has a pointer to a "dynamics"2 object that 

defines the collision model. 

 

                                                 
2 Values are assigned to cells in an ordinary table in a well-ordered and sequential manner. To get the value 

of a cell in memory, all you have to do is look up its index. Except that in a dynamic array, things are 

different. A dynamic array's size is variable. This has the benefit of adjusting the memory allocation to the 

program's requirements. However, without pointers, the array's values are dispersed in memory. Therefore, 

the values are ordered and findable thanks to these pointers. Knowing that each cell contains the value in 

question as well as the previous and following pointers, we can find the value of a specific cell by knowing 

the address of these.  
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 Multiscalarfield: As a user-input, each element in this data structure contains a 

scalar variable (integer or floating-type point). Temperature in coupled, buoyancy-

driven flows3, or temporary storage of a scalar variable in a post-processing step 

are just a few examples. 

 

 Multitensorfield: This data structure, like the multiscalarfield, contains a field of 

vectors or tensors with any number of components, such as velocity or force, 

during the simulation or post-processing stage. Depending on the memory layout's 

performance, it might be better to store directly in the multiblocklattice cell or in 

a separate multitensorfield. 

 

 Multiparticlefield: This data container contains Langrangian particles (Lagrangian 

particles are used since the Lagrangian description emphasizes trajectories.) In the 

case of our simulation, this factor is just as fascinating). 

They can be ranked in ascending order based on their potential impact on the flow: 

 Fully passive: inert objects that have no impact on the flow and are only 

present in the environment. 

 One-way coupled: includes passive pointers to dynamic arrays of particles 

that are coupled to the flow and have a Lagrangian definition. 

 two-way coupled: contains particles that have a direct effect on the flow 

and are thus coupled in a more complex way. 

 

It is important to keep in mind that: 

 All multiblocks objects, including the multiparticlefield, allocate a new mesh to 

which particles are attached based on their space location. 

 Due to the underlying similarity of mesh structures, particles are easily coupled 

with physical objects, which are described by multiblocks objects. 

                                                 
3 When heat is added to a fluid density that varies with the temperature, a flow can be induced due to the 

gravity acting on the density variations 
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 Palabos provides a 2D or 3D structure that is separate, so all multiblocks are 

represented in 2D or 3D. 

 

3.2.2. Collision model: Dynamics  

These collision models are implemented as "dynamics" classes, which means they are 

attached ('interpreted') at runtime. 

As previously mentioned, an LBM simulation follows a basic collision/stream cycle 

model. The first step, collision, contains all of the physics required for the model. Since 

collisions access all cells individually, this phase is entirely local in this regard. 

Furthermore, the computations performed in each cell are independent of the others (the 

data here is not communicated). On the other hand, the streaming step through its 

component-level definition is non-local because it allows the communication of data 

between adjacent cells by copying data from a cell to a local group of cells, defined by 

their velocities (which are defined in the cell's data layout contained in the lattice 

descriptor).  

The collision model must not only explain the physics of the actual collision step, but also 

define the collision model's various properties through the implementation of macroscopic 

variable computation algorithms. Rescaling algorithms for populations and other 

statistical variables for a given set of cells with various time and/or space scales are also 

included. 

The literacy is abundant with LB models and any code duplication must be avoided when 

implementing different models for different individual cells. For that matter, the dynamics 

classes (otherwise collision models) can be organized in a hierarchy. Since most of these 

models are based on the same type of equilibrium populations, the similarity in the 

computation of macroscopic variables for incompressible flows in LB models is 
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represented by an ancestor inheritance. Figure 13 shows how some models are organized 

hierarchically.  

 

 

Some proprieties cannot be inherited and must be constructed dynamically. For example, 

using an LES model can modify the collision term. However, adding these modifications 

eliminates the potential for interference or conflict. In each cell, the collision model is 

replaced by an LES model that obtains a copy of the original model to perform the 

collision phase. "Object composition," which is in Palabos equivalent to "Dynamics 

chains," enables this operation.  

 

 

Figure 13: Inheritance graph of collision models. 
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3.2.3. Non-local algorithms and couplings: Data processors  

 

Data processors work on a broader level than collision models, acting on entire multiblock 

modules rather than single cells. In an LB simulation, they carry out operations that go 

beyond the collision/streaming paradigm. They can perform non-local operations that are 

not covered by the streaming step, or they can couple individual equations.  

Some examples are as follows:  

 Implementing a multi-phase or multi-component flow by coupling fluid 

components. 

 Implementing a buoyancy-driven thermal flow by coupling a temperature and a 

fluid field. 

 Implementation of accurate boundary conditions. 

 Data post-processing, which involves extracting flow variables from the lattice and 

converting them to scalar/tensor fields before inserting them into data files. 

 

Since data processors operate on a multi-block part basis, they have two distinct 

interesting features. The first is that they can share data across multiple multiblocks (of 

the same or different types) that they are working on simultaneously, which is important 

for practical different coupling implementations. The second allows for a reduction in the 

number of operations in the aforementioned subdomains; computation of average kinetic 

energy, computation of drag force acting on an obstacle (in our case, a wing section).  

 

3.3. Memory organization and mesh refinement   

 

During the streaming step, a cell must be able to communicate with its neighbors at any 

time. Depending on the complexity of the shapes on which the calculation is run, there are 

two key approaches to guaranteeing this access in an LB simulation. For exclusively 

normal shapes, since the data is organized in matrix-like data structures, simple index 

arithmetic allows access to the neighbors. In the case of irregular shapes, a neighbor-list 

approach is used, with pointers being used to reach all necessary neighbors. As a result, 
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more memory is needed. In the most complicated shapes, only six neighbors can be 

accessed directly via their pointers, while others can only be accessed indirectly. This is 

due to the high memory consumption and the fact that the number of neighbor pointers 

equals the number of populations (variables in a cell).  

 

Palabos uses a more general matrix-based formalism than the LB code, in which the 

technique is dependent on the type of shapes. Of course, depending on the mesh, this 

formalism is revised, but the concept remains the same. 

A powerful spatial hashing scheme is used for homogeneous simulations. A hash table is 

a data structure that stores data in an associative manner using a hash function. The data 

is stored in an array format, where each data value has its own unique index value. Access 

of data becomes very fast if we know the index of the desired data. During lookup, the 

key is hashed and the resulting hash indicated where the value is stored. Obviously, the 

low memory allocation is a benefit of such a system. 

As for mesh-refined simulations, since Palabos decomposes multiblocks into components, 

it builds an octree to define4 the relationships between those. The challenge then is to find 

the multiblock component's size that keeps a good compromise between domain shape 

and the parallel efficiency, because while the former gets optimal with small components, 

the latter does with larger components.  

Palabos' approach to mesh refinement is vital to the memory organization among other 

factors. Palabos separates each multiblock with a different mesh level from the others and 

then implements them. Consequently, each level has a memory allocated accordingly. The 

fluid models shared by uniform and refined meshes are the same and remain usable at all 

levels of the simulation, but they must be rescaled using the Dynamics objects that handle 

communication between levels. 

  

                                                 
4 An octree is a data structure in which each internal node is recursively subdivided into 8 octants 
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3.4. Parallelism  

 

Palabos offers the convenience of parallel computing by breaking down the multiblock 

components into smaller subdivisions that can be computed simultaneously by multiple 

processors communicating via shared memory. Each component is therefore attributed 

through an MPI (Message Passing Interface) process. The strategy of domain attribution 

depends on the treated problem and relies on geometric criteria, on a principal of minimal 

inter-process communication, or is in some cases random to minimize the impact of highly 

imbalanced problems, such as multi-phase flows with rapidly moving inter-phase 

interfaces.  

To manage MPI communication, Palabos encircles the components by a ghost layer that 

consists of envelope cells containing read-only only information (writing has no impact 

on other components) that are accessible from bulk cells. After each collision/streaming 

cycle or data processor modification of a multiblock, the information in ghost layers is 

updated. Evidently, these ghost layers augment the memory allocation, therefore affecting 

the computational performances and cost.  

4. Conclusion:  

The scope and concepts of the open-source Lattice Boltzmann library Palabos have been 

described. This, in turn, allows users to claim that the data structure of this software library 

is intended to combine great flexibility, spanning a wide variety of problems of interest to 

the LB community and the CFD framework in general, with high computational 

performances. 

The understanding of the fundamental principles, schemes, and strategies utilized by 

Palabos in its memory allocation and data layout provides a better understanding of how, 

despite its newness, Palabos has proven its efficiency in the field of Computational Fluid 

Dynamics. 
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1. Introduction  

Since the objective of this thesis is to evaluate the Lattice Boltzmann method on CFD 

benchmark cases using the PALABOS (PArallel LAttice BOltzmann Solver), this chapter 

will be divided into two sections. To begin, all of the steps required to install PALABOS 

on the computer used to execute the simulations will be described in details. 

The test and evaluation method will be discussed in the second section by providing the 

two cases studied, namely the flow of a Poiseuille and that of a circular cylinder in 2D in 

both a steady and unsteady state. The numerical data generated from the simulation, their 

comparison with reference data, and their commentary are then developed. 

2. First steps in Palabos 

2.1. The configuration of the operating system 

The University of Geneva website provides detailed documentation on how to start using 

Palabos. This solver can be used in several operating systems such as Windows, Linux or 

Linux-similar environments. All other prerequisites or recommended (but optional) 

packages are also listed. For more information, please refer to the "Get started" > "Palabos 

documentation" section.   

After some technical problems encountered when using "Visual Studio 2019" under 

windows, the choice was made to use a Linux system, more precisely Ubuntu in its latest 

version 20.04.  

2.1.1.  Ubuntu operating system 

Canonical created Ubuntu in October 2004 as open-source software. It is a highly robust 

operating system. This option was primarily motivated by the numerous advantages that 

Ubuntu provides over Windows. To name a few, it is an open-source operating system. 

Ubuntu offers a more user-friendly interface. It features a centralized software repository 
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from which we may download all necessary software. And, most importantly, since the 

Unix environment is the finest for programmers. 

You have various options for using the Ubuntu operating system: 

1. Use Ubuntu as the principal operating system or in conjunction with a Windows 

system. Because this option necessitates the creation of a new partitioning on the 

hard disks, and given the computer's limited storage space, it has been discarded. 

 

2. Use a virtual machine. A virtual machine is the same as any other physical 

computer, as with a laptop. It has a CPU, memory, and drives for storing data. 

While the hardware components of a computer are solid and real, virtual machines 

(VMs) are generally thought of as virtual computers or software-defined 

computers within physical servers that exist only as code. However, given the cost 

that its use can inflict on RAM and the importance of memory resource integrity, 

this option is not the best choice for memory-intensive simulations. 

 

3. As soon as the pc boots, use a USB to boot an identical image of the operating 

system from the BIOS. This option was chosen due to its balance of deployment 

convenience and physical resources requested for the simulations.  

 

Creating a bootable Ubuntu USB stick from Microsoft Windows is a sensitive but feasible 

task, which we will go through in the next section. The ability to boot an operating system 

from a USB stick is referred to as live USB. Live USBs can be used to operate a computer, 

restore specific data, or simply test an operating system without having to install it on the 

computer's hard drive. The fact that system modifications, software, backups, and files are 

not permanently written to the USB is a significant downside of this technique. They will 

be deleted the next time you restart your computer. 

However, there is a method around this limitation by editing the system file and utilizing 

software to establish a USB boot with persistent live drives. In 19.10 and later versions, 



 

68 

 

the size of a persistent partition is simply limited by the size of the drive (USB pen drive, 

SSD, HDD, memory card). To achieve this, the following steps were conducted: 

2.1.2.  Editing the ISO file 

An ISO file (also known as an ISO image) is an archive file containing an identical copy 

(or image) of data found on an optical disc, such as a CD or DVD used for installation. 

First, download the ISO file for the most recent version of Ubuntu (currently Ubuntu 20.04 

LTS). Edit the ISO file with HxD (a binary editor) to replace the two cosmetic boot options 

'quiet splash' with 'persistent' (replace 12 characters with 12 characters). Figure 14 shows. 

The window displayed once the ISO file is opened and converted to a hexadecimal code 

 Select 'Search' from the pull-down menu, followed by 'Replace...' 

 Insure to substitute 'silent splash' with 'persistent ‘. It is critical that we replace 12 

characters with the same number of characters. Otherwise, the changed file cannot 

be utilized to build a live system. 

 Allow the binary editor to work by pressing the 'Replace all' button. 

Figure 15 shows the “Replace” operation.  

Figure 14: The window displayed once the ISO file is opened and converted to a hexadecimal code. 
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There should be 12 instances of 'silent splash' replaced with 'persistent' in the current 20.04 

version. When the user presses the OK button, the dialog box shown in figure 16 displays. 

Figure 16 shows the dialog box indicating that 12 occurrences of ‘silent splash’ were 

replaced.   

 

 

 

 

 

 

When the cloned drive is booted for the first time, the Ubuntu system will automatically 

create a casper-rw partition with an ext4 file system.  

Figure 15:  “Replace” window. 

Figure 16: Dialog box indicating that 12 occurrences of ‘silent splash’ were 

replaced. 
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2.1.3. Configure the bootable USB 

To begin, the designated USB to open Ubuntu is inserted. The Rufus 3.15 application5 is 

then run, and the device is detected instantaneously. Then we select the ISO image that 

we wish to install on it. It is critical to choose the maximum available capacity for the size 

of persistent partitions. The operation can begin once the partition schemes and formatting 

options have been configured. All options are shown in figure 17.  

 

 

 

 

 

 

 

 

 

 

 

                                                 
5 Rufus is a tool for formatting and creating bootable USB flash devices. 

Figure 17:  Rufus display of USB configuration. 
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Wait for the "Ready" message to display, as shown in figure 18.  

 

The USB is now ready to be used just to run Ubuntu 20.04 and, therefore, is no longer 

capable of storing data as a standard USB. Once a bootable USB is created, it may be 

taken anywhere and used to run the operating system without installing it and access the 

persistent stored files. 

2.1.4. Run Ubuntu Live 

It is imperative to ensure that the computer's BIOS is set to boot from USB devices before 

inserting the USB flash drive and powering on the laptop. To boot from a USB drive, the 

boot sequence in the system's BIOS is modified to configure the boot priority and make 

Figure 18: The dialog box where the "Ready" message is displayed. 

Figure 19: Ubuntu live desktop 
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the USB drive the top priority. Once the operating system is run, the desktop shown in 

figure 19 is displayed on the screen.  

 

To make the Ubuntu framework more reliable and accessible, some packages need to be 

uploaded and installed from the Terminal as shown in figure 20. The following commands 

are executed: 

 

§ sudo apt update && sudo apt upgrade -y  

§sudo add-apt-repository universe 

§sudo add-apt-repository multiverse 

 

2.2. Obtain the Palabos library 

The only step left to do before we begin running simulations is to download the open-

source Palabos library from Gitlab. This library consists of a set of source codes that can 

be directly executed or modified to meet the demands of the programmer. It is divided 

into the folders detailed below and shown in figure 21:  

Figure 20: commands executed in the terminal. 
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1. Source codes for simulating configurations tailored for the application of LBM 

codes. 

 

2. Coupled solvers, which are the contributions of researchers at the University of 

Geneva to the development of LBM by combining it with other numerical methods 

(such as FEM) to exploit the advantages of each in the numerical simulation of 

configurations that are too expensive numerically. More details can be found in 

[35]. 

3. External libraries, which are the work and contribution of developers and 

researchers from the scientific committee from all around the world who desire to 

the LBM advancement.  

 

 

Figure 21:Palabos repository in Gitlab. 
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3. Validation of the LBM code 

 

Verification and validation are the key methods for determining the accuracy and validity 

of computational methods of simulation. This section is devoted to the validation of the 

LBM code, using the LBM-BGK model based on the study of classical cases that are 

suitable for CFD code validation and benchmarking. 

Based on the Boltzmann lattice method algorithm detailed in the previous chapters of this 

thesis, two codes were written based on the 2D codes available in the PALABOS library 

and were run for the simulation of classical flow configurations for incompressible fluids, 

quite used in the CFD code validation literature. Therefore, both the Poiseuille flow and 

the 2D circular cylinder flow are simulated using the LBM-BGK model.  

 

3.1. Poiseuille flow 

 

Plane Poiseuille flow is a flow created between two infinitely long parallel plates, 

separated by a distance h with a constant pressure gradient ∆P being applied in the 

direction of flow. 

In this section, we compare the accuracy of the numerical solution generated by executing 

the LBM-BGK code in PALABOS to the analytical solution available in the CFD 

literature (refer to [36]). 

Consider a fluid flow in a 2D duct formed by two parallel flat plates, separated by a 

distance H=2H0 and length L=10H0 (see figure 22).  

Figure 22: Poiseuille flow in a 2D duct 
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The flow is driven by a pressure difference in outP p p    between the inlet and outlet. 

The mechanical characteristics of the fluid are similar to those of water and pressure in 

normal conditions.  At the walls of the pipe, the non-slip condition is applied. The 

geometrical, physical and numerical parameters used in the simulation are given in the 

following Table. 

 

 
Table: geometrical, numerical and physical parameters. 

 

The figures 23 to 27 show the code computed on Palabos, written in C++. 

Parameter  Value  Unit  

Duct width, H  

Duct length, L 

4. 10-4  

2. 10-3 

[m] 

[m] 

Density of the fluid, ρf 

Dynamic viscosity, η 

Imposed pressure difference ∆P 

103 

10-3 

1 

[kg.m-2] 

[N.s.m-1] 

[N.m-1] 

Spatial resolution, h 

Lattice speed, c 

Relaxation time, τ 

10-5 

1 

0.8  

[m] 

[m.s-1] 

[/] 
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Figure 23:  Poiseuille source code 1 
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Figure 24:  Poiseuille source code 2 
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Figure 25: Poiseuille source code 3 



 

79 

 

 

  

Figure 26: Poiseuille source code 4 
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According to G. K. Batchelor in “An Introduction to Fluid Dynamics,” [36] the analytical 

solution of the Poiseuille flow, taking into account the time evolution of the velocity 

profile of a duct cross-section, is written as follows:  

2 2 2

0 2 2
1 2 2 3 2

10 0 0

. sin( )
( , ) (1 ) 4 .cos( ).exp( . )

2

n n n

n n f

G H x x
u x t t

H H H

   

 





 
   

  
   (4.1) 

Where:  

o  
(2 1)

 and
2

n

n 



  

o 
1

.
p

G
L


    

Figure 27: Poiseuille code 5 
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The analytical and numerical solutions are computed. The obtained results are exported 

to be plotted on a graph using Plotly, which is an open source graphing tool6. The velocity 

profile is displayed in the duct's center part. 

 

Figure 23 illustrates a very acceptable conformity between the numerical results, 

represented by the dashed lines, obtained by the LBM-BGK model and the analytical 

solution, represented by dots, during the transient phase at t1 = 0,015s, t2 = 0,025s, t3 = 

0,035s and permanent at t4 = 0,1s. 

3.2. Flow around a circular cylinder  

 

The flow around a circular cylinder is a frequently used case of CFD to test various solid 

boundary conditions. In this study, we use the “bounce-back” condition. Curved cylinder 

walls are difficult to simulate accurately, especially in LB computations, which are often 

                                                 
6 For more information, please refer to the tutorial section in https://plotly.com/chart-studio-help/tutorials/  

Figure 28: Comparaison between numerical results obtained by the LBM-BGK model and the analytical 

solution during the transient phase at t1 = 0,015s, t2 = 0,025s, t3 = 0,035s and permanent at t4 = 0,1s. 

https://plotly.com/chart-studio-help/tutorials/
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performed on square lattices. The solver's performance in solving flow over complicated 

geometry may then be measured using the LBM, which can be compared to other well-

known CFD methods. When the Reynolds number surpasses a critical value Recrit, an 

unsteady flow occurs, resulting in a vortex street (von Kármán vortex street). As a result, 

the performance of unstable flows can be studied using the flow around a circular cylinder 

[37].  

 

The flow is considered to be two-dimensional, isothermal, while the fluid is a Newtonian 

fluid, and of constant properties. Figure 24 shows the computational domain. 

 

The code was tested in a simple setup—steady and unsteady 2D flow around a cylinder. 

Schäfer et al. [38] describe the benchmark in detail. A 2D domain with stationary no-slip 

walls on the upper and down sides is generated in Palabos. 

The benchmarking is carried out at two different Reynolds numbers such that 

.
Re x

bm

u D


   (4.2) 

Where:  

o 
xu  is the average flow velocity in the x-direction at the inlet,  

o D is the cylinder diameter, and  

o ν is the kinematic viscosity of the fluid.  

Figure 29: Computation domain 
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The steady - state flow benchmark is established at Rebm =20, while the unsteady case is 

examined at Rebm =100. The values of the drag coefficient CD and the lift coefficient CL 

were tested: 

2 2

2 2
 , D L

D L

x x

F F
C C

u D u D 
   

 

Where:  

o FD and FL are respectively the drag and lift components of the forces applied on 

the cylinder 

o ρ is the fluid density. 

 

The resulting CD and CL were the stable values in the steady case, whereas in the unsteady 

case, these parameters were their maximum values, CD
maxand CL

max, when a periodical 

steady state was achieved (the von Kármán vortex street).  The momentum exchange 

approach is used in the current LBM simulation to calculate the fluid force on the circular 

cylinder. FD and FL were computed as the momentum change in a single direction during 

a time period ∆t using the following equations: 

 
8

,

1

( ( , ) ( , )) ( ( , ) ( 1, ))D x i i ii i
i

F e f B t f N t f N t f N t t


          (4.3) 

8

,

1

( ( , ) ( , )) ( ( , ) ( 1, ))L y i i ii i
i

F e f B t f N t f N t f N t t


          (4.4) 

 

Where:  

o B denotes all solid cylinder boundary nodes,  

o N denotes iB e t   if the point is fluid, and  

o N+1 denotes 2 iB e t  .  

 

The benchmarks were executed at various values of the diameter D: 8, 16, 32, and 64, 

which controlled the size of the domain and the grid resolution. Figures 25 and 26 depict 

the flow visualization at Re=20 and Re=100 by opening the generated GIF file in 

ImageMagick. 
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It can be seen that in the case of flow at Re=20, there is an increase in velocity at the upper 

and lower levels of the cylinder wall, which is due to the deflection of the air streamlines. 

However, as no unsteady flow was created, no vortex is generated.   

However, in the case of the flow at Re=100, a Von Karman vortex street is generated. 

This is explained by the increase in Reynolds number, which causes an unstable flow to 

appear. The oscillating motion of the conjunction zone, where both high velocity (red) 

and low velocity (blue) are found, explains why only values of CD
max and CL

max were 

collected. 

 

The reference values were acquired using a traditional FE approach with an unstructured 

grid. The number of unknowns to be calculated is used to describe the grid resolution in 

this case. When Re=100, as the phenomenon to be simulated becomes time-dependent, the 

resolution is therefore expressed by both spatial and temporal unknowns. The  

benchmarking results are showed in the following table . 

 

 

 

Figure 30: Simulation of the flow around a cylinder at Re=20. 

Figure 31: Simulation of the flow around a cylinder at Re=100. 
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Table: Comparison of Palabos’ CL and CD results with reference values. 

 

At Rebm=20, it can be seen that the performance is the lowest at the minimal diameter D 

=8, and it improves as the value of D rises. It can be also observed that the mistakes for 

CL are larger than those for CD.   

The pattern at Rebm =100 is similar to that at Rebm =20; higher resolution computations 

performed better. Similarly, to when Rebm =20 calculations were performed, the errors for 

CL
maxare larger than those for CD

max. 

 

 

 

 

 

 

Rebm 20 100 

D  
DC  LC  max

DC  max

LC  

8 5.565043 - 0.000006 3.320698 0.596131 

16 5.494948 0.009826 3.235433 0.978701 

32 5.538439 0.011075 3.201211 1.004254 

64 5.586776 0.010525 3.227876 1.008553 

Reference values for a FE method with unstructured grid  

Unknowns  Spatial 

unknowns 

Time 

unknowns  

2298 5.4450 0.0200 2.8920 0.5540 2978 70 

6297 5.5710 0.0130 3.2470 1.0740 29084 33 

20487 5.5760 0.0110 3.2240 1.0060 29084 66 
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General conclusion  

Despite all of the existing CFD methods, tremendous progress is being made within the 

scientific community, leading to the creation of new and innovative approaches and 

methods. LBM has grown in recognition in recent years, and it is now the subject of 

countless theses. In light of the stakes and topicality of the method, the study conducted 

in this thesis takes on its full relevance. 

We were able to analyze the evolution of the MBL by consulting many sources in order 

to better comprehend the method's theoretical roots. Once this knowledge was acquired, 

it was possible to describe the computations that enabled the formulation of the Boltzmann 

equation in discretized form, ready for implementation in a numerical environment. 

The e-learning follow-up of the C++ programming language allowed the familiarisation 

with its paradigms and concepts. It also allowed to identify all the subtleties used in the 

Palabos library in order to develop a reliable and robust environment capable of generating 

a large amount of computing power without being costly for the memory resources, 

making it a tailor-made solution for complicated simulations.  

After becoming acquainted with the Ubuntu interface and the Palabos library, the first 

computational codes were executed, producing a set of numerical data that was compared 

to the analytical and numerical data of other CFD approaches. The coherence and 

uniformity of the comparative results allowed us to demonstrate the LBM's efficiency and 

legitimacy as a method for modeling macroscopic flows from a mesoscopic description. 
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Perspectives 

There are further aspects of LBM that can be examined. One of the key advantages of 

LBM is its ability to parallelize numerical calculations. Although parallelization was 

restricted to two processors in this study, an analysis of the efficiency and achievable 

encapsulation for a higher number of processors may be done. 

Investigating the deployment of multi-phase flows or the simulation of three-dimensional 

flows may be of significance in evaluating LBM's capabilities. 

 

The Lattice Boltzmann Method for incompressible flows in classical configurations was 

the focus of this project. Taking into account that lift and drag coefficients were calculated, 

a future interesting perspective would be to apply this method with minor changes to 

simulate the curved geometry of an airfoil and compare it the already acquired results in 

the aeronautical industry.  

 

Because the LBM can only model incompressible flows, many efforts are being 

undertaken to overcome this limitation, as one of the key advantages of the LBM is its 

flexibility to implement different types of fluids simply by adjusting the collision 

operator. There are two potential models for implementing compressible flows in LBM: 

KT-LBM (Kataoka & Tsutahara, 2004) and QU-LBM (Qu, 2009). 

Palabos also provides an additional library that combines the LBM with a modified 

version of FEM to model compressible fluids in supersonic speed. 
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